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MHD computations demonstrate that feedback can sustain reversal
and reduce loop voltage in resistive-shell reversed field pinch (RFP)
plasmas. In the absence of a close-fitting conducting shell, feedback with
conducting coils on ~2R/a tearing modes resonant near axis is found to
restore plasma parameters to nearly their levels with a close-fitting
conducting shell. When original dynamo modes are stabilized,
neighboring tearing modes grow to maintain the RFP dynamo more
efficiently. This suggests that experimentally observed limits on RFP
pulselengths to the order of the shell time can be overcome by applying
feedback to a few helical modes. Feedback with resistive coils yields
information on requirements for more physically realistic feedback
systems and on the potentiality of improvement of resistive-shell plasma
parameters beyond the conducting-shell case. Plasma response to sheil
rotation is investigated, and issues relevant to mode locking and feedback

rotation of individual modes are discussed.
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CHAPTER 1

INTRODUCTION

1.1 The Reversed Field Pinch

The Reversed Field Pinch (RFP) is a foroidal configuration for
magnetic confinement of plasma. The primary long-term goal of RFP
research is to demonstrate the feasibility of the RFP's magnetic geometry
for confinement and heating of plasma and, ultimately, for generating
energy from fusion of plasma ions. With this goal probably decades in the
future, shorter term physics goals such as understanding RFP dynamo,

heating, and transport processes are currently significant motivators.

In an RFP, the equilibrium plasma current drives a pinching
poloidai magnetic field Bg comparable in size to the toroidal field By
needed to stiffen the plasma against perturbations. (Insofar as the plasma
is a conducting fluid, it is frozen to the magnetic field lines.l) Energy is
supplied by inductive drive of toroidal plasma current density Jz, which
creates the plasma's poloidal magnetic field The toroidal magnetic field is
provided initially by an external field set up in the vacuum chamber prior
to the plasma discharge. Thereafter By is driven partly by the
paramagnetic plasma current and partly by an internal "dynamo"
mechanism which converts poleidal to toroidal flux. The toroidal field

spontaneously changes direction near the plasma edge (Fig.1.1a),

vanishing at the "reversal layer” ry; hence the name "Reversed Field
Pinch" The reader is referred to reviews of RFP experiments and theory

for historical details.2,3,4,5,6

The RFP has several attractive features as a possible fusion reactor,
including weak magnetic field, high beta, high energy density, and
relatively small size and cost, compared te tokamaks. Consider an RFP
and a tokamak with the same plasma current and aspect ratio R/a, where
R is the major radius of the torus and a is the minor radias of its cross
section (Fig.1.1). The Kruskal-Shafranov’ limit for ideal kinks constrains
the safety factor g(z)=Byr/BgR, or amount of twist in the helical field lines.
Tokamaks satisfy the g21 criterion with a large toroidal field Bz2BaR/x, at
a cost which increases with B2; substantial bracing against torques exerted
by large JxB forces on the metal coils and support structures is also
required. The RFP operates beyond the Kruskal-Shafranov limit in a
small-toroidal field regime, with stability provided by a conducting shell.
Confining comparable energy density with smailer magnetic fields gives
the RFP inherently higher beta = plasma pressure/magnetic pressure. In
addition, since REP current levels are not limited to g == 1/Jz 2 1, and since
RFP plasma resistance is relatively high, the plasma can be heated
ohmically to ignition. Tokamaks must keep Jz low for ideal stability, and
therefore require expensive auxilliary heating by injection of energetic

particles or waves.

There are two primary technological disadvantages of the RFP.

First, the requirement of a close-fitting conducting shell for stability to



ideal kinks cannot be satisfied over long time scales, and impedes fine-
tuning of RFP profiles. Second, the fluctuations which maintain the RFP
field configuration also lead to degraded plasma confinement. This thesis

addresses both problems and proposes partial solutions for them.

In the foliowing sections, we review the RFP dynamo {Section 1.2),
consider requirements for MHD stability of the RFP (Section 1.3.a), and
discuss the stabilizing role and limitations of the conducting shell (Section
1.3.b). Then we examine the RFP's second dilemma: in Section 1.4.a, we
discuss the destructive nature of tearing modes, and in Section 1.4b we
review the theory that tearing modes provide RFP sustainment. Finally,
Section 1.5 provides an overview of potential solutions to these problems,

which constitute the body of this thesis.

1.2  Overview of the RFP dynamo

Magnetic fields in Reversed Field Pinch plasmas typically persist for
a duration Tp over an order of magnitude longer than the resistive
diffusion time Tg of the toroidal field B;. Inductive drive of Jz sustains
Bg as long as volt-seconds are available from the transformer. Without
external magnetic field drive, the vacuum Bz established in the chamber
prior to ionization of the fill gas will diffuse away (with an e-folding time
g =aZp/n ina plasma of resistivity 1y and length scale a, if there were no
confining shell; otherwise with the L/R time of the resistive shell and

external circuit. In a perfectly conducting shell, only field gradients will

diffuse away). In the RFP a "dynamo” mechanism changes Bg into Bg,
sustaining the mean toroidal field for Tp > IR without external Bz drive,

requiring only a small external edge field to maintain reversed Bz(a).

However, a steady-state, axisymmetric reversed-field pinch cannot
exist, according to Cowling's theorem.8 Since cylindrical symmetry means

%=§%:G and equilibrium (or steady staie) means %‘gz{], then,

conditions for a cylindrically symmetric equilibrium are (E=F Z = constant)
and Eg=0. We assume steady state cylindrical symmetry and define a
parameter [ = U0J-B/B? proportional fo paraliel current density. Since the
steady state current is purely toroidal{E=E, = nf »). dotting E into B yields

a simple relation between i and Bz:
E-B=E, B, = nuB* (1)

The poloidal component of Ampere’s law VxB= Lo} = 1B yields a simpie

relation between 1 and gradients in Bz:
B
-9z = By @

Since By is positive throughtout the RFP, (1) and (2) yield the requirement

that sign(B,)= msign(aa]i" } This condition does not hold in the RFP edge,

therefore the assumptions of an axisymmetric steady state are invalid.

Helical fluctuations break the RFP's axisymmetry, permitting a
reversed steady state despite Cowling's theorem. The likelihood that the

dominant helical Huctuations also provide the RFP dynamo is reviewed



in Section 1.4. It appears that the m=1 helical fluctuations are necessary for
the existence (Cowling's theorem) and the sustainment (dynamo) of the

REP.

The RFP dynamo is a cyclic process of fast generation of toroidal flux
@, embedded in the continual slow incomplete resistive diffusion of Bz.
The dynamo is evident experimentally in periodically enhanced toroidal
flux on axis and deepened reversal near the edge. Between such "flux
jumps” (which are discussed at greater length in Section 1.4.c), @z and F
exhibit their usual slow resistive decay. The net effect of the dynamo is to

sustain the plasma in an edge-reversed siate.

Faraday's law JE-dl:-gr—_[B-dA underlies the RFP dynamo?

process: a negative poloidal electric field at a radius r generates a positive
toroidal magnetic flux ®z =JBz -dA inside r. A flux-conserving shell at
the plasma edge requires a decrease in @z outside r. Fluctuations in
velocity and magnetic field drive the RFP dynamo by creating a negative
poloidal electric field (in the fluid frame) near the plasma edgel0,11,12
from Chm's law, E=nJ-VxB. Smali scale fluctuations in the paraliel cross-
product term, Ep =—<vXb>-B/|B|, can yield a nonzero mean field
(Appendix.1).13 (Here, v and b are velocity and magnetic field
fluctuations, and < > is a sum over toroidal and poloidal mode numbers
in Fourier space, equivalent to an ensemble average over the poloidal and
toroidal directions in configuration space). Since edge B is primarily

poloidal in the RFP, the fluctuation-induced EF is primarily poloidal in

the edge region. Negative poloidal EF near the reversal surface at r=ry
sustains core Bz against diffusion. Insofar as the shell conserves flux,
(EF)g also generates negative flux outside ry, which can reverse edge Bz,
Note that negative (Ep)g at the reversal surface drives the dynamo most
efficiently: if negative (EF)g extends inside ry, it sustains less axial Bz; if

negative (EF)g extends outside ry, it drives less reversed Bz.

1.3  RFP stability and the role of the conducting shell

This section reviews some of the RFIP's stability requirements.
Shear and edge field reversal are required for stability to pressure-driven
modes. A close-fitting conducting shell is required for stability to kink
modes and bulk shifts in the plasma column. The conducting-sheil

requirement is problematic; proposed solutions are sketched.

1.3.a Stability requirements; Taylor's equilibrium

RFP stability questions can largely be addressed in cylindrical
geometry, since small toroidicity is a consequence of comparable Bz and Bg
levels. In the limit of large aspect ratio R/a or small torcidicity, the RFP
plasma is approximated as cylindrical: the toroidal field By becomes the
axial field and the poloidal field Bg becomes the azimuthal field. The axial
field helps o stabilize against kink modes, or twisting of the plasma

column. Compression of By (via compression by Bg of the plasma to



which the field is nearly frozen) provides a restoring force against uniform
axisymmetric expansions for equilibrium against plasma pressure. (The
contribution of a conducting shell to equilibrium and stabilty is considered

in section 1.3.b.)

Bg also shears the field lines, that is, changes their direction from
one magnetic flux surface to the next . This stabilizes the RFP against
pressure-gradient driven modes. The Suydaml4 criterion for stability
against pressure-gradient driven modes

Vel |, 286VP _
EARSS B2

depends on the safety factor q, which is proportional to the pitch of the
helical magnetic field lines, and the shear {(-12Vq/q2R, where Vg=dq/dr),
which quantifies the change in pitch from one magnetic surface to the
next. The RFP field lines yield a monotonically decreasing q(r} which
reverses sign near the plasma edge (Fig.1.2.a}. The Suydam criterion can
be violated if a pitch minimum arises (Fig.1.2.b), since this provides a
region where Vq=0. A pitch minimum permits destabilization by the
negative pressure gradient VP. In addition, linearly unstable double
tearing modes can grow, since a pitch minimum provides two resonant
radii for some modes of helicity m/n.15 (The poloidal mode number = m
and toroidal mode number = n.} The RFP's monotonically decreasing
safety factor profile consistent with edge field reversal eliminates the

danger of a pitch minimum, while providing strong shear stabilization.

Shear stabilization can be envisioned as semewhat analagous o a woven
basket holding water: the magnetic field lines serve as the strands of the
basket. If all the field lines (strands) were parallel, the plasma (water)
could slip through them (e.g. with a Raleigh-Taylor instability). An
adjacent layer of crossed lines impedes the flow of the fluid. Nested
magnetic flux surfaces with field lines at angles to each other confine the
fluid yet more effectively. (The analogy is insufficient in at least two ways:
the field lines tend to be only crossed, not woven; and the field lines exert

an elastic restoring force when bent.)

The RFP's comparative stability is largely due to its proximity to a
minimum energy state, or stable equilibrium, of cylindrical plasmas. The
RFP equilibrium is nearly a force-free configuration {}xB=0), that is, the
plasma current is everywhere nearly parallel to the magnetic fieldl. List
and Schliiter describe such systems by VxB=uB, where ot = wof-B/ B2,
generally varies with minor radius. In a perfectly conducting plasma,
magnetic fluctuations must satisfy 3B/3t-Vx{vxB}=0, which describes
fluid frozen to field lines. Wolter shows that this condition together with

B=VxA implies the invariance of magnetic helicity K:L A-Bdv

ohume
bounded by any flux surface.16 In a slightly resistive plasma, flux surfaces
tear and reconnect and helicity K is probably conserved only as a volume
averaged quantity.17 Assuming constant toroidal fiux ,=7a’(B,) and
total helicity <K>, the state of minimum magnetic energy is found to be a
force-free configuration with constant 116 The equation ¥ xB=uB with

constant p has Bessel function solutions: Bz{r)=BgJo(ur) and



Be(r)=BoJi(ur)l® . Taylor notes that eigenstates with Bessel function

magnetic field profiles closely approximate those of the RFP,

Near this minimum energy state there is little free energy available
to drive ideal instabilities. The natural relaxation of high-current density
toroidal plasmas toward something like the "Taylor state” reveals the RFP
as a preferred magnetic geometry for toroidal plasmas. The RFP evolves
along a locus of pinch parameter © = Bg(a)/<Bz> = p;J,a/2®, and
reversal parameter F = Bz{a)/<Bz> points slightly displaced from the locus
of Taylor state F/@® points. This is consistent with the experimental
deviation from u(r)=constant: since edge current vanishes, u{r) drops
smoothly to zero at r=a.l? In another divergence from the theory,
experimentszc}r21 and simulations such as those presented in this thesis
consistently find dominant helical modes {m=1,n22R/a) of slightly shorter
wavelength than Taylor's prediction (m=1, n=1.25R/a}. This may reflect
the existence of a fixed point in the RFP state space toward which the

relaxed state is atiracted 22

13b Role of the conducting shell

One disadvantage of the RFP configuration is its requirement for a
close-fitting conducting sheil.  Both experiment23r24r25:26 and
theory27,28,29 suggest that the stabilizing influence of the shell is
necessary. With a close-fiting conducting shell, MHD fluctuations saturate

and the discharge duration time is limited only by the available voit-
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seconds driving the plasma current. With a resistive or distant shell,
magnetic fluctuations grow well above their conducting-shell amplitudes,
with an accompanying increase in the toroidal loop voltage. It has been
observed in experiments and MHD computations30,31 that growing
resistive shell modes destroy RFP reversal on the order of the shell time Ts
for soak-in of a magnetic field. {The OHTE experiment appeared to be an
exception32 to this rule; however, QHTE's thick copper helical coils
increase the effective shell time to the order of the plasma discharge
duration time, in keeping with other experiments.) This presents a

fundamental problem, since the stabilizing role of any shell with finite

conductivity will vanish on the long time-scale of a steady-state reactor.

A conducting shell provides partial equilibrium control since
displacements in the plasma current column induce eddy currents in the
sheil; these exert a JxB restoring force that tends to push the plasma
radially inward, away from the walls. However, the presence of a
conducting shell also complicates fine control of the equilibrium position:
a vertical magnetic field (providing a horizontal [xB force to center the
plasma column) must be able to soak through metal shells enclosing the
plasmz on the order of the plasma discharge timescale. Therefore these
shells must not be too highly conducting. Active equilibrium control
more completely centers the plasma column in the vacuum chamber by
responding to bulk radial shifts, on a fast timescale compared to the
discharge duration time, with externally imposed vertical (horizontal) B

fields to center the plasma horizontally (vertically). Optimized
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equilibrium control minimizes plasma-wall interactions. Plasma-wall
interactions increase high-Z (atomic number) impurities and therefore
increase Spitzer (particle collisionality) resistivity ng = Z. Helicity scrape-
off due to flux lines intersecting the vacuum chamber (or limiters)
increases the "mon-Spitzer” part of the resistivity33 which can dominate
total plasma resistivity. The lower-impedance plasmas demonstrated with
active equilibrium control require less loop voitage (VL) for induction of
plasma current34, and are more reproducible than RFPs with nonideal

boundary conditions without active plasma current column centering.

