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Ahstract

n this dissertation the possibility that chaos and simple determinism are governing the dynamics of
reversed field pisch (RFP) plasmas is investigated. To properly assess this possibility, data from hoth
numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques
is usad to identify low dimensional chaos in the data. These tools include phase portraits and Poincaré
sections, correlation dimensian, the spectrum of Lyapunov exponents and short term predictabifity. in
addition. ronlingar noise reduction techniques are applied to the experimentat data in an attempt to

axtract any undertying deterministic dynamigs.

Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which
models global REP dynamics, and the dissipative trapped electron mode (DTEM) mode, which models
drift wave turbutence. Data from both simulations show strang indications of low dimensional chaos
and simple determinism:. Experimental data were obtained from the Madison Symmetric Torus RFP and
consist of & wite array of both global and local diagnostic signals. Nene of the signais shows any
indication of fow dimensional chaos or other simple determinism. Moreover, most of the analysis tools
indicate the experimentat systerm is very high dimensional with properties similar to noise. Nonlinear

noise reduction is unsuccessful at extracting an underlying deterministic system.
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1. __Introducticn

Chaos: °...ceterministic chacs denctes the irregular or chaotic motion which is
generated by nonlingar systems whose dyramical laws determine the gvolution of &

state of the system ...

Figure 1.1 compares three time series. One of the traces is data produced by a numerical random
nursber generator, one trace is data from one of the standard diagnostics on the Madison Symmetric
Torus (MST), and the third is generated from a simple deterministic equation. it is rot chvious which
signal/s isfare deterministic simply from inspection. Moreover, the data from the deterministic system
is indistinguishable from random data using most conventicnal tests for randomness. Advances in
nontinear analysis techniques within the last decade however, now maxe it possible to distinguish the
two using only their time records. It is the goal of the work presented in this dissertation to establish
whether the signal from the MST may also be governed by simpie deterministic eguations or is better

described as a stochastic process.
11.  Briof History of Nonlinear Dynamies

Compiex behavior in @ system has waditionally required complex systems of equations to describe this
fehavior. Work over the past 30 years or so has demonstrated that extraordinarily rich and complex
hehavior can result from triviatly simple systems of eguations. The term “chaos” first came intc use n
the late ‘70s. However, long before this the dynamics of nonlinear equations of motion were explored
by a few hardy souls. The mast influential of these, the likely father of nonlinear dynamics, was Heari
Poincaré [1854-1917). His work stressed global, qualitative understanding of 3 system's dynamics.
Dther important characters during this early analvtical peried include A M. Lyapurov and G.D. Birkhoff.
Most of this work remained largely unnoticed by the general scientific community for much of this

century. The advent of electronic computers helped promote the field. In 1961, Edward Lorenz, using a

i
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Figure 1.1. Depicted are three time traces, one from a known chaotic system, one from Gaussian
distributed random numbers and one is & maasurement signal from an MST discharge.

primitive digital computer, accidentally discovered the sensitivity to initial conditions of a simple set of
nonfinear equations used to modet atmaospheric convestion. This set of equations now bears his name.
Using computer graphics B. Mandeibrot “discovered” the fractal set which bears his name. M.J.
Feigenbaurm discovered 2 number of features universally present in a certain class of chaotic maps.
Around 1980 work began to turn towards identifying chaotic systems and quantifying the degree of

chaas, which is where we stand now.

This work has led to the identification of several real systems which are governed by low dimensional

i
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chactic dvnamics. Low dimansional chaos and simple determinis:m have bean identified in the electrical
activity of the brain, hearibeats, the pattern of childhood epidemics and stellar putsar act;’vity.z Equally
important are those studies which find no evidence of a low chactic dimension or simple determinism.

A good example is the business cycle.d
1.2.  Chaos in Plasmas

The search for evidence of chaos in plasmas has yielded mixed results. A wide range of chaotic
arocesses has been reported, including the transition o turbulence and the fefmation of magnetic
isiands.? Severat groups have reported identifying chaos and period doubling behavior in glow
discharges and pulsed machines. 3578 Low dimensional chaos has alsc been identified with drift wave
wrbutenca both in experiment and simulations. 1% In toroidal, fusion saliber devices chaos has been
reported in low frequeney Mimav ascillations in the DITE tokamak.!! In TFTR fow dimensional chaos
has been reported in density fuctuations measured by $0; laser scattering. ' The dimension of the
system is wavenumber dependent. Finally, chaos of dimension near 7 has been reported in broadband
(6-100kHz) osciflations of both the poloidal and toroidal magnetic fields in the HBTX1A reversed field
pinch.B in contrast, a group measuring broadband magnetic and density fluctuations in the TCA

tokamak finds no evidence of low dimensional chaos.

These results provide a starting point for a better understanding of plasma processes using the tools of
nonlinear dynamics. Most of these results were obiained nearly a decade ago when these tools were
new or nonexistent. In the intervening time a batter understanding of the application of these methods
exists and several ngw technigues for identifying low dimensional chaos have been developed. Initial
reports af chaos in other systems have been reexamined and fourd to be tacking. Without being
specific, 1 think in light of this new understanding that several of the reporied positive results may not

stand Up to MmOore Figorous tests.

The Madison Symmetric Torus {MST) raversed field pinch (RFP) provides a particularly good instrument

for investigations in nontinear dynaraics in fusion plasmas. it is a farge toroidal confinement device with

4

discharges characierized by & spontaneous reversal of the toroidal magnetic field at the edge of the
plasma. Discharges axhibit broadband fluctuations in most measured quantities. However, most of the
fuctuation power - 90%j is concentrated in a few long wavelength modes. We beliove we understand
the mechanmism behind these tearing mode fluctuations weil, both on the basis of experimental
evidence and from numerical simulations using magnetohydrodyramic (MHD) models of RFP
discharges. Bispectal analysis of magnetic fluctuations from experiment and simulations indicate a
three wave coupling process, Hinking two m =1 modes te an m =2 mode.'® The point is, that although
the signals appear stachastic, the principal dynamics of the device can be modeled computationally.

Hence, they may be the result of a chaotic or other simple deterministic process.

- One of the major obstacles in achieving viable thermonutlear power is the fluctuation-driven particle

and energy transport. The past decade has seen a remendous effort towards corelating experimentally
absarved transport with hydrodynamic medels, Drift wave models in particular have shown promise
towards explaining the anomalous ion heat foss in tokamaks. Studies of these models indicate that the
dynamics are low dimensional, despite the large number of interacting modes in the system.
Essentially, a system of 4x10% equations, one for each mods, can be reduced to a system with a
topological dimension of less than 3.18 This is & very important result: Although the criginal phase
space is 1000 dimensicnal the dynamics of the system contract 0 a three dimensional object, an
gnormous simpliication. This identification of a low dimensional attractor could mean & significant
reduction in the complexity of the models needed to accurately describe the system. The applicahility of
drift wave models o BFP transport is more tenuous. However, the models are sufficiently general that

many of the resulis are relevant to REP physics.

Once chaos has been identified in a system, one is led to ask, aside from purely academic interest,
what goad is it? Three benefits can immediately be cited. The most useful and ambiticus chjective
wauld be to simpify the equations describing the system. A plasma comprised of & particles can be

described by O{BN] ordinary differential equations. MHD simplifies this by restricting the system to a
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set of partial differential equations with only & finite number of medes. Nonlinear processes
considerably complicate this approach, yet MHD has been particularly successful in describing the
essentials of plasma dynamics. i, however, a low dimensional chaotic attractor is identified, a lower
bound can be placed on the number of equations needed to adequately describe the system. Empirical
evidence suggests that this number scales in some fashion with the dimension of the system, although
ra concrete law exists. With such a set of equations, one could determine the parameter space for best

confinement or heating, determine scaling laws, etc.

An objective in harmessing fusion power is cantol of the system. Cne method of control which has
recently received a lot of attention is the phenomenon of entrainment. 6171839 A important example
of entrainmest is the action of a pacemaker on the heart. Chaotic systems are densely interwaven with
nearby periodie orkits. Small, periedic perturbations can semetime foree a system 10 oscillate around a
periodic trajectory rather than its natural chatic one. The converse is also trug, where it may be the
chiective to drive a system away from an undesirable stebie trajectory. The applicability of entrainment
to plasma systems is untested, however it could have impertant consequences in controlling the growth

of certain unstable modes.

A final benefit is short term predictabifity. # the system shows avidence of low dimensional chaos, then
the system is deterministic, which implies thet it has shert term predictability. As will be discussed,
prediction is possible even without the governing anuations. This property may be used in conjunction
with the ahove in order to contral the system, and may be particutarly sppiicable to RFP plasmas. Most
RFP discharges ars characterized by aperiodic fiux jumps: bursts of magnetic activity. These flux jumps
are both a boon and a bane. During flux jump activity the ions are strongly heated. However, transport
is also enhanced, resulting in tremendous particle and energy loss. In crder to improve confinement, it
seems desitable to control the most severe of these flux jumps. Assuming there is & chaotic process
governing this discharge behavior, one could nredict the next fiux jump occurrence a short time it the

future and possibly use feedback to suppress it.

6
Returning from fantasy Jand, the first task is simply to identify low dimensional chaos and simple
detesminism in MST discharges. Despite simuiations which suggest thet chaos is preseat in RFP
discharges, in experimental data it siudes all tests for identification. As will be discussed in this
dissertation, identification is particularly sensitive to the presence of noise and the stationarity of the
system. This is additionally complicated by the fact that standard lingar filtering techniques are not
appropriate to signals generated by chaotic systems. Thus, aithough low dimensionai chaos may govern

MST discharges, it proved elusive to the analysis techniques.

This dissertation is organized as foliows: Chapter two presents a basic introduction to the jargon of
nonlingar dynamies and the essentials of the analysis techniques used on the data. Chapter thiee
shows the application of these technigues to a few known systems for comparison with the results
presented fater. Chapier four deals with the complisations of znalyzing unknown data sets, in particular
data which may be noise corrupted. Chapter five presents the resuits from analysis of two nymerical
simulations. The DEBS code simulates RFF plasmas, and is thought to model the dominant tearing
mode fluctuations correctly. The dissipative irapped electron mode {DTEM) model is designed to mode!
drift wave turbutence thought to be a major congribuior to transport in the core of tokamaks. Chapter six
presents the results of analysis of experimental data frem the MST. The final chapter presents

corclusions and future perspectives.



2 ntial Chaes Th

in light of the fact that chaas is a relatively new field of study | present here a brief overview of the
essentials of nonlinear dynamics. The concepts presented here are the foundation of the rest of the
dissertation. For a more detaiied treatment, the reader is invited to refer to the bihlicgraphy presenied

at the end of the dissertation.
2i. Chactic Systems
211, Maps

The simplest form of equations exhibiting chaos is the class of maps: x;.1=f (x,). An example i the

shift map given by:
' xpy=2%  modl . {2.1)

Figure 2.1 shows the behavior of this system as time progresses. The time series shows erratic,
random-iike behavior with no detectable pattern. The signal generated by this map would pass most
tests for uniformly distributed random numbers: a histogram plot is essentially flat, as is the power

spectrum,

Not all maps, howaver, exhibit chaotic behavior. For example. the map
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Figure 2.1. Time evolution of the shift map for the first 100 points. The system is difficult to distinguish
from random white noise.

8
Xpi=x+a  modl 2.2}

is nat chaotic. in order for an equation to be chaotic the system must exhibit some form of "mixing”
behavior. The equation {2.2) does not mix in the sense that two neighboring points witl always be
spatially close togather as the system evolves. For the shift map eq. (2.1) however, peints quickly
separate within the confines of the system. This mixing usually manifests itself as stretching and
folding. The system expands in cne direction, while folding back on itsslf at the same time. Figure 2.2
demonstrates this bahavior for the shift map. The factor of Z stretches the system, white mod 1 folds

the range back onto the domain, effectively mixing the system.

Critical in this typs of system is that there exists 4 set of unstable points which map back to themselves
atter a finite number of ierations. Any point satisfying x = p /2™, where p and m are integers, will be
mapped onto G and remain there. These points are unstable in the sense that a small perturbation will
destroy this mapping and resutt in a chaotic mapping instead. Although there are an infinite number of
such points, they comprise a set of measure zero; the likelihood of arbitrarily choosing any one is
infinitesimally small. Nenetheless it is this density of non-chactic initial conditions which guarantees

effective mixing. These points effectively work as rocks in the flow of the system.m

In order to ilustrate the more general behavior of chaotic systems | will use a system known as the

4
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Figure 2.2 The schematic itlustrates the stretching and foiding of & system which resulis in chaotie
dynamics. The two black dots represent points initially close which separate exponentially.




g
jogistic map. This map was first developed as a mode! for population growth of a species constrained
by finite availabie resources. The map is given by:

Xppy = axg{l-x} (2.3]
ais ealled the control parameter. Changing the value of the control parameter dramatically changes the
dynamics of the system, as shown in Fig. 2.3. For a < 3 the system approaches a fixed vaiue. Fora
slightly greater than 3, the system exhibils periodic behavior. This spontanecus transition to periodic
behavior is known as peried doubfing. Fora = 1+\/§ the period two solutions again double in pericd 1o
give stable period 4 solutions. This pericd doubling behavior continues as a is increased until a =
3.569.. ., at which point the period becomes infinite. The solution is chaotic, exhibiting random Jike, non
repeating behavior. The pericd doubling behavior can be made tlearer by plotling the limiting solutions
of x versus the control parametar @, as in Fig 2.4. One can graphically see why points where pericd

doubling oocurs are known as pitchfork bifurcations.

An important feature of chaotic dynamics is the sensitivity 1o initial conditions. Points spatially close

i
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Figure 2.3 The time behavior of the logistic map for 3 values of the control parameter a. The system
exhihits stable, periodic and chaotic behavicr.
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Figure 2.4 The siable solutions of the logistic map plotted as & function of the control paremeter a. The
pichfork bifurcations are clearly visible. There is a period 3 window distinguishable at a=3.8.

together initially will, on average, diverge exponentially i fime within the confines of the system. This
phencmena is illustrated in Fig. 2.5. Two points separated by a distance of 1x10°% have gompletely
uncorrelated behavior after about 15 iterations of the lagistic map. This sensitivity to initial conditions
has become the standard criterion for chactic behavior. It is characterized by the Lyapunov exponent to

be discussed later.

Although the logistic map provides an excellent iliustration of several of the basic properties of chagtic
systems, both it and the shift map are examples of symplectic chaos. This is a term applied spacifically

i maps which denotes systems which have no dissipation. In this dissertation | wilt be concerned with

PR TN SUCYO SO SO0 S N TN SN ST W SRR WA ST U T OOT

18 20 25 30
t

Figure 2.5. The evolution of the logistic map for two closely spaced initial conditions. This illustrates
the exponential divergence of chaotic rajectories.
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dissipative dynamical systems: systems whose phase space volume contracts in time. Hamiltonian
systems, though they may be chaotic, have phase space volumes which do not zontract. As such, there

is no region of space, an atiractor, 10 which nearby frajsctories of the system evalve.

An example of a dissipative two dimensional map exhibiting chaos is the Hénen map introduced by M.
Hénon in 1976.2" it is defined by

X1 = 1”“,2 +¥r

Y1 = by (2.4
The map is a quadratic map very similar to the logistic map. ¥ & =0, a = G, the map can in fact be
transformed into the logistic map. For z and & both small and positive the map exhibits the same pericd
doubting behavior in two space as a is increased. For large enough values of @, and b <1, fforb>1
trajectories are unbounded) the map has chaotic soiutions. Solutions of the map in the x y plane are
plotied in figure 2.5. The object depicted is known as a sfrange attractor. The attractor is embedded on
the inertial manifold which is the contiguous Tegion of space on which al! trajectories tie. As shawn in
the right half of figure 2.6, the attractor shows self similar structure on smail scales, a property typieal

of fractals. Fractals are geometic objests which usually have a nor-integer dimension.

05 0.22
0217,
0.25 -
02,
0.19
= 0 N -
0.18
025 L 017
P 018
—'/
£5 i ! ! E 0.15 '
45 1 05 0 05 1 15 075 08 085 08 0%
X

Figure 2.6. The two dimensional Hénon map for a = 1.3 and & = 0.35. The right figure shows an
axpanded scale detailing the seff similar fractal structure of the strange attractor.
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The same stretching and folding thal takes place in Hamiltonian systems is evident in dissipative
systems. However, because they are dissipative, the stretshing takes place in only one dimension,
while the total phase space volume decreases. An illustration of the process for the Hénon equation is
given in figure 2.7. It shows the action of two successive iterations of the Hénon eguations on a circle
of initial conditions. The stretching and folding of the circle are evident, as is the overali volume

decrease.
21.2. Ordinary Differential Equations and Strange Attractors

Although maps provide simple systems for numerical studies of chaos, they are inappropriate models
for most real systems because they are not continuous. Real systems are usually described by systems
of differential equations. The chaotic behavior evident in one and two dimensional maps results from
the fact that the systems do not have o deform continuously from one state to the next in time,
Mapping allows the systers to “jump” from one state to the next state, avoiding the intervening points.
In actuality maps are infinite dimensional systems. The restriction that the system be continuoys in

time severely limits the dynamics in ene and two dimensions.

A system & == Flx.z,c), whers x is an d dimensional vector and ¢ is & set of k contro! parameters, will

have an orbit or trajectory through the d dimensional space describing its motion 2s the system

Figure 2.7. The action of two successive iterations of the Hénon equations on a circle. The stretching
and folding of the circle are evident, as is the overall voiume decrease,
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progresses with Sme. (In kseping with current literature, bold notation s nio longer uysed to indicate
vectars.) For any autonomous system, one which does not depend explicitly on time, this trajectory

carnot cross ftself in space. Were the case otherwise, orbits would not be unigue.

