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Abstract

This is a dissertation for the completion of a Doctorate of Philosophy in Physics degree

granted at the University of Wisconsin-Madison.

A new multi-energy soft x-ray (ME-SXR) diagnostic based on the PILATUS3 100K x-ray

camera has been installed on the Madison Symmetric Torus (MST) reversed-field pinch.

This photon-counting camera consists of a two-dimensional array of ∼100,000 pixels for

which the lower photon absorption cutoff energy can be independently set. This allows

it to be configured for a unique combination of simultaneous spatial and spectral reso-

lution. The energy dependence of each pixel was calibrated by scanning the individual

pixel thresholds while the detector was exposed to fluorescence emission of differing

photon energies. The resulting data are then fit to a characteristic “S-curve.” The sta-

tistical variation of this calibration from pixel-to-pixel was explored, and it was found

that the discreteness of the threshold setting results in an effective threshold resolution

of ∆E < 100 eV for high-gain settings and ∆E < 200 eV for medium gain. In order to

properly interpret the data a full forward model has been developed which produces

realistic chord-integrated ME-SXR synthetic measurement given the underlying Te, ne,

neutral density, and impurity density profiles. A method for using this model within a

Bayesian framework to extract equilibrium profiles is presented. This diagnostic forms

part of a suite of complementary x-ray diagnostics on the MST, also including a two-color

diode based tomography array, a Ross spectrometer, and a hard-xray detector. This suite

was used to study the structure and evolution of the temperature profile during the
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saturated quasi single-helicity (QSH) state which forms spontaneously in non-reversed

plasmas with high Lundquist number. During QSH, increased electron temperatures

Te > 700 eV were observed, with steep gradients |∇Te| > 3 keV m−1, suggesting the

formation of a thermal transport barrier. A brief period of significantly enhanced con-

finement was observed during which secondary tearing activity was minimal, allowing a

broad thermal structure to form. Runaway electrons were also found to be well-confined

with a population energy Er > 18 keV, suggesting the presence of restored flux surfaces.

Connections are drawn to a theoretical model which relates the QSH state to shear in

the magnetic or flow velocity profile. Observations of predator-prey-like oscillations be-

tween the dominant tearing mode amplitude, secondary mode amplitudes, and thermal

emissions are consistent with this model.
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Chapter 1

Introduction

The goal of the magnetic confinement research community, to which this work belongs,

is to establish nuclear fusion as a viable source of abundant clean energy. For inspiration,

one need only look up: every star in the night sky is an example of a functioning nuclear

fusion reactor [1]. The problem is not whether it can work, but how to build it. As the

common idiom says, the devil is in the details. And when the goal is to develop a system

which can hold an ionized gas in steady-state at 108 K for long periods of time using

only external magnets, there are many, many details.

This thesis, like all publications in this field, is about a small-but-important subset of

those details. High temperature plasmas tend to emit substantial x-ray radiation. Al-

though this radiation is a channel through which confined energy can be lost, it also pro-

vides a wealth of information about the plasma that emitted it. By examining a plasma’s

x-ray spectrum, we can learn about its temperature, elemental composition, and even its

magnetic topology. This thesis focuses on the development of a new soft x-ray diagnostic

for fusion-grade plasmas. This diagnostic forms part of a larger suite of complementary

x-ray diagnostics on the Madison Symmetric Torus (MST) which, together, are able to

thoroughly characterize the evolution of a plasma’s properties. This suite is applied to

study the physics of a self-organized helical equilibrium which spontaneously forms in
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the MST.

This chapter is intended not only to introduce the work discussed in the remainder

of this thesis but also to situate it in the wider context of magnetic confinement fusion

research. Section 1.1 provides a high-level motivation of the need for nuclear fusion

energy and the development of a research community aimed at meeting this challenge.

Section 1.2 narrows this scope somewhat to focus on the important topic of plasma

diagnostics, the sometimes-unintuitive tools which allow us to determine a plasma’s

properties. Section 1.3 discusses one specific diagnostic, the multi-energy soft x-ray

detector, which is the focus of much of this thesis. Section 1.4 provides an overview of

the MST, the experimental facility where this detector was tested. Finally, Section 1.5

provides a general overview of the structure of this document and summarizes the key

results.

1.1 The climate crisis and controlled thermonuclear fusion

In the year 2019, less than 20% of energy production in the United States came from

sources which do not emit carbon dioxide into the atmosphere [2]. As shown in Figure

1.1, this consists of 11% from noncombustible renewables (hydroelectric, geothermal,

wind, and solar) and another 8% from nuclear fission reactors. The remaining 81% of

our energy production relies on the combustion of fossil fuels, releasing large quanti-

ties of carbon dioxide into the atmosphere. These greenhouse gases, released in large

quantities by human society following the Industrial Revolution, give rise to a warm-

ing climate [3, 4]. This human-made climate change has already led to an increase in

global temperatures, a reduction in the size of glaciers and a corresponding rise in sea

levels, an increase in heat waves, and a reduction in the populations and ranges of nu-

merous plants and animals [5]. Climate models show that the consequences could be

far more severe if warming is not kept within an acceptable range, often estimated to be
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within 2◦C [6]. This emphasizes the immediate need to invest in the development and

deployment of carbon-free energy sources.

A 2019 report published by the Nuclear Energy Agency, a part of the Organisation for

Economic Co-operation and Development, found that a decarbonization strategy which

relies heavily on variable renewable energy1 suffers a large cost penalty due to the re-

quirement of excess capacity [7]. More economical approaches tend to rely heavily on

nuclear energy to fill the void left behind by carbon-emitting fossil fuels. Although nu-

clear fission plants are currently far safer than fossil fuel-based energy production [8],

there are still important concerns regarding overall safety, waste disposal, and prolif-

eration [9]. This leaves an opening for energy production from thermonuclear fusion

to contribute significantly to the global de-carbonization effort [10]. For a more thor-

ough discussion of the safety concerns related to nuclear fusion energy, see chapter 14

of Reference [11].

Nuclear fusion is the process in which two or more atomic nuclei are combined

to form an atom of a heavier element. When the mass of the product nuclei is less

than that of the reactants, the binding energy given by ∆E = ∆mc2 is released in the

form of radiation [12]. This effect is most significant for very light reactant elements

such as hydrogen. This process is the primary source of energy for all stars, including

the Sun. In the 1950s this process was exploited by humanity for the first time in the

form of thermonuclear weapons (i.e., the hydrogen bomb). The first test of this so-

called uncontrolled nuclear fusion had an explosive power more than 500 times that of

the bombs dropped on Nagasaki and Hiroshima, beginning a process of proliferation

which spread a global fear of annihilation from nuclear war [13]. Since that time, there

have been numerous attempts to tame the process for the peaceful goal of terrestrial

energy production. However, this goal of achieving controlled thermonuclear fusion has

turned out to be incredibly difficult and has inspired years of rigorous academic study.

1This category includes sources like wind and solar energy, whose production capacity depends on
external factors like the weather and therefore cannot be deployed on-demand by energy companies.
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Figure 1.1: U.S. primary energy consumption by energy source for the calendar year

2019. Source: US EIA, eia.gov/energyexplained/us-energy-facts/.

eia.gov/energyexplained/us-energy-facts/
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Mastery of controlled thermonuclear fusion will necessarily require an understand-

ing of plasma physics. Current designs for controlled thermonuclear reactors based on a

deuterium-tritium mixture fuel source (widely regarded as the most efficient option) re-

quire an operating temperature of T ∼ 10 keV, or approximately 108 Kelvin [14]. At such

extreme temperatures the fuel source will necessarily be a plasma. This temperature

far exceeds the melting point of tungsten (3,687 K), the highest of any naturally occur-

ring element, meaning that confinement of a thermonuclear reaction cannot rely solely

upon physical boundaries. There are currently two prominent approaches to solving

this problem: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF).

In the ICF approach, extremely high-energy beams (typically lasers) are used to im-

plode a small D-T fuel pellet, thereby triggering a fusion reaction and releasing large

amounts of energy [15]. The reaction occurs over very short time-scales, so external con-

finement is not necessary. In contrast, MCF (the focus of this thesis) uses electromagnetic

forces to confine the plasma to a predetermined volume with steep gradients separating

the hot core from the plasma wall [16]. The difficulty in the MCF approach arises from

the fact that confined plasmas are subject to long-range interactions via the electromag-

netic force, which leads to many modes of collective behavior that tend to resist stable

confinement. This is the main hurdle which MCF research must overcome.

For over 50 years, the tokamak has been the dominant approach for MCF reactors.

Developed in 1968 in the Soviet Union, tokamaks are toroidal devices which make use

of a strong central magnetic field to confine and stabilize the plasma [16]. Progress has

been made over generations of increasingly large and energetic devices [17], culminating

in the next-generation ITER project currently under construction in the south of France

[18]. This international mega-project aims to build the first tokamak that produces more

energy than it consumes, thus demonstrating the viability of the concept as a power

plant. An illustration of the planned vacuum vessel is shown in Figure 1.2 demonstrat-

ing the vast size of the device. Currently, first plasmas are planned for 2025, with a slow
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ramp-up to full D-T operations by 2035 [19]. Following the success of ITER, plans are

currently being developed to build a follow-up demonstration power plant (or several),

tentatively referred to as DEMO [20]. However, this is not the only path to fusion energy

that is currently being explored. Scientists from MIT have proposed the ARC reactor

(“Affordable, Robust, Compact”) which proposes to deliver fusion energy on an expe-

dited timeline by trading out ITER’s large volume for extremely high-strength magnetic

fields, based on recent innovations in high-temperature superconducting magnets [21].

Likewise there is significant interest in the stellerator, an alternative magnetic configu-

ration based on using complex helical magnetic geometries to confine the plasma and

permit current-free operation. A prominent example is Wendelstein 7-X in Germany

[22]. It has been argued that the stellerator might provide a superior path to fusion

energy due to its inherent stability and scalability [23].

The MCF plasma physics community consists of much more than these large inter-

national collaborations. For decades, much of the work of understanding the physical

behavior of magnetically-confined plasmas has occurred in small- and medium-scale de-

vices, often associated with universities. These devices provide a more flexible environ-

ment to explore questions of fundamental physics, test theoretical predictions, bench-

mark computational models, and develop technology. The Madison Symmetric Torus

(MST), a reversed-field pinch on which the experiments described in this thesis were

conducted, is one such device.

Much of this thesis is concerned with the development of a new multi-energy soft

x-ray (ME-SXR) diagnostic concept for magnetically confined plasmas. As will be dis-

cussed in Section 1.3, this diagnostic will be well-suited for addressing the difficulties

arising from the extreme conditions and limited access that will exist on devices like

ITER. However, it is important that the technology first be developed and tested on less

restrictive plasma sources like the MST. Before discussing the ME-SXR project further, we

must first discuss both the role that plasma diagnostics play in the field of experimental
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Figure 1.2: Conceptual rendering of the ITER tokamak and surrounding magnetic field

and cryogenic subsystems. ITER aims to be the first controlled fusion device. A person

is drawn in the lower left side for scale. Source: ITER Organization, http://www.iter.

org/.

http://www.iter.org/
http://www.iter.org/
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plasma physics and also the MST itself.

1.2 Diagnosing the properties of a confined plasma

In order to understand the physical principles driving the evolution of a confined plasma,

it is first necessary to measure the plasma’s properties. This task is made difficult by the

very nature of plasma confinement. Fusion plasmas are typically very hot and can evolve

on very short time scales, eliminating the possibility of using traditional physical tem-

perature sensors. In fact, any internal probes can disturb the magnetic equilibrium and

therefore degrade confinement. Likewise, confined plasmas typically produce strong

and rapidly varying magnetic fields, leaving any unshielded components vulnerable to

unexpected electromagnetic interference. In a sense, the extreme environment of a fusion

plasma begets extreme requirements for diagnostic instrumentation. As such, the study

of plasma diagnostics has become an active area of research in its own right alongside

plasma physics.

The philosophy of plasma diagnostics is laid out well on the first page of I. H.

Hutchinson’s seminal work Principles of Plasma Diagnostics:

The overall objective of plasma diagnostics is to deduce information about the

state of the plasma from practical observations of physical processes and their

effects. This usually requires a rather elaborate chain of deduction based on

an understanding of the physical processes involved. In more mundane situ-

ations the same is true of other diagnostic measurements; for example, a mer-

cury/glass thermometer relies on the physical process of thermal expansion

of mercury, which determines the height of the mercury column observed.

However, since plasmas have properties that are often rather different from

the more familiar states of matter met in everyday life, the train of reasoning

is sometimes more specialized and may seem more obscure, especially since
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plasma diagnostics are rarely routine [24].

Plasma diagnostics are designed to exploit the unintuitive characteristics of a plasma

in order to measure its properties. These measurements are then used to further our

understanding of the field of plasma physics. This enhanced understanding can in turn

present new characteristics which may be further exploited for diagnostic innovation.

Although an experiment’s diagnostic suite must necessarily be customized to the pe-

culiarities of each individual device, some standard diagnostic approaches have been

developed. Hutchinson’s book breaks these into eight categories based on the underly-

ing physical mechanism that is being exploited: magnetic measurements, particle flux

measurements, measurements based on refractive index, electromagnetic emission from

free electrons, electromagnetic emission from bound electrons, scattering electromag-

netic waves, neutral atom diagnostics, and fast ion measurements [24]. A brief overview

of the standard diagnostics on MST which are relevant to this thesis is given in Chapter

2, and the development of a new multi-energy soft x-ray diagnostic is a central focus of

this thesis.

The categories described by Hutchinson include all but the most specialized instru-

mentation in use today, but they are not always independent. For instance, the ME-SXR

diagnostic which is the focus of much of this thesis measures electromagnetic emission

from both free and bound electrons and is also sensitive to the geometry of internal

magnetic fields and particle densities. In the view where one diagnostic is intended to

provide an independent measurement of one plasma property, these complex interde-

pendencies are often seen as a nuisance. However, if properly understood and handled,

these interdependencies form the basis of a powerful approach to data analysis. By

exploiting the differing ways in which multiple plasma diagnostic measurements are

correlated to one another via the underlying plasma parameters, it is possible to pro-

duce measurements more accurate than is possible with any individual diagnostic [25].

This methodology, termed integrated data analysis (IDA) [26], is also capable of measuring
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properties which cannot be measured by any individual diagnostic [27]. This approach

requires extensive modeling and substantial computational resources, but the end results

often justify the effort. A detailed methodology for IDA based on Bayesian inference is

presented and applied in Section 5.5.

The need for this kind of sophisticated methodology is becoming more apparent as

we prepare to enter the era of burning plasmas. Diagnostics on ITER will face far more

extreme conditions (temperature, exhaust power, neutron fluence) than any magnetic

confinement device that has been built before. These conditions in turn will pale in

comparison to those encountered in a future DEMO-scale device [28]. All the while,

access to the plasma will be much more limited than ever before, with unprecedented

amounts of space required for large auxiliary systems and tritium breeding blankets.

Routine maintenance will be all but impossible due to irradiation concerns. In such

an environment, it is critical to extract the maximum amount of information from the

minimum number of diagnostics. In this aim, IDA will be indispensable. Diagnostics

will also need to be non-perturbative, robust, and versatile. As a result, measurements

of electromagnetic radiation emitted from the plasma, and x-rays in particular, will be

critical to the future of MCF diagnostics. These requirements provide a strong motivation

for the multi-energy soft x-ray project currently under development.

1.3 The multi-energy soft x-ray project

The multi-energy soft x-ray (ME-SXR) diagnostic concept is based on the use of hybrid

photon counting detector (HPCD) technology to combine the broadband energy sen-

sitivity of multi-foil diode arrays with the versatility of pulse height analysis detectors.

The PILATUS series of HCPDs allows the user to individually adjust the lower threshold

energy for photon detection over a wide range on a per-pixel basis. This results in an

unprecedented combination of spatial, spectral, and temporal sensitivity from a single
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diagnostic [29]. This sensitivity allows for simultaneous measurements, using a single

compact diagnostic, of the core electron temperature and impurity densities (and there-

fore Ze f f ) as well as the non-Maxwellian population (i.e., runaway electrons). Technical

details about the ME-SXR diagnostic implementation on MST, including installation,

calibration, and analysis, can be found in Chapter 3.

An ME-SXR detector based on the DECTRIS PILATUS2, a 450 µm silicon HPCD sen-

sitive to photons between 1.5-30 keV, has been previously installed and tested on the

Alcator C-mod tokamak [30]. The detector consists of an array of approximately 100,000

individual pixels configured with thirteen different thresholds. It was demonstrated that

the detector was able to provide simultaneous core Te and tungsten concentration mea-

surements over the duration of a plasma discharge (Figure 1.3). These measurements

increased as expected during periods of heating via lower hybrid current drive and

tungsten impurity injection. The diagnostic presented in this thesis is a direct continua-

tion of that work. The new ME-SXR diagnostic on the MST is based on the PILATUS3

[31], an updated version of the PILATUS2 which features reduced dead time. A multi-

energy hard x-ray (ME-HXR) diagnostic based on a CdTe PILATUS detector [32] is also

being developed and tested on the WEST tokamak [33].

The ME-SXR project is part of a larger push to develop real-time diagnostic and

control systems to combat the accumulation of high-Z impurities in the core of next-

generation tokamak systems [34]. The system is envisioned as complementing rather

than replacing existing x-ray diagnostics, including an existing x-ray crystal imaging

spectrometry [34] and a traditional diode-based multi-color system [35]. The first ME-

SXR diagnostic was installed and tested on Alcator C-Mod [30]. The next generation

diagnostic was intended for use on the NSTX-U tokamak, but after technical difficulties

forced that device offline the collaboration with UW-Madison was established. The MST

produces a fusion-grade plasma with sufficient soft x-ray emission for temperature di-

agnosis, and the presence of aluminum ions with line emissions ∼ 2 keV makes the MST
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Figure 1.3: Results on Alcator C-Mod from a single ME-SXR measurement: (a) Recon-

structed Te during Ohmic and LHCD heating phases; (b) Core impurity concentrations

from tungsten laser-blow-off injections. Figure reproduced from L.F. Delgado-Aparicio,

et al. [29]

an interesting test case for the ME-SXR technique. Future iterations of the ME-SXR di-

agnostic are planned for installation on WEST, NSTX-U, and JT60-SA. The diagnostic is

being developed with an eye toward ITER, although additional developments regarding

the radiation hardness of Si-based detectors will be necessary [36].

The explicit goals of the ME-SXR collaboration between UW-Madison and PPPL is

outlined in Figure 1.4. This thesis demonstrates significant progress on all of the diag-

nostic goals, and all three core physics goals are addressed. The diagnostic goals are

addressed in Chapter 5, which considers both thermal and impurity ion profiles. The

evaluation of Ze f f using an IDA methodology is one of the main results of Section 5.5.

The physics of quasi-single helicity (QSH) plasmas is primary focus of Chapter 6. Impu-

rity transport studies are not the focus of this thesis, but the topic is addressed at various

points. The impact of hard x-rays on ME-SXR measurements, and using this effect to
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Figure 1.4: Overview of the physics goals of the ME-SXR project on MST. Courtesy of L.

F. Delgado-Aparicio.

quantify the runaway population during QSH, is discussed in Section 6.3. Significant

progress has also been made in diagnostic development, including characterizing the

pixel-to-pixel variation of the energy calibration (Chapter 3) and developing a physics-

based quantitative forward model of the diagnostic (Chapter 4).

Before continuing on to these results, however, it is worthwhile to discuss the details

of the Madison Symmetric Torus itself. Although similar in many ways to a tokamak,

the distinctions become important when addressing the specific physics goals discussed

above.
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Figure 1.5: The magnetic field in an RFP is predominantly toroidal in the core but re-

verses near the edge.

1.4 The Madison Symmetric Torus Reversed-Field Pinch

The history of the RFP concept stretches back to the 1960s [37]. Observations on the

ZETA (“Zero Energy Thermonuclear Assembly”) toroidal pinch device showed that the

direction of the toroidal field would occasionally reverse near the wall, leading to a

brief period of improved stability which was referred to as the “quiescent” period [38].

Attempts to explain this phenomenon led to the development of relaxation theory by J.

Taylor [39]. According to this theory, the conservation of the global magnetic helicity,

K =
∫

A · B d3x, (1.1)

in the presence of a boundary shell with finite conductivity causes the plasma to spon-

taneously relax into a minimum energy state described by the equilibrium

∇× B = λB, (1.2)
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where λ = µ0 J‖/B is a global constant. This equilibrium is commonly referred to as a

Taylor state.

The concept of the RFP attracted attention as an alternative to the burgeoning toka-

mak configuration, in which a large toroidal field Bφ >> Bθ is used to stabilize the

plasma. In contrast, the RFP has Bφ ∼ Bθ, and Bφ reverses direction at a point near

the vacuum vessel wall (see Figure 1.5). The extent of the reversal is quantified by the

reversal parameter,

F =
Bφ(a)
〈Bφ〉

. (1.3)

The chosen equilibrium greatly affects the MHD instabilities, called tearing modes,

present in each type of configuration. This can be illustrated by considering a single

helical perturbation b̃ to the equilibrium magnetic field B with a wave vector k = m
r êθ +

n
R êφ. The condition for resonance is given by

k · B = 0, (1.4)

which simplifies to

m
r

Bθ +
n
R

Bφ = 0→ q = −m
n

, (1.5)

where r is the minor radius, R is the major radius, and we have defined the safety factor

q to be

q =
rBφ

RBθ
. (1.6)

The criteria q = −m/n specify that tearing modes are resonant on rational surfaces,

which are toroidal surfaces within the plasma volume characterized by closed magnetic

field lines. For all other flux surfaces within the plasma, q is irrational, meaning that
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field lines cover the surface ergodically. The closed nature of the field lines on rational

surfaces, combined with shearing in the magnetic field (dq/dr 6= 0), makes these surfaces

vulnerable to significant topological changes as a result of small perturbations in the

radial magnetic field. This process is illustrated in Figure 1.8 and is discussed further

below.

The application of a large Bφ in the tokamak generates an equilibrium in which q > 1

for all radii, meaning that no m = 1 tearing modes are resonant. In contrast, the RFP

has q < 1 for all radii, meaning that m = 1 instabilities are resonant in the core and that

m = 0 instabilities are resonant at the reversal surface (where Bφ = 0). A typical q profile

for MST is shown in Figure 1.6. This results in substantial differences in stability and

transport behavior between the two configurations. The remainder of this section will

focus on the properties of a specific reversed-field pinch device. For more information

about the tokamak and other modern magnetic confinement configurations, I refer the

reader to standard textbooks [16] and review articles [40].

The experimental work presented in this document was performed on the Madison

Symmetric Torus reversed-field pinch device. The MST began plasma operations in 1988

with the stated goals of studying the effect of large plasma size on confinement and ex-

ploring self-organized phenomena such as turbulence, transport, and the MHD dynamo

in the RFP [41]. The device itself consists of a toroidal aluminum conducting shell (with

a minor radius of 0.52 m and a major radius of 1.5 m). The plasma current is driven by a

single iron-core transformer, with typical values of Ip ∼ 200− 500 kA. Plasma heating is

entirely Ohmic, with no requirement for auxiliary heating schemes like neutral beam in-

jection or RF. This property has made the RFP appealing as a fusion concept. Due to the

properties of self-organization resulting from the plasma’s interaction with the conduct-

ing shell, fewer external magnetic field coils are required to maintain the equilibrium,

another significant advantage over the tokamak and the stellerator. However, the preva-

lence of core-resonant m = 1 tearing modes leads to substantial stochastic transport of
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Figure 1.6: Reconstruction of the q profile for MST shot #1191204074 (400 kA PPCD).

The m = 1, n = 6 mode is resonant in the core, with several higher-n modes (7, 8,

9) resonant along the mid-radius. Approaching the reversal surface, infinitely many

higher-n resonant surfaces are densely packed. On the reversal surface, designated by

(0, n), all m = 0 modes are simultaneously resonant. q becomes negative in the outer

radius, indicating field reversal.
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Figure 1.7: Illustration of the Madison Symmetric Torus vacuum vessel, TF, and PF

systems. A person is also drawn for scale.

confined particles. This presents a significant challenge for the RFP configuration and

will be further discussed later in this section. A summary of MST’s basic properties is

provided in Table 1.1, and the geometry of this system is illustrated in Figure 1.7.

As previously mentioned, both the tokamak and the RFP are subject to a class of

instabilities referred to as tearing modes [14]. These global resistive kink instabilities,

characterized by poloidal and toroidal mode numbers m and n respectively, are driven by

a gradient in J‖ and are resonant on the corresponding q = m/n rational surfaces within

the plasma volume. In the RFP these instabilities can cause magnetic reconnection events

near the corresponding rational surfaces whereby large amounts of energy are rapidly

released as the current profile is suddenly relaxed [42]. This occurs quasi-periodically

in standard RFP operation and is the mechanism by which the plasma relaxes toward
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MST typical parameters
Parameter Symbol Value
Major radius R0 1.5 m
Minor radius a 0.52 m
Plasma current Ip 200-500 kA
Pulse length τ < 100 ms
Electron density ne 0.5− 1.0× 1019 m−3

Electron temperature Te 200-2000 eV
Core magnetic field B0 ≤ 0.5 T
Plasma beta β 10%

Table 1.1: Typical parameters for the MST discharges considered in this thesis. Note the

temperature ranges Te > 500eV are found only in improved-confinement scenarios 1.4.1.

a Taylor state. In the RFP literature individual relaxation events are often referred to as

“sawtooth” events due to the characteristic shape featured on many waveforms, and the

cyclic process is the “sawtooth cycle.”

Magnetic reconnection occurs when, in the presence of finite dissipation, magnetic

field line topology suddenly changes in a way which is forbidden in ideal MHD. This

results in the formation of enclosed topological structures called magnetic islands on

the rational surfaces, as illustrated in Figure 1.8. These structures occur periodically

with the same helicity as the associated tearing mode. The presence of magnetic islands

profoundly affects the transport properties of the RFP. A reduction in electron thermal

transport, resulting in a localized increase in Te, has been found inside magnetic island

structures [43]. In many cases, however, the presence of magnetic islands leads to a

substantial reduction in plasma confinement.

As the tearing modes grow in amplitude, magnetic islands from adjacent rational

surfaces can begin to overlap. When islands overlap, the underlying good flux surfaces

are destroyed, meaning that the trajectory of a magnetic field line becomes stochastic

throughout the region. Particle transport thus becomes stochastic, resulting in signifi-

cantly reduced confinement [45]. In some cases overlap with the core n = 6 island is

only partial, allowing a small region of good flux surfaces to survive. It has also been
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Figure 1.8: Illustration showing the generation of a magnetic island on a rational surface

rS as a result of a radial perturbation in the magnetic field. Figure reproduced from

Reference [44].
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Figure 1.9: Poincare plots illustrate the development of magnetic stochasticity as the

width of two magnetic islands with different helicities increase and begin to overlap.