Replacement of a conducting wall with a resistive shell, however,
provides additional free energy for growth of ideal instabilities, which may
have resonant surfaces in the plasma or in the surrounding vacuum
region.28 At the values of magnetic Lundquist number S « 1/ used in
our computations, these ideal modes grow more slowly and perturb the
REP less than do the dominant resistive modes. Continued numerical
investigations info regimes of lower resistivity/higher 5 are providir1g35
more complete characterization of the relative importance of ideal modes

in resistive shell RFPs.

To summarize the conducting shell problem: equilibrium control
requires a resistive shell (shell time tg <tp plasma discharge duration
time)} but linearly unstable ideal modes and nonlinearly unstable resistive

modes necessitate a close-fitting conducting shell (15 > tp).

12

Several solutions to the conducting shell problem in RFFs have
been proposed.36,37 Initial MHD computational tests of helicity injection
suggest that this methoed of parallel current drive can effectively suppress
tearing mode instabilities, but at a high power cost.38 Ongoing detailed
tests seek more efficient helicity injection configurations.3? This thesis
investigates another means of suppression of tearing modes: indirect
drive of parallel current through application of edge magnetic fields
designed to suppress tearing modes. Results presented here suggest that
edge feedback may be a feasibie solution to the conducting shell problem,

especially at small aspect ratio.

1.4  Resistive tearing modes and the RFP dynamo
14.a Resistive tearing modes as instabilities

RFP equilibrium {m,n}=(0,0) profiles are modified primarily by m=1
resistive teaﬁng modes driven by current gradients.40 The longest
wavelength fluctuations resonate on axis; these tend to be largest in
amplitude, with significant radial separation between resonant surfaces for
tearing modes, though even central modes overlap to some extent. Since
nonlinear mode coupling and quasilinear profile modifications are key to
RFP dynamics, nonlinear calculations will be necessary to model RFP
evolution.4? The resonant surface for a tearing mode (m,n) lies at the
radius rg where the safety factor q{rg) = m/ Ini. Afrg the (mn) mode has

the same pitch as the local magnetic field: the fluctuation amplitude is



constant along the field line, so the mode's wavenumber parallel to the
field vanishes (k-B=0). At this surface, B{zs)=0 in the frame of the
perturbation, and field lines can tear and reconnect into magnetic islands
and a tearing mode instablity can grow at the resonant surface. With
nonzero resistivity the magnetic restoring force for perturbations becomes

finite (see App-2):
F=JxB=(vxB)xB/n=-vB2/1n

The magnetic field lines can decouple from the plasma fluid, tear across
the resonant magnetic flux surface, and reconnect into magnetic islands.

Shorter wavelength (m>2) modes are linearly stable.41

When R/a=2.5 and g~02 at r=0, the internal helical fluctuations
with Inl =5, 6, or 7 tend to dominate the m=1 energy spectra. Internal
m=1 modes with inl> & remain small because their resonant surfaces are
crowded close to neighbors' resonant surfaces: the closely-packed modes
interact and tear each others’' boundary layers before they have a chance fo
grow to large amplitude. Relative amplitudes of fluctuations are
determined by interactions such as {1,-5)+(0,2} = {1,7)+(1,-3). Modes with
longer toroidal structures than (1,-4) remain small since ¢(0) is too low for
inclusion of their resonant surfaces in the plasma. The m=0 and m=2
products of such nonlinear interactions such as (1,-5) + (1,-6) = (2,-11) and
(0,1) tend to be at least an order of magnitude smailer than the m=1
modes, at least in MHD computations with S=6000; these may be larger at

higher S, where greater turbulence leads to more nonlinear interactions.

i4

The (0,1} can contribute to m=1 generation, playing an intermediary role
in the dynamo process discussed below, by facilitating cascade of magnetic
energy to short-wavelength modes during the transport phase of the
dynamo cycle (discussed in Section 1.4.¢). These dynamics are supported by
bispectral analyses of experimentally measured B fluctuations?? and
power flow analyses of computations.43 Smali-scale m=2 modes
contribute litile to the equilibrium evolution, serving as an energy sink

and a medium for further mode-spectrum broadening.44

14b Resistive tearing modes as dynamo modes

Several theories have been proposed to explain the RFP dynamo.
Kinetic dynamo theory4S proposes that @z is produced by fast edge
electrons which arise from transport along stochastic field lines. This
theory is not self-consistent. Magnetohydrodynamic (MHD) dynamo
theories are the most highly developed and most seli-consistent
explanations for RFP sustainment. In these theories (and in this thesis),
"dynamo modes" are by definition those supplying the bulk of negative EF
(that is, directed opposite to the poloidal magnetic field) around the
reversal region, as discussed in Section 1.2. @z production is attributed to
=0 modes %647 or m=1 modes!82.12, depending on the RFP's proximity??
to the Taylor state, where u=constant (therefore edge current is nonzero).
REPs modeled with the more realistic constraint of zero edge plasma

current consistently exhibit m=1 dynamo drive and m=0 antidynamo*® {or
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degradation instead of sustainment of toreidal fluxj. That is, when i(a)=0,
the m=0 modes give rise to positive EF, opposing the dynamo field, while

a few m=1 modes drive a strong negative EF around the reversal surface.

The internally resonant tearing modes responsible for the dynamo
sustainment of the REP are also the dominant RFP fluctuations {with
either a conducting or resistive shell)!2. A smail number (approximately
equal to the aspect ratio, R/a) of these helical fluctuations are at least an
order of magnitude larger than all other fluctuations. They are global in
spatial structure, with poloidal and toroidal mode numbers m=1, Inlz
2R/a. Typically, ali internally resonant m=1 modes with 2R/a £inl<3R/a

are possible dynamo modes.50

In fact, edge EF from m=1 tearing modes resonant near the core
provide the RFP dynamo.48 The m=1 dynamo modes resonate with large
amplitude near the axis and drop off toward r=a. They convert peleidal
field into mean toroidal field (Bz} and provilde edge reversal of Bz by
driving parallel current near the plasma edge via the fluctuation-induced
electric field EF=-<vxb>-B/ B!, Dynamo modes have positive EF(m,n} in
the core, and negative EF(m,n) at the edge, changing sign near the modal
resonant surface. In the plasma edge or reversal region, EF provides the
dyname field which sustains toroidal flux inside ry. In sustaining and
reversing By they also contribute to the RFP's ideal stability by enhancing

shear without an edge pitch minimum.
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In the plasma core, however, the direction of the fluctuation-
induced field is opposed to the applied electric field. Therefore growing
dynamo modes also suppress 1] || = E; -EF, or, equivalenily, necessitate a
higher toroidal loop voltage to sustain the current. While a finite ER(0)
heips suppress the current-driven thermal instability believed to initiate
sawteeth, high Ep(0) increases input power costs by increasing loop
voltage. One of the goals of our feedback schemes is to reduce the

amplitude of the dominant m=1 modes without loss of dynamo.

l4.c Review of dynamo details

An RFP dynamo is inferred from observations of unusually long
plasma discharge duration times. Experimentalists sometimes cbserve
discrete dynamo events in REPs relatively far from the Taylor state®l.
Excursions from the minimum energy state, e.g. at high © and/or large
negative ¥ appear in some experiments as "sawteeth” or "flux jumps",
which simultaneously increase mean @z and deepen reversal
dramatically. Relaxations toward a lower energy state follow periods of
growth to higher magnetic energies. Sawteeth give experimentaiists a
peek at dynamo processes in the RFP core, since these large excursions
from a relaxed state show up even on edge diagnostics. Before a flux
jump, m=1 fluctuation activity increases. During a flux jump (a sudden
“crash” toward a lower-energy state) the mean torcidal magnetic m=0 flux

increases and reversal deepens, profiles flatten, fluctuations quiet down,
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and the plasma heafs up.92 Charge exchange analyzers detect a hot ion
burst at the plasma edge, and soft x-ray signals indicate hot electrons
within the plasma.>354 After a flux jump, Bz and F resume their slow

decay, until m=1 precursors signal the beginning of a new cycle.

Consider a peaking in the current density profile Jz(r) before a flux
jump as the starting point of the dynamo cycle. Two main processes
contribute to Iz(r) peaking during the diffusion phase before a sawtooth
crash: a global thermal instability, and a circuit response to tearing mode
fluctuations. The thermal instability? arises because current flows more
easily in the hot, conductive core than the cold edge of the RFP, ohmucally
heating the core further. Resistivity 1e<T-3/2 drops as the core
temperature rises, facilitating increased plasma current in the centrai
region. Meanwhile, the resistive plasma edge remains cool, with J(a)=0.
Peaked Ty leads to current profile steepening, and increased gradients in Jz

provide free energy55 to destabilize axially resonant m=1 tearing modes.

Numerical simulations have illuminated details of the tearing
modes’ coniribution to the dynamo process.37 Magnetic reconnections

increase the flux in internal modes {m,Ini)2(1,2R/a), and their magnetic

energies wm{m,n)z% _sz (m,n)dT grow on a resistive diffusion timescale
volume

{typically milliseconds). Growing m=1 helical fluctuations twist Bg into
Bz, enhancing Bz non-axisymmetrically. {Increased fluctuation activity
may also contribute to core plasma heating as the RFP moves further from

the Taylor state.”®) As higher fluctuations demand increased applied

18

electric field to sustain Jz at a specified level, and increased Eg
preferentially drives axial current, the net result is increased current

density gradients, which exacerbate the tearing mode instability.

Moving further from a stable equilibrium, these dynamics become
insupportable. The RFP "crashes” toward a minimum energy state on the
hybrid tearing mode timescale T = Tr3/5To2/3 (between microseconds and
milliseconds)36,40,57, Toroidal flux generated in m=1 modes becomes
m=0 torcidal flux as the tearing modes break flux surfaces. The broken
flux surfaces of the helical modes stochasticize field lines, which transport
heat and current radially outward. Energy cascades radially outward to
smaller-scale modes, broadening the spectra of modal energies.44
Nonlinear interactions between overlapping tearing modes flatten jz as
they symmetrize the dynamo-generated ®z(1,Inl22R/a) into mean
®;(0,0). This shows up in a burst of +B,{(0,0) inside 1y and -Bz(C,0) outside
Iy, sustaining the mean field and deepening reversal. Therefore, in the
sawtooth crash, F deepens as W /K drops,12 where the magnetic energy

W o is a sum of wi(m,n) over all fluctuations and the helicity

K= [A-Bdr. Without driving current gradients, m=1 fluctuations
volume )

become quiescent and islands narrow. As J(r} flattens, the peaked j(0)
drops and q(0) increases. The higher axial safety factor allows the re-
inclusion of low-n resonant fluctuations. Axial tearing modes resume

their growth and the cycle repeats.
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At low © and/or shallow reversal, a bath of small fluctuations
interact in a quasi-steady state and drive the dynamo continucusly.
Fluctuzations may not grow large enough to push the RFP far from a
minimum energy state. There is less free energy available to drive current
gradients so profile peaking and the subsequent flattening "crash” is not
dramatic enough to show up on edge diagnostics. Very smali flux jumps
may be observed in experiments, or edge B coils may report quite smooth
By sustainment without discernable flux jumps. In such cases the dynamo
cycles gently deep within the RFP, generating helical field near axis and
quasilinearly transforming it to axisymmetric B near the reversal surface
without notably perturbing the plasma edge. Good edge confinement
persists and wall interactions remain relatively low. These quiescent,
sawtooth-free RFPs have relatively low Z therefore low Spitzer resistivity
ng=Z; low flux scrapeoff33,58 therefore low anomalous resistivity; and low
amplitude m=1 kinking, therefore low inductance; the net result is low
input power reguirements for a high-quality RFP. Power flow analyses
suggest that .quasilinear interactions provide the quiescent dynamo while
nonlinear interactions in the presence of large m=0 modes drive a

sawtoothing dynamo.43

1.5  Overview of present research

This work uses MHD computation to examine the feasibility, from a

physics perspective, of a feedback solution fo the resistive shell problem.
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Restoration of helical mode amplitudes and loop voltage to the
conducting shell levels would constitute a solution. Reduction of mode
amplitudes and VL, below conducting shell levels would be even better.
Feedback schemes are devised to sustain the reversed-field configuration
in the absence of a conducting shell. We investigate edge feedback
suppression of resistive-shell tearing fluctuations as a means of restoring
mode amplitudes and VL to conducting-shell levels, without suppressing
the dynamo. We find that effective feedback must not only maintain
negative edge Er of dominant fluctuations, but should also inhibit central
EF. Therefore, an efficient dynamo mode has low positive EF in the core
in addition to negative EF(m,n) in the outer region. As means towards
more efficient RFP sustainment are uncovered, the physics behind

dynamo and transport processes is clarified a bit further.

In these tests, the conducting shell is replaced by helical coils
which hold the radial magnetic field to specified levels at the plasma
boundary, for a few specific helical modes. These boundary conditions for
targeted helical modes are easily implemented in the nonlinear,
pseudospectral DEBS code.>® There has been a limited experimental test
of feedback of a single mode3#4 which agrees well with these numerical
tests. In addition, circuits have been examined for related feedback

schemes to address engineering feasibility ues’fiorn-;..éo,61
g g q

The results of several feedback boundary conditions imposed in the
absence of a close-fitting conducting shell are described in this thesis. Our

central results appear in Chapter 3, where modal radial fields are nulled at
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the plasma edge. This models application of conducting wall boundary
conditions only to specified modes, via resonant helical feedback coils.
When the few dominant tearing modes are targeted for feedback
stabilization, fluctuation levels and Vi approach the low values of the
conducting shell case. Chapter 4 investigates Br(m,n)la=0 feedback
schemes, including attempts to suppress mode amplitudes below their
levels in the conducting shell. In Ch.4.2, the resistivity of helical feedback
coils is varied to determine requirements for a more physically realistic
feedback system. In Ch.4.3, coil currents are varied in response to the
magnetic fluctuation amplitude at a mode's resonant surface to keep the
driving current gradients small. Parameters are found with which these
resistive feedback coils can effect an approach to conducting shell plasma
parameters. Ch.4.4 notes a resistive-coil scheme which responds to
Br(a).62 Since experiments have shown improved plasma parameters
when a plasma or its islands rotate, we also have begun investigating the
effects of rotation and angular acceleration on RFP stability. In Ch.5, fast
rotation or rapid spin-up of the bulk plasma is found to approach the

conducting shell case, and rotation of individual modes is discussed.

