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Abstract

Heat and particle transport due to plasma microturbulence represents a challenge in the

development of commercial fusion power. Microturbulence is caused by gyroradius-scale

instabilities, of which the Ion-Temperature-Gradient-Driven (ITG) instability is one. This

thesis uses gyrokinetic simulations to characterize how the linear ITG instability saturates,

as well as to study the turbulent state that arises.

In all of the ITG parameter cases investigated here, zonal flows, which are flows constant

along a flux surface, are prominent. Zonal flows are linearly damped and thus must be driven

nonlinearly. Some nonlinear energy transfer from the instability sustains the flows, but the

majority of the energy injected by the instability is balanced by nonlinear transfer to smaller

radial-scale stable and unstable eigenmodes. Unlike Kolmogorov turbulence, the dissipation

scale overlaps with the injection scale, so there is no inertial range.

This thesis investigates two phenomena relating to ITG in particular, the nonlinear critical

temperature-gradient upshift (the Dimits shift) and the nonlinearly enhanced transport

reduction which occurs when the normalized plasma pressure β is increased. It is found

that, while stable modes are the primary saturation mechanism, the Dimits shift cannot be

attributed to a direct reduction of the heat flux by stable modes, or to their effects on the

energy injection rate. It has been suggested that energy transfer out of zonal flows, in a

manner like tertiary instability, could limit their amplitude and set the nonlinear critical

gradient. We find that this is not possible directly, as transfer of flow energy is into the zonal

flows for all wavenumber couplings.

We apply these same techniques to the nonlinearly enhanced reduction of transport with

β. Qualitatively, the saturation process is similar throughout the range of β. Stable mode

effects only slightly increased with β. Instead, the majority of the reduction is explained by

better frequency matching between interacting modes, which causes energy transfer to be

more efficient. This effect can be included in quasilinear mixing-length transport models, and

we show that it explains 50% to 100% of the enhanced transport reduction with β in five out
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of six test cases.
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1

1 introduction

1.1 Motivation

Magnetic Confinement Fusion

Development of controlled nuclear fusion, for eventual use in power plants, has been ongoing

since the 1950s. Fusion requires ion collisions with enough energy to overcome the electrostatic

repulsion between like charges. Achieving some fusion is straightforward; for example, beam-

target fusion has been used for decades to measure nuclear cross-sections. However, this

technique is not a candidate for power plants, because directly accelerating ions to the

required energies is inefficient. The primary area of investigation for fusion energy involves

magnetic confinement of plasmas, where some of the energy released by fusion will couple

back into the plasma and will be responsible for a large fraction of the heating. This requires

power produced by fusion, which is measured in comparison to the heating power by

Q = (fusion power)/(heating power), (1.1)

and a current goal in the field is to achieve Q ≈ 5. Presently, in 2019, the world record is

Q = 0.67 from JET, set in 1997 [1].

To roughly understand magnetic confinement, consider single particle motion in a back-

ground magnetic field. Being charged, ions feel a force (F ∝ v×B) perpendicular to their

velocity (v) and the magnetic field (B), which causes them to orbit field lines and allows

them free motion along the direction parallel to the field. In an oversimplification, a number

of plasma confinement devices are toroidal so that field lines stay inside of the device. Usually,

field lines lie in surfaces called flux surfaces, along which the parallel transport sets roughly

constant pressures.

One major class of toroidal design is known as the tokamak (see Ref. [2] for a reference

text). The magnetic fields in tokamaks are generated by the combination of external coils,

which produce multiple Tesla toroidal fields on modern experiments, and by the plasma

current. Figure 1.1 shows a schematic of flux surfaces in a tokamak, which are circular in the

illustration and correspond to toroids with minor radius ρ. Transport across flux surfaces is

classified into classical (collisional), neoclassical (collisions and drifts with geometric effects),

and anomalous transport (due to turbulence). This thesis studies the last effect.
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Figure 1.1: Three flux surfaces in a tokamak geometry, with a magnetic field line marked in
green. The pitch of the magnetic field lines can change with the flux surface. Figure taken
from Ref. [3].

As the sun has existed for ∼5 billion years, it can be inferred to have a low rate of fusion.

To achieve higher reaction rates, current plans for power plants involve deuterium-tritium

fusion, which has a much higher reaction cross-section than the proton-proton chain active

in the sun. Modern experiments also have temperatures in the tens to around a hundred

million degrees Kelvin. For comparison, the core of the sun is only fifteen million Kelvin.

Confining the pressures sufficient for a significant fusion yield is a challenge. The plasma

edge is always cooler than the core, causing there to be strong radial temperature and density

gradients. The plasma core is heated by induced current, various beams, and in a power plant,

fusion. In steady state, this heating is balanced by unavoidable heat transport, which among

other things, depends on temperature and gradients. Particle densities have similar physics

in terms of fueling and transport. The self consistent balance sets temperature and density

profiles, which determines core temperature and fusion yield. Temperature and density

profiles are also important because plasmas are subject to a number of profile-dependent

macroscopic fluid instabilities, which can disrupt the plasma. For illustration, Figure 1.2

shows a typical temperature profile for an existing tokamak as a function of normalized minor
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radius. Temperature peaks in the center and decreases with radius. Towards the edge, there

is a region of stronger normalized temperature gradients.

Figure 1.2: Temperature profile for JET, and projections for ITER and DEMO. Taken from
Ref. [4].

There are multiple contributors to transport. One of the first considered from a theoretical

standpoint was collisions, which move particles and energy between flux surfaces, leading

to heat diffusion. Collisionality decreases strongly with temperature. This is because with

higher temperatures come higher particle velocities and thus shorter interaction times. From

the perspective of trying to acheive fusion this is a good scaling, however, it is misleading

because it is only one of several heat transport mechanisms with different scalings.

In reality, heat transport is much larger than what is given by classical and neoclassical

transport. The difference is referred to as anomalous transport [5], and is now understood

to be largely the result of gyroradius-scale turbulence, called microturbulence. Pressure

gradients provide a source of free energy which microinstabilities can feed off of. Unlike

device-scale instabilities, microinstabilities do not cause disruptions and instead saturate at

a finite amplitude where the resulting turbulence causes heat and particle transport. This

thesis focuses on a type of microinstability called Ion-Temperature-Gradient-Driven (ITG)

instability, which is responsible in many experiments for heat transport.
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1.2 Thesis Statement and Organization

This thesis is about ion-temperature-gradient-driven instability and how it saturates. It

applies a number of diagnostics to the turbulent distribution function, some of them novel,

to reveal new details of the saturation process. The knowledge gained here can be applied to

reduced models, and an application is included as Chapter 6. There are two main focuses for

physics investigation, the nonlinear critical gradient upshift in ITG (Dimits shift), and the

effect of normalized plasma pressure β on ITG saturation. (Quasi-)Linear transport models1

fail at nonzero β, and this thesis both identifies a large contributor and tests a modification

to the saturation rule which improves their accuracy at nonzero β.

This thesis is organized as follows: Chapter 2 consists of a conceptual justification of the

Vlasov equation and gyrokinetics, followed by the actual gyrokinetic equation and definitions

of the measures used here to study ITG saturation. In Chapter 3, these measures are

applied to a standard ITG parameter case, to establish a ‘default’ view of saturation which

can then be compared to what happens at different temperature gradients or in parameter

cases with electromagnetic effects. The measures are used in Chapter 4 to test possible

causes of the nonlinear critical gradient upshift. We find evidence against several plausible

causes, but can provide no predictive explanation for the shift. Chapter 5 applies the same

measures to ITG turbulence at nonzero β, in an attempt to discover why quasilinear transport

models overpredict transport as β is increased. This reveals that while the saturation process

is very similar, the tiplet correlation time τk,k′ , which acts as an efficiency of nonlinear

energy transfer, greatly increases with β. Chapter 6 discusses some difficulties in quasilinear

modeling with nonzero β, and then tests a quasilinear transport model modified to include

the nonlinear energy transfer efficiency. In five out of six cases, this modification reduces the

overprediction by 50% to 100%. The failure of the sixth can be explained, as a recent paper

[6] revealed that toroidal Alfvén eigenmodes affect saturation in that parameter case. The last

chapter summarizes the results, as well as collects ideas for research continuations mentioned

throughout the body of the text. This is followed by an appendix providing technical detail

on the various parameter cases.

1Quasilinear mixing-length transport models are a class of reduced model which predict
transport from linear instability properties and a saturation rule.
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2 kinetic theory and turbulence measures

2.1 Kinetics (conceptual)

Vlasov-Maxwell Equations

Collisions thermalize particle velocity distributions. In other words, collisions make the

distributions more Maxwellian (∼ e−mv
2/2). It is because of this that fluid equations which

lack resolved velocity-space physics, such as Navier-Stokes, can accurately describe water

and air under normal conditions.

As a side effect of having low collisionality, fusion plasmas are not Maxwellian, so they

exhibit behaviors which require velocity-space physics to model. When describing plasmas,

it is useful to have a particle density with both spatial and velocity components, called the

distribution function:

f ≡ fα(r,p, t), (2.1)

where α is a species label such as electron or proton, r is the spatial coordinate vector, p

is the momentum coordinate vector, and t is time. The choice of coordinates is arbitrary,

often velocity v or energy and pitch angle are used instead of p. Versions of the distribution

function with reduced dimensionality, such as with only one or two spatial and velocity

dimensions, are also used [7, 8].

The distribution function relates to more commonly used terms such as density:

nα(r, t) =

∫
fα(r,p, t)dp (2.2)

or current:

J(r, t) =
∑
α

qα

∫
(p/mα)fα(r,p, t)dp (2.3)

where qα and mα are species charge and mass, respectively.

The distribution function obeys the Vlasov Equation:

Df(r,p, t)

Dt
= C[f ] (2.4)

where D/Dt is the total derivative, and C[f ] is the collision operator, which causes diffusion

in velocity space. By the chain rule this can be expanded to:
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∂f

∂t
+
dr

dt
· ∂f
∂r

+
dp

dt
· ∂f
∂p

= C[f ] (2.5)

where dr/dt can be written as velocity v = p/mα and dp/dt can be written as force on a

particle qα(E + v/c×B). The fields are determined by the Maxwell equations:

∇ · E = ρ/ε0 (2.6) ∇× E +
∂B

∂t
= 0 (2.7)

∇ ·B = 0 (2.8) ∇×B− 1/c2∂E

∂t
= µ0J (2.9)

where charge and current density can be calculated from the distribution function.

The first two terms on the left hand side of Eq. (2.5) can be recognized as:

∂f

∂t
+ v · ∇f (2.10)

which is the advective derivative common to fluid dynamics. In Fourier space, this looks like

ḟk ∼
∑

k′ vk′fk−k′ . The advective derivative will be important later because it is common for

both the nonlinearity in gyrokinetics and in two dimensional fluid dynamics.

Applying the full 6+1D Vlasov-Maxwell equations directly to plasma physics modeling is

only rarely done. This is because directly solving the Vlasov-Maxwell equations is incredibly

computationally expensive, as it has 6 dimensions and a wide range of timescales. However,

simplifications can be made to get a more tractable system.

The Vlasov equation was introduced because it is conceptually simple; it can be written as

only two terms. It also demonstrates the correspondence between single particle motion and

the evolution of distribution function. The motion of individual particles are the characteristic

curves of the Vlasov equation. All the Vlasov equation says is that particles move along at

their velocities, their velocities change according to the forces acting on them, and those

forces are generated by electric and magnetic fields which can be calculated from Maxwell’s

equations. Collisions scatter particles in velocity space, and are not a focus of this thesis.

For the most part it is assumed here that the structure of the collisional operator does not

change the physics of interest, however collision operators are nuanced and an area of active

research [9]. Single particle motion is used in the next subsection to develop intuition for

gyrokinetics, a derivation of which will not be included here.
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Gyrokinetics

Gyrokinetics is a common formalism for microturbulence theory and simulations, and is used

throughout this thesis. As mentioned in Chapter 1, tokamaks have strong magnetic fields,

so ignoring perturbations, particles orbit field lines in the perpendicular direction and move

freely in the parallel direction. In gyrokinetics, the gyro-orbit angle is averaged over, reducing

the perpendicular velocity vector to a scalar and removing the fastest timescales in the plasma.

Because of the average, gyrokinetics cannot describe timescales as fast as the cyclotron motion,

or normalized background gradient length-scales as small as the gyroradius. The background

magnetic field also has to be strong compared to the perturbed electric and magnetic fields.

For a review of derivations of gyrokinetics, including the orderings and regimes of validity,

see Ref. [10]. There are multiple versions of the gyrokinetic equations depending on the

derivation, and they have subtly differing physics, especially in the conserved quantities. For

the specifics of the framework used here, see Ref. [11].

There are three main effects of the gyro-average which should be kept in mind for intuition’s

sake. The first effect consists of drifts, mentioned in the motivation above. An electric field

perpendicular to background magnetic field will cause the gyro-orbit to be wider on the lower

potential side. Averaging over the orbit, this leads to a constant velocity perpendicular to

both the electric and magnetic field (vE×B ∝ E×B/B2). Figure 2.1 shows the path of an

ion in a magnetic field with a perpendicular electric field, as well as the gyro-center path

and a magnetic field line. The E× B drift is one of several, including terms due to ∇B and

magnetic curvature [12].

Secondly, the magnetic moment µ, sometimes including modifications for higher order

convergence [13], is an adiabatic invariant. Because energy due to perpendicular motion is µB

and magnetic fields do no work, particles will lose parallel velocity when moving to a region

of higher magnetic field. A class of magnetic confinement device known as the magnetic

mirror uses this effect to confine plasmas. This single particle motion effect is responsible for

the the trapping term ḟ ∼ µ∂zB0∂f/∂v‖ of the gyrokinetic equation.

The last effect occurs because the average effect of a field over the gyro-orbit does not

equal the effect at center of the orbit. In Fourier (position) space, the gyro-average introduces

a Bessel function in front of the contribution of fields. For example, given a field cos(kx) and

a particle with path x = r cos(θ), y = r sin(θ), the average is:∫ 2π

0

cos(ikr cos(θ))dθ
/∫ 2π

0

dθ = J0(kr), (2.11)
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where J0 is the zeroth order Bessel function. The argument of the Bessel function depends

on the ratio of the gyroradius to the wavelength of the field. Because the gyroradius depends

on µ, this acts to create fine structure in velocity space, as particles with different µ will

respond differently to the fields. The left panel of Figure 2.2 shows circles of various radii

overlaid on a sinusoidal field, while the right panels shows the zeroth order Bessel function

with marked points corresponding to the average over the circles in the left.

Figure 2.1: Single particle motion, showing the constant drift velocity due to a perpendicular
electric and magnetic field. The magnetic field line is shown in blue, while the helical particle
path, as well as the center path are both shown in black.

Figure 2.2: Ions feel the average field over the course of their orbit. Plotted are circles
corresponding to gyro-radii on a sinusoid, and a Bessel function marked at the corresponding
radii in the same color. The magnetic field in the left panel points out of the page.
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Gyrokinetic simulations/theory often make two assumptions relevant here. First is the

flux-tube approximation. With the flux-tube approximation, only the plasma volume between

two flux surfaces, typically chosen around 100 gyroradii apart, is considered. Here, the radial

boundary condition is given by connecting the inside and outside flux surface together. For

this to be reasonable, the box has to be larger than the correlation length of the turbulence.

Studies have been done on how far turbulence from one region can be expected to propagate,

giving around 10 gyroradii [14], which is significantly smaller than typical radial box sizes

used in gyrokinetic simulations. Geometric terms which scale with the minor over major

radius are retained while terms like the difference in minor radius between the inner and outer

flux surfaces are not. Gradients are taken to be linear and background quantities are taken

to be constant within the volume. Also, only a limited region in the direction perpendicular

to both the parallel and radial directions is considered, but given a large enough box with a

toroidally symmetric plasma, this does not change the relevant microturbulence physics.

fα = F0 + f̃ , F0 = cn0e
v2/2m (2.12)

Second, gyrokinetic simulations and theory often assume a Maxwellian-velocity-space

background distribution with prescribed gradients which does not relax with heat transport.

As a framework, this allows transport and turbulent intensities to be calculated as a function

of input parameters at a given radial location. This also introduces a distinction between

linear (the perturbed distribution function and its interactions with the background) and

nonlinear (perturbed distribution function interacting with itself) physics, which is the subject

of the next subsection. Currently, gyrokinetic simulations on the timescales which profiles

evolve are infeasibly expensive, but there may be physical insights to be gained from such

runs. In the meantime, it is possible to calculate a turbulent transport and then update the

gradients in a two step process, which saves resources but is difficult in stiff systems.

The combination of these approximations make gyrokinetic simulations computationally

tractable. Simple simulations for linear instability can be performed on laptops, while nonlin-

ear simulations can take ∼100,000 CPUh or more. Numerical and theoretical investigation

have revealed a number of microinstabilities, depending on driving gradients and other

parameters.
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2.2 Linear and Nonlinear Gyrokinetics

The gyrokinetic code used in this thesis is Gene (see Refs. [15, 36]). The equations that

Gene solves are introduced in this section before defining a number of metrics which reveal

the linear and nonlinear physics. As a prerequisite for that mathematical framework, we define

a number of variables. Coordinates, geometric quantities, species-dependent parameters,

and the remaining quantities are given in Tables 2.1 to 2.4, in that order. See Ref. [11] for

complete definitions and normalizations.

