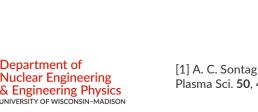
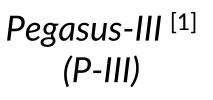


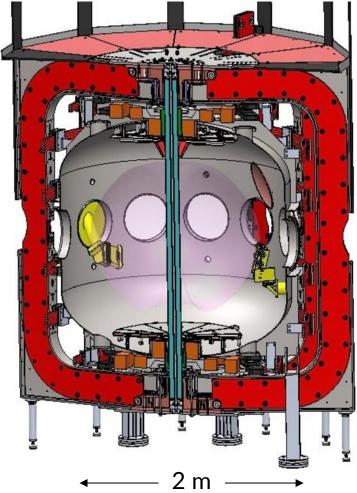
Pegasus-III Vacuum and Neutrals: Titanium is addicting

UW Fusion Experiment Workshop: Managing Neutrals and Impurities *May 28, 2025*

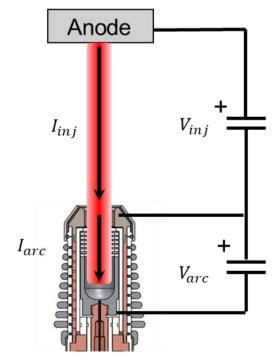



Pegasus - III overview

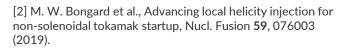
GOAL: investigate the fundamental physics of non-solenoidal spherical tokamak startup and develop power plant relevant technologies Pegasus startup systems:


- Local Helicity Injection (LHI)
- Coaxial Helicity Injection (CHI)
- Microwave assist and sustainment

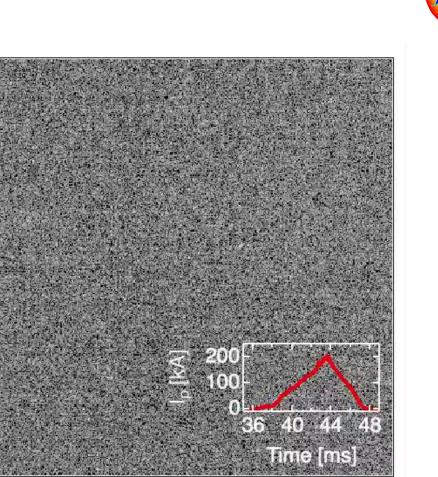
Pegasus-III Parameters	
Major Radius	0.48 m
Aspect Ratio	1.22
Magnetic Field	0.6 T
Plasma Current	0.3 MA
Density	~10 ¹⁹ cm ⁻³
Electron Temperature	~50 eV



[1] A. C. Sontag et al., The New PEGASUS-III Experiment, IEEE Trans. Plasma Sci. **50**, 4009 (2022).

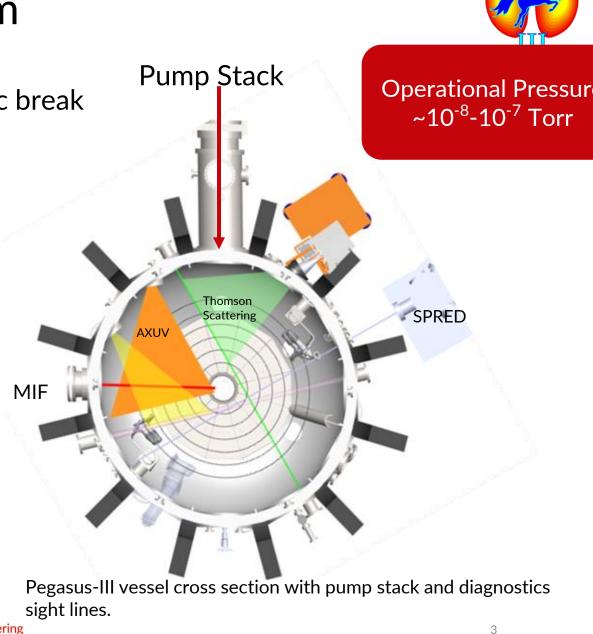

Local Helicity Injection

- Active arc sources
- Current streams extracted follows vacuum field lines
 - Magnetic instabilities relax the system to minimum magnetic energy state while conserving total helicity



Pegasus LHI injector system conceptual schematic^[2].