Fig.la Figib

By

—

Figure 1.1 Magnetic field profiles for (a) Reversed Field
Pinch (RFP) and (b)Tokamak configurations with
comparable plasma current

-
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Fig.1.2 Safety factor g(r)=Bzr/BaR versus radius ("q profile”) for

(a) typical RFP, with reversal layer marked by vertical line near edge
(b) unstable RFP with pitch minimum in reversal region

24

References

1 R.Last and A.Schliiter, "Kraftfreie Magnetelder,” Z. Astrophys., 34
(1954) 263-282

2 H.A. Bodin, A.A. Newton, Nucl.Fusion 2¢ {1985) 1255
3 H.A. Bodin, R.A Krakowski, 5.0rtolani, Fusion Technology (1986)

4 K.L.Sidikman, PhI> Thesis, University of Wisconsin-Madison,
DOE/ER /53212157 (1990)

5 C.W. Spragins, PhDD Thesis, University of Wisconsin-Madison,
DOE/ER/ 53198-196 (1992)

6 P.Kirby, Phys.Fluids 31 (1988) 625
7 V.D>.Shafranov, Sov.J.At.Energy 1 (1956) 709
MD Kruskal and RM Kulsrud, Phys.Fluids 1 {3958) 265
8 T.G. Cowling, Mon. Not. Roy. Astr. Soc. 94 (1934) 39
9 EJ. Caramana, R.A. Nebel, D.D. Schnack, Phys. Fluids 26 (1983) 1305

10 C.G. Gimbleti and M.L. Watkins, Pulsed High-Beta Plasmas, Proc.
3rd Top. Conf. on High-Beta Plasmas, Pergamon Press {1976)

11 MJ. Schaffer, Phys. Fluids 27 (1984) 2129

12 D.D. Schnack, EJ. Caramana, R A Nebei, Phys. Fluids 28 {1985), 321

13 H.K. Moffatt, Magnetic Field Generation in'Electrically Conducting

Fluids, Cambridge University Press (1978)

14 B. Suydam , Proc. 2d International Conference on Peaceful Uses of
Atomic Energy 31 (1957) 157

> D.D. Schnack, PhD Thesis, University of California/ Livermore,
Lawrence Livermoze Laboratory publication UCRL-52399, 1978



25

16 L Woltjer, Proc. Nat. Acad. Sci. 44 (1958) 489

17 1B. Taylor, Phys. Rev. Lett. 33 (1974) 1139

18 S Chandrasekhar, Proc. Nat. Acad. Sci.42 (1936) 1-5
19 W. Shen, J.C. Sproti, Phys. Fluids B (1991) 1225

20 RJ. LaHaye, P.S.C. Lee, M.J. Schaffer, T. Tamano, P.L. Taylor,
Nucl.Fusion 28 (1988) 918

21 A. Almagri, S. Assadi, ]. Beckstead, et al., Edge Fluctuations in the
MST Reversed Field Pinch, in Physics of Alternative Magnetic
Confinement Schemes, S. Oriolani and E. Sindoni, Eds., Societa Italiana di
Fisica, {1991} 223

22 3 Cappelio and R. Paccagnella, Phys.Fluids B 4 (1992} 611

23 T. Tamano, W.I2. Bard, T.Caristrom, C.Chy, R.R.Goforth,

Y Kondoh, R.J.La Haye, P.Lee, EJ Nifles, M. T.Saito, M.J.Schaffer,
P.L.Taylor, Plasma Phys. and Controlled Nuclear Fusion Res. (Proc. 11th
Int. Conf. Kyoto, 1986), Vol.2, JAEA, Vienna {1987) 635

24 B. Alper, M.K. Bevir, I1.A.B. Bodin, C.A. Bunting, P.G. Carcian, J.
Cunnane, D.E. BEvans, C.G. Gimblett, R]. Hayden, T.C. Hender, A. Lazaros,
R.W. Moses, A.A. Newton, P.G. Noonan, R. Paccagnelia, A Patel,
H.Y.W. Tsui, P.D. Wilcock, Plasma Phys. Controlled Fusion 31 (1989} 205
25 P.Greene, G. Barrick, $. Robertson, Phys. Fluids B 2 (1990} 3059

26 S. Masamune, US-Japan RFF Workshop on Anomalous Ion
Heating and Related Topics University of Wisconsin, Madison, Wisconsin
(2~4 March 1992)

27 D.C. Robinson, Plasma Phys.13 (1971} 439

28 vy.L.Ho and S.C.Prager, Phys. Fluids B 3 (1991) 3099

26

29 C.G. Gimblett and D.D. Schnack, Simulation of the thin shell and
secondary shell HBTXIC experiments, Science Applications International
Corporation SAIC-91/1¢16:APPAT-14C (1991)

3¢ Y.L Ho, S.C. Prager, D.D. Schnack, Phys.Rev.Lett.62 (1989) 1504
31 EJ. Nilles, S.C. Prager, Y.L. Ho, Buil. Am. Phys. Soc. 34 (1989) 2147

32 R.R. Goforth, T.N. Carlstrom, C. Chu, B. Curwen, D. Graumann,
PS.C. Lee. E.J. Nilles, T. Ohkawa, M.]. Schaffer, T. Tamano, P.L. Taylor, T.5.
Taylor, Nuct. Fusion 26 (1986) 515

33 TR Jarboe and B. Alper, Phys. Fluids 30 (1987) 1177

3% B Alper, MK. Bevir, H.AB. Bodin, C.A. Bunting, P.G. Carolan, J.A.
Cunnane, D.E. Evans, C.G. Gimblett, R]. La Haye, P. Martin, A.A. Newton,
P.G. Noonan, A. Patel, S. Robertson, H.Y.W. Tsui, P.D. Wilcock, Results
From HBTX reversed field pinch with close and distant resistive shells, in
Controlled Fusion and Plasma Physics (Proc.16th Eur. Conf. Venice, 1989),
Vol. 13B, Part Ii, European Physical Society (1989)

35 D.D. Schnack and S. Ortolani, Nuciear Fusion 30 (1990) 277

36 P. W Terry, et al, Advances in reversed field pinch theory and
computation, Plasma Phys. and Contrelied Nuclear Fusion Res. (Proc.
13th Int. Conf., Washington, D.C., 1990}, IAEA, Vienna (1991) 757

37 D.D. Schnack, Magnetohydrodynamic theory of the reversed-field
pinch dynamo, in Physics of Alternative Magnetic Confinement Schemes,
S. Ortolani and E.Sindoni, Eds., SIF, Bologna (1991) 631

D.D. Schnack et al., Advances in reversed field pinch theory and
computation, Plasma Phys. and Controlled Nuclear Fusion Res. (Proc.
14th Int. Conf.,, Wuerzburg, 1992), IAEA, Vienna (1993}

38 y.L.Ho, Nucl Fusion 31 (1991) 341

3% . Sovinec, University of Wisconsin-Madison, private
communication 1992



27

40 H.P. Furth, ]. Killeen, M.N. Rosenbluth, Phys. Fluids 6 (1963) 459

41 ] A Holmes, B.A. Carreras, T.C. Hender, HR. Hicks, V.E. Lynch, An,
Diamond, Phys. Fluids 28 (1985) 261

42 g Assadi, K. Sidikman, 5.C. Prager Phys. Rev. Lett 69 (1992) 251
43 Y1.Ho and G.G. Craddock, Phys. Fluids B 3 (1991) 721

44 J.A. Holmes, B.A. Carrerras, P.H. Diamond, V.E. Lynch, Phys. Fluids
31(1988) 1166

45 AR Jacobson and R'W. Moses, Phys. Rev. A 20 (1984) 3335

46 X Kusano and T. Sato, Nucl. Fusion 26 (1986) 1051

47 K. Kusano and T. Sato, Nucl. Fusion 27 {1987) 821

48 R.A. Nebel, EJ. Caramana, D.D. Schnack, Phys. Fluids B1 (1989),1671
49 X. Kusane and T. Sato, Nucl. Fusion 30 (1990} 2075

50 EJ Nilles, Y.L. Ho, 5.C. Prager, D.D. Schnack, Bull. APS Div. Plasma
Phys. 34(9) (1989) 8722, p.2147

51 ].A. Beckstead, PhD Thesis, University of Wisconsin-Madison,
DOE/ER/53198-167

52 R.G.Watt and R.A. Nebel, Phys.Fluids 26 (1983) 1163

53 G.A. Chartas, PhD Thesis, University of Wisconsin-Madison
DOE/ER/53198-181

54 EE. Scime, PhD Thesis, University of Wisconsin-Madison
DOE/ER/53198-194

55 A.E. Adler, RM. Kulsrud, R.B. White, Phys. Fluids 23 (1980) 1375

36 R.B. White, in Handbook of Plasma Physics, Vol.1, edited by A.A.
Galeev and R.N. Sudan (North-Holland, New York, 1983) 622

28

57 B. Coppt, J.M. Greene, [.L. Johnson, Nuclear Fusion 6 (1966) 101
58 ILY.W. Tsui, Nucl. Fusion 28 (1988) 1543

59 Reportedly, one who contributed to an earlier version of the DEBS
code gave it her own first name. Unfortunately, her last name has not

accompanied this anecdote, so proper credit is not given.

&0 C.M. Bishop, An Infelligent Shell for the Toroidal Pinch, Cutham
Laboratory report CLM-P845 (1988)

61 C.L.Platt, S.H. Roberison, IEEE Transactions on Plasma Science 19
{1991) 954

62 E]. Zita, S.C. Prager, Y.L.He, D.D. Schnack, Bull. Intl. Sherwood
Fusion Theory Conf., Santa Fe, NM (Apr.1992) 2C45



29

CHAPTER 2
COMPUTATIONAL MODEL

All caleulations presented in this paper were generated with a 3D
magnetochydrodynamic {MHD) code! with nonideal boundary
conditions.2/3 This program (DEBS) solves the pressureless, resistive,
compressibie MHD equations {in normalized Gaussian units), namely,

Maxwell's equations and Ohm's Law:
B=VxA J=VxB
dB/dt=-VxE E=7]-vxB
together with conservation of mass and conservation of momentum:

ap av
P v Vo pV. L—=-VP + IxB
2 UVP PV P +]

These can be reduced to the form:
dA/dt=-n] +Svxb

pdv/dt = -Sp v-Vv + vV2v + S JxB

where the Lundguist number S = Tr/%A = anﬁ \;%} and the Alfvén time
( Ho

Ta=a/va. Times are normalized to the resistive diffusion time ‘ERzuoaz/ m,
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velocities are normaiized to the Alfvén velocity va = By /(_uopg}l/ 2, and
lengths are normalized to the plasma minor radius, a. The magnetic field
B and mass density p are measured in units of a characteristic field Bp and
a characteristic density po, respectively. The viscous damping parameter v
is chosen for numerical stability; typical vatues of scalar v are close to
physically expected collisional values.? The gauge in which V®=0 has

been chosen, where @ is the electrostatic potential.

The DEBS code solves an initial value problem in B, v, J, and A,
starting with modified Bessel-function model profiles typically chosen to
yield a pinch parameter @ = 1.59. Density p and resistivity 1 profiles are
not advanced in time, and toroidal flux is held constant ence steady state is
reached. © remains as constant as the plasma current Ip, whose allowed
rate of change can be varied. In this as in previous studies, Ip is held
constant to one part in 1012, which sometimes leads to large oscillations in
the loop voltage. Values of V| referenced in this work represent the

average value about which osciliations occur.

In all cases presented here, S is 6000, at least an order of magnitude
lower than experimental values. Since 5= 1/7, our numerical RFPs have
higher resistivity, which results in a narrower numerical mode spectrum
and smalier external kink modes than observed experimentally. Pressure
is not included in this version of DEBS, therefore pressure gradient-driven
modes such as Rayleigh-Taylor instabilities are not considered. These are
expected to be far smaller than current gradient-driven modes.5> A

vanishing pressure gradient is valid for low-beta plasmas; this limits
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differentiation of diffusion and dynamo timescales®, but does not prevent
accurate modeling of changes in profiles and flux surface reconnections
characteristic of dynamo "sawteeth””. When an evolving arnisotropic
pressure tensor is included in DEBS, profiles and flux surfaces evelve
much as in DEBS with constant pressure, except that the sawtooth crash

occurs on a much shorter timescale, as in experiments.8

Conducting wall boundary conditions are maintained as the MHD
equations are advanced in time until a steady-state RFP equilibrium is
reached. Signatures of steady state include saturated fluctuations (constant
time-averaged amplitudes), spatially constant Ez{r), and null Eg(r), in
agreement with dB/dt=0. Resistive-shell boundary conditions are then
imposed on this equilibrium, which is advanced with or without feedback.
Resistive-sheil RFPs typically evolve away from the initial equilibrium as
fluctuations grow; these fail to reach a steady state. Feedback can nearly
saturate fluctuations and restore dB/dt=0, bringing the RFF to a guasi-

steady state.

DEBS pseudo-spectrally models a periodic cylinder of length L=27R,
where R is the major radius of a torus. Equations are finite-differenced
radially and Fourier analyzed in the 8 and z directions, following Nebel's
corollary to Occam's Razor, "do everything where it's simplest”?. Linear
terms are advanced in Fourier space, where derivatives can be expressed
in terms of products with frequencies or mode numbers. Nonlinear terms
are multiplied in configuration space, then de-aliased by truncating the top

third of the spectcum!0. Fast Fourier Transform (FFT) routines!l are used
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to translate terms back and forth between configuration and Fourier space
as needed. Use of a semi-implicit algorithm eliminates Courant-
Friedrichs-Lewy (CFL) time-step constraints due to Alfvén waves and

allows tracking of phenomena on resistive diffusion timescales12.

As few modes as necessary to model the RFP physics are included in
a given run to keep costs in Cray time as low as possible. It has been
shown numerically that m=2 modes dissipate energy cascaded to short
wavelengths, thus are important in determining the width in n-space of
the magnetic energy spectrum, but that m > 2 contribute little to RFP
dynamicsi3. It has also been shown analyticallyl4 and
experimentally3,16 that the dominant helical modes have m=1, n=-
2R/a, which resonate near the RFP axis. Higher-n modes (eg -n=4R/aj
resonate closer to the plasma edge, are spaced more closely together, and
have amplitudes an order of magnitude lower, at least at 5=6000. Modes
couple as {mmn) + (m’,n") — (m*tm’, nin’y. Therefore, the smallest scale
m=2 modes of significance will have -n =8(R/a}. Therefore, to include all
modes important in the present study, m=0+1%2 and n=0,£1%2,. (8R/a)
are retained after de-aliasing. The radial grid must be fine enough to
resolve the smallest-wavelength modes present. For the R/a=2.5 and
R/a=6.0 cases presented here, we choose Ar=a/127. In lower-aspect ratio
cases, resonant modes have longer wavelengths, therefore Ar=a/63 can
give adequate profile resolution. While lower-aspect ratio runs advance
faster, they exacerbate the underestimation of nonlinear interactions

already imposed by the artificially high resistivity of low-5 cases.
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CHAPTER 3

B.(m,n) | ,=0 FEEDBACK WiTH CONDUCTING HELICAL COILS

3.0 Infroduction

Qur numerical experiment comprises a number of nonlinear
resistive-shell RFP runs which suppress several subsets of tearing modes
with the feedback scheme described below. We seek to characterize the
smaliest subset of feedback-targeted modes for which plasma parameters
approach the conducting-shell case. Effective feedback should minimize
mode growth and loop voltage in the absence of a conducting shell, while

maintaining the reversed-field configuration.