Quantity Definition

x Radial coordinate

y Binormal coordinate

z Parallel coordinate (from −π to π)

v‖ Parallel velocity

µ Magnetic moment

θ Ballooning angle

k Perpendicular wavevector (kx, ky)

v Velocity vector (v‖, µ)

Table 2.1: Coordinate quantities

Quantity Definition

R0 Major radius

q0 Safety factor r·Bt

R·Bp
at r0

ŝ Magnetic Shear = (r0/q0)(dq/dx)

J (z) Jacobian

B0 Background magnetic field

Table 2.2: Common geometric quantities
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Quantity Definition

j Species, e.g. electrons, protons, ...

qj Charge

mj Mass

Tj0 Background temperature

nj0 Background density

vTj Thermal velocity

Fj0 Background Maxwellian

ωTj Normalized temperature gradient = −(R0/Tj0)(dTj0/dx)

ωnj Normalized density gradient = −(R0/nj0)(dnj0/dx)

Ωj Cyclotron frequency = qjB0/mj

ρj Gyroradius = v⊥/|Ωj|
fj Distribution function fj(x, y, z, v‖, µ, t)

gj Nonadiabatic distribution function gj = fj − 2qj
mjvTj

v‖Ā‖

Γx,y = ikx,yg + (qj/T0j)F0ikx,yχ

Γz = ∂zg + (qj/T0j)F0∂zχ+ (vTjqj/T0j)v‖µF0A‖∂zB0

bj = v2
Tjk

2
⊥/(2Ω2

j)

λj = (2B0µ/mj)
1/2(k⊥/Ωj)

Table 2.3: Species dependent parameters and fields

Quantity Definition

λD Debye length

ωp Pressure gradient =
∑

j njTj(ωnj + ωTj)

Kx,y Geometric factors (See Ref. [11])

Γ0 = e−xÎ0(x)

Table 2.4: Remaining quantities

Gyroaveraged quantities (which include the Bessel function factor J0(λj)) are written

with an overbar. Here, the gyrokinetic equation is written in terms of the nonadiabatic

distribution function gj and the modified potential χj = Φ̄− vTjv‖Ā‖, where Φ is the electric

potential and A‖ is the parallel magnetic potential. Note that this potential is different for

different species, and includes velocity space structure. The use of g and χ instead of f , Φ

and A‖ somewhat simplifies the equations, however, care must be taken to not conflate f
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and g when doing analysis. Gene simulations can include terms proportional to B‖ as well,

but these terms are not written here and are only included in one of the parameter cases.

This is because these terms are small when normalized plasma pressure β = 8πne0Te0/B
2
0 is

small, and the highest β cases investigated here have a β around a few percent.

Firstly, the fields are given by:

Φ =

∑
j n0jπqjB0

∫
J0(λj)gjdv‖dµ

k2
⊥λ

2
D +

∑
j(q

2
j/T0j)n0j(1− Γ0(bj))

(2.13)

A‖ =

∑
j
β
2
qjnj0vTjπB0

∫
v‖J0(λj)gjdv‖dµ

k2
⊥ +

∑
j

βq2j
mj
n0jπB0

∫
v2
‖J

2
0 (λj)F0jdv‖dµ

, (2.14)

which obey the superposition principle. There is a factor of β in the equation for A‖, so A‖

physics is only relevant when β 6= 0.

The adiabatic electron approximation is often used to reduce computation time by using

a simplified model of electron physics. Because Gene uses the electron β internally, this

approximation requires β = 0. Under the adiabatic electron approximation, the potential is:

Φ =

∑
j n0jπqjB0

∫
J0(λj)gjdv‖dµ+ (q2

en0e/Te)〈Φ〉
(q2
en0e/Te) +

∑
j(q

2
j/T0j)n0j[1− Γ0(T0jmjk2

⊥/(q
2
iB

2
0))]

, (2.15)

where the flux surface averaged potential is:

〈Φ〉 =

∑
j πqjn0jB0〈

∫
J0(λj)gjdv‖dµ〉∑

j q
2
jn0j/T0j[1− 〈Γ0(T0jmjk2

⊥/(q
2
iB

2
0))〉]

(2.16)

This approximation is used for all of the simulations in Chapters 3 and 4.

The gyrokinetic equation solved by Gene can be split into terms linear and quadratic in

the perturbed distribution function and written as:

∂g

∂t
= L[g] +N [g], (2.17)

where L contains all of the linear terms and N is the nonlinearity due to vE×B. In detail, the
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linear terms are:

L[g] = −
(
ωnj + (v2

‖ + µB0 − 3/2)ωTj

)
F0jikyχ+

βT0j

qjB2
0

v2
‖ωpΓjy−

vTj
JB0

v‖Γjz −
T0j(2v

2
‖ + µB0)

qjB0

(KyΓjy +KxΓjx) +
vTj

2JB0

µ∂zB0
∂fj
∂v‖

+ 〈Cj(f)〉.
(2.18)

In order, these are the gradient drive term, the pressure term, the parallel dynamics, the

curvature terms, the trapping term and the collisional term1. The gradient drive term can be

recognized as the same vE×B term that occurs in the nonlinearity, only due to the perturbed

distribution function interacting with the background rather than the perturbed distribution

function interacting with itself.

Linear terms do not couple different k, except through the parallel boundary condition

which depends on the magnetic shear. This enforces fkx,ky(z = π) = cfkx+2πŝky ,ky(z = −π).

The quantity c is a phase factor. Coupling through the boundary condition reduces the

number of uncoupled modes and puts restrictions on the ratio of the box size in the radial

and binormal directions. We specify the distribution function at a wavevector and its parallel

connections by writing gk(θ,v) instead of gk(z,v). These modes are labeled by the kx-center

wavenumber, that is, the lowest |kx| wavenumber in the connected extent.

The gyrokinetic nonlinearity is given by:

N [g] =
∑
k′

(k′xky − kxk′y)χjk′gjk′′ , (2.19)

where k′′ = k − k′. Unlike the linear terms, the nonlinearity couples all wavevectors such

that |k × k′| 6= 0. This is an advective nonlinearity in common with fluid dynamics. As

a simplification, it suffices to think of the nonlinearity as the action of vE×B at k′, which

advects the distribution function at k′′ to k. Figure 2.3 shows in real space the action of the

nonlinearity in fourier space. The vE×B shear at k′ (the center panel) couples the left and

right panels.

1This term includes numerical dissipation.
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Figure 2.3: A schematic representation of the nonlinearity, given by the effect of vE×B shear
from one wavevector on another.

2.3 Turbulence Measures

Eigenmodes and Projections

The time evolution of gk(θ,v) can be written as:

gk(θ,v, t) =
∑
l

βl(t)g
ev
k,l(θ,v), (2.20)

where mode structures gev
k,l are the right eigenvectors of L, while βl(t) are the time-dependent

complex coefficients, and l is a mode label, spanning from 1 to the number of gridpoints. In

the absence of the nonlinearity, the coefficients evolve according to βl(t) = βl(0)eiωk,lt where

ωk,l = <e[ωk,l] − iγk,l is the lth eigenvalue of L. The eigenmodes grow or damp with time

according to the sign of the growth rate γk,l.

For typical parameters, eigenmode decompositions return up to several unstable (γ > 0)

and numerous stable (γ < 0) eigenmodes per wavevector. The stable modes in the unstable

wavevector range can be nonlinearly excited and can affect the turbulence through their

contributions to transport and energy injection [16, 17, 18]. Computing all of the eigenmodes

from L is possible, although very expensive, so typically only the most unstable eigenmode is

found. This is often done by time-evolving the linear system until only the eigenmode with

the largest γk,l dominates.
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The amplitudes βl of the eigenmodes in an arbitrary distribution function gk can be found

with the projection:

βl =
〈gev
k,l(θ,v) · gk(θ,v)〉
|gev
k,l(θ,v)|

, (2.21)

where:

〈A ·B〉 =
∑
j

∫
A†BJ dθdv (2.22)

is the inner product and |A| is the associated norm. Note that as L is generally non-Hermitian,

the eigenmodes are nonorthogonal and the inner product should use the left eigenvectors

for mode decompositions, to avoid the problems associated with nonorthogonality. The

work done here uses the conjugate transpose of the right eigenvectors, which still gives a

measure of how strongly a mode is excited in the turbulence, but is complicated by the

non-orthogonality2.

It will often be useful to talk about the average ‘fraction’ of the distribution function

described by an eigenmode. To obtain this fraction, βl is time-averaged and normalized by

the amplitude of gk:

P (gev
k,l, gk) =

∫ t0+∆T

t0

(
|〈gev

k,l(θ,v) · gk(θ,v)〉|
|gev
k,l(θ,v)||gk(θ,v)|

)
dt

/
∆T (2.23)

where ∆T should be taken to be a long enough time for the average to converge. The

average fraction of the distribution function described by a single eigenmode P (gev
k,l, gk) spans

between 0 and 1 depending on how similar the distribution function in the turbulence is to

the eigenmode. As mentioned previously, in the absence of the nonlinear term, this quantity

would end up being completely dominated by the most unstable mode. As such, measuring

the unstable and stable mode fractions provides a tool to examine in detail the role of the

nonlinearity in the turbulence. A caveat first: Eigenmodes are, in general, nonorthogonal.

Because of this, the sum of multiple eigenmode fractions can be larger than one, as this sums

contributions of the nonorthogonal parts of modes multiple times, and thus one cannot rely

on a projection of 1 for a subset of modes preventing other modes from having non-zero

projection.

2See Ref. [19] for a discussion on the orthogonality of left and right eigenvectors.
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Energy: Injection, Dissipation and Nonlinear Transfer

The energy-conserving gyrokinetic nonlinearity transfers energy (sometimes called entropy)

within interacting triplets k,k′,k′′ = k− k′, with energy defined as [20, 18, 19]:

Ek = <e
{∑

j

∫
nj0Tj0
Fj0

[
gjk +

qjFj0
Tj0

χjk

]∗
gjkdzdv

}
. (2.24)

The energy injection/dissipation rate can be calculated using the rate of change of the energy

operator and ∂gk/∂t. Components of ∂Ek/∂t from each term in ∂gk/∂t can be evaluated

separately, which is how the nonlinearity can be shown to conserve energy. When used on the

components of L, this shows that only the drive term and dissipation term inject/dissipate

energy. The rate of change of energy at k due to these terms is given by:

∂Ek

∂t

∣∣∣
N.C.

=
∑
j

{
− 2<e

[ ∫
πnj0Tj0v∗ikyΓ

∗
jkχkdθdv‖dµ

]
+2<e

[ ∫
πnj0Tj0v∗Γ

∗
jkCj(fjk)dθdv‖dµ

]}
,

(2.25)

where v∗ = ωnj +ωTj(v
2
‖ +µB0− 3/2), Γjk = gjk + (qjFj0/Tj0)χjk, and Cj(fjk) is the collision

operator which also includes numerical dissipation. The first term on the RHS is due to the

gradient drive and the second is due to collisions and numerical dissipation. As the first term

depends on <e[ig∗jkχjk], it can be either positive or negative depending on the phase relation

between gjk and χjk.

In the eigenmode basis, the rate of change in energy has the form:∑
l

2γl|βl|2 −
∑
l

∑
m

<e[clmβ
∗
l βm], (2.26)

where the terms ∼ β∗l βm are the cross terms due to nonorthogonality3 and clm is a complex

number dependent on the mode structures. These are all complex quantities and the

3Nonorthogonality depends on the relevant operator, which is the energy operator in this
case. Even if left eigenvectors are used for the eigenmode decomposition, there will still
be energy effects proportional to β∗l βm. This is because the energy and the time evolution
operators do not commute. If they did commute, and were both diagonalizable, they would
be simultaneously diagonalizable.
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contribution to energy production depends on their relative phases. In some cases, the cross

terms can increase energy production relative to that from just the unstable mode, or even

cause net energy injection in a case without an instability. If this effect is of limited duration

it is called transient amplification, while in cases where the nonlinearity maintains a phase

relation between eigenmodes which causes energy injection in the absence of linear instability,

it is called nonlinear instability or subcritical turbulence [21]. In the velocity-space basis

instead of the eigenmode basis, this effect is due to an increased <e[ig∗jkχjk] relative to that

from the eigenmode with highest γ alone. Stable eigenmodes can be dissipative due to the

drive term or dissipation.

These effects motivate the comparison of the linear growth rates with the quantity:

γeff =
∂Ek/∂t|N.C.

2Ek
, (2.27)

which is equal to the growth rate of the eigenmode when evaluated with the eigenmode

structure as the distribution function. It gives a measure of the net effect of the stable

eigenmodes excited in the turbulent state. This quantity also represents the instantaneous

growth rate if the nonlinearity were to be turned off.

To measure the importance of the drive and dissipation terms in the turbulence, we will

also split the nonconservative terms between the two:

∂Ek
∂t

∣∣∣
N.C.

=
∂Ek
∂t

∣∣∣
drive

+
∂Ek
∂t

∣∣∣
diss
, (2.28)

where ∂Ek/∂t|drive/diss is due to the first/second term on the RHS of 2.25, to calculate an

effective growth rate because of each:

γdrive/diss =
∂Ek/∂t|drive/diss

2Ek
. (2.29)

These terms sum to γeff .

The rate of change of energy at k due to the nonlinearity is given by the sum of couplings

to different wavevectors [22]:

Tk,k′ = 2<e
{∑

j

∫
nj0Tj0
Fj0

[
gjk +

qjFj0
Tj0

χjk
]∗

(k′xky − kxk′y)
[
χjk′gjk′′

]
dzdv

}
. (2.30)

This conserves energy within wavenumber triplets k,k′,k′′, that is, the sum of energy transfer
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over all permutations of those wavevectors is zero. As such, the nonlinearity conserves energy

overall. For an unstable mode to saturate, the energy injected by it must be balanced over

time average by nonlinear energy transfer. Because of this, it is useful to measure energy

transfer to and from individual mode structures, given by:

T ev
k,k′ = 2<e

{∑
j

∫
nj0Tj0
Fj0

[
βlg

ev
jk +

qjFj0
Tj0

βlχ
ev
jk

]∗
(k′xky − kxk′y)

[
χjk′gjk′′

]
dzdv

}
. (2.31)

Here, gjk and χjk have been replaced by the projection of gjk onto the eigenmode structure

and the fields from it, respectively. Similar to the effects described earlier on projections and

energy injection, eigenmode nonorthogonality can cause the sum of transfers T ev
k,k′ to different

eigenmodes at a wavevector to overpredict total energy transfer to that wavevector.

Throughout this thesis, energy transfer (when split for eigenmodes) is only split into

transfer to the unstable ITG mode T u
k,k′ , which uses the unstable mode for gev

jk , and a remainder

given by:

T s
k,k′ = Tk,k′ − T u

k,k′ . (2.32)

The circumvents the issue of nonorthogonality. For cases with only one unstable mode, T s
k,k′

is energy transfer to the combined stable modes at that wavevector. Energy transfer due

to specific eigenmodes instead of to specific eigenmodes could be calculated by substituting

their mode structure at k′ or k′′, however this increases the difficulty of properly accounting

for nonorthogonality and is not done here.

Nonlinear energy transfer can also be split in ways other than mode structure. There are

two energy components, a g2/F0 ≈ f 2/F0 (entropy-like) term, and a χ∗g ≈ CΦ2 (field) term,

where C is a constant. These approximations are exact at β = 0. The contribution of the

nonlinearity to the change in each of these are:

T gk,k′ = 2<e
{∑

j

∫
nj0Tj0
Fj0

g∗jk(k
′
xky − kxk′y)χjk′gjk′′dzdv

}
, (2.33)

for the entropy term and:

T χk,k′ = 2<e
{∑

j

∫
nj0qjχ

∗
jk(k

′
xky − kxk′y)χjk′gjk′′dzdv

}
. (2.34)

for the field term. They are each separately conserved within triplets.

The mode at k′, χk′ is also a composite quantity. Tk,k′ can also be split into transfer TΦ
k,k′
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due to coupling with Φ at k′:

2<e
{∑

j

∫
nj0Tj0
Fj0

[
gjk +

qjFj0
Tj0

χjk
]∗

(k′xky − kxk′y)
[
Φ̄jk′gjk′′

]
dzdv

}
(2.35)

and transfer T
A‖
k,k′ due to A‖ at k′:

2<e
{∑

j

∫
nj0Tj0
Fj0

[
gjk +

qjFj0
Tj0

χjk
]∗

(k′xky − kxk′y)
[
(−Ā‖jk′vTjv‖)gjk′′

]
dzdv

}
. (2.36)

The combination of all of these quantities provides a much better description of instability

saturation and the turbulent state than the total transfer alone.

Triplet Correlation Times

Figure 2.4: Energy transfer as a function of time for two different nonlinear couplings.

The sign of energy transfer rate is tied to the complex phase of the interacting modes and

varies between positive and negative values on short time scales. Energy transfer consistently

follows a path from sources to sinks only when averaged over many turbulent correlation

times. Figure 2.4 shows energy transfer as a function of time for two different nonlinear

couplings. Both energy transfers mostly average out over time, so the instantaneous energy

transfer is typically much larger in magnitude than the average value. Average transfer
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is governed by the time averages 〈g∗jkχjk′gjk′′〉 and 〈χ∗jkχjk′gjk′′〉, which are sensitive to the

correlation time τk,k′ of the triplet interaction. This time is given by

τk,k′ = − i

[ω̂k−k′ + ω̂k′ − ω̂∗k]
, (2.37)

where ω̂k is the complex nonlinear frequency at k, which includes linear and nonlinear

components. Average energy transfer rates are proportional to τk,k′ . Equation (2.37) can be

derived from closure theory [23], which shows that saturated turbulence levels and fluxes are

inversely proportional to <e[τk,k′ ].

