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MST Operates in Many Regimes

* Two power supplies

—Legacy: timed pulse forming network

—Programmable power supply (PPS):
feedback driven, high voltage

 Variable field configurations
—Reversed Field Pinch (RFP)

—Tokamak

—Ultra-low g (Ulq)

Configuration

RFP

Tokamak

Ulg

Density n, 0.2-10x 109 m=3 0.05-9x109m3 0.1-1x10¥m3
Temperature T, 200 eV — 2 keV 50 -100 eV 50-100eV ?
Loop voltage V, ~20V 2-3V 20-40V
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Talk Outline

* Overview of impurity species in MST

 Impurity identification and diagnostics

 Effects of high impurity content

« Methods to remove impurities from MST

« Adding impurities
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Dominant Impurity Species

« Endemic — occur as a natural part of
machine construction and operation
—Aluminum — wall
—Carbon —tiles and limiters
—Boron — probes, boronization (formerly)
—Nitrogen — probes
—Helium — cleaning cycle fueling

« External — introduced inside the
machine inadvertently

—Oxygen — air leak
* Water

—Argon — air (or doping)
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Talk Outline @

« Overview of impurity species in MST

* Doppler
spectroscopy

 Monochromators

o | * Broad-range
* Effects of high impurity content spectrometer

* Impurity identification and diagnostics —<

« Methods to remove impurities from MST

« Adding impurities
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lon Doppler Spectrometer (IDS)

* First version (IDS |) installed 1994,
second (IDS I1) in 2007

« Measures impurity line radiation
—High resolution over narrow range
—Tunable to desired wavelength

« Used to study dynamics of impurity species
—Doppler shift — flow speed
—Doppler broadening — thermal speed
—Total radiation — ion density

* Integrated along two sightlines
—11 radial chords, 2 toroidal views

fibsr optic i P W[ Jrser optie

D. J.. Den Hartog and
R. J. Fonck, Rev. Sci.
Instrum. 65, 3238 (1994)
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Charge Exchange Recombination Spectroscopy (CHERS) @

Perpendicular Viewing Chords

 Diagnostic neutral beam (DNB) N/
perpendicular to IDS sightlines etestay

« Charge exchange produces radiation
—lonized impurity receives electron from neutral
Hydrogen
—Decay from excited state produces photon
 Allows localized measurements

— Sightlines placed on and off DNB path

* Chosen impurity depends on type of shot
—Carbon V in the core for RFPs (< 2 keV)
—Boron 1V for tokamaks (< 0.1 keV)

— Carbon Il for colder tokamaks (< 0.05 keV)

50 keV
Hydrogen Beam

MST Vessel

Localized
Measurement
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Impurity Monochromator Array (IMA) @

* Most recent in series of line radiation diagnostics, 0.01 ms time res

* Monitors 5 impurity lines common in MST
—Carbon Ill (229.69 nm) in extreme edge
—Carbon V (227.09 nm) in the core
—Boron IV (282.17 nm) in the midradius
—Oxygen IV (338.55 nm) in edge
—Nitrogen IV (347.87 nm)

« Radiation provides information about impurity density

* Functions as approximate temperature diagnostic
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Compact Spectrometer

radiation effects

Broad range spectrometer
—Records 193-893 nm

Wavelength resolution ~1nm

Integrated over 30ms during shot
Can see many impurity lines .
simultaneously, find dominant i
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Talk Outline

« Overview of impurity species in MST

 Impurity identification and diagnostics

« Effects of high impurity content

« Methods to remove impurities from MST

« Adding impurities
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Effects of High Impurity Content

 High loop voltage
—RFP: 20V in good conditions, up to 100V in bad
—Tokamak: 2-3 V in good conditions, 10-20 in bad

* Poor sustainment
» Flux consumption ) l
» Density excursions 3
E,
o
=,
CCD - M
0 J -
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Talk Outline