The most effective feedback schemes target the subset of candidate
dvnamo modes which provides the greatest contribution to both the RFP
dynamo {via the fluctuation-induced electric field EF) and loop voltage
V1. Feedback decreases the amplitude of targeted modes below their
resistive-shell ievels and causes a shift of magnetic energy into m=1
modes with nearby resonant surfaces rs (defined where q(rs)=m/n),
therefore also nearby in mode-number-space. As dominant modes are
stabilized, they lose their dynamo character. As neighbering modes grow,

they assume dynamo form. These newly-dominant fluctuations provide
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the RFP dynamo, sustaining reversal in the absence of a conducting shell.
The fluctuation-driven parallel electric fields of the new dynamo modes
approach conducting-shell EF profiles, sustaining reversal with low loop

voltage, which may reduce transport.

In this chapter, we describe the physical representation and our
numerical imélementation of one feedback scheme (3.1). We test this
scheme on a range of modes individually (3.2), then simultaneousty in
various combinations (3.3). We present results for small aspect-ratio
(skinny) RFPs (3.3.a) and large aspect-ratio (fai) RFPs (3.3.b), and we

compare cur numerical results with experimental tests (3.3.c}

3.1  Feedback scheme: conducting helical coils

Feedback boundary conditions are applied numerically to a mode
{m,n) targeted for stabilization by specifying that Br(m,n) vanish at r=a,
where a resistive shell provides a physical boundary at the plasma edge.
The pseudospectral nature of DEBS is exploited to impose boundary
conditions on each helical mode independently. In Fourier space,
Br=(VxA)=i(mAz/r-kAg) , assuming quantities vary as f{r)el(m8 + kz + ¢}
where k=n/Ris the axial wavenumber. Choosing By=0 determines
Ag{m,n} and Az(m,n) for the targeted mode at r=a, consistent with the
remaining boundary conditions: that Jr=0, Eg(a)=0, Ez(a}= the applied edge
field necessary to susiain plasma current density Ji; and v(a)=0 for all

modes except vr(a)=-EzBg/SB? for the mean.l



37

The feedback boundary conditions can be realized experimentally by
winding helical current-carrying coils on the resistive shell. The feedback
scheme is equivalent to a set of helical coils (one sine and one cosine) to
stabilize each mode (m,n), wound with the same pitch as the magnetic
field line at rg with which the mode resonates. The helical coils are
perfectly conducting, drawing whatever current necessary to keep
Br(m,n) 1 a=0 for the targeted mode. There is no time delay between
"sensing" an edge By and nuiling it, and the feedback response is perfecily

out of phase with the target mode.

Oniy harmonics of the targeted mode are directly stabilized by
feedback. For example, application of B! =0 feedback to (m,n) = {1,-3) also
stabilizes the (2,-10) mode. Since modes with m>1 serve primarily as an
energy dissipation channel, damping them should tend to destabilize the
RFP by partially blocking the m=2 energy sink. Indirect stabilization of
neighboring tearing modes via quasilinear coupling of feedback through
(m=0,n#0) modes also yields destabilization, in general. Therefore, any
stabilization of nonharmonic modes arises from nonlinear interactions

with modes to which feedback is applied directly.

3.2  Single-mode feedback

We performed nonlinear calculations for an aspect ratio R/ a=2.5
RFP with S=6000 and 8=1.59. When the conducting shell at r=a is replaced

with a resistive shell, loop voltage rises (Figure 3.1) and reversal is lost on
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the order of a shell time (Figure 3.2). Loop voltage grows faster than the
shell timescale {T=.68Tg if Vno = V¢ et/T, where Vno is the loop voltage in
a resistive shell without feedback and V¢ is the loop voltage in a
conducting shell) in an effort to sustain the plasma current. {This is
probably a pessimistic estimate, since current is held more constant than
typical in experiments, in order to make VI, comparisons between runs.;
Numerical tests were performed for two cases to test the feasibility of edge
feedback on one internal tearing mode. Br(a)=0 was imposed on the
{m=1,n=-3) mode in one case and on the (1,-7) mode in another case.
These were originally the dominant dynamo modes, typically resonating
around r=4a and r=.6a, respectively. Feedback on either dynamo mode
sustains reversél and lowers loop voltage for at least three shell times
beyond the time shown in Fig.3.1. Steady-state parameters for various

feedback cases are compared in section 3.3.2 below.

Without feedback {Fig.3.3.a), EF at the edge is insufficiently negative
to sustain reversal. Correspondingly, VL quadruples in a shell time.
With (1,-5) feedback, not only is reversal sustained, but loop voltage is
restored to within 30% of the conducting shell level as EF drops
throughout the plasma (Fig.3.3.b). Feedback control of {1,-7) is not as
effective in reducing V1, pointing to a significant sensitivity to choice of
target mode. Based on these single-mode feedback results, we attempt 1o
more closely approach the conducting shell case by applying feedback to

several modes simultaneously.
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3.3  Multi-mode feedback
33a Small aspect ratio: R/a=2.5

With either a coﬁducting or resistive shell, teafing modes with m=1
and |nl=4-8 dominate energy spectra in an RFP with aspect ratio R/a=2.5.
The dominant m=1 modes tend to be separated by An=2, as the (0,2) mode
is the largest axially symmetric fluctuation. Depending on the random
amplitudes of initialized perturbations, we have found quasi-steady states
where either (1,-5) and {1,-7) or (1,-4) and (1,-6) dominate the mode
spectrum on the order of a shell time. (Global plasma parameters such as
mean field levels and profiles are generaily independent of initalization.)
These internally resonant helical fluctuations grow on the order of the
resistive shell time in the absence of feedback. Loop voltage grows on a
faster timescale in order to hold the plasma current constant. Most of the
results presented here are from the conducting shell steady state
dominated by (1,-3) and (1,-7) fluctuations; results are comparable for the

initialization dominated by {1,-4) and {1,-6) fluctuations.

Since the few m=1 modes with In! between 2R/a and 3R/a typically
account for almoest 90% of the fluctuation magnetic energy, we ran
numerical tests of feedback on different combinations of these modes.
Multi-mode feedback is applied to two and four moedes in several

combinations.

Feedback is applied fo two modes simultaneously in four different

cases: o (1,-5) and {1,-7); to (1,-4) and (1,-6%; to (1,-3) and (1,-6). In a fourth

4G

test, feedback is applied to (1,-3) and (1,-7) until (1,-4) and (1,-6) become
dominant, after which time feedback is applied to (1,-4) and (1,-6). The

(1,-5) tends to provide the bulk of the dynamo EF in the absence of
feedback. Stabilization of (1,-3) is common o the most effective feedback
schemes: this channels energy into the (1,-4) and (1,-6) modes, which
sustain dynamo with lower ER. Feedback on (1,-4) or (1,-6), on the other
hand, forces more energy into the original dynamo modes, (1,-5) and (1,-7),

increasing fluctuations and Vi.

We aiso apply feedback to all four candidate dynamo modes
simuitaneously (m=1, Inl=4-7). In this case, energy does not flow into
modes outside the candidate dynamo range, but peaks in (1,-5) as before.
Results are summarized in Fig. 3.4, which shows the approach of plasma
loop voltage to the level in a conducting shell as feedback is applied to
different modes. In all schemes which target (1,-5), growth rates approach

zero for all modes as the feedback-stabilized RFP approaches steady state.

Improvement in plasma parameters of resistive-sheil RFPs with
feedback is due not simply te reductions in fluctuation levels, but to
changes in ER profiles. While feedback on (1,-5) reduces the magnetic

fluctuzation energy

1.
W, ==I b onmydr

2 Jvolume

and the velocity fluctuations or kinetic energy

=1

3
2 L‘Olume v {m.nydt
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in the fargeted mode, energies rise correspondingly in neighbering modes
such as the (1,-7) and (i,-6). Similarly, {1,-7) feedback reduces Wi and Wk
in {1,-7) while (3,-5) and (1,-6) fluctuations rise. However, changes in Wi
and Wy summed over ail modes correlate only roughly with changes in
VL. (Figures 3.4-3.6). There are cases (for example, with (1,+2) feedback} in
which the overall fluctuation levels increase with feedback, yet the
relative phasing and spatial distribution of individual fluctuations change
such that volume-averaged EF decreases, lowering VI, and sustaining

reversal.

Decomposition of (EF)g = -S<vib>g = vibz -~ vzbr for many feedback
cases shows that in resistive-shell RFPs the vibyz term drives most of the
negative mean Eg, or dynamo, at the plasma edge in resistive-shell RFPs
(Fig.3.7a). This is consistent with predictions for compressible plasmas.?
In conducting-shell RFPs, it is vzbr which accounts for dynamo drive,
since vr is very small throughout the reversal region. (Farlier
incompressible numerical simulations with vr=0 found? no RFP dynamo;
our results emphasize the importance not of nonzero vr(a) but of
incompressibility (V-v=0) for the RFP dynamo.} Examination of (EF)Z =
vabs - vibg reveals that both terms coniribute nearly equally to loep
voltage (Fig.3.7b) in all cases. Experimental measurement of these terms is

planned.4

33b Details of three Rfa=2.5 cases

In the remainder of this section, we examine a limited set of runs in
more detail to discern the mechanisms responsible for effective feedback.
We focus on the simulianecus feedback of (1,-5) and (1,-7) modes in a
resistive shell, and compare this case o the resistive shell without
feedback (worst case) and to the conducting shell (best case), which

effectively applies feedback to all fluctuations.

Fig.3.8 shows magnetic energy spectra for the three cases affer
evolution for one shell time. In the conducting-shell case (Fig.3.8.c), (1,-3)
and {1,-7) are the dominant fluctuations. With a resistive shell (Fig.3.8.a),
all modal energies grow approximately an order of magnitude in one shell
time; that is, mode amplitudes triple. The (1,-5) mode remains dominant
and {1,-6) has grown nearly as large as (1,-7). When feedback is applied to
the two dominant moedes simultaneously (Fig 3.8b), the {1,-5) and (1,-7)
amplitudes drop below conducting-shell levels. All cther modes grow
bevond conducting-shell ievels, and the neighboring modes (1,-4) and (1,-
£) become dominant. Reversal is maintained past three shell times, when
we choose to terminate the run. (Large velocity fluctuations in the case
without feedback make the time step size tec small te justify continuing

our tests beyond this point.)

Changes in modal Ep{m,n} profiles follow the same pattern for ail
cases when feedback is applied to the dominant modes: these lose their

dyname character and the newly-dominant m=1 medes spontaneously
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alter to provide the dynamo instead. In the conducting-shell case, (1,-3)
and {1,-7) drive dynamo with negative EF in the reversal region. When
feedback is applied to these modes they lose their dynamo character,
contributing negligible EF in the reversal region (Fig.3.9). The {1,-6) and
(1,-4) were small and non-dynamo with a conducting shell. But with
feedback these neighbering modes adjust to provide negative EF in the
reversal region (Fig.3.10, curve b}, taking on the dynamo role. (This
process is representative of all feedback cases examined. For example, in
the initialization which yields dominant (1,-4) and (1,-6) in steady state,
feedback on these modes causes them to lose their dynamo character,
while neighboring (1,-5) and (1,-7) grow to provide the dynamo.) As in
single-mode feedback, reduced EF keeps E | and VL, low for a given plasma

current.

Data suggest that feedback stabilization also reduces magnetic field
line stochasticity, thereby reducing transportd of particles and energy to the
plasma edge. In a perfectly conducting shell, most flux surfaces near the
plasma edge are closed, forming m=0 magnetic isiands around the reversal
surface rv. Without feedback, Br(a)j=0 and many flux surfaces near the
edge intersect the wall, carrying with them particles and energy. Figure
3.11 plots helical flux® through contours of constant z through a circle of
radius r, for m=0 modes. These all resonate at the reversal surface, where
B, vanishes. When feedback is applied to the dominant tearing modes,
fewer flux surfaces reach to the wall, as seen in Fig.3.11. This is partly due

to decreased driving of the edge modes (m=0; m=1, n210) by current
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gradients and partly due to a radially inward shift of the m=0 islands. The

B .
current paraliel to the magnetic field, U = —5-, exhibits small gradients
B

near the plasma edge in both the conducting sheli and the feedback case,
while the edge gradient steepens markedly in the resistive shell case
without feedback (Fig.3.12). Decreased p around r=ty shrinks m=0 islands

and reduces plasma-wall interaction.

While feedback restores confinement in the plasma edge region, it
also pushes internal modes toward the plasma axis. This is evident for the
m=0 modes above. For m=1 modes, we examine helical flux contours
which map the amount of flux through a ribbon® stretched between the
magnetic axis and a helix with mé + nkz = constant. Like values of flux
are connected across the point of maximum flux, at the rescnant surface
where q(ts)=-m/n. A helical flux plot over a poloidal cross section yield
an image of the {m,n) magnetic islands. Fig.3.13 illustrates that tearing
modes move outward in radius with a resistive shell and inwards with
feedback. This is verified by calculating resonant surfaces for the modes.
Not only the targeted modes but also neighboring tearing modes are
moved radially inward by feedback, even when their magnetic
fluctuations grow. This is consistent with observed changes in profiles of
the safety factor q, which determines the location of resonant surfaces.
Feedback decreases ¢ in the region of the dominant modes, as seen in
Fig.3.14; this moves resonant surfaces inward, compared to the resistive

shell case.
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A scenario for the mechanism of feedback stabilization emerges
from our investigations. When B{m,n)!, = § is applied t¢ a dominant
m=1 tearing mode resonant near axis, the mode's global B(r) and v{r) am-
plitudes decrease. As Er dreps on axis, | near axis can grow. This decreases
the safety factor near resonant surfaces of dominant modes, shifting rg in-
ward for axially resonant modes. Deeper rescnant surfaces result in rela-
tively larger dynamo-driving regions of negative {(Ep)g outside each
rg(m,n). The net effect, as demonstrated above, is mere RFP dynamo and

less ioop voltage.

The axial and helical flux plots in Fig.3.11 and Fig.3.13 do not give a
complete picture of fleld line stochasticity. Poincare or puncture plots
would more precisely track fransport along field lines. While Poincare
plots are not vet available for the data shown, it has been observed in pre-
vicus works that flux plots and Poincare plots similarly track field line in-
tersections with the wall, while Poincare plots illustrate stochasticity in the

REP core.

3.3.¢ Large aspect ratio: R/a=6.0

The number of dominant modes is about 2R/a. Hence, feedback can
be more difficult at large aspect-ratio. In the limit of low beta’, the safety
factor on axis approaches g=aBz(0)/RBg(a). Since Bz = Bg, the safety factor
on axis decreases as R/a increases, as seen in Fig.3.15. Therefore the

dominant fluctuaticns have higher n-number and are more closely spaced
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than in the small aspect-ratio cases considered above, Tearing modes are
more strongly coupled to each other; mode amplitudes and growth rates
are alsc greater at large aspect ratic. In the absence of feedback, magnetic
energy fluctuations grow and the loop voltage increases a factor of four in

cne shell time, as seen in Fig.3.16.