The quantity τk,k′ is universal to fluid models with quadratic nonlinearities. As an example,

consider 〈Φ−kΦk′Φk′′〉, where Φ is a quantity in the fluid model, and the linear and nonlinear

evolution can be represented as:

Φ̇k + iωkΦk =
∑
k′

Ck,k′Φk′Φk′′ . (2.38)

Here, Ck,k′ is a nonlinear coupling coefficient. The time evolution of the triplet correlation is

constructed from the equations for Φ̇−k, Φ̇k′ , and Φ̇k′′ , yielding

∂〈Φ−kΦk′Φk′′〉
∂t

+ i[ωk−k′ + ωk′ − ω∗k]〈Φ−kΦk′Φk′′〉 ∼ 〈Φ4〉. (2.39)

This expression is part of a moment hierarchy that is closed at third order in statistical closure

theory [24, 25]. The closure assumes quasi-Gaussian statistics to write 〈Φ4〉 as 3〈Φ2〉〈Φ2〉.
Part of the closed nonlinearity renormalizes the frequencies with a nonlinear component only

preset at finite-amplitude. When the amplitude-dependent component is included, we write

ω̂k for the frequency. In the steady state, Eq. (2.39) becomes

T
(Φ)
k,k′ = 〈Φ−kΦk′Φk′′〉 ∼ [ω̂k−k′ + ω̂k′ − ω̂∗k]−1〈Φ2〉〈Φ2〉. (2.40)

where T
(Φ)
k,k′ represents nonlinear transfer of Φ2. Energy balance implies that injection (∼ γ〈Φ2〉)

balances transfer (T
(Φ)
k,k′ ∼ 〈Φ−kΦk′Φk′′〉), from which one obtains γ〈Φ2〉 ∼ T

(Φ)
k,k′ ∼ [ω̂k−k′ +

ω̂k′ − ω̂∗k]−13C2
k,k′〈Φ2〉〈Φ2〉, or

〈Φ2〉 ∼ γ

3τk,k′C2
k,k′

. (2.41)

Energy transfer scales with τk,k′ and fluctuation levels inversely with τk,k′ . This is true in

general for saturation by quadratic nonlinearities [23, 55].
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The nonlinear component of ω̂k is derived in closure theory [23] and is also measurable in

simulation. Such measurements are based on the Fourier transform of the autocorrelation

function of Φ at a given wavevector [26], or from the response to a small perturbation [27]. A

common assumption is that the Fourier-transformed autocorrelation function can be fitted by

a Lorenzian whose peak is the real frequency <e[ω̂k] and whose width is =m[ω̂k]. In principle,

other fluid moments or even eigenmode amplitudes could be used instead of Φ for calculating

the autocorrelation function. A τk,k′ exists for every set of coupled eigenmodes, which makes

properly incorporating the quantity even more difficult.

Fluxes and Quasilinear Weights

Ultimately, one of the major applications of gyrokinetic modeling is for predicting fluxes of

particles and energy. This thesis focuses on electrostatic (due to the fluctuating Φ component)

ion heat flux, given by Qes
i = <e[

∫
ikyΦk

∫
v2f ∗ikdv‖dµdz]. The ikyΦk can be identified as the

radial component of vE×B. Like the energy, the flux is a quadratic quantity where the sign

and magnitude depend on the complex phase of fluctuating fields.

Stable modes affect fluxes by modifying the cross phase between fluctuating quantities and

by changing the saturated amplitudes of the turbulence, through their effects on energy injec-

tion/dissipation. In the eigenmode basis, the flux is given by
∑

l αl|β2
l |−

∑
l

∑
m<e[dlmβ

∗
l βm],

where αl gives flux per mode amplitude and dlm are cross terms. This is like energy injection

but with different coefficients. Transport can be approximated without including the cross

terms, which is referred to as a ‘quasilinear’ estimate, not to be confused with quasilinear

mixing-length transport models referenced later. This approximation has been shown to not

agree well with actual transport in some cases [28], indicating that the cross terms can be

important for the true flux levels.

The net contribution of stable modes to transport can be measured in a very similar way

to how their effect on energy injection is measured. The quantity

wk = Qes
i /〈Φ2〉, (2.42)

where 〈Φ2〉 is the field line integrated potential, is called the quasilinear weight [32]. In it, the

amplitudes are normalized out of the flux, which produces a flux-per-mode-amplitude, when

evaluated for an eigenmode (wlin
k ), or a flux-per-turbulent-amplitude when evaluated in the

turbulence (wnl
k ). When the quasilinear weight is lower in the turbulence than linearly, it is a

sign that stable modes are reducing transport, either by diluting the effect of the unstable
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mode and contributing to 〈Φ2〉 or directly through an associated pinch effect (inward flux

component) which reduces Qes
i .
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3 saturation of itg instability

3.1 Instabilities and Saturation

As mentioned in Chapter 2, fusion plasmas suffer from a number of microinstabilities,

which are classified into types according to their properties. This thesis focuses on the

Ion-Temperature-Gradient-Driven instability (ITG) (see Refs. [29, 30]). The ITG mode is an

ion-frequency, ballooning-parity1 instability, which is common in fusion plasmas.

Without the nonlinearity, instabilities would grow to arbitrary amplitudes. In actuality, the

nonlinearity causes the system to evolve into a quasi-stationary state where the time-averages

of turbulent quantities converge. In the energy framework, the instabilties gain energy from

the background gradients through the drive term in Eq. (2.25), which is then nonlinearly

transferred to other wavevectors through Eq. (2.30), where energy can be transferred further

or is removed by the drive or dissipation terms of the same Eq. (2.25). When evaluated over a

long enough time-average, all of these effects–energy injection, transfer, and dissipation–must

balance.

Saturation physics is both interesting in its own right and is useful. With no understanding

of saturation, the linear physics of microinstabilities gives limited insight into what can be

expected in the turbulent state. In contrast, even a rough understanding of saturation can

be very useful. Quasilinear mixing-length models (to be discussed in Chapter 6) simply take

turbulent amplitudes to scale as γ/k2
⊥ and are relatively successful [31] despite being orders

of magnitude computationally cheaper. The frequencies and transport crossphases can be

calculated from linear information, which has been tested in gyrokinetics and found to not

change much in the nonlinear state [32]. In this chapter, results of energetic analyses are

presented for ITG.

3.2 ITG Saturation

Previous Work

Previous work has shown that ITG saturates through nonlinear coupling involving ky = 0

modes, termed zonal-flows [22, 33, 34]. Zonal flows catalyze energy transfer to higher kx,

1Ballooning parity and tearing parity mean symmetric and anti-symmetric about the
outboard midplane, respectively.
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both to the unstable eigenmode at the receiving wavevector and to stable eigenmodes which

can dissipate energy. This is in contrast both to an earlier description of ITG saturation

where the zonal flows directly served as a primary dissipation mechanism [35] and to typical

hydrodynamic systems, where energy can be dissipated only after being transferred (in

wavevector space) through a large, almost undamped inertial range. Technically, zonal flows

are flows (due to vE×B here) which are constant along a flux surface, and as such have constant

Φ both in the y and the z directions. However, the distinction between effects due to the

flux-surface-averaged flow and the distribution function at ky = 0 is often not made, either

computationally or experimentally.

There are several motivations from theory as to why zonal flows would be important

in the turbulence. One approximation that is often made in gyrokinetic simulations is the

adiabatic-electron approximation. Under this approximation, electrons are assumed to follow

a Gibbs distribution in the potential generated by the ions, partially canceling out the ion

contributions. When this approximation is made, the electric potential at a wavevector is

given by the ion density multiplied by a constant factor. However, on flux surfaces, the

electron contribution cannot cancel out the ion contribution at all, which greatly enhances

the field strengths and thus the flows at ky = kz = 0 [36]. While the adiabatic response

is only an approximation, this effect still strengthens zonal potentials when more realistic

electron physics is included.

Zonal flows are also low frequency and almost undamped. The weak damping facilitates

high amplitudes in the turbulence, and low frequency allows them to catalyze energy efficiently

because of the relatively small frequency mismatch in τk,k′ = −i[ωk′′ + ωZF − ω∗k]−1. Their

role as an energy transfer catalyst can be inferred from τk,k′ by permuting the interacting

wavevectors in τk,k′ ; when ωk and ωk′′ are for an unstable mode and a conjugate mode

respectively, they cancel out in τk,k′ . If instead k is the zonal wavenumber in the triplet, the

τk,k′ will be much smaller, implying it should receive much less energy.

The last motivation comes from the coupling coefficients in the nonlinearity. There is a

factor of k × k′ in the nonlinearity, which prevents modes with parallel k⊥ from coupling.

Having the two wavevectors be at right angles, as with an unstable mode at kx = 0 and a

zonal flow at ky = 0, maximizes the quantity.

Because energy catalyzation by zonal flows scales with zonal flow strength, the factors

which set zonal flow amplitudes matter in saturation. The process which excites the zonal

flows can be modeled as a secondary instability on top of a primary instability [37]. This

framework lacks finite-amplitude effects due to the turbulence, such as a turbulent viscosity.
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Energy transfer into zonal flows is balanced by linear damping and nonlinear energy transfer

out of zonal flows. As the zonal flow regulates the turbulence, zonal flow strength is also

limited because the zonal flows cut off their own source of energy, like in predator prey

dynamics [38]. In the following subsection, we measure energy injection and dissipation

spectra, as well as nonlinear energy transfer in the turbulence. This includes measurements

of the transfers which drive the zonal flows.

Given that zonal flows are important in ITG saturation, it is necessary to understand

their linear behavior. Unfortunately, linear physics at ky = 0 is not simple. If the distribution

function for the zonal flow is initialized as a Maxwellian, L rapidly changes it. The m = 0

and m = 1 modes are coupled because, as the background field is stronger on the inboard

side, the flow vE×B ∝ B−1
0 is slower there, causing density to build up, which in turn causes

currents that modify the electric field [39]. This oscillation is known as the Geodesic Acoustic

Mode (GAM) and is damped by Landau damping. The poloidal flow is also reduced by

polarization, which cancels out a fraction of it. This leaves only the collisionally damped

Rosenbluth-Hinton (RH) residual poloidal flow given by up = (1 + 1.6q2
0/ε

1/2)−1u(t = 0)

[40, 41]. With typical values of safety factor q0 and inverse aspect ratio ε, the fraction is on

the order of 10%. This means that there is a relatively fast oscillation and flow reduction

by polarization which weakens the flows by around 90%, and a longer time-scale collisional

damping. However, this theory assumes a zonal flow driven by an impulse which is constant

in the parallel direction and Maxwellian in velocity space, when the actual distribution

function driven at ky = 0 depends on the turbulence. Linear kinetic physics can even amplify

the zonal flows; for example, if the driving impulse corresponds to the distribution function

which occurs at the zero-crossing during the GAM oscillation, the driven structure would

have no potential, yet would evolve to some finite one. It is also worth noting that this type

of behavior does not directly correspond to the behavior of any individual eigenmodes and

requires the nonorthogonality of eigenmodes with respect to energy. This can be inferred as

each eigenmode has a fixed ratio of Φ2 and f 2/F0 energy components which (linearly) can

only grow or decay exponentially, while the GAM oscillation (also entirely linear) changes

energy back and forth between the two forms.

Energetic Description

The Cyclone Base Case (CBC) is a simplified benchmark case based on a shot from DIII-D

[42]. All of the following graphs are for ITG turbulence with the modified CBC at ωT i = 7 as
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described in Appendix A. These measurements record a larger number of energy quantities

and nonlinear interactions than previous investigations [22, 33, 34], but their merit is mostly

to serve as a reference for comparison with material in later chapters. Simulation resolutions

are larger than what is shown in the graphed area. Evaluation of the energy production

terms is used here to guide later energy transfer measurements.

Figure 3.2 shows the growth rate spectrum in a) and time-averaged energy spectrum in

b). The value for each pixel corresponds with that for the wavevector at the center of the

pixel. The unstable wavevector region peaks at (0, 0.35) and is much broader in kx at higher

ky. Most energy resides in the zonal wavevectors (0.086, 0) and (0.172, 0). On the plot, values

at ky = 0 are reduced by a factor of 10, so as to not wash out the nonzero ky modes. For the

ky 6= 0 modes, energy is peaked at (0, 0.15) and is mostly confined within the region bounded

by ky = 0.4 and kx = 0.9. The energy spectrum is biased towards lower ky than the growth

rates, and is not much broader than the spectrum of unstable wavevectors, which is a sign of

dissipation at these scales.

Figure 3.1: a) Growth rate γk in wavevector space and b) energy spectrum Ek for ITG
turbulence. Energies at ky = 0 (marked with hatching) are plotted at 0.1× their actual
values, so as to be able to visualize the ky 6= 0 energies.

Energy is injected into the system by the drive term (see discussion of Eq. 2.25), which is

plotted as a function of k in the left panel of Figure 3.2. The energy injection rate peaks

around the same location as the peak in turbulent (ky 6= 0) energy, albeit with narrower

extent. There is no contribution from the drive term at ky = 0 because it contains a factor of
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ky. This plot makes no distinction between the unstable and stable modes, i.e. it sums over

the positive contributions of the unstable mode and the contributions of the stable modes,

which could be of either sign.

The right panel of Figure 3.2 shows the spectrum of energy dissipation, which also has

contributions from both the unstable eigenmode and stable modes. The kx = 0.172 zonal flow

dissipates the most, but the total dissipation of the ky 6= 0 modes is much greater. Energy

dissipation is much more diffuse than the energy injection.

Figure 3.2: Energy a) injection and b) dissipation spectrum by the drive and dissipation
terms, respectively, as a function of (kx, ky).

The sum of the nonconservative terms are balanced by the nonlinearity (Eq. 2.30), which

is plotted in Figure 3.3. This sums over all k′ that couple to the mode at k. The plot shows

a region of net nonlinear energy transfer out of the range of energy injection, and transfer

of energy into zonal modes. Because transfer is not resolved by k′ or eigenmode, the actual

path of energy cannot be inferred. Stable mode effects can be seen, however, because part of

the region above ky = 0.4 has an unstable eigenmode but net negative energy production,

which is only possible with stable eigenmode excitation.
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Figure 3.3: Spectrum of the contributions to ∂Ek/∂t due to the nonlinear term Tk,k′ , summed
over k′.

The effects of stable modes on energy come from a combination of their effects on the

drive and dissipative terms. The nonconservative terms in Eq. (2.27) can be broken down

into these parts, which will sum to the growth rate in the linear system or the effective growth

rate in the nonlinear one. Figure 3.4 shows these components. In red and black are the drive

and dissipative rates for the ITG eigenmode respectively, showing that regardless of ky, the

reduction in growth rates due to dissipation is small. The quantities in the nonlinear state,

which include the effect of stable modes, are in magenta and blue for the drive and dissipative

terms respectively. The effect of stable modes on each term is roughly equally responsible

for the reduction in γeff compared to γ. It is likely that the ratio depends on the respective

strengths of the driving gradients and the collisionality, which could be investigated in future

work.
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Figure 3.4: Components of γ and γeff as a function of ky. red: γlin
drive, black: γlin

diss, magenta:
γnl

drive, blue: γnl
diss. See Eq. 2.29 for details.

Nonlinear energy transfer depends on both k and k′, which makes it four dimensional and

presents issues with visualization. A solution is to specify one mode in the triplet and examine

Tk,k′ over the plane of the unspecified wavevector. This is demonstrated schematically in

Figure 3.5. Gridpoints correspond to (kx, ky) pairs. In this case, k′ is chosen to be (0, 4).

In the following plots, k′ will usually be a wavevector with an unstable eigenmode and net

energy production. Energy transfer from that mode can be plotted as a function of (kx, ky),

where the color on the graph corresponds to energy transfer to that wavevector. When

represented this way, transfer can be split in all of the ways described in Section 2.3.

Figure 3.6 shows a plot of this type for ITG turbulence, from a mode near the peak in

energy injection (k′ = (0.0, 0.1), marked in grey). The left plot shows energy transfer at

a representative instant, while the right one shows time averaged energy transfer, which

requires ∼ 1000R/cs to converge. Only the first quadrant in (kx, ky) is shown, because with

ŝ-α geometry there is symmetry between positive and negative kx. Most energy transfer is

due to zonal couplings (given by wavevectors at the same ky as k′y) in either case. However,

for the instantaneous plot, energy transfer magnitudes are much larger than those of the

average. The sign of the strongest transfer also reverses between the two plots. That they

do not match up at a particular instant is reasonable, given that energy transfer scales with

the product of the phases of the three interacting modes, which rotate in the complex plane
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at approximately their linear frequencies. While this is not visible on the plot, the ratio of

nonzonal energy transfers to zonal transfers decreases significantly in the time average. The

preference for zonal energy transfer on the time average relates to the τk,k′ factor discussed in

Section 3.2. Zonal flows act as catalysts as they receive very little of the energy transferred

to higher kx. What we refer to as catalyzation is also occasionally called scattering.

Figure 3.5: Energy transfer Tk,k′ to mode k due to k′ coupling with k′′ can be plotted as a
function of k (red circle). For the example vectors: k = (4, 5), −k′ = (0, 4), and k′′ = (4, 1).
Because every k is another triplet’s k′′, plots of this form show all of the couplings to k′ and
the sum gives −∂Ek′/∂t|NL.
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Figure 3.6: a) Instantaneous (Tk,k′) and b) time-averaged (〈Tk,k′〉) energy transfer due to
coupling with k′ = (0, 0.1).

Transfers to the higher-ky wavevectors (0, 0.2) and (0, 0.4) are shown in Figure 3.7 left

and right panels respectively. Again, almost all energy transfer is due to the kx = 0.081 zonal

flow, and energy transfer is appropriately lower to balance the lower rate of energy injection

at these wavevectors.

Figure 3.7: 〈Tk,k′〉 due to coupling with a) (0, 0.2) and b) (0, 0.4).

Almost all energy transfer is zonal-catalyzed, so the vast majority of energy transfer can

be tracked by specifying k′ to be the zonal mode responsible for the most energy transfer.