Video of Pegasus-III plasma discharge.

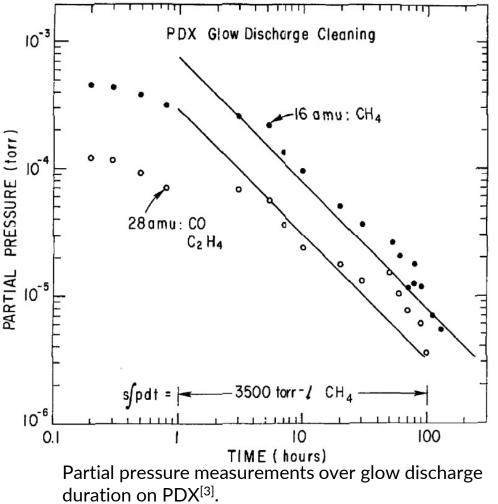

Tech Specs of Pegasus Vacuum

- Total vessel volume ~5200 L
- Walls are ¼ inch Stainless Steel with ceramic break at bottom joint
- Roughing pump
 - ~10⁻³ Torr
- Turbomolecular pump (TV1001 Navigator)
 - 1*10³ TL/s N2
- Cryogenic pump (CT-10)
 - 3*10³ TL/s N2
 - 9*10³ TL/s H20,
 - 5*10³ TL/s H2
- Titanium Gettering (sourced from National Electrostatics Corp.)

Department of

ineering Physics

• ~5*10⁴ TL/s H2

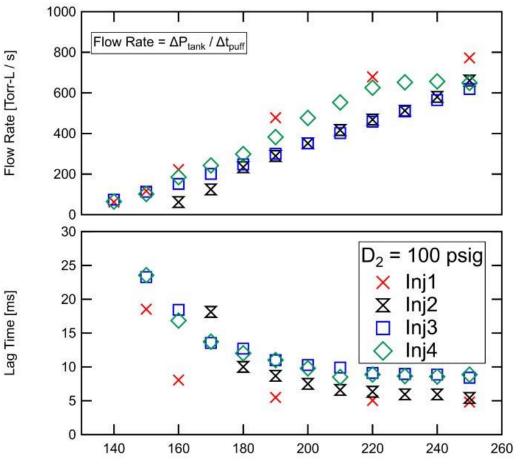


Vacuum Conditioning

- Glow discharge to condition the walls
- ~100 hours glow discharge^[3]
 - 20 hours Hydrogen glow on un-gettered walls
 - 100 hours Helium glow
 - This is beneficial because the extended UV exposure can liberate water absorbed in the walls
 - To this end, just running a plasma can be really helpful
 - Generally, a dozen high current plasma shots to be good for wall conditioning
- Injector conditioning also required for optimal operations
 - Few dozen discharges, slowly walking up V inject to condition injector surfaces

Department of

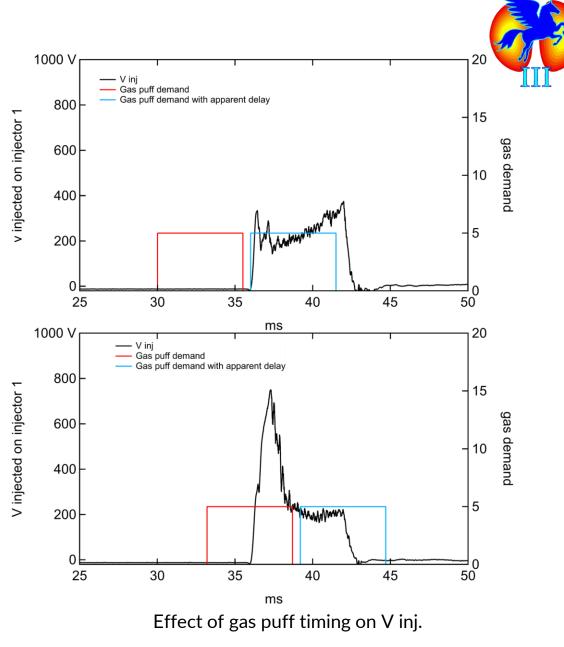
Nuclear Engineering & Engineering Physics