In a), tearing mode amplitudes are low, and the region contains good flux surfaces. In

b) and c), as the amplitudes increase, the good flux surfaces are destroyed, but some

residual island structure remains. In d) the mode amplitudes are sufficiently high that

the magnetic structure has become totally chaotic. Figure reproduced from Reference

[47].

observed that even in cases where overlap is significant some residual island structure

may survive, resulting in a regime where transport is only partially stochastic [46]. The

effect of overlapping islands inducing magnetic stochasticity is illustrated in Figure 1.9.

1.4.1 Enhanced confinement scenarios

The effect of core-resonant tearing modes in degrading confinement in the RFP is one of

the configuration’s biggest drawbacks as a fusion reactor concept. As a result, multiple

techniques have been devised to attempt to mitigate this effect and improve confinement

times to a reactor-relevant regime. Two such techniques are detailed in this section. The

first involves using active current control to flatten the current profile, thereby suppress-

ing the gradient which drives tearing modes. The other approach involves guiding
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the plasma into a self-organized helical state in which energy transfer between tearing

modes is naturally suppressed.

The most successful strategy that has been used to reduce transport in the MST is

Pulsed Parallel Current Drive (PPCD) [48]. This technique involves increasing E‖ in the

plasma edge in order to manually flatten the J‖ profile, thereby greatly reducing the en-

ergy available to the core-resonant tearing modes. This technique leads to a substantial

reduction in stochasticity and corresponding improvement to confinement. The core can

reach temperatures up to Te = 2 keV, substantially higher than the Te ∼ 500 eV achiev-

able in standard RFP operations. If PPCD is engaged immediately after an energetic

reconnection event (a process called “crash heating”), ion temperatures Ti ∼ 1 keV can

be achieved [49]. With a global energy confinement time of τE ∼ 12 ms, this mode of op-

eration is comparable to the tokamak H-mode confinement time scaling for a device of

comparable size and operating parameters (see Figure 1.10). This improved confinement

also leads to the generation of a runaway electron population localized to the plasma

core [50].

The major drawback of PPCD is that it is inherently transient, as it makes use of

a constant change in flux to induce the parallel current drive [48]. As a result, the

improved confinement period only lasts until the PPCD capacitor banks have fully dis-

charged, which is currently a duration of ∼ 10 ms. An alternative scheme for achieving

improved confinement using oscillating current drive have been tested [51, 52], but no

such technique is yet available for routine use on the MST.

An alternative method for improving plasma confinement properties is based upon

the self-organized quasi-single helical (QSH) state [53]. Under conditions of high current

and low density, the plasma tends to spontaneously transition into a regime where the

core-most resonant m = 1 tearing mode grows to very large amplitude while other tear-

ing modes are strongly suppressed. Given sufficient amplitude, the core magnetic island

can grow to encompass the magnetic access, producing a three-dimensional helical equi-
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Figure 1.10: Comparison of standard RFP and crash-heated PPCD confinement times

with the empirical ELMy H-mode scaling specified by IPB98(y,2). Figure reproduced

from B. Chapman, et al. [49].
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Figure 1.11: Illustration of a single helical axis (SHAx) state in MST. The core flux surface

geometry has a helical, rather than axisymmetric, symmetry.

librium [54] referred to as a single helical axis (SHAx), illustrated in Figure 1.11. This is in

contrast to the standard RFP operating regime in which multiple core-resonant tearing

modes have significant amplitude, now called multiple helicity (MH). Initially discovered

on the Reversed-Field eXperiment (RFX), QSH states can be reliably produced in the

MST as well [55].

The physical mechanisms behind the formation and sustainment of the QSH state is

still an active area of research. Long-lived, saturated QSH states can be reliably formed

in the MST by altering the q profile such that the toroidal magnetic field is exactly zero

at the conducting shell (F = 0). It is believed that removing the m = 0 rational surface

from the plasma volume significantly reduces the three-wave coupling between adjacent

core-resonant (1, n) and (1, n + 1) modes with the (0, 1) mode. This coupling is known

to play an important role in the transfer of energy [56, 57, 58, 59]. However, QSH states

have also been observed in reversed (F < 0) plasmas in both the MST and the RFX. A

theory by Terry et al. proposes that shear in the magnetic field and/or flow velocity

field suppresses the nonlinear coupling between core-resonant modes, thereby reducing
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energy transfer and sustaining the QSH state [60]. This topic is explored in greater detail

in Chapter 6.

During QSH a region of closed flux surfaces is restored within the plasma core, thus

reducing stochastic transport. Measurements on the RFX have observed a substantial

increase of the electron temperature in the observed helical structure within SHAx plas-

mas relative to MH plasmas, with sharp gradients indicating the presence of a thermal

transport barrier [61]. This indicates that QSH might provide a promising paradigm for

a future RFP reactor design [62] which does not suffer the drawbacks encountered with

transient current profile control. However, recent experiments indicate that, although

thermal ions are well-confined, fast ions are quickly lost from the plasma [63]. Runaway

electrons are also known to form within the helical structure, though the resulting HXR

emission is not well-localized to the core [64].

The plasma discharges analyzed throughout this thesis will make use of either PPCD

or QSH (F = 0) improved confinement scenarios. PPCD produces plasmas which are

high-temperature and axisymmetric, making them an ideal source of x-rays for the pur-

poses of diagnostic development. PPCD plasmas have also been well-characterized in the

literature, making them useful for benchmarking. Non-reversed QSH plasmas are less

well-understood, but they do feature long periods with no sawtooth cycle. This permits

detectors with low signal (like the ME-SXR detector this thesis focuses on) to integrate

over longer time periods without considering rapidly changing plasma dynamics.

1.5 Overview of this thesis

This thesis concerns the continued development of the ME-SXR diagnostic, its synergistic

integration with existing diagnostic systems, and the plasma physics problems that can

be addressed with these tools. As such, a major objective of this document is to serve as

detailed documentation of my own work for future users of ME-SXR diagnostic systems
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in the hope that they may build upon my progress. The document is organized roughly

in the order that the work was accomplished, beginning with diagnostic development

before proceeding to analysis techniques, computational modeling, and finally physics

results. A more detailed outline is given in the following paragraph, followed by a

summary of key results.

Chapter 2 builds upon this introduction to describe the basic concepts behind x-

ray plasma diagnostics and details the complementary x-ray diagnostics on the MST

which are essential for this work. Chapter 3 discusses the calibration, installation, and

configuration of the ME-SXR diagnostic based on the PILATUS3. Chapter 4 describes the

development of a quantitative forward model based on the calibrations and underlying

physics. Chapter 5 discusses the interpretation of ME-SXR data, including reconstructing

Te profiles, characterizing saturation behavior, and incorporating the ME-SXR into a

Bayesian integrated data analysis framework. Finally, Chapter 6 employs the suite of

x-ray diagnostics to study the evolution and sustainment of self-organized helical states

in the MST RFP.

1.5.1 Summary of key results

The main results of this document are summarized below:

1. The ME-SXR diagnostic has been calibrated for low-energy (∼ 2 keV) photon

detection with a threshold variation of ∆E < 100 eV. The pixel’s sensitivity is

well-modeled by an S-curve with a width of σE = 300 eV. This procedure was also

performed for the medium energy range, finding ∆E < 200 eV and σE = 550 eV,

respectively. A simple model for charge sharing, the phenomenon which occurs

when the energy from an absorbed photon is split between two adjacent pixels,

was validated for both threshold ranges.

2. A comprehensive physics-based forward model has been developed for the ME-
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SXR to aid in analysis. This model incorporates information from the spatial

and energy calibrations as well as atomic physics modeling from ADAS to simu-

late the underlying physics, geometry, and detector response. The importance of

charge-exchange with the neutral hydrogen population was shown to be impor-

tant when simulating MST plasmas, and the systematic uncertainty in the model

was assessed. The model was quantitatively validated using simultaneous SXR

tomography measurements.

3. The ME-SXR diagnostic has been used to simultaneously extract information

about temperature and density profiles for low-to-mid-Z impurities. Methods

were developed for extracting temperature profiles and impurity emission spectra

from ME-SXR data. The ME-SXR diagnostic was also incorporated into an inte-

grated data analysis framework with Thomson scattering to produce simultaneous

measurements of electron temperature and ion density profiles. The accuracy of

these results were further improved by incorporating additional soft x-ray diagnos-

tic measurements. This is an important proof-of-concept for future applications of

the diagnostic.

4. Predator-prey-like dynamics have been directly observed between the dominant

mode amplitude, secondary magnetic mode amplitude, and thermal structure of

QSH plasmas. These measurements are consistent with predictions made by a

theoretical model of the QSH state proposed by Terry, et al. [60] which proposes

that shear in the magnetic or flow velocity fields is the mechanism responsible for

suppressing the transfer of energy between the dominant and secondary tearing

modes. The soft x-ray emissivity profile was seen to oscillate in phase with the

dominant mode, corresponding to the behavior of a thermal transport barrier in

the model.

5. Time-resolved 2D electron temperature structure and dynamics have been ob-
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served for the first time in a helical MST plasma. Measurements were made by

incorporating soft x-ray tomography and FIR interferometry measurements into

an integrated framework based on diagnostic forward models. Temperatures up

to Te = 700 eV were observed, well above the normal temperature for similar stan-

dard RFP plasmas. Steep temperature gradients up to |∇Te| ≥ 3 keV m−1 were

observed, suggesting the presence of a transport barrier. High frequency magnetic

fluctuations in the range of 400-800 kHz can be observed only when the helical

structure is oriented towards the sensing coil. The steep temperature gradients

are suggestive of microtearing modes, but more work will be needed to verify this

hypothesis.

6. Significantly improved confinement is observed during a brief self-organized

“quiet phase” at the start of the QSH flattop. The QSH flattop, the period in

which the dominant mode saturates at large amplitude, is divided into two distinct

phases. During the “quiet” phase tearing mode activity is almost entirely absent,

while small-amplitude tearing fluctuations suddenly resume during the “dynamic”

phase. Runaway electrons are well-confined during the quiet phase, but are rapidly

lost at the transition to the dynamic phase. A broad hot temperature structure is

seen to form during the quiet phase, which rapidly collapses into a hot helical core

during the dynamic phase.



29

Bibliography

[1] M. Arnould and K. Takahashi, “Nuclear astrophysics,” Reports on Progress in
Physics, vol. 62, pp. 395–464, 1999. [Online]. Available: https://doi.org/10.1088/
0034-4885/62/3/003

[2] Energy Information Administration, “Monthly Energy Review – May 2020,” US
Department of Energy, Tech. Rep., 2020. [Online]. Available: www.eia.gov/mer

[3] P. C. Jain, “Greenhouse effect and climate change: scientific basis and overview,”
Renewable Energy, vol. 3, no. 4-5, pp. 403–420, 1993. [Online]. Available:
https://doi.org/10.1016/0960-1481(93)90108-S

[4] A. J. Thorpe, “Climate Change Prediction: A challenging scientific problem,” Tech.
Rep., 2005. [Online]. Available: http://iop.cld.iop.org/publications/iop/archive/
page{_}52088.html

[5] D. Wuebbles, D. Fahey, K. Hibbard, D. Dokken, B. Stewart, and T. Maycock,
“Climate science special report: Fourth national climate assessment, volume I,”
U.S. Global Change Research Program, vol. 1, p. 470, 2017. [Online]. Available:
https://www.globalchange.gov

[6] W. Steffen, J. Rockström, K. Richardson, T. M. Lenton, C. Folke, D. Liverman,
C. P. Summerhayes, A. D. Barnosky, S. E. Cornell, M. Crucifix, J. F. Donges,
I. Fetzer, S. J. Lade, M. Scheffer, R. Winkelmann, and H. J. Schellnhuber,
“Trajectories of the Earth System in the Anthropocene,” Proceedings of the National
Academy of Sciences, vol. 115, no. 33, pp. 8252–8259, 2018. [Online]. Available:
www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810141115/-/DCSupplemental.

[7] OECD, “The Costs of Decarbonisation,” Nuclear Energy Agency, OECD, Tech.
Rep., 2019. [Online]. Available: https://doi.org/10.1787/9789264312180-en

[8] H. Ritchie, “What are the safest sources of energy?” 2010. [Online]. Available:
https://ourworldindata.org/safest-sources-of-energy

[9] S. Wheatley, B. K. Sovacool, and D. Sornette, “Reassessing the safety of nuclear
power,” Energy Research and Social Science, vol. 15, pp. 96–100, 2016. [Online].
Available: http://dx.doi.org/10.1016/j.erss.2015.12.026

[10] K. Gi, F. Sano, K. Akimoto, R. Hiwatari, and K. Tobita, “Potential contribution of
fusion power generation to low-carbon development under the Paris Agreement
and associated uncertainties,” Energy Strategy Reviews, vol. 27, no. November 2019,
p. 100432, 2020. [Online]. Available: https://doi.org/10.1016/j.esr.2019.100432

[11] V. Glukhikh, O. Filatov, and B. Kolbasov, Fundamentals of Magnetic Thermonuclear
Reactor Design, 1st ed. Elsevier Ltd, 2018.

[12] K. S. Krane, Introductory Nuclear Physics, 3rd ed. New York, NY: Wiley, 1988.

https://doi.org/10.1088/0034-4885/62/3/003
https://doi.org/10.1088/0034-4885/62/3/003
www.eia.gov/mer
https://doi.org/10.1016/0960-1481(93)90108-S
http://iop.cld.iop.org/publications/iop/archive/page{_}52088.html
http://iop.cld.iop.org/publications/iop/archive/page{_}52088.html
https://www.globalchange.gov
www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810141115/-/DCSupplemental.
https://doi.org/10.1787/9789264312180-en
https://ourworldindata.org/safest-sources-of-energy
http://dx.doi.org/10.1016/j.erss.2015.12.026
https://doi.org/10.1016/j.esr.2019.100432


30

[13] V. W. Sidel and B. S. Levy, “Proliferation of Nuclear Weapons: Opportunities for
Control and Abolition,” American Journal of Public Health Sidel and Levy | Peer
Reviewed | Weapons of Mass Destruction |, vol. 97, no. 9, p. 1594, 2007. [Online].
Available: https://dx.doi.org/10.2105{%}2FAJPH.2006.100602

[14] R. Hazeltine and J. Meiss, Plasma Confinement, 2nd ed. Mineola, NY: Dover Publi-
cations, Inc., 2003.

[15] Lawrence Livermore National Laboratory, “How ICF Works.” [Online]. Available:
https://lasers.llnl.gov/science/icf/how-icf-works

[16] J. Wessen, Tokamaks, 4th ed. Oxford, England: Oxford University Press, 2011.

[17] E. A. Azizov, “Tokamaks: from A D Sakharov to the present (the 60-year history of
tokamaks),” Physics-Uspekhi, vol. 55, no. 2, pp. 190–203, 2012. [Online]. Available:
https://doi.org/10.3367/UFNe.0182.201202j.0202

[18] N. Holtkamp and the ITER Project Team, “An overview of the ITER project,”
Fusion Engineering and Design, vol. 82, pp. 427–434, 2007. [Online]. Available:
https://doi.org/10.1016/j.fusengdes.2007.03.029

[19] ITER Organization, “What is ITER?” [Online]. Available: https://www.iter.org/
proj/inafewlines

[20] G. Federici, W. Biel, M.R. Gilbert, R. Kemp, N. Taylor, and R. Wenninger,
“European DEMO design strategy and consequences for materials,” Nuclear
Fusion, vol. 57, no. 092002, pp. 1–26, 2017. [Online]. Available: https:
//doi.org/10.1088/1741-4326/57/9/092002

[21] B. N. Sorbom, J. Ball, T. R. Palmer, F. J. Mangiarotti, J. M. Sierchio, P. Bonoli,
C. Kasten, D. A. Sutherland, H. S. Barnard, C. B. Haakonsen, J. Goh,
C. Sung, and D. G. Whyte, “ARC: A compact, high-field, fusion nuclear
science facility and demonstration power plant with demountable magnets,”
Fusion Engineering and Design, vol. 100, pp. 378–405, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.fusengdes.2015.07.008

[22] T. Klinger, T. Adreeva, and The Wendelstein 7-X team, “Overview of
first Wendelstein 7-X high-performance operation Recent citations,” Nuclear
Fusion, vol. 59, no. 112004, pp. 1–11, 2019. [Online]. Available: https:
//doi.org/10.1088/1741-4326/ab03a7

[23] A. H. Boozer, “Why carbon dioxide makes stellarators so important,”
Nuclear Fusion, vol. 60, no. 065001, pp. 1–16, 2020. [Online]. Available:
https://doi.org/10.1088/1741-4326/ab87af

[24] I. H. Hutchinson, Principles of Plasma Diagnostics, 2nd ed. Cambridge University
Press, jul 2002.

https://dx.doi.org/10.2105{%}2FAJPH.2006.100602
https://lasers.llnl.gov/science/icf/how-icf-works
https://doi.org/10.3367/UFNe.0182.201202j.0202
https://doi.org/10.1016/j.fusengdes.2007.03.029
https://www.iter.org/proj/inafewlines
https://www.iter.org/proj/inafewlines
https://doi.org/10.1088/1741-4326/57/9/092002
https://doi.org/10.1088/1741-4326/57/9/092002
http://dx.doi.org/10.1016/j.fusengdes.2015.07.008
https://doi.org/10.1088/1741-4326/ab03a7
https://doi.org/10.1088/1741-4326/ab03a7
https://doi.org/10.1088/1741-4326/ab87af


31

[25] L. M. Reusch, M. D. Nornberg, J. A. Goetz, and D. J. Den Hartog,
“Using integrated data analysis to extend measurement capability (invited),”
Review of Scientific Instruments, vol. 89, no. 10, 2018. [Online]. Available:
https://doi.org/10.1063/1.5039349

[26] R. Fischer, C. J. Fuchs, B. Kurzan, W. Suttrop, and E. Wolfrum, “Integrated
data analysis of profile diagnostics at ASDEX upgrade,” Fusion Science
and Technology, vol. 58, no. 2, pp. 675–684, 2010. [Online]. Available:
https://doi.org/10.13182/FST10-110

[27] M. Galante, L. Reusch, D. Den Hartog, P. Franz, J. Johnson, M. McGarry,
M. Nornberg, and H. Stephens, “Determination of Z_eff by integrating
measurements from x-ray tomography and charge exchange recombination
spectroscopy,” Nuclear Fusion, vol. 55, no. 12, p. 123016, 2015. [Online]. Available:
https://doi.org/10.1088/0029-5515/55/12/123016

[28] A. J. H. Donné, A. E. Costley, and A. W. Morris, “Diagnostics for plasma control on
DEMO: challenges of implementation,” Nuclear Fusion, vol. 52, no. 074015, pp. 1–7,
2012. [Online]. Available: http://dx.doi.org/10.1088/0029-5515/52/7/074015

[29] L. Delgado-Aparicio, M. Greenwald, N. Pablant, K. Hill, M. Bitter, J. E. Rice,
R. Granetz, A. Hubbard, E. Marmar, K. Tritz, D. Stutman, B. Stratton, and
P. Efthimion, “Multi-energy SXR cameras for magnetically confined fusion plasmas
( invited ),” Review of Scientific Instruments, vol. 87, no. 11E204, 2016. [Online].
Available: http://dx.doi.org/10.1063/1.4964807

[30] N. Pablant, L. Delgado-Aparicio, M. Bitter, E. Brandstetter, R. Ellis, K. Hill,
P. Hofer, and M. Schneebeli, “Novel energy resolving x-ray pinhole camera on
Alcator C-Mod,” Review of Scientific Instruments, vol. 83, no. 10E526, 2012. [Online].
Available: http://dx.doi.org/10.1063/1.4732177

[31] DECTRIS Ltd., “PILATUS3.” [Online]. Available: https://www.dectris.com/
products/pilatus3/overview/

[32] T. Barbui, N. Pablant, C. Disch, B. Luethi, N. Pilet, B. Stratton, and P. VanMeter,
“Multi-energy calibration of a PILATUS3 CdTe detector for hard x-ray measure-
ments of magnetically confined fusion plasmas (forthcoming),” in Proceedings of
the 23rd Topical Conference on High-Temperature Plasma Diagnostics. Santa Fe, NM:
American Institute of Physics, 2021.

[33] C. Bourdelle, J. Artaud, V. Basiuk, M. Bécoulet, S. Brémond, J. Bucalossi,
H. Bufferand, G. Ciraolo, L. Colas, Y. Corre, X. Courtois, J. Decker, L. Delpech,
P. Devynck, G. Dif-Pradalier, R. Doerner, D. Douai, R. Dumont, A. Ekedahl,
N. Fedorczak, C. Fenzi, M. Firdaouss, J. Garcia, P. Ghendrih, C. Gil, G. Giruzzi,
M. Goniche, C. Grisolia, A. Grosman, D. Guilhem, R. Guirlet, J. Gunn,
P. Hennequin, J. Hillairet, T. Hoang, F. Imbeaux, I. Ivanova-Stanik, E. Joffrin,
A. Kallenbach, J. Linke, T. Loarer, P. Lotte, P. Maget, Y. Marandet, M. Mayoral,

https://doi.org/10.1063/1.5039349
https://doi.org/10.13182/FST10-110
https://doi.org/10.1088/0029-5515/55/12/123016
http://dx.doi.org/10.1088/0029-5515/52/7/074015
http://dx.doi.org/10.1063/1.4964807
http://dx.doi.org/10.1063/1.4732177
https://www.dectris.com/products/pilatus3/overview/
https://www.dectris.com/products/pilatus3/overview/


32

O. Meyer, M. Missirlian, P. Mollard, P. Monier-Garbet, P. Moreau, E. Nardon,
B. Pégourí, Y. Peysson, R. Sabot, F. Saint-Laurent, M. Schneider, J. TravèreTrav,
E. Tsitrone, S. Vartanian, L. Vermare, M. Yoshida, R. Zagorski, and JET
Contributors, “WEST Physics Basis,” Nuclear Fusion, vol. 55, no. 063017, 2015.
[Online]. Available: http://iopscience.iop.org/0029-5515/

[34] L. Delgado-Aparicio, “Active Impurity Control For Maximum Fusion Performance
(Early Career Award),” Princeton Plasma Physics Laboratory, Princeton, NJ, Tech.
Rep., 2014.

[35] L. Delgado-Aparicio, D. Stutman, K. Tritz, M. Kinenthal, R. Bell, D. Gates, R. Kaita,
B. LeBlanc, R. Maingi, H. Yuh, F. Levinton, and W. Heidbrink, “A ‘multi-colour’
SXR diagnostic for time and space-resolved measurements of electron temperature,
MHD activity and particle transport in MCF plasmas,” Plasma Physics and Controlled
Fusion, vol. 49, p. 1257, 2007. [Online]. Available: stacks.iop.org/PPCF/49/1245

[36] L. F. Delgado-Aparicio, K. W. Hill, M. Bitter, B. Stratton, D. Johnson, R. Feder,
N. Pablant, J. Klabacha, M. Zarnstorff, and P. Efthimion, “Burning-plasma
diagnostics: Photon and particle detector development needs (PPPL-5388),”
Princeton Plasma Physics Laboratory, Tech. Rep., 2017. [Online]. Available:
https://bp-pub.pppl.gov/pub{_}report/2017/PPPL-5388Report.pdf

[37] H. Bodin and A. Newton, “Reversed-field-pinch research,” Nuclear Fusion, vol. 20,
no. 10, pp. 1255–1324, 1980. [Online]. Available: doi.org/10.1088/0029-5515/20/
10/006

[38] A. Gibson, H. Coxell, B. A. Powell, and G. W. Reid, “Plasma confinement during a
period of reduced fluctuations in ’ZETA’,” Tech. Rep., 1967.

[39] J. B. Taylor, “Relaxation of Toroidal Plasma and Generation of Reverse Magnetic
Fields,” Physical Review Letters, vol. 33, no. 19, pp. 1139–1141, nov 1974. [Online].
Available: https://doi.org/10.1103/PhysRevLett.33.1139

[40] A. H. Boozer, “Physics of magnetically confined plasmas,” Reviews of
Modern Physics, vol. 76, no. 4, pp. 1071–1141, 2004. [Online]. Available:
https://doi.org/10.1103/RevModPhys.76.1071

[41] R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, “The Madison
Symmetric Torus,” Fusion Technology, vol. 19, no. 1, pp. 131–139, 1991. [Online].
Available: https://doi.org/10.13182/FST91-A29322

[42] S. D. Terry, D. L. Brower, W. X. Ding, J. K. Anderson, T. M. Biewer, B. E.
Chapman, D. Craig, C. B. Forest, R. O’connell, S. C. Prager, and J. S. Sarff,
“Measurement of current profile dynamics in the Madison Symmetric Torus,”
Physics of Plasmas, vol. 11, no. 4, pp. 1079–1086, 2004. [Online]. Available:
https://doi.org/10.1063/1.1643917

http://iopscience.iop.org/0029-5515/
stacks.iop.org/PPCF/49/1245
https://bp-pub.pppl.gov/pub{_}report/2017/PPPL-5388 Report.pdf
doi.org/10.1088/0029-5515/20/10/006
doi.org/10.1088/0029-5515/20/10/006
https://doi.org/10.1103/PhysRevLett.33.1139
https://doi.org/10.1103/RevModPhys.76.1071
https://doi.org/10.13182/FST91-A29322
https://doi.org/10.1063/1.1643917


33

[43] H. D. Stephens, D. J. Den Hartog, C. C. Hegna, and J. A. Reusch,
“Electron thermal transport within magnetic islands in the reversed-field pinch,”
Physics of Plasmas, vol. 17, no. 056115, pp. 1–10, 2010. [Online]. Available:
https://doi.org/10.1063/1.3388374

[44] M. B. McGarry, “Probing the relationship between magnetic and temperature struc-
tures with soft x-rays on the Madison Symmetric Torus,” Ph.D. dissertation, Uni-
versity of Wisconsin-Madison, 2013.

[45] T. M. Biewer, C. B. Forest, J. K. Anderson, G. Fiksel, B. Hudson, S. C.
Prager, J. S. Sarff, J. C. Wright, D. L. Brower, W. X. Ding, and S. D.
Terry, “Electron Heat Transport Measured in a Stochastic Magnetic Field,”
Physical Review Letters, vol. 91, no. 4, pp. 1–4, 2003. [Online]. Available:
https://doi.org/10.1103/PhysRevLett.91.045004

[46] L. A. Morton, W. C. Young, C. C. Hegna, E. Parke, J. A. Reusch, and
D. J. Den Hartog, “Electron thermal confinement in a partially stochastic
magnetic structure,” Physics of Plasmas, vol. 25, no. 4, 2018. [Online]. Available:
https://doi.org/10.1063/1.5021893

[47] L. A. Morton, “Turbulence and transport in magnetic islands in MST and DIII-D,”
Ph.D. dissertation, University of Wisconsin-Madison, 2016.