As zonal flows have ky = 0, this is a cascade to higher kx at the same ky. Figure 3.8 shows
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schematically how the cascade can be measured from Tk,k′ , with arrows representing energy

transfers and boxes representing modes. Transfer to the unstable mode at higher wavenumber

is shown with the red arrows, while transfer to the stable modes are shown with blue ones.

The transfers which drive the zonal flows are shown in green.

Figure 3.8: Schematic of nonlinear energy transfer catalyzed by zonal flows. In this case,
k′ = (−kZF, 0), so energy is transferred from (kx, ky) to (kx + kZF, ky), forming chains to
higher-kx. This is the kx cascade, which can be split between energy transfer to unstable
(red arrows) and stable (blue arrows). Energy transfers which drive the zonal flows can also
be visualized as a function of (kx, ky) (green arrows). The transfer represented by an arrow is
plotted at the graph point given by the left wavevector in the triplet. For example, a transfer
from the top left triplet would be plotted at (0,kymin).
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Figure 3.9: The kx-cascade, split into energy transfer to the higher-kx a) unstable mode T u
k,k′

and b) stable modes T s
k,k′ . This is for kZFρs = 0.04.

The kx-cascade, split between unstable and stable as in Eq. (2.31), is shown in Figure

3.9. The kx-cascade is a chain of energy transfers to higher kx, starting at (0, ky), each link

separated by ∆kx = kZF. Transfer to stable modes is comparable to that to unstable modes,

and generally peaked further down the cascade (i.e. at higher kx). Energy transferred to

the stable modes can then be dissipated, with stable modes acting as an energy sink in the

unstable wavevector region. There is a high kx region of zero amplitude on the left plot. For

these wavevectors, there is no instability and thus no transfer to the unstable mode.

Figure 3.10 shows the same cascade, except with energy transfer split into the entropy-like

component (f 2/F0) in a) and the field component (Φ2), in b) as in Eq. (2.33). Transfer of

the entropy-like energy is of similar magnitude and peaks at higher kx than the field energy.

Associated with any given mode structure, there is a specific ratio of these energies and

their injection/dissipation rates. Consequently, these quantities aid in obtaining a better

understanding of stable mode physics, by measuring the discrepency between the actual ratio

of energy components and the ratio given by the unstable mode alone. Also, as they are

seperately nonlinearly conserved, an unstable eigenmode with a higher fraction of field energy

could drive zonal flows more efficiently, as there is more Φ2 to go to the zonal flows. This

could be tested with a secondary instability analysis over a parameter scan to see if the zonal

flow growth rate correlates with Φ2/(f 2/F0) of the unstable mode.
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Figure 3.10: The kx-cascade, split into a) transfer of f 2/F0 energy T gk,k′ and b) transfer of Φ2

energy T χk,k′ to the higher-kx wavevector.

Figure 3.11 shows transfer of the two energy terms to the zonal wavevector (0, 0.08).

This corresponds to the green arrows in Figure 3.8. Transfer of the entropy-like term to the

zonal mode is around 5 times as large as transfer of Φ2. There is a region of wavevectors

around (0.3, 0.2) which transfers entropy into the zonal mode, while the region around

(0.0, 0.3) transfers energy out. The net effect is a weaker total entropy transfer into the

zonal wavevector, which is balanced by the hyperdissipation in this case. Transfer of Φ2 into

the zonal mode is almost all positive and peaked around the same wavevectors. As energy

conserving linear terms can convert these quantities into each other (as in GAM decay), it is

possible that the f 2/F0 term is a contributor to zonal flow strength. This could be tested by

evaluating Φ[∂g/∂t] for the linear terms at zonal wavenumbers, to see if the flow dissipation

by energy conserving terms is as high as would be expected due to GAM decay.
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Figure 3.11: The energy transfers to the zonal wavevector of a) g2/F0 energy T gk,k′ and b)
transfer of Φ2 energy T χk,k′ . The Φ2 term is responsible for driving the zonal flow.

Figure 3.12 sums ∂E/∂t|N.C. over kx and plots it as a function of ky. Energy transfer

balances ∂E/∂t|N.C., implying that the integral over ky in Fig. 3.12 sums to zero, and that

energy moves from regions where ∂E/∂t|N.C. > 0 to regions where ∂E/∂t|N.C. < 0. For

reference, the linear growth rate evaluated at kx = 0 is included in the figure. These

quantities have different units and absolute magnitudes should not be compared. Energy

spectrum peak is downshifted compared to the growth rate spectrum, which has been noted

previously [43]. From this, one might intuitively assume that energy follows an inverse cascade

to smaller toroidal wavenumber. However, we find that the region around ky = 0.15 (where

the fluctuation spectrum peaks) does not receive energy via transfer from higher ky, i.e., from

where the linear growth rate peaks. Rather, it exports energy to higher ky. This indicates that

the downshift is not caused by energy transfer to those wavenumbers. Non-zonal transfers

are always much smaller than the zonal-wavenumber-mediated forward kx cascade.
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Figure 3.12: (Color online) Energy production/dissipation (black crosses), summed over kx as
a function of ky. Growth rates at kx = 0 (red circles) are shown for comparison. The modes
around ky = 0.2 inject net energy into the turbulence, while above kyρs = 0.3 net dissipation
is observed.

In summary, the previous graphs reveal the ranges of energy injection and dissipation in

ITG turbulence, as well as the energy transfers which saturate the instability. Novel here is

the splitting of energy transfer into entropy and field components, which gives clues into the

process which regulates the zonal flow strength.



37

4 the dimits shift

4.1 Motivation

In ITG turbulence, the critical temperature gradient for appreciable heat transport is higher

than the critical gradient for instability. For a standard benchmark case, known as the

Cyclone Base Case (CBC), this increases the threshold for transport and turbulence by

around 50%. Figure 4.1 shows flux and the growth rate as a function of ion temperature

gradient ωT i = −(R0/Ti0)(dTi0/dx) for the CBC, showing the horizontal offset between the

two curves. The linear critical gradient is around ωT i = 4.75, while the nonlinear critical

gradient (NLCG) is around ωT i = 6.75, indicated with the dashed-dotted and dashed grey

lines, respectively. The term Dimits shift refers to the upshift [42, 44]. The range of

normalized temperature gradients with no or very low transport but ITG instability will be

referred to here as the Dimits regime. Nonlinear simulations starting with low amplitude

inital conditions experience a period of exponential growth before the nonlinearity is strong

enough to affect the dynamics. In the Dimits parameter regime, zonal modes (modes with

ky = 0) develop, and subsequently the turbulence (modes with ky 6= 0) decays to low or

zero amplitudes. This can be seen in Figure 4.2, which shows transport (only caused by

ky > 0 modes) and zonal flow strength over time at ion temperature gradients below (at

ωT i = 5.5), around (at ωT i = 6.5), and above (at ωT i = 7.0) the NLCG. For the ωT i = 6.5 case,

a temporary increase in flux is recorded around t = 1300, which decays shortly thereafter

(not shown in the plot).
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Figure 4.1: Growth rate γ of the most unstable mode (green) and flux Qes
i (blue) vs. ωT i

for the CBC parameter set. Flux is nonzero in the Dimits regime. Vertical lines denote the
linear (dashed-dotted) and nonlinear (dashed) critical gradients.

Figure 4.2: Time trace of flux Qes
i (solid lines) and zonal amplitudes ΦZF (dashed lines) in

the Dimits regime (ωT i = 5.5, blue), around the NLCG (ωT i = 6.5, orange), and above it
(ωT i = 7, green).

As an example of a system with a linear instability and (almost) no turbulence, the

Dimits shift is interesting. It also poses a problem for reduced transport modeling, such as

quasilinear models (the subject of Chapter 6), because they predict transport to scale with
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growth rates, which does not account for the horizontal offset in critical gradient between the

two curves. An accurate method of predicting the Dimits shift could also be used to optimize

plasma parameters for better confinement.

Other gyrokinetic systems have upshifts between the critical gradients for transport and

linear instability, too. There is a reversed shear NSTX parameter set that is strongly unstable

to Electron-Temperature-Gradient-driven (ETG) instability with very low transport [45].

Simulations of density-gradient-driven Trapped Electron Mode turbulence (TEM) in MST

without magnetic perturbations (which represent the tearing modes in the experiment) have

around a four-fold upshift [46]. Both of these are also turbulence types with strong zonal

flows, though zonal flows are not ubiquitous in ETG [36] or TEM turbulence [47]. For ETG

turbulence, zonal flows are noted in simulations with reversed shear, as in the NSTX case

[22], and for TEM turbulence, where zonal flows are strong in the density gradient driven

case (as in MST). The strength of the upshift in the MST case is partly due to the very large

RH residual, the physics of which is described in Subsection 3.2.

What strong zonal flows means in sentences like the one above is usually not quantitatively

defined. Figure 4.3 shows contour plots at representative times for ITG turbulence below and

above the NLCG, as well as ETG turbulence, which has much weaker zonal flows in general.

This is meant to be illustrative of the differences in potential structures at different levels of

zonal flow strength compared to the turbulence. Zonal flows (potential structures constant in

the Y direction) are visually evident in both ITG cases.

Figure 4.3: Field line averaged Φ(x, y) at a representative time for an ETG case (left), an
ITG case in the turbulent regime (middle), and an ITG case in the Dimits regime (right).
Zonal flows, given by 〈∂Φ/∂x〉, where 〈·〉 is the flux surface average are very visually evident
in the ITG cases.
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As an aside, there are actually systems with critical gradient downshifts as well. This

is referred to as subcritical turbulence or nonlinear instability and can exist because the

nonlinearity sets a phase relation between fields which injects energy into the turbulence [21],

even when no eigenmode would individually inject energy. This requires that the eigenmodes

be nonorthogonal (which is usually the case). A possible cause for the Dimits shift could be

from the opposite effect, where the nonlinearity holds the phase relation to be one with only

marginal energy production, if at all. This possibility is examined later in this chapter and

found not to be the case.

To determine the cause of or develop a method to predict the Dimits shift, a simplified

model with the same behavior is desirable. Fluid systems have been designed to have critical

gradient upshifts, for a gyrofluid ITG model [48], a 1-field ITG fluid model [49], and a TEM

fluid model [50], but a detailed comparison has not been made with gyrokinetics. Reduced

models offer more promise to reveal the physics behind the upshift, but detailed comparisons

must be made to rule out false explanations.

This chapter begins with a review other gyrokinetic investigations of the Dimits shift.

Section 4.3 describes the similarities and differences between ITG saturation in the Dimits

regime, compared to above the NLCG, using data gathered from a series of gyrokinetic

simulations. Results of investigations into several plausible causes of the shift are reported,

none of which ultimately explains it. Because zonal modes are critical to the Dimits shift, we

also show the results of temperature gradient scans which add a dissipation only on the ky = 0

modes. This isolates the effect of dissipation on the zonal modes, compared to collisions,

which necessarily affect the instability as well.

4.2 Review of Other Dimits Shift Investigations

One of the first papers to discuss the Dimits shift (Ref. [42]) was a benchmark comparison of

ITG turbulence between several gyrokinetic and gyrofluid codes. It noted a NLCG above

the linear critical gradient, with simulations showing strong zonal flows before the transition

out of the Dimits regime. This was observed in both gyrokinetic and gyrofluid simulations.

These runs all used adiabatic electrons and no collisions. The following is an excerpt:

“The RH components of the zonal flows are linearly undamped except by collisions.

The fact that a nonzero χi is observed in these collisionless gyrokinetic simulations for

R/LT > R/LT eff is an indication that nonlinear damping of the RH zonal flows by turbulent

viscosity is able to balance the nonlinear drive. One might expect that the turbulent viscosity
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would increase as R/LT increases, so that the RH zonal flows would be unimportant relative

to the other components of zonal flows when the turbulence is sufficiently strong that the

turbulant damping rate of the RH components becomes comparable to the damping rate of

the GAM...” [42]

Linear ky = 0 physics, including the GAM and the RH residual are discussed in Section

3.2. Shortly summarized: starting with a Maxwellian impulse, around 90% of the zonal flow

is damped on short timescales through energy conserving kinetic effects, leaving an only

collisionally damped RH residual flow. Given the weak zonal flow drives in the Dimits regime,

one would expect the residual to play the dominant role in zonal flow physics.

In the first two sentences of the excerpt, the authors infer from the nonzero transport

that there must be some limit on the zonal flow (residual) strengths, as otherwise they

would continue growing until they quench the instability. For the zonal flow to only grow

to some limited amplitude, there must be a process which removes energy from it, of which

nonlinear energy transfer out (turbulent viscosity/nonlinear damping) is the only possibility

in a collisionless simulation. One would also reasonably expect the energy transfer out of

zonal flow residuals to grow with turbulent amplitudes, so the GAM component may be more

important at those higher amplitudes. However, it is not clear that nonlinear GAM damping

would not also increase with turblent amplitudes.

This reasoning motivates our attention into how the nonlinear energy transfers involving

zonal flows change above and below the NLCG, as well as our investigation into the fraction

of the turbulent ky = 0 distribution function is described by the residual flow. As a note,

some dissipation is almost always included in gyrokinetic simulations, and also we measure

the ratio of energy dissipated to nonlinear energy transfer out of the zonal modes. From this,

we would expect the nonlinear transfer out of flows to increase until some critical threshold

is reached, setting the NLCG.

Reference [42] also noted nonzero transport in the Dimits regime. This affects the dynamics

because the turbulence can sustain the zonal flows; if the turbulence died off completely

the zonal flows would decay until insufficient to quench the instability, at which point the

turbulence would grow and drive the zonal flows again, as in predator prey cycles.

The Dimits shift has been investigated in more realistic plasmas, with collisions and

non-adiabatic electrons [44]. Like in the survey in Ref. [42], the Dimits regime was found

to have finite transport. The Dimits shift (measured as ∆ωT i) for these simulations was

independent of collisions. Collisions have also been shown to increase transport in other ITG

cases [51] because they damp the zonal flows.
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Reference [52] argued nonphysical numerical dissipation can be expected to be important

at the collisionalities and resolutions commonly used for simulations in the Dimits regime.

While simulations at high ωT i are insensitive to numerical dissipation, it was found that

the size of the Dimits shift was strongly affected by dissipation and that heat flux was a

discontinuous function of temperature gradient. Again, nonzero heat flux was found below in

the Dimits regime, but because it scaled with the artificial dissipation, the actual value was

ruled nonphysical. Also noted was that it can take a very long time for a simulation to go

into the Dimits regime, appearing to dither between a turbulent state and a flow dominated

state. The end of the orange curve in Figure 4.2 shows a bit of this. It is suggested that the

Dimits regime ends due to some mechanism which limits the strength of long wavelength

zonal flows; the turbulent viscocity described in Ref. [42] could be this mechanism.

More recently, Ref. [53] showed that the discontinuity persists at collisionalities relevant

for modern devices. With these the collisionalities, the Dimits regime was shorter in ωT i.

The authors speculate that the weak turbulence in Dimits regime drives zonal flows, but

the paper lacks measurements of Reynolds stress or energy transfer, and that the secondary

instability driving long wavelength zonal flows saturates through a mechanism involving the

turbulent intensity with comparable timescales to the reduction to the RH residual.

Zonal flows and zonal temperature gradients were found to be stable with realistic strengths

from simulations around the NLCG [54]. This implies that any energy transfer out of zonal

flows has to be analyzed as a finite-amplitude effect.

In summary, previous investigations of the Dimits regime have shown that it has nonzero

transport. The actual horizontal offset in critical gradients has strong dependence on details

of geometry and dissipation mechanisms. Energy transfer out of the zonal flows has been

repeatedly suggested as a limit on zonal flow strengths and a cause for the transition to

stronger turbulence, however this cannot be a secondary instability on the flow itself.

4.3 Turbulence in the Dimits Regime

In this section we investigate the turbulence below the NLCG in an attempt to find a cause

for the low turbulent amplitudes in the Dimits regime. The following results are for the

modified CBC below the critical gradient at ωT i = 5.5, as described in Appendix A. Scans

over ωT i are presented at the end of this section.
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Figure 4.4: Comparison between the ballooning structure at ωT i = 7 (orange) and ωT i = 4.5
(blue) for ky = 0.15.

The growth rate spectrum is shown in the left panel of Figure 4.5. Compared with Fig.

3.1, the growth rate has a narrower extent in k and a maximum value about half that at

ωT i = 7. Unstable mode structure, shown in Figure 4.4, does not change much with ωT i and

does not appear to have a discontinuity at the NLCG. It is typical to approximate transport

as proportional to γ/k2
⊥, which would predict a reduction of turbulent amplitudes by a factor

of two. Turbulent energy in the Dimits regime, shown in the right panel of Figure 4.5, is

around a factor of 20 lower than the energy above the NLCG, while the zonal energies are

roughly comparable. Note that the reduction of plotted zonal amplitudes on this plot is a

factor of 100, not 10 used in Figure 3.2. Other than the lower growth rate and much weaker

turbulence, the system in the Dimits regime is roughly similar to that below.
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Figure 4.5: Growth rate and energy bispectrum in the Dimits regime. Energies at ky = 0 are
plotted at 0.01× their actual values.

It is plausible that the Dimits regime is due to reduced energy production because of

stable eigenmode effects. The sum of the nonconservative terms, which are balanced by the

nonlinearity, is shown in Figure 4.6. The regions of net energy injection and dissipation are

similar above and below the NLCG. While the energy injection rate is much less than that

above the NLCG, this cannot be taken as the cause of the transition, as it can be a product

of the difference in amplitudes rather than the cause. Later in this section, we find that

reduced energy injection because of stable modes cannot explain the Dimits shift.

Figure 4.6: Nonconservative energy terms ∂Ek/∂t
∣∣
N.C.

in the Dimits regime.