# a system of ODEs is confined to one dimension, regardless of how complex the eguations, it can
exhibit only one of two behaviors as time progresses. The trajectory of the system is gither atiracted 10
a point, krown a5 & fixed point (some authors use the terms critica! peint of equilibrium point} usually
dencted by x*, or the trajectory tends towards infinity. The system may have several fixed points, each
with its own basin of aftraction which defines the set of points, the limit of whose tajectory is the
fixed point. A simple example would be radioactive decay, x = —ax. which has a fixed point at x* = 0,

though x* is only attainabie after an infinite tme.

Fixed points may be either stable or unstable. Any {noise free} system which finds itse!f at the fixed
point will remain there forever. However nearby points will either tend towards the fixed point, in
which case the fixed point is stabla, or away from the fixed point, making it unstable. There is a third
class of fixed points catled semi-stabie or saddle peints where the fixed point is stable when

approached from one direction and unstable when approached from the other.

In two dimensions the additional degree of freadom aliows for a third type of behavior: the limit cycle.
A limit cycle is essentially a two dimensional fixed point. Any system that finds itself on the limit cycle
wilt remain on that trajectory. As with fixed points, limit cycles may be either stable, unstable or semi-
stable depending on the trajectory of nearby orbits. The van der Pol equations x=yv.
y=¢fl —xz)y — x, provide an exasmple of 2 fimit cycle for smali & The fimit eycle is stable fore>G,

and unsiable for £ < 9. An exampie of a stable ¢ycle is shown in figure 2.8,

In three dimensions the dysamics become far more rich. The simplest extension of the dynamics of one
and two dimensions is the two torus. This is the superposition of twe limit cycles in perpandicutar
dirgctions, which spiral around & torus. If the frequencies are commensurate, the trajectory is pericdic.

They need not be commensurate though, and the trajestery will caver the torus in the fimit of infinite
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Figure 2.8. A stable Jimit cycle generated by the van der Po! equations with & = 0.5. The trajsctofy of
nearby orbits is depicted as they spiral onto the limitcycle.

time. An example of a system whose trajectory is confined 1o & two tosus is 2 double pendulum —a
mass attached to a ridged rod in tum attached o & second mass ang rod — confined to a plang. The
equations of motien are:

.2

@y = My

m}i?% + mgrz
Vi

. @1
g = 2
2
F=opz ; i=anlr—4£) {2.5)

where r = x2+y2, m are the masses of the pendulums, ¢ the lengths and @ the frequencies of
oseillation. Note that this system has no dissipation, and hence the torus on which the rajectory lies is

not an atiractor.

The novel situation in three dimensions is the strange attractor. A strange sitractor shows no periodic
behavior. For maps, as with the Hénon map above {fig. Z.8), this means the attracting set becomas an
infinite set of discrete points. [The set is finite for periodic solutions.} For ODEs, however, ali

trajectories, periodic o chagtic, must be continuous. The trajsctory of & strange atiractor thus traces
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out a complicated pattern in the three space, never crassing ftself, but stil remaining confined to a
finite reginn. The trajectory has infinite length, yet never fills the bounded space 1t occupies. I addition
to infinite period, strange attractors exhibit fractal structure; they are self similar in the limit of small

scaies.

A classic exampls of a strange attractor is the Lorenz attractor. The attractor is generated by a set of
squations introduced in 1963 by Edward Lorenz as simpie modst of Rayleigh-Benard convection in the

atmasphere.zz They are:
i=ofy—=xl
y=xlr—z-y
t=xy—bz (2.8)

The system will be described in more detail in chapter 3. A 2D projection of the attractor is plotted in
figure 29 As can be seen in the figuze, the orbit spends most of its time around either of a pair of
conjugate unstable fixed points. The trajectory is extremely sensitive to initial conditions. However, any
set of initial conditions within the basin of the attractor will quickly converge onte the inertial manifold
generating an attractor similar to the cne depicted. As with the Hénen map, the structure is fractal, and

the seif similarity is evident with sufficient magnification.

Z

y
Figure 2.9. The Lorenz strange attractor,

22, Quantifying Chaos
2.2.1. Phase Delay Plots and Poincaré Sections

The definition of chaos given in the introduction is a rather gualitative one. On simple inspection a
sequence of values may appear “chaotic”, but this is not sufficient to establish that the signal is
chaotic. One needs to be able to show that the signal i3 a} deterministic, and b} not pericdic. What is
needed is a way %o guantify chaos. Hopefuly one can, on the basis of this, estimate how many
eguations are needed Lo describe the essential dynamics of the system, and ultimately to reproduce

these eguations.

One methed of determining whether a system exhibits low dimensional chaos was ailuded o in te
previous sections. Simply plotting the trajectory ins space can indicate chaos by visual inspection. H the
trajectory spirals to a fixed point or limit cycle, chaos can be ruled out. If the orbit is bounded but naver

closes, chaos is a possibitity.

In gereral, one does not have access to all the independent variables of the system, and for
experimental data, it may not at all be clear which variables are independent. An altemnative is to plot a
single variable in a phase-delay plot. One plots x [} versus x{r+z) versus x{r42¢), etc. whers T is some
apprepriately chosen time constant. F. Takens has proven that for chaotic systems, a single variable will
capture all the relevant dynamics of the system subject to certain conditions.?® Specifically, given a
system Fif} = [x{2), ¥i#), zi2), .. .1 there is a diffeomorphism — & differentizble, reversible mapping — from
the manifold containing the attractor to that containing the attractor in delayed coordinates Xiz) =
[x(8), xlee ), {e+29, ..., de+mal], 50 long as m 2 24+, where 4 is the dimension containing the
original attractor. The m dimension space is krown as the embedding space of the attracior, The
necassity of 2d+1 components is to insure that the embedding space is orthagonal. Often values of m

less than 24+1 suffice for proper recenstrustion of the original system.

Unfortynately, for systems with dimensions greater than two phase-delay plois are of limited use; the

projection of 8 four dimensiongl attractor onto a plane usually fooks fike a ball of wool. Another useful
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mathod of visualizing a chaotic system is the Poincaré section or puncture plot. The dimension of the
system can be reduced by one by passing a hyperplane through the orbit and marking the trajectory
each time it crosses the plane. This is schematically lustrated for three dimensions in fig. Z.10. Note
that a Peincaré section i distinctly different from strobing a time signat at regular intervals. In gensral,
strobing will ot reduce the dimension of the system unless one fortuitousty chooses a time ingrement
related 1o & natural fraquency of the system. Often Poincaré sections give strong indications of chaotie
behavior. The Takens theorem can of course be applied, and a single time record used for creating the
Poincaré section. A method for reducing the dimension by 2 using a “double” Poincaré section has been
developed for periodically driven systems.z"“ The methad does not appear o be generally applicable,

however.
222, Factals

One characteristic property of chaotic systems mentioned earfier is their geometric structure. For
strange attractors, this structure is self similer at small scales. Such objects are known as fractals, a
term coined by Mancelbrot to indicate the fact that the topological structure usually has a fractional
dimension.Z> The Hénon map, for example, has an atactor greater than dimension 1; however, it fails

ta fill a two dimensional space. Thus its fracial cimension is somewhere between 1and 2.

As an example of a simple fractal, consider the triadic Cantor set. It consists of a line segment from

which the middle third has been removed, and the middie third of the remaining two segments has

Figure 2.10. Schematic flustration of the process in creating @ Poingaré section of an attractor.
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been semoved, ad infinitum (see Fig. 2.11). The set is cbviously more than & simple collection of points
(dimensian G), but is not a complete line segment {dimension 1). s fractal dimension lies somewhere
hetween the two. A well known example of a more complex fractal structure is the boundary of the

Mandelbrot set. This set is generated by the equation:
Sy =xite 27)

where xand ¢ are complex. Al points that do not diverge are members of the set {see Fiyg. 2.1 IR
2.23. Spatia! Measures

Fractal structure has been identified and used to characterize a varisty of phenomena in nature, from
cloud shapes to coastlines. In order to be usefu! though, there must be a quantitative way 1o compute
the fractal dimension. The most Dasic and intuitive measure is the Hausdorff dimension, which
measures a fractal’s space filling abitity. One subdivides the region of space containing the fractal into
equal volume sub-regions and counts what fraction of the regions contain part of the fractal. Because
an ideal fractal is self-simiiar, as one continues to subdivide the region into smaller and smalier
volumes the fraction containing the fractal will approach a constant, One would expect Nir) o 3/r}P

in the limit of small 7. The Hausdorff dimension is then defined as:

Figure 2.11. The triadic Camtor set and Mandslbrot set are examples of fractals.
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Dp= ,
6 Sola/r (2.8)

where Vi is the nursber of hyperspheres or hypercubes of linear dimension 7 needet! te cover the

atiractor.

In the example above of the Cantor set, the fractal dimension is easily camputed analytically. In the first
step, 2 boxes of length 1/3 are needed. For the 21 successive step, 27 boxes of length {1/31" are

needed. Thus the fractal dimension of the Cantor setis Dg=1n 2" /In 3% = 0.631.

For most systers the Hausdorf dimension is not so straightforward to calculate. Additionally, rarely
does one have the gaverning equations to perform an analytical calculation. Typicaliy one measures a
time series record from one or a few of the system variables. In order to calculate the fractal dimension,
one must first embed the data n 2 space presumed to contain the dynamics of the system. This space
is then partitioned and the number of hypercubes containing peints is counted. If for several
embeddings the calculated dimension remains constant, this value can be assigned as the fractal
dimension. i, on the other hand, the atisactor continues to fill the space, the data must be assumed to
répresent a higher dimensional or possibly random system. in either case, computation of the Hausdorff
dimension is extremely computationally intensive, and other, simpler metheds have bean found to

estimate the fractal dimension.

For dynamical systems one can define a hierarchy of generalized fractal dimensions, Dy, each
characterizing different properties of the fractal geometry of the attractor 28 Given the region
containing the atwactor, subdivide it into celis. Count the number of points A; in each cell. The
prebabitity of finding & point in a given cell is then:

s = lim I )
P SN 129)

where N is the total number of points. From this one can define the fractal dimensions as:

i
¥ g
D, =lm L=
q ,-IE[]q—-T Inr (2.10)

when subdividing the zegion inta & celis. This defirition of dimension is formally equivalent to the free
energy from equilibrium thermodynamics. p; is the probability that a particle [point) of the system is in
enerqy state {box} £, and ¢ corresponds to the fnverse tamperature.] For g=0 this vields the Hausdosff
dimension, where Ep” = N7} is simply the number of boxes containing a point of the attractor. For
larger valugs of g one can characterize the space filling properties and inhomogeneity of the attractor in
more detail. D 4is known as the information dimension.

M

Lpinp

Dy=tim E=——
T 2.17)

The quantity —p; Inp; , from Shannon's information theory, characterizes the amount of information
gained by knowing the trajectory is in the N,-th cell, given one knows p; 7 For a completely
homogeneous attractor, p;= 1/M, and thus Dy =D . The information dimension then characterizes the

non uniformity of the attractor, and for non-homogensous attractors, Dy>Dh.

Of particular interest is the dimension defined by ¢=2. Known as the correlation dimension, it
represents the probability that any two points will be found within a givan hypersphere and measures

the “clumpiness” of the orbit. 28 The correlation dimension Dy is defined by:

% 2

In o

= fim =0 i MCEl

D= T S 212

The correlation integral Clrsan be recast as:

Cirl= lim L 30fr—tg —xj) .
Nosoo Nz (2.33)

Bl is the Heavyside function whose vatue is one for > 0, and zero otherwise. I this form, the
correlation integrat and D are sasily calculated for targe data sets using a computer, hence the appeal

of the correlation dimension as the most commen measure of fractal dimension in the literature. One
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can show that Dg.q 2 Dy, and thus the correiation dimension provides a lower bound on the Hausdorft
dimension. The Hausdarff and correlation dimensions usually agree closely, and often differ by no more

than a few percent.

Typicaily, in computing the correlation dimension, one computes the correlation integral for various
radii r and plots Jog Clr} vs. log . Over some region in log r, known as the scaling region, the slope is
constant, and the value of this stope is taken as the correlation dimension. The correlation integral is
said to saturate at a constant sicpe. For clarity, in this dissertation 1 will plot the two point slope
Slicg O/ Sliog 7] versus log r. This yields & plateau at the value of the correlation dimension,
atlowing a better determination of the scafing region, £xamples illustrating the application of this

technique wil be given in the next chapter.
2.24. Dynamical Measures

in addition 1o fractal dimension, another property of chaotic systems alluded to earlier is sensitive
dependence on initial conditions. This property can be characterized quantitatively by the Lyapunov
exponents which measure the average divergence and convergence of the attractor in phase space.
Trajectories of chaotic systems spatially close at some time ¢ will, on average, diverge (converge}
exponentially in time. For the one dimensional continuous map xlt)=f,{xp), with two initial
conditions separated by &x the average separation after a time ¢ is &x; = b‘xge"‘" . Taking the limit of

infinitosimally separated points and infinite time the charactaristic o Lyapunov exponent A is defined

by
Jl 1
o _,“mmrm

If this exponent A is greater than zero, trajectories separatg exponentially in time within the confines

df;(x]

dx

A=Im 2 lim in

t-yo0 E Sl

{214}

of the system. This criterion, a positive largest Lyapunov exponent, has become the standard definition

of a chaotic system.

Any dissipative system is beunded, hence the expenential expansion cannct occur indefinitely, After

2
some time the expansion crosses the fold in the attracior and the trajgctories may converge again. The
exponential divergence characterized by the Lyapunav exponent is stil reftected in the information loss
of the system, despite the fact that spatial traiectories are no longer diverging. For example, the shift
map, in computer lingo, represents a left shift, leading digit truncation. Even with double precision
accuragy of 10718 after 23 iterations all information about the initial conditions is lost. 1t s this

information ioss that the Lyapunav expenents measure.

For systems of more then cne dimension there is a coliection of Lyapunov exponents, one for each
dimension of the sysiem. Each exponent corresponds to one of the principte axes of an eilipsoid
centerad on the irajectory and characterizes the local expansion of contraction of the atiractor. The
orientation of this ellipsoid changes as the trajectory evolves in time. The spectrum of Lyapunov

EXponents is given by:

M i=12..n

A% = im A
ax“"'

oo

{2.15)

Any continuous systam must have at least three dimensions and hence three Lyapunov exponents. If
the system is dissipative their sum must be negative to reflact the gontraction of phase space. The least
negative exponent contols the flow of perrbed trajectories onto the inertial manifoid. 2% A chatic
system has a positive Jargest exponent, and any system continuous in time must have at lgast one
Lyapunov exporent equal to zero coresponding to the lack of divergence {on average} tangent to the

flow 3¢ Thus a three dimensional chaotic system has Lyapunoy expenents {+0.-1.

aiculation of the largest Lyapunov exponent is relatively straightforward, though computationally
intensive. Wolf, st al. have develoned a method for calculation of the largest expanent from the time
series of a single variable of the chactic system.”? Essentially, it foliows the trajectory of neighboring
points and calculates the average separation as they progress in time. The spectrum of Lyapunov
expenents is more ifficuit. Ruelle and Eckmann have develeped a method whereby one estimates the

Jacabian from the tangent space matrix 3! This can usually lead to reasonable estimates of the first
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few exponents, although negative values show very sensitive behavior. The subtleties of calculation of

the Lyapunov expenents will be discussed in the next chapter.

Kaplan and Yorke have conjectured a general formuta which refates the Lyapunov exponents to the

fractal dimension=2

j
2
Dy=j+ElL. =Dy .
Pml (2.16)

Dyy is the Kapian-Yorke or Lyapunov dimension. The Lyapunov exponents are ordered such that
A;>hiy, and j is the largestindex for which i&i = (3. The conjecture appears to hold rigorousty only
i=t

for homogeneous attractors. However, it does hold approximately for many cases.
23. Nonlinear Prediction

Ultimately, the goal of identifying and characterizing chaotic behavier in experimentat data is to
develop a set of modet equations for the system. These equations can never hape to vield an exact
replica of the time series being analyzed, owing to the sensitivity on initial conditions. However, global
properties of the system — average Lyapunov exponents, dimensions and power spectra - should be
oreserved. in addition, because these systems ate not random but governed by deterministic dynamics,
short term prediction must be possible. Given a set of initial conditions approximating those of the
axperimental system in question, the next several time steps of the mode! system should mimic those

of the actual data.

Unfortunately, even though a system may have been fully characterized with regards to its chaotic
properties, developing a set of nondinear model equations is not a trivial exercise. Although much
research has been devoted o extracting mode} equations from the data of the system, no general

method has yet been found 533 A less ambitious goal is simply to predict the short term behavior of 8

system without knowing the governing eguations explicitly, With this goat in mind, several mathods of

doing so have been developed.
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Al of the methods developed thus far use essentizlly the same procedure, with mare or less
sophistinaticn.35'36 The time series is first embedded in an appropriate space using the method of time
lags. The initial point for prediction is chosen, and the space is searched for its nearest neighbors. in
the simpiest method, the average of the neighbors” short term trajectory becomes the basis for
predicting the evolution of the initial point. The neighbors of this predicted point are then found and the
process is repeated. More sophistisated methods fit higher order polynomials to the local space which

can result in better prediction accuracy.

In additien to actual prediction, one can characterize the determinism of a syster with 3 quantity
knawn as the transiation emor>’ The translation error quantifies the coberence of the flow of the
system through phase space. In simple deterministic systems nearby irajectories shouid parallel each
other, at least in the short term. The transiation arror measures the deviation of nearby points from the

average flow of the group. More concisely.

R |

Cyans ™ m 2 .
= (217}
where v is the transiation f{xj} —x; and f{xj) is the map of x; in the embedding space. ¥ is the
average transiation of the set of k neighbors. The normalization Hﬁnz makes the MEASUTe exgns
insensitive to attractor size. For a random signal, the value of eyans Should remain a constant vale of
about one, zegascless of the embedding dimension; rancom signals fil the embedding space they
occupy. Deterministic signal will have low values of ey, for embeddings near the proper dimension of
the system, reflecting the coherent flow of the neighboring trajectories. For embedsdfings much below
the dimension of the system the wanslatior: error will be larger; in the truncated space distant points
may be artifigially ¢lose. In higher embeddings, the firite number of points in the data record means
that the space will be more sparsely filled, and nearby points will not be as well correlated.