[3] H. F. Dylla, S. A. Cohen, S. M. Rossnagel, G. M. McCracken, and Ph. Staib, Glow discharge conditioning of the PDX vacuum vessel, Journal of Vacuum Science and Technology **17**, 286 (1980).

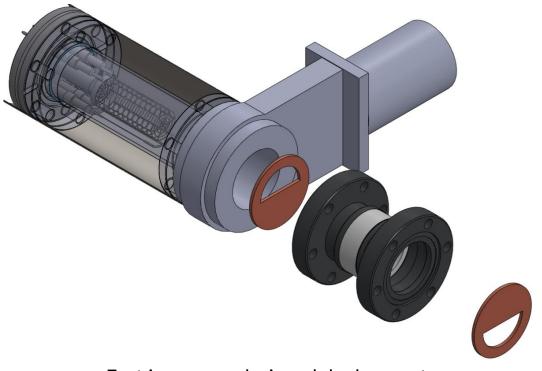
Fueling

- Predominantly operate with D2
 - Occasionally will run with other gases or with auxiliary fueling of other gases to test impurity diagnostics
- Most of the fueling comes from the helicity injectors themselves
- About ~5 Torr of gas fueling for each shot
 - PV10's control gas flow into the injector arc chamber
 - Increased throughput
 - ~400 Torr L/s
- Fuel low field side and high field side available


Gas flow and lag time as a function of applied voltage for PV10 characterization.

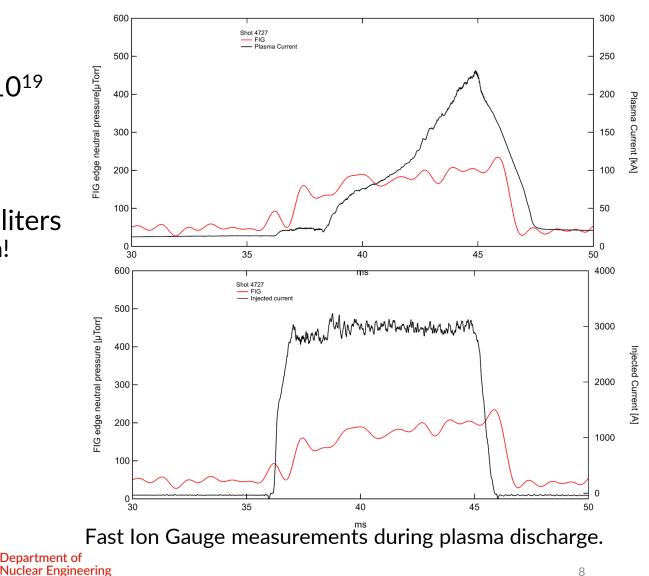
PV10 Voltage [V]

Fueling Impact on V injected


- More gas means more impedance
 - Direct knob for V injected control
- V injected is proportional to V effective
 - All things being equal, knob for plasma current
- Auxiliary fueling on both the LFS and HFS allow for density and edge impedance control

Vacuum and neutral diagnostics

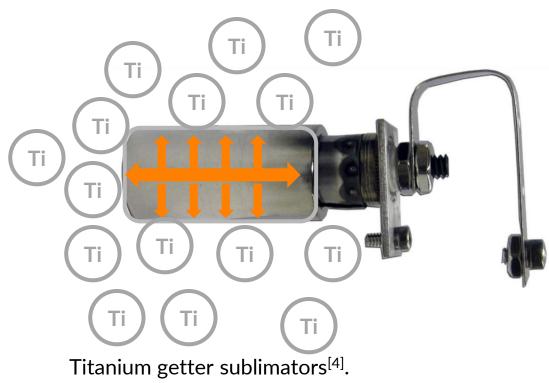
- Tank Ion Gauge
 - Low time resolution tank pressure measurements for intershot evaluation
- Capacitive Manometers
 - Measures fueling plenum
- RGA
 - Primarily to evaluate leaks or vacuum conditions post vent
- Fast Ion Gauge
 - Supposed to be high time resolution
 - Half moon gaskets minimize UV pickup


Fast ion gauge designed deployment.