Energy transfer from a wavevector with instability to other wavevectors (as in Fig. 3.5) is
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shown in Figure 4.7. The left panel is energy transfer from (0, 0.2) and the right panel is

transfer from (0, 0.4). In each case, almost all energy transfer is due to the lowest-kx zonal

flow. This is very much like saturation above the NLCG, except scaled to the lower energy

injection rate and with a longer wavelength zonal flow.

Figure 4.7: Energy transfer from the unstable wavevector at the black rectangle for a) (0,0.2),
b) (0.0,0.4), to (kx, ky) at ωT i = 5.5.

Energy transfer, split into transfer to the unstable and stable eigenmodes, and catalyzed

by the (0.086, 0) zonal flow, is shown in Figure 4.8. The corresponding plot above the NLCG

is Figure 3.9. A higher fraction of energy transfer is to the stable mode.

Figure 4.8: Energy transfer to the higher kx mode catalyzed by the kx = 0.086 zonal mode in
the Dimits regime, split into stable and unstable.
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When split into entropy and field components, shown in Figure 4.9, energy transfer in the

Dimits regime is also similar to that above. However, the ratio of entropy transfer to field

energy transfer is much higher in the Dimits regime.

Figure 4.9: Energy transfer to the higher-kx mode, catalyzed by the kx = 0.086 zonal mode
in the Dimits regime, split into entropy and field components.

Figure 4.10: Transfer of the f 2/F0 and Φ2 energy terms (T gk,k′ and T χk,k′ , respectively) which
drive the zonal mode at (0.172, 0) for the ωT i = 5.5 case.

The energy transfers which excite the zonal flows (Figure 4.10) might reveal the cause of

the much weaker turbulence in the Dimits regime. As in the previous transfer plots, when

ignoring the scale, transfer to zonal entropy (f 2/F0) and flow (Φ2) looks very similar to the
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case above the NLCG (Figure 4.10). The ratios of the energy injection transfer quantities

changed significantly between the Dimits regime and the turbulent parameter case. Table 4.1

shows the maximum energy injection rate, transfer of entropy to higher kx, transfer of field

energy to higher kx, transfer of entropy to the ky = 0 mode, and transfer of field energy to

the zonal flow above and below the NLCG. Entropy transfer both to higher kx and to the

zonal mode is higher than transfer of field energy, and this is stronger above the NLCG.

Several of the references mentioned in the previous section postulated nonlinear energy

transfer out of the zonal flows as the physics which limits their amplitude. In none of these

cases was transfer of field energy (Φ2) out of zonal flows appreciable. However, the linear

terms at ky = 0 can conservatively transform energy between the entropy and field terms and

there is entropy transfer out of the zonal flows in all cases. Entropy transfer out increases

with ωT i. So it is still possible that nonlinear energy transfer out of zonal flows limits their

amplitude, but there must also be a linear conversion between the field and entropy terms

of energy. This is a kinetic effect and would be difficult to capture accurately in a reduced

model. It would be useful to record how energy transforms, which could be done by evaluating

Φ[∂g/∂t] for the linear terms at ky = 0. This is left for future work.

ωT i
∂E
∂t
|N.C. T gk,k′ (high-kx) T χk,k′ (high-kx) T gk,k′ (ZF) T χk,k′ (ZF)

7.0 1.5 1.5 1 0.05 0.01

5.5 0.05 0.4 0.08 0.01 0.00015

Table 4.1: Various energy quantities below (ωT i = 5.5) and above (ωT i = 7.0) the NLCG.
High-kx refers to transfer to higher-kx. As these quantites are all functions of k, the reported
values are approximate. The default assumption is that they would all scale with ∂E/∂t|N.C..

Figure 4.11 shows the ratio between entropy-like energy transfer out of the lowest two

zonal wavenumbers to energy transfer into, as a function of ωT i. The remainder of the energy

input must be balanced by linear dissipation in steady state. The ratio increases with ωT i,

suggesting increased that nonlinear eddy damping is more important compared to linear

damping as the nonlinear critical gradient is approached.
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Figure 4.11: The ratio of total g2/F0 energy transferred out of the (0.086, 0) (black) and
(0.172, 0) (red) zonal modes, to the energy transfer into.

Because there is very little energy transfer to the zonal flows in the Dimits regime, it

could be expected that flows in it are mostly described by the RH residual. We did a series of

zonal flow residual calculations to test this hypothesis, and to see how this changed above the

NLCG. These zonal flow residual calculations are done by linearly evolving the distribution

function at ky = 0 with time. In Figure 4.12, the response to the standard GAM initial

condition is provided for comparison in magenta, showing the ≈ 0.1× zonal flow residual

with this geometry. The traces from nonlinear simulations are the average of 35 individual

runs, with initial conditions taken from evenly spaced distribution functions over a time of

≈ 1000R/Cs. For all cases, the flow is almost entirely described by the residual. The case

from above the NLCG had a much higher damping rate due to linear terms than the cases

from below. This is possible because dissipation rates depend on the amount of fine structure

in velocity space, which can change with the turbulence. Turbulent amplitudes are expected

to scale with zonal flow damping rates [55], so the increased zonal flow damping above the

NLCG likely enhances the turbulence once in the turbulent state.
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Figure 4.12: Zonal flow residual calculations using the zonal distribution function from
nonlinear simulations (black: ωT i = 4.5, blue: ωT i = 6.0, red: ωT i = 7.0), compared to a
standard ZF residual run (magenta).

The zonal mode damping rates also (in terms of energy) increase when the nonlinear

critical gradient is passed. Figure 4.13 shows the effective damping rate, evaluated for the

ky = 0 modes above and below the NLCG. Except for a single point, the damping rate above

the NLCG is always around a factor of two higher. This increase is lower than the change in

flow damping rate seen in the previous zonal flow residual calculations.
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Figure 4.13: Effective growth (damping) rate γeff evaluated for the zonal modes for ωT i = 5.0
(blue) and ωT i = 9.0 (orange).

While zonal flows are stronger relative to the turbulence in the Dimits regime, the zonal

flow shearing rate increases by around a factor of 10 as the NLCG is crossed. The left panel

of Figure 4.14 shows shearing rate as a function of ωT i with the NLCG marked with a dashed

line. Given the slope past the NLCG, the intercept without a Dimits regime would be roughly

at the linear critical gradient. It can be helpful to compare the shearing rate to the growth

rate of the instability to measure the strengths of the two effects. When shearing is much

greater than the instability’s growth rate shear suppression can be expected to contribute

to saturation. The right panel of Figure 4.14 shows the ratio ωE×B/γ, which decreases to

a minimum of 2 at ωT i = 6. Past the NLCG, the value jumps to over 50. From the energy

transfer measurements, energy transfer to higher kx by zonal flows is always the saturation

mechanism.
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Figure 4.14: a) Zonal flow shearing rate ωE×B =
∑

kx
k2
x|ΦZF| as a function of temperature

gradient ωT i. b) Ratio of zonal flow shearing rate ωE×B to growth rate of the most unstable
mode γ as a function of ωT i. The linear and nonlinear critical gradients are marked with the
dashed-dotted and dotted lines, respectively.

The zonal-flow shearing rate is a sum over the entire spectrum of zonal flows. From Figure

4.15, below the NLCG there is almost no contribution of ωE×B from higher-kx wavevectors.

While not obvious from the plot, the higher ωT i cases are from simulations with a larger Lx and

thus smaller kx,min. The spectrum changes past the NLCG, and the discontinuity in shearing

rate can be entirely attributed to the excitation of higher-kx wavevectors. The strength of

the (0.086, 0) zonal potential is not monotonic and goes down as the temperature gradient is

increased from ωT i = 8 to ωT i = 9. This could indicate some limit of low-wavevector zonal

flow strengths as the cause, as suggested in the previous work section.
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Figure 4.15: Zonal potential spectrum ΦZF (kx) for temperature gradients ωT i between 5.5
and 9.0

As ωT i increases, the peak γ moves to higher ky. At the same time, the peak in energy

(ignoring the zonal energy) moves to lower ky. This occurs monotonically as ωT i is increased

from 4.5 to 11. Figure 4.16 plots both E and γ, for a parameter case below and above the

NLCG, normalized so that the highest value for each is 1.

Figure 4.16: Growth rate spectrum γ(ky) (solid lines) and energy spectrum E(ky) (dashed
lines) for ωT i = 5.5 (blue) and ωT i = 10 (green).

The effect of stable eigenmodes on energy injection can be found by comparing γeff (Eq.

2.27) to γ. In the Dimits regime (at ωT i = 5), γeff very closely tracks γ, indicating that

the energy injection rate is close to what it would be without any stable mode excitation.
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Above the NLCG (at ωT i = 11), γeff is lower than γ, especially at high ky. Above ky = 0.5,

there is actually a negative γeff , despite the presense of the instability, indicating that stable

eigenmodes cause this wavevector to dissipate energy on net. This rules out increased stable

mode dissipation as a possible cause for the Dimits regime.

Figure 4.17: Growth rates γ (solid lines) and effective growth rates γeff (dashed lines) for
temperature gradients ωT i = 5 (blue) and ωT i = 11 (green).

Outside of the Dimits regime, the ratio of energy dissipated by the turbulence and energy

dissipated by the zonal modes holds to within several percent. This trend is also present

in the electromagnetic runs discussed in Chapter 5. Below the NLCG, this does not hold

and the zonal modes dissipate proportionally more energy. Figure 4.18 shows the sum of all

energy dissipated by the ky 6= 0 wavevectors as a function of energy dissipated by the ky = 0

wavevectors, with a trendline for comparison. With this it is possible to relate energy injected

by the ky 6= 0 wavevectors, energy dissipated by those wavevectors, and energy dissipated

by the zonal modes to within a few percent all throughout the investigated range about the

NLCG.
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Figure 4.18: Energy dissipation (through the term including collisions and hyperdissipation)
by ky = 0 modes vs. ky 6= 0 modes, over the ωT i scan. The blue line is for reference.

Because none of the previous results explain the cause of the Dimits shift, we have repeated

the scans with an artificial zonal flow dissipation. This is because zonal flow dissipation can

shorten the Dimits regime, which could give indications of why the Dimits shift exists. We

applied a second-order dissipation, just on the ky = 0 distribution function, which dissipates

not just the field energy but the entropy-like term as well.

Figure 4.19: Flux (left panel) and zonal flow shearing rate (right panel) for the standard
Dimits shift scan (blue), as well as with two levels of zonal dissipation, low (red) and high
(magenta).

Figure 4.19 shows flux and zonal flow shearing rate over a scan of ωT i with two values for

zonal dissipation. Above the NLCG, these levels of zonal dissipation only increase flux by

around 20%. With both levels, there is no discontinuity in flux as a function of ωT i. The
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Dimits shift persists in both, but its extent is reduced to around one third of that in the

simulations without artificial zonal dissipation. Zonal shearing rates are higher with the

dissipation (below ωT i = 7) because the Dimits shift is shorter, while above the nominal

NLCG, the shearing rate is much lower when the dissipation is added. It is noteworthy that

the fluxes are very similar here despite the factor of 5 difference in shearing rate.

Figure 4.20: Energy dissipation by ky = 0 modes vs. ky 6= 0 modes of two levels of dissipation
(none: black, low: red, high: magenta).

The ratio of zonal to nonzonal energy dissipation is shown in Figure 4.20, and the zonal

flows always dissipates a higher fraction of the energy with the artificial dissipation.

Dimits Regime Summary

The process of saturation above the NLCG is qualitatively very similar to that below. Energy

injected by the instability is transferred to higher-kx stable and unstable modes, with a small

fraction going to the zonal flow. As in the references discussed in Section 4.2, there is weak

turbulence sustaining the zonal flows throughout the Dimits regime. This also confirms

reports of finer-scale zonal flow excitation above the NLCG [52].

Several new details of the Dimits regime have been described here. For one, there is energy

transfer out of zonal modes. However, it was only in the entropy-like energy component and

not in the field component. This transfer increases with ωT i. As energy can be converted

between the forms, this could be the sign of a turbulent viscosity which limits the zonal flow

amplitudes and ultimately causes the end of the Dimits regime, but the results presented

here are not conclusive.
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The effects of stable modes on energy production were actually much weaker in the Dimits

regime than above the NLCG. This rules out an explanation of the Dimits regime as a reverse

situation to subcritical turbulence, where the nonlinearity allows the system to be in a state

which injects energy despite having no unstable eigenmodes.

We investigated the turbulent distribution function and flow at ky = 0 and found that in

all cases, the vast majority of the flow is residual. The case above the NLCG has a faster

damping rate, which can only be due to either the excitation of finer structures in velocity

space which are more collisionally damped, or transformation of flow into entropy-like energy.

Above the NLCG, energy dissipated by the zonal modes and the turbulence holds a very

nearly fixed ratio. This is worthy of note, because it is rare that quantities maintain such

close relationships.

Purely artificial ky = 0 dissipation removed the discontinuity in flux and shearing rate at

the nominal NLCG. Above the NLCG it had little (≈ 20%) effect on the flux, but decreased

zonal flow shearing rate by around a factor of 5. This implies that zonal shearing rate is not

a good measure of the importance of zonal flows in saturation. Energy transfer by zonal flows

is strongest for the lowest-kx modes, while the factor of k2
x in shearing rate gives a stronger

weight to the higher-kx modes. The dissipation, being second order in kx, affects the zonal

modes important for saturation much less than those that contribute to the shearing rate,

which causes a five-fold reduction in shearing rate, but only a slight increase in transport.
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5 nonlinear electromagnetic stabilization

5.1 Introduction

All of the parameter cases used in Chapters 3 and 4 were idealized to have zero normalized

plasma pressure:

β ≡ 8πne0Te0/B
2
0 = 0 (5.1)

In reality, all plasmas have nonzero β, and high β (around one or a few percent) is desirable

for fusion energy because it increases the fusion yield. The subject of this chapter is the effect

of β on ITG turbulence.

The fluctuating magnetic potential A‖ is zero at β = 0, so turbulence in that regime is

electrostatic. When β is nonzero, the turbulence can affect the magnetic fields, so that regime

is electromagnetic; the terms finite-β and electromagnetic are often used in interchangibly in

gyrokinetics.

In gyrokinetics, plasma β affects a linear term directly and a number of terms indirectly

through the fields. The pressure term in the gyrokinetic equation (∼ βv2
‖ωp∂x,yg) is the only

linear term directly dependent on β. Linearly, increasing β reduces ITG growth rates1 and,

at high enough levels, destabilizes microtearing and kinetic ballooning modes [57, 58, 59].

The A‖ component of χ and g affects both the linear terms and the nonlinearity, and in

the nonlinear case transport due to ITG is reduced significantly more than the reduction in

γ. However, this could be a side effect of changes to linear physics rather than because of

the change to the nonlinearity itself. In the specific parameter scan used for the following

energy transfer measurements, transport was reduced by 95% while the growth rates were

only reduced by 50%. As one generally expects transport to scale as γ/k2, we investigate a

number of possible causes for this phenomenon.

This chapter begins with an investigation into how energy quantities change as β is

increased. The picture of saturation is very similar regardless of β; the instability is saturated

by zonal flow mediated energy transfer to higher-kx stable and unstable modes. To determine

whether increased stable eigenmode effects at high β cause the transport reduction, we

compare the quasilinear transport weight and the effective growth rate in the nonlinear state

to that from the linear instability. While stable mode effects are prominent and increase

1This is actually due to field line bending and is thus a consequence of A‖ instead of the
pressure term; see Ref. [56] for linear electromagnetic ITG physics.
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with β, they only increase ≈ 5% across the β range, which is much too weak to explain the

nonlinear transport reduction. We then report on the properties of the triplet correlation

time2 τ measured in the turbulence, noting that this time is effectively an energy transfer

efficiency. A higher τ implies that lower secondary mode amplitudes are sufficient to transfer

energy at the same rate, so that the instability will saturate at a lower amplitude. The

Triplet correlation time increases with β by an appropriate amount to explain most of the

nonlinear transport reduction. This is tested quantitatively in Chapter 6, which finds that a

linear proxy for τ predicts 50− 100% of the nonlinearly enhanced electromagnetic transport

reduction across a wide variety of parameter cases.

5.2 Energy Measurements and the Saturated State

The following energy transfer measurements are from a modified CBC parameter scan over

ωT i and β, as described in Appendix A. The runs use kinetic electrons, have a reduced density

gradient and no electron temperature gradient, as compared to the CBC. The modified

gradients are such that the only unstable mode throughout the parameter range is ITG

and the gradients were specifically chosen for this property because the presence of multiple

different instabilities could change the saturation process. At the end of this chapter there is

a short discussion of saturation with multiple instabilities, but the subject is primarily left

for future work.

Features of the linear growth rate spectrum may contribute to nonlinear electromagnetic

stabilization. For example, growth rates at nonzero kx-center3 may be more strongly stabilized

by β than the ones at kx = 0. Figure 5.1 shows the two dimensional growth rate spectrum

for a low and high β case, showing nothing that could explain the transport reduction.

The angled feature showing unstable eigenmodes at high kx stems from the fact that those

wavevectors are not linearly independent, so that the linearly connected mode repeats every

(6ky/k
min
y ) kx points. Energy spectra, shown in Figure 5.2, are also similar between the two

cases, except the ky 6= 0 energy levels are reduced significantly more than the ky = 0 energy

levels for β = 0.75%. The turbulent energy levels are reduced similarly to the transport

reduction, which shows that nonlinearly enhanced stabilization has to be due to changes in

energy and saturation rather than just due to changes to transport.

2See the discussion around Eq. (2.37).
3See discussion of linearly coupled modes around Eq. (2.12).
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Figure 5.1: Growth rate spectrum for a) β = 0.01% and b) β = 0.75% at ωT i = 8.