Unfortunately, the translation srror is @ poor measure for high dimensional atiractors, as will be shown

in the next chapter.
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24. Summary

As outlined in this chapter, a number of techniques exist for identifying and quantifying low
dimensional chaos and simple determinism. These include phase delay plots and Poincaré sections,
sractal dimensions, Lyapunov exponents and short term predictability. There are some subtleties in
applying these techniquas to data, as will be discussed in the following two chapters. These are the
tools, then, with which | will analyze numerical and experimental plasma systems for evidence of

simple determinism.

28

Analysis Technigues Applied to Known Numerigal ein

Three numerical systems whose chaotic properties are well understood are presented here to illustrate
the techniques for nonlinear analysis. These analysis techniques will then be applied to the data from
numerical simulations of plasmas, as well as experimental data from MST. Two of the systems, the
Lorenz equations and the Mackey-Glass squation are known chaotic systems. The third system is
Gaussian distributed random noise. The results obtained from investigation of these systems provide a

standard by which to compare unknown data records.
31.  Phase Delay Plots and Poincaré Sections
3.1.1.  Loranz Attractor

As mentioned in chapter 2, the Lorenz attractor is generated by a set of eguations introduced in 1963 by
Edward Lorenz as a simple mode! of Rayleigh-Benard eonvection in the atmosphere. Once again:
i=oly~-x)
y=xlr—z)-y
i=xy-bz (3.1}

The equations are in Fourier space, with x representing a single mode of the velocity flow, and y and z
two Fourier components of the temperature field. » is the normalized Rayleigh number, ¢ is the Prangt!
rumber, and b is a geometrical factor. The system has three fixed points, one &t the origin, and two at
z=r-l, x=y= i\fb(T—_T}. Far r < 1 only the fixed point at the origin exists and is stable. Forr > 1,
the origin becomes unstable and the two other stable fixed points emerga. These fixed points become

unstable for appropriate vaiues of 7, b, and o, and the Lorenz strange aitractor emerges.

The left plot in Figure 3.1 shows a twe dimensional projection of the phase-delay reconstruction of the
attractor for the standard parameters r = 28, b= 8/3 and o =10, plotting x {t ) versus x [t +.15} versus x

{z +.3). Comparing this with figure 2.9 one can sae that the phase delay plot captures the basic structure
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 X{10.15)
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Figure 3.1. The Lorenz attractor. The left plot shows the x component of the attractor in phase delay
representation. The right is & Poincaré section taken at the gray plane oa the left.

of the attractor: a pair of conjugate unstable fixed points about which the trajectory spirals. The gray
plane cutting through the attractor is the plane of the Poincaré section in the right figure. Structure is
evidem, indicating the low dimensional simpie determinismr. There are a few spurious points which are

the result of poor polynomial fits usad 1o determine the point where the trajectary crosses the plane.
312 Mackey Glass

A second example of a strange attractor is generated by the Mackey-Glass equa'{ion.38 The Mackey-
Gtass equation is a single delay-differential equation developed to model hematopolesis, the process
by whici: the bone marrow ereates btoed cells.
pe B8 " Pe-T) )

8"+ P -1V 3.2)
P is the density of circulating mature ceils and 7' is the delay time between initigtion of cell
production and the release of mature cells into the bloodstream. § g, 6, n, and v, are constants. The
system is actuaily infinite dimensional: one neads to specify an infinite number of initial conditions for

the function between x (1) and x i + 7). In practice, however, the system collapses to 3 much smaller

28

dimension, and adjusting the delay time T determines the fractal dimension of the system cver a wide
range of values. The system is thus especially useful as a model in studies of relatively high

dimensional dynamics.

Figure 3.2 shows a phase-delay plot (the only possible option!} for the Mackey-Glass attractor with a
delay of 7' = 20s. Equation {3.2) was solved using a 4 grder Hunga-Kuita integration scheme using @
step size of 0.0 and storing every 18 paint. The attractor appears to have structure, an indication that
the system is probably low dimensional. The left piot of figure 3.3 shows a Poincaré saction of the
attractor for the same parameters. The atiractor was defay-embedded in 3 dimensiens with a delay
time of 7=8s, and the section was taken at the plane xf+2r) =11 The value of Twas chosen as will be
discussed in section 3.2. Because the atirastor is low dimensional (about 2.1} for this value of T,
structure is readily apparent. The right plot is a Poingaré section for & system with identical parameters,
except the delay time T= 50s. No obvious structure is apparent here because the attractor has a

dimension greater than four. Phase delay plots and Poincaré sections are of Himited usefulness for

P{t+0.2)

e
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e
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Figure 3.2. Phasc-delay plot of the Mackey-Glass attracter for defay time T = 20s.
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Figure 3.3. Poincaré sections of the Mackey-Glass attractor. The left plot is for an equation delay time

of T=20s which has a fractal dimension of about 2.1. The right plot is for T = 50s which has a fractal
dimension greater than 4.

attractors with dimension greater than 3.
3.1.3.  Random Numbers

The final numerical system to be analyzed is a systers of random noise. There are several types of
noise, the most familiar being Gaussiar distributed white noise. The power spectrum of sugh a time
record is flat, having sgual power at all frequencies, hence the name. Colored noise, alsc known as
fractional Brownian motion, has a preponderance of low frequencies, and the power spectrum is
proportivnal to F %, where £ is the frequency. A simple method for generating colored noise with such
a spectral density is given by. 3

W
NP2 o .
x=y [Ak'“(%q } cos(z—fri+¢k) .

k=1 (3.3}

A is the amplitude and ¢ 3 are ¥ /2 random phases.

Random systems provide a comparison for a truly high {infinite) dimensional system. The data are alsoa

chack against spurious indications of chaos resulting from severe data manipulation. In particular, noise
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Figure 3.4. Phase-delay plot and Poincaré section of Gaussian distributed random numbers.

with some degree of short term correlation — either colored noise or noise which has been lowpass
fittered — will give spurious indications of simple determinism. | will use the term “cosrelated noise”
when spsaking of such systems in gensral. Methods for distinguishing between correlated noise and

systems which are truly chaotic will be discussed in this chapter and the next.

in figure 3.4 is plotted a phase-delay plot of Gaussian white ncise plotting x(¢) versus xf+1} . As
expacted, no structure is apparent; random numbers wilt densely filt the space they occupy. A Poincarg

section taken at the plane x(++2} =0 is no improvement.
32.  Correlation Dimension

Caloulation of the correlation dimension Dy has become a standard technigue in the repertoire of tools
for analyzing chactic systems because it not only identifies a system as having underlying simple
determinism, it also quantifies the degrea to which the system is chaotic, Conventional wisdorm has it
that the number of independent equations needed to describe the system is only slightly greater than
#ts corralation dimension, i.6. an unknown system with dimension 3.2 would need four or possibly five

equations to describe it. Thus, determinaticn of the correlation dimension is & first step in
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recanstructing the system’s governing equations. Work by Spmtt’m, however, has shown for a certain
class of systems — maps and ODEs deseribed by pelynomial and other simpie functions — that the
average corelation dimension is of the order of the square root of the number of eguations. The

number of aquations needed may be far greater than the fractal dimension indicates.

That notwithstanding, the correlation dimension is still widely used as measure of the degree of chacs
in 3 system. Unfortunately, althcugh it is simple to impiemant, caicutation is computationally intensive,
often requiting many CPU hours for farge data sets. Several methods have been deveioped to speed
computation, most of which favor calculation of only some distance pairs — the closest ones — and
omitting most others. 1 prefer another method which makes use of certain redundancies in the
calulation to speed computation.?! Although not as fast as some of the other methods, it computes all

distance pairs, which can be important in determining the parameters for proper calculation of D,

Figure 3.5 presents typicat results for the Lorenz attracior. 10,000 points ware analyzed. The iop plot
shows the correfation integral tog C{r) plotted versus log r {logarithm base 10), where 7 is the radius of
the hypersphere, for several smbedding dimensions. The scaling region of constant slope is indicated
by a siaight line fit. The slope of this line should be the same for all embeddings. The lower plot is the
twao point slope of the upper one. Here the sealing region, now a plateau, is much more apparent, and it
can be seen that all embeddings do indeed saturate to the same siope. For clarity, only some of the
noints are indicated by symbols. At large radif the slope falls to zero indicating that the hyperspheres
are encompassing the entire attractor. At smal! redii ene is limited by the number of points in the finite
data record: statistics get poorer and the dimension increases. The best fit to a straight Hine over this
scaling region {admitting a somewhat arbitrary determination] vields a value for the correfetion
dimension of Dy = 2.000 + 003, where the error is from the goodness of fit. This is close to the

accepted vaiue of the Hausdor?f fractat dimension of 2.05.
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Figure 3.5. Plots used in determining the correlation: dimension of the Lorenz atiracior. The solid line in
the top figure is a best fit 1o the constant siope scaling region. As seen in the bottom plct, the
correlation dimension remains constant in sevesal embedding dimensions over & region of at least 8
decade inr.

The subtieties of determining the correlation dimension are discussed in some detail in [42], however
two important points are worth mentioning here. Criticat in calculating the correlation dimension is the
value of the time lag —. The time lag must be chosen appropriately such that vector components are

independent. Choosing ¢ too small can resuft in spurious correlation and an artificially low correlation

dimension. At the other extreme, dug to the finite length of any reat data record and sensitivity to initial
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sanditions, too large & value of T leads to decorrelation and an overestimate of the correlation

dimension. The awtosorratation function generally provides & good criterion for the choice of choice of
time lag: T times the ambedding dimension should be 2 to 3 times the e -folding time. However, the
correlation gimension shoutd be computad for various ¢ in order to find an optimal velue. Qer some
range of © the slopes of the fog Clr} versus log r plots overiay ina given embedding. The time lag
must be chosen somewhere within this range. There is an excellent discussion in Albano, et a/. where
they show that there is a range of "window lengths” (m-1)7 over which the Grassberger-Proccatia

algerithm provides an accurate estimate of the correlation dimension.

Typicalty, one wants to sample data frequently encugh so that the autocorrelation time is several time
sieps. Sampling infrequently will yield data that is not properly correlated; sampling too cfter will
confine the dynamics to only a portion of the attractor. Best results for Dy, and all other analysis

methods presented here, are obtained when the autocorrefation time is between 10 and 20 time s%ps.

Another possible source of error is described by Thieler.® In addition to vector components being
correlated, vectors close in time may be correlated to each other. This resuits in a spurious D=0
region of the correlation plot. Thieler suggests introdicing a parameter W and computing the
correlation function only for vectors such that & > 4 +W. An appropriate choice for W is indicated by

the disappearance of the Dy =0 region; usually W Is smali, on the order of 5.

As mentioned previausty, the fractal dimension, and hence correlation dimension of the Mackey-Glass
atiractor is dependent on the equation delay fime 7 . The behavior is evident in the two plots of figure
3.6 which show correlation dimension for 7 = 23s ang 100s. As expected from figure 3.2, the Mackey-
Glass atiractor is low dimensional for T'=23s. The accepted valug is D o=~ 2.44 £ 0.5. for T = 100s the
dimension increases o Dy = 7.5, which is the accepied value.*S For the latter case, the correlation
dimension drops at small radii indicating enhanced correlation on small scalgs. This can be attributed to
the relatively small number of points used. In high dimensional embeddfing spaces there are oniy a few

nearby traiectories. Thus, at small radil trajectories are correlated only with themselvas, which resuits
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Figure 3.6. The carrelation dimension of the Mackey-Glass attractor for two different values of the
eguation delay time T.

in an artificiaily high correlation fraction relative to the total.

A significant drawback of the correlation dimension is that it can make nc estimate of the degree of
accuracy of the computed dimension {0 error bars). Another probles is apparent when comparing e
two Mackey-Glass attractors: the scaling region for the 7= 100s case is significantly shorter than for
T=723s. This is due to the number of points required to ebtain adequate saturation in higher
dimensions: points are more sparse in higher dimensional spaces. Several groups have estimated the
number of points required for  refiable estimation of the correlation dimension. Estimates range fram
several hundred to 422 %847 Tsonis provides a more reascnable rule of thumb : Nyges 1024940 which
also coincides with my experience.39 Perhaps the best rule is: For adequate confidence in a corralation

dimension determination a scaling region which spans at least a decade in 7 is required.48

Random numbers densely fifl the space they occupy, and this is reflected in the correlation dimansion
plot 3.7. At each embedding the corrslation dimension asymptotes to the dimension of the embedding

space. No ciear scaling region is evident.
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33 Lyapunov Exponents

As mantioned in chapter 2, computation of the largest Lyapunov exponent is relatively straightforward.
The method of Wolf, et /.28 follows the trajectory of a single component is phase delay space, known
as the fiducial trajectory. A nearby orbit is found, and their average divergence over some time period is
measured. Because all chaotic attractors are, on average, contracting in phase space, the exponential
divergance cannot continue indefinitely. Consequently, after some time period a new orbit closer to the
fiducial wajectory must be found. The vector connecting this new orbit to the fiducial trajectory must
preserve the orientation in phase space of the original vector in order to compute the Lyapunov
exponent properly. This procedure amounts o a reorthonormalization of the tangent space vectors
gescribing the expansion/contraction of the attractor. This process continues thyoughout the fimg

record, ang is ilfustrated schematicalty in figure 3.8.

Although the prosedure is effective, it is incomplete. A singte Lyapunov expanent can anly indicate that
a system is chaotic, but tells nothing about the dimensicn of the system. Noise also has & positive

largest Lyapunov exponent. One really needs the entire spectrum of exponents to ascertain whether
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Figure 3.8. The figure schematically depicts the computation of the largest Lyapunov expanent by
following a fiducial trajectory in time and calculating the divergence of nearby trajectories.
underlying simple determinism exists. A positive Lyapunov exporent accompanied by a negative one

would indicate the presence of chaos.

A method proposed by Eckmann, et al. and modified by Briggs computes the spectrum of exponents by
approximating the Jacobian of the local trajectory of the dynamical 5ystem.31-49 in the method of
Briggs, the time serigs is embedded in phase delay-space, a group of nearest neighbors is found, and
sheir trajectory is fit 10 @ polynomiaf function, This function caa then be differentiated analytically to

ohtain the Jacchian of the local dynamics. The Lyapunov exponents are then given by:

il
29 = tim A u‘ﬂﬁ )

t—soel

P

{3.4)

where Hjﬂ is the /M gigenvalue of the Jacobian after advancing the system a time ¢ {see [25] for &

tharough discussion).

Finding the eigenvalues of real, nonsymmetric matrices is rot trivial, and often the eigenvalues are
complex, whereas Lyapunov exponents are real. This is because the tangent space of the system is not
necessadily aligned with our Jarbitrary) coordinate system. Computation of the Lyapunov exponents is
facititated by 08 decomposition. Any matrix can be written as M=0R where G is an orthogonal matrix
and B is upper right triangular with positive diagonal elements. This is known as the “skinny”
decomposition, and it is unique. We can write x{#] = f, {xg], and since the time series to be analyzed is

deseretized, by the chain rule, Jp.q = 19fm/@x]= J, d;.1... Jg. Given a set of matrices Jq, Jp... . Jy . one
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can decompose them as:

di = Qg
30 =0pRe

38— =y 35)
The Jacobian then besomes J; 1 = J; ... dodq = QyRyy. . BigByy. The effect of the products JQ is 1o
suceessively arient the Jacobian matrices aleng the principal axes of the tangent space of the attractor.
The Lyapunov exponents can be computed from:
n
Ag=-L YAy
j=t {38)
Implementation of the algorithm is not difficult on a computer, and several routines exist to do the GF
decompasi‘ciﬂn.so'51 Most of the CPU time is spent searching for nearest neighbors rather than in actual
caleulation of the expenent. The Briggs method gives superior resuts o the original method proposad
by Eckmann and Ruelle, because in fitting an arhitrary polynomial it includes the curvature of the local
space. This is particularly true in embedding dimensions higher than the spatial dimensien of the
attractor. A sample of the Tesults are contained in table 3.1. Tha Kaplan-Yorke dimension is also

presented for comparisor.

Critica! in obtaining accurate results is the choice of the component delsy time ¢ and the number of
time steps to evolve the trajectory before measuring the expansion. in ail cases, the best results are
abtained by evalving 7 time steps before computing each Jacobian. The eptimum cheice of ¢ is made
in the same way a5 for the correlation dimension: T times the embedding dimension 15 2 to 3 times the
e-foiding time of the autocorralation function. The aumber of neighbors is also important, but it does
not influence the results as strongly. | have found that it is best to use all neighbors up ta predefined
maximum within a given fixed radius, rather than & fixed number of neighbors; choosing too many
neighbors in sparsely populated regions can skew +he predicted trajectory, and choosing too few in

densely populated regions may mean most poinis lie on the same srajectory. A radius of about 10% of
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system E Dyy | Lyapunov exponents
Lorerz 0 208 | 13@7+971% 0087 +>100% 148745 26%
accepted 4.2 0.8 208 | 1B33:88%  067+>100% 183523 14%
1487, 0.0,-22.05 45
Mackey-Glass, T=23 £ 268 | 0OSG5£115% 0007 +»100%  G.1312715.4%
accepted %0 410,55 0391£82%
0856, 00,119, -344
Mackey-Giass, T = 100 5 g | 13E09%  O7E0£13% 04133 18%
d=1s 0157i:36%  00095+748%  -0.0790:% 105%
DHEB2I2%  ATITEISE LTI E14%
Random Numbers 2 385 | 0756410%  0093:48%  -GOBSEB2%
0377:£3.1%

461 0200 +2.1% (085£38% 0011£337%
01013 51% 0.337 £29%

547 0.199£22% 0.105+32%  0.031£10.1%
-0.84049.3% £.133:442%  0.348229%

Table 3.1. Computad Lyapunov exponents for several systems. The parameters for the Lorenz system
were: r=45.92, b= 40, = 16.0. For the Mackey-Glass system: S g =02, y=0.1, n=10.

the maximum extent of the attractor usually gives gaod resuits.