[48] J. Sarff, S. Hokin, H. Ji, S. Prager, and C. Sovinec, “Fluctuation and
Transport Reduction in a Reversed Field Pinch by Inductive Poloidal Current
Drive,” Physical Review Letters, vol. 72, no. 23, 1994. [Online]. Available:
https://doi.org/10.1103/PhysRevLett.72.3670

[49] B. E. Chapman, A. F. Almagri, J. K. Anderson, D. L. Brower, K. J. Caspary,
D. J. Clayton, D. Craig, D. J. Den Hartog, W. X. Ding, D. A. Ennis, G. Fiksel,
S. Gangadhara, S. Kumar, R. M. Magee, R. O’Connell, E. Parke, S. C. Prager,
J. A. Reusch, J. S. Sarff, H. D. Stephens, and Y. M. Yang, “Generation
and confinement of hot ions and electrons in a reversed-field pinch plasma,”
Plasma Physics and Controlled Fusion, vol. 52, no. 12, 2010. [Online]. Available:
https://doi.org/10.1088/0741-3335/52/12/124048

[50] R. O’Connell, D. J. Den Hartog, C. B. Forest, and R. W. Harvey, “Measurement
of fast electron distribution using a flexible, high time resolution hard x-ray
spectrometer,” Review of Scientific Instruments, vol. 74, no. 3 II, pp. 2001–2003, 2003.
[Online]. Available: https://doi.org/10.1063/1.1535244

[51] K. J. McCollam, J. K. Anderson, A. P. Blair, D. Craig, D. J. Den Hartog,
J. Homepage, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone, D. L.
Brower, B. H. Deng, and W. X. Ding, “Equilibrium evolution in oscillating-field
current-drive experiments,” Physics of Plasmas, vol. 17, no. 82506, pp. 1–13, 2010.
[Online]. Available: https://doi.org/10.1063/1.3461167

https://doi.org/10.1063/1.3388374
https://doi.org/10.1103/PhysRevLett.91.045004
https://doi.org/10.1063/1.5021893
https://doi.org/10.1103/PhysRevLett.72.3670
https://doi.org/10.1088/0741-3335/52/12/124048
https://doi.org/10.1063/1.1535244
https://doi.org/10.1063/1.3461167


34

[52] Z. Li, K. J. Mccollam, T. Nishizawa, E. Parke, J. S. Sarff, Z. A. Xing, H. Li, W. Liu,
and W. Ding, “Effects of oscillating poloidal current drive on magnetic relaxation
in the Madison Symmetric Torus reversed-field pinch Effects of oscillating
poloidal current drive on magnetic relaxation in the Madison Symmetric Torus
reversed-field pinch,” Plasma Physics and Controlled Fusion, vol. 61, no. 045004, pp.
1–14, 2019. [Online]. Available: https://doi.org/10.1088/1361-6587/aaf9e0

[53] D. F. Escande, P. Martin, S. Ortolani, A. Buffa, P. Franz, L. Marrelli, E. Martines,
G. Spizzo, S. Cappello, A. Murari, R. Pasqualotto, and P. Zanca, “Quasi-single-
helicity reversed-field-pinch plasmas,” Physical Review Letters, vol. 85, no. 8, pp.
1662–1665, 2000. [Online]. Available: https://doi.org/10.1103/PhysRevLett.85.1662

[54] W. F. Bergerson, F. Auriemma, B. E. Chapman, W. X. Ding, P. Zanca, D. L.
Brower, P. Innocente, L. Lin, R. Lorenzini, E. Martines, B. Momo, J. S. Sarff, and
D. Terranova, “Bifurcation to 3D Helical Magnetic Equilibrium in an Axisymmetric
Toroidal Device,” Physical Review Letters, vol. 107, no. 255001, pp. 1–5, dec 2011.
[Online]. Available: https://doi.org/10.1103/PhysRevLett.107.255001

[55] L. Marrelli, P. Martin, G. Spizzo, P. Franz, B. E. Chapman, D. Craig, J. S. Sarff,
T. M. Biewer, S. C. Prager, J. C. Reardon, M. Symmetric, T. R. N. Dexter, D. W.
Kerst, T. W. Lovell, and J. C. Sprott, “Quasi-single helicity spectra in the Madison
Symmetric Torus,” Physics of Plasmas, vol. 9, no. 7, pp. 2868–2871, aug 2002.
[Online]. Available: https://doi.org/10.1063/1.1482766

[56] J. A. Holmes, B. A. Carreras, P. H. Diamond, and V. E. Lynch, “Nonlinear dynamics
of tearing modes in the reversed field pinch,” Citation: The Physics of Fluids, vol. 31,
p. 1166, 1988. [Online]. Available: https://doi.org/10.1063/1.866746

[57] Y. L. Ho and G. G. Craddock, “Nonlinear dynamics of field maintenance
and quasiperiodic relaxation in reversed-field pinches ARTICLES YOU MAY BE
INTERESTED IN,” Physics of Fluids B: Plasma Physics, vol. 3, p. 721, 1991. [Online].
Available: https://doi.org/10.1063/1.859868

[58] J. S. Sarff, S. Assadi, A. F. Almagri, M. Cekic, D. J. Den Hat-tog, G. Fiksel,
S. A. Hokin, H. Ji, S. C. Prager, W. Shen, K. L. Sidikman, and M. R. Stoneking,
“Nonlinear coupling of tearing fluctuations in the Madison Symmetric Torus,”
Physics of Fluids B, vol. 5, no. 7, pp. 2540–2545, 1993. [Online]. Available:
https://doi.org/10.1063/1.860741

[59] A. K. Hansen, A. F. Almagri, D. Craig, D. J. Den Hartog, C. C. Hegna, S. C. Prager,
and J. S. Sarff, “Momentum Transport from Nonlinear Mode Coupling of Magnetic
Fluctuations,” Physical Review Letters, vol. 85, no. 16, pp. 3408–3411, 2000. [Online].
Available: https://doi.org/10.1103/PhysRevLett.85.3408

[60] P. W. Terry and G. G. Whelan, “Time-dependent behavior in a transport-barrier
model for the quasi-single helcity state,” Plasma Physics and Controlled Fusion, vol. 56,
no. 9, 2014. [Online]. Available: https://doi.org/10.1088/0741-3335/56/9/094002

https://doi.org/10.1088/1361-6587/aaf9e0
https://doi.org/10.1103/PhysRevLett.85.1662
https://doi.org/10.1103/PhysRevLett.107.255001
https://doi.org/10.1063/1.1482766
https://doi.org/10.1063/1.866746
https://doi.org/10.1063/1.859868
https://doi.org/10.1063/1.860741
https://doi.org/10.1103/PhysRevLett.85.3408
https://doi.org/10.1088/0741-3335/56/9/094002


35

[61] P. Franz, M. Gobbin, L. Marrelli, A. Ruzzon, A. Fassina, E. Martines, and G. Spizzo,
“Experimental investigation of electron temperature dynamics of helical states in
the RFX-Mod reversed field pinch,” Nuclear Fusion, vol. 53, no. 5, p. 053011, 2013.
[Online]. Available: https://doi.org/10.1088/0029-5515/53/5/053011

[62] R. Lorenzini, E. Martines, P. Piovesan, D. Terranova, P. Zanca, M. Zuin, A. Alfier,
D. Bonfiglio, F. Bonomo, A. Canton, S. Cappello, L. Carraro, R. Cavazzana,
D. F. Escande, A. Fassina, P. Franz, M. Gobbin, P. Innocente, L. Marrelli,
R. Pasqualotto, M. E. Puiatti, M. Spolaore, M. Valisa, N. Vianello, and P. Martin,
“Self-organized helical equilibria as a new paradigm for ohmically heated fusion
plasmas,” Nature Physics, vol. 5, pp. 570–574, aug 2009. [Online]. Available:
https://doi.org/10.1038/nphys1308

[63] P. Bonofiglo, M. Gobbin, D. A. Spong, J. Boguski, E. Parke, J. Kim,
and J. Egedal, “Fast ion transport in the quasi-single helical reversed-field
pinch,” Physics of Plasmas, vol. 022502, no. 26, 2019. [Online]. Available:
http://dx.doi.org/10.1063/1.5084059

[64] D. J. Clayton, “Fast Electron Transport in Improved-Confinement RFP Plasmas,”
Ph.D. dissertation, University of Wisconsin-Madison, 2010.

https://doi.org/10.1088/0029-5515/53/5/053011
https://doi.org/10.1038/nphys1308
http://dx.doi.org/10.1063/1.5084059


36

Chapter 2

Characterizing plasmas in the MST

A well-diagnosed plasma is critical to the process of experimental plasma physics. As

such, the MST is equipped with a large number of sophisticated diagnostics and analysis

methodologies to help the intrepid experimentalist understand what is going on inside

the aluminum shell. The goal of this chapter is to provide a “big picture” overview of the

diagnostics which are referenced at various other points throughout the rest this thesis.

My descriptions are intended to be brief, so references to more thorough sources are also

provided.

Section 2.1 provides a general overview of the non-SXR MST diagnostics used through-

out this thesis, including the magnetics arrays, FIR, Thomson scattering, and a fast hard

x-ray detector. Section 2.2 provides a description of the axisymmetric and helical equi-

librium reconstruction codes available for use on the MST. Finally, Section 2.3 discusses

the soft x-ray tomography and NICKAL2 Ross spectrometer diagnostics. This section

also covers the impact of Al+11 and Al+12 transition lines on the SXR diagnostic signals.

A new multi-energy soft x-ray diagnostic is the subject of Chapters 3, 4, and 5.



37

2.1 Common MST diagnostics

A large number of sophisticated diagnostics have been developed for the MST during its

more than thirty years of operation. Numerous specialized diagnostics and subsystems

including spectrometers [1], neutral beams [2], and neutron detectors [3] have been used

in scientific studies. A thorough description of the entire MST diagnostic suite is well

beyond the scope of this document. Therefore, the goal of this section is to provide a

basic overview of a small number of routine diagnostics whose data are used in other

chapters. Specifically, we will introduce the magnetics arrays (Section 2.1.1), the Thom-

son scattering diagnostic (Section 2.1.2), the FIR interferometer (Section 2.1.3), and the

fast x-ray camera (Section 2.1.4). References will be provided for further details on each

diagnostic.

2.1.1 Magnetics arrays

As with all plasma confinement devices, it is important to be able to characterize the

magnetic field configuration of the MST. This is accomplished via multiple arrays of

magnetic field-sensing coils along the plasma boundary. A schematic of these arrays

is shown in Figure 2.1. Edge measurements of the magnetic field are an important

constraint when calculating the global magnetic configuration using an equilibrium re-

construction code (see Section 2.2). Additionally, tearing modes are global instabilities,

meaning that edge measurements provide a good indication of magnetic activity in the

core.

There are four total magnetics arrays inside the MST vessel, including three poloidal

arrays and a toroidal array [4]. Unless otherwise noted, all magnetic field measurements

presented in this thesis were taken by the toroidal array. This array consists of 64 evenly-

spaced triplets of pickup coils which are used to measure the toroidal and poloidal

components of the magnetic field. Typically 64 BT, 32 BP, and 32 ḂP signals are digitized
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Figure 2.1: Schematic of the various magnetics arrays on the MST. Data shown in this

thesis is exclusively from the toroidal array. Reproduced from J. Koliner [4].

at one time. The magnetic field is related to the voltage measured across the coil via

B = − 1
A

∫
ε(t)dt (2.1)

where A is the coil area and

ε(t) = −∂Φ
∂t

(2.2)

is the electromotive force induced across the coil due to the changing magnetic flux

Φ = B · An̂. By measuring the voltage these coils directly measure ε ∝ Ḃ. To convert

from Ḃ to B the signals are passed through an integrator before being digitized at 200
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kHz. The Ḃ signals may also be directly digitized at 3 MHz to preserve sensitivity to

high-frequency fluctuations (internally referred to as “fast magnetics” measurements).

Magnetic field fluctuations are measured by the toroidal array and decomposed into

Fourier modes according to

b̃i(φ, t) =
N

∑
n=0

bn cos
(
nφ− δi,n(t)

)
, (2.3)

where i = {θ, φ} labels the vector component, φ is the toroidal angle, bn is the amplitude

of the nth harmonic, δi,n is the associated phase, and N = 15 for i = θ and N = 31 for

i = φ. The magnetic field fluctuation amplitudes bn are typically associated with the

tearing mode of the same n. Because the decomposition is in the toroidal direction only,

distinct m modes cannot be distinguished. However, given the q profile typical to the

RFP (Figure 1.6) it is generally assumed that the core-resonant modes n = 5, 6, . . . are

dominantly m = 1, while modes resonant at the reversal surface like n = 1, 2, . . . are

m = 0.

The MST also has a Rogowski coil and flux loop to provide measurements on the

plasma current Ip and the average toroidal field 〈Bφ〉, respectively [4]. These measure-

ments serve as important constraints to equilibrium reconstruction routines.

2.1.2 Thomson Scattering

Routine measurements of the electron temperature are provided by the Thomson scat-

tering diagnostic. Pulses from a high-powered Q-switched Nd:YAG laser are directed

into the vacuum vessel where they proceed to scatter off of free electrons in the plasma

via the eponymous Thomson scattering process (the low-energy limit of Compton scat-

tering). The scattered light is then collected by the viewing optics along the plasma

boundary, as shown in Figure 2.2, allowing localized plasma properties to be inferred. A

detailed overview of the physics of Thomson scattering as applied to high-temperature
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plasma diagnostics is provided by Prunty [5].

The incoherent1 Thomson scattering process is well-understood in the framework of

classical electrodynamics. The incident electromagnetic radiation causes an electron to

oscillate and emit dipole radiation, with an intensity proportional to the electron density

and dependent on the scattering angle. The spectrum is also broadened due to the

Doppler effect, which is dependent on the electron temperature. Relativistic effects are

also significant for plasma temperatures on the order of a keV or higher. The spectral

density function, which was derived by Selden [7], is given by

S(ε, θ, α) =
c(α)

A(ε, θ)
exp

[
− 2αB(ε, θ)

]
, (2.4)

where α = mec2/(2kTe), ε = λs/λi is the ratio of the wavelength of the scattered light to

that of the incident light, θ is the scattering angle, and

A(ε, θ) = (1 + ε)3
√

2(1− cos θ)(1 + ε) + ε2 (2.5)

B(ε, θ) =
√

1 + ε2/
[
2(1− cos θ)(1 + ε)− 1 (2.6)

C(α) =
√

α

π

(
1− 15

16
α−1 +

345
512

α−2 + . . .
)

. (2.7)

Measurements of the scattered light are taken by the collection optics, which are local-

ized to the intersection of the beam line and the viewing chords with known scattering

angle θ. The measurements can then be fit to Equation 2.4 to determine the electron tem-

perature. In principle density measurements can be extracted from the absolute magni-

tude of the scattered light, but the MST Thomson system is not currently calibrated for

that.

The Thomson scattering diagnostic on MST is composed of two Nd:YAG lasers firing

1This means that the plasma is sufficiently diffuse that the electromagnetic waves can be considered to
scatter off of individual electrons rather than collectively interact with the plasma.
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Figure 2.2: Schematic of the Thomson scattering beam-line and collection optics. Elec-

tron temperature is measured locally at the points where the beam-line and measure-

ment chords intersect. Reproduced from J. Reusch [6].



42

at 1 kHz whose timing is staggered to achieve an overall data collection rate of 2 kHz

over a 15 ms time window. The diagnostic can also be operated in a pulse-burst mode

with resolution of 25 kHz, repeated in 1 kHz bursts [8]. A custom “Fast Thomson”

system has also been used in the past to achieve a temporal resolution of up to 250 kHz

[9]. However this mode was no longer available during the period in which the research

in this thesis was conducted.

2.1.3 FIR interferometry

The far infrared (FIR) interferometry diagnostic on the MST works by measuring the

relative phase shift between two ∼ 650 GHz beams, a probe beam which passes through

the plasma and a reference beam which travels the same distance through the air [10].

The magnitude of the phase shift is a function of the line-integrated plasma index of

refraction, itself a function of the electron density,

∆φ =
λe2

4πmec2ε0

∫
ne(z)dz (2.8)

= 2.815× 10−15λ
∫

ne(z)dz, (2.9)

where λ is the wavelength of the probe beam and z is the coordinate along a given

chord. So by directly measuring the relative shift ∆φ, the average density n̄e =
∫

ne(z)dz

is obtained. Inversion techniques may then be used to obtain the ne profile.

As shown in Figure 2.3, the FIR system installed on the MST features 11 chords across

the plasma volume as well as an external reference channel. The channels are divided

into two sets separated toroidally by five degrees (at 250◦ and 255◦). The FIR beams were

originally produced by a CO2 pumped formic acid molecular gas laser. In 2019 this was

upgraded to a set of three solid-state FIR diodes, similar to those described in Xie, et al.

[11].
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Figure 2.3: Schematic overview of the FIR interferometry system installed on the MST.

Note that in 2019 the FIR source was changed from a CO2 pumped formic acid molecular

gas laser (shown in this image) to solid-state diodes. Reproduced from E. Parke, et al.

[10].
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The FIR diagnostic can also be operated as a polarimeter to make measurements of

the line-integrated magnetic field [12]. This can be done simultaneously to ne measure-

ments by operating the diagnostic with three beams. Polarimetry data is not used in this

thesis, so a more thorough discussion of this technique is deferred to other sources [13].

2.1.4 The fast x-ray camera

A sixteen-chord hard x-ray spectrometer array was installed in 2003 [14] to measure the

radiation produced by fast electrons in the RFP. This capability was enhanced in 2015 by

the addition of a single-chord fast x-ray camera which features very high time resolution

with minimal dead time [15].

The fast x-ray (FXR) camera is based on a single Si avalanche photodiode (APD)

which can detect photons in the range 2-30 keV. The signal output by the detector, which

is proportional to the energy of the incident photon, is passed through a Gaussian am-

plifier with a shaping time of approximately 20 ns before being directly digitized at 500

MHz for later analysis. As a result, relatively high x-ray fluxes can be measured without

worrying about significant saturation or pulse pileup. Detected pulses are fit to a charac-

teristic pulse shape derived from an Fe-55 source during the calibration procedure. The

R2 goodness of the fit along with the FWHM of the pulse are used to distinguish real

photon pulses from noise. This procedure is shown in Figure 2.4. Once a real photon

has been identified, the pulse height is used to determine the photon energy.

There are several physical processes which can result in the presence of fast non-

Maxwellian electrons in the RFP. These electrons emit photons in the hard x-ray range

via bremsstrahlung, making the FXR camera a very useful tool for diagnosing fast elec-

tron populations. For example, the FXR camera was used to show that an anisotropic

tail population tends to form during standard plasmas a result of energization during

sawtooth (magnetic reconnection) events [16]. The diagnostic has also been used to mea-

sure runaway electrons in both PPCD and QSH improved confinement scenarios [15],
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Figure 2.4: A single Fe-55 photon pulse as measured by the FXR detector. The pulse

is then fit to a calibrated characteristic pulse and a spline fit to help distinguish real

photons from noise and to determine the photon energy. Reproduced from Dubois, et

al. [15].
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which tend to form due to the substantially reduced stochasticity in the core [17].

Figure 2.5 shows an example of FXR data recorded during a QSH plasma discharge.

Each pulse represents a single photon detected, and the height of the pulse corresponds

to its energy. The pulses are also color-coded by energy in order to help distinguish

narrowly-separated pulses. In the example plasma, a large number of high-energy pho-

tons are recorded as the magnetic mode grows to large amplitude and begins to saturate.

The particular dynamics of fast electrons in the helical RFP is the topic of Section 6.3.

2.2 Equilibrium reconstruction codes

The diagnostics discussed in the previous section each directly measure a plasma’s prop-

erties for only a small subset of the overall plasma volume (the toroidal array measures B

at 32 spots along the boundary, FIR measures n̄e for its 11 chords, etc.). However, when

doing plasma physics it is frequently important to extrapolate these finite measurements

into continuous global profiles. This is the purpose of equilibrium reconstruction codes.

An equilibrium reconstruction code solves an equilibrium equation (such as the

Grad-Shafranov equation) subject to the constraints of diagnostic measurements. Mea-

surements may be used directly as boundary conditions, or can be incorporated via

synthetic diagnostics and solved for iteratively until disagreement is sufficiently low.

Reconstruction codes typically output full global profiles for magnetic quantities such as

q, ψ, Bθ/φ, Jθ/φ, and sometimes physical parameters like Te, ne, etc..

Three separate reconstruction codes were used to some capacity for the work in this

thesis. The first, MSTFit, is the focus of Section 2.2.1. This code is known to work well

for the cases of axisymmetric RFP plasmas, such as in standard reversed and PPCD sce-

narios. However, plasmas with strong non-axisymmetric components, such as the helical

plasmas which form in the non-reversed QSH scenario, require different tools. Two such

tools, SHEq and V3Fit, are discussed in Section 2.2.2. Both helical reconstruction codes
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Figure 2.5: Example of photon counts taken with the FXR detector during a 500 kA

non-reversed plasma with a quasi single-helicity magnetic spectrum. (a) The Fourier-

decomposed magnetic mode amplitudes taken from the toroidal array at the plasma

boundary; (b) The plasma current; (c) Each pulse corresponds to a photon detected by

the FXR camera. The height of the pulse (and corresponding color coding) gives the

energy of the detected photon.
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are used in some capacity during the analysis presented in Chapter 6.

2.2.1 MSTFit

MSTFit is a non-linear Grad-Shafranov toroidal equilibrium reconstruction code devel-

oped specifically for the RFP [18]. Prior to MSTFit, equilibrium reconstructions of the

MST were mostly performed using one-dimensional cylindrical models which did not

capture the full geometry of a toroidal device. MSTFit allows users to obtain full 2D

axisymmetric toroidal equilibria constrained by numerous diagnostic measurements.

MSTFit also correctly accounts for the interaction of the plasma with the close-fitting

conducting shell, a detail which is particular to the MST.

The Grad-Shafranov equation assumes an axisymmetric field of the form

B(R, Z) = Bφ(R, Z)φ̂ +∇ψ×∇φ (2.10)

which obeys B ·∇ψ = 0. This assumption is generally a good assumption in the toka-

mak plasmas and for high-performance regimes of the RFP (such as in-between sawteeth

or during PPCD). The Grad Shafranov equation, which MSTFit solves, is

∆∗ψ = −µ0RJφ (2.11)

Jφ =
2πFF′

µ0R
+ 2πRp′, (2.12)

where ∆∗ = R2∇ · (∇/R2) is the elliptic operator, ψ is the poloidal magnetic flux,

F = RBφ, and p is the pressure. Both F = F(ψ) and p = p(ψ) are functions of ψ only.

The MSTFit codes solves Equation 2.11 iteratively over an unstructured mesh of 746

elements. At each step in the parameter space synthetic diagnostic measurements are

computed and compared to the real data to compute χ2. Parameters are then varied
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Figure 2.6: Example MSTFit output for plasma discharge #1191204050, t = 18.5 ms, 300

kA PPCD. Figure shows nested surfaces of constant ρ/a (left), the safety factor profile

(top right), and the reconstructed density profile (bottom right).

to minimize χ2. This process is iterated a second time using the previous solution as a

starting point. The code also provides a convenient radius-like variable ρ = ρ(ψ) which

is determined by the volume contained within the flux surface V(ψ),

ρ =

√
V(ψ)

2π2R
, (2.13)

which ranges from ρ = 0 to ρ = a. Figure 2.6 provides an example of an MSTFit

reconstruction, showing contours of constant ρ/a.

2.2.2 Helical equilibria

As discussed in Section 1.4.1, high-current non-reversed MST plasmas tend to sponta-

neously evolve into helical equilibria. This violates MSTFit’s assumption of axisymmetry,

meaning that a different equilibrium reconstruction method is needed to analyze these

plasmas. In Chapter 6 this is mostly accomplished via the NCT/SHEq code. Originally
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Figure 2.7: Example NCT/SHEq output for plasma discharge #1200701056, t = 23.5 ms,

500 kA F = 0. Figure shows nested surfaces of constant ρ (left), the helical safety factor

profile (top right), and the normalized current density profile (bottom right).

developed for RFX-Mod [19], it was later modified and extended for use on the MST

[20].

The NCT/SHEq code assumes that plasma properties such as the toroidal and poloidal

magnetic flux can be written as the sum of an axisymmetric component with a helical

perturbation,

ψ(r, θ, φ) = ψ0(r) + ∑
m,n

ψm,n(r)ei(mθ−nφ), (2.14)

where r is the toroidal radius, θ is the poloidal (azimuthal) angle, and φ is the toroidal

(axial) angle. The magnetic field is assumed to have the form

B(r, θ, φ) = ∇ψT ×∇θ −∇ψP ×∇φ (2.15)

where ψP is the poloidal flux and ψT is the toroidal flux.

The routine begins by solving for the axisymmetric component of the equilibrium
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measurements from the edge magnetics arrays as constraints. It also assumes that pres-

sure can be ignored. It then uses NCT to solve a series of toroidal Newcomb-like equa-

tions [21, 22] to obtain the perturbations ψm,n
T , ψm,n

P to the equilibrium. The flux surfaces

can then be labeled by the helical flux

χ ≡ mψP − nψT, (2.16)

where n = 5 is the dominant mode number. The helical flux is usually presented in

normalized from,

ρ =

√
χ− χmin

χmax − χmin
, (2.17)

which is well-suited for use as a radial variable.

An alternative code, called V3Fit [23], is also available to produce a fully three-

dimensional helical equilibrium reconstructions on the MST. Although mostly used with

the stellarator community, the code was modified for the helical RFP and has been suc-

cessfully implemented on the MST [24]. As implemented at the MST, V3Fit uses VMEC

[25] as its 3D equilibrium solver. The equilibrium is then used to produce synthetic diag-

nostic signals, which are compared against the real diagnostic measurements to produce

χ2. The algorithm then adjusts the parameters and repeats the process until a minimum

in χ2 is located. For more details on this process see References [4, 26].

Figure 2.8 shows a comparison between flux surface reconstructions obtained us-

ing SHEq and V3Fit. In general the results are similar, though they differ somewhat

in shape. Because V3Fit incorporates information from multiple diagnostics, includ-

ing internal diagnostics like FIR interferometry/polarimetry and SXR tomography, it

is generally considered to be better-constrained than NTC/SHEq. VMEC is also fully

three-dimensional and incorporates more physics (such as pressure) than NCT/SHEq.

However, it also necessitates a large suite of diagnostics when taking data and requires
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Figure 2.8: Comparison between SHEq (left) and V3Fit (right) reconstructed flux surfaces

for the same locking phase.

substantial computational time to produce reconstructions. For that reason I have mostly

relied on NTC/SHEq to provide flux surfaces in this thesis.