Figure 5.2: Energy spectrum for a) β = 0.01% and b) β = 0.75% at ωT i = 8. Zonal amplitudes
on the right plot (hatched region) are reduced by 10× for visualization purposes.

The spectra of the nonconservative terms, shown in Figure 5.3, are also qualitatively

similar to each other and to the nonadiabatic case. Dissipation at the ky = 0 wavenumbers is

weak compared to the turbulence in all of the adiabatic-electron cases (see Figures 3.2 and

4.6) and is even weaker here.
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Figure 5.3: Spectrum of nonconservative energy terms for a) β = 0.01% and b) β = 0.75% at
ωT i = 8.

Figure 5.4 shows time-averaged energy transfers for two different wavevectors at each β

value. Compared to the results in Chapter 3, zonal flow mediated energy transfer is not as

dominant, especially at β = 0.01%. However, this is only the case for the (0, 0.3) wavevector,

which is well above (0, 0.15)–the wavevector responsible for the most flux. The zonal flows

which transfer significant amounts of energy are typically below kx = 0.5, which is a much

broader spectrum than in the adiabatic electron cases where almost all of the energy transfer

was by zonal flows under kx = 0.2. The nonzonal energy transfer to (0, 0.3) is almost all into

the mode for wavenumbers at lower ky, and out of it for wavenumbers at higher ky, which is a

weak cascade to higher ky. A ky-cascade was also observed in Chapter 3, which discussed the

downshift in ky between the peak growth rate and the peak in turbulent amplitude. Nonzonal

energy transfer is not expected to affect the turbulence strongly, as it is much weaker than

zonal flow catalyzed energy transfer in the region responsible for most energy production and

flux.
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Figure 5.4: Energy transfer from the unstable wavevector at the grey rectangle ((0, 0.1) (top
row) or (0, 0.3) (bottom row)) to (kx, ky) at β = 0.01% (left column) and β = 0.75% (right
column) for the ωT i = 8 case.

Figure 5.5 shows energy transfer from the wavenumber responsible for the most energy

injection as a function of the zonal flow wavenumber, split into unstable and stable components.

The (0,0.15) wavevector actually receives energy from the stable modes at (0.086, 0.15), which

may be because those stable modes are driven by energy transfer through other nonlinear

couplings or because the stable modes at those wavenumbers contribute to energy injection

through nonorthogonality. Energy transfer to stable modes is higher for higher-kx zonal flows.

There is no transfer to the unstable component past kx ≈ 0.25 because that is the end of the

region of instability.
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Figure 5.5: Energy transfer to (kx, ky) = (kZF, 0.15), from k′ = (0, 0.15) and k′′ = (kZF, 0),
broken down into transfer to the unstable modes T u

k,k′ (black circles) and T s
k,k′ (red crosses).

This is with β = 0.5%.

The nonzero A‖ component is the only direct effect of β on the nonlinearity, and as such

is a candidate cause for nonlinearly enhanced electromagnetic stabilization. Figure 5.6 shows

energy transfer from (0,0.1), split into the Φ and A‖ components at low and high β, as in

Eq. (2.35). In all cases, transfer by A‖ is much smaller than transfer by Φ, which is not

unexpected as A‖ has a factor of β and the high-β case is still only at β = 0.75%. The

fraction of energy transfer by the A‖ component also grows with β. Its absolute value is

actually higher in the low-β case, because the total energy transfer goes down more with β

than the fraction goes up. Energy transfer by A‖ is likely to have very little effect on the

saturation process given its low magnitude.
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Figure 5.6: Energy transfer catalyzed by the Φ (top rpw) and A‖ (bottom row) components
of k′ to k = (0, 0.1) at β = 0.01% (left column) and β = 0.75% (right column).

Because a broad spectrum of zonal flows is important for energy transfer at nonzero β,

individual kx-cascade plots show a smaller portion of transferred energy than in the adiabatic

electron runs from the previous two Chapters. However, the features of energy transfer due

to different zonal flows are very similar within the range of important zonal flows. Figure 5.7

shows energy transfer due to the two lowest-kx zonal flow wavevectors. In either case, energy

transfer is prominent around the range of energy injection shown in Figure 5.3, extending

only a bit further in kx. This is a sign of stable mode dissipation at these wavenumbers, as

without dissipation there would be an inertial range of relatively constant energy transfer

before a dissipation scale is reached.
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Figure 5.7: Energy transfer catalyzed by the zonal mode (top: k′ = (0.086, 0), bottom
k′ = (0.172, 0)) to higher kx at β = 0.01% (left column) and β = 0.75% (right column).

The spectrum of zonal flows changes with β, which brings attention to the nonlinear

energy transfer driving zonal flows. Figure 5.8 shows transfer of entropy and field energy

to the lowest kx mode. In this case, field energy contains both Φ2 and A2
‖ components, but

in all of these cases EΦ � EA‖ . The transfers driving the flows occur in a smaller region

of wavenumber space than in the adiabatic-electron cases (see Figure 4.10 for comparison),

and unlike with adiabatic electrons, some interactions transfer field energy out of the zonal

wavenumbers. At both β values, the ratio of entropy to field-like energy transfer is the same.
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Figure 5.8: Energy transfer to the zonal mode k = (0.086, 0), split into transfer to the
pressure component ∼ g2/F0 (top row) and transfer to the field component ∼ gχ (bottom
row) at β = 0.01% (left column) and β = 0.75% (right column).

As in the adiabatic electron runs, the ratio of energy dissipated by the turbulence (ky 6= 0)

to energy dissipated by the zonal wavenumbers (ky = 0) maintains a near-constant ratio,

regardless of β and ωT i. Figure 5.9 plots these two quantities against each other for every

case within the scan. The slope is different compared to the adiabatic-electron runs, but this

is also possibly a result of the different values for numerical dissipation for these runs. This

is not necessarily physical, but the quality of the fit is noteworthy.
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Figure 5.9: Energy dissipated by the dissipation term for the ky 6= 0 modes compared to
energy dissipated by the ky = 0 modes, across the entire β and ωT i range.

Overall, the saturation process is qualitatively the same in the low and high β cases. The

changes described above cannot explain the reduction in transport with β.

Energy Transfer Scaling with ΦZF

Energy transfer due to coupling with a zonal flow has a factor of kZFΦZF in it. We test the

extent to which the other factors in energy transfer, such as τ , matter by comparing the

spectrum of energy transfers to the zonal flow spectrum kZFΦZF. If those other factors do

not depend on kZF, the two spectra should match. To measure energy transfer due to a flow,

we sum the transfers from the (0, ky) wavenumbers over ky ∈ [0.05, 0.6]. Figure 5.10 plots

the comparison between the values at low and high β. While features from the zonal flow

spectrum are visible in the energy transfer spectrum, the match is not good. The energy

transfer falls off faster with kZF than the kZFΦZF spectrum, which may be related to τ , as

the damping rate for those flows is higher, which would make τ less resonant.
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Figure 5.10: Energy transfer as a function of the kx of the catalyzing zonal flow (dashed lines)
compared to kxΦZF (solid lines) at β = 0.01% (black) and β = 0.75% (magenta). All spectra
are normalized to be 1 at their peaks, as energy transfer also scales with energy injection
rate, which changes between the two cases.

5.3 Stable Mode Excitation

Increased stable eigenmode excitation, leading to reduced energy injection and flux, is a

plausible cause of nonlinear electromagnetic stabilization. The stable mode fraction alone

does not measure the effects of stable modes on the turbulence, but a nonzero stable mode

fraction is a requirement for stable modes to play a role in saturation. Figure 5.11 shows

the time-averaged fraction of the distribution function described by the unstable eigenmode

at (0, 0.2) and (0, 0.4), as in Eq. (2.23). The difference between this quantity and one is the

fraction associated with stable eigenmodes. The stable mode fraction increases by around

10% over the β range, which is a much smaller percentage than the decrease in transport.
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Figure 5.11: The average fraction of the turbulent distribution function described by the
unstable eigenmode (see Eq. (2.23)) across the entire ωT i, β range. (β = 0.01%: black,
β = 0.25%: red, β = 0.5%: blue, β = 0.75%: magenta).

Measuring the stable mode fraction directly requires access to the turbulent distribution

function, which is usually not outputted from simulations because eigenmode decompositions

are rarely used and because of the large amount of data involved. As a proxy, the potential

structures in the turbulence are sometimes compared to those from the eigenmode [63]. This

approach uses the same formula as in Eq. (2.23), except the g structure is replaced by the Φ

ballooning structure. Figure 5.12 shows the unstable mode fraction as a function of ky for the

modified CBC, as well as a comparison between the inner product calculated with gj(θ, v‖, µ)

and with Φ(θ). Because there exists a space of g structures that will all give the same Φ

structure, the Φ metric can produce a larger fraction than actually described by gev. The Φ

metric is not an upper bound on the g metric either, because the ions and electrons have

opposite contributions in it. Like the g metric, the Φ metric is also bounded between 0 and

1. Figure 5.12, as well as the later plots of γeff and wk, also contain results from parameter

cases based on reconstructions of a AUG shot 29197 [75] and JET shot 75225 [73]. These are

fully described in Appendix A.

The g and Φ metrics correspond roughly for the mCBC. The unstable mode fraction is

around 70% at the wavevectors which contribute the most to flux, and decreases at higher ky.

For the AUG case, the unstable mode fraction is always close to 90%. For the JET case, the

fraction starts at around 20% and increases to 60% at higher ky. Between each of these cases,

the stable mode fraction changes dramatically, implying that some variables other than β

(such as collisionality or geometry) affect stable mode excitation. This is natural, as stable
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modes are excited by nonlinear interactions with the instability, and the structure of the

eigenmode affects details of those interactions. It also suggests that quasilinear transport

models may yield poor results when extrapolating fluxes across different devices. In each

of these plots, the stable mode fraction increases around only 5% with β, which is small

compared to the decrease in flux (≈ 50% in AUG and ≈ 95% in JET). However, this does not

measure which stable eigenmodes are excited, and it is entirely plausible (until γeff and wnl
k

are measured in the following subsections) that the eigenmodes which are excited at higher β

are more dissipative or contribute more negatively to transport.
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Figure 5.12: The unstable mode fraction (solid lines) and the value based on the Φ proxy
(dashed lines) for low (black) and high (magenta) β as a function of ky for the three cases: a)
mCBC, b) AUG, c) JET.

Understanding stable mode excitation mechanisms can be useful to explain why the stable

mode fraction changes, and to help predict changes in transport with parameters. Here,

we sketch a linear proxy, which approximates the nonlinear coupling coefficients for energy

transfer in the eigenmode basis, and compare to the energy transfer rates and stable mode

proportions. Like τ , the coupling coefficient can be referred to as an efficiency; however, the
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two should not be confused, as this is an efficiency based on eigenmode structure, while τ

is an efficiency due to frequency matching. Transfer of entropy-like energy (∼ g2/F0) to an

eigenmode gev
k at k = (−kZF, ky) due to the nonlinear interaction of the zonal flow Φk′ at

k′ = (kZF, 0) and the distribution function described by the ITG mode gITG
k′′ at k′′ = (0, ky) is:

T ev
k,k′ ∼ <e

[ ∫
gev∗
k Φ̄k′g

ITG
k′′ F

−1
0 dv‖dµdz

]
, (5.2)

where gev
k could be an unstable or a stable mode structure. For the purposes here, we

approximate Φ̄k′ with Φk′ and take it to be constant in z. The amplitude information can be

factored out, producing:

T ev
k,k′ ∼ <e

[(∫ gev∗
k

‖gev
k ‖

gITG
k′′

‖gITG
k′′ ‖

F−1
0 dv‖dµdz

) Φk′

|Φk′|

]
‖gev

k ‖|Φk′|‖gITG
k′′ ‖, (5.3)

where ‖ · ‖ is the energy norm. The real part can then be written in polar representation,

with M(gev
k , g

ITG
k′′ ) as its magnitude and θk,k′ as the complex phase of the product:

T ev
k,k′ ∼M(gev∗

k , gITG
k′′ ) cos(θk,k′)‖gev

k ‖‖gITG
k′′ ‖|Φk′ |, (5.4)

where

M(gev
k , g

ITG
k′′ ) =

∣∣∣∣∣
∫

gev∗
k

‖gev
k ‖

gITG
k′′

‖gITG
k′′ ‖

F−1
0 dv‖dµdz

∣∣∣∣∣. (5.5)

Energy transfer to a specific eigenmode scales with M(gev
k , g

ITG
k′′ ), which can be calculated

from the linear modes alone. The coupling coefficient M can be calculated more correctly

by including the field energy and the Bessel function from the gyroaverage. Because we

lack specific stable modes of interest out of the ≈ 10000 present, we calculate the coefficient

for transfer to the unstable mode at k and assume that the fraction of energy transfer to

unstable modes compared to stable modes scales with it. Alternatively, a lower coefficient for

coupling to unstable modes would predict more transfer to stable modes.

Figure 5.13 shows M as a function of zonal flow wavevector and β. This quantity starts

near one at kx = 0.05 and decreases to 60% at kx = 0.25. It increases 5-10% with β. The

prediction from this coupling coefficient agrees with the previous observation that higher-kx

zonal flows transfer a higher fraction of energy to stable modes and disagrees with the

observed stable mode fraction as a function of β, which weakly increases in the nonlinear

system.
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Figure 5.13: Proxy for the nonlinear coupling coefficient between the unstable mode at kx = 0
and kx = kZF for the four β values. β = 0.01%: black, β = 0.25%: red, β = 0.5%: blue,
β = 0.75%: magenta.

5.4 Stable Mode Effects on Energy

For a given stable-mode fraction, there are a wide range of possible energy injection rates,

depending on which stable modes the fraction is comprised of. The net effects are also

not just given by the sum of contributions by the individual eigenmodes, because the cross

correlations between eigenmodes affect energy injection. As such, the easiest way to measure

stable mode effects on energy is to directly measure energy injection in the turbulence by

using γeff (see Eq. (2.27). Figure 5.14 shows γeff compared to the linear growth rate γ as a

function of ky at kx = 0 for the mCBC, AUG, and JET cases. For the mCBC case, γeff tracks

γ closely at low ky, while there is net energy dissipation towards the end of the unstable range.

This corresponds to the behavior of the stable mode fraction, which was low at low ky and

high at high ky (see Fig. 5.12). For the AUG case, γeff closely tracks γ, which corresponds to

the consistently low stable mode fraction in that case. In the JET case, which has a high

stable mode fraction, γeff is always much lower than the linear γ. Overall, stable mode effects

on energy are prominent and correspond to the stable mode fraction, which depends on

parameter case. These quantities all depend on kx as well as ky, and Figure 5.15 shows the

same comparison for the mCBC, but as a function of kx at the ky responsible for the most

flux and energy injection. The range in kx with energy injection is actually broader than the

region of instability, showing that stable modes at these wavenumbers must be contributing

to energy injection through nonorthogonality.
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Figure 5.14: γ (solid lines) and γeff (dashed lines) as functions of ky for three of the investigated
cases. Symbols represent β values, with black pluses for low β and magenta circles for high
β. Specifically, the values of β/% are a) 0.01,0.75 for the mCBC, b) 0.81,1.54 for AUG, and
c) 0.001,1.75 for JET.

Figure 5.15: γ and γeff as functions of kx for ky = 0.15 in the mCBC.
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5.5 Stable Mode Effects on Transport

Apart from stable mode effects on energy, stable modes can also affect transport directly

through the cross-phase in Qes
i . To measure the net effects of stable modes on transport,

we compare the quasilinear weight (Eq. 2.42) in the turbulent case to that of the unstable

eigenmode. These comparisons are shown in Figure 5.16 for the mCBC, AUG and JET cases.

Linearly, β increases the quasilinear weight in the mCBC and AUG case, but not in the

JET case. In both the mCBC and the JET case, stable mode effects reduce wk relative to

the linear value, however the reduction does not strengthen with β enough to explain the

nonlinear transport reduction. In the AUG case, the quasilinear weight in the turbulence is

around twice that from the linear eigenmode. This is unexpected and unresolved, but it may

be related to the external vE×B in those simulations.
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Figure 5.16: Quasilinear weights wlin
k (solid lines) and wnl

k (dashed lines) as functions of ky
for the investigated cases. Symbols represent which β value was used, with black plusses for
low β and magenta circles for high β. Specifically, the values of β/% are a) 0.01, 0.75 for the
mCBC b) 0.81, 1.54 for AUG, and 0.001, 1.75 for JET.
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5.6 Triplet Correlation Time

None of the previously discussed stable mode effects can explain a 95% reduction in transport

given a 50% reduction in growth rate. As discussed around Eq. (2.37), the triplet correlation

time τk,k′ acts as an energy transfer efficiency, and the saturated turbulent amplitudes can

be expected to scale inversely with it. It is given by the difference in nonlinear complex

frequencies of the interacting modes, which can be measured by taking the Fourier transform

of the autocorrelation function of quantities in the turbulence [23]. We measure the nonlinear

frequencies using the z-averaged electric potential in the turbulent state, but other moments

or even eigenmode amplitudes could be used as well. Using Φ conflates the frequency effects

of having multiple excited eigenmodes at a wavenumber (because velocity space information

is lost) with the direct effect of the nonlinearity on the mode phase. Because Gene uses an

adaptive timestep, we interpolate the real and imaginary parts of the potential time-series

to have constant time spacing. Figure 5.17 shows the comparison between the interpolated

potential and the actual value, which is acceptable because the timestep for outputting the

field data is much shorter than the timescales of interest.

Figure 5.17: Comparison of the interpolated real part of Φ (black) at a wavenumber with the
actual value (green).