Results for the Loranz system are in excellent agreement with the accepted values, even the farge
negative value. Negative exponents are notoriously difficalt to calculate because of thelr extreme
sensitivity to the quatity of the data. The zero expenent is easily identifiable both by its small absohste
value relative to the others and the large standard deviation. Typically, the "zero” exponent has a2
magnitude about a factor of 10 smaller that the next largest vaiue. During computation this value
fluctuates wildly, somatimes positive sometimes negative, and has a very large {>106%) standard
deviation. In the next largest embedding space, the first three exponents remain constant and a fourth
nepative exponent appears. The Kaplan-Yorke dimension remains essentiatly sonstant, indicating that

an embedding of 4 35 unnacessary.
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The Mackey-Glass system provad more difficuit to analyze; the system Is fairly sensitive to the value of
<. Results are nonetheless good, with the largest exponent being within 4% of the accepted value,
Choosing a shorter sampling time {more data points per time step} can make the system less sensitive
to the choice of £, though the number of matrices availabie, and hence the statistics, is thus
decreased. For the system with an eguation delay time T = 100s, no saturation in the Kaplan-Yorke
dimension is seen up 10 an embedding of 10. However, the values of the exponents remain essentially
unchanged as the embedding dimension is increased. This indicates that the positive exponents are

probably nearly correct. It has been estimated shat Dyy is greater than 10.%9

Random numbers can be idemified by several charactaristics. First, they continue to fiil the space they
are embedded in, as evidenced by the XY dimensicn. In fact, for some cases, the Dyy s actually
greater than the embedding dimension. Secand, although there are negative exponents, no convinging
78r0 exponent axisis. The fact that thera are negative exponents indicates that the setis bounded { Ixl <
& in this case), so thas paints near the adge are pulled back into the set. This is not, however, evidence
of an atiractor. Finally, during the calculation of the exponents, finding sufficlent nearest neighbors is 8
problem, even for rather large radil. Bandom points are avenly and sparsely disiributed in the
embedding space. The positive exponents do not change appreciably as the embedding incraases,

which indicaies that they may be correct.
34.  Predictability

Both the Lorenz and Mackey-Glass systems are governed by simple deterministic equations, and as
such should be predictable in the short term. Sugihara and May have proposed a very simple method
for predicting the short term behavior of such systems. 38 In their method one finds the minimum
number of nearast neighbors to a "predictee” needed to form 5 simplex — D +1 points — in the
embedding. The simpiex is then evolved a number of time steps into the future. The predicted evolution
of the predictee is then the weighted meen of the simplex, where the weights are the exponentiated

original predictee-naighbor distances. I practice, a portion of the data record is deamed the database
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of neighbors and the remaining paints are the predicies values. Each predictee is evolved several time

steps inte the future, and one then compares the predicted trajectory with the actual trajectory .

in order to characterize the degres of short term predictability Sugihara and May use the Tinear
correlation coefficiant to measure the correlation betwean the original trajectory and the predicted one.
This is & poor measure for several reasons. The linear correlation coefficient will give a value of 1 ifthe
nredicted trajectory [y) equals the actual trajectory (x) for alt points considered. Unfortunatety, 1 will
also give a vaiue of 17 y = ax . We are assuming the aitractor is chaotic, and trajpciories diverge
exponentially rather than linearly. Secondly, the correlation coefficient does not indicate whather the
chsarved corelation is significant because it containg no information about the distributions of x and y.
Finally, it is generally only a reasonable measure for large 20} sample populations. Typically, because
of the exponentiai divergence of chaotic trajectories, predicted Wajectories are reasonable for only
about ten time steps. A better measure simply somputas the average deviation of the predicted from
the actual values, normalized 1o the distance propagated. Because a single poor prediction {say i a
sparsely populated region of phase space) can strongly skew the mean, the median is a better measure

of the average normalized deviation.

As a resutt of its simplicity, the Sugihara-May method is not a very good predictor even for short times.
itis a 01 order mathod, in that there is no x dependence. and it does niot even attempt to capiure the
undarlying dynamics of the system. A superior method fts a linear or higher order pelynomial te the
iocal trajectory in order to do the prediction. The methed is similar te ong proposed by Farmer and
Sidorowich™ except that a generatized polynomial is it to the local trajectory. The generalized
polynomiai can be written as
Fiixl=fip+ X fux+ X fpxch.. . 3.7)

Fix} is the map of the § ™ component and the sums are over all components in the embedding space
{f;1 is an m dimensional vector, £ is an — tensor, etc.). To implement the method, cne {as usual]

chooses an appropriate time-delay embedding based on the autocorrelation fuaction. A window fength
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1 1/2 10 2 times the autocorrelation time usually works best. Shorter window lengths wilt give better
predictions, but this is artificiel, since points close in time may retain spurious correlations. Corvelated
noise is notoricus for this property. As with the Sugihara-May method, the dagree of predictability is

characterized by the normalized deviation.

Results for the systems presenied in this chapter are summarized in figure 3.9. Time steps are
measured in units of 7 . Correlated noise, ¥ it is frequently sampled, can give very small prediction
errors if one cheoses time steps equat to the sampling time rather than =. One can see the short term
predictability for ail three chactic systems is rzasonably good {small error), while white noise
consisiently has 100% error. Predictability of the Lorenz system is extremely good. The reason for this
is reflected in the Lyapunov exponents. The least negative exponent (smallest in absolute value)
governs e contraction of the system onto the inertial manifold containing the attractor. for the Loranz
system, this is very jarge, and the attractor is extremely stable o perturbations. This also accounts for
its predictability. In the random signal, the initial error of less than 100% is an artifact of advanting €
time steps. Because a defay embedding is used, after ¢ tim steps many of the vector companents are

identical. The error is nonetheless large (~50%), and after 2 time steps it is equal to 100%.

The translation error (Eq. {2.17)) for these systems is plotted as a function of embedding dimension in
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Figure 3.9. The prediction error for several systems versus the number of time steps into the future
maasured in units of T . The determiaistic systems show a high degres of predictability whils randem
noise does not.
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Figure 3.10. The transiation error for several systems as a function of embedding dimension.
Deterministic systems have low vaiues which increase with embedding. Random noise has values near
1, and shows no such increase. Filtered noise also shows some degree of predictability although itis
not deterministic.

figure 3.19. The simple deterministic systems, Lorenz and Maekey-Glass, both show low values for the
transiation error, indicating coherent flow. The esrror decreases until the system is properly embedded
and then increases again in higher embeddings where points are more sparsely distributed. Gaussian
random noise gives consistently high valuas, closs to or equal to 1, in all embeddings. In addition, there
is no strong trend in the data. Also plotted is a correlated noise series created by fowpass filtering
Saussian white noise. The data show short term pradictability due te the finite autocorrelation time of
the data, although the system is not deterministic. This effect wil be discussed at length in the next

chapter.
35 Summary

| have discussed the appiication of the analysis methods used to identHy chactic and simpie
deterministic systems using two Systems know to be chaotic, the Lorenz and Mackey-Glass systems,
and Gaussian random noise. Low dimensional systems may show structure in phase-delay
reconstruction piot and Poincaré sections. High dimensional systems usually show no structure, as is
true of noise. For chaotie systems, the correlation dimension plots show a clear plateau over the scaling

region which correspends to the dimension of the system. Random noise filis the embedding space and
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show 1o saturation in any embedding dimension. The spectrum of Lyapunov exponents for chaotic
systems is marked by consistent exponenis in larger embeddings, the Kaplan-Yorke dimansion

nooaching & constant value, and a ciear "zerc” exponent indicated by both a small magnitude and
large standard deviation, Proper estimation of the exponents is morg difficult for higher dimensional
systam. For random system, Dyy doos not saturate and there is no clear zero exgonent. Chaotic
systems are characterized by good short term predictability and coherence of fiow. These are measured
by the prediction error and translation eror, respectively. Random noise has poor pradictability end

flow coherence.
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4. Extracting Simple Determinism: from Intransigent Batg

The techrigues outlined in sestion 2.2 for identifying underlving simple determinism are robust in
theory. Practical application of the methods is rarely straightforward. One must be certain that the
presumed simple determinism is real and not @ result of improper analysis technigue. In addition, all
systems real or numerical suffer from noise corruption. This chapter deals with the practical
application, precautions and pitfalls of applying the methods of chepter 2 1o real systems. The first
section addrasses the issue of spurious low dimensionality in high dimensional systems. The next two

sections deal with techniques for resolving a corrupted underlying attractor.
41.  Surrogate Data Sets

Dnce a chactic system has been identified, one needs to confirm that the identification is indeed
correct and not an artfact of tha analysis procedure. A simple method for doing so invoives the creation
of surrogate data sets. A surrogate set is simitar to the original attractor, but randomized in some way
10 desteoy the simple determinism. The analysis methods shouid then be reapplied 1o this new data set.
All tests should vield very different (negative!) results, thereby confirming the original assessment of
simple determinism, ¥ there still remain indications of simple determinisss, more than likely one is

witnessing an artifact of the analysis method.

One method of creating a surrogate data record is simply to shuffie ali the data points in the record.
This wili create a random signai, all moments of which are the same as the original, but will destroy
any correiation in the original signal. The method is toc drastic, however. it destroys essentially all
information contained in the original system: power spectrum, structure, eic. The method is fitile better
than generating & random noise system of the appropriate amplitude. A betier method involves using
the datz from the original system and randomizing the phases of the Fourier components. This

oreserves the original power spectrum, but creates a data set in which small scale correlation is lost.
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The mathod preserves global quantities of the system: the power spectium {obviously), macrostructure
in all embeddings (similar pericdicity and ampiitude} and aiso the autocarrelation time. Yat any simple

determinism is destroyed.

Figure 4.1 depicts a time record of the ariginal Lorenz system and & surrogate data set created by phase
randomization. The neighboring plot depicts the two dimensional phase-delay reconstruction of the
surrogaie. This should be comparaed with figure 3.7, 1tis evident that the two signals are structurally
simitar, though the phase-randomized data does act show the same eoherency of flow as the original
data. Figure &2 shows the comelstion dimension for the phaserandomized surrogate of the Lorenz
sysiem on the left and of the Mackey-Glass system with T= 100s on the right. The surrogate sets show
+he same bshavior as random noise; there is no scaling region because the system fills the embedding

space. These plots should be compared with those of the ariginal systems shown in figures 3.5 and 3.6,

Figura 4.3 compares the prediction error and translation errar far the two systems with their surrogates.

The prediction error measures the shost term predictability of the system while the translation error
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Figure 4.1. The loft figure shows the time series of 2 phase-randomized surrogate for the Lorenz
atiractor. The origingl signal is in gray. The right figure shows the 7 dimensional phase-delay plot of
just the surrogate. This should be compared with figure 3.1 The two appear structurally very similar, but
the surrogate does not have simple determinism.
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Figure 4.2. The correlation dimension of the surrogate data sets for the Lorenz attractor and the
Mackey-Glass system with T =100s. Neither show any evidence of low dimensicnal chacs. The plots
should be compared with figures 3.5 and 3.6.

measures the ceherence of flow. The two are closely related. The surrogate systems exhibit behavior
similar to random numbers: There is a Steep rise over 1-2 prediction steps in error from modest values
126-30%) to 100% error. The initial correlation is antificial. Since prediction error is measured in units of
, the component time lag, all signals will show initial spurious predictability because components are
shared among suceessive points. For the Lorenz system the surrogate shuws worse prediciability by
several orders of magnitude. This is typical of low dimensional systems. Higher dimensional systems
show a less dramatic change. It is nonetheless significant {over a factor of 3} for the Mackey-Glass
system with 7 =100. The fact that the translation error for the Mackey-Glass system is so closs to that
of ils surrogase is diseoncerting. As will be discussed later, the translation error is an unreliable

measure of simple determinism for high dimensional systems.

Table 4.1 shows the Lyapunov exponents of the Mackey-Glass and Lorenz systems compared with their
surrogate data sets. The Kaplan-Yorke dimension of the surrogetes cantinues to increase with larger
embeddings. There is no clear zero exponent, normally characterized by its small magnitude and large

standard deviation, which would indicate that the system is sontinuous in time. The positive exponents
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Figure 4.3. The prediction error and translation emor plotted for the Lotenz atiractor and the Mackey-
Glass attractor and their phase-randomized surrogates. The prediction arror clearly distinguishes the
griginat data from the surrogates for both systems. There is a marked difference in wransiation errar for
the Lorenz dats, but ihe higher dimensionat (T =100s) Mackey-Glass data is not as clearly
distinguishable from its suogate.

of the surrogate systems may be correct, however, reflecting the space-filling properties of the random

data.

An additional use for surrogate data sets was described recently by Bauer, et al¥ They use dimension
densities to characterize high dimensional chaotic systems. Using the usuat correlation dimension, they

define the dimension density as

P! "’zi—izié“% (8.1

where 1 is the embedding dimensicn. Cir) is the correlation integral of an attractor with the same
macrostructure as the original system, but without the small scale coherent structure. To this end, the
phase randomized surrogate is ideatly suited. {For reasons of simplicity, they advocate a different

method for obtaining a surrogate data set and computing Dy, which is not strictly gorrect.)t in their

¥ In creating their surrogate, they measure the probebility distibution of the points of the ofiginal system in the embegding
m, and then randomize this distribution. In order to simplify calculations, they use the maximum nom in computing the
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svstem T Dy | Lyapunov exponents

Mackey-Glass, T =235 ts 288 §.1043215.6%  -0.0950£89.9%  -0.1495 £20.4%
(3643 +10.9%  -1.0808+54%

Mackey-Glass surrogate is 4.04 £7325+32% Q2254 :111%  -0.1627 +199%
GBEF7£7.0% 29867 £3.8%

Larenz 5.03 212 £.1537 £ 6.6% 0.03352400% 18805+ 21%
49448+ 13%  -10.7680x 0.5%

Lorery surrogate 083 5.16 12.9658 + 1.6% 5.8/49£2.9% D.8818 £18.7%
41618+51% -134014£28%

Fittered Gaussian noise 1 7.3 2022341.0% 13121£18%  0B516£35%
0.15574182% 04627 +88%  -1.0514+:55%
07185 39% 412272 26%  -82322215%

Table 4.1. The Lyapunov exponents the Mackey-Glass system, Lorenz system and their surrogates. The
surrogates show no saturation in the Kaplan-Yorke dimension with higher embeddings, and no clear
zere expenent. The exponents of a filtered noise data set are discussed in section £.3.

article, they measure a dimension density of about 0.8 in an embedding of 15, which for their system of
160G coupled osciliators corresponds o a dimension of 800. They have not as yet tried applying the
method to Iow dimensional systems, but they intend to use it to study Taylor-Couette fluid flow (a
known real system with low dimensinn}.53 Unfortunately, my studies using the Lorenz attractor with
both randomized and phase randomized surrogates indicate that the method is not very effective for
this case. The plateau length is extremely short [ca. 0.5 decades), and no plateau exists at large radii,
the very region the method is supposed to compensate for. It does show some pramise, though much

research still needs to be done.
42.  Noise Reduction

Al systems, numarical or experimental, are corrupted by some degree of noise. s simplest, most

berign form is measurement noise. By this | mean that by some non-invasive pracess ane measures the

carrelation dimensian, rather than the Euclidsan nerm. In a private communication they acknowledged that this does not
accurately measure D st all scales, but justified it on the grounds that at smalf scales Cir) is not as fimited by statistics.
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dynamics of & systam, howaver the instrumentation used in the measurement adds & noise compenent
1o the signal. Given a system x,,q = fix;}, this additive noiss process can be madeled as y =x + 7,
where r is the added noise, and ¥ is the measured signal. In computational systems this may aceur
urintentionatly by fruncating the data when stering it. In a more insidious procass the diagnostic tool
may distort the signai through filtering or other means, ie. y=glx}. Nonetheless, the diagnostic is
saparate from the system, and i theory — though not in practice — one can extract the relevant signal
by “reverse processing” the data. A different problem is the one of dynamical noise o stationarity of
the systesm. In this instanca, the system itself is noisy, which alters the {noise-frae} dynamics as the
system evoives. in this case, x4 = f (xl+r), and the measured signal is x. For example, & control
parameter, ostensibly constant, may fluctuate as the system evolves. If conditions affecting the
dynamics of the system change in time identification of the underlying attractor may be impossible
because no stationary atiractor exists. This can be true even for the seemingly banign situation of
smalt, slow perturbations to the system. in numerical systems the “noise” process may be as subtle as
computational rourdoff error, In all cases, the noise tends to increase the frue dimension of the system,
and may cofrupt the underlying system so strongly that no dimension is identifiable at all. As a further
complication, in addition to the destruction of underlying simple determinism, often the analysis
techniques can identify spurfous low dimensional chaos whare nong actually exists. This is especially
true for systems which have been subjected to linear fiftering and other noise raduction technigues.

Very recently, Sehreiber has developed a methad for estimation of the noise level in chaotic systems.54

His anaytical results indicate that a noise levet of more than about 2% can be catastrephic, obscuring
any scaling region and making estimation of the correfation dimension impossible. Fortunately, thera
exist noise reduction metheds far nonlinear systems which can help 1o overceme this problem. These

will be discussed in the next three sections.
421, Prncipai Component Analysis

Principal component analysis (PCA) is 3 technique that relies on singular value decomposition {SVD) 1o
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extract the dominant dynamics of a system. It ean be a powerful noise reduction technique. In contrast
to Fourier decomposition which approximates the system as a finite subset of sine and cosine
functions, SYD will decompose the system into 2 unique set of orthonormal eigenfunctions and
gigenvalues. In applying this technigue, it is hoped that the dominart eigenfunctions - those with the
largest eigenvalues — will capture the relevant dynamics of the system. The set is thea truncated,
retaining only those eigeniunctions with the largest eigenvalues. From this set any of the technigues
outiined in chapter 2 can he applied o describe quantitatively the chaotic dynamics of the original

system.