All internal m=1 modes in the range (1,-11) to (1,-18) contribute
readily to the dynamo when R/a=6.0. If feedback is applied to any one of
these candidate dynamo modes, energy in that mode simply shifts into
near neighbors. However, uniike the small~aspect ratio case, such a shift
in the energy spectrum does not tend to lower the loop voltage. Feedback
on (1,-13) alone, which tends to be slightly larger than the other dynamo
modes, is insufficient to improve the efficiency of neighboring dynamo
modes. Several m=1 modes must be stabilized simultaneously; signifi-
cant loop voliage reduction is evident when the number of modes stabi-

lized approaches the aspect ratio (case v in Fig.3.16).

As an auxilliary methed, we investigate feedback not just on m=1,
but also on modes which play a role in m=1 coupling. Since m=1 modes
couple to each other gquasilinearly through m=0 modes as well as nonlin-
early, m=0 feedback is added. If feedback of m=0 modes also reduced am-
plitudes of m=1 modes o which they couple, then feedback on only a few
m=1 modes may suffice with simuitaneous feedback on m=0. Combining
m=1 feecback with (0,2} feedback is observed to reduce plasma V[ and
feedback coil currents only to a moderate extent. Feedback on a wide range

of candidate dynamo modes more closely approaches the conducting sheli
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case.

Currents required by feedback coils (JFB) remain relatively low, re-
gardiess of aspect ratio. Feedback coil currents are calculated from the dis-
continuity of the tangential compornent of the magnetic field at the surface
r=a between the plasma edge and the coil. Since the magnetic field van-
ishes inside a perfectly conducting coil, the jump condition®

nx(H, ~H1)x4—;£K
becomes
(0B taana(@) = deai 1

or
Bg(a)e<J, and B (a)=Jg

Feedback coil currents are normalized fo currents driving the mean
plasma field:

S coil (m,n) _ \/Bz,coilz (m’n)+BG,Coilz (m,n)
7(0,0) B,2(0,0)+ Bg2(0,0)

At most, a total of Z}coil/]((},{]) = 8.5% is required when five dynamo
modes are simultaneously stabilized. This decreases loop voliage by 60%,
for a net reduction in input power requirements. These results suggest
that if space constraints are not severe, coils resonant with m=1, 2R/a < n
< 3R/a should be wound for possible use in feedback stabilization in RFF’
experiments. Addition of a (0,2} winding may provide additional feedback

system flexibility.
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3.4  Comparison with experiment
3.4.a Feedback on HBTX

The HBTXIC RFP (R/a=3.0) experiment? experienced higher
fluctaation levels and truncated plasma discharge times when its
conducting wall was replaced with a resistive shell. Reversal loss was
attributed to growing resistive shell modes. The resistive internal (1,-5)
and ideal external (1,2) modes were observed to grow at similar rates at
§=1.6, conirary to predictions of linear theory,}0 suggesting close nonlinear
coupling between the modes. The internal mede resonates near the
plasma axis, but the external mode is nonresonant. This suggested that
feedback coils at the wall (r=1.1a) might more effectively suppress the free
boundary (1,2) mode. It was hoped that suppression of (1,2) would couple
to suppress (1,- 5) also, thereby sustaining the RFP. Feedback coils were
wound outside a secondary shell at 1.1a with a 5.5 ms vertical field soak-in
time. Reversal persisted up to two shell times with application of (1,2)

feedback, but loop voltage and fluctuation levels remained high.11

34b MHD computations

Our low-aspect ratio calculations1? model an RFP similar in size to
HBTX . It should be noted that the high resistivity (low S) in our calcula-
tions, relaiive to experiment, vields smaller external kinks, such as the

(1,2) mode.13
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We modeled an idealization of the experimental feedback (which
reduced Br at r=1.1a with a finite Hime lag) with calculations that nulled By
at r=a at all times. Our computations show that edge feedback on the {1,2)
mode, resonant near the plasma edge, is less effective than edge feedback
on 2 tearing mode resonant near axis. As seen in Fig.3.2, the resistive shell
RFP loses reversal on the order of a shell time. Feedback on the external
{1,2) mode makes edge EF sufficiently negative to sustain reversal
(Fig.3.17), but fluctuation levels and Vi remain high, as in HBTXIC.
While reversal lost with a resistive shell is restored with feedback on ei-
ther the (1,2) or {1,-5} mode, only the latter also reduces VL, {Fig.3.4). This
is because axial EF remains high with (1,2) feedback (Fig.3.17a), while (1,-3)

feedback leads to reduced EF throughout the plasma (Fig.3.3.b).

The similarity of experimental and numerical results suggests that
even ideal feedback applied to external modes such as (1,2) is of limited
use on an RFP. It is more effective to target the m=1 dynamo modes di-
rectly, instead of relying on coupling with externally resonant modes tar-
geted for feedback. This is consistent with observations that axially reso-
nant m=1 tearing modes drive RFP dynamics, through quasilinear modifi-
cations of mean field profiles and through nonlinear interactions with
each other1%15 | That edge feedback has a sirong effect on dynamo modes
even though they are resonant deep within the plasma need not be sur-
prising in light of calculations!® which found internal m=1 modes’ de-

pendence on boundary conditions to be highly noniinear.
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3.5  Physical mechanism for effective feedback

Since central EF drops, the newly-dominant m=1 modes sustain the
REP more efficiently than the original, feedback-stabilized dynamo modes.
The efficiency of the new dynamo modes can be quantified in terms of the
ratio of dynamo-driving poloidal EF near the RFP edge to current-sup-
pressing toroidal EF near the core. We define g =<EF9>edge / <EFz>core,
where < >edge is a volume average from rm to r=a and <Ef,>core i 2
volume average from r=0 to rm, where the poloidal and toroidal fieids
have the same magnitude at rp- For example, the {1,-6) dynamo mode in
the feedback case yields &€ = 21%. Without feedback the same dynamo
mode has only £ = 11% (Fig.3.3), and significantly higher V. is required to

maintain the plasma current.

A scenario for the mechanism of feedback stabilization emerges
from our investigations. When Br(m.n}ia = 0 is applied to a dominant
m=1 tearing mode resonant near the axis, the mode’s global B(r) and v(z)
amplitudes decrease. As EF drops on axis, central J can grow. This
decreases the axial safety factor, shifting rg inward for axially resonant
modes. Deeper resonant surfaces resuif in relatively larger dynamo-
driving regions of negative {Ep)g ocutside each rg{m,n). The net effect, as

demonstrated above, is more RFP dyname and less loop voltage.
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3.6 Summary

A simple feedback scheme has been developed to stabilize resistive
shell fluctuations without suppressing the RFP dynamo. Investigation by
nonlinear MHD computations on RFPs of large and small aspect ratio re-
veal that feedback on a small number (~R/a) of m=1 modes restores RFP
reversal and lowers loop voltage. Edge feedback on axially resonant m=1

dynamo modes proves more effective than edge feedback on

free-boundary modes resonant near the edge. A physical mechanism for
feedback stabilization is proposed. Feedback tests also reveal optimal
<vxb> profiles for dynamo efficiency and show that vrbyz provides the buik
of the resistive-shell RFP dynamo. Results agree with a limited
experimental test of feedback on an external mode. Feedback stabilization
of dominant internally resonant tearing modes is predicted to extend
plasma discharge duration times and reduce required loop voltage. This

has yet to be tested experimentally.

Vi{arbitrary units)

i

160

80

236 time(ty) 248

Figure 3.1: Loop voltage versus time for four R/a=2.5 cases:
(i) resistive shell without feedback
(ii) resistive shell with feedback on the {m=1, n=-7) mode
(iii) resistive shell with feedback on (1,-5) mode
{iv) close-fitting conducting shell.

(The (quasi-)steady state values reached by the loop voltage in
each case at later times can be seen in Fig.3.4)
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Figure 3.2: Reversal parameter F versus time for
(i)resistive shell without feedback
(iii) resistive shell with feedback on (1,-5) mode.

T fluctuates about a mean value of -.20 with feedback in

quasi-steady state (evident at later times), never losing reversal.

Fig.3.3.a 18

Ef
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B | \

0 rfa 1

Fig.3.3.b 6

0 rfa 1

Fig.3.3 Radial profiles of total parallel efectric field El 1=Ef + 1] 11,
Fe, and 1Ji! where the parallel fuctuation-induced electric field
Fr=S<vxb>B/ 1B

(a) without feedback

{(b) with {1,-5) feedback
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& & & - Conducting

{1,-6) (1,6) (1-7) 4&6 sheli

Fig.3.4: Loop voltage (normalized to VL in conducting shell
case) versus feedback case, for R/a=2.5 RFF with resistive sheil:
(&) no feedback
(b)-(i): feedback on following modes (m,n}:
() (1+2)
() (1,4)and (1,-6)
{d) (L-7)
(e) (1,-8)and (1,-6)
® 1,5
(g) (1r'5) and (1r'7)
(h) (1,-5)and (1,-7), then (1,-4) and (1,-6)
(i} (1,-4). (1,-5), (1,-6), (1,-7) simultaneously
() conducting shell (all modes stabilized)
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Fig.3.5: Magnetic energy summed over all fluctuations
(normalized to conducting shell case} versus feedback case:
(a) no feedback
(b)-(i): feedback on following modes (m,n}:
®) (L+2)
{¢) (1-4)and (1,-6)
(& (1,7
(&) (1,-5) and (1,-6)
6 (L5
(g) (11'5) and (lf_7)
(h) (1,-5) and (1,-7), then (1,-4) and (1,-6)
@) (1,-4). (1,-5), (1,-6), (1,-7) simultaneously
() conducting shell (all modes stabilized)
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Fig.3.6: Kinefic energy summed over all fluctuations
(normalized to conducting shell case) versus feedback case:
(a) no feedback
)-(): feedback on following modes (mn}:
{b) (L+2)
(¢} (14)and (1,6)
(d) (1-7)
(e) {1,-3}and {1,-6}
(f) (11”5)
(8) (L-5)and (17)
th) (1,-5) and (1,-7), then (1,-4) and {1,-6)
i) (1,-4). (1,-5), (1,-6), (1,-7) simultaneocusly
(i) conducting shell (all modes stabilized)
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Fig.3.7: Resistive-shell profiles of:
(a) components of (EF)B =vyby, - vibr for (1,-5)

(b) components of (Ex)y = v br _Vrbﬁ for (1,-6)

g
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Fig.3.8: Spectra of m=1 magnetic energy fluctuations (volume-averaged)
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versus toroidal mode number n, after 1 shell time:

{a) resistive shell without feedback

{b) resistive shell with (1,-5) and (1,-7) feedback

(c) conducting shell

n
Fig.3.8.c
LD (1-5)
el
=20 0

20

Fig.3.9

EF(1,-5)

Fig.3.9: Profiles of modal (1,-5) fluctuation-induced electric field
EF =-<vxb>-B/ | Bl for

(a) resistive shell without feedback

(b resistive shell with{1,-5)&(1,-7} feedback

(c) conducting she]l.

Long vertical line is the resonant surface rs without feedback; short vertical
line is rs for cases (b) and (c).
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Fig.3.10: Profiles of modal (1,-6) fluctuation-induced electric field L } \ ( <
EF =-<vxb>3B/ |31 for: 1 \ 3
(a) resistive shell without feedback / /
(b) (1,5)&(1,-7) feedback - /
{¢} conducting shell: EF oscillates about zero at too low a level to - ( \
distinguish, on this scale. ot 1 Vi \\\ <o
0 1rfa

Long verticai line is the resonant surface rs without feedback; short
vertical line is rs for cases (b) and (c). Fig.3.11: Flux contours (toroidal versus radial) for m=0

(a) conducting shell
(b) resistive shell with (1,-5) and {1,-7} feedback
(¢} resistive sheil without feedback
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Fig.3.12: u=J- B /B2 versus radius for:
{a) conducting shell
(b} resistive sheil with (1-5) and (1,-7) feedback
(¢} resistive shell without feedback

63 64
Fig.3.13.a

Fig.3.13.b

t=175 t=212

0 37 r/a 0 4 r/a a 4 r/a

Fig.3.13: The (1-5) istand moves only slightly outward in a resistive shell
with (1,-5)&(1,-7) feedback. (All times are normalized to the resistive

diffusion time TR.)

{a) helical flux plots over a poloidal cross section
{b) Ef versus radius, with resonant surface indicated by vertical line
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Fig.3.13.c

Fig.3.13.d
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0 4 r/a 0 5 r/a 0 5 r/a
Fig.3.13: The (1,-5) island moves radially cutward in a resistive shell with-
out feedback. {All times are normalized to the resistive diffusion time TR.)

{c} helical flux plots over a paloidal cross secticn
{d) Ef versus radius, with resenant surface indicated by vertical line

Fig.3.14.a q
!
i
04 | :
) 1 v/a
Fig.3.14b 40
q L
mmmmmm t
[
E f
L i
i
PR e —
1 " N
-05 ] 1r1/a
Fig.3.14.c 30 {
q
|
[
[
!
j
] | ]
_OU :..u.w_.‘_____.____-.._.,_.ﬂ .nw},”,, SO __:
-.02 :
0 1 r/a

Fig.3.14: Safety factor q versus r; dashed lines indicate g=.20 and the
(1,-5) resonant surface.

{a) conducting shell

(b} resistive shell with (1,-3) and {1,-7} feedback

(¢) resistive shell without feedback
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Fig. 3.15: Safety factor profiles with resonant surfaces of dominant
tearing modes for

a) large aspect-ratio (R/a=6.0) steady state; b) small aspect-ratio
(R/a=2.5) steady state

Fig.3.16
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R 121 13132 #1154 13" v C

Loop voltage (normalized to conducting shell case)

feedback case

Fig.3.16: Loop voltage (normalized to conducting sheil case)

for different R/a=6.0 feedback cases:
R: resistive shell; 12: resistive shell with (1,-12) feedback;
1: resistive shell with (G,1) feedback; 13" resistive shell with
(0,1)&(1,-13) feedback; 13: resistive shell with (1,-13) feedback;
2: resistive shell with (0,2) feedback; iii: resisfive shell with
(1,-11)&(1,-13)&(1,-15) feedback; 15: resistive shell with (1,-15)
feedbaclk; ii: resistive shell with (1,-11)&(1,-15} feedback;
13" resistive shell with (1,-13)&({0,2) feedback; v:resistive shell
with (1,-11)&(1,12)&(1,-13)&(1,~14)&(1,-15) feedback;
C: conducting shell (all modes stabilized)
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Fig.3.17.a
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4] tfa

Fig.3.17.b

vl A
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Fig.3.17. Resistive shell with feedback on (m=1,n=2) mode: a) Radial
profiles of fotal paraliel electric field E1 I=Ef + n] 1 1, Ef, and 1] where

parallel fluctuation-induced electric field Ef = -<vxb>B/1B1; b)
Reversal parameter F=Bz{a)/<B> versus time
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CHAPTER 4.