« Overview of impurity species in MST

 Impurity identification and diagnostics

 Effects of high impurity content

 Methods to remove impurities from MST

« Adding impurities
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Pulsed Discharge Cleaning (PDC)

 High repetition rate (0.2 Hz) Ulg Helium plasma
* Current of 100kA for 3ms

« Removes outermost layers of loose impurities
 Variation on Taylor discharge cleaning

« Automated to run without operators

« PDC Is run:
—Nightly by default
—Over weekends as needed
—During run days if conditions are poor
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RFP Conditioning

* Procedural run of RFP shots with increasing current

* High temperature RFPs deliver energy to the walls
—Sawtooth cycle generates particle flux
— UV radiation
« Conditioning is done:
— After vents
— After long periods of idle time
—When impurities have been introduced
—When experiments require particularly good conditions
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How to Condition MST

 Protocol divided into 3 phases

1. Consistent reversal, stable density, short pulses up to 200kA
« Density can increase between shots, increases resistivity
« PDC used intermittently to regain control
«  Often will not need gas puffing

2. Always reversed, stable density, short pulses up to 500 kA
*  Higher current — more density excursions
 Need to work up slowly to avoid current excursions on transformer primary
«  Must be clean enough to require gas puffing

3. Longer pulses up to 500kA

*  Build up from low current with full legacy PFN
 Remain here until satisfied with conditions
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PPS Conditioning

 Less regimented than legacy conditioning
« Decreased risk of primary current excursions
* Finer control over plasma current and duration

» Easier to ensure reversal at edge
—BT can be controlled

* General procedure:
—Start from 100kA RFPs
—Increase current when loop voltage ~ 20 V
—Extend duration at high current
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Specialized Conditioning ©,

« Specific operation types require conditioning
using those plasmas : Normal current Ul — ri s ey
— Different limiters, areas of wall affected

—Asymmetry involved in sawtooth cycle \M\

* Not always RFPs

 Resonant magnetic perturbation (RMP) -

—Changes shape of modes o
— Condition with the planned perturbation :

« Change of current direction

* Newly inserted probes
—Need limit for safe temperature o

N, [101° m3]

Counter current Ul —— #1206 pensity

Ne [101° m-3]

0 0.02 0.04 0.06 0.08

Time (s)
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Boronization @

\\\\\
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* No longer a regular procedure on MST Boron carbide

—Last boronization occurred 2015 NN Boron nitride [10mm

i
W

_ _ _ Graphite N
 Solid target boronization 5.3, Den Hartog, RD. 7

—Stick of boron carbide (B,C) inserted into machine D503 (1005 6a1 6a5 TR

—Could be left in for RFP operation or PDC ’

—Biased for higher energy transfer in PDC

« Gaseous boronization
—O-Carborane sublimated into MST by ovens
—Run with rapid PDC (10kA, 1Hz)
— Coating thickness 50-300 nm
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J. Ko et al, J. Nucl. Mater.

Both resulted in decreased impurity radiation 432 (2013) 146-151
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Talk Outline

« Overview of impurity species in MST

 Impurity identification and diagnostics

 Effects of high impurity content

« Methods to remove impurities from MST

« Adding impurities
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Doping @

« Operated with programmable puffing,
same as Deuterium

—Dopant or working gas

* Interchangeable gas
—Helium, Methane (CH,), Argon

« Used to study:

— Impurity transport in PPCD
« SXR tomography
« Multi-energy soft x-ray camera (ME-SXR)

—Induced tokamak disruptions
—Density snake formation and stability
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Diagnostic Impurities

« Beam injection
—Rutherford scattering with Argon
—Possible with neutral beam injector

 Pellet injection

used to study Carbon transport

* IDS line stimulation
—Boron |V
—Argon
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Takeaways

« MST Iimpurities are mostly low- and mid-Z
—Aluminum wall is the biggest source

« Range of diagnostics allows monitoring of impurity content
— Combination of resolution and range

* Plasma can clean your plasma experiment
—Heat flux to the walls liberates impurities
—Surface cleaning done by lower energy discharges
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