SVD is based on a theorem of linear algebra, which states that any m by n matrix A with m >n , can be
decomposed into the product of an m by 2 column-orthogenal matrix U and two dimensional square
matrices: one diagonal with posisive elements W, and the transpose of an orthogonal matrix V. This is
illustrated schematicaliy in fig. 4.4. This decomposition is unigue up to a corresponding permutation of

the columns of U, W, and V.

Typically this technique is applied to time records of @ single system variable. An r-dimensional system
is created using the Takens method of lags. This matrix is then decomposed with SVD. The
gigenfunctions are contained in the matrix V, the eigenvalues in W. UW is then the projection of the
original system onto the eigenvecior space. The cotumns of UW represent the dominant dynamics of
the system. By retaining only the first faw columns of UW it is hoped that noise, which tends to be

uniformly distributed in eigenvector space, can be reduced and the relevant dynamics extrected.

The process of principal component analysis is depicted in figure 4.5, The top left plot shows the

wy

A = U . W - v

Figure 4.4. Schematic illustration of the singuler value decomposition of a matrix {after [55]).
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original signal from the Lorenz attractor and the neighboring plot shows the same signal corrupted by
50% rms additive Saussian white noise. Singular value decomposition in an embedding dimension of
seven icentifies 3-4 iarge eigenvaiues, shown in the center plot, two of whese corresponding
eigenvectors are dapicted in the lower left plot. An offset hes been added to separate the two. The sum
of these two largest eigenvectors results in a signal considerably cleaner than the griginal noise
conteminated one as shown in the fower right plet. Note that by using only some of the principal

components to recreate the signal a slight time shift is introduced.
4272 Lowpass filtering

The most shvious and basic method of noise reduction is simple, linear lowpass filtering. in most all
exparimental situations some level of filtering takes place. This can be either unintentional, ie. the
finite bandpass capability of the diagnostic equipment, or intentional filtering to extract desired low
frequency dyramics. Of the latter, there are two methods 1o achiave the desired results. Causal filtering
filters in the time domain, and is typically impiemented with hardware before the signal is recorded.
The second method is acausat. Data are post-processad, after being recorded, in the frequency domain
with softwara. Work with chaotic systems has shown that acausal filtering is generally better then
causal filtering. 55 While # is impossible to eliminate unintentional fittering effects of the diagnostic
gquipment, one should avoid hardware filtering when possible. This places a restriction on the

sampling frequency, requiring a sampling rate fast enough to avoid alissing the signal.
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Figure 4.5, Shown is the process of principal component analysis for removing noise from a system.
The top left plot show the unsorrupted signat from the Lorenz system. The neighboring plot is the same
series corrupted by 50% rms Gaussian white noise. Principal component analysis identifies 3-4 major
eigenvalues, two of whose component vectors are depicted in the lewer left plot. Their sum (lower
right} gives a cleaned version of the noisy sigral which better approximates the original. The normatized
gigenvalues are plotted in the center graph.
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Actually, one should avoid linear lowpass filtering altogether. When applying a linear filter to data, one
tacitly assumes that the relevant dynamics for the system are confined to & particular frequency range
and the noise to a separate regime. This is rarely the casa with chaotic systems because their Fourier
specira are typically broadband. In addition, when one attempts to filter 2 signal one is usually primarily
concerned with amplitude reduction. As a consequence linear filtering can distort the phase information
of the Fourier components of the signal. As should be apparent from the previous secticn, phase is
crugial 1o the dynamics of a chaotic system. Another problem is that heavily filtered data can artifisially
show evidence of low dimensiona! chaos. If one considers the logicat extreme, any signal sufficiently
bandpass filtered will vield a simple sine wave. Unfortunately, dire consaguences ocour lang bafore this
limiting case s reached. Heavy filtering distorts the signal enough to give indications of a low fractal
dimension where none actuaily exits. For this reason, in part, | go into some detail about the effects of
lingar filtering. An additional reason is that the analysis results on MST data are suggestive of & white
noise signal which has been lowpass filtered. | will identify in this chapter the characteristics of such a

signal for comparison with the data in chapter 6.

In order to ilustrate the effects of lingar filtering, ! will use as examples three of the most commen
types used. {Sea [57] for a thorough discussion.) The Butterworth filter is the simplast to implement. Tts
virtue is that it has maximatly flat { A;, = A, } amplitude characteristics in the passhand, the fradecft
baing that it has a siow transition region from passband to stopband. A cousin is the efliptic filter
where the fiatness of the passhand is compromised somewhat in order to achieve & steeper iransition
segion. Finatly, the Bessel filter, or constant delay filter, has poor amplitude characteristics {a very stow
transition region}, however, it has a linear phase relation with respect to frequency well into the
stopband. The amplitude and phase characteristics of the Bessel and Butterworth filters are plotted in

figure 4.6.

The power spectrum of the Lotens system is plotted in figure 47. It is broadband and exhibits an

exponential fall off in power which is common in chagtic systeras. Power spectra for the Mackey-Glass
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Figure 4.6. The amplitude and phase characteristics of the Bessel and Butterworth filters. The
Butterworth filter has good amplitude characteristics, but distorts the phase. Bessel filters have a
nearly linear phase response until well into the stopband, but poor attenuation performance.

systam are very similar. This provides another obstacle for Hinear filters: Linear filters are generally

designed as power law functions, though not exclusively so.

In figure 4.8 the tap piot shows the power specyrum of the Lorenz time series when corsupted by 50%
rms added Gaussian white noise. The original spectrum is plotted in gray for comparison. Beneath it are
the effects of an 8-pole elliptic filter and 8-pole Bessel filter on the corrupted spectrum. In both cases

the cutoff frequency was chosen to match the original power spectrum as closely as possible. Although
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Figure 4.7. The power spectrum for the Lorenz attractor. 1t is broadband and shows an exponential
falioff in power which is common in ehaotic systems.
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Figure 4.8. The top plot shows the power spactium of the Lorery attractor corrupted by noise. The
lowes two picts show the resulting spectra when noise reduction is attempted with an elliptic and 8
Bessal filter, respectively.

both do a fairly good job over much of the region, neither is able to recover the shape of the original

spectrum at high frequency.

The filtered signats are plotted in figure 4.9. Both show signiticant improvement over the original noisy
signal plotied in figure 4.5. This similarity, however, does not indicate whether the ralevant simple

doterminism has been recovered. As will be demonstrated in the next section, neither filtering method
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Figure 4.9. The noise corrupted signal of the Lorenz attractor as processed by two lingar filters. The
original signal is outlined in gray. Qualitatively, the two signais appear nearly identical, though the
fittering mathods are very different in principal. Note the delay introduced by the Bessel filter.

is able 1o recapiure the underlying chaotic dyramics of the original signal.
423 Nanlinear Noise Reduction

White simple lowpass filtering may be appropriate in some cases, in generat it is an inferior method.
This is because finear filters do not take into account the inhierent nonlinear dynamics of the system
being fittered. The method simply attenuates all signal components grester than a certain frequency.
This may, however, attenvate scme of the relevant dynamics of the syster, while emphasizing spurious

components at lower frequencies.

Several similar alternative methods of filtering specificatly aimed at rééucing noise in chaotic systems
have heen developedf’g‘m. The methods make use of the spatial structure of the underlying attractor
and are similar in implementation to the prediction metheds outlined in secticn 2.3. In & nutshell, the
time record of a single component of the system is embadded using the method of fags. For each point
in the embedding space the nearest neighbors are found. The average local trajectory of thase points is

found which becomes the functional map of the point being filterad.
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The method as outlined lacks seif consistency, however. Ore begins with a single time record and
creates from it an array of time records, one corresponding to each dimension of the embedding space.
The method for correcting this constitutes the various approaches to the filtering. Gne approach simply
updates only a few of the components in the embedded space. For a given point in: the embedded space
(), xit +0. x(r +270, .1, the filtered image point is [yt +Az), y{t +Az +7), ... xr +At+nt), ..,
whare y is the filtered signal. Thus, each new basis vecior consists of some components from the
filtered trajectory and the remaining components from the original signal. My own investigations
indicate that updating only one, the first component, yields the best results. The method achieves
aexcellent results for sets of ODEs with modest noise leveis (<100%), racovering the original trajestary
almost exactly. The method is fterative, with several fterations required for best results. Unfortunately,
the method does rot work well with maps. A slightly modified version appears to aghieve very good
results with maps, et fails for ODEs. With this method, one updates the leading cemponent in the
embedded space 56 that the trajectory is mapped to [x{r +Ad), xiz +Az +1), ... y{¢ +As +m7] This has
the effect that after several filter steps the trajectory is completely different from that of the original
signal. With both methods the global properties of the system — fractal dimension and largest Lyapunav

expanent — are recovered to a close approximation.

More sephisticated methods®®63 10 achigve self consistency use a window of p peints and find the
best fit rajectory using & least squares methed. 1o practice they achieve results no better than the

above method and require significantly more computation time. 1'll stick with the simpler mathod.

An alternative filtering method developed by Sauer®™ makes use of singular value decomposition and
local lownass digita! filtering. A window of w points on the trajectory is lowpass filtered by zeroing all
out the = /2 lowest componants of the FFT. The inverse FFT returns a vector x in ®™. Neighborhoods
are constructed in this space and SVD is applied to the vectors in each local group. The vectors are
projected onto the right singular vectors corrssponding to the largest eigenvalues, The process is then

reversed to exiract & filtered version of the original trajectory of w points. The method is somewhat
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complicated to implement, and as such, Dr. Sauer agreed to iry io process time series records from the

MST. At the time of this dissertation, however, he had not managed te carry this out.

Figure 4.10 shows the signal resulting from nonlinear filtering on the same noisy signat used in testing
the Iinear filters. Resufis are clearly better, especially with respect to recovering the original power

spectrum. Qualitatively, at least, nonlinear filtering appears to do a betier job of noisg reduction.

Crugial, however, is that regardless of appearance, the dynamics of the original system must be
preserved. In order to test this the caresiation dimension was computed for all four filtering methods.
Results are plotted in figure 4.11. The poorest method is principal compenent analysis, which may not
be surprising, since the filtered signal locked the "feast ¢lean”. Further, singular value decomposition is
2 linear mathod, with af! its inherent drawbacks. The twe other linear filtering methods, efiptic and
Bessel, show nearly identical results. There is some tendency to saturate to a8 plateau at large radii,

which guickly disappears at small scales; linear filtering methods cannot recover the small scale

20
15
i@
5
0
5
10
-15

amplitude

time s

nomalized power

L i bt o

P TR JU SRS (IS S S S S SRS AP N ST S SR SO SR

0 3 8 ] 12 15 18
frequency (Hz}

Figure 430, An example of the effect of nonlinear filtering on the Lorenz attractor. Although the timg
serigs looks comparable to that obtained with lingar filtering, the powar spectrum much more closely
matches the criginal.
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Figure 4.11. Correlation dimension for noisy Lorenz date after processing with varicus filtering
methods. None of the Enear methods, elliptic, Bessel, or PCA are able to recover the nonfinear
dynamics of the original system. The nonlinear methad yields a credible piateay of at least one decade.
micrestructure of nanlinear systems. The result is curious in that Bessel filters better preserve the
critical phase information of the original (noisy} signal. Ona might have naively thought it would
produce better results than the elliptic ilter, which is not the case. The nontinear method ciearly does

best, yielding a credible plateau over at least one deeade and a slow rise at small radii where the small

scale structure couid not be completely recovered.

As an additional test, the prediction error was checked for all four methods. This is plotted in figure
4.12. No method even remotely recaptures the shert term predictability of the original signel. The
nonlinear method does show evidenca of limited short term predictability, though this quickly vanishes

afier 3 time steps. The other three methads have the prediction behavier of the original noisy system.
4£3.  Correlated Noise

As mentioned several times, correlated noise, and in particuiar noise which has been lowpass filtered
can give indications of low dimensional chaos or simple determinism where nong is present. Colored
roise can be generated by integrating Gaussian white noise. Lowpass filtering is a simitar, but
distinctly different progess. Because the poie in a lowpass fifter is located off-axis in the complex plane

it distorts the phase information in the signal. {integration doesnt require complex algebral)
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Figure 4.12. The prediction error for the various fiftered signals. Only the nenlinear method shows any
predictability different from correlated noise.

o illustrate this effect, figure 4.33 presents the correlation dimensian: of Gaussian white noise,
fowpass filterad with a twe pole Butterworth fitter. The filter knes was at 10 kHz for & random process
"digitized” at 500 kHz. As mentionad previously, Butterworth fitters do not have g particularly steep
transition regian, especially with only 2 poles. These appears to be a short saturation region in all
embeddings 5t a value of about 6. Without further investigation, one might wrongly conclude one was
analyzing a chaotic system. The abvicus admonition is to be particularly suspicious of filtered data.

In chapter 6, | will present the analysis of experimenta! data from MST and argue that the signals are
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more typical of correlated noise processes rather than deterministic systems. {This is not to say that

there is no information in them!) | present an exampie here to which the MST data wilt be compared.

Figure 4.14 shows the time record and the power spestrum of filtered Gaussian white noise. The data
ware generated at 500kHz, and then fittered with an elliptic filter with a bandpass of 0-60kHz. This
signal is contrived in this way because it very nearly reproduces the power spectrum of both B, and

i - The signal itself also strongly resembles these signals in its siructure.

Figure 4.15 shows the translation error for the lowpass filtered noise signal along with that for
Gaussian white neise. As menticned in section 4.1, the translation error is a poor measure of simple
determinism for high dimensional systems. As shown plotted here, without the benefit of a
gorresponding susrogate plet one might suspect there was some degree of simple determinism. As
remarked above, for high dimensional signals, even surrogates cannot help in clearly distinguishing
random from coherent pracesses. Because of this, for the remainder of this dissertation { will not use

the translation error as a measure of simple detesminism.

Table 4.1 in sectien 4.1 shows the Lyapunov exponents obiained from fiftered Gaussian noise in an

ambedding gimension of 3. The Kaplan-Yorke dimension is approaching a constant value even though
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Figure 4.14. The signal from lowpass filtered neise shows & time behavior simifar to the MST signats
analyzed in chapter 5. The power spectrum has been contrived to closely match that of By, and [ e
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Figure 4.15. The translation error for filtered noise and Gaussian white noise. Correlations in the
filtered noise Jead to short term correlation in the system flow which gives an atificially low translation
error. This is often indistinguishable from high dimensicna chactic systems. (see figure 3.10

the systern is random. Two things help to distinguish this system from & deterministic process. The
spectrum is augmented by both positive and negative exponents as the embedding dimension

increases, and no credible zero exponent is apparent, which would indicate the system is continuous in

fime.

Finally, | plot in figure 4.16 a comparison of the griginal filtered roise signal and the same sigrial after

processing with ane iteration of the nonfinear filtering algarithm. The purpose in this is to show that the
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Figure 4.16. A comparison of lowpass filtered noise with the same signal after processing with the
nontinear filtering method. The signals are nearly identical, 2 phencmanon also seen in MST data.
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two signals nearly overlay. This same phenomenen coeurs whesn progessing the MST signals, and
seems unigue to them. Nefther white nor colored noise exhibits this behavior. It is exceedingly curious,
since the filtering algorithm typically uses 40 nearest neighbors in & nine dimensional embedding
space. A check reveals that neighbors are diswibuted throughout the time record, quelling the idea that

this is an artifact resulting from correlations of points close in time.

This behavior seams 10 0cCUr in systems with a non-zero correlation time when the “nofse” time scale
is comparabie to the “system” time scate. The noise reduction method is most effective if the noisg
fluctuations are faster by about 3 to 4 times the fluctustions of the underlying dynamical system.
Correlated noise 75 the dynamical system, and hence a "random noise” cemponent cannot be filtered

out.
44.  Stationarity

Ancther problem, similar in nature to noise is the issue of stationarity. The filtering methods outlined
above are effective anly for additive noise: noise corruption that occurs independently of the dynamical
systerr. The issue of stationarity is one of intemal noise o the system. During the evolution of the
dynamical system some of the control parameters may change. This can be minimized with a proper

experimental situation, However parameter drift can never be completely eliminated.

Thera is Httle work in the [iterature dealing with the problem of stationarity and internal system noise.
My owa studies with the Lorenz attractor have shown that even relatively slow perturbations of modest
amplitude can increase the fractal dimension of the attractor by as much as 1 or even destroy
compistely any gvidence of chaos.*2 Figure 4.17 illustrates the problem. Depictad on the left is the
Hénon attractor gensrated by eq. {2.4). To the parameter a was added a random fluctuation with an
amplitude of £0.1. One can see in comparing figure 4.17 with 2.5 that the rajectory now has a “fuzzy”
quality. The right plot shows the effect of this perturbation on the correlation dimension. The long
plateau has been destroyed, leaving & scafing region of at most half a decade. Nonlinear noise

reduction cannct corect this problem because the noise is inherent in the system, not external. From
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Figure 4.17. The Hénon attractor after parturbing the paramater g with a smail (andﬂm component. The
attractor is now “fuzzy”, while the correlation dimension shows a very poor scaling region.

the data, one might guess that the system is fow dimensiongl, but the evidense is not convincing.

For parameter fluctustions which are deterministic in nature, for exemple parameters which drift as
functions of time, the problem is not as severe. Even with the non-stationary parameters the system is
still deterministic, with 2 dimension increase of cne for each aditionat dynemical variable added to the
original system. A parameter that fluctuates as & function of the existing system variables and time
wauld increase system dimension by at most two: one dimension corresponding 1o the parameter jisalf
ard ene to time. Unfortunately, there is not much that can be done to correct this non-stationarity, since
one is basically asking to eliminate one {or several) of the systerm variables. The res! problem is that the
number of points now required to reliably estimate tha dimension increases a fagtor of 2.5 for each
fluctuating quantity {using the Tsonis criteria Npine< 102040y For a system with a modest dimension
{greater thar &) where several of the quantities are perturbed the requiremant on the number of points

needed quickly becomes unrealistic.