NONZERO Br(a) FEEDBACK

41 INTRODUCTION

Two sets of questions motivated tests of feedback schemes with
nonzero Br(m,n}ia. First, we must ask about consequences of using
nonideal feedback coils since, experimentally, Br(m,n)lz cannot be
precisely nulled at all times. Second, we ask whether feedback can not just
approach the conducting-shell case but actually improve on it. The first
question is investigated by simulating resistive feedback coils in Section
4.2. Improvements over the conducting shell are attempted with active

programming of edge fields in Section 4.3.

42  VARIABLE COIL RESISTIVITY

There are several senses in which experimental feedback schemes
must differ from the computational scheme tested above. There will be
time lags or phase shifts between sensing an edge field and nulling it, due
to finite time-response of the feedback circuit. The amplitude of the
resultant edge field will be zero only within the limits of accuracy of the

sensing and nulling circuits. These sources of error can be exacerbated and
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confounded by interactions between the feedback circuit and the circuits
comprising the plasma, wall, and field coils. Questions of mutual
inductance and circuit stability have been explored analyticaliy! and

experimentallyz, and work remains tc be done in these areas.

We simulated the plasma's response to nonideal feedback by
assigning a finite resistivity to the feedback coils. Resistive feedback coils
imperfectly null the targeted Br(m,n)!a, at each instant in time, since a
finite edge field can persist radially. Looking at it another way, resistive
coils null the targeted Br{m,n)!a but with a time lag on the order of the
characteristic vertical field spak-in time T, of the feedback coils. By the
time the applied field is seen by the plasma, it has the wrong value to null

Br(m,n) a, which has evolved meanwhile.

Numerical implementation of resistive feedback coil boundary
conditions is a hybrid between full resistive shell boundary conditions
(applied to all modes)? and individual conducting coil boundary
conditions (applied to selected modes) (Ch.3). Boundary conditions for a
shell-‘whose resistivity is characterized by Ts, the vertical field socak-in time
for the shell, are applied to all modes (App.3). Bris matched? from edge

plasma By{a} to vacuum sclutions on the other side of the resistive shell

ob, afdb |
=T T

ot Te b dr da

with soak-in time Tg by This boundary condition is

then superseded for feedback-targeted modes (m,n) by a similar matching

from the plasma edge through a feedback coil of helicity (mn} and
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effective soak-in time 1, fo the vacuum By, by where

b, a [db ]
ot T I dr J a
[ 1indicates the jump condition across the stabilizing resistive coil. In

both cases, the vacuum B; is obtained from Bessel function solutions to

Vxb=0.

4.2a Linear tests of resistive feedback coils

The resistive coil feedback scheme was first tested linearly {(with
frozen mean fields and no mode interaction) by setting coil 1 to each
value used for Ts in conducting and resistive shell cases. A long shell
time (Ts = 1000 Tr} approximates a perfecily conducting shell. Modes grow
slowly in this reference case {Fig.4.1a). We then choose a short shell time
Ts = 0.032 T to characterizes a shell so resistive that a typical run can span
several shell times. (Typically, a conducting-shell steady state is given
resistive~shell boundary conditions at t0=.180tR; then the plasma evolves
in a resistive shell to t1=.2121g = tg + Ts, t2=.244= tg + 27g, etc.) Rapid

iinear growth in the resistive shell reference case is evident in Fig.4.1b.

First, we superpose a conducting coil on the resistive shell, not by
setting Br(m,n}iz= 0 but by choosing t¢h= 1000 trfor the (m,n) coil. In this
test, the targeted mode's linear growth precisely matches its rate with a full
conducting shell (Tg =1000Tr) while other modes grow as in a full resistive
shell (Fig.4.1.b). With a resistive coil on resistive shell, {Tfp{mn) = Tg =

0.0321g), all modal linear growth rates match the pure resistive shell case
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(Fig.4.2.i). Having established the reliability of our resistive coil scheme at
the exiremes of high and low conductivity, we investigate effects of

varying the coil resistance between these extremes.

Progressively more resistive coils stabilize the targeted mode over
several decades of tfp, uniil th~1.0TR (Fig.4.2.ii). At this point, coil
resistivity begins to noticeably compromise stabilization capacities of the
feedback circuit. While linear growth rates are negative in the
"conducting” coil case {zfb = 1000TR), growth rates rise toward zero when
tfb =1.0Tr. When the characteristic time constant of feedback coils is on
the order of the resistive diffusion time, the dominant tearing modes are

only marginally linearly stable.

42b Nonlinear tests of resistive feedback coils

After subjection to a series of linear tests, the resistive coil feedback
boundary conditiens are applied to nonlinearly evolving REPs for several
values of tfp. When allowed to interact with each other and to modify the
equilibrium, dynamo modes grow almost as quickly with slightly resistive
feedback coils (tfp = 100 TR) as with a full resistive shell of T5=0.032 Tg, as
seen in Fig.4.3. However, VL saturates at less than twice the conducting-
shell level with resistive coils (Fig.4.4), while V¢ continues to grow

without feedback, due to modified EF profiles as seen in Chapter 3 .

76

43  A' profile modification
43.1 Introduction

Linear growth of tearing modes is known to be driven by
discontinujties in the slope of By at the resonant surface (r=rg) of the

mode. The discontinuity is described by the logarithmic derivative
A YETYE

rs

, where B, =(V)g = imy and subscripts indicate flux

function values at, or on either side of, the resonant surface of a given
mode (m,n). Analytically, the linear® growth rate is found to be
proportional to (A')%. Nonlinear growth® to amplitudes of order
(Ta/TR)A/D proceeds as t2. In an effort to provide more active control of
field profiles, the example of previous work? is followed. The approach is
to force edge By to have the opposite sign of By(rs), in order to smooth out
discontinuities in the flux function at the resonant surface. We advance
the code linearly and search for the ratio f = Br(rs)/Br(a) which most nearly
corrects for discontinuities in By', reducing A'(rs) and the growth rate of

the targeted mode. (cf Fig.2 from Ref.7).

4.3.2 Abrupt Bya) = f Brirg) application
43.2a Linear tests

We apply Br(a) = f Br(rs) to (mn)=(1,-5) for various values of f.

Linear tests with this scheme reveal that there is a range for f <0 in which
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modes are temporarily stabilized, but that a phase-fiip instability is
induced at large f: the mode shifts so that it is driven, not stabilized, by
the applied edge field. With f=-0.1, mode amplitudes are reduced below
resistive-shell levels, though they are higher than conducting-shell levels
(Fig.4.52). While this is partly due to decreasing the driving term Allxg), it
should be noted that the absolute value of Br(a) is decreased by IfI <1.
This can mimic effects of high conductivity feedback coils. Ordinarily,
Brla)/Br(rs)>25% in no{ﬂinear resistive shell computations {Fig.4.6)

without feedback.

Applying a large negative Br(a), when Br(rs)>0, leads to an
instability in which Br<0 throughout the plasma, called the phase flip
instability. When feedback is strengthened to f=-1.0, the phase flip
instability appears, increasing the magnetic energy in the targeted mode
beyond its resistive-shell levels (Fig.-4.5b). The deep negative edge field
initially drags Br(rs) to lower levels, decreasing the fluctuation amplitude
temporarily. IHowever, the streiched fleld line snaps down (Fig.4.7),
propelling Br(rs) to a large negative value, where high mode amplitude in
a flipped state is now consistent with the negative Br(a). The mode grows
out of phase with its original profile until feedback changes the sign of the
edge field and the process reverses. The net effect is to ratchet up the
mode amplitude, which oscillates ebout a growing level. In addition, the
abrupt application of this extreme boundary condition drives the mode
initially to an amplitude orders of magnitude above its initial resistive-

shell level {Fig.4.7.a}.
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432b Nonlinear tests

Since Br(m,n)!a=0 feedback proved most effective when applied to
several nonlinearly interacting candidate dynamo modes simultaneocusly,
we apply Br(a) = FBrirs) to m=1, n=-5, -6, and -7 in this series of tesis. At

-

all values of f tested, Br(a) = fBr{rs) drives the RFP nonkinearly unstable
within .001 Tr by exciting high amplitude fluctuations from which the
feedback scheme cannot rescue it. Edge Ef grows positive, desiroying
reversal, and loop voitage skyrockets in a vain attempt to mainiain

plasma current.

This feedback scheme is clearly of limited value in nonlinear cases.
Potentially more useful schemes might impose edge fields proportional
net only to the amplitude but also to the fime derivatives of the signal {in
this case, Br{a)). Analysis of this problem requires calculation c;f transfer
functions describing the plasma circuit, which is iractable only in the
linear case. In experimental RFPs, where nonlinear dynamics dominate,
fransfer functions are undefined. Two other improvements on this
scheme suggest themseives. First, feedback on the mode velocity may
provide a more sensitive tuning paramefer, since changes in vy precede
the phase flip. Second, since abrupt application of the Br(a}=f B:(rs)
boundary condition initially jars the systemn into large fluctuations, dialing
up this boundary condition slowly from zero may aliow stabilization to
take place nearly adisbatically. The latter method is investigated in the

next section.
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4.3.3 Rampup to Br(a) = f-Br(rg)

To avoid overdriving targeted modes with unusually large initial
Br{a), we ramp up the feedback parameter f from 0 to its maximum
specified (negative) value in about one shell time. The initial feedback
boundary conditions {f =0) are equivalent to those of a conducting coil. As
f increases, coil conductivity is gradually relaxed and response of the
feedback circuit to the plasma's Be(rs) strengthens, until the full feedback

response ai f may is established.

43.3.a Linear tests

When f is ramped from ¢ to -0.1 on (1,-5), the mode's linear growth
rate approaches. zero {Fig.4.8), compared to continued growth in the
resistive shell case. The phase flip instability is avoided, but the modal
magnetic energy saturates at a higher level than in either the conducting-

shell or the resistive-shell cases.

4.3.3b Nonlinear tests

Linlike nondinear runs with abruptly applied Br(a} = fBr{rs},
rampup of this boundary condition on m=1, n=-5,-6,-7 does not lead to
rapid fluctuation growth and run termination. Modal magnetic energies

are slightly higher than levels with Br(a)=0 feedback on these three modes
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(Fig.4.9), and VL oscillates about a comparable (or perhaps stightly lower)
average value (Fig.4.10). No phase flip instability is driven. The driving

term and the (linear) island width

J

e
WfBg(_rj)La

-1
|
8(r/a)lrs

wo=4

are both decreased. While the goal of improvement on the conducting
shell case has not been achieved, we have demonstrated that this more
realistic active feedback scheme can very closely approach results using the
more idealized Br(a)=0 scheme. This is somewhat surprising, since this
scheme targets a linear driving term but nonlinear mode interactions are

very strong.

Note: Plasma parameters such as steady-state Vi differ from Br{a)=0
data presented in Chapter 3 because the initialization from which the
nonlinear tests in this section were restarted differs from the initialization
used for runs in Ch.3. The initialization of this chapter was generated by
running through a resistive-shell phase before application of feedback
boundary conditions; the initialization of Ch.3 came from a purely
conducting-shell run. Therefore, joop voltage values are higher before the

application of feedback.
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4.4  Summary of nonzero Be(m,n} ! ; results

These preliminary tests of simplie nonideal feedback schemes
provide a stariing point for further investigations. We have found that
linear tests can help one home in on ranges of feedback parameters which
may prove useful in fully nonlinear tests of a new feedback scheme.
{Quasilinear tests, in which fluctuations can modify equilibrium profiles
but do not interact with sach other, could be a useful intermediate step.)
However, feedback schemes which appear promising linearly often fail,
nonlingarly, as interacticn between fluctuations modify feedback effects in

unpredictable ways.

Tests of resistive feedback coils vield information on effects of
feedback with finite effective scak-in time Trp, or imperfect nulling of
Br{m,n) 4. Coils require T2100TR in order o reduce locp voltage toward

conducting shell Vi,

Active edge feedback in response to values of Br at a mode resonant
surface drives a phase flip instability if applied too aggressively. Gentle
rampup to a carefully chosen proportionality between Br(rs) /Br(a) can
reduce Vi toward the conducting shell value. Turther fine-tuning of this
scheme holds potential for improvements over conducting-shell

parameters in future investigations.

ElsewhereS, an algorithm modeling nonideal feedback on edge

Br{m,n}ia in response to sensed Br(m,n}ia has been tested:
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ie‘g)br\
2 2

Qi?ﬁr;_a abj+mm
dt {ar_‘a

(c1
where [ ] indicates the jump condition across the resistive shell, here
equivalent to a resistive shell with a negative diffusion coefficient; and
min{ ) serves as an anti-runaway damping term: c¢p=clamping term and

ci=damping term.

This scheme can also induce phase-flip instabilities and rapid
fluctuation growth. With careful choice of parameters Tfp, ¢1 and ¢, it is
possible to reduce magnetic fluctuations below levels found in the
conducting-wall RFP, in quasilinear tests. In full nonlinear tests,
however, the targeted mode continues to grow and the scheme fails to
improve on the conducting shell case. Even if fine-tuning of this more
sophisticated scheme cannot reduce Vi below the conducting-shell level,
it demonstrates the potential feasibility of a more physically realistic

feedback circuit based on sensing of edge fluctuations.2



83

10-12

10-13

10-14

10-15

180 ﬁme(TR ) 220
Fig.4.1b
Wm .
10-11 (m= 10-11
10-12¢ 10-12
10-13 10-13 f
10-14 N 10-14
(m=0)
180 me(Ty ) 220 180 time(ty ) 220

Fig.4.1: Modal magnetic energies versus time for linear runs in:
(a) conducting shell (Ts = 1000 TR)

{b) resistive shell with conducting feedback coils for (m,n} = {1,-5}
() resistive shell without feedback (Ts = .032 TR)

The "m=1" modes include -n = 4, 6, 7. The "m=0" modes include n=1,2.

Fig.4.2
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10-14

130 220

time(Tp)

Fig.4.2: Magnetic energy of (1,-5} vs. time with linear stabilization
by ceils of varying resistivity:
{1} 7fb=0.032 TR: high resistance coil, equivalent to no feedback
(i} tfb=1.0 TR: resistive coil
(iif) tfb = 1000 TR: low resistance coil, equivalent to ideal feedback
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Fig.4.3: Modal magnetic energy versus time for nonlinear resistive
shell runs (a) without feedback, and (b} with resistive feedback

coils (tfb = 100 1R) for m=1, n=-5,-6,-7
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Fig.4.4.a: no feedback
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Fig.4.4.b: resistive coils
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Fig.4.4: Loop voltage versus time for nonlinear runs with
resistive shell:

(a) without feedback

(b) with resistive feedback coils on m=1, n=-5,-6,-7
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FIG 4.5a: £=-0.1 S
Wm (11'6)
10-11
10-12 (1-5}
10-13 _ ]
1o-14 \
10-15
(m=0)
7 Z
FIG 4.5b: £=-1.0 10-8 ]
3 )
10-9
10-10
Br
10-11
(11'6) I/a
10-12 o
10-13
10-14 \
10-15 =0y
] Fig.4.6.a: Axisymmetric (0,0) magnetic field component profiles with
resistive shell after evolution for one half of one shell fime (from t=.180
{R £0 t=.196 tR).