The autocorrelation function of Φ and its Fourier transform are shown for (0,0.15) at

β = 0.01% and ωT i = 8 in Figure 5.18. These are each calculated using data from ≈1000 R/Cs
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time units, started after the simulation has reached a saturated state. The noise in the Fourier

transform decreases with the time used for integration. The linear and nonlinear frequencies

match well at this wavenumber, justifying using a linear proxy for frequencies in τk,k′ at the

wavenumbers around the peak in energy injection rate. The match gets progressively worse

at higher k.

Figure 5.18: Left: the autocorrelation function of Φ at (0,0.15). Right: The Fourier transform
of the autocorrelation function for Φ in the turbulent state. The linear frequency is marked
with the orange dashed line. The least-squares Lorenzian fit is marked in red. The nonlinear
frequencies are extracted from the Lorenzian parameters.

Figure 5.19 shows the nonlinear τk,k′ values as a function of the coupled kx from the

(0, 0.15) wavevector. τk,k′ is highest for interactions involving the lowest kx zonal flows, and

increases roughly a factor of 2 over the β range. As transport can be expected to scale

inversely with τ , this would explain a large fraction of the difference between the growth rate

and transport scalings. Other wavevectors (not shown) have similar dependence on β and

kx. The kx dependence also might explain why energy transfer as a function of kx decreases

much faster than kxΦZF, as was seen in Figure 5.9. The real part of τk,k′ is much larger than

the imaginary part, such that it is almost equal to the absolute value. This implies τk,k′ is

primarily from the difference in the growth rates of nonlinearly interacting modes and not

the frequencies.
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Figure 5.19: Nonlinear triplet correlation time τk,k′ for k = (0, 0.15) and k′ = (−kx, 0) for
four β values in the modified CBC scan. Black: 0.01%, red: 0.25%, blue: 0.5%, magenta:
0.75%.

5.7 Multimode Effects

Stable modes are driven by energy received from the instability, so changes to the instability

can affect which stable modes are excited. The AUG 29197 case has a microtearing (MT)

instability with similar growth rates as the ITG (see Figure A.1). However, this mode has a

much broader extent in the ballooning direction, so it may be expected to be weaker in the

turbulence. The 〈k2
⊥〉 (Eq. (6.2))for these modes are roughly an order of magnitude larger

than the ITG mode. Microtearing modes are orthogonal to ITG modes, as ITG has ballooning

parity (symmetry about z = 0) while microtearing has tearing parity (antisymmetric about

z = 0). As such, for both metrics, the fraction of the two modes can not add up to more

than one. Figure 5.20 shows the proportion at ky = 0.4 calculated using the Φ projection,

showing that the MT mode always has a low fraction, and the two fractions are anticorrelated.

This was only a cursory investigation, meant to provide justification for ignoring the MT

contribution in Chapter 6. Understanding saturation in general when multiple types of

instabilities coexist is an open problem.
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Figure 5.20: The fraction of the potential structure described by the ITG (blue) and MT
(red) as a function of time.

5.8 Chapter Summary

Electromagnetic effects strongly reduce turbulence and transport in typical ITG regimes,

but do not qualitatively change the saturation process. The instability saturates by energy

transfer, catalyzed by zonal flows, to higher-kx stable and unstable modes. The largest

difference in the turbulent physics at high β is that some nonlinear couplings transfer field

energy out of the zonal flows, which did not occur in any of the adiabatic-electron simulations.

This may be related to the nonzonal transition [61], which sets a critical β above which the

instability does no longer saturates, or saturates at nonphysically high amplitudes, because

of radial electron flow due to field line flutter eroding the zonal flows.

Stable mode amplitudes and effects increase slightly with β. This cannot be explained by

the change to the coupling coefficient between the unstable mode at kx = 0 and at nonzero

kx, but the coupling coefficient agreed with the stronger effect that the fraction of energy to

stable modes was higher with higher-kx zonal flows. There are three possible reasons for the

discrepancy. Firstly, this analysis only evaluates the coefficient for transfer to the unstable

mode, and evaluating the coupling coefficient for stable eigenmodes may show stronger energy

transfer at higher β. Secondly, this used only an approximation of the coupling coefficient.

Thirdly, this lacks frequency matching information, and it is possible that there is a stronger

β dependent effect on τ . Stable mode effects also vary strongly between the parameter cases,
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implying other parameters must have a strong effect. This could be investigated in future

work.

Ultimately, the strongest difference at high β was a much increased triplet correlation

time, which can explain most of the transport reduction exceeding the linear stabilization of

ITG.
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6 quasilinear modeling at nonzero β

6.1 Quasilinear Transport Models

Introduction

Reduced models are used for transport prediction because nonlinear simulations are too

expensive for large, multidimensional parameter scans. The most commonly used reduced

models are quasilinear mixing-length models, which predict transport from linear eigenmode

properties and are calibrated to a single nonlinear simulation. In ITG turbulence, increasing β

strongly reduces transport, an effect which quasilinear models greatly underpredict [58, 57, 62].

The discrepancy indicates that β has some strong effect on the saturation physics missing in

quasilinear models. This is what originally motivated the investigations in Chapter 5. While

stable mode excitation was found to be slightly higher at high β (≈ 5%), the strongest effect

was an increase in the triplet correlation time τk,k′ by almost a factor of two. From Eq. (2.41),

turbulent amplitudes can be expected to scale inversely with τk,k′ , indicating that much of the

transport reduction at high β can be explained by lower turbulent amplitudes due to more

efficient energy transfer. This chapter addresses two ambiguities in quasilinear modeling with

electromagnetic simulations, specifically: the evaluation of the effective wavenumber 〈k2
⊥〉,

and the quasilinear weight normalization. These ambiguities are described before testing a

standard quasilinear model modified to include τk,k′ across six parameter cases, which are all

described fully in Appendix A. The modification accounts for 50%− 100% of the enhanced

stabilization in all parameters cases but one.

Quasilinear Model Definition

The model used here [63] writes flux in terms of a Fick’s law (Qes
i = χes

i ωT i), with diffusivity

given by a mixing length rule γ/k2. Specifically, it is:

Qes
i =

(
C
∑
ky

wlin
k γk

|τ lin
k,k′|〈k2

⊥〉

)
ωT i. (6.1)

The model has a calibration constant C in front of a sum of contributions of eigenmodes at

wavevectors k = (0, ky). The phase information for transport is included in the quasilinear

weight wlin
k = Qes

i (k)|lin/Φ2(k)|lin, a function of the heat flux generated by the unstable
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eigenmode at ky and the square of the ballooning averaged potential of the same mode. The

model also depends on the growth rate γk, the triplet correlation time τ lin
k,k′ , and the effective

wavenumber 〈k2
⊥〉. When evaluating the improvement due to τ , we compare to the same

model without τ and with a recomputed calibration constant C. The effective wavenumber is

given by [64, 37]:

〈k2
⊥〉 =

〈k2
y[1 + [gxy + ŝθ0(kx)g

xx]2]

gxx

〉
, (6.2)

where gxy and gxx are metric coefficients, θ0(kx) is the extended ballooning angle at the

low-field side for a given kx, and the average 〈A〉 is defined as

〈A〉 =

∫ 3π

−3π
A|Φ|2dθ∫ 3π

−3π
|Φ|2dθ

. (6.3)

The average includes only a single connected radial wavevector on each side, which

corresponds to an integral in ballooning angle from −3π to 3π. This choice is explained in

the next subsection.

Quasilinear models either focus on only the most unstable eigenmode or account for

multiple unstable eigenmodes at a wavevector by summing over their flux contributions

[37]. The choice of what values to use in τ lin
k,k′ complicates this, especially given that some

instabilities do not saturate through coupling to zonal flows. For these instabilities, the choice

of k′ cannot be narrowed down in the way it is here. The AUG case has a MT instability

which contributes less than 10% to Qes
i in the quasilinear model without τ lin

k,k′ . The amplitude

of the MT mode was measured in the turbulence and was only excited to, on average, several

percent. In contrast, the ITG mode represented 90% of the turbulence. The electrostatic,

no-fast-ions case of the JET 75225 discharge has an ion-frequency, tearing-parity mode which

contributes only several percent to quasilinear predictions. Because of the relatively minor

contributions of subdominant eigenmodes seen in the present cases, and the ambiguous nature

of applying the τ lin
k,k′ factor to them, the quasilinear model used here neglects these modes.

Because nonlinearly enhanced electromagnetic stabilization is much stronger than a 10%

effect, this approach is satisfactory in evaluating the performance of the quasilinear model at

nonzero β.
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Evaluation of 〈k2⊥〉

The use of the effective wavenumber 〈k2
⊥〉 over the binormal wavevector k2

y in Eq. (6.1) is

made to account for the extent of eigenmodes in the parallel direction, which connects different

kx values. It is the Φ2 weighted average of k2
x + k2

y. For ITG simulations with adiabatic

electrons, Φ2 dies off much faster than θ so 〈k2
⊥〉 converges very quickly in the number of

connected wavevectors–often only one is sufficient. With active electrons, however, electrons

(and thus Φ) form a radially narrow structure at the resonant surface, which corresponds to

an extended structure in the ballooning angle [65, 66]. For example, a plot of the unstable

mode structure in the x, z plane is given in Figure 6.1.

Figure 6.1: Φ structure of an ITG mode in the x, z plane from a simulation with active
electrons. There is a radially narrow structure at z = 0, which stems from the electrons at
the rational surface.

The corresponding ballooning structure is shown in Figure 6.2. It is visually evident that

the square of Φ (which becomes the denominator in 〈k2
⊥〉) converges rapidly. The figure also

shows the same function with the factor of θ present in Eq. (6.3). The integral of its square

would be utterly dominated by the tails, and may not even converge as resolution is increased.

This is not an issue in the turbulent case, as the turbulent viscosity narrows the modes by

acting as a k2 damping term, and as nonlinear simulations are converged at much lower kx

resolutions than are included in this figure.
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Figure 6.2: Ballooning Φ structure of an ITG mode (blue), compared with θΦ (orange),
which is used in Eq. (6.3).

To remedy the long tails, we tried several modifications. Manually trimming the structure

was not valid because it produced much different results between aggressive and conservative

trimming. ‘Censoring’ the rational surface by replacing the structure with the interpolation

between the edges could be justified as similar to nonlinear resonance broadening, however

the tail structure persisted after the replacement. Justified by the nonlinear damping, we

tried various levels of hyperdiffusion, but sufficient dissipation to remove the tails also affected

other properties of the unstable eigenmode.

There are gyrofluid quasilinear simulations which solve for mode structure assuming

a Gaussian shape (See Qualikiz references: [67, 68]). Fitting the mode structure with a

Gaussian produced unambiguous results but did not capture any of the mode broadening

with β.

Weighting the field line average by Φ4 produced very similar results to truncating the

mode structure to only include a single connection, and in the end we chose the truncation

as it is more similar to what is typically done.
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Quasilinear Transport Weight Normalization

Under the adiabatic electron approximation, n2
i (k) and Φ2(k) are related by a constant factor

(which is a different constant only at ky = kz = 0). This is no longer true with nonzero β

and kinetic electrons. In some references [37, 63], wlin
k is normalized with the ion density

ni instead of Φ as in Eq. (6.1) or Ref. [32]. The use of Φ2 here was chosen to have more

applicable results to the majority of quasilinear transport predictions. Other energy-like

quantities for spectral weight and flux normalization are possible; however, accurate transport

predictions require that the linear proxies for these quantities reflect the nonlinear results. At

very high β, terms accounting for A‖ could be required, and the energy would be a natural

way to include both components of Φ and A‖. Any modification to the normalization should

be tested against the wide region of parameter space where quasilinear modeling is known to

produce accurate results.

Figure 6.3 shows the quasilinear transport weight with either normalization at low and

high β. Any constant multiple to this factor would be rolled into the calibration constant

and would not effect the transport prediction. However, the spectra and the dependence on

β do matter in the transport estimate. With n2
i the weight slightly decreases with β, while

with the Φ2 definition the weight increases ≈ 20%. Because of this, the Φ2 normalization will

predict 20% less transport reduction, which is why the transport agreement at nonzero β

here is worse than in Ref. [63].
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Figure 6.3: Comparison of Φ2 normalized (dots) and n2
i normalized (crosses) quasilinear

transport weights at low and high β (β = 0.01%: black, β = 0.75%: magenta).

Triplet Correlation Time

Equation (6.1) is a standard quasilinear model modified to include the element of saturation

physics which changes most strongly with β, the triplet correlation time τk,k′ . The choice of

k′ can be narrowed down to the zonal mode wavenumber usually responsible for the most

energy transfer. For the mCBC, the first three zonal wavevectors transport the most energy,

of which kx = 0.1 is chosen as a typical value, and is used in all cases, noting that the several

longest zonal-flow wavelengths produced similar β scalings for τk,k′ . It is possible to tailor

the characteristic k′ as a function of both ky and parameter set, which could be expected to

produce more accurate transport estimates. However, this requires at least one nonlinear

simulation per region of parameter space, lessening the advantages of quasilinear modeling.

To include the physics stemming from τk,k′ in quasilinear transport models, this quantity

should be constructed from information obtainable through linear simulations alone. This

implies using linear proxies for the nonlinear frequencies ω̂, which is justified when comparing

frequency broadening in nonlinear simulations with linear growth rates [69]. One proxy uses

the complex linear frequency of the unstable mode for ω̂k, sets the zonal-flow frequency

ω̂k′ = 0, and substitutes the complex frequency of the unstable mode at k − k′ for ω̂k−k′ , so

that τ lin
k,k′ = −i[ωk−k′ − ω∗k]−1.

A variety of improvements to this linear proxy are conceivable but are not tested here,
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such as a nonlinear correction to linear frequencies as done with eddy damping rates [70, 31].

A second possibility would seek to include a more realistic zonal-flow damping rate and

frequency. A third improvement sums over different eigenmodes for the mode at k − k′;

however, this may not be practical due to the large number of stable modes and the cost of

computing them, as well as the possibility of a continuum of stable modes close to resonance

where τ → ∞. Nonlinear resonance broadening could be expected to prevent the latter

possibility.

6.2 Quasilinear Results

Figure 6.4: Transport and quasilinear estimates for mCBC parameters as a function of β.
Heat flux: Qes

i (blue). Quasilinear without τ : C1

∑
k
wkγk
〈k2⊥〉

(orange). Quasilinear with τ :

C2

∑
k

wkγk
|τk,k′ |〈k2⊥,m〉

(red)

.

Nonlinear and quasilinear results for transport in the mCBC parameter case are shown in

Fig. 6.4. Increasing β from 0.01% to 0.75% reduces the actual, nonlinear flux by 95%, while

the quasilinear model without τk,k′ only predicts a 50% reduction. Owing to the change with

β of the nonlinear transfer efficiency, the model with τk,k′ captures a 75% reduction, which is

less than the reduction presented in Ref. [63], because Qes
i /Φ

2 increases with β while Qes
i /n

2
i

does not. Some under-prediction of stabilization is to be expected, because this model does

not include the increased stable mode excitation, discussed in Chapter 5, which reduces flux

and saturated amplitudes further. Note that typical statistical error bars for the nonlinear

fluxes are typically around 10% for this and the subsequent cases.
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Figure 6.5: Transport and quasilinear estimates for a) AUG , b) QA, and c) CMOD cases.
Heat flux: Qes

i (blue). Quasilinear without τ : C1

∑
k
wkγk
〈k2⊥〉

(orange). Quasilinear with τ :

C2

∑
k

wkγk
|τk,k′ |〈k2⊥〉

(red).

Figure 6.5 shows turbulent flux and quasilinear predictions for the AUG, QA, and CMOD

cases. In each, β nonlinearly reduces transport by around half. The quasilinear model without

τ lin
k,k′ overpredicts transport in all cases, capturing only between 10% (AUG) and 50% (CMOD)

of the transport reduction due to electromagnetic stabilization. The quasilinear transport

reduction is improved in each case with τ lin
k,k′ . The difference between the quasilinear model

and true flux is reduced between half-fold in the AUG case and completely in the CMOD

case.
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Figure 6.6: JET case (a) 75225 and (b) 73224 . ES is for β ≈ 0, while EM is for β 6= 0. FP
indicates the presence of fast ions. Heat flux: Qes

i (blue). Quasilinear without τ : C1

∑
k
wkγk
〈k2⊥〉

(orange). Quasilinear with τ : C2

∑
k

wkγk
|τk,k′ |〈k2⊥〉

(red)

.

Figure 6.6 shows transport and quasilinear predictions with and without fast ions and

electromagnetic effects for the JET 75225 and 73224 cases. For the 75225 case, quasilinear flux

without the τk,k′ factor underpredicts the transport reduction for fast ions, electromagnetic

effects, and the combination. The τk,k′ factor improves the accuracy for all of these situations.

With the 73224 case, fast ions reduce transport, but both quasilinear models overpredict

this reduction at β ≈ 0. Unlike the other cases, finite β increases nonlinear transport when

only thermal species are included, which is not well-captured in either quasilinear model. A

parameter case which is slightly modified from the 73224 discharge, including a different safety

factor, has largely different saturation physics because of a toroidal Alfvén eigenmode [6].

This could explain the failure of quasilinear models for that case. However, the combination of

both fast ions and electromagnetic effects results in a nearly complete reduction in transport,

which is approximately predicted by the quasilinear model without τk,k′ and very closely

predicted by the model with it.