This issue is particularly relevant to studies of phenomena such as pulsed discharge plasmas in the

MST. Even if a low dimensional attractor does govern the system, does the system ever achieve 3
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staticnary regime during the discharge?
45.  Summary

As demanstrated, noise corruption can pose & considerable probiem when wying to identify low
dimensional chass and simple determinism in a system. Standard linear filtering technigues are
inappropriate for most applications hecause 1) chaotic signals are typically broadband and 2) linear
fihers distost the phase infermation crucial 1o the small scale correlations. Nontinear noise reduction
techniques do show some suceess in reconstructing the origingl dynamics with modest noise levels
{<100%). However some information is irrevocably lost resulting in & shortened plateau for the
correlation dimension and pocrer short term predictability. Another consequence of finear filtering is

that in certain circumstances it can give indications of fow dimensional chaos where none exits.

The issue of system stationarity poses an essentially insurmountable problem. ¥ one or several of the
ostensibly constant system parameters fluctuate or drift during the experiment the dimension of the
system ¢an increase dramatically. Although the system remains chaotic, this dimension increase may

mean an impractical number of points is needed to identify the chaos and simple determinism.
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. Numerical Simulafions of Plasm

In this chapter | present analysis results for data from two numerical simulations of plasma processes.
The first data set is from a code that medels giobal BFP dynamics. The second model is for drift wave
turbulence, a process thought to be responsible for transport in the core of tokamaks. Both models

show strong evidence of low dimensional chaos and simpie determinism.
51, DEBS fode

The DEBS code is a 3 dimensional magnetohydredynamic {MHD} numerical simulation, which with
proper initialization will model reversed field pinch (RFF) discharges.55'56'57'58 The model has helpad
considerably in understanding long wavelength oscliations in RFP plasmas, specifically in
understanding tearing mode fluctuaticns. As mentioned in the introduction, bispectral analysis of
tearing mode fluctuations from hoth the code and experiment reveal a nonfinear coupfing process from
the m =1 to m =2 modas. This corroboration lends credibility to the codg's ability to model real plasma

DIOCESSES.

Although the simulation cozrectly models these phencmenon, there are some limitations. The model is
pressureless, and thus does not include pressure driven modes. In addition, in order to have a
reasonable computation time, the model uses a ather smail value for the magnetic Reynolds number,
or Lundquist number 8= 7, /14 . 7, is the resistive diffusion time, given by 7, = 4x e 2 277 , where a
is the scale size of the system and 77 is the plasma resistivity. 74 is the Alvén time and is equal o a
divided by the Alivén speed o, = By//4rpg where pq is the density. The Lundguist number
measure the ratio of the time it takes the magnetic field to diffuse resistively outward to the time it
takes a perturbation to travel along tha figld lings. Larger values of § increase the computation tme
significantly because the system becomes more turbulent and requires a smatier time step size ©

accurately foliow the wave dynamics. In the simulation presented here, the Lundquist number was set
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to § = 6x10°. This is particutarly small, since $ for the experiment is measured to be of the order of 108,
Despite this ow velue, the simuetion reguirad over 6C hours of computation time over the space of 1
1/2 years on & DRAY-H computer in order to accumulate a time record of sufficient length for the
analysis. When this project was begun it was hoped to try several values of S in order to investigate

sealing laws of dimension varsus Lundguist number. This has proved impractical.
5.1.1. The Model

The code soives a reduced set of the MHD equations via the semi-implicit method. This atlows for the
use of relatively long time steps to track the nonlinear phenomens of interest by modifying the
evolution of the destabilizing fast time-scate Alfvén modes. Detafls of the method can be found in ths

references. The dimensionless equations solved are:
A _syxB-ni
ot g

YV _ _sov- 2
[ SpV-VV+SIX B+ VWV 5.1)

The magnetic field B is measured in units of the characteristic field strength By. Vis the fluid velocity
in units of the Afvén speed. A is the vestor potential end J is the eurrent density. 5 is the mass density
measured in units of pg. Finally, v is the viscosity cogificient v :vo':r/az, where vy is the
characteristic viscosity. Both the viscosity and the mass density are assumed to be spatialty constant;
furthermore, sha mass density is not evolvad. The equations are solved in cylindrical geometry which is
periodic in the z direction.

The equations were sclved for § toroidal and 3 poloidat modes with 127 radial mesh peints, The system
was monitored at regutar intervals during which nine guantities were recorded. These were the paraliel
electric field £ y, the average electric field Egy, = -$(VB8). and the ohmic electric field Ex =71/ at
both the edge and the core, and the average toroidal and poloidal magnetic fluctuations, 48, /dr and
dB,idz , and toroidal loop voltage Viggy - Becauss of the long autecarrelation times of the signals the

160,000 plus date points were reduced to about 20,608 for each signat. The records span about 1.65
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rasistive diffusion times. Direct comparison with MST discharges is not possible because of the
compressed time scales used in the code. However, by comparing tearing mode time scales, one arrives

at a duration corresponding 1o about 55 ms for a stendard MST discharge.
51.2.  Analysis

The top piot in figure 5.1 shows the time history of average poloidal magnetic field fluctuations. Time is
measure in units of the resistive diffusion time .. The wrace may be compared with figure 6.2 which
shows 2 plot of the raw magnetic fluctuation data from MST. Figure 5.1 shows evidente of flux jumps —
bursis of magnetic field energy — which are also characteristic of MST discherges. Beneath is shown
the power spectrum. The signal is broadband, indicating that it is not pericdie. The falloff is similar to
hoth the Lorenz and Mackey-Glass systems, although the shape of the power speetrum is not an

indicator of low dimensional chaos.

0.02¢
P ﬁ
g -
= - f
g C
® OMJ
oY Y MNP S LANPUUUURIP SN ST SNT A: MST SON NE ST S S S UETS JOUS P WA B
o 0.2 0.4 0.6 0.8 1.2 1.4 1.6

"
Ol
o =

=}
g £
g1 E m
E T i
Rl !
'S
1.0—8F Ll P P LT
[t} 0.5 2 2.5 3

1.5
frequency (kHz)

Figure 5.1, The top piot is the time trace for the fluctustions of the average poloidal magnetic field. It
is in many respects similar to data from the MST experiment. The lower ace shows the corresponding
power spectrum.



58
A phase-delay plot is depicted in figure 5.2, It is not very informative, indicating only that any dimension
is likely greater than 2. The neighboring Poincaré section, obtained by embedding the system in 3
dimensions and inserting a plane at x (¢ +6k=0, suggests that the reduced system is nearly finear. That
would imply the criginal system is nearly Z-dimensional. However, this effect may be due to fack of

points zather than jow dimensionality. Only 182 “punciures” were obtained fram the data record.

The correlation dimension for several of the signals analyzed is presented in figure 5.3. Most signals,
including Bp, E . and Eg showed long saturation regions (at ieast a decadet at a dimension between
three and four. Eg and E,,, showed identical behavior. The top two plots compare the correlation
dimension for Bp and its phase randomized surrogate, The original signal shows a long clear plateay
region. The surrogate shows a short region of spurious low dimension which is similar to the behavior
seen in correlated noise. One can conclude that these signals show good evidence of low dimensionat
chaos. The bottom left figure shows the comrelation dimension for Vi, - No clear saturation region is
avident. This is probably to be expecied. The simulativn censtrains the current to remain within a

predetermined narrow range. In order to achieve this, the loop voltage is adjusted as the current drifts
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Figure 5.2. The phase delay piot ang Poincaré saction from dB), /dt . The Poincaré section suggests
that the reduced system is nearly linear,
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Figure 5.3. Cotrelation dimension for several signals from the DEBS ¢ode simuiation. The top two plots
compare the Bp signal with its phase randomized surrogate. The original shows a clear scaling region
not present in the surrogate. The plot for Vi,,, shows no saturation, which is expected. Egy, also
shows a goed scaling region.

outside these fimits, The correction is essentially an occasional kick, evident in the loop voltage signal,

which shows rapid oscillations over a nasrow range.

The prediction error for several of the signals is plotted in figure 5.4. The left plot shows the prediction
error for Bp, Ep and their surrogates. Both signals show fair predictability, better by a factor of three

than their corresponding phase randomized surrogate. However, an embedding greater than 18 was
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Figure 5.4. The left plot show reasonably good pradictabitity for bath Bp and Ep . better by a factor of
three than their surogates. The right plot shows that aeither £ ; not Vi, shows any prediciability.

required before any evidence of short term predictability was seen, The behavior is odd considering that

the dimensicn of the system is no greatar than 5, requiring an embedding of at most 1% 1o reconstrust

+he atiractor faithfully . This may be atiributable to the small number of poinis available to reconstruct '

the atwactor. As seen in the right plot, Ey shows very poor predictability; the surrogate and original
signal are nearly identical, Again, this may be altributable to the small number of points. Vigep , 88

expectad, also has poor predictability.

Table 5.1 shows the Lyapunov exponents caloulated for two of the representative guaniities, in both
cases, the Kaplan-Yorke dimensicn asympiotes to 2 constant value, and the Lyapunov exponents
remain relativaly stable as embedding dimension increases. Both systems show a clear zero exponent
value with 3 small magnitude and large standard deviation. All continuous systems must have at least

one exponant equal to 0.
5.1.3. Summary

The simulation of an RFP discharge shows strong evidence for low dimensional chaos and simple

daterminism in nearly a!l signals. Thera are some anomalies, notably, the poor predictability of E y,

7Z

system T Dy | Lyspunav expansnts
Bp 0.85 5.3 (.3738%3.3% 0.1247+73% 00128%768%
LI535321.0% 021842 81% 07796£44%
0.88 585 0.3838+£2.8% 0.13¢41£63% 0.0113£748%
00535+ 17.8% -0.1520+7.1%  -0.358514%
-0.9002:+ 3.2%
Eave .98 6.30 0.3563+3.1% 11537 £60%  0.0262331.6%
S003+990% -00760+£149% 02296:62%
L7577 £35%
0.80 842 03630+£28% 01951£44% 00404 +187%
0.00914898%  -0.08404112%  D.3988X55%
03791 +£38%  -0.9597+3.0%

Tahle 5.1. The Lyapunav exponents for two of the guentities analyzed from DEBS cods. Both show
consistant exponent values at higher embeddings, a smal! “zere” exponent and saturation of the
Kaplan-Yorke dimension.

which may be reconcilable with more data. By and lergs, however, the results indicate that low
dimensional chaos might be expected in RFP discharges. There are several caveats, however. One is
that the code simulation used 4 very small valua for the Lundguist number and cnly a few modes were
included. In addition, high frequency oscillations are not present in the code in order 1o model the mare
pertinent long wavelength osciliations in a reasonable time. Finally, the addition of a finite pressure

could change these results eonsiderably.
52.  Dissipative Trapped Electron Mode Model {DTEM]

A topic of intense research in the fusion plasma sommunity is the issue of anomalous particle and
energy transport. In tokamaks, one mechanism possibly responsible for this transport is the fong
wavelength drift wave turbulence associated with dissipative trapped ion and electron modes. The
existence of these modes is indicated by several expefis‘mants,69"?0'71 afthough their link to confinement

is still speculative.

The specific model is probably not directly applicable to RFP physics, in part because the oscitiations
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are elecirostatic. The magnetic topology in an RFP is too complicated to ignore magnetic effects.
However, the basic stucture of the mods! provides an instructive archetype for long wavelength
turbutence in general. I particuler, ane of the nonlinearities, the pofarization drift nontingarity, has a
direct correspondence to one of the MHD nontinearities. Thus, afthough the made! differs in the details,
some of the giobal properties; saturation, spectral distribution of energy and transport, should be

similar to those seen in RFP physics.
5.2.1. The Model

The DTEM model possesses two noatinearities that govern its behavior. These are the ExB
nonlinearity and the polarization drift nonfinearity. The interplay of these two nonlingarities was
expiored by Newman, who showed that the model has several speciral ranges where each of the

nonlinearities and their cross terms dominata the dynamics.’Z The moda! equation is given by

ot (5.2)

Oy O Tﬁ-l-D«éz—ﬁ—DLVﬁxz-Vﬁ+pcsVﬁxz‘Vp2V2ﬁ+‘uV4Fr,=U,
dy H* oy

where 7 is the fiuctuating ion density, o* is the dismagnetic drift wave velocity {cT, /eB J/L . L isa

density gradient scale length, ¥ is a fong wavelength collisionai damping coefficient, p is the ion

gyroradius evaluated at the electron temperature and ¢y is the ion sound speed. D is a negative

diffusivity describing the destabilization of DTEM modes with D= £¥/2

o (H—%n)/ ¥, Where 7, i5
the electron collisional damping cosfficient and i =dInT /dinn is the electron temperature gradient
parameter. Finally, 4 is the coefficient of hyper-viscosity intraduced to model srong damping at high
wavencmber k . The important nonlinear terms are the 51 term which is the £B nonlinearity and 6th

term, the polarization drift nontinearity.

The code is purely spectral, meaning afl computations are done in Fourier space. The system is
initialized with a mode spectrum symmetric about the origin and allowed to evolve unti transient
behavior has vanishad. The magnetic field is oriented along the z axis and the density gradient is inthe

x diregtion. In the jargon of the code, a 13x13 case contains the modes 0 though 26 in both thex and ¥
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directions. For the work presented here the system was driver with 2 lingar driving term {the 4th erm)
at jong wavelengths and damped at short wavelengths. The intermediate wavelength range of no
damping or driving is known as he inartial range. Nondriven/nondamped systems were examined and
appear also to be chaotic, however | will concentrate here on the more physical model. Several cases
werg gxamined, including 13x13, 21x21 and Z9x28. Most of the analysis results are presented for the
21x71 case, however the results are generally applicable. The 13x13 case has a very short inertial
range {2 modes). and hence is a poor example, while obtaining sufficient points for proper analysis of
she 29x29 case proved difficult. Reference will be made at appropriate points to results from ather
systems. The data records analyzed included the fluctuating energy from sach of the modes in the
inertial and damped regimes and the total fluctuating energy and enstrophy {mean squared vorticity).
The results, which are presented below, indicate low dimensional chaos and simple determinism in

most cases examined with a dimension dependent en the regime examined.

A similar model used to study 77; turhulence has been investigated for low dimensional chaos by
Parsson and Nordmars.'? In contrast to the mode! investigated here, the 7; mode! contains only one
nordinear term, the Ex® nonlinearity. They examined individuai mode energies in & system of 64x64
trodes and found the dimension of the system to be high in the weak turbulence regime where the
linear terms dominate and low, with a dimension less than 3, for the strong turbulence where the

nontinear terms dominate.
522, Analysis

I figure 5.5 is presented a typical time trace of a single mode enargy of the 21x21 mode case; this one
is the {0.8) mode. Here, the convention is ly ,x), in accordance with Newman. The mode is part of the
damped regime. Below it is depicted the power spectrum. Although in no way indicative of chaos, Itis

interesting to note that the shape is very similar to that of both the Lorenz and Mackey-Glass systems.

The: top twa plots in figure 5.6 show the correlation dimension for the {0.8) mode and the correlation

dimension for its phase randomized surrogate. There is a clear plateay region at 2 dimension between &
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Figare 5.5, The energy of the [0,8) mode of a 29x21 mode system. This mode is in the damped regime.
Beneath it is shown the power spactrum.

and 9 which is not evident in the surrogate plot. The ow sumber of points avaitable (40,00C! accounts
for the discrepancy between embeddings of 14 and 17, and the roll off to low dimension at small radii
is for reasans similar to those discussed in connection with the Mackey-Glass system (see sestion 3.2},
The divat seen in the surrogate plot near a dimension of § is typical of the spurious plateau seen with
comrelated noise as discussed in chapter 4 . The botiom two plots show the correlation dimensicn for
the {0.,5) mode, which is in the inertial range where no driving or damping is present, and the total
energy. Both show & claar plateau region with a dimension around 6, while heir surrogates {not shown)

show & hehavior similar fo white noise.

Most signals examined from the DTEM system showed similar correlation dimension piots, with the
inertial range having a dimension around 6 and the damped regime somewhat higher. This behavior is
ngt unreasonable and is consistent with the results reported in {10 the regime in which the lingar

terms dominate {damping, 0,8} mode) shows a higher dimension than does the nonfinear regime
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Figure 5.6. Plotted is the corralation dimension for several cases from the Z1x21 made spectrum. The
top two plots compare the dimension of the {0,8} mode and its surragate. There is g clear scaling region
for the original signal at a dimension between 8 and 9. The dip in the surrogate is reminiscent of
corelated noise as discussed in chapter 4. The lower two plots show the correlation dimension for the
{0.6} mode and the total energy.

{inertial range, (0.6} mode). The rasults are alsg consistent with experimental resulis which indicate 3
dimension dependent on the wavenumber. ! The different measured dimensions may be explainable on
the basis of turbulence theory, however the explanation is still speculative. This will be discussed in

mara detall in the summary section at the end.
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In the 13x13 case (not depicted) a saturation region was also apparent, though not as ciearly defined.
The dimension was somewhat lower, betwesan 4 and 5. The poorer saturation may be dua to the fact
that the regimes are so close 10 each other that no stable transfer pattem is established. The 3938
case showed some tendency 1o Saturate at a dimension ngar 7, though many more points are needed

before a reliable estimate can be made.

Figure 5.7 demonstrates the short term predictabitity of the signats. Plotted are the prediction error from
the (0,6) mode, the (0,8} mode and the total energy and the exror of their phase-randomized surrogates.
One can see that the short term aradictability of the {0.8) mode is especially good: at least an arder of
magnitude better than its surrogate. The predictabifity of the energy is aiso gootd, though not quits as
dramatic ss the {0.8) made. The predictability of the (0,6) mode is poor, showing & high prediction error
that is comparable to its surragate’s. The possible reasons for this will be discussed in the summary

section at the end.