180 time(ty ) 220

Fig.4.5: Modal magnetic enexgy spectra versus time for linear
feedback on {1,-5): br(a} = f br(rs) ({phase flips at *):

(@) f=-0.1reduces amplitude and growth rate of {1,-5)

(b) £=-1.0 induces phase flip and enhances growth of (1,-5)
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Fig.4.6: Magnetic field fluctuations profiles with resistive shell after
evolution for one half of one shell ime
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Figs.4.7: Velocity vr sign change at edge predicts
phase flip (at *) in Br(r)

(a) Magnetic field profiles before and during phase flip
(b) Velocity profiles before and during phase fiip
fondy roughly to scale)
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Fig 4.8

Magnetic energy in (1,-5) mode
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Fig.4.8: Magnetic energy versus time for linear

feedback on {1,-5). ramping £ from 0 to 0.1.
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Fig.4.9: Modal magnetic energy versus time for nonlinear
run with feedback on modes m=1, n=-5,-6,-7

{a) perfectly conducting feedback coils

(b) ramping f from 0 te -0.1.
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Fig.4.10: Loop voltage VL versus time for nonlinear
run with feedback on modes m=1, n=-5,-6,-7

(a) perfectly conducting feedback coils

(b} ramping f from 0 to -0.1.
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CHAFPTER 5

ROTATION OF PLASMA/WALL AND MODES

5.1 Introduction

It has been observed that when tearing modes in RFPs phase-lock to
each otherl.2 or in space {e.g. to a shell gap), 3,4 their growth rates
increase, often leading to early termination. Bulk plasma rotation inhibits
growth of tearing modes for at least two reasons. First, modes at rest in the
frame of a spinning plasma see an effectively more highly-conducting
shell, imposing lower limits on Bz{a). Second, if a rotating mode tries to
lock {cease rotating) due to stationary field errors, stabilizing viscous drag
forces arise between the deccelerating mode and the rotating bulk plasma
surrounding it. These forces tend to inhibit growth of the mode.
Therefore, causing either rotation of the bulk plasma with respect to the
shell or rotation of tearing modes with respect to the bulk plasma may be a

useful means of feedback stabilization.

In this chapter, we present work in progress investigating the
efficacy of rotation as a means of stabilizing tearing modes. In Section 5.2,
we rotate the resistive shell at various accelerations to various maximum
velocities, first in linear then in nonlinear tests. In Section 5.3, we propose
rotating individual modes with respect to the plasma, in a scheme which

has yet to be tested.
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52  Spinning wall/plasma

In these tests, the resistive shell which bounds the RFP is
accelerated from rest (spun up) to various final constant rates in the axial
and poloidal directions, to model bulk plasma rofation in the opposite
direction of shell spinning. Shell spinning has also been proposed as a
physically feasible option, in the form of a rotating liquid metal blanket>.6
between confining resistive shells. Toroidal and/or poleidal rotation is
implemented numerically by specifying mean vz(0,0) and/or ve(0,0) at the
wall and including these velocities in the convective derivative term for
the magnetic field perturbation evolution, at the boundary, as detailed in
Appendix 3. Rates of spin up are specified independently by increasing vz

and vg at each time-step, before they are used in the boundary condition.

For this cylindrical model, toroidal rotation of the shell reduces to
relative linear motion between the shell and the bulk plasma. Therefore,
shell rotation with +vgz is equivalent to plasma rotation with -vz.
However, poloidal shell rotation with +vg is not equivalent to plasma
rotation with -vg. In a moving plasma, Coriolus effects will add a poloidat
component to perpendicular motion: radial paths will spiral and axial
paths will become helical. In addition, a rotaling plasma with mass
density p will experience a pv2/r outward force. (Similarly, in a truly
toroidal geometry, shell rotation with +v; is is not equivalent to plasma

rotation with -vz. These discrepancies are not addressed in our tests.
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The results below are briefly summarized. In linear tests, mode
growth decreases as rotation rate increases and as spin-up rate increases,
approaching the conducting-shell approximation at very high rates. In
nonlinear tests, rotation at realistically low rates has a negligible effect on
plasma parameters. Nonlinear tests of high rotation rates are beyond the

scope of this thesis.

52a Linear tests
Fig.5.1 m=1 magnetic energies versus fime
10-11
10-12
10-13 i U
iv ]
180 time (TK) 210

Fig.5.1: Magnetic energies versus time for four cases:
i: resistive shell without rotation
ii: resistive shell accelerating at 10vA /TR
iii: conducting shell without rotation
iv: resistive shell accelerating at 100vA /1R
(oscillations onset at velocities near vA)
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Linear tests of the effectiveness of relative motion between the bulk
plasma and the resistive shell, spinning the shell up at a rate of dvs/dt =
10vA /TR holds magnetic fluctuations in a resistive shell of T5=032 TR
nearly as low as in a conducting shelt (Fig.5.1, curve ii). Spinning the shell
up faster, at dvs/dt = 100vA /TR, holds fluctuations near the "conducting
sheli" (T5=1000tR) levels (Fig.5.1.iv), which are only an approximation to a

true conducting shell (Tg=infinity).

52b Nonlinear tests

Plasma rotations tend to be characterized by the diamagnetic drift
velocity. For example, in the MST experiment, assuming” n(0)~1013 em-3,
T(C)~400eV, «<BT>~1.2 kG, and Z=2, the diamagnetic drift velocity
v, = ~VPxEB qnB* = 7x10% m/s. The diamagnetic drift speed and direction
varies with radius, from poloidal on axis to toroidal at the reversal surface,
and helical eisewhere. A diamagnetic drift velocity cannot be defined for

the DEBS code, which has no pressure gradient. Computational speeds are
referenced to the Alfven speed, v, = %En—,-—m—i' which is about 6x10° m/s

in the MST experiment. It is observed that helical modes in MST rotate at
about vz~7.5x10% m/s ~ 10vp, Rotating modes can lock to the wali within
0.1 ms after a sawtooth crash, when the bulk plasma shifts inward in
major radius, sampling a higher field error at the poloidal gap; thereafter,

modes can grow quickly.8
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Effects of a spinning shell on nonlinear REFI? evolution have been
investigated for a range of maximum shell speeds vz and vg and for 2
range of acceleration rates dvz/dt and dvg/dt to these maxima. Poloidal
and toreidal rotation speeds were each varied from 4x10°5 10 4x10°3 va,
and each value was approached at accelerations between 14100 vA /Tg.
These would correspond to .approximately .0035-.35 vp in an RFP such as
MST.

Shell rotation at velocities below 4x10-3 va yields no significant
drop in loop voltage or modal magnetic energies. This is not surprising,
since experimental RFPs are cbserved to benefit from rotations larger than
those tested. Peak rotations in these tests remain far lower than rofation
rates reached in linear tests. Numerical instabilities of undetermined
origin preclude modeling of rotations above 102 vA. Nonlinear tests of

plasma/shell rotation are inconclusive and should be continued.

5.3  Spinning individual modes

It has been observed in Tokamak and RFFP experiments that
spinning of individual modes with respect to ithe bulk plasma inhibits
their rapid growth. Numerical computations? have guantified the
minimum perturbation field necessary te "lock” a mode to an error field
while embedded in a rotating plasma. The converse problem, to find the
reduction in growth rate of a locked mode if it is made to rotate, has vet to

be solved for either the Tokamak or the RFP. We have begun an analysis
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of this problem, as detailed in Appendix 3. We propose to use edge fields
to drag islands with respect to the plasma. Flow around the islands may
reduce their size and their growth rate, as seen experimentally. Modeling
and testing of a feedback scheme based on mode rotation induced by

helical feedback coils remains to be completed.
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CHATPTER 6

CONCLUSION

The growth of tearing modes in resistive shell Reversed Field Pinch
experimenis can degrade plasma parameters and lead to shortened plasma
discharge durations. This thesis does not directly address questions of
transport buf uses insights from Ohm's law to tailor field profiles and
control plasma parameters. Several schemes for edge feedback
stabilization of internal tearing modes have been tested numerically. A
computer program for solving the nonlinear, resistive, compressible, zerc-
beta magnetohydrodynamic equations in three dimensions has been

modified for this purpose.

The most completely tested feedback scheme, presented in Chapter
3, nulls the radial magnetic field af a resistive shell, in helical patterns
resonant with modes targeted for feedback. The effectiveness of this
scheme lies in its ability to modify profiles of the fluctuation-induced
eleciric field. The significance of this field in RFP dynamics has become
increasingly clear in the decade since it was first proposed as the source of
the RFP dyamo. Our investigations suggest that the shape of the
fluctuation-induced electric field for just the few dominant resistive

tearing modes largely determines global variables in the RFP. Negative
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poloidal edge field drives the currents which provide reversal and sustain
the mean flux; positive axial field can oppose the global thermal
instability, but large axial field demands high loop voltage fo sustain

plasma current.

We find that stabilization of the highest-amplitude tearing mode
fluctuations, approximately 2R/a in number, can decrease loop voltage
and extend plasma discharge durations. Suppression of these modes does
not suppress the RFP dynamo, because neighboring fluctuations evolve
nonlinearly into dynamo mode form. Quasilinear interactions modify
mean magnetic field and current profiles such as to reduce driving terms.
This leads to an overall decrease in fluctuation amplitudes, and, more
importantly, to a reshaping of the largest modal components of the
fluctuation-induced electric field. Corresponding changes in the safety
factor profile shift modal resonant surfaces radially inward.
Experimentally, this could reduce plasma-wali interactions, resistivity, and

transport.

We propose a physical mechanism by which external coils stabilize
internal modes in Chapter 3, and predict requirements and effects of
applying feedback stabilization te REPs such as those in existence when
this work was begun. A limited comparison with experiment is reported.
In the light of evidence that feedback stabilization of resistive shell modes
can restore RFP parameters to nearly their conducting-shell fevels, further
experimental tests of edge feedback and of REP dynamo and transport

dynamics are encouraged.
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We have begun exploring alternative feedback schemes, including
less effective methods with resistive instead of conducting windings, and
potentially more effective methods with actively programmed boundary
conditions (Chapter 4). In the former set of investigations, we find that
imperfect nulling of the edge radial field suppresses targeted modes less
completely, and quantify the required conductivity of feedback coils. In
the latter set, we attempt to improve over conducting shell plasma
parameters. Actively varying the edge radial field in response to mode
amplitudes at the edge or inside the plasma yields mixed resulis. Most
recently (Chapter 5}, we find bulk plasma rotation a potentiaily useful
methed of stabilizing tearing modes; however, more work needs to be
done to quantify minimum effective spin and acceleration rates in
nenlinear REPs. Finally, we sketch out an approach to modeling rotation
of individual modes, to be induced by feedback coils. This last scheme has

not yet been modeled.

‘This work has been supported by the U.5. Department of Energy.
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APPENDIX 1

GENERATION OF MEAN ELECTRIC FIELD BY FLUCTUATIONS IN
VELOCITY AND MAGNETIC FIELD!

Velocity and magnetic fields V and B may be written in terms of

mean fields Vg and By and fluctuations v and b:
V(rt} = Voi{rt) + v{r,t} <v>=0 {1
Bir,t) = Bg(z,)) + b(x.t) <b>=0 2

The mean, or global part of the field is defined as that which varies
on a time scale T much longer than time scales characteristic of the
fluctuations (¢), and which exhibits structure on length scales L longer
than fluctuation length scales I. Mean fields vary little over a
characteristic dimension a of the system (I<<a<<l), and remain
approximately constant over an intermediate timescale 1 satisfying t<<T
<<T. The ensemble average can be defined over time:

{(wen) = 51; fw(r,z«% TdT’

4

Or over space:

(e, = 2_ [+ £.04%¢

Eica
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Writing <v»>=0, for example, means that on time and length scales
characteristic of the system, fluctuations average to zero. "The random ..
field may be a turbulent .. field .. or it may consist of a random
superposition of interacting wave motions."2 The fluctuations treated

pseudospectrally in this thesis are understood to take the latter form.

In the RFP, the characteristic length scale is a=minor radius and the
characteristic timescale is T = ’CR3/ 5’CA2/ 5 for resistive tearing.3 Mean
fields describe axisymmetric modes (m=0,n=0) with infinite poloidal and
toroidal wavelengths; these typically evolve on resistive diffusion TR
{millisecond) timescales. The longest wavelength RFP fluctuations of
interest are helical magnetic islands with finite wavenumbers, typically

m R . - 1 . .
222 | with characteristic oscillations on Ta (microsecond) timescales
n da

(megaheriz frequencies). Smaller length scale fluctuations have shorter
characteristic timescales, assuming group velocities are approximately

constant across mode number .
Substituting (1} and (2) into

(3} %—I: =-V-vxB)=Vx(vxB)+ AV'B, where A= I is the magnetic
By

diffusivity, yields an equation which can be separated into its first order

and second order parts:

%:Vx(vo xB0)+ﬂV2B{j+Vx(vxb} {4}
db sl
E:VX(VOXb)+VX{VXBQ)+VXG+AVb (5
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where G=vxb-{vxb)

The last term in (4) is the source of the fluctuation-induced electric field
Ep =—<vxb>-B/[B| (using the normalization of Ch.3) which drives
the RFP dynamo. The magnefic Lundquist number

. Ugvpa flow velocity
7 magnetic diffusion veloctiy

is obtained from the ratio between the two terms on the right-hand sides
of (3)% This method of dynamo drive, sometimes called the alpha effect, is

"the heart of all modern dynamo theory™.

Assuming b(t=0)=0, (5) implies a linear relationship between b and
By, therefore also between Bg and {vxb). Then the dynamo term carn be
written as a rapidly convergent series

37 By;
ory. by

B
g ={vxb); = ;By; +ﬁijk7"}"+ itk +.. (6)
Tk
where the coefficients depend on Vg, v and . The leading term
dominates when Bg is weakly nonuniform. When the velocity
fluctuation field v "lacks reflectional symmetry” (or posesses vorticity
{vxb) aB,

w=V xv), ¢ gives rise to a current J= —= parallel to the mean
n il

magnetic field. The mean helicity <vxw> in the velocity fluctuations
distorts the magnetic field in a "cyclonic event"®, twisting poloidal into

toroidal field” as in Fig.A1.1.
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Fig Alla Fig.Allb
j - - ]
B B

< &

[ v | v

Field distortion by a locatised helical disturbance (a 'cyclonic event’).

In (a) the loop is twisted through an angle #/2 and the associated
current is anfi-parailel to B;

in (b} the twist is 37/2, and the associated current is parailel to B.