An advantage of a reduced model like Eq. (6.1) is that reduced models allow the transport

reduction to be attributed to specific physical mechanisms. Table 6.1 shows the percent

change in the quasilinear flux estimate due to the effect of β on the various factors for the

cases where the quasilinear flux accurately predicts the transport reduction with β. The

quasilinear weight increases with β and generally opposes the transport reduction. The

strongest contributors to stabilization are γ decreasing and τk,k′ increasing. Mode width
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broadening, captured with 〈k2
⊥〉, only played a small part in the transport reduction in all

cases. Thus, the claim is justified that nonlinear electromagnetic stabilization, on top of

(quasi-)linear stabilization, occurs in large part due to enhanced energy transfer to stable

eigenmodes as captured by the triplet correlation time τ .

parameter case γ wk 〈k2
⊥〉 τk,k′

mCBC −50% +20% −20% −45%

AUG −35% +50% −5% −15%

CMOD −35% +15% −5% −35%

QA −20% +10% 0% −25%

JET 75225 NOFP −50% 0% −10% −55%

Table 6.1: For each parameter case: the percent change of the quasilinear transport prediction
of flux between the low- and high-β cases due to various factors. These are: growth rate γ,
quasilinear weight wk, mode width 〈k2

⊥〉, and triplet correlation time τk,k′ . These values are
calculated by substituting just the high-β factor of interest into the formula for the otherwise
low-β case. Because the spectrum can change, the total reduction does not exactly equal the
product of reductions due to each factor.

The increase in τ lin
k,k′ is due to a reduced dependence of γ on kx. This was investigated in

a fluid model and found to be due to changes in finite gyroradius effects with β [86].

6.3 Chapter Summary

The transport reduction for ITG turbulence as β is increased can be mostly explained by

better frequency matching between nonlinearly interacting modes, as measured by the triplet

correlation time τ . This is a fundamentally nonlinear phenomenon, but it arises due to changes

in linear physics. Quasilinear models can be modified in a straightforward, physics-based

way to include τ , which greatly increased their accuracy at nonzero β for a wide range of

parameter cases.

Quasilinear transport models can also be used to attribute changes in the nonlinear state

to the sum over contributions of individual factors. For all of the parameter cases where the

modified quasilinear model produced accurate results the largest contributions to stabilization

were the reduction in linear growth rate γ and increased triplet correlation time τ .
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7 conclusions and future work

7.1 Conclusions

This thesis is an investigation into the nonlinear, turbulent state which arises from the

ITG instability. In all the examined parameter cases, zonal flows form which saturate the

instability by transferring energy to higher-kx stable and unstable modes. The role of stable

eigenmodes was investigated by measuring their amplitudes in the turbulence, as well as

their direct effect on energy injection rate and heat flux. Those effects vary strongly between

parameter cases with different geometries and collisional dissipation levels, implying that

these parameters have a strong effect on the stable modes.

The nonlinear critical temperature-gradient upshift was examined in an attempt to find a

physics-based mechanism which could predict the magnitude of the shift. Direct stable mode

effects on energy injection are not responsible, as the normalized energy injection rate closely

tracks the unstable mode’s growth rate. It has been suggested that the nonlinear threshold

could be due to nonlinear eddy damping setting a limit on the zonal flow strength. Energy

transfer out of the ky = 0 wavenumbers increases with temperature gradient; however, the

transfer of Φ2 energy does not. This could limit the zonal flow strength, but it would require

that the linear terms at ky = 0 transform energy between the two forms. The fraction of

the zonal distribution function described by the RH residual was always close to 100%, and

the linear damping rate of the residual flow was different by around a factor of five between

above and below the nonlinear critical gradient. This does not seem to be the cause for the

transition, but this effect would be expected to strengthen the turbulence above the nonlinear

critical gradient.

Nonlinear electromagnetic stabilization was investigated and found to be largely due to

increased triplet correlation lifetime, which acts as a nonlinear energy transfer efficiency.

When incorporated in a standard quasilinear model, it reduced the error by 50-100% across

five parameter cases.

7.2 Future Work

There are a number of research topics which could be investigated to follow up the work in

this thesis, especially relating to stable mode and zonal flow physics.
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Stable Eigenmodes

In gyrokinetics, stable mode analysis in the eigenmode basis is rather difficult because of the

number of stable eigenmodes, the cost of complete eigenmode decompositions, the sensitivity

of individual eigenmodes to both physical input parameters and numerical effects1, the

complexity added by nonorthogonality, and the cost of doing projections on the turbulent

state. This is why a strong preference was given here to techniques which bypass these

difficulties. For example, the effective (nonlinear) growth rate can be compared to the

linear growth rate to measure energy injection modified by the stable eigenmodes present

in the turbulence, yet it does not require knowledge of any stable eigenmode structures or

properties. These same techniques can be repeated in a straightforward fashion with any type

of instability-driven microturbulence, and would provide insights into the saturation process

for those other instabilities. Individual stable eigenmodes can be identified in gyrokinetics

where they play a clear role, as when a stable microtearing mode contributes to electromagnetic

transport in ITG turbulence [19], but this is might be an exception rather than the norm.

For any system, there exists a maximum possible normalized energy injection rate, caused

by an associated perturbation, which is referred to the instantaneous optimal perturbation

[72]. Because this sets an upper bound on energy injection rate, it gives a limit to the

increased energy injection rate due to stable eigenmode effects/nonorthogonality [21]. The

instantaneous optimal is dependent on the linear operator alone. It would be illuminating

to evaluate and compare this rate to the most unstable eigenmode’s growth rate, as well as

to the effective growth rate in the turbulence across several experimentally-relevant cases.

The increased energy injection rate due to stable modes/nonorthogonality could be expected

to be stronger in cases where the optimal energy injection rate is much higher than that of

the linear eigenmode, while if there is very little difference between the rates then stable

eigenmodes could only decrease the energy injection rate.

Stable modes remove energy from the turbulence through both the drive term and the

dissipation term. In Chapter 3, it was shown that for the CBC, these effects have roughly

equal strengths. A straightforward followup would be to measure the breakdown between the

two terms across a range of collisionalities to investigate if the nature of energy dissipation

by stable modes changes with the parameter case. This could also be compared to results

from reduced fluid models and analytical theory.

1See Ref. [71], Figure 5.12. Two eigenmode decompositions with differing hyperdiffusivities
yield much different stable eigenmodes as well as amplitudes in the turbulence. However, the
heat flux and spectra are not modified much by the hyperdiffusivity
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Zonal Flows

Zonal flows are not prominent in all types of microturbulence, but have importance beyond

just ITG saturation. There are opportunities for theory with more realistic nonlinear drive

and damping as well as comparisons between theory and computation. Figure 4.12 reveals

that the zonal flow damping rate due to the linear terms can indirectly2 change as ωT i changes.

A straightforward followup would be to measure the effect of the individual linear terms on

Φ(ky = 0), which can be done by evaluating Φ[∂g/∂t|term] in the gyrokinetic code.

There is a simple model of zonal flow excitation which could be tested computationally.

Electrostatic potential is nonlinearly transferred to the ky = 0 wavenumbers, where it decays

through GAM damping to the more weakly damped RH residual. The fraction of each in

the turbulence can be inferred from their relative damping rates from theory. It would be

revealing to compare this simple model with the actual value from a nonlinear simulation, as

the theory both lacks a realistic nonlinear drive and nonlinear eddy damping.

Because the field energy term in Eq. (2.24) is nonlinearly conserved, it could be expected

that unstable modes with a higher fraction of field energy to entropy-like energy could drive

zonal flows more efficiently. This could be studied by finding a parameter which affects the

ratio, and conducting a secondary instability analysis to determine zonal flow growth rates.

If zonal flow growth rates correlate with the field energy fraction, it supports this hypothesis.

The range in ωT i of the Dimits shift depends on geometry [52]. It could be investigated if

this is because the RH residual flow proportion also depends on geometry.

The distinction between the true zonal flow (which has no parallel structure) and the

ky = 0 flow was not made in this thesis. There is still a question of how much the kz 6= 0

component of the flow at ky = 0 is responsible for nonlinear energy transfer. This distinction

could be studied by decomposing the ky = 0 flow in the nonlinear energy transfer diagnostic

in Gene into a flux-surface-averaged part and a remainder, and measuring the energy transfer

breakdown that way. This also ties into energy transfer by the GAM, as the GAM oscillation

has structure along the field line.

2This must be an indirect effect, as the linear terms with ωT i are zero at ky = 0. The
difference must lie in the nonlinearity which sets the ky = 0 distribution function in the
turbulence.
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Coupling coefficients

The nonlinear coupling coefficient investigation in Chapter 5 predicted the strong effect

that higher-kx zonal flows transfer a larger fraction of energy to stable eigenmodes, while

incorrectly predicting a much weaker effect that energy to stable modes would decrease

with β. The failure with β could be because the coupling coefficient was only approximate3,

because it left out phase-matching effects, or because it was only measuring the coupling

coefficient to the unstable mode at higher-kx. Each of these could be addressed in a more

accurate manner, and if accurate, this analysis would reveal each effect’s importance. The

coupling coefficients could then be used to investigate why stable mode fraction varied so

much between the different parameter cases in Chapter 5. Such analyses could then be used

to improve the predictive capabilities of reduced models across wide varieties of parameter

space.

3The coupling coefficient in Chapter 5 was for transfer of entropy-like energy, left out the
Bessel function in the gyroaverage, and assumed a kz = 0 structure for the ky = 0 flow.
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a appendix: parameter cases

We used a variety of parameter sets unstable to ITG. These include some parameter sets

which are modified from the Cyclone Base Case (CBC), which is from an idealized D-IIID

equilibrium [42], as well as sets from a quasi-axisymmetric stellarator equilibrium (QA), and

equilibria that model discharges from the experiments ASDEX Upgrade (AUG), JET, and

Alcator CMOD (CMOD).

Selected simulation parameters for the cases are provided in tables. Lists enclosed with

curly brackets denote scans. Further information is provided on a case by case basis in the

following paragraphs. Most of these parameter cases are in published papers; references

are in the individual descriptions. Definitions of resolution quantities are in Table A.1.

The resolutions and box sizes are provided in Table A.2. The geometry type, safety factor,

magnetic shear, αMHD = −q2R(dβ/dr) and inverse aspect ratio ε = r/R are provided in

Table A.3. The β values, normalized gradients of ion temperature, electron temperature, and

electron density, are given in Table A.4. Some of these cases have multiple ion species, in

which case the dominant species is the one reported in the table and detailed information is

given in the individual description, as well as in the references.

Parameter Definition

Lx Radial box size

Ly Binormal box size

nx Radial resolution

nky Binormal wavenumber resolution

nz Parallel resolution

nv Parallel velocity resolution

nµ Magnetic moment resolution

Table A.1: Definitions of resolution and box size quantities.
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case Lx Ly nx nky nz nv nµ

CBC-DIMITS 75.3 125.7 128 16 24 48 8

INC-GRAD 125.6 125.7 192 16 24 48 8

mCBC 150.7 125.7 128 16 24 48 8

AUG 97.3 133.8 256 48 32 32 16

JET 75225 280.7 125.7 256 32 32 48 12

JET 73224 175.3 125.7 192 48 24 32 8

QA 182 62.8 128 24 128 48 8

CMOD 120 125.6 256 24 32 32 16

Table A.2: Box size and resolutions for the various parameter cases.

case geometry q0 ŝ αMHD ε

CBC-DIMITS ŝ− α 1.4 0.796 0 0.18

INC-GRAD ŝ− α 1.4 0.796 0 0.18

mCBC ŝ− α 1.4 0.796 0 0.18

AUG tracer 1.48 1.31 0 0.191

JET 75225 miller 1.14 0.159 0.62 0.116

JET 73224 miller 1.74 0.523 0.39 0.121

QA gist 1.8 -0.549 N.A. 0.16

CMOD miller 1.166 1.133 0.128 0.19

Table A.3: Geometry type and geometric coefficients for the parameter cases. Additional
miller parameters are left out for brevity. Miller parameters for the JET cases are in Refs.
[73, 74], while for the CMOD case are in the text.
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case β/% ωT i ωT e ωne

CBC-DIMITS 0 {4.5,5.0,5.5,6.0,6.5} N.A. 2.2

INC-GRAD 0 {7,8,9,10,11} N.A. 2.2

mCBC {0.01,0.25,0.5,0.75} {6,7,8} 0 1

AUG {0.81,1.5} 5.76 5.76 0.61

JET 75225 {0.001,1.75} 8.1 4.23 2.94

JET 73224 {0.001,0.33} 11.1 6.96 1.31

QA {0.05,1} 3 1 1

CMOD {0.01,1.3} 8.42 6.04 0.82

Table A.4: Electron β values and normalized gradients for the various parameter cases.

Chapter 3 and Chapter 4, which study ITG saturation and the Dimits shift respectively,

used results from the CBC-DIMITS and the INC-GRAD scans. These parameter cases are

the CBC with a modified temperature gradient. They only model the ion species and use

the adiabatic electron approximation. In the Dimits regime, radial-box-scale zonal flows

dominated energy transfer. Convergence in the Dimits regime was tested with a ωT i = 5 run

with twice the box size; the same zonal flow wavenumber still dominated. However, for future

work, larger box sizes should be preferred to avoid artificial numerical effects.

The mCBC scan was used in Chapter 5 to investigate ITG at nonzero β. It has active

electrons and is taken from Ref. [57]. This scan changes the electron temperature and

density gradients compared to the standard CBC. If this is not done, other electromagnetic

instabilities are destabilized which mixes the effects of β on ITG and on the other modes.

Chapter 5 also included parameter scans modeled after AUG shot 29197 and JET shot

75225. The AUG β scan uses geometry and profile data from a reconstruction, with the

same parameters as in Ref. [75]. Experimentally, this case corresponds to a β scan where an

attempt was made to vary β with other normalized parameters unchanged. AUG has major

and minor radii of 1.65 and 0.65 meters, respectively. Shot 29197 had an on-axis toroidal

field of 2.17 T, a plasma current of 0.94 MA and had an on-axis temperature around 4keV

for both ions and electrons. Unlike the mCBC, this simulation case has realistic geometry,

impurity species, external vE×B and collisions. In addition to ITG modes, it is also unstable

to microtearing modes (MTM). As stable modes are ultimately driven by unstable modes,

competing unstable eigenmodes could be expected to involve different saturation physics than

the cases with a single unstable eigenmode per wavevector. Growth rates and frequencies for

both eigenmodes are shown in Figure A.1.
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Figure A.1: Growth rates and frequencies for both eigenmodes of the AUG case as a function
of ky

Fast ions stabilize ITG [76], and must be included for accurate simulations of some JET

discharges. The JET runs used here are from shot 73224, which was part of an investigation

of ion profile stiffness with plasma rotation and low magnetic shear [77], and shot 75225,

which is from an improved-confinement regime [78]. Each case has been used previously

to study fast-ion effects in JET discharges [73, 74]. Shot 73224 is a special case, in that

the stabilization is dominated by the fast ion contribution, and has been studied elsewhere

[6]. Physically, JET has major radius of 3 m and a minor radius of 1.25 m. The 75225

shot had an on-axis toroidal field of 2T, a current of 1.7MA, and a q95 of 3.94. The on-axis

electron density was 3.24 1019m−3, while the ion and electron temperatures were 10 keV and

5 keV respectively. For the purpose of these studies, both JET cases are modified to remove

external vE×B shearing, and made into four cases by using each combination of high/low β

with/without fast ions. When fast ions are removed, the ion density gradients were changed

to preserve ambipolarity in the gradients. The cases differ strongly by their shear values.

Growth rates and frequencies of the ITG mode for the JET 75225 parameter case are shown

in Figure A.2. Flux time traces for each run are shown in Figure A.3.
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Figure A.2: Growth rates γ and frequencies of the ITG mode in the JET 75225 case as a
function of ky

Figure A.3: Time traces of flux for both β values of 75225, with and without fast ions.

The QA case affords the opportunity to test quasilinear models in a 3D geometry, which

affects mode structure and in turn mode coupling. Quasi-axisymmetry refers to a family of

quasi-symmetric stellarator configurations in which a (m 6= 0, n = 0) mode dominates the

equilibrium magnetic spectrum, where m and n are poloidal and toroidal mode numbers
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respectively. In this case m = 1, n = 0 [79]. The specific QA configuration used is the baseline

NCSX geometry [80, 81]. The NCSX equilibrium has a total normalized plasma pressure

β ≈ 4%, three field periods, and mean magnetic field 〈B〉 ≈ 1.6 T.

We also tested quasilinear models using a parameter case based on an Alcator CMOD

run. This discharge was part of a CMOD experiment with reduced toroidal fields to test

ITER-like scenarios at relevant βN = 1.8 and Greenwald fraction fGW > 0.5 with dominant

electron heating and low torque (via ICRH) [82]. CMOD has major and minor radii of

0.68 and 0.22 m, respectively. The modeled shot had an on-axis toroidal field of 2.6T, a

plasma current of 0.6MA and a q95 around 3. On-axis densities were around 3 1020m−3,

and ion and electron temperatures were both around 1.5keV. The original simulation work

[83] was motivated as validation with ITER-like parameters. Using Miller geometry and

Gene units, the geometry factors are as follows: major radius R0/a = 3.163, minor radius

r0/a = 0.6, elongation κ = 1.35, triangularity δ = 0.156, squareness ζ = −0.011, and their

shears, respectively: sκ = 0.104, sδ = 0.206, sζ = −0.03. The major radius shift of the flux

surface was dr/dR = −0.151, and ρ∗ = ρref/Lref = 0.005. The Miller geometry quantities are

defined in Ref. [84]. These runs had 3 species, deuterium (ωn = 0.26, ωT = 2.66, T0 = 0.99,

n0 = 0.91), boron (ωn = 0.26, ωT = 2.64, T0 = 0.99, n0 = 0.005), and electrons (ωn = 0.26,

ωT = 1.91, T0 = 1, n0 = 1). The collision frequency (see Ref. [85]) was νc = 0.002. The

growth rate and frequency spectrum for the two β values are shown in Figure A.4.

Figure A.4: Growth rates and frequencies for both eigenmodes of the CMOD case as a
function of ky
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