2.3 Soft x-ray diagnostics

Electromagnetic radiation passively emitted by the plasma provides an excellent op-

portunity for plasma diagnostics. Spectroscopic diagnostics focusing on the soft x-ray

(SXR), portion of the electromagnetic spectrum (100 eV . hν . 10 keV, or equivalently

1 Å . λ . 100 Å) have been prevalent since the 1960s, when Te for experimental devices

became sufficiently large to stimulate significant SXR emission [27]. The SXR region

in particular is of interest because it occupies something of a sweet spot on the elec-

tromagnetic spectrum, with a spectrum that is much “cleaner” and easier to interpret

than the vacuum ultraviolet (hν . 100 eV) but still much more intense than hard x-ray

(hν & 10 keV) emissions at thermal temperatures.

Emission from the SXR spectrum contains a wealth of information about the prop-
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erties of the emitting plasma, which is reviewed in Section 2.3.1. Section 2.3.2 describes

the two-color soft x-ray tomography diagnostic used throughout the rest of this thesis.

The methodology used for tomographic inversions is described in Section 2.3.3. Section

2.3.4 explains the difficulties encountered by SXR diagnostics on the MST arising from

the presence of mid-Z (Al) impurity transition line emissions. And finally Section 2.3.5

discusses a supplemental Ross spectrometer diagnostic that has recently been deployed

to directly measure the Al lines. Chapter 3 extends this discussion to a versatile new

multi-energy soft x-ray diagnostic. Together, these soft x-ray diagnostics form a com-

plementary set which can be used to better constrain plasma properties (see Section

5.5).

2.3.1 Elements of the SXR spectrum

The SXR spectrum of a high-temperature magnetically-confined plasma emerges from

a combination of several distinct physical processes. If a plasma were composed of

100% ionized hydrogen, its soft x-ray (SXR) spectrum would be simply composed of

bremsstrahlung radiation resulting from interactions between freely moving electrons

and ions. The electrons move much faster than the ions meaning that they can be treated

as stationary, resulting in the simple spectrum given in the equation [28]

εFF(ν) = C · neniZ2
i

e−hν/Te
√

Te
ḡ f f (ν, Te), (2.18)

C is a collection of physical constants, hν is the energy of the emitted photon, ne is

the electron density, ni is the ion density, Zi is the ionic charge of the ion (Z = 1 for

hydrogen), Te is the electron temperature (in energy units), and ḡ f f is the Maxwell-

averaged Gaunt factor. The Gaunt factor accounts for quantum mechanical corrections

to the electron ion scattering process [29]. Note that throughout this discussion we will

assume that all particles obey a Maxwell-Boltzmann distribution.



54

In such a basic plasma diagnosing the electron temperature would be easy. All one

would need to do is extract the slope of the log of the spectrum when plotted versus en-

ergy. This could readily be accomplished by taking a few measurements with different

cutoff thresholds. No real plasmas, however, is this simple. All real plasmas contain low

concentrations of higher-Z ions, which we refer to as impurities. Even with densities far

less than 1% of the electron density these impurities can dominate the SXR spectrum.

They can also add additional features into the spectrum resulting from free-bound inter-

actions. The most significant free-bound effect, commonly called radiative recombination,

occurs when an ion captures a passing electron and emits its residual kinetic energy as

radiation. This results in an enhancement of the free-free spectrum with discrete steps at

the ionization energies of the recombined electrons. This effect is described thoroughly

in other sources [28, 30] and is illustrated in Figure 2.9. The total continuum emissivity

spectrum is therefore a combination of these two effects:

εcont(ν) = C · neniZ2
i

e−hν/Te
√

Te

[
ḡ f f (ν, Te) + ḡ f b(ν, Te)

]
. (2.19)

where a new term ḡ f b has been introduced to represent the enhancements to the spec-

trum resulting from radiative recombination. The full equation is given in Equation

(5.3.53) of Hutchinson [28]. Note that if C = 5.03× 10−54 and ne and ni are measured

in m−3, then the result is measured in units of [W m−3 sr−1 Hz−1]. The total emissiv-

ity spectrum emitted by the plasma is the sum of Equation 2.19 evaluated for each ion

species, majority and impurities. In cases where there are no recombination steps in the

portion of the spectrum being measured, this sum can be simplified to

εcont(ν) ∝ n2
e Zeff

e−hν/Te
√

Te
, (2.20)

where ∑i neniZ2
i ≡ n2

e Zeff is the ion-effective charge.

Although these effects are sufficient to describe the SXR spectrum emitted by most
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Figure 2.9: The emissivity spectrum of Al with Te = 1600eV. The spectrum is the result of

bremsstrahlung (free-free), recombination (free-bound), and excitation lines. The dashed

line indicates a typical region of sensitivity for SXR diagnostics.
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low-Z impurities (such as C, N, and O) medium- and high-Z ions introduce additional

complications2. Since these impurities are not fully ionized interactions with passing

electrons can excite ground-state electrons into a higher energy level. This electron will

then decay back into the ground state, emitting the extra energy as a photon. This

process typically leads to the presence of many excitation lines in the plasma. Plasmas

in MST typically feature very bright excitation lines at E ∼ 2 keV, which has in the past

significantly complicated the interpretation of x-ray measurements [31]. These features

are also shown in Figure 2.9. Since the ME-SXR diagnostic is a broad-band detector

we can ignore effects such as Doppler and pressure broadening [28], meaning that line

emissions are represented well by delta functions:

εexc = neni ∑
`∈Li

Pi,`(Te, ne)

4π
δ(E− E`). (2.21)

Here ` indexes the individual transitions, Li refers to the set of all transitions for the

specified ion, E` is the line energy, and Pi,` is the photon emissivity coefficient, or PEC,

which quantifies the strength of the transition. This topic is expanded upon significantly

in Section 4.2.3, which is concerned with the development of a quantitative model for

the SXR emissivity using the ADAS code [32]. As will be discussed in that section,

the values for Pi,` depend upon a number of choices about how to model the coupling

between the particle population and the emitted radiation.

It is worth noting that there are additional mechanisms which can produce SXR ra-

diation which have not been described here. For example, dielectronic recombination

is a three-body interaction which occurs when a free electron is captured and simulta-

neously excited a bound electron, which then emits a photon as it decays back to the

ground state [30]. Preliminary investigations by our collaborator Paolo Franz found

that this effect did not contribute significantly to the ME-SXR signal. A similar forward

2Partially ionized low-Z impurities in the plasma edge also emit line radiation, but these are outside of
SXR range and are typically filtered out by detectors.
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model for the NICKAL2 K-edge spectrometer, developed by my colleague Lisa Reusch,

does include this effect by way of ADAS.

2.3.2 The Soft X-ray Tomography diagnostic

The Soft X-ray Tomography diagnostic (sometimes abbreviated as SXR tomo. or SXT)

was first installed on MST in 2001 [33] and has since served as one of the main diag-

nostics for examining the plasma’s internal structure. The system has undergone sev-

eral upgrades over the years, with the most significant overhaul occurring around 2010

when the diagnostic was redesigned to allow two-color measurements for each view-

ing chord, significantly improving the diagnostic’s ability to measure Te [34]. Since that

upgrade most advances to the diagnostic have been on the analysis side, such as better

understanding of the effect of impurities in the Be foils on filter transmission [35] and

validating a synthetic model of the diagnostic to allow absolute comparisons to the data

[31].

In its present form, the diagnostic is composed of four detectors at a single toroidal

angle (φMST = 90◦) with the viewing geometry chosen to sample the plasma cross-

section sufficiently well to enable tomographic inversions (Section 2.3.3). Each detector

contains 20 Si photodiodes, each having a thickness of 35 µm and an active area of 4

mm2. Diodes are paired so that each pair approximately share a line-of-sight, leaving a

total of ten chords per detector. This geometry is illustrated in Figure 2.10. The paired

diodes look through beryllium foils of differing thicknesses (45 µm and 172 µm for the

data in this thesis), often referred to as the “thick” and “thin” channels. As discussed in

Section 2.3.1, this allows the diagnostic to sample the slope of SXR continuum, and there-

fore infer Te. The signal output from each photodiode is passed through a differential

transimpedance amplifier before being digitized at 500 kHz.

Historically Te measurements have been performed using one of two techniques. The

“direct brightness” technique involves taking the ratio of the “thick” and “thin” chan-
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Figure 2.10: The Soft X-ray Tomography diagnostic on MST is composed of four detec-

tors, labeled SXR-A,B,C,D, with ten viewing chords per detector. These chords sample

the plasma cross-section from multiple viewing angles, enabling tomographic inversions.

There are two Si diodes per chord with Be foils of differing thickness, permitting sensi-

tivity to Te.
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nel chord-integrated measurements and using a ratio curve (computed via synthetic

modeling) to map this ratio to the electron temperature [36]. This technique works on

the principle that the measured brightness along a chord is mostly a function of the

highest temperature (and hence most emissive) point along the chord. As such, it is

prone to underestimating the temperature if the geometry of the emission profile was

not properly accounted for in the construction of the ratio curve, and can underestimate

localized emissive structures [37]. The other method is generate tomographic inversions

separately for the thin and thick filter channels, and then take the ratio of the resulting

emissivity maps [36]. However, tomographic inversions have some inherent uncertainty

which can be amplified when considering the ratios. A third approach, based on mod-

eling, is used throughout this thesis for both the SXR tomography system and the new

ME-SXR diagnostic.

The SXR tomography diagnostic has found many applications over the years. Aside

from providing Te measurements, the diagnostic has also been used as a diagnostic

of internal magnetic structure. Islands in the emissivity structure have been found to

map onto magnetic islands [33], providing a direct measurement of MHD activity. The

diagnostic has also been useful for identifying the emergence of helical structures in

the magnetic equilibrium [38]. More recently, the diagnostic has become central to the

integrated data analysis approach being developed on the MST, which has been used to

measure Zeff by synthesizing multiple diagnostics [39].

2.3.3 Tomographic inversion

The soft x-ray tomography diagnostic measures the brightness f along each diode’s

viewing chord, a line integrated quanitity. However we are typically more interested in

the local quantity, the emissivity g, which is the the brightness via the integral:

f (p, φ) =
∫
L(p,φ)

g(r, θ)dx. (2.22)



60

where p and φ are the impact parameters specifying the viewing chord (see Section

4.4.1), L(p, φ) specifies the viewing chord, and r, θ are the standard polar coordinates.

The class of mathematical techniques for inverting this integral transform given a

finite number of measurements of f are referred to as tomographic inversions. The

SXR tomography diagnostic on MST employs a technique commonly referred to as the

Cormack-Bessel method [40, 41]. This technique expands both the brightness and emis-

sivity as a truncated Fourier series over M terms,

f (p, φ) =
M

∑
m=0

[
f c
m(p) cos (mφ) + f s

m(p) sin (mφ)

]
(2.23)

g(r, θ) =
M

∑
m=0

[
gc

m(r) cos (mθ) + gs
m(r) sin (mθ)

]
. (2.24)

These expressions can be used to derive an expression for the components of emissivity:

gc,s
m (r) = − 1

π

d
dr

∫ 1

r

r f c,s
m (p) Tm(p/r) dp

p
√

p2 − r2
(2.25)

where Tm(p/r) are the Chebyshev polynomials. The Fourier components are further

expanded in terms of Bessel functions and recast into a matrix equation of the form

f = W · g (2.26)

which is computed iteratively until the norm of the residual || f −W · g|| falls below a

specified tolerance. The result of this process is a two-dimensional map of the emissivity

in the poloidal plane. An example of an emissivity map produced with a Cormack-

Bessel inversion is shown in Figure 2.11.

The expansions in terms of Bessel functions constrains the symmetry of the result-

ing reconstructions, and the level of detail is constrained by the finite number of terms

retained in the sums. However this method has been found to produce island struc-
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Figure 2.11: Two-dimensional reconstruction of emissivity using the Cormack-Bessel

inversion technique. The inversion shown was made using data from the 45 µm channels

for a 500 kA non-reversed plasma exhibiting a helical equilibrium. The bright spot

corresponding to a “bean-shaped” structure off of the normal magnetic axis is typical of

QSH plasmas in the MST.
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ture consistent with less-constrained finite element methods [37] while maintaining a

significant advantage in computational time. Other modern techniques involving non-

stationary Gaussian processes [42] and machine learning [43] have been developed else-

where but have not yet been tested on the MST.

2.3.4 Effect of Al lines on the SXR spectrum in MST

As a result of long-standing collaborations between the two labs, the two-color soft x-

ray tomography diagnostic and analysis techniques described in this section are very

similar the system used on RFX-mod in Italy [41]. However, the presence of partially-

ionized aluminum ions in MST has introduced significant additional difficulties for the

MST system. While RFX-mod commonly uses beryllium filters with thicknesses as low

as 25 µm for direct-brightness Te measurements over a wide range of plasma currents,

the strong aluminum lines emissions at ∼ 2 keV have historically forced the MST system

into using thin/thick filter combinations as thick as 427/805 µm in order to suppress the

distortion introduced by these line emissions. The use of such thick filters has limited the

application of the diagnostic to the MST’s highest performance regime, where electron

temperatures Te > 1 keV produce a sufficiently high photon flux above the filter cutoff

energies.

This equilibrium has begun to change in recent years. Recent work by L. Reusch

and P. Franz [31] has led to the development and validation of a quantitative model of

soft x-ray emission in the MST which agrees with measurments over a wide range of

plasma temperatures and beryllium filter thicknesses. This was achieved by carefully

incorporating the individual mechanisms discussed in Section 2.3.1, and serves as the

basis for the multi-energy diagnostic model discussed in Chapter 4. A summary of that

work is provided in Figure 2.12.

As shown in the figure, the SXR signal for very thin filters is dominated by Al line

emissions, in the most extreme case contributing approximately an order of magnitude
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Figure 2.12: These figures show the contribution to the overall SXR signal of the vari-

ous physical processes discussed in Section 2.3.1. FF refers to “free-free” radiation, RR

to “radiative recombination,” DR to “dielectronic recombination,” and L refers to line

emissions. Cutoff energy is increased by increasing the Be filter thickness. Fgiure a)

does not consider the impact of charge-exchange with neutral particles on the ionization

balance, while figure b) does include this effect. All effects are important for achieving

quantitative agreement with experimental data across all filter thicknesses. Figure b)

also illustrates the importance of Aluminum emission lines when thin filters are used.

Figure reproduced from Reusch, et al. [31].
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more to the measured signal than other mechanisms. For these thicknesses direct bright-

ness measurements are difficult, as the ratio is dependent not only temperature but also

on the line amplitude, which itself depends on ne, nAl, and the neutral density as well

as Te. As the filter thickness increases these complex dependencies become insignificant

and we return to a regime where ratio-based techniques can be used to infer Te directly.

The figure also illustrates the importance of properly characterizing the neutral density

when modeling the emission spectrum, a detail which we will return to in Section 4.2.2.

The application of a quantitative model to understand absolute soft x-ray measure-

ments as described above relied upon many years of work and measurements from

numerous diagnostics to develop a comprehensive understanding of properties of MST

high-performance plasmas. This includes measurements of ion and electron density

profiles, an understanding of ion transport phenomena, measurements of neutral den-

sity, and Thomson scattering measurements to characterize the typical range and shape

of electron temperature profiles. This knowledge was synthesized via a methodology

called Integrated Data Analysis [44], discussed more thoroughly in Appendix B and

demonstrated in Section 5.5. This analysis has been most-successfully applied to high-

current PPCD plasmas.

Due to the complex dependencies of soft x-ray emission on other plasma properties,

our understanding of data from the soft x-ray tomography diagnostic can be greatly

improved by simultaneous measurements from complementary diagnostics. In the fol-

lowing section I discuss one such complementary diagnostic, a new single-purpose K-

edge spectrometer designed to directly measure the aluminum line amplitudes in MST

plasmas. In the following chapter I more thoroughly discuss another complementary di-

agnostic, a highly-customizable solid state pixelated photon counting multi-energy soft

x-ray diagnostic which can be used to isolate contributions from emission lines and the

continuum.
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2.3.5 The NICKAL2 Ross Filter Detector

The NICKAL23 is a single-chord Ross spectrometer designed specifically to isolate the

signal from the Al+11 and Al+12 transition lines [45]. The idea for the diagnostic was

partially inspired by an previous Ross spectrometer once used on the MST to measure

O, C, and Al impurities in standard RFP plasmas [46]. A Ross spectrometer is a radi-

ation detector which uses carefully selected filter pairs to create pass-bands into which

incoming electromagnetic radiation can be isolated. Filter thicknesses are chosen so that

the transmission curves are nearly identical except for the sharp drops at their respective

K-edges4, which set the bin boundaries. Elements which are consecutive on the periodic

table are typically selected in order to minimize the size of the pass band. The result can

be seen in Figure 2.13, which shows the transmission curves for the three filters installed

in the NICKAL2 detector.

The NICKAL2 detector consists of three columnated photodiodes, of the same type

used in the tomography diagnostic, each separated from the plasma by a different x-ray

filter. The filters were designed using a simple optimization routine to simultaneously

minimize transmission outside of the passbands while maximizing it inside the bands

(see N. Lauersdorf’s senior thesis [45] for a thorough description of the diagnostic and

the optimization process). The initial design called for a mix of aluminum (1.56 keV),

silicon (1.84 keV), and phosphorus (2.14 keV) filters in order to effectively isolate the Al

lines in the 1.5-2 keV region of the spectrum. However a phosphorous-based filter was

deemed impractical due to its high combustibility, so it was replaced with zirconium

which has an L-edge around (2.23 keV). Because L-edges are weaker than K-edges, an

even thinner filter was required. An additional thin film (either beryllium or Mylar) was

also deposited onto each filter in order to manipulate out the lower-energy part of the

3It is so named because it is the second Ross spectrometer used on the MST to be created by someone
named Nick (Lanier and Lauersdorf), and it is designed to measure Al line radiation.

4A filter’s K-edge is a sudden increase in x-ray absorption, or equivalently a drop in transmission,
which occurs at the binding energy of the innermost (K-shell) electrons.
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Figure 2.13: Illustration of the transmission bands for the three core-viewing NICKAL2

channels. The sudden drops transmission are used to independently measure the line

amplitudes. The dashed lines correspond to the brightest Al emission lines in typical

MST plasma discharges, as modeled by ADAS. Figure reproduced from N. Lauersdorf’s

undergraduate thesis [45].
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transmission curve and to provide additional structural support to the very thin filters.

The final filter design was:

1. 2.0 µm Zr with 8.0 µm Mylar

2. 6.8 µm Al with 31.2 µm Be

3. 10.0 µm Si with 12.7 µm Be.
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Chapter 3

The Multi-Energy Soft X-Ray diagnostic

The multi-energy soft X-ray (ME-SXR) diagnostic at the Madison Symmetric Torus (MST)

has been developed as a collaboration between the University of Wisconsin-Madison and

the Princeton Plasma Physics Lab (PPPL). The diagnostic is based around a novel imple-

mentation of the PILATUS3 100K detector which has been calibrated to simultaneously

sample the plasma emission at multiple x-ray energy ranges. This provides sensitivity

to a variety of important plasma properties such as core Te and ne, as well as impurity

species content [1].

The PILATUS3 detector was calibrated for multi-energy operation following a proce-

dure developed for the PILATUS2 detector at Alcator C-Mod [2] and later extended to

the PILATUS3 [3]. This chapter builds upon this prior work by applying this procedure

to a new system and then using the results to analyze pixel to pixel variation across

the detector. Of particular interest was the resolution to which a specific photon energy

threshold could be set due to uncertainty in the calibration procedure and the discrete

nature of the PILATUS3 threshold settings. This resolution was found to be ∆E < 100

eV for a 1.6-to-6 keV calibration and ∆E < 200 eV for a 4-to-14 keV calibration. These

results are discussed in Section 3.2.

An introduction to the diagnostic hardware, including the PILATUS3 module itself,
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is provided in Section 3.1. Section 3.3 describes the in-vessel spatial calibration technique

used to determine each pixel’s line-of-sight through the plasma. Section 3.4 discusses the

phenomenon of charge sharing, in which the charge generated by an absorbed photon

is partially collected by two adjacent pixels. Finally, Section 3.5 demonstrates multiple

ways the detector can be configured and shows corresponding data.

3.1 ME-SXR diagnostic hardware

The ME-SXR diagnostic essentially consists to two parts: the physical hardware (the PI-

LATUS3 detector and associated housing) and the configurations based on our custom

energy calibration. This section discusses the former. Section 3.1.1 describes the PILA-

TUS3 detector itself, including its general description, fundamental operating principles,

and associated auxiliary systems. Section 3.1.2 covers the detector installation, includ-

ing the housing, insertion mechanism, vacuum configuration, geometry, and grounding

scheme.

3.1.1 The PILATUS3 Detector

The PILATUS3 100K-M detector is a pixelated hybrid photon-counting x-ray detector

produced commercially by DECTRIS Ltd. and specifically modified for PPPL. The de-

vice is composed of a single 450 µm Si sensor which absorbs incident photons, producing

a cloud of photoelectrons with a total charge proportional to the photon energy [4]. This

charge is then transferred via a bump-bonded indium connection to one of the many

charge-sensitive preamplifiers (CSA) located on one of the 16 application-specific inte-

grated circuits (ASIC) that compose the detector. The charge is converted to a pulse

which is discriminated against a threshold by a comparator, rejecting photons with en-

ergies below the threshold. The threshold is controlled by a global comparator Vcmp

setting, but can be further adjusted, or trimmed, on an individual level by an addi-
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tional setting stored in a 6-bit register called the “trimbit” setting. Pulses which pass

this threshold are recorded into a 20-bit counter and read out at pre-set intervals. These

ASICs are arranged in an 8x2 grid, each contain an array of 60x97 individual pixels

(each with its own CSA, comparator, trimbit setting, and counter), leading to a total of

480x194 = 93,120 pixels (often referred to as 100k). Individual pixels have an effective

area of 172× 172 µm2. Pixels along the edge of modules are 50% larger in order to span

the gap. When using factory settings, the counts from two adjacent “over-sized” pixels

are reallocated into an synthetic pixel along the gap in order to avoid discontinuities.

This reallocation technique is inapplicable to our custom multi-energy settings, so the

synthetic pixels are ignored.

The individual trimbit settings exist to permit the detector to compensate for inho-

mogeneities resulting from the manufacturing process and achieve a uniform photon

energy threshold, which is the intent of the standard factory calibration. The ME-SXR

concept, however, use a custom calibration to take advantage of the trimbit settings in

order to intentionally set different energy thresholds for pixels across the detector. This

allows the implementation of custom configurations which combine spatial and spec-

tral resolution into a single diagnostic which can be quickly and easily configured for a

specific scientific goal.

Global settings determine the minimum energy threshold (Vcmp), gain (Vrf), and the

extent of individual trimbit increments on the energy threshold (Vtrm). Appropriate

global settings were determined which permitted sensitivity to multiple energy ranges

of interest. Then, a custom calibration procedure (Section 3.2) was applied to determine

the mapping between trimbit setting and the energy threshold Ec for each individual

pixel. Two specific energy-range calibrations are discussed later in this chapter: a 1.6-to-

6 keV calibration (Section 3.2.1) and a 4-to-14 keV calibration (Section 3.2.4). A higher-

energy calibration has not been used in this thesis, but will be explored in future devices

(i.e. WEST).
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Figure 3.1: (a) PILATUS3 100K-M frontend with a cover over the detector screen; (b)

PILATUS3 backend; (c)various connection ports on the frontend; (d) detector mounted

onto the flange with vacuum feedthroughs for connectors; (e) Photons are absorbed

into the Si semiconductor layer, producing a cloud of electrons and holes; (b) the Si

absorber is bump-bonded directly to the detector electrons via small Indium balls; and

(f) schematic of the pulse-counting circuit for each pixel.
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During a run day, the PILATUS3 detector is configured using these custom settings

prior to the plasma discharge. The detector then receives a trigger and begins recording

just as the MST capacitor banks begin to discharge, allowing the resulting image files

to be synced up with other diagnostic signals. The timing and duration of each image

depends on the chosen settings, but the most commonly used configuration is a cycle of

a one millisecond exposure followed by a one millisecond readout period (dead time),

for an effective time resolution of 500 Hz. Fluctuations within the exposure window

cannot be discerned, making the diagnostic best-suited for tracking the evolution of the

equilibrium. The settings can be quickly adjusted between plasma discharges.

The PILATUS3 100K-M hardware is composed of three distinct parts: the frontend,

the backend, and the control unit (server). The frontend is a small module which con-

tains the pixel grid and the electronics discussed in the preceding paragraphs. The

backend is a somewhat larger box which operates the detector, performs the readout,

and communicates with the control unit. For standard PILATUS models the pixel grid

and readout electronics are combined into a single unit, but for the 100K-M (modified

by request for PPPL) they are separate. This allows the more-sensitive electronics in the

backend to be placed further away from the vacuum vessel to avoid magnetic interfer-

ence. The two ends are connected by 2 meter long two cables, a high-speed data ribbon

for operation/readout and a parallel cable which powers the frontend and sets the volt-

age levels. The control unit is a Dell PowerEdge server which fits into a standard server

rack. The backend is connected to the server via Ethernet cable (though we convert that

signal to fiber, for grounding reasons explained in the following Section). The PILTUS3

frontend, backed, connection ports, vacuum interface, and circuit design are all depicted

in Figure 3.1.
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3.1.2 Detector installation

The ME-SXR diagnostic on the MST consists of the PILATUS3, the detector housing,

and the pinhole through which the plasma is viewed. The detector is mounted inside

a “can” and physically separated from the plasma by a 25 µm Be window over the

pinhole. This window filters low-energy photons and also separates the low-vacuum

region of the detector can from the high-vacuum of the MST. An additional Mylar filter

was later added to further suppress low-energy photons, which is discussed in more

detail in Section 5.4. Vacuum feedthroughs were designed for the PILATUS3 power and

data cables. The detector mount assembly was connected to a drive train (powered by a

hand drill) to allow it to be retracted and sealed behind a gate valve when not in use. An

exploded view of the components of the detector mount assembly is shown in Figure

3.2.

The “pinhole” is actually a small rectangular slit which allows each pixel to focus on a

specific region of the plasma. The actual slit can be removed from the flange and replace

with one of several available options (2× 1, 2× 2, and 4× 1, all in mm). In each case, the

slit was oriented so that the longer dimension extends in the toroidal direction, taking

advantage of the plasma’s axisymmetry to increase signal levels. For the data presented

in this thesis the 2× 1 slit was used. Above the pinhole slit is a curved opening over

which the Be filter is mounted. The curve ensures that photons travel through the same

distance of Be before impacting a pixel, thus allowing consistent energy resolution. This

is especially important because the detector is only 30.5 mm from the pinhole, resulting

in a wide viewing angle 2θ > 90◦. The flange, window, and pinhole are shown in Figure

3.3.

The detector was installed with a radial viewing geometry, as shown in Figure 3.4.