Edge neutral pressure measurements

ngineering Physics RSITY OF WISCONSIN-MADISON

- Edge neutral pressure during plasma ٠ discharge ~200 µtorr
- ~5.55*10¹⁷ m⁻³ neutral density vs ~10¹⁹ • m⁻³ electron density
 - This is about 1% •
 - Low neutral density •
- Intershot gas needed to pump 5 torr liters •
 - YAY that is about what we fueled with!



Titanium Gettering

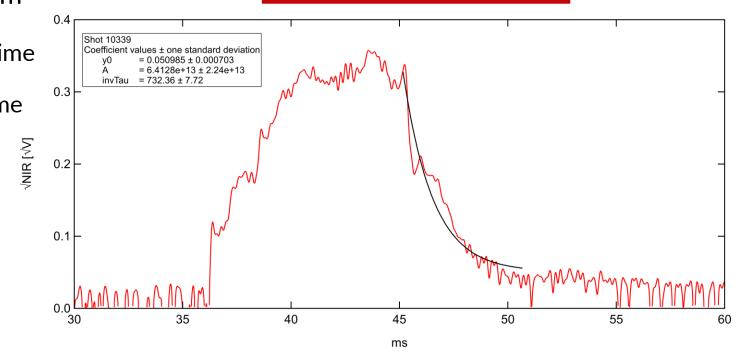
- Pegasus employs continuous titanium gettering
- Sublimated titanium coats ~80% of plasma facing components
- assists in pumping nitrogen, oxygen, and hydrogen
- CON: continuous gettering provides a source of ~10¹³-10¹⁴ particles total for the whole discharge
 - about 10¹⁵ particles per second

[5] K. Thome, Improved Density Control in the PEGASUS Toroidal Experiment Using Internal Fueling, https://pegasus.ep.wisc.edu/wpcontent/uploads/sites/1310/2020/01/KET_APS12.pdf

10

Historically we have assumed low recycling rates

Department of


luclear Engineering

& Engineering Physics

- R < 0.8 Phase II
- From interferometer measurements and estimated electron confinement times from reconstructions^[5]
 - assumed particle confinement time is 1 ms
 - Same as energy confinement time

$$\tau_p^* = \frac{n_e}{\frac{dn_e}{dt}} = \frac{\tau_p}{1-R}$$

P-III recycling coef. 0.99

Near Infrared signal trace with fit exponential decay.

In summary...

- Pegasus-III has good vacuum
 - Consistently operating in 10⁻⁸ torr
 - TITANIUM GETTERING
- Decent vacuum/neutral diagnostics
 - Redeploying a D alpha signal
 - FIG has some noise pick up
- Low neutral density
 - ~1% electron density
- Higher recycling coefficient
 - 0.99 compared to 0.8 from Phase II ohmic discharges

References

A. C. Sontag et al., The New PEGASUS-III Experiment, IEEE Trans. Plasma Sci. 50, 4009 (2022).

M. W. Bongard et al., Advancing local helicity injection for non-solenoidal tokamak startup, Nucl. Fusion **59**, 076003 (2019).

[3] H. F. Dylla, S. A. Cohen, S. M. Rossnagel, G. M. McCracken, and Ph. Staib, Glow discharge conditioning of the PDX vacuum vessel, Journal of Vacuum Science and Technology **17**, 286 (1980). [4]

Vacuum Components: Titanium Sublimators, (2021).

K. Thome, Improved Density Control in the PEGASUS Toroidal Experiment Using Internal Fueling, https://pegasus.ep.wisc.edu/wp-content/uploads/sites/1310/2020/01/KET_APS12.pdf.

12

[2]