Table 5.2 shows the Lyapunov exponents for the (0.8) and {0.8) modes in several embedding
dimensicns. Both systems have positive exponents, indicating that the modes are chaotic. The {0,8)

mode has a higher Kaplan-Yorke dimension before it saturates, as expected. The expenents are very
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Figure 5.7. The prediction error for the {06, (0,8) modes and total energy of te Z%x21 mode spectrum.
Predictability is good for beth the (0.8) mode and the total energy. it is poor for the {0,6} mode for
reasons explained in the text.
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system T Dyy I Lyapunov exponents
mode {0,6) 009s 810 17715 :24% 10T £ 31% 05018+ 55%
00950 +274%  -00227493.9% -04130+81%
09218+43%  -165/5134%  -3.8867£28%
008s 855 17148+2.2% 08784+ 3.1% 4574 £5.7%
00757 £31.0%  805254510% 02167 £13.4%
L6745:£50%  -1.1%5+36%  -19802x3.0%
-5.4591 £ 26%
mode (0,8) G.O5s 9.09 8.8462+ 1.6% 49430+ 22% 25281+ 34%
11518+ 7.5%  0.0490488.9%  -0.3610+27.6%
-12486+100%  -39239+£73%  -92931:55%
290221 +37%
0045 4§63 89888 £ 1.3% 57238+ 1.8% 33122£27%
13845+86.3%  B14312682%  -0.4498276.3%
3907127.1% -37892+43%  -65160+£3.0%
108685+ 23% 2343451 1.7%

Tabte 5.2. The Lyapunov exporents for two modss of the DTEM modat in several embeadding
dimensions.

stable from one embedding to the next. remaining at approximately the same value. This is a good
indication that the vaues are probably very nearly correct. In addition, any system continuous in time
must have at least one exponent equal to zero. Both show at ieast one and possibly two 7en values

with small magnitude and large standard deviation.
523, Summary

Analysis of the data from the DTEM mode! shows strong indications of low dimensicral chaos and
simple determinism. The individual mode energies and the total energy show a clear plateau region
with a dimension dependent on which mode one examines. Alf signals show evidence of short term
predictability, though the quality is mode dapendent. Finally, the Lyapunov exponents yield a Kapian-

Yorke dimension which corroborates the results obtained from the conrelation dimension.

initially, one should expect a single system to have a single dimension characterizing its topologicat
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structurs. Afthough this should in no way be taken as fact, | ean offer some speculation as to why the
different modes show different dimensions angd prediciabifity. The DTEM model has two very different
regimas which govern the dynamics of the system. The inertial range, modes 3 through 7 in the 23:21
case, contains no linear damping. The only dissipation is through the nonfinear coupling process 1o the
other modes. The damping regime containg a large dominant finear damping term. In many ways the
dynamics of the demping regime are independent of the inertial range; the reverse, however, is nat
wue. One can make a loose analogy to an amplifier with 2 high input impedance: the input signal should
be unaware of the amplificr's existence. Thus, it may not be unreasonable that the two regimes have
different dimensions when examining the large scale structure. At very small scales this difference
shouid disappear, reflecting the fact that it is coupled system. However, the number of points required
and computational constraints restrict the ability to explore this Hmit of infinitesimal hypersphere radii.
ln any ¢ase, the difference in dimension is very small, about 2, in comparison to the number of

equations used 1o describe the system: 441.

The difference in predictability may be explainable as follows. The inertial range is @ much more
turhulent regime, and in: addition it is very nearly Hamiltonian. The only damping is from the nonlinear
interaction with the other modes. Thus, the trajectory is not strongly drawn to the attractor. Through the
interaction with the other modes it experiences a periurbation from the inertial manifold of thé
attractor, and cannot guickly converge back that manifold. The (0,8} mode is in the damped regime
which is far less turbulent and thus more siable. This dissipation insures that the trajectory remains

close to the inertial manifold, thus accounting for its superior predictability.

Tha Lyapunov gxponants tend to corroborate this explanation. i one ignores probable zero values, those
with farge siandard deviations, the least negative exponent {the one with smallest absolute magnitude}
is larger for the {0,8) mode [-1.248) than for the {0,6) {-0.413). This value controls the collepse of the
frajestory onto the inertial manifold (the topological region containing the attractor} of the attractor.

This larger vaiue for the {0.8) mode would imply a faster convergence 1o the atiractor and hence hetter

8
predictability.
| must emphasize that these explanations are largely speculative. More work in this area is planned
with the intention of trying to explain these phenomena. Clearly, however, the system is low
dimensional, and one might therefore expect real plasma system 1o also show evidence of low

dimensional chaos.
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6. Experimental Data from the Madison Symmetric Torus
6.1. The Data

I order to ascertain whether simple determinism governs discharges of the Madison Symmetric Torus
IMST) a wide range of signals was analyzed comprising both global and local measurements. Global
signals included fluctuations in the average toroidal magnetic field at the wall, 4By, /dz, fluctuations
in the plasme current, dl, /dt , chord averaged density fluctuations, both optical and soft x-ray
raffation, and toroidal and paloidal gap voltages, Vi, antd Vpg. Logal signals included local poloidal and
toroidal magnetic field fluctuations, jon saturation current, Jo,; . and plasma potential fluctuations. All
the data analyzed cannat be presented here without severely compromising the reader’s attention span.

Rather, } will concentrate on a representative sample drawing from both groups.

As mentioned in the introduction, none of the analysis techiiques applied yielded any evidence of
simpie determinisr, On the contrary, circumstantiat evidence would suggest that the signals analyzed
are similar to Jowpass filtered white noise. Results for the analysis will be presented in the same
farmat as in the last chapter, and at the appropriate points | will remark about the similarities of the

data o noise.

Comprising the globat set of signals to be presented are fluctuations in the toroidal magnetic field at
the wall and fluctuations in the plasma currant, Because of the large voitage spikes in both gap
voltages the digitizer resolution is poor, and the signals cannot be analyzed properly. The data for
dB,,,/dr were obtained from & set of four Rogowski coils around the feed legs for the poloidal current.
The signal was first hardware filtered with a 6 pale Butterworth lewpass filter with a cutoff frequency
at 157 kHz. The filtering proved unnecessary, since the natural bandwidth of the signal is well below
this evel. The signal was then attenuated by a factor of 3 and sampled at 500 kHz over the duration of
the discharge. di, /dt is obtained using a Rogowski coil focated inside the torus. The signat was

filtered ang digitized in the same way as dBj,, /dr, however no attenuation was necaessary. In view of
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the effects of linear filtering presented in sestion 4.2.2, it shouid be noted that several signals which

were not filtered have been analyzed yielding similar results.

The group of local measurements consists of the ion saturation current obtained from a Langmuir probe
and the toca! fluctuating polaidal and toroidal magretic field components abtained from the set of
dense array coils. The dense array is a set of small, closely-packed magnetic pickup coils located at the
wall designed to measure shart, high frequency fluctuations and magnetic field correlations. The coil
signals are amplified by a factor of 2 to 5 and then digitized at 258 kHz. One coit in each of the toroidal

and poloidal field directions was used.

Tzabie 6.1 summarizes the relevant parameters of the signals presented here. Notice that all signals
with the exception of Jy, have extremely short autocorrelation times. if this were due purely to the
dynamics of the system, identification of the quantities characterizing the chaotic dynamics would be
very difficult. As discussed in chapter 3, a reasonably large = is necessary ta praperly estimate the
cosrelation dimension, Lyapunov exponents, etc. Noting this, several of the quantities were remeasured
using double the digitization rate to extend the autocorretation time. There was no difference in the

02940 yould

analysis results. The number of points available for analysis, by the Tscnis rule Nypjges 1
mean it is possible to measure reliably a maximum dimension of § or so for By, and fp, 5 for the

magnetics and 4 for Jy,, -

The data for 4By, /de  dl, Jdr and J,, . were all taken on 22 September 1992. The flat-topping

network was in operation for the data taken on this day, and peak plasma current was typicafly about

Signal dt Ppints during flat-top | Autocorrelation [df stepsi | Date and Shat
By 21078 20,000 2 22 Sep 92, #41
i, 2108 20,000 2 72 Sep 92, #41
Tsat 118 4,000 3549 22 Sep 92, #41
B, ax10® 7,500 23 2 Jun 93, #124
B xS 7.500 1 2 Jun 93, #124

Table 6.1. Summary of relevant parameters for the MST signals examined for simple determinism.
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290 kA.  will soncentrate on a particular shot, #41, aithough several others were analyzed with similar
resulis. The magnetic ficlds during the discharge are depisted in figure 8.1 along with the chord
averaged electron density from the PR interferometer. There is a significant flat-top peried extending
srom about 17 to 57 ms. The data were all anatyzed during this pericd since it seems likely that if the
plasma is to achieve “equilibrium”, it would be during this period. Data from both startep and
rampdown periods have also been analyzed with similar results. The data for the magnetic field
fluctuations were taken on 2 Jung 1903, Agair, flat-topping was operstional, this time with peak
plasma current around 400 kA, The flat-top period was somewhat shorter, owing to the higher currents,

and extended from approximately 10 to 40 ms.
82 Analysis

The raw signalss are plotted in figure 6.2. Digitization means all signal amplitudes are measured in volts.
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Figure 6.1, MST discharge #41, 22 September 1992. The top piot shows the average toroidal magnetic
field and the toroidal field at the wail. The fower trace shows the chord averaged electron density. The
data presented here were analyzed during the flat-top peried from sbout 17-57 ms.
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Figure £.2. The raw signals from the MST to be anzlyzed in this chapter. The data represent both
glebal and local quantities.
Evident in all signals are the flux jumps, bursts of magnetic field energy, characterstic of the MST
discharges. Otherwise, except for in Jgg, . there is no other structure apparent in the signal. A detail of

dBp, dt is shown in figure 6.3 around the time of a fiux jump. Although in no way indicative of the
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Figure 6.3. Detail of the dBy,, /dr showing the structure during a flux jump. There is some qualitative
structural similarity to lowpass filtered noise depicted in figure 4.3
lack or presence of simple determinism, the signal should be compared with figure 4.3, which shows a

time trace of lowpass filtered Gaussian white noise. The two are qualitatively very similar in structure.

Figure 6.4 shows the power spectra of each of the signals aver the ffat-tog region. The B, spectrum, not
shown, is simifar 10 Bp. All signals are clearly broad spectrum, which probably accounts for the short
autocorretation times. The power spectra are not &t all similar to either the known ghaotic systems or
the numerical systems presented in the last chapter. Power spectra are not, however, in any way
indicative of low dimensional chaos. One can conclude that the signals are not periodic, and thus at
lzast candidates for chaos. By design, the power spectra for dBy, /dr and d, /dt are guaiitatively
similar to that of lowpass filtered noise depicted in figure 4.14. Notice that the spectra for both By

and | » fall off significantly before the hardware filter roli off frequency of 157 kHz.

The phase delay plots, shown in figure 8.5, show no apparent simple structure. The plat for dBy, fdt i3
a 3.4 ms window {1700 points) with a fag of 3 time steps. The Jg,, plot covers 10 ms and 1,800 points.
Essentially, they appear as a ball of wool with occasionat excursions into hyperspace during flux jusmps.

Again, phase portraits are typically only useful for dimensions less than 2.

Figure 6.6 presents the correlation dimension piots or ail signals. There is no saturation with increasing
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Figure 6.4. The powsr spectra for the MST signals.

embedding for any signal. These plots exhibit no evidense for fow dimensional chaos or simple
determinism in the raw signals from MST. All plots are typical of noise systems. There appears to De &
hint of saturation in the J,, piot for an embedding of § at 3 dimension near 8. It disappears, howaver,
in higher embeddings. The behavior is more typical of correlated noise, as discussed in section 43,
rather than any real indicaticn of low dimensional chaos. In addition, the number of points available
would not aliow for a credible determination of & dimension this high. Figure 6.7 shows 8 comparison af
the correlation dimension of By, and its phase randomized surrogate. The two sets of curves are

indistinguishable, confirming that By, s not a low dimensional chactic pracess.
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Figure B.5. Phase deiay plots for By, on the left and Jy,, on the right. For By, 1700 points are -

plotted covering 3.4 ms; for Jg, there are 1000 points covering 10 ms. Phase detay plots for the other
signals are just as ifuminating.

Figure 6.8 shows the translation error of the MST signals along with their phase randomized
surrogates. Recall that the translation error measures the coherence of flow in simple deterministic
systems. The laft plot shows the global signals B, and 1 ». Given only the date from the original
signals, one might be persuaded that some degree of predictabifity and flow coherency exists. The
valyes in several embeddings could (marginatlyl be considered small. However, the surrogate daia
shows an almost exactly similar trend, indicating that the presumed coherence is spurious. These small
values are likely due to the cheice of 7= 1 for Time lags. Even though the signal loses carrelation on this
time scale, this choice of T means that neighbors are very likely io be on the same trajectory. Henca
sheir flow is in a similar direction. This emphasizes the need to sample data frequently enough to have
an aulocorrelation time of several time steps. However, data sampled at 2 higher frequency, 1 MHz,
altowing the use of a larger 7 {21}, did not yield significantly different results. As discussed in chapter
3, the fransiation error is a poor indication of simple determinism for ever modestly high (>4 or 5]

dimensional systems. It is presented here only in the interest of completeness.

The neighboring figure shows the iocal signals Jgy Bp, and B,. The same conclusions as above
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Figure 6.6. The correlation dimension of the MST signals. None show any evidence of saturating to a
constant value which would indicate low dimensional chaos.

apply. Notice that since J,, has a relatively long autocorrelation time due to the fact that the signal is

nat differentiated, the proper cheice of T yields very large values for the translation error.

Figure 6.9 depicts the prediction error for the MST signals. The prediction error measures short term
predicsability, should be smail for a simple deterministic system, In a autshell, none of the signals are
even remotely predictable in the short term, The steep rise from a modestly high valus {20 — 30%] o

saturation at 100% within 2-3 time steps is typical of correlated noise systems. As mentioned
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Figure 6.7. Comparison of the correlation dimension of By, with its surrogate data set. Both show
very similar bebavior, indicating that By, s not governed by a Jow dimensional chaotic process.
previously, the initial short term predictability is an artifact of the short term cormelations seen when
measuring time steps in units of 7.

Table 6.2 presents the ealculated Lyapunov exponens for the data. With each increase in embedding,

the Kaptan-York (KY) dimensian increases significantly, although it does not fil the embedding space.
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Figure 6.8. The wranslation error of global signals end their surmogates is plotted in the left figure. The
same plot for local measurements is shown on the right. Neither shows any evidence of simple
determinism.
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Figure 6.9. The prediction error for MST signals. The low values in some of the signats for the first step
is due to spurious corselations due to measuring time steps inunits of 7.

Recalt from section 4.3 that this behavior is typicat of lowpass filtered noise. In contrast, severat of the
systems, Jyg, B, and By show credible zero exponents values, which would indicate the processes
are continuous ir: time. By, and i » do not show a zero exponent. Because the KY dimension never
stabilizes, the Lyapunov negative exponents cannot be considerad to refiect any real value, despite the
fact that some of the larger values sppear relatively staticnary. The positive values may be correct, and

reflect the space filling property of the high dimensional or stochastic system.

In addition o time series analysis, MST discharges ware analyzed spatiaily using the set of magnetic
pickup coils distributed around the torus. Rather than using time-delay embedding to recenstruct the
phase space, vectors were created by using signals from separate coils as individual vector
components. The purpose was 1o address the issue of stationarity by analyzing data from & very short
time pericd, and yet have a sufficient number of vectors for adequate analysis. The data were taken on
8 October 1992, and digitized at 500 kHz. Figure 6.10 show the correlation dimension obiained when
using 2000 spatial vectors over a duration of 4ms of the discharge. The number of coils used
corresponds to the embedding dimension. The results are consistent with the time series analysis: No

evidence for simple determinism was seen in MST discharges.
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Tahle 6.2. Lyapunov exponents for the MST signals, measured in u 1. The Kaplan-Yorke dimension
shows no indication of saturation in any embedding.
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argund the MST vacuum vessel. It teo shows no avidence of chaos.

63. Filtering

Although there is no evidence for simple determinism in the raw dats, the possibility remains that the
signals are noise comupted. Thus, all signals were low pass filtered in order to extract any possible low
frequency chaotic dynamics. Despite the admanitions against linear lowpass fillering presented in
chaptar 4, ! first filtered with an 8-pole elliptical filter with the knee at Z0kHz. The rasuiting phase delay
plot for By, is shown in figure 6.11. The signal does appear o be cleaned up considerably, and the
phase-delay portrait is quite & bit smoother then the comparable one in figure 6.5. However, as
indicated in: the right pict, there is still no evidence of low dimensional chacs. Plotied is the comelation
dimension for the filtered signal and the phase randomized surrogate of the filtered signal. The two
show nearly identical behavior, dispelling any hepe that linear filtering may extract underlying chaotic
dynamics. In chapter 4, however, 1 presented evidence that linear filtering often destroys rather than
extracts simple determinism for a corrupted signat. The results obtained here are thus not too

surprising.

The signals were next processed using principal component anatysis (PCA) in hopes of recovering the
relevant dynamics. As can be seen in figurg 8.12, PCA has distinguished about four dominant dynamical

components; there appears o be a break in the eigenvelue spectrum after the fourth component.
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Figure 6.11. The eft hand figure shows the resuiting phase delay-plot when B, is fittered with a
lowpass elliptical filter with the cutoff at 20kHz. it coresponds to the same time frame as in figure 8.5.
Despite the more atiractive “attractor” there is still no evidence for simple determinism, as seen in the
right figure. The plot compares the corretation dimension for both the filtered signat and its phase
randosmized surrogate. The twe are indistinguishable.

Plotted in the lower figure are the three largest eigenvectors multipliad by their respective eigenvalues.
ft appears that the original system can be separated into processes on ditferent time scales. The
dominant component has a much lower frequency than the other two. This would lead one to hope that
there is some underlying low dimensional system, ca. 4-5, obscured by noise. PCA hopefully has
relegated these noise components to the eigeavertors cosresponding to the smaliest eigenvalues,

leaving the relevant dynamics to the fargest few vectors.