This viewing geometry allows the detector to measure emissivity within a poloidal cross-

section, which can be inverted into one-dimensional radial profiles [5]. Due to the fact

that pixels are arranged in a two-dimensional grid (with most not perfectly aligned to the
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Figure 3.2: Exploded view of the components of the ME-SXR detector mount assembly.
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Figure 3.3: Close-up schematic view of the ME-SXR pinhole and 25 µm Be window.
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Figure 3.4: The fully assembled detector in its inserted position, looking through a gate

valve with a radial view of the vacuum vessel. The dashed blue lines illustrate the wide

pinhole viewing angle of 2θ = 103.16◦.

pinhole), there is a spread of about ±30◦ in the toroidal direction. However, since most

MST plasmas are nearly axisymmetric this variation is not considered to be a problem.

A tangential view was considered but not implemented on the MST.

The grounding scheme for the detector also required special consideration. The PI-

LATUS3 unit was in direct electrical contact with the detector housing, which was in di-

rect physical contact with the MST conducting shell. This meant that the detector must

be on vacuum vessel (VCV) ground. Significant care was therefore required to avoid

a ground loop between VCV and building ground, which includes the power outlets

that the detector second stage draws its electricity from. This is illustrated in Figure 3.5,

which shows a schematic I implemented when tracking down grounding issues. When

a ground loop was present, it frequently resulted in data being lost due to a readout
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Figure 3.5: Schematic illustration of the grounding scheme used with the ME-SXR di-

agnostic. Solid lines indicate connections via mediums which conduct electricity (i.e.,

copper wires) while dashed lines indicate non-conducting connections (rubber hosing).

Breaks indicate conducting connections where the ground is left floating.

error.

A fiber optic connection was used to connect the ME-SXR to the data server without

creating a ground loop. Data is carried out of the PILATUS3 backend via an Ethernet

cable an connected to a 10 gigabit Ethernet-to-fiber converter box where it is converted

to an optical cable which is run to the server. It is important that the converter box

operate at 10 gigabits; we initially installed the system with a slower converter and, as a

result, the backend failed to establish a connection to the server.

The detector frontend is also connected to a chiller unit via non-conductive tubing.

The chiller uses a mixture of distilled water and ethylene glycol to keep the unit at a

stable operating temperature of 10◦ C. A vacuum feedthrough interface for the chiller

lines was included on the can. The PILATUS3 frontend can also be connected to a dry
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nitrogen line in order to keep humidity low during up-to-air operations (such as bench

testing).

During plasma operations data collection is initiated by a trigger. The PILATUS3

backend accepts a connection for a LEMO Type 00 trigger cable, which was taken from

a nearby data crate in order to ensure the ME-SXR data was well-synchronized with

the rest of the MST data tree. On run days the PILATUS3 detector was appropriately

configured and placed into “trigger” mode, which instructs the detector to take multiple

simultaneous images when the trigger is received. These images are then stored directly

on the server hard disk and were then copied into the MST MDSPlus database. The

detector then automatically re-arms itself and waits for the next trigger. The full run

data Python routine, which can be run remotely from the control room, is included in

Appendix A.

A table of various technical specifications for the diagnostic, and their associated

uncertainties, is given in Table 3.1. The tolerances are derived from measurements,

provided specifications, or error propagation. Entries in this table will be referenced in

Chapter 4 when developing a forward model.

Parameter Symbol Value Tolerance
Pixel size s 172µm ±1µm
Pixel Area Apix 2.96× 10−2 mm2 ±3.44× 10−4mm2

Distance to pinhole d 30.5mm ±1mm
Pinhole area Apin 2mm2 ±0.224 mm2

Be filter thickness tBe 25µm ±0.1µm
Mylar filter thickness tMylar 96µm ±5µm

Table 3.1: Measured values and tolerances for various ME-SXR geometric parameters.
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3.2 Energy calibration of the PILATUS3 detector

The goal of the energy calibration is to determine for each pixel the mapping between

the trimbit register setting and its corresponding photon cutoff energy threshold, Ec [3].

Data for the energy calibration was collected at the DECTRIS facility in Switzerland.

The detector module was exposed to a nearly-uniform x-ray source generated by fluo-

rescence. Once the appropriate global settings were determined and exposure was taken

with each pixel’s trimbit value set to t̂ = 0. This exposure was then repeated with all

trimbits set to t̂ = 1, 2, ...63. The data of this trimbit scan has a characteristic S-curve

shape [2], as shown in Figure 3.6. This curve is well-described by the equation

N(t̂) =
1
2

[
erf(− t̂− a0

a1
√

2
) + 1

](
a2 + a3

(
t̂− a0

))
+ a4 + a5

(
t̂− a0

)
,

where t̂ is the trimbit setting, here allowed to assume non-integer values, a0 is the loca-

tion of the S-curve inflection point, a1 is the width of the error function (corresponding

to the standard deviation of the integrated Gaussian), a2 is the signal level, a3 is the

slope of a linear distortion due to charge-sharing (CS) by adjacent pixels [6], and a4 and

a5 describe a linear offset due to the background signal (BG). The relation between these

fit terms and the S-curve shape is illustrated by FIG. 3.6.

The term a0 describes the trimbit value which sets Ec for that specific pixel to the

energy of the source photons. This value was obtained for each pixel by perform-

ing a nonlinear fit of the trimbit scan data for each pixel to Equation (3.1) using the

scipy.optimize.curve_fit [7] function which implements a Levenberg-Marquardt based

nonlinear least-squares algorithm 1. The algorithm also provides an estimate for the un-

certainty σa0 based on the diagonal component of the estimated covariance matrix. This

estimate was generally found to be reliable as the covariance between the fit parameters

{ai} was generally found to be weak.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Figure 3.6: The trimbit scan calibration S-curve for a single pixel exposed to the Indium

line at 3.29 keV. Key features of the curve are annotated as they relate to Equation 3.1.
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A mapping between trimbit setting and cutoff energy f : Ec 7→ t̂ such that t̂ = f (Ec)

was generated for each pixel by repeating this procedure for multiple target sources with

emission lines at different energies within the desired calibration range. This mapping

is well-described by a quadratic polynomial, as given by

f (Ec) = c0 + c1Ec + c2E2
c . (3.1)

For each pixel a fit was performed in order to allow interpolation between calibra-

tion energies. The fit was performed for each pixel using the numpy.polyfit func-

tion [8] which implements a standard linear least-squares technique to fit Equation

3.1 to the data t̂ = (aZr
0 , aMo

0 , aAg
0 , aIn

0 , aTi
0 , aV

0 ) with a standard deviation given by σ2
t̂ =

(σZr
a0

, σMo
a0

, σ
Ag
a0 , σIn

a0
, σTi

a0
, σV

a0
).

The numpy.polyfit also returns an estimate of the covariance matrix of the fit param-

eters. Unlike with the previous case the parameters c are strongly correlated, meaning

that an appropriate estimate of the uncertainty in the corresponding trimbit value must

properly account for the covariance. It is worth taking a moment to consider this more

carefully, because it turns out that naively relying on just the variance to estimate the

fit uncertainty will result in substantially overestimating the uncertainty in the trimbit

setting.

The covariance matrix of a set of random variables is a symmetric matrix whose diag-

onal elements describe the variance of each parameter and whose off-diagonal elements

describe the covariance between parameters [9]. For a set of three random variables, the

covariance matrix looks like

Σ =


σ2

0 σ0σ1 σ0σ2

σ1σ0 σ2
1 σ1σ2

σ2σ0 σ2σ1 σ2
2 .

 . (3.2)

For our particular case, the random variables in question are the fit parameters c =
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(c0, c1, c2). Given the inherent noisiness of the data t̂, as encoded in the standard devia-

tions σt̂, if we were repeat the calibration procedure many times by taking new data and

performing the fit again we would find a distribution of the values of c, which we are

now assuming to be normal. Ideally, the distribution of the coefficients of c each have

a mean given by µ = (c̄0, c̄1, c̄2) and are distributed according to a multivariate normal

distribution,

p(c|µ, Σ) =
1√

(2π)3 det(Σ)
exp

(
− 1

2
(c− µ)TΣ−1(c− µ)

)
. (3.3)

Technically, we cannot exactly measure µ or Σ from a finite set of samples. However,

in practice there are a number of common methods for estimating these matrix elements

from a set of samples [7]. The ultimate goal of this exercise is to characterize the variation

on the mapping f due to the variation in coefficients c. This variation is given by the

standard error propagation formula [9],

σ2
f (Ec) =

2

∑
i=0

2

∑
j=0

∂ f
∂ci

∂ f
∂cj

σiσj (3.4)

= S2
var(Ec) + S2

cov(Ec), (3.5)

which is exact for the case of a linear fit and a first-order approximation in the case of

a nonlinear fit. Notice that in Equation 3.5 we have organized the result into two terms,

one depending on the variance,

S2
var(Ec) =

(
∂ f
∂c0

σ0

)2

+

(
∂ f
∂c1

σ1

)2

+

(
∂ f
∂c2

σ2

)2

(3.6)

= σ2
0 + E2

c σ2
1 + E4

Cσ2
2 , (3.7)
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and the other on the covariance,

S2
cov(Ec) = 2

∂ f
∂c0

∂ f
∂c1

σ0σ1 + 2
∂ f
∂c0

∂ f
∂c2

σ0σ2 + 2
∂ f
∂c1

∂ f
∂c2

σ1σ2 (3.8)

= 2Ecσ0σ1 + 2E2
c σ0σ2 + 2E3

Cσ1σ2. (3.9)

This is significant because for this application it is always the case that Svar > 0 and

Scov < 0, meaning that ignoring the off-diagonal terms in the covariance matrix will

result in a significant over-estimate of the uncertainty on the chosen trimbit. Considering

this, the appropriate trimbit setting in order to achieve of threshold of Ec is determined

by t̂ = f (Ec)± σf (Ec).

An inverse mapping, g : t̂ 7→ Ec, is also useful. This can be readily obtained by

applying the quadratic formula to Equation 3.1, giving

g(t̂) =
1

2c2

[√
c2

1 − 4c0(c2 − t̂)− c1

]
. (3.10)

One could repeat the process of Equation 3.7 and compute the various partial derivatives

of g(t̂) in order to determine σg(t̂). However, we can use the requirement that this result

should be consistent with the forward mapping f to simplify the calculation. We assert

that, by definition, the uncertainty of the output σg is related to the uncertainty on the

input σt̂, which we can identify with σt̂ = σf
(

g(t̂)
)
, giving

g(t̂ + σt̂) = g(t̂) + σg(t̂). (3.11)

As we can see in Figure 3.8 it is generally safe to assume that σt̂ << 1. So we can expand

Equation 3.11 to first order and simplify,



89

σg(t̂) = g(t̂) + σt̂
dg
dt̂

+O(σ2
t̂ )− g(t̂) (3.12)

≈ dg
dt̂

σt̂, (3.13)

where ∂g/∂t̂ is readily found by differentiating Equation 3.1 with Ec = g(t̂):

dg
dt̂

=
1

c1 + 2c2Ec(t̂)
. (3.14)

This gives a final expression for computing σg for arbitrary t̂:

σg(t̂) =
σ2

f
(

g(t̂)
)

c1 + 2c2Ec(t̂)
. (3.15)

Since a pixel’s trimbit may only take on an integer value, when setting a desired

threshold value the result of Equation 3.1 must be rounded to the nearest integer, T̂ =

[ f (Ec)], where [x] denotes rounding to the nearest integer. This will cause the actual set

threshold to deviate somewhat from the desired value. Making use of both mappings f

and g, we can calculate the magnitude of this deviation from the chosen threshold Ec:

∆E(Ec) = g
(
[ f (Ec)]

)
. (3.16)

The statistical analysis of this deviation over the entire detector is the focus of Section

3.2.3.

3.2.1 High-gain calibration results: 2-to-7 keV (lowE)

The detector global settings were configured with a threshold under 2 keV up to just

more than 6 keV, and a calibration was performed following the procedure outlined

above using fluorescent Zr, Mo, Ag, In, Ti, and V targets with energies ranging between

2-5 keV (see Figure 3.7). This range is of interest on the MST in order to diagnose the



90

strong Al+11 and Al+12 lines which are observed between 1.6 and 2 keV [10], as well as

to provide continuum Te measurements.

The calibration procedure described in Section 3.2 was performed individually for

each of the ∼ 100k pixels on the detector. The resulting S-curves for an example pixel are

shown in Figure 3.7, with the linear background removed for the purpose of illustration.

The detector counts have also been normalized so that the response is equal to one

when threshold is at half of the incident photon energy. The fit values a0 are then used

to generate a trimbit-Ec curve as shown in Figure 3.8. These mappings allow for the

implementation of custom Ec configurations within this sensitivity range.

The calibration data was sufficient to well-characterize the mapping, as demonstrated

by the small region of uncertainty surrounding the fit values in Figure 3.8. It is notable

that the uncertainty in the trimbit-Ec mapping for any given individual pixel is much

smaller than the variation between pixels across the detector.

3.2.2 Pixel-to-pixel variation of the calibration

Substantial correlated variation in the results of the energy calibration was observed

across the detector’s ∼ 100k pixels. This variation can be seen in Figure 3.9, which shows

the trimbit-Ec mappings for 500 randomly-selected pixels, demonstrating a variation of

the order of 10 trimbits to achieve the same energy threshold. The standard deviation

of the inflection point a0 was found to be significantly larger for the Zr target, whose

emission comes from a pair of narrowly-spaced lines at approximately 2.04 keV. This is

because the S-curve threshold for this target was near the lower-limit of the detectors

sensitivity, meaning that the algorithm sometimes struggled to determine where the S-

curve flattened out at the top. This uncertainty was accounted for in the fit with larger

error-bars.

The quality of the trimbit-Ec fit was explored by calculating χ2 = ∑s(a0,s− t̂(Es))2/σ2
s

for each pixel, where s labels each x-ray source, Es is the characteristic line energy of that
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Figure 3.7: All trimbit scan calibration S-curves for a single pixel. For this plot the linear

background was subtracted off and the signal level was normalized. The dashed lines

indicate the location of the inflection points a0. Uncertainties in the individual counts

were assumed to follow Poisson statistics.
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Figure 3.9: The blue lines show the trimbit-Ec mapping for 500 randomly-selected pixels,

showing a spread of ∼ 10 trimbits for a given threshold. The black points show the

average trimbit setting of the S-curve inflection point for each x-ray source, and the error

bars show the standard deviation.
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Figure 3.10: Map of the reduced χ2 for the quadratic trimbit-Ec fit for each pixel. The

columns and rows between the rectangular chips do not collect data and have thus been

zeroed out.

source, and t̂(Ec) is the best-fit quadratic trimbit-Ec mapping. As shown in Figure 3.10,

this was found to be relatively uniform across the detector, though some correlation

between pixels on the same ASIC can be observed.

A series of trimbit configurations was produced which each set a uniform threshold

across the detector ranging from 1.8 keV to 6.3 keV in order to investigate how the varia-

tion between pixels affects energy resolution. For each energy the trimbit-Ec calibration

was used to determine the exact trimbit value which would be required to set each pixel

to that particular energy threshold, permitting non-integer values. The distribution of
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Figure 3.11: Distribution of trimbit settings required to set the detector to the specified

uniform threshold. These values must be rounded to the nearest integer before the

detector can be configured.

these trimbit settings, shown in Figure 3.11, is well-described as normal. The distribution

is seen to widen as the desired threshold energy is increased, with a standard deviation

varying from less than 2 trimbits to more than 4. This plot also shows the limits of this

calibration’s energy range, as threshold settings above 6.0 keV result in an appreciable

number of pixels requiring a trimbit setting above the hardware limit of 63.
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3.2.3 Effect of pixel-to-pixel variation on energy resolution

For an appropriate ME-configuration of the detector the trimbit settings obtained from

the calibration must be rounded to the nearest integer value. As a result of this rounding

all pixels in a particular row or column will actually be set to slightly different thresh-

olds within the range Ec ± ∆E. The value ∆E therefore serves as the limitation on the

resolution of the detector under this calibration.

The value of ∆E was determined by taking the pixel trimbit settings for each of the

uniform configurations as shown in Figure 3.11, rounding them to the nearest integer

value, and then mapping the resultant integer back to its corresponding energy thresh-

old using the calibrated trimbit-Ec mapping, of the type shown in FIG. 3.8. The resulting

distributions, shown in Figure 3.12 are nearly uniform with sloped edges. This unifor-

mity is a result of the fact that the variation between pixels is arbitrary and no particular

trimbit-Ec mapping is preferred. The slopes at the edge of the distribution are a result

of uncertainty in the calibration procedure. The largest values of ∆E are seen at low

specified Ec, where the trimbit-Ec mapping is the least steep. For all energies within the

range of this calibration the threshold can be set with a resolution of less than 100 eV.

Since this analysis depends on the assumption that the trimbit-Ec mappings produced

by the calibration procedure are essentially correct, it is worthwhile to quantify the level

of uncertainty in the calibration results at each considered energy threshold. This was

determined by making a histogram of the calibration uncertainty associated with each

pixel. For the pixel shown in Figure 3.8, for instance, this is the size of the blue shaded

region evaluated at the appropriate trimbit. The results, displayed in Figure 3.13, show

an uncertainty of about the same size as ∆E for low threshold settings but that becomes

minimal by a threshold of about 3.0 keV. This explains the sloping feature on the edges

of the low-threshold uniform distributions in Figure 3.12.

Another consideration for describing the resolution of the detector is the width of

the S-curve, described by the parameter a1 in Equation 3.1. This parameter characterizes
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Figure 3.12: Distribution of energy thresholds ∆E− 〈∆E〉 across all pixels given a com-

mon target threshold resulting from discrete trimbit settings. The distribution is ob-
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threshold. This represents a variation of ∼ 1− 2% of the threshold value.
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Figure 3.13: Uncertainty in the threshold energy resulting from Poisson uncertainty

propagating through the calibration procedure. This uncertainty is seen to be substan-

tially smaller than the threshold variation ∆E due to rounding for threshold settings of

∼ 3 keV and larger. Note that since the distribution is somewhat skewed toward high

uncertainty the mean and mode of a given distribution does not exactly agree.
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the width of the region between which the detector transmission, also described by an

S-curve [1], increases from 0 to 1 so that any photons within this energy range have a

fractional chance of being counted. Figure 3.14 shows the average width for all pixels

in the data set at each of the calibration line energies. Here the width is presented in

terms of a full width at half maximum, FWHM = 2
√

2 ln 2 · a1 · ∂Ec
∂t̂ . This plot also

shows the S-curve width for 1000 randomly selected pixels. A higher variance in the

FWHM is seen in the lower-energy datasets, attributable to the difficulty in performing

the S-curve fits when the inflection point is near the detector’s lower-energy limit. The

S-curve width was found to be independent of the energy threshold on average, with a

FWHM ≈ 0.7 keV. This does vary between pixels, and it was observed that a0 and a1

tend to be positively correlated.

3.2.4 Medium-gain calibration results: 4-to-14 keV (midE)

This calibration procedure was also performed with global settings chosen for threshold

ranges from 4 keV to above 12 keV. This calibration used emission lines from fluoresced

Cr, Fe, Cu, Ge, and Br sources at 5.41, 6.40, 8.05, 9.89, and 11.92 keV respectively.

The level of pixel-to-pixel variation in the trimbit-Ec mapping was found to be consis-

tent with that seen in the 1.6-to-6 keV calibration. ∆E ranges from approximately 70-200

eV, an increase of about 2.5 times over the 1.6-to-6 keV calibration. This is consistent

with the overall increase energy range covered by the calibration. The uncertainty in

the threshold energy resulting from propagated counting error was found to be smaller

than ∆E by a factor of 3 or more (depending on the threshold chosen). The scalings of

∆E with threshold setting for both calibrations are shown in Figure 3.15. Quadratic fits

are also provided for interpolation. S-curves were found to have a width FWHM ≈ 1.3

keV which was independent of threshold energy.
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3.3 MST in-situ spatial calibration

The goal of the spatial calibration presented in this section is to understand where the

PILATUS3 detector is in physical space, and what portion of the plasma volume each

pixel can see through the pinhole. This is just as essential to understanding the resulting

data as the energy calibration presented earlier in this section. This is done by imaging

a small radiation source at multiple known vertical positions. Because MST plasmas are

nearly toroidally-symmetric, the calibration was only performed in the vertical direction.

The calibration was performed in-situ by placing an Fe-55 source into a custom holder

on the end of an insertable probe. This probe was then lowered into the MST by small

increments, taking a detector image at each position. The insertion depth was measured

outside of the vacuum vessel using a measuring stick mounted onto the probe housing,

making sure to account for known offsets including the thickness of the MST wall, the

port height, and the size of holder. The insertion depth is given as the quantity Z and is

equal to zero when the probe is fully retracted to the wall. This geometry is illustrated

in Figure 3.16.

The calibration was performed by taking images with the PILATUS3 for 24 differ-

ent source insertion depths. The scan began with the probe fully extracted and moved

downward in steps of 10 cm. Due to the relatively low activity of the Fe-55 source, ex-

posure periods ranged from 20-60 minutes, depending on the insertion depth, in order

to gather sufficient numbers of photons. At the bottom of the MST the position was

shifted by 5 cm and and subsequent measurements were taken in steps of 10 cm up-

wards. This interleaving of measurements helps to reduce systematic errors resulting

from the initial probe positioning. This results in an overall spatial resolution of 5 cm,

although additional measurements were taken in the core. Images taken from three Z

positions are shown in Figure 3.17. Signal from the Fe-55 source is well-localized to a

small bar moving up and down within the center of the image (marked in the figures

by a red region). All signal outside of this region is due to background noise (such as
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Figure 3.16: Illustration of the spatial calibration probe probe housing (left) and insertion

geometry (right). Figure courtesy of L. Reusch.

cosmic rays) resulting from the long exposure times.

For each Z, the image files were used to determine which pixels could directly see

the source through the pinhole. Since only the vertical displacement is of interest, the

signal was summed over the horizontal direction to produce a 1D pulse. Signal outside

of the core “track” (the red region in Figure 3.17) were discarded. The resulting pulse

was then fit to a “tophat” function with rounded corners, as shown in Figure 3.18 (a).

The “tophat” fitting function is given by a sum of logistic functions of the form

N(X) = N0 + A ·
[

fk(X− XL)− fk(X− XR)
]
, (3.17)

where x is the pixel index and

fk(X− XL/R) =
1

1 + e−k(X−XL/R)
, (3.18)
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Figure 3.17: Raw spatial calibration data taken at three separate Z locations. The calibra-

tion signal moves vertically within the red highlighted region as Z is adjusted. Signal

outside of the red region is assumed to be background noise. Figure courtesy of Dr. L.

Reusch.
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Figure 3.18: (a) Summed at a from a single Z position is fit to a tophat function. (b)

Summed data for all Z locations used in the calibration.
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Figure 3.19: Spatial calibration impact parameter geometry: (a) relation between the

source angle θ and impact angle φ; (b) geometry when the source is above mid-plane;

(c) geometry when the source is below mid-plane. Figure courtesy of L. Reusch.

where k is the logistic “width” (or steepness) of the edge in number of pixels and XL/R

are respectively the left and right midpoints of the step. The midpoint of the pulse is

taken to be the average of XL and XR, X̄ = (XL + XR)/2. The combined set of pulses for

every Z location in the scan is shown in Figure 3.18 (b), with each color corresponding

to a different camera exposure/Z location.

By considering the geometry of the source-detector system we can determine the

impact parameter and angle characterizing each line of sight. The basic geometry is

illustrated in Figure 3.19, considering separately the cases when the source is above or

below mid-plane. The image location on the face of the detector is given by

δ =
d′h sin α

d− h cos α
, (3.19)
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where h is the vertical location of the source relative to MST, d is the distance from the

machine center to the pinhole, d′ is the distance from the pinhole to the detector face,

and α is the interior angle between the vertical diameter and the detector normal. Both

h and α are a set by the source height Z:

h = Z− 52.0 cm (3.20)

α =


(90◦ + 19◦ = 109◦) h ≥ 0

(90◦ − 19◦ = 71◦) h < 0.
(3.21)

We can convert from δ (measured in cm) to pixel index X by

X = 243.5− δ

0.0172 cm
. (3.22)

The goal of this exercise is to determine the best-fit values for the unknown parameters

d and d′. From there it is straightforward to characterize the viewing chord of each pixel

via (p, ϕ).

The impact parameter p is the distance from the geometric axis to the viewing chord

along a line which is normal to the viewing chord. The impact angle ϕ is the angle

between the line p and horizontal axis, with ϕ = 0 at the outboard mid-plane. These

two parameters, which are also shown in Figure 3.19, are sufficient to parameterize

an arbitrary viewing chord. These parameters are related to the fit parameters via an

intermediary angle θ, given by
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θ = tan−1(d/d′) (3.23)

p = d sin(θ) (3.24)

ϕ = α− θ. (3.25)

Using the data collected during the Z scan, an optimal fit was found with parameters

given by d = 55.2 cm and d′ = 3.47 cm. This fit is shown in Figure 3.20. As seen in the

figure, the data is well-described by this geometric model. The results of this fit were

used to calculate p and θ (and hence ϕ) for each pixel, as shown in Figure 3.21. The use

of a geometrical model allows reliable extrapolation beyond the region that was directly

sampled sampled during the spatial scan. This mapping between X and p is used to

characterize nearly all ME-SXR data presented in this thesis.

The results of the spatial calibration are illustrated in a different form in Figure 3.22,

which shows ME-SXR chords color-coded by impact parameter. As can be seen, positive

p looks toward the top of the vacuum vessel and slightly outboard, while negative p

looks toward the bottom of the vacuum vessel and slightly inboard. In order to ensure

reproducibility of the detector insertion position (and therefore the validity of the spatial

calibration), markings were placed on the detector housing.
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Figure 3.20: Fit between Equation 3.19 and spatial calibration data. The fit has optimal

parameters d = 55.2 cm and d′ = 3.47 cm. Figure courtesy of L. Reusch.
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Figure 3.21: Results of the spatial calibration showing the resulting angle θ and impact

parameter p as a function of pixel index. Figure courtesy of L. Reusch.
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Figure 3.22: Impact parameter for ME-SXR lines of sight within a poloidal plane, as

determined by the spatial calibration. Due to space considerations only 1/8th of the total

487 vertical chords are shown. Positive impact parameter increases as the line of sight

moves upward in the MST vessel. The “X” designates the geometric axis of the MST, and

the circular point designates the magnetic axis assuming a 6 cm Shafranov shift. Typical

flux surfaces are also shown.
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3.4 Characterization of charge-sharing between adjacent

pixels

In order to properly interpret the data produced by the ME-SXR diagnostic, it is essential

to understand the impact of charge-sharing between adjacent pixels. This was briefly

mentioned in Section 3.2 to explain the presence of a linear distortion in the trimbit

scan calibration data, described by the parameter a3. This section expands upon this

explanation and paves the way for an implementation of the effect into the ME-SXR

diagnostic forward model, described in Section 4.3.2.

