

Local Helicity (Impurity?) Injection in Pegasus

C. Rodriguez Sanchez

UW Fusion Experiment Workshop: Managing Neutrals and Impurities May 28th, 2025

Pegasus is (was) Considered a Clean Machine

- Impurity studies by K. E Thome circa 2010¹
 - Ohmic operations
 - Zeff ~ 1.2, estimated with MIST
 - Oxygen is the main impurity
 - Extremely hollow radiation profile

MW-class Local Helicity Injection System Could be an Impurity Source

Impurity Species Monitored With VUV Spectroscopy

- SPRED VUV Spectrometer¹
 - Single line of sight at R_{tan} =15.9 cm
- CMOS image sensor
 - 2048 x 1088 Resolution
 - Temporal resolution is 1.25 kHz at 2048 x 120
- Two interchangeable gratings
 - 450 g/mm
 - Spectral range 10 to 110 nm, resolution ~0.3 nm
 - Coverage for Li-like to B-like low-z impurity lines
 - 2100 g/mm
 - Spectral Range 10 to 32 nm, resolution 0.04 nm
 - Useful for metallic lines like Ti, Fe, Mo, W, etc.

Raw image from a SPRED frame and constructed spectrum

¹R.J. Fonck, A.T. Ramsey, and R. V. Yelle, Applied Optics **21**, 2115 (1982).

VUV Spectra in LHI Discharges Includes O, N and Ti

Intensity [Arb.]

Engineering Physics INIVERSITY OF WISCONSIN-MADISON

- Typical impurity species are N, O and Ti
- Off-normal scenarios result in more or different impurities
- Cathode spots and PMI with local limiter increase line intensity
 - Higher resolution grating can help identify metals
- Internal arcing sources Carbon
 - Lower charges states of N and O suggest colder plasma

Recently Installed HiRes Grating to Resolve Lower Wavelength Lines

Line Identification of High-Resolution Grating Still Going

Measuring Impurity Concentration Via Visual Bremsstrahlung not Applicable in Pegasus

- High performance tokamaks typically use Bremsstrahlung emission for Z_{eff}
 - $\epsilon = 7.632 \times 10^{-15} n_e^2 T_e^{-1/2} \bar{g}_{ff} \lambda^{-1} e^{-\frac{hc}{T_e \lambda}} Z_{eff}$ [photons/s cm² sr]
- At modest T_e and n_e other mechanisms play an important role
 - E.g. molecular deuterium emission, electron-neutral Bremsstrahlung, increased resistivity (collisionality) due to partially ionized atoms^{1,2}

 1 E.S. Marmar et al., Review of Scientific Instruments **72**, 940 (2001) 2 V.D. Kirillov, et al., Sov J Plasma Phys **1**, 117 (1975) $_7$

Other techniques to Measure Z_{eff} are Being Investigated

- Following J. Anderson et al technique¹
 - Electron-neutral pollution can be removed from NIR emission: $\epsilon_{NIR} = \epsilon_{e-i} + \epsilon_{e-n}$; $\epsilon_{e-n} \propto D_{\alpha}$
 - Needs a simultaneous measurement of ϵ_{NIR} and D_{α}
 - We borrowed the hardware from MST (thank you!)
 - Modified original amplifier circuit to make it fully differential
 - Necessary to suppress EM noise broadcasted by switching power supplies
- Results are inconclusive in Pegasus-III
 - Wall reflections
 - Contributions from the injector arc and/or stream
 - Spectral survey in the NIR to confirm there's no line emission at this wavelength

¹J.K. Anderson, P.L. Andrew, B.E. Chapman, D. Craig, and D.J. Den Hartog, Review of Scientific Instruments 74, 2107 (2003);

l_p [kA]

NIR

Estimates of Z_{eff} Using Ohm's Law: $R_p = V/I_p$ Yield a Value Similar to that of Ohmic Discharges¹

Department of

- Estimate effective charge by calculating Z_{eff} that results in $R_p = R_{Sauter (neo or Spitzer)}$
- Plasma resistance computed from timeevolving reconstructions during OH-phase
 - Drive voltage is a well-defined quantity during OH, but not for LHI
- T_e and n_e are mapped to the equilibrium grid
- Z_{eff} in Sauter model varied until total effective $R_p = R_{neo}$
 - Assumes flat Z_{eff} across plasma $\rightarrow \bar{Z}_{eff}$
- Handoff \overline{Z}_{eff} similar to OH-only.
 - $\bar{Z}_{eff,OH} \approx 2 \pm 1$
 - $\bar{Z}_{eff,handoff} \approx 3 \pm 1 \rightarrow 1.5 \pm 0.5$

¹Pierren, C. M. B., An Assessment of the Startup Target Quality of Local Helicity Injection Initiated Plasmas via Ohmic Current Drive Sustainment on the Pegasus Spherical Tokamak, UW-Madison NEEP thesis, 2024

Next Steps

- Mitigation of PMI
 - New local limiters (shape and materials)
 - Optimize plasma shape and position
- Experimental determination of Z_{eff}
 - Will a hotter plasma unlock the possibility of Bremsstrahlung measurement?
- Absolute calibration of SPRED via branching ratio technique
 - Will help to pin down specific ion densities

Department of Nuclear Engineering

& Engineering Physics

Summary and Conclusions

- LHI system can be a source of impurities
- Impurity species are identified with SPRED
- Main impurity species during LHI include N, O and Ti
 - Most likely residual atmospheric trapped by getters and released when the plasma or current stream hits this surface
- Z_{eff} is hard to measure experimentally, but other techniques had been used
- A "clean" LHI discharge has similar impurity content as an Ohmic discharge
 - VUV spectrum is similar, Z_{eff} estimated to be similar to Ohmic plasmas
 - Important to avoid cathode spots and PMI