Unfortunately, as shown in figure 6.13, this is not the case. Depicted is the correlation dimension for
the largest eigenvector from the PCA of By, 1t shows no indication of saturation to a smal correiation
dimension value. The other two largest eigenvectérs show similar behavior. In addition, | attempted &
second processing of the largest eigenvecter, hoping to achieve iterative “cleaning” of the signal.

Results were similar to those from & single iteration.
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Figure 6.12. Principal compenent analysis of B, The upper plot shows the eigenvalue spectrum with
what appears to be a break after 4th value. The thres largest components are shown in the lower plot.

The decomposition distinguishes a low frequency vector with the largest eigenvalue {ampiitude] from
severat smaller high frequency components.

Nonlinear noise reduction, the process outlined in section 4.2.3, does not vield results different from
the above. Plotted in the right of figure .14 is a detail from the By, time series compared with the

same series after one iteration of the nonlinear filtering process. The signals are nearly identical. In

section 4.3 | discussed this phenomenon in conjunction with lowpass filtered Gaussian white noise.

This behavior seems unigue 1o the MST signals and the filtered noise signal. Possible reasons for this
were discussed In that section. Although the evidence is purely circumstantial, it would indicate that

MST signals are simitar to filtered noise. The right plot of figure B.14 show the result after six
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Figure 5.13. The correlation dimension for the principte component corresponding to the argest
eigonvaiue from the SVD of By, There is still no indication of chaotic dynamics.

fterations. Quatitatively, the two signals do not differ significantly from one anothes.

Figure 6.15 shows the correlation dimension for the MST signals after processing with the nonlinear
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Figure 6.14. The effect of nonlinear filtering on 8, is depicted. The left figure shows a detal! after
one Beration. It is nearly identical to the original signal. After six iterations, difference between the two
are only superficial {right).
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Figure 6.15. The correlation dimension for the MST signals after processing with the nonkinear noise
reduction method. The are still no indications of low dimensional chaos.
fittering aigorithm. A, which shows similar behavior to By, has been omitted. There is still no

evidence of low dimensicnal chaos in any of the data.

The plot for Bp shows a curious behavior st large scales, with what fcoks ke a plateau region of
dimension less than ona for —1 < logr < 0. The origin of the behavior can be seen in figure 6.18. The

ronfinear filtering has had a different effect on the local magnetic fluctuation signals { B; and Bp show
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Figure 6.16. Shown is a cetail from Bp after procassing with the nonlinear filtering routine. All signal,
save the bursts corresponding to Tl jumps, has heen nearly eliminated. This feature is responsible for
the spurious D = G regicn of the corselation dimension depicted in figure §.15.

the same behavior) than on B,,. Essentially all signal has been eliminated except the bursts during
flux jumps. The likely reason for this is the small amplitude of the signal batween flux jumps. The signal
level was less thar 1/2 volt during this period, correspanding to less than 50 digitizer bits. Additionally,
the sampling frequency of B, was 1/2 that of By, This resulted in a shorter autocorrelation time,
making the signal between flux jumps appear more fike Gaussian noise. This "noise” was reduced by
the nofss reduction process, leaving only the large amplitude flux jump signal. Aside from the fact that
the filtering has obviously severely distorted the signal, the plateau region can be discounted as
indicating any real dimensicn on the basis that reat systems must have & fractal dimension greater than
two. The J,, signal also shows a hint of a piateau at a dimension near 7-8. This behavior is similar to

that seen in correlated noise and is probably not indicative of chaos.

Prediction also indicates that no simple determinism is present. Figure .17 shows the prediction error
for the MST signals after nonlinear naise reduction. They actually show poorer predictive behavior than

before fittering was attempted.
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Figure 6.17. Prediction error for MST signals after processing with the nonfinear filter. Predictability
has detericrated in most signals relative to the usfiltered case (see figure 6.9}

64. Summary

Several quantities charagterizing the discharges of the Madison Symmetric Torus {MST} have been
analyzed for evidense of low dimensional chaos and simple determinism. These included global and
local quantities: By, 15, Jug Bp.and By. Analysis of the raw signals shows no indications of low
dimensional chaos from either the correlation dimension, Lyapunov exponents or short term
predictability. The data were also filtered using a variety of linear and nonlinear filtering technigues.
Nonetheless, evidence for simple determinism remained elusive. The analysis suggests. on the basis of
circumstantial evidence {similarities in the signals’ structure, power spectra, Lyapunov spectrum,
translation error, the effect of nonlinear filtering} that the data more closely resemble lowpass filtered
Gaussian white noise. The system is certainly high dimensional. Given the number of peints available
for analysis, one can place a lower bound of the fractai dimension of MST plasmas. Using the Tsonis
criterion, Nypine< 102042 5t 3 minimum Dy must be greater than 5.75. The ramifications of this result

in light of the results of chapier 5 will be discussed in the final conclusions chapter.
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7. Discussion and Conclusions

7.1 Summary

1n this dissertation | have examined the possibility that low dimensional chaos and simple determinism
govern the dynamics of fusion-caliber plasma discharges by looking at both numerical simulations and
experimental data. Several provious studies have been cone analyzing experimental or numerical data,
hut these hava yielded conflicting results. The study presented here sttempted to be more thorough by
comparing expesiment to simulation. In addition, since the time of most of these eartier studies several
new analysis methods have been developed along with a better understanding of how to apply the

existing techniques.

| examined data from two numerical simulations which medel plasma processes. The first medel, the
DEBS code, is a numerical simulation of reversed field pinch discharges: Several quantities from the
code were analyzed and found to show strong evidence of chaos. These were the toroidal and poloidal
magnetic field fluctuations, the toroidal ioap voitage and various manifestations of the giobal electric
field. Al signals, with the exception of loop voltage, showed evidence of low dimensional chaos with a
long scaling region for the comelation dimension at a dimension of 3 to 4. This was corroborated by the
spectrum of Lyapunov exponents which yieided a carrespendingly low value for the Kaplan-Yorke
dimension. The fact that the Iocp voltage showed no plateau region is not surprising since this guantity
is advanced differantly by the code than the others. Most signals alse had good short term

predictability, which is evidence of simple determinism, Notably, the parailel electric fisld did not.

Data from the DTEM model, which models long wavelength drift wave turbulence, were also examined.
The energy of the individual modes was analyzed, and all modes showed 2 good correlation dimension
scaling ragion with the dimension dependent on the mode. Dimensions ranged from 8 1o 9. The total

energy also showed svidence of a low correlation dimension. Pradictability was good for afl cases,
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though better for modes in the linear regime than for those in the inertal range. As discussed in section
5.2.3, the different dimansions measured and the difference in predictability may be explainable. The

measured Lyapunoy exponents appear to corroborate these findings.

Several signals from the Madison Symmetric Torus were analyzed comprising both lecal and glebal
guantities. Despite concarted effort, including the application of fingar and nonlinear filtering
technigues, no evidence of low dimensional chaes or simple determinism could be found. Moreover,
circumstantial evidence suggests that the signals mare clesely resemble correlated noise rather than 2
deterministic process. This claim is on the basis of similarities in the signal’s structure, the behavior of
the Lyapunoy exponents and short term prediczability, and the action of the nonlinear noise reduction

procedure o the signal.
7.2.  Discussion

The fact that the experimental data from the MST show ne evidence of simple determinism must be
contrastet with the positive results of both the numerical simutations and previaus results from other
experiments. Addressing first the discrepancy between code and experiment, there are several likely
origins. The DERS code, although it seems to model some RFP processes well, makes saveral crucial
sirepiifications. As mentioned earlier, the mode! includes no temperature or pressure effects. Although
one cannot predict with certainty the effsct of including a finite temperature, it seems reasonable to
assume that including the additional quantities in the system of equations would 7esult i an increase

in the dimension of the system.

Anpther simplification is the small number of modes included in the system. The number of modes was
9 toroidal By 3 poloidal, a very Himitad subset. Resuits from the DTEM model indicate that the
dimension no longer scales with the number of interacting modes once the system is large enough.
However, this saturation is evident only after more than 400 modes are present. The Z7 modes used in

the DEBS code Is probably far too few to model the highly trbulent system of the experiment.

The magnitude of the Lundguist number § also prabably contributes to the difference between the
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experiment and simulation. The dynamics of the code change significantly as § changes from 10° 10
1947 n particular, the nonlinear interaction among the modes ingreases with increasing Lundquist

surnber. One could reasonably expect that the dimension should aise increase.

Finally, in crder to efficiently model the long wavelength tearing modes of the plasma, the code does
nat treat fast time scale fluctuations correcily, Athough most of the power is congcentrated in low
frequency osciliations, a significant fraction is in the higher frequensy dyramics. This is apparent from
the broadband nature of power spectra of all signals, and especially the grominent second peak sees in

the By, spectum at about 70 kHz {see figure 6.4}

The fact that low dimensional chaos is ssen in the DTEM model and not in the experimentat data from
MST may not be too disconcerting. The simulation models & speeific process, drift wave turbulence,
which is believed not to be significant in BFP plasmas. Yet the model is in many ways general encugh
that one should expect to see similar results despite this difference. The code suggests that one should
see simple determinism in individual mode amplitudes. Further, the simulation suggests that once a
sufficient number of interacting modes is present the dimension is Aot strongly affected by increasing
shat rumber. However, analysis of individual mode amplitudes from magnetic fluctuations in MST
yieided negative results. The simulation does, however, mode! only one of several processes occursing

simultanecusly i a real plasma. This emission could account for the difference.

One can prabably account for the discrepancy of the exparimental data and the numerical simulations
on the basis of the simplifications made in the modais. However, the results presenied here also
disagree with results obtained by several other groups waorking with data from experiments, including
ACPs. tn short, | think the inconsistency is due to improperly applied analysis technigues by several of
the groups repeﬁing positive resuits. When most of these results were reported the correlation

dimension was essentially the only technique available for analysis, and it was relatively new. None of

1 Private communication frem Carl Sovinee.
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the reported results include a plot of the siope logCly) versus fogr. which aids in identifying the
scaiing region, and none shows a scaiing region of at least one decae. One group repotts identifying
two scaling regions of different slapes,” which seems both an impiausibie result and an improper
interpretation of the analysis. Verification of the resuits using phase-randomized data sets was not
done. In my estimation, the only group that did a thorough examination of the data is Sawley, at al. [14]
who reported negative results. As further confismation, { point out that no group studying fusion-caliber

plasmas has. to my knowledge, reported positive results in recent history {since 1987).

Thus far | have concentrated on explaining the inconsistency of the resuits by citing the fauits in the
numerical modals and previous experimentat results. Let me now focus on the experimental data to
understand why no chaos is seen in it. Looking first just at the quality of the data, there are threg
concerns which are very closely related. These are the time length of the record, the number of points
and the autocorrelation time. To the first issue; Typically, one requires several hundred cycle fimes of
she “dominant” period of the system for proper estimation of the dimesnsion. For the Lofenz atiractor
this period would be once around either of the lobes. Let us suppose that the dominant dynamics, the
tearing mode fluctuations, are a fow dimensional chactic process. For MST data, one would need
several tens of mitliseconds at a minimum to determine the dimension. Higher dimensional systems
require more cycles, and the interaction of the toaring modes with other modes may mean the cycle
time is longer than the typical 2 to 5 ms between flux jumps. The duration of the flat-top pericd is about

49 1, corresponding to only 10 1o 15 flux jump periods.

At the opposite end of the spectrum, the time intervai between cata points is too long. As discussed in
section 3.2, when using delay embeddings, proper choice of the time fag 7 is crucial to proper
estimation of the dimension, and this is linked to the autccorelation time of the data. With the
exception of J, alf the data had extremely short autocorrelation times, on the order of 2-3 time steps.
Ir: high dimensional embeddings, any correlation is probably lost even when choosing =1 for the time

lag. Finally, there are tco few points available for analysis. The MST system is probably high
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dimensional, and most authors estimate that the number of points roguired scales exponentially with
the dimension of the system. Estimating the dimansion of the Mackey-Glass system with 7 =100s
required 40,800 points for a reasonable plateau length at the aceepted dimension of 7.5. For the 20,000

points avaflable far analysis, one could possibly expect to measure 8 dimension of only 5-7 at most.

The latter two issues were addressed to some extent in data that ware not presented here. 32,000 data
ooints digitized at 1MHz for B, and jp wers taken during the flattop period of an MST discharge.
The increased sampling fime meant an autocorrelation time of 4-5 time steps. Analysis of these dats

vieldsd results nearly identical to those presented in chapter B.

On the basis of this analysis, one must conclude that the system is probably high dimensianal. { would
estimate that it is very probably graater then a dimension of 15. This iower limit is based largely on
conjecture from examining the dats. Typically when analyzing & system, even if all parameters —
embedding delay time, embedding dimensicn, number of points, etc. — are net optimally determined
there is at jeast some indisation of & plateau in the corelation dimension plots. The data from the MST
show not the slightest hint of a plateau, even for embeddings up to 33. The behavior of the correlation

plots is very simitar to high dimensional o random data.

An issue separate from the date itsef is whether the data are truly representative of the MST
dynamical system. An cbvious possible problem is that the signals are contamingted by noise. Evena
small amount of noise can cbscure the simple determinism, especially for high dimensional systems.
The question is, what is the source of the noise? The diagnostic equipment used to gather the data is
fargely noise free, contributing a noise level of perhaps 1 to 7 pans in 10° at most to the signal.
Another pessible source of neise is the plasma itself. The dominant dynamics are thought to be the
10 kHz oscillation of the tearing made fluctuations. Yet there is significant power in higher frequency
fluctuations as well. If the tearing mode dynamics are governed by a low dimensional chaos, perhans

these high frequency oscillations are obscuring the chaos.

One cannot, however, consider this a “noise” process in the sense that it is concealing the true
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dynamics of the system. The high frequency osciliation as wall as the tearing moda oscillations are part
of the same dynamical system; they cannot be separated into dynamical and noise component.
Although the two processes may otcur on different seales as was suggested o explain the results of
the DTEM model, they are presumably coupled, and so are both part of the dvnamical system.

Ultimately, the trug dimension of the system is determined by the highest dimensicn process.

A second problem is the issue of stationarity. As demonstrated in section 4.4, even 3 very slight
nerturbation of the system can make the dimension immeasurabie. In the DEBS code, both the plasma
current and the toroidal loop voltage remain faitly constant during the discharge. This is not the case in
MST discharges. With the flat-topping network operational the plasma current remains fairly constant
over a period of up to 40ms. The locp voltage, however, fluctuates wildly during this period. The salient

question is whethes the system is in any sense "stationary” at any time during the discharge.

in part, 1 think the issue of stationarity begs the guestion. Assuming we have a noise free system {no
random disturbances), then if one of the “parameters” fluctuates in time one needs tv re-designate it as
one of the “variables”. This can increase the dimension by at most two if e fluctuations of the
parameter are time dependent. If the loop voitage of the system fluctuates, then that is the dynamicat

system, not a lower dimensiunal system with non-staticnary loop voltage.

The issue of stationarity does, however, become pertinent if ong of the system parameters is modified
randorily ~ or by & very high dimensional process — during the discharge by some mechanism
independent of the system. | think this may be the case in MST. Dae such process is the influx of
impurity jons into the plasma. The presence of impurities has a strong deleterious effect on the
plasma’s behavior, and substantial effort has been made 10 eontrol the impurity fraction in the MST.
Yet the process is largely untontroliable. The interaction of the plasma with the MST containment

vessel results in an influx of impurities by a process which is probably very high dimensional.

The plasmas of the MST constitute & highly turbulant system of weakly coupied modes and m%némal

damping. This correspends in many ways to the inertial renge of the DTEM model. Assuming an
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atiractor exists, if it has a weakly attracting inertial manifold, this imparity influx may perturb the
trajectory from the attractor. As demonstrated in section 4.4, even smail perturhations can resuit in a
“fuzzy” attractor and destroy any simple determinism in the system. The impusity problem is only one

example, and there may be other processes which also aifect the stationarity.

My own feeling is that it is probably impossible to identify and quantify a low dimensional chaotic
system in MST discharges. This is not to say that | believe that the system is stochastic. It has been
shown that for hydrodynamic turbulence {in 2D) the maximum dimension of the system is proportional
to the Reynolds number squared.”® Assuming this applies to magnetohydradynamic systems, this does
puts an upper bound of 10" on the dimension of the system. it may be much lower. The major
difficulties | see in identifying this possible low dimension are the iength of the flat-top period of the
discharge and the related problem of stationasity. The former problem is a hardware/money probiem,
whigh in principle could be addressed. The latter may be impossibie to remedy. Because of the nawre
of the system, even tiny random perturbations probably destroy any stationarity and dramatically

increase the dimension of the system.
73.  Future Work

For the Sutare, § see several avenues which can be pursted in continuing to study shaos in plasmas and
especially BFPs. Using the DEBS code, issues which should be addressed are the scating of dimension
with the Lundguist number and the number of modes in the system. A version of the code now exists
which includes finite pressure effects. Pressure effects on the dimension shoutd also be studied. In the
GTEM mode!, we nead to understand better how the dimension scales with truly large systems and
why there are differences between the damping and inertial ranges. David Newman and | have plans to

continuge these investigations.

I the MST. despite the fact that deterministic chaos cannot be identified, continuing studies may still
prove useful. Shouid the machine evolve so thet system is more “stationary” — long fiat-top period,

raduced flux jumps and loop voltage spikes — it may be possible to identify a low dimensional attractor.
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Also, with the development of new technigues, e.g. dimension densities, it may be possible to identify
relatively high dimensional chaos in the MST at some time in the future. Finally, in controlling chaotic
systems, one does not necessarily need to know the dimension of the system, It is only necessary that
the system be deterministic. Investigations should continue into the feasibility of controlling the MST

discharges using chaotic feedback and entrainment.
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