The phenomenon of charge-sharing is common to all types of detectors which rely

on a monolithic absorbing material to convert photons into charged particles (such as

electrons/holes) before transporting these charges to discrete detectors. As the gener-

ated charges drift towards the discrete detector elements, there is a finite time during

which those charges will undergo expansion due to Coulomb repulsion [11]. As a re-

sult, some fraction of the original charge cloud may be collected by an adjacent pixel,

thereby appearing to be two photons of lower energies. Whether one, two, or zero pho-

tons are detected depends upon the threshold settings of the two pixels. This process is

illustrated by a simplified cartoon in Figure 3.23.

As explained in Section 3.1.1, the PILATUS series of detectors were designed to be op-

erated with monochromatic x-ray sources. In this scenario the impact of charge-sharing

can be mitigated by setting the global detector threshold to half of the incident photon

energy. This ensures that all photons are counted exactly once and that over-counting

and under-counting are equally likely (and therefore cancel out on average). However

high-temperature plasmas emit a broad spectrum of x-rays, rendering this strategy inap-

plicable. Instead we must sufficiently characterize the effect and incorporate it into our

diagnostic model.

A simplified model for interpreting charge-sharing slope was described in [4]. That
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Figure 3.23: Simplified cartoon illustrating the basic concepts of charge-sharing due to

Coulomb repulsion in the depleted Si absorber. The effect is more severe for lower-

energy photons as they have a smaller penetration depth, thus providing more time for

the charge cloud to expand. Note that in reality absorbed photons generate electron-

hole pairs and that it is the expansion of the holes which leads to charge sharing in the

PILATUS3 detector.
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paper is about the characteristics of the original PILATUS detector, which has the same

physical dimensions as the PILATUS3. The key insight is that the impact of charge-

sharing on registered photon counts is principally determined by the ratio of the area

around the pixel border for which charge-sharing is significant to the total pixel area,

a quantity I will refer to as f = ACS/Apix. This quantity is in turn proportional to the

incident photon energy, E0:

−k
E0

2
= f (3.26)

where k is the charge-sharing slope in units of reciprocal energy. This slope is therefore

inversely proportional to photon energy, aligning with our intuition that the effect is

most significant for lower-energy photons.

Although the charge-sharing slope was characterized by the parameter a3 earlier in

this chapter, this was done as a scan over trimbits. In order to align with previous

literature and to better-characterize the energy response for the purpose of modeling the

calibration data was re-processed as a function of the threshold energy. This was done

by using Equation 3.1 to convert the trimbit scan to a threshold scan for each pixel and

then fitting the results to Equation 3.27. Prior to the fit the background signal (described

by a4 and a5) was subtracted in order to simplify the analysis.

N(Ec) =
1
2

[
erf(−Ec − b0

b1
√

2
) + 1

](
b2 + b3

(
Ec − b0

))
(3.27)

The charge-sharing slope is then defined to be k = b3/N50, where N50 is the number of

counts registered when the threshold is set to be half of the photon energy (and hence is

the true number of photons). Note that as defined this quantity will always be negative.

The value of k was determined for a subset2 of the calibration scans for both lowE and
2Elements such as Zr, Mo, and Ag were exluded because the photon energy is too near the lower end

of the range of thresholds which can be set. In such cases the charge-sharing slope is not well-resolved,
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Figure 3.24: Using the results of the energy calibration described in Section 3.1.1, the

calibration data was converted from a scan over trimbit settings to a scan over energy

thresholds. This was then used to characterize the charge-sharing slope as a function of

photon energy. The points are measured counts for a single pixel and the solid line is a

fit to Equation 3.27. The background signal was subtracted prior to the fit.
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midE settings. Since the effect is based on the physical drift of electrons in the detector,

the slope is (approximately) independent of detector gain. These values for k were then

fit to Equation 3.26 in order to determine the ratio of the ratio of areas:

f = 0.266± 0.008. (3.28)

This fit is illustrated by the black data points in Figure 3.24. The value for f obtained via

this calibration is in good agreement with the value of 0.272 obtained by Kraft [4]. As an

added note, it was also found that b1 ≈ 0.3 keV for lowE settings and b1 ≈ 0.55 keV for

midE, in good agreement with the FWHM values reported in Section 3.2.

The applicability of this model can be seen by extrapolating it to larger pixels. As

previously described, the pixels which span the gaps between ASICs are 50% larger

than standard pixels. If we consider the charge-sharing area ACS to be defined by a

rectangular border around the outer edge of the pixel, its width is found to be 12.3

µm. If we assume that the width of this strip is the same for the larger pixels, we can

recalculate the area ratio to be f = 0.205. This can then be used to predict k for these

larger pixels. As shown in Figure 3.25, these predictions are in good agreement with the

data.

3.5 Detector configurations and first data

First data has been collected on MST using three different configurations, discussed in

this section. All data shown here were taken using MST’s improved confinement mode,

PPCD, with Ip = 400 kA. ME-SXR data was taken using custom configurations with

high-gain global settings and 1 ms exposure times.

Figure 3.26 a) shows data taken in Config. #1. In this configuration, pixels in the same

column (toroidal direction) are set to have the same threshold while allowing variation

and N50 cannot be reliably determined.
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Figure 3.25: Comparison of charge-sharing slope obtained from the threshold scan data

to Equation 3.26. The black points are the values of k for different incident photon

energies averaged over all regular pixels on the detector and the black dashed line is the

best fit with f = 0.266. The blue region represents the 1σ uncertainty of the fit. The red

points are the values of k average over all extra-large (XL) pixels. The red dashed line is

the prediction based on the regular pixel fit. Data from both lowE (In, Ti, V) and midE

(Cu, Ge, Br) calibration scans were used in this analysis.
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from column-to-column. Since most MST plasmas can be assumed to be symmetric in

the toroidal direction, this configuration allows us to use this symmetry to increase the

signal level. In this configuration a small number of thresholds (eight for the data shown)

are repeated radially in order to achieve the desired spatial resolution. Each cluster of

eight columns can be thought of as a single unit, roughly sharing a line of sight but with

different spectral sensitivities. This data can be further processed by summing all of the

photon counts within a column and separating the columns by threshold energy. The

result is eight separate 1D radial emission profiles taken simultaneously from the same

plasma, as shown in Figure 3.26 b).

An alternative technique, Config. #2, is shown in Figures 3.27 a) and b). Here constant

thresholds are set for each row but allowed to vary within a column. Pixels are separated

out by threshold and then summed within the same column to form 1D profiles. The

resulting profiles have much higher spatial resolution than Config. #1 (480 points vs

60) at the cost of significantly lower total counts (and thus higher statistical noise). For

the installation at MST this configuration significantly over-samples the plasma, but for

a larger vessel such as WEST the increased spatial sensitivity might be an important

feature.

The third and final configuration that was tested (Config. #3), which we refer to as

a "metapixel" configuration. Small blocks of adjacent pixels (2x2, 3x3,...) are set to dif-

ferent thresholds. These blocks are repeated regularly across the face of the detector.

The resulting image can be split into multiple images by threshold. This configuration

provides a means of simultaneous energy-resolved 2D imaging. The installation geom-

etry on MST is not ideal for this configuration, but it is expected to be useful for future

applications with a pinhole geometry and a toroidal viewing angle. An example of this

configuration with 2x2 threshold blocks is shown in Figures 3.28 a) and b).
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Figure 3.26: (a) Detector image for a 400 kA PPCD plasma using Config. #1. (b) The

integrated 1D profile. There are 60 effective chords, one for each cluster of eight thresh-

olds. The profiles are mapped to lines of sight (defined by impact parameter) via the

results of a radial calibration. Such a spatial calibration has not been performed for the

toroidal direction.
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Figure 3.27: (a) Detector image for a 400 kA PPCD plasma using Config. #2. (b) The

integrated 1D profile. Spatial resolution is greatly increased to compared to Config. #1

with 480 chords, at the cost of fewer total counts.
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Figure 3.28: (a) Detector image for a 400 kA PPCD plasma using 2x2 metapixels using

Config. #3. (b) The resulting energy-resolved re-sampled images.
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Chapter 4

The ME-SXR forward model

A diagnostic forward model is essential to the quantitative interpretation of plasma x-ray

measurements. A diagnostic forward model is a computational framework (either an

analytic model or a computational model) which takes as its inputs the properties of

the system to be diagnosed (in this case, the plasma) and outputs a realistic prediction

of the diagnostic signals. This typically requires a detailed understanding of both the

physical system being measured and the diagnostic response. This chapter discusses the

development of a computational diagnostic forward model for the ME-SXR diagnostic

on MST.

In practice this forward model has had two practical applications. One is predictive:

as new pinhole geometries, detector settings, and plasma conditions were tested, the

forward model was used to set expectations about the resulting detector signal. In

this application the model also provided evidence that the fundamental nature of the

detector’s response to the plasma was well-understood. The other application of the

model is used to classify how well an experimentally obtained measurement is explained

by a given set of plasma properties. In this application the model is used to infer the

most likely plasma properties based on the data. This type of analysis, using a Bayesian

framework, is the focus of Section 5.5. Diagnostic forward models are a key component
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of integrated data analysis [1].

The importance of forward models for soft x-ray diagnostics is especially important

on the MST. As discussed in Chapter 2, the soft x-ray spectrum contains numerous “non-

continuum” features such as transition lines and recombination steps around 2 keV due

to the trace presence of partially ionized aluminum ions. These features limit the appli-

cability of traditional SXR measurement techniques (i.e., continuum ratios) and instead

require detailed atomic physics modeling in order to properly interpret the measured

signals [2]. This requires a significant time investment but also brings significant benefits:

the resulting non-linear model can provide useful constraints on many plasma param-

eters (Te, ne, nZ, . . .) and can be used to significantly extend measurement capabilities

[2].

Section 4.1 provides an overview of the forward model framework and the sources

of information it draws upon. Section 4.2 describes the plasma component of the model,

which uses the ADAS code to generate synthetic spectra for a given set of plasma pa-

rameters. Section 4.3 describes the hardware response of the diagnostic to photons,

including both electronic and filter effects. Section 4.4 considers the geometry of the

detector-plasma system. Section 4.5 combines all of the elements to produce synthetic

measurements which compare favorably with real data. Finally, Section 4.6 estimates the

uncertainty inherent in the model.

4.1 Overview of the model

The ME-SXR forward model simulates and interfaces the three essential components of

the plasma-diagnostic system. The system can be broadly divided into three categories:

1. The soft x-ray spectrum emitted by the plasma (Section 4.2)

2. The detector’s spectral response (Section 4.3)
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3. The geometry of the system (Section 4.4)

The interfacing between these components is discussed in Section 4.5.

A graphical overview of the model is shown in Figure 4.1. This chart shows how

the user input (some number of parameters specifying the plasma properties and the

detector configuration) propagate through the different sections of the model to yield

the output (synthetic measurements). It also illustrates that the model uses information

from four “external” sources: the energy calibration (Section 3.2), the spatial calibration

(Section 3.3), the filter specifications (Section 3.1.2), and ADAS (Section 4.2.3). Arrows

entering a box represent inputs, arrows leaving represent outputs, and the circles repre-

sent mathematical operations on the inputs.

This chapter focuses on the theoretical foundations of the forward model and covers

the essential details which must be considered when implementing the model in code.

My main goal with this chapter is to provide sufficient details to aid the development of

a forward model for future iterations of the ME-SXR diagnostic on other devices. This

description is agnostic to the specific programming language or computing style. My

implementation of the model was written in Python.

4.2 Modeling the emissivity spectrum

This section details the portion of the model which maps localized plasma properties

(specifically Te, ne, n0, and {nZ}) to an emissivity spectrum which will observed by

the detector in Section 4.4.3. How exactly these plasma properties are defined will be

delayed until later. As discussed in Section 2.3.1, soft x-ray emissions in the MST are

due to several different atomic processes. Even though they account for a very small

fraction of the overall plasma density, the SXR spectrum is dominated by emissions from

the impurity ions. As such, this problem is fundamentally one of atomic physics.

In Section 4.2.1 we will cover the basic types of thermodynamic equilibria and the
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Figure 4.1: Flow chart illustrating the connection between the components of the ME-

SXR forward model. The colored boxes represent sources of information.
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basic assumptions that go into our chosen atomic physics model. Section 4.2.2 considers

the importance of including the neutral density in the ionization fraction calculation, an

often overlooked detail which is found to be important for the MST. Section 4.2.3 walks

through the detailed calculations required to model the SXR spectrum. Finally, Section

2.3.1 includes the additional consideration for quasi-neutrality and the calculation of the

ion-effective charge, Ze f f .

4.2.1 Collisional radiative modeling

In order to quantitatively model the plasma’s x-ray emissions, we must first decide on a

set of assumptions that are appropriate for plasmas in the MST. In many situations, this

means determining the most appropriate type of thermodynamic equilibrium [3]. These

are:

1. (Global) Thermodynamic equilibrium: The particle distribution for the entire system

(electrons, ions, and photons) is described by a distribution specified by a single

temperature parameter. The principle of detailed balance holds; i.e., forward (emis-

sion) and reverse (absorption) processes are equally likely. Emission follows the

Plank Law for blackbody radiation. This model is rarely applicable to laboratory

plasmas but may be used for some astrophysical systems like stellar interiors.

2. Local thermodynamic equilibrium (LTE): Thermodynamic equilibrium approximately

holds for each point within the system (or a subset of the system), described by

a locally varying temperature parameter. This assumes that collisions are the pri-

mary means of de-excitation so that particles equilibriate more quickly than they

diffuse, allowing local equilibration to occur. The plasma is effectively de-coupled

from the radiation field. As a result, this model requires the plasma be sufficiently

dense. The regime in which this model applies is approximately given by
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(
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eV

)3

, (4.1)

where ∆E is the excitation energy and Te is the electron temperature in energy

units [4]. This may apply to some laboratory systems as well as many astrophysical

systems such as stellar atmospheres.

3. Coronal equilibrium: The opposite extreme of LTE. Ions are excited by collisions and

de-excitied via spontaneous emission. The plasma is assumed to be optically thin.

This requires a relatively low plasma density. This model is applicable to diffuse

plasmas like the stellar corona.

It is easy to see that none of these models perfectly describe conditions of a high-

temperature magnetically-confined plasma like that produced by the MST. One of the

principal goals of magnetic confinement is to produce a plasma with a core much hot-

ter than the edge, so global equilibrium is inapplicable. Given MST’s relatively high

temperature (Te ∼ 1000 eV) and the ionization energy of hydrogen (∆E ∼ 13.6 eV), it

can be seen that typical densities of ne ∼ 1019 m−3 are far below the LTE limit in the

core. Likewise, the MST plasmas are insufficiently diffuse to apply coronal equilibrium.

Instead, a non-equilibrium model is needed, which will account for both local collisions

and non-local coupling to the radiation field by directly solving the set of differential

equations which describe state populations. These equations account for processes such

as ionization, recombination, free-bound transitions, and three-body interactions. This

is called a collisional-radiative model.

The forward model developed throughout this section will rely on the Atomic Data

and Analysis Structure, or ADAS, code [5] to provide the collisional radiative model-

ing. Unlike other popular CR codes, ADAS was developed specifically for magnetically-

confined fusion plasmas. The code can be used (among many other things) to calculate

the ionization balance for a given impurity species as well as its x-ray emission spectrum.
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ADAS makes a few assumptions which are worth noting here:

• Electrons obey a Maxwellian distribution.

• Spontaneous emission is fast relative to collisions, so that most ions are in the

ground or meta-stable states.

• Local equilibration is fast relative to the time scale of collisional transport, allowing

ADAS calculations to decouple from impurity transport modeling.

• ADAS relies on an extensive database for atomic rate coefficients 〈σv〉.

The ADAS code is composed of numerous sets of subroutines, termed “series” [6].

We will most frequently make use of the 400 series, which models ionization, more

specifically the ADAS 405 routine. This routine takes local plasma properties as inputs

(Te, ne, n0) and returns the ionization balance for an ion of charge number Z. Transition

line amplitudes can be accessed via processed ADF files.

4.2.2 The impact of neutral density on the ionization balance

Previous work [7] [8] has found that the neutral density in MST plasmas (that is, the

density of un-ionized hydrogen) is high enough to significantly alter the ionization-

fraction balance. This is due to the impact of charge exchange between these neutrals

and the ionized population. This interaction tends to push the population towards lower-

Z charge states; i.e., there is relatively less Al+13 and more Al+12 and Al+11. This is

illustrated in Figures 4.2 and 4.3, which show the output of ADAS 405 ignoring and

accounting for this effect, respectively.

Clearly, an accurate model of the SXR emission in MST must account for this effect.

I have included this in the ME-SXR forward model by using neutral density profiles

obtained by my colleague A. Xing [9], which uses H-α measurements and modeling with
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Figure 4.2: The ionization-fraction balance according to ADAS 405 not accounting for

charge exchange with neutral hydrogen. Model Te = 1500 eV.

Figure 4.3: The ionization-fraction balance according to ADAS 405 accounting for charge

exchange with neutral hydrogen using typical values for n0 in PPCD. Model Te = 1500

eV.
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DEGAS2 to constrain the average neutral profile for high-Ip PPCD plasma conditions.

For QSH plasmas, I also used similar measurements obtained by R. Norval [10].

These measurements are then inputted into ADAS 405 along with Te and ne in order

to obtain the fraction fZ,i of an ion species Z (such as Al, O, N, etc.) which will be

found in particular ionization state i (such as Al+11 or Al+12). This is defined explicitly

in Equation 4.2.

fZ,i(Te, ne, n0) ≡ ni/nZ (4.2)

It is worth noting that if we could ignore the effects of charge-exchange then this

quantity would simply reduce to a function of electron temperature only, fZ,i(Te), which

could significantly simplify the spectrum model. This is the convention used by some

codes such as FLYCHK [11]. For other devices such as tokamaks with a divertor (NSTX-

U, WEST, ITER, etc.) this assumption might be valid. However, as we can see in Figures

4.2 and 4.3, this assumption is not valid on the MST.

Throughout the rest of this chapter I will typically omit the arguments to fZ,i in

order to avoid needless clutter, but they should always be taken as implied. Also when

it is clear I will sometimes shorten the symbol down to fi, with the indexing by Z

being implied. It is also worth noting that these fractions can also be interpreted as the

probability of an ion being in the state i when chosen at random. That means that they

follow the typical properties of a complete set of probabilities such as ∑i fi = 1. We

will also encounter terms which are most readily understood as being averaged over the

ionization states. For example, the ion-averaged value of the charge Zi of a given ion

(e.g., Zi = 11 for Al+11) is given by

〈Zi〉Z ≡ ∑
i∈Z

fiZi. (4.3)

This notation will turn out to be useful in constructing the final spectrum for the ME-
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SXR forward model. As stated above, this average quantity has an implied dependence

on (Te, ne, n0).

Given that the neutral density significantly impacts the emissivity coming from the

plasma, it is important to quantify how sensitive the model we will build in this chapter

will be to uncertainty in the n0 profile. This will put a limit on the accuracy of the

model based on the accuracy of the available neutral density measurements. This study

was performed using ADAS 405 to vary the neutral density by +10% at various nominal

neutral density and electron temperatures and quantifying the percent change according

to

∆ fi(n0, Te) [%] =
| fi(n0, Te)− fi(1.1 · n0, Te)|

fi(n0, Te)
× 100%. (4.4)

The results for Al are shown in Figure 4.4, focusing only on the higher ionization

stages with a non-negligible abundance in the MST. Two features stand out: the mag-

nitude of the effect, sometimes accounting for a change in fi on the order of 40%, and

the highly non-linear dependence on Te. This does not mean that we should expect the

total number of emitted photons to vary this substantially, however, as in some cases the

large percentage changes in abundance ∆ fi/ fi for a given ionization state are due to low

absolute abundance fi << 1. Instead what we want to determine is how an uncertainty

in n0 impacts the total emissivity ε. This is shown in Figure 4.5, which shows

(
δε

ε

)
n0

[%] =
|ε(Te, ne, n0)− ε(Te, ne, 1.1 · n0)|

ε(Te, ne, n0)
× 100% (4.5)

evaluated over a grid of (Te, n0) points, where ne = 1× 1019 m−3 has been held constant.

We can see that the impact of a change in n0 on ε is much more modest than the

change in fi suggested, with the emissivity shifting by as little as 1% or as much as 5%,

depending on the other parameters. This provides a baseline which we will use when

estimating the uncertainty in the model later in Section 4.6. It should also be noted
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Figure 4.4: The balance of ionization states fZ,i changes significantly in response to vari-

ations in the neutral density n0. These plots depict the percentage change in emissivity

that results from a 10% increase in n0 relative to the value depicted on the x-axis. Notice

also that Te significantly impacts these results.
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Figure 4.5: The impact of a 10% underestimation of n0 on the total Al emissivity. This

results in a ≤ 5% change in the number of photons emitted by the plasma.
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that, although we only considered the impact on various Al ionization stages, other ion

species (like C, O, etc.) are almost completely ionized in the MST and thus subject to

very minimal variation. Therefore, when quantifying the uncertainty only Al is expected

to matter.

4.2.3 Modeling the spectrum with ADAS

The continuum spectrum was constructed by a custom-modified version of the ADAS

continuo sub-routine. The routine uses calculations from Burgess, Hummer, and Tully

[12] to calculate the effect of free-bound transitions. I modified the routine to use a more

modern calculation of the free-free Gaunt factor [13] and to use the current NIST values

for ionization energies [14] rather than a Rydberg approximation. For the remainder of

this section I will represent the output of this code for the ith ion state of the species Z

as FZ,i(E, Te). It is scaled by the ion and impurity densities and has units of [ph ms−1

m3 sr−1]. Note that this quantity is equivalent to Equation 2.19 divided by the photon

energy E. The total continuum emission is given by

εcont,Z(E, x) = ne ∑
i∈Z

niFZ,i(E, Te). (4.6)

As discussed above, the ion density ni is related to the total impurity species density

nZ via the ionization fraction calculated by ADAS 405, as in Equation 4.2. It follows that

εcont,Z(E, x) = nenZ ∑
i∈Z

fiFZ,i(E, Te) = nenZ〈F (E)〉Z. (4.7)

This is useful since it means that we can work in terms of the ion-averaged spectrum

of a species rather than dealing with all the individual contributions from each ion. By

summing over all impurity species we get the total continuum spectrum:

εcont(E, x) = ne ∑
Z

nZ〈F (E)〉Z. (4.8)
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This is all we need to correctly model the continuum portion of the plasma SXR

spectrum. Unfortunately this process turns out to be relatively slow, requiring multiple

seconds to build FZ,i(E, Te) for sufficiently many points in E for all species {Z} in a

typical MST plasma. This process can be sped up significantly by instead interpolating

over a grid of pre-evaluated points at run time. However, storing 〈F (E)〉 as a four-

dimensional array in (Te, ne, n0, E) with sufficiently many points in every dimension

turns out to be prohibitively large. Therefore, we will need to carry the processing out

further before building lookup tables.

The ME-SXR is a broadband SXR diagnostic, meaning that it measures the integral

of the spectrum multiplied by some response function. This response function accounts

for the transmission of x-rays through filters, absorption into the detector, electronic

thresholds, etc. For now we will think about a generic family of response functions

Rk(E). The details of this function for the ME-SXR model will be discussed in Section

4.3.

What the detector actually sees is the apparent emissivity ε
(k)
cont due to the response

indexed by k. This is a local quantity defined by the local plasma properties:

ε
(k)
cont(Te, ne, n0) =

∫ ∞

0
dE εcont(E) Rk(E)

= ne ∑
Z

nZ

∫ ∞

0
dE
〈
F (E, Te)

〉
Z Rk(E).

(4.9)

This integral is what we actually want to use to build our lookup tables. We will define

it in a way which is independent of the ion density:

ε
(k)
cont,Z(Te, ne, n0) ≡

∫ ∞

0
dE
〈
F (E, Te)

〉
Z Rk(E). (4.10)

Now we finally have an expression for the total apparent emission for a detector with

response function Rk(E):
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ε
(k)
cont(Te, ne, n0) = ne ∑

Z
nZ0εk

cont,Z(Te, ne, n0). (4.11)

As discussed in Section 2.3.1, a model of the SXR spectrum in the MST must also

consider emission due to excitation lines. This is included in the ADAS code via calcu-

lation of the photon emissivity coefficients, or PECs, which relates the radiated photons for

a given transition to to the electron and ion densities [15]. The values for these PECs are

stored in a file format called ADF15 and can be interpolated for a specified Te and ne

using the read_adf15 routine [5]. I will refer to the output of this routine as Pi,`(Te, ne),

which I have converted to units of [ph ms−1 m3]. Following this convention the emissiv-

ity from a given ion is calculated as in Equation 2.21. We can again invoke Equation 4.2

to represent this in terms of the ion fractions:

εexc = nenZ ∑
i∈Z

fi

[
∑
`∈Li

Pi,`(Te, ne)

4π
δ(E− E`)

]
. (4.12)

The interpretation of this term is less intuitive than Equation 4.7 due to the inclu-

sion of the delta function terms. Therefore, we will instead go straight to the apparent

emission due to excitation lines:

ε
(k)
exc,Z =

∫ ∞

0
dE εexc,Z(E) Rk(E). (4.13)

We can manipulate this expression in order to write the answer in terms of a single

ion-averaged quantity:
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ε
(k)
exc,Z = nenZ

∫ ∞

0
dE

Z

∑
i=0

fZ,i

[
∑

`∈LZ,i

PZ,i,`(Te, ne)

4π
δ(E− E`)

]
Rk(E)

= nenZ

Z

∑
i=0

fZ,i

[
∑

`∈LZ,i

∫ ∞

0
dE
PZ,i,`(Te, ne)

4π
δ(E− E`)Rk(E)

]

= nenZ

Z

∑
i=0

fZ,i

[
∑

`∈LZ,i

PZ,i,`(Te, ne)

4π
Rk(E`)

]

= nenZ

〈
∑
`

P`(Te, ne)

4π
Rk(E`)

〉
Z

≡ nenZε
(k)
exc,Z(Te, ne, n0).

(4.14)

.

This is a term which can be readily indexed and interpolated that depends on the chosen

response function and the parameters (Te, ne, n0). The total emission due to excitation

lines is given by the sum

ε
(k)
exc(Te, ne, n0) = ne ∑

Z
nZε

(k)
exc,Z(Te, ne, n0). (4.15)

Now that we have methods for calculating both the total apparent continuum emis-

sivity and the total apparent excitation line emissivity, we can combine these terms into

a full total apparent emissivity. We first define the normalized terms:

ε
(k)
Z (Te, ne, n0) ≡ ε

(k)
cont,Z(Te, ne, n0) + ε

(k)
exc,Z(Te, ne, n0). (4.16)

The total apparent emissivity at a point x in the plasma, which will be integrated along

a given line of sight, is therefore given by Equation 4.17.

ε(k)(x) = ne ∑
Z

nZε
(k)
Z
(
Te(x), ne(x), n0(x)

)
(4.17)

As I have previously indicated, the main reason that I took this approach was so I
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could construct tables of ε
(k)
Z (Te, ne, n0) which are then interpolated at run time using

the Scipy RegularGridInterpolator class [16]. Such a grid must be constructed for each

ion species and each response, but for seven ion species (D, C, O, N, B, Al, and Ar) and

eight thresholds (responses) this does not require a prohibitive amount of time or an

unreasonable amount of storage space. All of this effort allows the model to perform

rapidly at run time.