The field line twisting due to vorticity breaks the axisymmetry of
the field. This permits solutions to the dynamo problem despite
Cowling's "antidynamo” theorem®, which implies that a reversed
axisymmetric field is inconsistent with a steady-state plasma. Relaxation
of the axisymmetry constraint by <vxb> provides the means for steady-
state field reversal: "Braginskii9 demonstrated that, as Parker had
argued,10 non-axisymmetric motions could indeed provide an effective
mean foroidal emf in the presence of a predominantly toroidal magnetic

field."11
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APPENDIX 2
REVIEW QF RESISTIVE TEARING MODES

Inclusion of resistivity and viscosity relaxes constraints on the ideal
MHD equations, makes new states accessible to the plasma, and can result
in higher growth rates.l. Viscous instabilities are not addressed here. The
two most potentially dangerous resistive instabilities which have been
recognized are resistive interchange modes and resistive tearing modes.2:3
In both types of resistive instability, a mode of helicity {m,n) grows around
its resonant surface, which lies at the radius r, where the safety factor g{z.)
= m/inl. Since resistive interchange modes are driven by pressure
gradients one might expect them to be large in an RFP. However, these
are stabilized by the RFP's high shear (¢'/q), as evident in the criterion? for

stability to resistive interchange modes:

ofVaf’ , 2uVP _ 4
41 q B2

and in the resistive interchange mode growth rate:2

B  NH
¥E TR% 'fi/B (k&’)% [%}

a
where Ty =a2l1/1; is the resistive diffusion time, 7,4 =—%@ is the Alfven
0

fime, k is the toroidal wavenumber, g is the gravitational acceleratior, and

p is the mass density.
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The most virulent instability in the RFP is the resistive tearing
mode, in which field lines tear and reconnect across a resonant surface. At
1o the {(m,n) mode has the same pitch as the local magnetic field: the
fluctuation amplitude is constant along the field line, so the mode’s
wavenumber parallel to the field vanishes. Transforming io a frame with
zero shear at rg, we see the field line from the peint of view of the mode
resonant at rg, withl

B.(r} = B(r) -B(t)q=m/n where B(t)q=m/n= Balrs) r/1s+ B (rs)

In this frame, axial and poloidal fields vanish at the resonant surface:

———————————— B(rs) = B(x=0)=0

Since B{ry=0 in the frame of the perturbation, field lines can tear
and reconnect into magnetic islands and a tearing mode instablity can
grow at the resonant surface.®> In a resistive plasma, a velocity
perturbation gives rise o a current density perturbation 7= -vxB/n. This
second-order current density crossed into the equilibrium magnetic field

yields a restoring force opposed to the displacing flow:
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Fig.A2.2

In a conducting fluid, the restoring force
F xB=(vxB)xB/7=-vB/n+(B-v)B is infinite (n~0) and the plasma is
"frozen" to the magnetic field lines. With nonzero resistivity the
magnetic restoring force against perturbations becomes finite.6 Where
B=0, the restoring force vanishes. The magnetic field lines can decouple
from the plasma fluid, tear across the resonant magnetic flux surface, and
reconnect into magnetic islands. For example, a radial magnetic field
perturbation which varies poloidally can deform the plasma around the
resonant surface .

Fig.A2.3
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The perturbed flux surface can deform the plasma arcund the resonant
surface, tear across rg, and reconnect inte magnetic islands. A (mn)
magnetic island is a helical filament of current which les along the
resonant surface, closing back on itself after m toreidal transits and n
poloidal twists. Formation of magnetic islands reduces magnetic energy in
the RFP therefore is favored in the presence of radial magnetic field
perturbations across a resonant surface.

The perturbations associated with a magnetic island can be derived
using a simplified slab model,” in which the radial direction is represented
by x, the poloidal direction by y, and the axial direction by z. Assume

cylindrical/axial symmetry (—g;s ), incompressibility (V.v=0), and no

mean flow (V=0) or axial field perturbations (b;=0). The radial magnefic

field perturbation evolves according to Faraday's law:
@ e P
at dy

where El = —v, + nj,and b, v, and j are perturbed quantifies. Assuming
sinusoidal variations in the poloidal direction, by~sin{ky) and vy~sin(ky),

V.B=0 yields
&b
2 —==kb_ .
@ dx ¥

Incompressibility with axial symmetry vields v, = % f;vz . Taking the curl of
) X

B yields j. =92 _1p_so (1) becomes
ok ooxt
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b A
= =ky, B, - =—k'h, .
@ Zr=knB n( Fraiy

Away from the resonant surface (in the "fluid” region), the first term
dominates, since resistivity 7 is small. Near the resonant surface {in the
tearing region, or inside the "boundary layer”), the resistive terms
dominate, since B.~0. In this region, the velocity perturbations are
voriices flowing toward the x-points and away from the o-point at the
center of the separatrix, tending to widen the island radially, as in Figure

A2 4 below:

Axial current flows in a sinusoidal distribution on the resonant surface,

out of the page at x points and oppositely directed at the island's center.

Solutions for the radial perturbation by are obtained in each region,
then matched across the boundary layer, holding continuous.? Since the
island current J; is large only in the tearing region, it causes a
discontinuity in Vby, quantified by the logarithmic derivative, del-prime:

, bBr -k 7
AR AN aMezs - 2 .
b(r) ox nd 4.0
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where by '(rs+) and by (rs.) indicate derivatives in the field perturbation at
the outer edges of the island, and rg corresponds to x=0 in the slab model of

Fig.A2.1. 8

The tearing mode growth rate y and the magnetic island width &
can be obtained in terms of the logarithmic derivative A We find two
equation in the two unknowns ¥ and €, and solve for each in terms of A"

First we equate the rate at which the force p%vx =-J_ B, does work on the
fluid:

v- F=vBJ. 4)
with the rate of change of kinetic energy: izyp(vf +v

f)z‘;ypvf/(ks)l. This

vields
yov, =2B.J.(ke)' = 2A'B.keb, 5)
: b, _A'B, .
where we have approximated P =+ =% in the boundary layer and
I £

I = A'b, fke from the curl B equation. The second equation is obtained by
assuming all three terms in Faraday's law are approximately the same size

in the tearing regiomn:
b, = v kB, = nkJ_, which reduces to A = nA%_ &)

Combining (5) and {6) yields the tearing layer width:
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£

n

(Pn%y]% = S_%(A’a)%[gna_q}i%

| 2(kB) R g

and the resistive tearing mode growth rate:

¥ =55 T;% r;% (A’a)%(a &

—F
R g

J%

(where B. = Bi¢ has been used, and the factor .55 "comes from a more
exact treatment™®). The tearing mode grows when the logarithmic
derivative A' is positive (that is, when the slope of the perturbation

increases across the boundary layer), and is stable when A'<0.

Shear (q'/q) destabilizes the tearing mode, but several mechanisms
contribute to the mode's saturation in a conducting-shell RFF. First, the
vy' flow which enlarges the isiand is opposed by a J by force arising from a
second-order current density J, =v/b,/n. This force balances that in {4)
when the island size W grows to the tearing mode width. Second,
tearing modes quasilinearly modify the equilibrium profiles, flattening ]
and reducing the tearing mode driving term. Finally, noniinear
interactions between fluctuations result in a cascade of energy to shorter-
wavelength (m22) modes, which serve as an energy sink and help

stabilize the m=1 tearing mode fluctuations.?
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APPENDIX 3

SUMMARY OF BOUNDARY CONDITEONS

The original version of the DEBS codel included boundary
conditions for a conducting shell at the plasma edge, r=a. A modified?
version of DEBS allowed removal of the conducting shell to a distance 1>a,
and placement of a resistive shell at r=a. Modifications made to DEBS for
the purpose of this thesis embed conducting? or resistive coils of helicity
{m,n) in the resistive shell at r=a, and permit plasma rotation. The

boundary conditions for each case are summarized in this appendix.

All versions of DEBS calculate the magnetic field components Br,
Bg, Bz from the vector potential A, which is advanced subject to boundary

conditions on B and on the applied electric field E. Two equations
B=VxA
dA/dt=-E

are scived simultaneously. The axial and poloidal compenents of A are
solved at two adjacent radial points in a two by two matrix, and Ay is
found separately. The coefficients of this matrix are determined by the
radial location, geometry, and resistivity of the sheils outside the plasma.
Different boundary conditicns on B are imposed by changing these

coefficients.
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A3l IDEAL BOUNDARY CONDITIONS

Under the original ideal boundary conditions, a perfectly
conducting shell is included at r=a, the plasma edge. Since the component
of the magnetic field perpendicular to a conductor vanishes, these
boundary conditions constrain Br(a)=0. Therefore, the axial and poloidal

components of the vector potential can be found from

1r 9z .

_ _ _ o4, dAg\_

Br—(VXA)r—;%r Vs %z‘;[ a6 _79?)‘0'
A Ag A

Assuming perturbations of the form f(r)e’i{(m8 + Xz } in Fourier space, we

can linearize B = VxA:

B, =ikAg~3RA, ©
The equations used to evolve A are solved in DEBS as:
(8811 ggiz){Aem) _{hhu hhlZXABnrml) - (f]h
8221 8812 /\ Agrr) (Bhoy hhop i Az ) (i (1)

The upper equation applies boundary conditions corresponding to B=VxA,
while the lower equation applies boundary conditions corresponding to

dA/dt = -E. The latter is not modified in the present work.
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A3.2 NONIDEAL BOUNDARY CONDITIONS
A3.2.1 RESISTIVE SHELL AT r=a

Since tangential components of the magnetic field are continuous
across the plasma boundary, relaxation of the conducting shell condition
at r=a permifs a nonzero Br at the plasma edge. The coefficients for
evolution of the vector potential can be derived as follows, where drp is
simply the radial grid size at the specified location. In general, drp may
vary in DEBS, but in practice it is usually held constant. From {0), B

changes as:

0B, ipdhy

gt "N a Tt a @)

The jump condition

(8] ]l _p) 7 A

gr iy Ol O ga__ Ma gy Ar(a)

enters the time derivative as 3b,, = i[abr } , 80 {2) becomes:
at gl odr |,

& ) T_Ii[dBI} . aAe . ‘CRl dAGD_iﬂ(aAZ . ’CRI dAZD

Jt gl dr 7\ ot Tsl ar T\ gt sl dr

@)

At the plasma-shell boundary, a=( r{nr)+r{nr-1} }/2 , we find, writing the

grid point (nz-1) as nrml:
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E B"rzr + Brnrm} + Ir Brnr - Brrzrml = (4)
2 At Xy drpnrml
&(Agnr + Af"nm:l _Ir Agm_ — Aenrm‘i - EE{AEM * Azrzrm] _tr Aznr - Aznrml }
200 A Ty APyt vigh Ar te  drPum

Grouping terms, we obtain forms for coefficients ¢1, ¢, €3, ¢4, in terms of
the time-step, space-step, and constants, where d/dr is calculated from the

vacuum Bessel function solutions:

i1 Tr d 1
B o R S 4 Sl =caB Sa
’ﬂr2[m Ts {dr a’rpnmln 35 nr (5a)
if1 R i
ik L 8 =¢4B 5b)
Tarml Z{AI g drpnrm}) 45 nm {
. ~
o (1 _wfd 1 i = ike1Ag (50)
w2l Ar Tgldr drDum nr
ikf1 g 1 .
A LDl 2R =ik A {5d)
1 2[/_\.2‘ Ts drpnrml) HE2 88 0m1
im{t 1 1l d 1 —im
—A ——f B = 1A (59)
i Zr[At T (dr d?pnrml)) Tur 1
im{1 g 1 —im
- SR — = A, Sf
Tnrml Zr(Ar Tg drpnrml] Tar 2% 2nm )

The resultant coefficients are inserted into the evolution matrix as:

"gg13 =ik ¢, ggiz =-(im/1) ¢, hhyy =ik ¢z, hhiz= (dm/r) e, and fjj1 = 3

Bonr + ¢4 (Brinrml
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A3.2.2 PERFECTLY CONDUCTING HELICAL FEEDBACK COILS

To apply conducting boundary conditions on targeted modes (m,n),
we solve for the coefficients which correspond to By = 0 = -imAz/r +ikAg.

Equations (0} and (2} above simplify to:
0=ikAg-Da,

. m m
0 ""—é [k'Aenr_ E;';AZW + kAenrml - Aanml]

Tarmi

This yields coefficients for equations (5) of gg11 = ik/2, ggi12 = -(im/2rami),
hhig = -ik, khip ={im/2r), and £fj; =0, which supersede the resistive shell

coefficients only for targeted modes.

A3.23 RESISTIVE HELICAL COILS

To model the effect of imperfect feedback coils, we choose the form
of coefficients derived from (5), substituting an effective time for the
feedback coils Tfh in: place of the shell time Tg. The term Tfp represenis not

a circuit response time, but the effective soak-in time for a shell of

resistivity Tfb.
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A3.24 P[ASMA/ISLAND ROTATION BOUNDARY CONDITIONS

All versions of DEBS calculate the boundary fluid velocity
xB

components vy, v, vz from v=— —5 which is solved after advancing

A. Resistive. shell modifications? with a nonzero axial E field include an
adiabatic compression term for vp. More recent modifications?  permit
imposition of nonzero vz and vg for rotation of the shell at r=a, or
equivalently, rigid rotation of the bulk plasma. This is accomplished by
applying a specified vz{0,0) and vg(0,0) at r=a in the velocity advance, then
inchuding these velocities in the convective derivative term of (2) above.

9 00y noy m
(gt— + v V)b = 5 szbr Ly vgbr ©)

The resultant coefficients for the boundary conditions on by are (3) with

2 fjjl = = {kvy + mvg/r), where the factor two is required for consistency
with the averaging performed in (4}, Rates of acceleration (spin up) are
specified independently by increasing vz and vg at each time-step, befoze

they are used in the boundary condition.

Proposed® modifications would permit rotation of individual modes of
helicity (m,n). This is accomplished by rotating helical coils at the edge.
Ampere's law yields relations between tangential current densities and
jumps in the magnetic field across a resistive shell of thickness A5 and a

feedback coil of thickness AC
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P g P s (b= Tl
aaﬂ= L S renl
r 20 DX bianj= JAHI°A @)

where [ ] = Bla,) - Bla_) is the jump in B across r=a, from the vacuum

region o the plasma region.

Assuming quantities vary as f(r)e"i(k-x), we can find the jump
condition for the radial magnetic field from the divergence:

fab,] . . ~ T
V-b ::;L—gri -ik- [byan where k=—§—z+’—;‘—8

Feedback coils can induce mode rotation by adding a convective derivative

ferm (6) to Faraday's equation:

VxE = VonJs = -(% +v-Vib=- 9by + i b, 4 i-rzllvebr

ot R {8)

To apply this conditien to individual modes, we have to account for the
interaction between feedback coil currents J€ and currents J5 which arise in

the shell:

VxnsJ® =nsVxJs(r)e ¥ = ns(-ikx]) = ﬂs(-ikx(w)
A

©)
This relation can be rewritten in terms of jump conditions [ ] at the shell:

ot biaal) = (k- [beandF - (k- Tb1] = 1 22]
il or |

k =- %:1}—1;35 and f

with and A =todIk )= I
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v 5 — [ty C.
xnl®t = ‘,iar}ﬁ-l}f

Then (9) becomes simpiy ), which can be substituted

into (8) to yield:
obr _ ny .m _ n8(obr), iyer
5 1( vzﬁvg]br_ A or +iJ+f

which determines rotation boundary conditions on B.
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