4.2.4 Quasi-neutrality and ion-effective charge

We want to ensure that the model plasma obeys the principle of quasi-neutrality, that the

total negative charge due to electrons in the plasma is exactly negated by the positive

charge from ions. Since the ne and nZ are set as inputs to the model (and are typi-

cally constrained by measurements), we should therefore set the density of the majority

species (deuterium in the MST) in order to account for this principle. The relation for

this balance can be worked out from the mathematical expression of quasi-neutrality as

follows:

ne = ∑
j

njZj

= nD + ∑
Z

Z

∑
i

nZ,iZi

= nD + ∑
Z

nZ

Z

∑
i

fZ,iZi

= nD + ∑
Z

nZ〈Z〉Z.

(4.18)

In the first term the index j refers generically to all ions, while the next line separates

out the deuterium density and relabels the remaining ions using the notation introduced

in Section 4.2.3. We can then solve directly for the deuterium density:
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nD

ne
= 1−∑

Z

nZ

ne
〈Z〉Z. (4.19)

Finally, we will comment on another term which is of common interest for plasma

physicists: the ion-effective charge Ze f f . The value of Ze f f is useful not only as a sum-

mary of the overall impurity content of the plasma but also for calculating properties

such as resistivity and the related Lundquist number. In fact the desire to calculate Ze f f

was one of the principal original motivations for the application of IDA techniques at

the MST [17]. The value of Ze f f for a modeled plasma can be readily extracted from the

input profiles. We begin with the definition

n2
e Ze f f ≡∑

j
nenjZ2

j . (4.20)

We can rewrite this to explicitly separate out the impurity species and ions:

Ze f f =
1
n2

e
∑
Z

Z

∑
i

nenZ,iZ2
i

=
1
ne

∑
Z

nz

Z

∑
i

fZ,iZ2
i .

(4.21)

Finally, we rewrite this in terms of Equation 4.3:

Ze f f =
nD

ne
+ ∑

Z

nZ

ne
〈Z2〉Z. (4.22)

One might see these results and conclude that we also need to construct databases of

both 〈Z〉Z(Te, nE, n0) and 〈Z2〉Z(Te, nE, n0). However, in practice, it tends to be the case

that even for heavier-Z impurities like Al the distribution of ion-states tends to be very

narrowly peaked. This means that it is a reasonable assumption to take 〈Z2〉 ≈ 〈Z〉2 for

the purpose of the Ze f f calculation. I have generally found the error introduced by this

assumption to be < 1%.
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4.3 Modeling the detector response

This section will discuss the particular details of the detector response functions, referred

to in the previous section as generic functions Rk(E). In general, for each pixel in the

ME-SXR model, this term is composed of five separate effects:

R(E) = TBe(E) · TMylar(E) · ASi(E) · S(E; Ec, σE) · FCS(E). (4.23)

TBe(E) is the proportion of the incoming photons of energy E which are transmitted

through the 25 µm beryllium window; TMylar(E) is the proportion which are transmitted

through the Mylar filter (see Section 5.4); ASi(E) is the proportion which are absorbed by

the silicon. The term S(E) is called the S-curve and models the effect of the electronics in

either counting or rejecting a photon. The final term FCS(E) is an empirical adjustment

to the response function in order to account for the effect of charge-sharing (Section 3.4).

The remainder of this section will go into more detail on how these terms are calculated.

4.3.1 Filter response

The filter transmission is based on the table of linear attenuation coefficients µ(E) pub-

lished by Henke et al. [18], as made available on the Lawrence Berkeley National Lab

Center for X-ray Optics website 1. The proportion of incident photons transmitted

through a material of density ρ and thickness t is then given by

T(E) = exp
(
− µ(E)ρt

)
. (4.24)

For these materials, reflection is minimal, meaning that photons are either transmit-

ted or absorbed. This gives a simple relation for the absorption factor A(E) given that

µ(E) is known for the material.

1https://henke.lbl.gov/optical_constants/

https://henke.lbl.gov/optical_constants/
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Figure 4.6: Illustration of photon response to physical layers in the ME-SXR model.

This includes transmission through the 25 µm Be and 100 µm Mylar filters as well as

absorption into the 450 µm Si sensor. The model stops at 20 keV because emissivity past

this point (for thermal electrons) is negligible.

A(E) = 1− T(E) (4.25)

The transmission curves for 25 µm Be and 100 µm Mylar, the absorption curve for 450

µm Si, and their composite effect are all shown in Figure 4.6. In the current configuration

the low-energy response is dominated by the Mylar filter while the response trails off at

high energies due to the silicon. Absorption is minimal past 30 keV.

The forward model developed for the SXR tomography diagnostic [2] also accounts
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for the effect of non-normal photon angle-of-incidence on the effective Si thickness.

When a photon strikes the detector at an angle different from 90◦, it will travel through

a greater depth of absorber material, increasing the likelihood of being absorbed, es-

pecially for higher-energy photons. This effect was considered for the ME-SXR model

but was ultimately found to be unnecessary. This is because the PILATUS3’s 450 µm Si

sensor was already sufficiently thick to ensure that most photons are absorbed.

4.3.2 Response of the PILATUS3 electronics

The next element to consider is the response of the detector electronics. As discussed

in Section 4.3, once a photon is absorbed it generates a cloud of charge which in turn

creates a pulse in the preamplifier. This pulse is then compared against a reference

threshold in a comparator. Ideally this would be modeled like a step function. However,

we saw previously that in reality this transition is smooth, taking on the form of an S-

curve. This was previously modeled in the energy calibration as Equation 3.1. This is a

straightforward effect to include in the model response function:

S(E; Ec, σE) =
1
2

erfc
(
− E− Ec√

2 σE

)
. (4.26)

Ec represents the chosen 50% threshold, or cutoff, energy. σE is the width of the

S-curve, taken from the calibration data in presented in Section 3.2. It was found that

σE ≈ 300 eV for lowE settings and σE ≈ 550 eV for midE settings. These widths are

roughly constant for any chosen threshold value.

As discussed in Section 3.4, properly modeling the effect of charge-sharing is also

essential to developing a quantitative understanding of ME-SXR data when applied to

a broad-spectrum source like a high-temperature plasma. It was found that charge-

sharing leads to a linear distortion in the observed photon counts for a given energy E

as the threshold Ec is varied. By way of comparison with Equation 3.27 we can define a
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charge-sharing response term,

FCS(E; Ec) = c ·
(
1− k (E− Ec)

)
, (4.27)

where c is a constant to be determined.

The slope k is given by Equation 3.26, with f = 0.266 for the PILATUS3 as previously

determined. The constant c is set by the requirement that for a constant photon energy

E = E0, FCS = 1 when Ec = E0/2. This gives c = (1 + f )−1, meaning that the full

equation is given by

FCS(E; Ec) =
1 + 2 f ·

(
1− Ec

E
)

1 + f
. (4.28)

The impact of charge-sharing on the resulting pixel response function is illustrated

in Figure 4.7. The dashed lines illustrate the basic S-curve model as given by Equation

4.26, and the solid lines illustrate the product of Equations 4.26 and 4.28. In most cases,

the inclusion of charge-sharing will reduce the transmission, thereby resulting in fewer

counts.

This charge-sharing model can be directly validated by reproducing the threshold

scan calibration data, like that shown in Figure 3.24. As in that case, the background

signal was removed, and the total counts were normalized to N50, the number of photons

detected when the threshold was set to 50% of the incident photon energy (and hence

the true number of photons). This data can be directly compared to a simple model in

which the detector response function is multiplied by a “narrow-band” source spectrum

which integrates to unity, here represented by a highly peaked Gaussian centered upon

the known source energy E0:

N(Ec; E0) =
∫ ∞

0
S(E; Ec, σE) FCS(E; Ec)

1√
2πδE

exp
[
− 1

2

(
E− E0

δE

)2]
dE, (4.29)
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where the source width δE is typically set to a few eV, effectively mimicking a delta

function. Note that no filters were used in the calibration procedure, so none are in-

cluded in this model. The result of this comparison is shown in Figure 4.8 for three

well-resolved calibration scans with lowE settings. The results agree closely with the

measured data, lending confidence to the model. Similar agreement was also obtained

for midE calibration data.

4.4 Modeling the detector geometry

An accurate model must include knowledge of the geometry of the diagnostic-plasma

system. This is considered in three parts: the mapping between spatial coordinates in

the plasma and ME-SXR pixel viewing chords (Section 4.4.1), the impact of the viewing

angle on signal intensity (Section 4.4.2), and the definition of plasma profiles (Section

4.4.3).

4.4.1 Lines of sight

The line-of-sight geometry of the detector was modeled based on the spatial calibration

discussed in Section 3.3, wherein an impact parameter and impact angle were deter-

mined for each pixel in the plane of the poloidal cross-section. The detector sees x-rays

emitted from the plasma within a cone extending from the pixel into the plasma volume,

subtended by the pinhole. In practice, such cones are small and nearly cylindrical, so it

suffices to integrate along the center of the cone (called the “line of sight”) and scale the

result by an étendue factor which accounts for the viewing volume. This means we are

ultimately interested in integrating long each pixel’s line of sight,

∫
LoSi

f (x)d|x| =
∫ L/2

−L/2
f (z)dz, (4.30)

where i indexes each pixel, f (x) is an arbitrary scalar field describing the emissivity, x
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Figure 4.7: Model of the S-curve response with (solid lines) and without (dashed lines)

the charge-sharing term given by Equation 4.28 for a range of energy thresholds.
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Figure 4.8: Comparison between calibration data (lowE) for a representative pixel and

the synthetic threshold scan.
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is the position vector, and z is a new one-dimensional coordinate along the line of sight.

The calculation of the étendue for each pixel is the focus of Section 4.4.2.

We now want to define a consistent geometry characterizing the transformation be-

tween the two-dimensional (x, y) Cartesian coordinate system and a one-dimensional

coordinate z defined for an arbitrary line-of-sight. This transformation will be charac-

terized by the impact parameter p and impact angle ϕ, as defined in Section 3.3. The

geometry is depicted in Figure 4.9. In practice we will only need to determine the inverse

transformation A(p, ϕ) : z 7→ (x, y), which will allow us to perform the line integrals.

This transformation is given by Equation 4.31. Notice also that if z = 0 is defined to

be the point of intersection between the perpendicular line p and the chord defining the

line-of-sight, the chord always intersects the wall at ±
√

a2 − p2, where a = 0.52 m is the

minor radius of the MST, meaning these points are the bounds of the integral.

x(z)

y(z)

 =

cos ϕ sin ϕ

sin ϕ − cos ϕ

 ·
p

z

 (4.31)

Under this scheme we will introduce a simplified notation when evaluating functions

along a specified line-of-sight,

f (z) ≡ f
(
x(z), y(z)

)
. (4.32)

Notice that this transformation is simply a rotation of the coordinate system, meaning

that no additional scaling factors are required in the integral (i.e., d|x| = dz). Putting all

of this together, we get the final expression for an integral of a 2D scalar field f (x) along

a line of sight specified by (p, ϕ)i:

∫
Vi

f (x, y)d|x| =
∫ +
√

a2−p2
i

−
√

a2−p2
i

f (z)dz. (4.33)
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Figure 4.9: Illustration of the line-of-sight geometry for an arbitrary detector within a

poloidal cross-section of the MST. Machine coordinates are colored black, the impact

parameter and angle are red, the detector and line-of-sight are blue, and the coordinates

associated with an arbitrary point A along the line of sight are green. Note that the

toroidal angle φ increases into the page.
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4.4.2 Calculating the pixel étendue

It is also important to determine the detector’s étendue, which characterizes how much

of the source light reaches a given pixel. Mathematically the étendue dG of a differential

surface element relates the radiance L of an emissive source within line-of-sight of the

surface element to the power density dP incident on the surface:

dP = LdG

=
dG
4π

ε(z)dz
(4.34)

The radiance has been written in terms of the emissivity ε defined in Section 4.2.3. Note

that this works equally well whether measured in terms of number of photons or radi-

ated power. The étendue G of an optical detector exposed to a source in a vacuum is

given in differential form by the equation:

dG = dAdet cos θdΩ (4.35)

where dAdet is a differential element of the detector, dΩ is the solid angle which subtends

the source, and θ is the angle between the detector element’s normal vector and the line

of sight to the source. This geometry is illustrated for the ME-SXR diagnostic in Figure

4.10.

This calculation is straightforward for a pixelated pinhole detector like the ME-SXR

diagnostic on the MST. We can treat each pixel independently and assume that the pho-

ton flux on each pixel is approximately constant such that dAdet ≈ Apix. Furthermore

we can compute the pixel solid angle by treating the pixel as a single point. We can then

calculate Ω by considering the solid angle from a pixel through the pinhole:
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Figure 4.10: Illustration of the pixel-pinhole system solid angle geometry.

Ω =
(r̂ · n̂)Apin

r2

=
cos θApin

(d/ cos θ)2

=
Apin

d2 cos3 θ,

(4.36)

where Apin is the pinhole area, d is the distance from the detector to the pinhole, and

θ is the angle between the pixel’s viewing chord and the vector normal to the pinhole.

This gives each pixel an étendue of:

G =
Apin Apix

d2 cos4θ. (4.37)

We will combine this with the 4π factor from Equation 4.34 to get η = G/4π, also called

étendue by some sources. This notation is in line with that used in previous publications
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on the ME-SXR detector [19]. This term must be calculated independently for each pixel

in the 2D array, indexed by (i, j):

ηij =
Apin Apix

4πd2 cos4 θij, (4.38)

where Apix = s2 is the area of a pixel with side s. The geometric quantities are labeled

in Figure 4.10. The measured values for the distances and areas are given in Table 3.1.

The angle θij is given by the equation

θi,j = arctan
(

s
d
√

gij

)
. (4.39)

The term gij is a geometric factor which depends only on the pixel indices (i, j) and

the total number of pixels in each dimension of the detector screen, Nx = 195 and

Ny = 487. As illustrated in Figure 4.11, given the way I have defined my pixel indices,

this factor is given by:

gij =
(
i +

1
2
− Nx/2

)2
+
(

j +
1
2
− Ny/2

)2. (4.40)

We can combine this with Equation 4.38 and make use of the relation cos(arctan x) =

(x2 + 1)−1/2 to rewrite the expression into a more direct form,

ηij =
Apin Apix

4πd2 ωij, (4.41)

where for convenience I have defined that

ωij ≡ cos4 θij (4.42)

=
1

( s2

d2 gij + 1)2
. (4.43)
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Figure 4.11: Geometric derivation relating the pixel index to the geometric factor gij,

needed to compute the pixel étendue ηij.

The model étendue, as calculated with Equation 4.41, is shown in Figure 4.12. Due to

the distance from the pinhole, the étendue near the edges of the detector is very low.

This is consistent with what has been observed in the data.

Since we are interested in modeling energy-resolved 1D profiles of the type shown

in Figure 3.26, we need to model the detector response for each pixel and then sum over

each column. Given the assumption that pixels of the same column effectively see the

same plasma (due to toroidal symmetry), this equates to summing the étendues:

ηi =
Ny

∑
j

ηij. (4.44)

4.4.3 Plasma profiles and flux coordinates

One final detail to be considered is the mapping between the spatial coordinates x =

(x, y)T, typically Cartesian coordinates measured with respect to the MST geometric axis

and the plasma’s properties, i.e., Te(x), ne(x), etc. This will typically be accomplished

with parameterized profiles based on the physics knowledge of the symmetry of the
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Figure 4.12: Étendue ηij for each pixel on the detector. The x-axis corresponds to the i

index and the y-axis to the j index.

profiles.

The simplest possible scenario is axisymmetry, f (x) = f (r). Many physical pro-

files are well-described by a two-parameter α-β model. The parameters α and β jointly

describe the relative flatness of the core as well as and the steepness of the edge,

f (r) =
(
1− (r/a)α

)β, (4.45)

where r =
√

x2 + y2 is the radial coordinate and a = 0.52 m is the MST minor radius.

Such models can often be improved by making use of flux-surface reconstructions to

more accurately describe the profile symmetry. For example, standard RFP and PPCD

plasma profile symmetry is well-described by a radial-like ρ coordinate which lies on

surfaces of constant flux. This can be computed using the MSTfit code [20] and is the

basis for the analysis considered in Section 5.5.
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4.5 The full forward model

The elements described in the previous section must now be combined into a full for-

ward model of the ME-SXR detector’s response to a plasma. The goal is to combine the

plasma emissivity, detector geometry, and pixel response into a realistic prediction of to-

tal number of photons the detector should measure for a given set of plasma conditions.

Mathematically, we want to integrate over both space and energy:

n(k)
i = ηi

∫
LoSi

dz
∫

dE ε(E, z)Rk(E) (4.46)

= ηi

∫ +
√

a2−p2
i

−
√

a2−p2
i

dz ε(k)(z), (4.47)

where n(k)
i = N(k)

i /∆t is the photon count rate for the ith line of sight, k indexes the

response functions by threshold, z is the one-dimensional spatial coordinate along the

given line of sight, and ε(k)(z) is the relative emissivity for the kth response function

evaluated along that line of sight (as described in Section 4.2.3). Also note that we have

used the summed version of ηi, as defined in Equation 4.44, because we are interested

in simulating the sum of a row of pixels.

Due to the complex nature of the observed emissivity ε(k), a general closed-form

solution to this spatial integral is not possible. Instead, numerical integration must be

used. It is straightforward enough to iterate over a series of sums to estimate the value

of the line integral for each detector chord i:

n(k)
i ≈ ηi∆Z ∑

j
ε(k)(zij), (4.48)

where zij is the jth point along the ith detector chord using the transformation described

in Section 4.4.

The output of the ME-SXR model can be compared directly to actual data to confirm
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its similarity. Figure 4.13 shows model temperature, electron density, neutral density,

impurity density, and Ze f f profiles which are considered to be typical for high-current

(400-500 kA) PPCD plasmas (see Section 5.5.1). These profiles will be used to generate a

synthetic set of profiles comparable to those shown in Figure 3.26.

The plasma profiles are used to calculate the plasma emissivity ε(k)(zij) for a set of

points along each chord, given that chord’s lower threshold setting E(k)
c . An example of

the resulting plasma emissivity is shown in Figure 4.14. This profile is then integrated

spatially along each chord to produce realistic synthetic measurements. This output is

shown in Figure 4.15.

It is immediately clear that the ME-SXR model output is both qualitatively and quan-

titatively similar to the real measurements shown in Figure 3.26. This similarity, when

coupled with our previous experience modeling and validating similar SXR diagnostics

[21], provides a great deal of confidence in the model. This model is further bolstered

by the results discussed in Section 5.5, in which the model is found to be consistent with

simultaneous measurements obtained by the SXR tomography diagnostic.

It is also worth taking a moment to consider what the model is not and possible ways

it could be extended in future work. By using ADAS, the model assumes that that both

the electrons and ions obey strict Maxwellian distributions. This could be extended to

support other equilibria such as the κ distribution, which accounts for a small runaway

population using calculations such as those in [22], though this would require substantial

work. The model also presently does not include any time-dependent phenomena (like

transport) other than that implied by chosen profile shapes. It is intended only to sim-

ulate ME-SXR measurements at a particular instance in time given some instantaneous

plasma profiles.
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Figure 4.13: Example plasma profiles as a function of a Shafranov-shifted radial coor-

dinate ρ. These profiles were chosen based on typical profile values and shapes for

high-current (400-500 kA) PPCD plasmas in the MST.



159

Figure 4.14: Local emissivity map ε(3.0) for the ME-SXR detector with a lower threshold

of Ec = 3.0 keV given the plasma profiles shown in Figure 4.13. The core is bright and

very nearly flat, but emissivity drops off rapidly with temperature and density near

the mid-radius. The dashed line represents the boundaries of the ME-SXR diagnostic’s

viewing angle.
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Figure 4.15: Full synthetic ME-SXR output for the the plasma profiles shown in Figure

4.13. The resulting output is both qualitatively and quantitatively similar to Figure 3.26.
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4.6 Uncertainty analysis

In order to make meaningful comparisons between the ME-SXR model and collected

data, we must first understand the model’s limitations. Numerous parameters that are

based on real-world measurements are subject to measurement uncertainty, and these

uncertainties propagate to the final model output. This section considers three significant

sources of uncertainty in the model: the étendue ηi, the Mylar filter thickness tMy, and

the neutral density n0.

The calculation of the pixel étendue, as discussed in Section 4.4.2, depends on three

parameters which are subject to measurement uncertainty: the pinhole area Apin, the

distance from the detector screen to the pinhole d, and the area of each pixel Apix. Recall

from Section 4.4.2 that the étendue can be represented as ηi = η0 ∑j ωij where

η0 =
Apix Apin

4πd2 . (4.49)

We can assume that the uncertainty is mostly due to the η0 factor. The remaining fac-

tor is summed over each pixel, so assuming uncorrelated errors we expect overestimates

and underestimates to approximately cancel out. This leaves

ση0/η0 =
1
η0

[(
∂η0

∂Apix
σpix

)2

+

(
∂η0

∂Apin
σpin

)2

+

(
∂η0

∂d
σd

)2]1/2

=

[(
σpix

Apix

)2

+

(
σpin

Apin

)2

+

(
2σd
d

)2]1/2

.

(4.50)

Given that s = 172 µm, Apix = s2, Apin = 2 mm2, d = 30.5 mm, σd = 1 mm2, σpin = 0.224

mm2, and σpix = 3.44× 10−4 mm2 (as reported in Table 3.1), then ση0/η0 = 0.13. This

uncertainty is dominated by the uncertainty in the pinhole area (around ∼ 11%). A more

complex calculation which treats each pixel in the sum individually was also considered;

however, the result was found to be nearly identical. This is again due to the fact that
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the pinhole area, which is independent of pixel label, is the dominant term.

Another important consideration is the uncertainty in the thickness of the beryllium

and Mylar filters. The filter transmission model discussed in Section 4.3.1 was built

using the nominal thickness values as listed in Table 3.1. However, we need to account

for the possibility that these nominal values might vary within the specified tolerances

and that this could result in a significant variation in the final photon count rate. This

variation can be investigated using the model itself. A 0.1µm variation in the beryllium

thickness was found to be inconsequential. However, the ±10 µm tolerance on the Mylar

filter was found to be important. The effect of this variation on the response function is

shown in Figure 4.16.

The impact of this unknown variation on the detector signal was investigated by tak-

ing a basic Monte Carlo approach. Assuming a mean Mylar thickness of 100 µm and

a standard deviation equal to the stated tolerance (10 µm), I generated a set of filter

thicknesses tMy ∼ N (100 µm, 10 µm) and calculated the resulting emissivity according

to Equations 4.10 and 4.13. This procedure was repeated over a range of electron temper-

atures, holding other parameters fixed (ne = 1× 1019m−3 and n0 = 2× 1014m−3). The

results of this scan are shown in Figure 4.17. This shows that the relative uncertainty

ranges from about 10− 20%, decreasing as the temperature increases.

We see that for a plasma with core temperature Te ∼ 1000 eV, we would estimate the

contribution from the Mylar filter as (δε/ε)Mylar ≈ 0.12.

As discussed in Section 4.2.2, uncertainty in the neutral density input into the model

is also a potential source of uncertainty in the model output. The n0 profiles used in

subsequent chapters will be based off of previous work using ensemble measurements

and therefore are not expected to perfectly represent any given plasma discharge. We

will therefore assume an inherent variation on the order of 10%, which as seen in Figure

4.5 leads to an uncertainty in the emissivity of roughly 5%.

Now we need to combine these uncertainties in a consistent way. We can make use
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Figure 4.16: ME-SXR response function including a Mylar filter of thickness of 100 µm,

with dashed lines illustrating the effect of varying the thickness by ±10%.
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Figure 4.17: Mean and standard deviation of the local emissivity obtained by sampling

over the Mylar filter thickness tMy ∼ N (100 µm, 10 µm). The results are plotted against

electron temperature, holding other parameters fixed at typical values.

Figure 4.18: Variation in local emissivity normalized to the nominal emissivity, as a

function of electron temperature.
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of the fact that plasma emissivity profiles tend to be fairly flat in the core such that

n = η
∫

dz ε(z)dz ≈ ηεL, (4.51)

where ε is the emissivity in the core and L is the chord length through the core. The

uncertainty is then given by

δn
n
≈
[(

δη

η

)2

+

(
δε

ε

)2

Mylar
+

(
δε

ε

)2

n0

]1/2

≈
[
(0.13)2 + (0.12)2 + (0.05)2]1/2

≈ 0.18. (4.52)

In the remaining chapters we will make use of this as an estimate for the inherent un-

certainty in the model, denoted by σm ≈ 18%. The magnitude of the uncertainty is

mostly due to two factors: the necessary addition of the Mylar filter in order to combat

saturation from low-energy Al photons and the relatively large uncertainty in pinhole

area.

Finally, it is worth saying a few words about a source of uncertainty that was not

considered: the atomic physics calculations performed by ADAS. ADAS makes use of

numerous databases of atomic physics factors such as interaction cross-sections 〈σv〉,

themselves drawn from a range of experimental measurements and theoretical com-

putations. In most cases the uncertainties on these factors have not been assessed (or

reported), and it is therefore impossible to incorporate that source of uncertainty into

σM. For the remainder of this thesis we will operate under the assumption that this

source of uncertainty is small relative to the sources already discussed.
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Chapter 5

Interpreting ME-SXR data

Now that the ME-SXR diagnostic has been calibrated, configured, and installed onto

the MST, we need to develop methods to interpret the resulting data and extract useful

physical information. That is the focus of this chapter. The diagnostic forward model,

developed in Chapter 4, will be of critical importance to this endeavor. Additionally, this

chapter will also detail particular challenges encountered when operating the diagnostic,

and how these were overcome.

Section 5.1 demonstrates how subsequent ME-SXR images can be combined to ob-

serve the temporal evolution of the plasma’s soft x-ray emission profile under various

conditions. Section 5.2 uses argon doping to demonstrate the diagnostic’s sensitivity

to mid-Z impurities. Section 5.3 discusses techniques for extracting the electron tem-

perature profile from ME-SXR images. Section 5.4 discusses early difficulties related to

detector saturation and the modifications required to suppress these distortions. And

finally, Section 5.5 discusses an integrated data analysis framework which can be used

to synthesize ME-SXR measurements with other complementary diagnostics to extract

not just temperature but also ion density profiles.
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5.1 Time evolution of plasma soft x-ray emission

During normal operations, the ME-SXR records a series of images at the selected cycle

rate (usually 500 Hz). Once an image is recorded, the data can be separated into one-

dimensional profiles in the poloidal plane according to threshold as shown in Figure

3.26. The evolution of these profiles over time can provide significant insight into the

heating and profile evolution of a plasma. An example is shown in Figure 5.1, which

depicts the evolution of a single PPCD plasma (see Section 1.4) during the good confine-

ment period with eight distinct thresholds. PPCD has been well-studied and thoroughly

characterized over the last two decades, and as such it makes a good test case for a new

diagnostic. Initially the SXR emissivity is very low, corresponding to a low Te. How-

ever once the PPCD banks begin to discharge, driving J‖ and thereby suppressing core

tearing mode activity and reducing thermal transport, the plasma emissivity begins to

increase rapidly. This emissive structure gradually broadens as the plasma bulk con-

tinues to heat. This comes to a sudden end at approximately 21 ms, once the PPCD

banks have discharged all of their available energy. The “improved confinement” period

rapidly collapses as the return of tearing modes allows the stored thermal energy to

rapidly transport out of the core. This frequently manifests as a very bright flash on a

single frame.

The diagnostic has also been applied to high-current non-reversed (F = 0) quasi-

single helicity (QSH) plasmas (also described in Section 1.4). The plasma transitions

from multi-helicity to a quasi-single helicity state during the “rise phase” from about

15-20 ms, during which the rotating structure locks to the wall and the SXR emissivity

reaches a maximum. As the mode saturates the SXR emissivity begins to decrease at

an approximately linear rate, even though the electron density is held constant (Section

6.4). This has to do with how re-emergence of secondary tearing mode activity affects the

thermal confinement and production of runaway electrons, which the PILATUS3’s 450

µm Si sensor can detect. The phenomenology of QSH evolution, and how this manifests
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Figure 5.1: Evolution of observed soft x-ray emission during a single PPCD discharge.

Each panel corresponds to a different energy threshold. The plasma heats up and be-

comes increasingly emissive as tearing modes are suppressed and thermal transport is

reduced. This ends suddenly around 21 ms as the improved confinement period ends.
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in ME-SXR measurements, is discussed at length in Chapter 6.

A related phenomenon can be observed during single frames of many QSH dis-

charges. As shown in Figure 5.3, a “ring-like structure” can be observed. The count rate

in the core of the plasma remains relatively unchanged, while the substantially more

photons are seen near the edge. Furthermore, these photons seem to increase the count

rate for all thresholds, implying they are high energy. These images are known to be

connected to the generation of runaway electrons. The unusual geometry is due to the

relatively large size of the diagnostic’s porthole, causing a break in the magnetic symme-

try and resulting in error fields penetrating through the porthole and into the detector

housing or the porthole edge. Whenever there is an interruption in the core confinement,

the energized electrons stream along the field lines through the porthole before collid-

ing with the housing and emitting target emission. We will return to this discussion in

Section 6.3, which focuses on the observation and diagnosis of runaway electrons during

QSH states.

5.2 Detection of mid-Z impurities

The ME-SXR diagnostic can also be used to identify the presence of mid-Z1 impurities in

the plasma. Such impurities will be partially ionized and typically feature strong emis-

sion lines comfortably within the detector’s energy range, which can easily be discerned

by a proper selection of thresholds. This was tested by injecting small amounts of ar-

gon gas into non-reversed plasmas as a pre-fill, allowing the gas to diffuse throughout

the vacuum vessel before the plasma is formed. As illustrated in Figure 5.4, for typical

MST parameters Ar features strong emission lines around 3 keV. The ME-SXR diagnos-

tic allows us to set thresholds both above and below this energy allowing for a direct

detection of these photons.

1The term “mid-Z,” as used here, roughly means “atomic number Z of approximately one to a few
dozen,” though there is not a hard cutoff.
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Figure 5.2: Evolution of observed x-ray emission during the course of a single non-

reversed (F = 0) plasma discharge in which a QSH state forms. Panel (a) shows the

the evolution of a single emissive profile (with a lower threshold of 2 keV), (b) shows

the temporal evolution of the core-most chord for each threshold, (c) is the plasma cur-

rent, and (d) shows the evolution of the dominant (blue) and secondary (others) mode

magnetic fluctuation amplitudes.
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Figure 5.3: An emissivity “ring structure” observed during a single frame in a QSH

plasma. Such phenomena occur frequently when operating at low density, providing

evidence for a connection with runaway electron generation.
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Figure 5.4: Spectrum for argon impurities as modeled by ADAS, given typical MST

parameters. The dashed line illustrates the response function of a pixel with Ec = 4 keV.
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Figure 5.5: Frames from two non-reversed plasmas (a) without and (b) with an injected

argon dopant, with otherwise similar plasma characteristics. Increased emission is for

thresholds below the 3 keV Ar emission lines.

This capability was tested in 500 kA QSH plasmas by alternating between clean and

Ar-doped plasmas. Figure 5.5 shows single-frame eight-color 1D measurements for two

similar plasmas, except that (b) features the argon dopant and (a) is argon-free. The

counts for Ec ≤ 3 keV increase substantially when argon is present, while for higher

energies the measurements are comparable. This comparison is shown more clearly in

Figure 5.6, which shows the photon counts (averaged over five central chords) vs the

threshold energy for each case. This clearly demonstrates that the increased signal is en-

tirely due to Ar emission lines, meaning that the concentration of argon is low enough to

not substantially change Zeff (which would affect all thresholds). This demonstrates that

the ME-SXR diagnostic can be used as an ad-hoc spectrometer to diagnose the presence

of mid-Z like Ar impurities in the plasma.

Figure 5.7 extends this analysis over multiple time points, illustrating how the inten-

sity of the Ar line amplitudes varies as the plasma evolves. We see that the increase

in signal due to argon lines is greatest during the middle of the plasma lifetime, when

the plasma temperature is at its peak. This serves as a proof-of-concept that the diag-

nostic can be used to characterize the emission spectrum over time, which has potential
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Figure 5.6: Measured single frame spectrum (counts vs lower threshold) for similar non-

reversed plasmas with and without an argon pre-fill. Counts are averaged over central

chords. The dominant emission line energy for argon is denoted by a vertical red line.
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Figure 5.7: Temporal evolution of the central chord count rates for similar QSH plasma

discharges (a) without and (b) with an argon pre-fill. The frame analyzed in Figures 5.5

and 5.6 is highlighted in gray.

applications in mid-Z impurity transport studies for long-pulse devices like tokamaks.

Finally, we can use the difference in the measured spectra to positively identify argon

as the source of the increased emissivity. Since the two spectra are very similar for

Ec > 3 keV, we will assume that the entire difference in signal is due to the presence of

an additional source of photons of a single characteristic energy, E0. We will denote the

two spectra shown in Figure 5.6 as yAr and y0 for the Ar-doped and clean measurements,

respectively. Then, the difference, d = yAr− y0, approximately forms an S-curve, just like

those encountered during the energy calibration procedure. This is shown as the data

points in Figure 5.8. Points where y0 > yAr were set to zero, since this is presumably the
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result of normal variation between the two plasma discharges.

The S-curve traced out by d can be fit directly to Equation 3.27, the same model we

used in the energy calibration. We will include the results of the charge-sharing analysis

of Section 3.4 and set the S-curve width to σE = 0.3 keV. That leaves a model with two

free parameters, the amplitude N50 and the source energy E0, given by

f (Ec; N50, E0) =
N50

2

[
erf(−Ec − E0

σE
√

2
) + 1

](
1 + k ·

(
Ec − b0

))
(5.1)

where k is related to E0 by Equation 3.26.

In order to properly account for counting statistics, we will do the fit using Bayesian

methods (explained in Appendix B) with a Poisson likelihood function, given in Equa-

tion B.9, where the parameter λ(N50, E0) is set to Equation 5.1. We will assume inde-

pendent uniform priors, N50 ∼ U (300, 700) and E0[keV] ∼ U (2, 5.5), denoted by π(N50)

and π(E0). Then, the posterior distribution is given by Bayes’ Rule (Equation B.18) as

p(N50, E0|d) ∝ L(N50, E0)π(N50)π(E0). Since we are only interested in the source en-

ergy, we will marginalize N50 out as a nuisance parameter to obtain

p(E0|d) =
∫

p(N50, E0|d) dN50. (5.2)

This distribution is shown by the red curve in Figure 5.8.

The resulting posterior distribution is very narrowly peaked, with a 1σ credible in-

terval of E0 = 3.05± 0.02 keV. This E0 is close to the energy of the brightest line of Ar+16

as illustrated in Figure 5.4. Since the He-like state is often the most common ionization

state of mid-Z impurities in the plasma core, this measurement would be sufficient to

identify the impurity (or at least narrow the range of candidates). Figure 5.8 also shows

the fit between the model (Equation 5.1) and the measured data d, with error bars rep-

resenting the 95% confidence level. Agreement is not perfect, but some discrepancy is

expected given that the reference signal y0 was taken from a different plasma discharge
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Figure 5.8: The difference between the two spectra shown in Figure 5.6 form an S-curve

which can be used to determine the source energy E0 to within 40 eV. The black points

are the measured data d, the best-fit model is shown with a 95% confidence region, and

the posterior distribution over E0 is shown in red. The narrowness of this distribution

shows a high confidence in the results.
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than yAr. Even still, it was possible to accurately determine the energy of the emission

lines to within 40 eV. In situations where the variability between plasma discharges can

be further reduced, accuracy can presumably be improved.

The analysis reported in this section demonstrates that, in addition to characterizing

thermal properties, the ME-SXR diagnostic can be used to measure the spectrum of mid-

Z impurities, identify their characteristic line energies, and track this information over

time. This analysis was repeated for a series of PPCD plasmas, however the resulting

increase SXR emission was so bright that the detector began to saturate. This is due

to the much higher Te which is typical during PPCD, increasing the abundance of the

bright Ar+15 and Ar+16 lines. However for higher-Z impurities a detector configuration

with lower gain (Section 3.2.4) could be used, eliminating the saturation concern. In

principle, the PILATUS3 can be calibrated for thresholds up to Ec > 20 keV, making this

technique applicable to a wide range of impurities.

5.3 Temperature profile analysis

There are multiple techniques that could be employed to infer the electron temperature

profile from ME-SXR data. In situations where circular symmetry can be assumed a

straightforward Abel inversion can be used to extract the emissivity profile [1] for each

threshold, which are then related to Te directly via ratios. The method presented here

is similar to this approach, but employs a Bayesian methodology to systematically prop-

agate uncertainty and accounts for non-cylindrical flux surface geometries. However it

relies upon prior knowledge of the profile shape, which can be a major drawback in

some situations.

In general, the count rate detected by a cluster of pixels indexed by i on the ME-SXR

with a shared threshold Ec and plasma volume is related to the local photon emissivity

rate via line integral
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Nγ,i(p, φ) = ηi

∫
L(p,φ)

εγ(z)dz, (5.3)

where p and φ are the tangency radius and angle which parameterize the chord, ηi is

the étendue of the pixel(s), and z parameterizes the distance along the chord.

This equation can be recast as a matrix equation which maps the emissivity as a

function of flux radius ε(ρ) to the measured photon count rates for each cluster of pixels

Nγ,i. This linear map is represented as the geometry matrix R, which can be determined

numerically using the results of the ME-SXR spatial calibration (Section 3.3) and the

output of a flux surface reconstruction code (such as MSTfit [2]). In matrix form,

n = R · εγ, (5.4)

where n = (N1, N2, . . . , Nγ,N)
T, εγ = (εγ(ρ1), εγ(ρ2), . . . , εγ(ρM))T, and ρ ∈ [0, 1] is some

normalized 1D radial coordinate. Note that because R includes an ètendue factor it is

unique to each threshold.

The next step is to choose a representation for the emissivity profile. We will select

a 3-parameter α− β profile which is commonly used for the RFP [3]. This profile shape

assumes a relatively flat core which then decreases monotonically around the mid-radius

before going to zero at the edge.:

ε(ρ) = ε0(1− ρα)β. (5.5)

This shape has the advantage that it forces the core of the profile to be flat, stabilizing

the ratio. However parameterizations of other forms could be used instead, or possibly

even nonparametric models based on Gaussian processes (this is beyond the scope of

this dissertation, but see [4] for an explanation of this kind of analysis).

Next, the task is to constrain the profile parameters given the measured data. This

could be done with a number of nonlinear fitting techniques, but I have chosen to use
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Bayesian inference bases on Markov chain Monte Carlo sampling via the code emcee

using a Poisson likelihood function and uniform priors. This type of methodology is

described in more detail in Section 5.5 and Appendices B and C, but for now the im-

portant detail is that it produces a set of samples from the probability distribution for

each parameter which are most likely to have generated the measured data, given the

assumption that the model is correct. These samples can then be extrapolated to produce

samples from derived quantities. This procedure was applied to a single frame recorded

during of 300 kA PPCD operations, and the resulting emissivity profiles are shown in

Figure 5.9. The resulting emissivity profile is flat in the core out to r/a ≈ 0.4 before

decreasing to near-zero at around r/a ≈ 0.8.

These results are illustrated in more detail by frames a) and b) of Figure 5.10, which

shows the agreement between the fit profiles and the measured data (a) as well as a

two-dimensional poloidal cross-section of the resulting emissivity structure (b).

These emissivity profiles, and their associated uncertainties, can be used to produce

estimates of the electron temperature by considering the ratio of the observed emissivity

at a given point in the radial profile relative to a chosen reference threshold. If we

assume that the threshold energy is sufficiently high to justify ignoring emission lines

and recombination steps then the emissivity (up to a multiplicative constant) is given by

the energy integral I ,

I(Te, Ec) ≡
∫ ∞

0

e−E/Te

E
√

Te
R(E; Ec)dE

∝ εγ(Te; Ec),

(5.6)

where R(E; Ec) is the total pixel response function which accounts for transmission

through filters, absorption into Si, and energy discrimination due to detector electronics

as a function of the chosen threshold (or “cutoff energy”) Ec. When taking the ratio

of two emissivity profiles the multiplicative constant cancels out, leaving a ratio of the
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Figure 5.9: Reconstructed emissivity profile as a function of ρ, the MSTfit radius-like

normalized flux surface label. MSTfit assumes a geometry of nested circular flux surfaces

with a Shafranov fit.
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energy integrals,

R(Te, Ec) =
εγ(Te, Ec)

ε
(
γTe, Ere f )

=
I(Te, Ec)

I(Te, Ere f )
,

(5.7)

where Ere f is threshold corresponding to the reference profile selected to serve as the

denominator. Ratio curves produced by this method are shown in Figure 5.10 c).

Using these curves the electron temperature may be directly inferred. Figure 5.10 d)

shows the inferred temperature for each of the remaining thresholds relative to Ere f = 3

keV. Notice that Ec = 2 and 2.5 keV significantly underestimate Te, a consequence of

ignoring the contribution of emission lines and recombination steps at energies where

these features are not negligible. These values were not included in the final Te estima-

tion. The remaining thresholds > 3 keV were averaged to produce an overall estimation

of Te, and this process was repeated at each radial point. The resulting profile is shown

in Figure 5.11 along with corresponding Thomson scattering points for reference. Com-

parison in the core to mid-radius is generally favorable, but r/a = 0.6 the profile begins

to increase unphysically. However soft x-ray emission from this far out in the radial

profile tends to be very low due to the declining electron density, so this portion of the

profile is mostly constrained by low count rates and is therefore subject to significant

noise. As a result, values for Te for ρ > 0.6 are be omitted.

This methodology was used to individually analyze an ensemble of 35 individual

300 kA PPCD shots, each including three time points. The core Te for each point was

then compared against the corresponding Thomson scattering measurement, with the

results shown in Figure 5.12. As suggested by the individual profile inversion shown in

Figure 5.11, the temperature inferred from ME-SXR data is systematically higher than

the Thomson measurements by ∆Te ≈ 180 eV. The additional variation in the data is well
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Figure 5.10: Summary of the methodology for obtaining Te from ME-SXR measurements:

a) Comparison between input data and best fit profiles; b) reconstructed 2D apparent

emissivity profile for Ec = 3 keV; c) ratio curves relating emissivity to Te, normalized to

3 keV; and d) posterior distribution for Te in the core for each threshold and the average

(black dashed line). Note that Ec = 2.0 and 2.5 keV were not used to compute the average

and are included to illustrate the impact of Al lines on Te inference.
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Figure 5.11: a) Reconstructed electron temperature profile as a function of ρ compared to

simultaneous Thomson scattering data. Profiles are similar from the core to mid-radius,

though the ME-SXR technique tends to produce poor results nearer the edge. Notice

that the ME-SXR profile is somewhat higher than the TS data suggests. b) Evolution of

the average core temperature over time for this plasma discharge.
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explained by the variance in the Thomson scattering data, which features significant er-

ror bars when operated at densities this low. The source of the 180 eV offset has not been

confirmed, though the effect of high-energy photons originating from runaway electrons

(known to be present in PPCD [5]) is a possible candidate. Variation in the Mylar thick-

ness may also be relevant. Regardless of the source, because the offset is constant (and

therefore independent of the incident photon rate) it is not a result of detector saturation

(as discussed in Section 5.4). Therefore, we can treat ∆Te as a calibration factor. Using

this methodology, ME-SXR measurements can be used to effectively determine Te.

5.4 Troubleshooting detector saturation and pulse pileup

After the initial installation of the ME-SXR diagnostic, the resulting output images fea-

tured persistent non-uniformities which varied on a chip-by-chip basis. A typical exam-

ple of this behavior can be seen in Figure 5.13, using integration and readout times of

1 ms. One of the ASIC chips, which we identify as Chip #2, records noticeably fewer

counts than would be expected when compared to its neighbors. Chip #12 also shows

signs of under-counting, though this is not uniform across the chip. These artifacts are

not the result of plasma structure, as the features were consistently observed across a

wide range of plasma operating conditions.

Several tests were performed in order to identify the source of this unexpected be-

havior. We ruled out electrical interference, problems with the grounding scheme, and

issues with specific detector software settings. We performed bench tests with an Fe-55

source, and noted that the issue was not present in this data. Building off of this hint, we

developed the hypothesis that the anomalous behavior was the result of saturation by

photons with enough energy to pass through the Be filter and be absorbed into the Si, but

below the threshold to be counted. There are many such photons from the Al excitation

lines ≤ 2 keV. At a high enough flux they generate substantial pulse-pileup (saturation)
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Figure 5.12: Comparison of core Te for 300 kA PPCD plasmas as measured by the ME-

SXR diagnostic in the lowE (high gain) mode vs corresponding Thomson Scattering

measurements. TS measurements were derived by averaging measurements from the

inner-most channels and interpolating to match the ME-SXR time points. Points of the

same color correspond to different time points from the same plasma discharge. The

systematic discrepancy of ∆Te ≈ 180 eV is illustrated by the dashed line. Note that the

100 µm Mylar filter was installed.
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Figure 5.13: Output image displaying the characteristics of saturation behavior on our

PILATUS3 module. Clear artifacts are seen on chips #2 and #12, with discontinuities

visible across chip boundaries. Though subtle, these features were seen to be persistently

present on all data taken with the detector until the additional Mylar filter was installed.

Data was taken from a 500 kA PPCD plasma with uniform 2 keV lower threshold.
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Figure 5.14: Prior to installation of a Mylar filter, the discrepancy ∆Te between ME-SXR

and TS Te estimates scaled more strongly strongly with the photon flux (a) than the

measured temperature (b).

which contaminates the desired signal. Since the ASICs are fairly independent from

one another, it is unsurprising that they might behave in different and unexpected ways

when saturated, leading to the observed artifacts in the data.

In order to reduce the low-energy photon flux, a 50 µm Mylar filter was installed

over top of the Be window. This reduced the diagnostic sensitivity further from ∼ 5%

at 2 keV to < 1%. This new configuration was tested by separately measuring the core

Te with Thomson scattering and the ME-SXR for a dataset of 300 kA PPCD data. The

discrepancy between the two measurements was quantified as ∆Te = T(ME)
e − T(TS)

e . As

shown in Figure 5.14, it was observed that ∆Te was much more strongly correlated with

the overall photon flux than with the measured temperature. In fact, it was found that

the relationship between ∆Te and the photon flux was nearly linear. This is strongly

suggestive of pulse tail pileup, subsequent pulses form before the previous pulse has

fully subsided. This results in a higher-energy apparent spectrum, and therefore a larger

inferred temperature. The two types of pileup (peak and tail) are illustrated in Figure

5.15.

As a result of these observations, the the Mylar filter thickness was increased to
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Figure 5.15: Conceptual example of the two types of pileup which can affect pulse height

analysis detectors. Peak pileup (a) results in fewer detected photons at higher energy,

while tail pileup (b) results in the same number of detected photons, but a higher-energy

apparent spectrum.

100µm. This reduces the transmission of photons ∼ 2 keV from about 50% with no

Mylar filter to < 1%. A comparison between the composite filter transmission function

for 50 µm, 100 µm, and no Mylar (just Be) is shown in Figure 5.16. Thomson scattering

measurements were not available at the time of this second test, so instead we looked at

how the core temperature Te,0 measured by the ME-SXR varied with photon flux. Figure

5.17 shows that Te,0 increased much less sharply with photon flux when the 100 µm

filter was installed than when just the 50 µm filter was installed. Measured temperatures

were also more closely aligned with expectations for plasmas of these settings. Based

on these results, it was decided to move forward with the 100 µm filter installed. Later

comparisons with Thomson scattering measurements (such as those previously shown

in Figure 5.12) provided increased confidence that the pileup issue was resolved.

All data shown in remainder of this thesis was taken with the 100µm Mylar filter

installed. Scientists designing future implementations of the ME-SXR system should
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Figure 5.16: Filter transmission curves for three tested configurations: original (no My-

lar), 50 µm Mylar, and 100 µm Mylar. All three curves include the 25 µm beryllium filter.

Simulated aluminum spectrum at Te = 1 keV is shown for reference.
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Figure 5.17: Correlation between core Te and photon flux is much stronger for the 50 µm

filter than the 100 µm, implying pileup is significant in the former.
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be careful to account for sources of photons outside of the “target range,” but which

nonetheless reach the detector screen, when designing the pinhole and filter configura-

tions.

5.5 Integrated data analysis

Section 5.3 provided a straightforward technique to extract Te measurements with mini-

mal a-priori assumptions. However, oftentimes additional information is available, such

as concurrent measurements from other diagnostics, previous results, and knowledge

of the underlying physics. This section presents a consistent way of incorporating all

of this additional information into a single framework, called integrated data analysis

(IDA) [3]. With this framework we will be able to simultaneously produce measurements

of the electron temperature and impurity ion densities, demonstrating the versatility of

the ME-SXR diagnostic.

The IDA methodology demonstrated here is based on Bayesian inference [6]. This is

an approach to probability which views probability as the quantification of the degree of

certainty based on the available information, rather than than the long-term frequency

over many repetitions. The heart of Bayesian inference is Bayes’ Rule,

p(θ|d, I) ∝ p(d|θ, I) p(θ|I), (5.8)

which states that the posterior p(θ|d, I) of a system being best-described by the parame-

ter vector θ given some measured data d is proportional to the product of the likelihood

p(d|θ, I) of having measured that data given the parameter vector and the prior informa-

tion p(θ|I). The I in Bayes’ rules is meant to represent the additional information that

has been incorporated into the analysis, such as the choice of a particular model.

Bayes’ Rule is intended to be applied iteratively whenever new information is made

available. The approach to IDA employed here takes advantage of this feature to iter-
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atively apply Bayes’ Rule with simultaneous measurements from independent diagnos-

tics, taking advantage of all available information to make the best possible estimate of

the model parameters [3]. This approach allows the data analyst to exploit the ways

in which different diagnostic measurements correlate the plasma properties, sometimes

enabling estimates of properties (like Zeff) that no individual diagnostic can effectively

measure [7]. This approach will also provide a natural and consistent framework for

propagating measurement uncertainty, including when the underlying distributions are

not Gaussian.

The aim of this section is to provide a full, detailed example of how to implement

the ME-SXR diagnostic into an IDA framework. Two versions of the analysis will be

performed. The first will incorporate just the ME-SXR and Thomson scattering diag-

nostics, while the second will also include SXR tomography and the NICKAL2 Ross

spectrometer. The first analysis will allow us to demonstrate the ME-SXR diagnostic’s

sensitivity to mid-Z impurities (like Al), while the second will provide the best estimates

of the plasma profiles given the available data. A PPCD plasma was chosen to be the

test case since PPCD plasmas have been thoroughly studied, meaning we can make use

of well-informed priors. Section 5.5.1 begins by describing the PPCD plasma model.

Section 5.5.2 then goes through the process of correctly selecting likelihood and prior

distributions based on the best available information. Section 5.5.3 presents the results

of the ME-SXR + TS analysis, demonstrating good sensitivity to the aluminum density.

Finally, Section 5.5.4 presents the results of full IDA analysis, an draws comparisons.

Some additional background and theory are provided in two companion Appendices,

B and C, which discuss the theory of Bayesian inference and computational sampling

techniques, respectively.



197

5.5.1 The PPCD plasma model

Previous experience on MST has found that the temperature and density profiles in

high-current PPCD plasmas are well-described by so-called “α-β” models which assume

radially symmetric profiles (as a function of the model magnetic coordinate ρ) controlled

by two shape parameters [7]. Additional features such as islands can be added on as

additional terms if needed, as may be necessary when modeling standard RFP plasma

conditions [8]. However, these can typically be omitted for PPCD conditions.

The temperature profile is modeled by a simple α-β model, given by

Te(ρ) = Te,0
(
1− ραT

)βT , (5.9)

where ρ is the normalized MSTFit radial flux surface label (Equation 2.13, normalized to

the minor radius). We will typically fix the value of βT as it tends to be semi-redundant

with the αT parameter. An MSTFit reconstruction will be used to provide the mapping

between ρ and standard Cartesian spatial coordinates (x, y), as well as a reconstructed

ne(ρ) profile.

The density profile could have alternatively be included in the model using an α-

β profile and fit using the FIR data directly. However, it was found that the resulting

variance in the ne(ρ) profile is very small and has a minimal impact on the uncertainty

estimates for the other profiles. Given that the impact of adding three additional param-

eters (ne,0, αn, βn) has on the computational time is significant, it was decided to just

consider the existing MSTFit profile as a fixed input.

MST plasmas typically feature several impurity species in concentration high enough

to measurably impact the SXR spectrum: N and O from air; C from graphite in the lim-

iter; B from probes, and Al from the vacuum vessel wall. Ar can also be doped into MST,

but is not otherwise present in significant concentrations. It has been established that
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during PPCD discharges these ions are subject to a classical transport effect known as

temperature screening [9]. Essentially, the presence of an ion temperature gradient leads

to an expulsion of impurity ions from the core of the plasma, resulting in a hollow profile

shape which peaks at the outer mid-radius. These predictions have been experimentally

confirmed with charge-exchange recombination spectroscopy measurements. The ME-

SXR model accounts for this phenomenon by adding an additional “hollow bump” term

to the standard “α-β” shape, given by

nZ(ρ) = nZ,0
(
1− ρα

)β
+ δnZ exp

(
− (ρ− δr/a)2

2(wr/a)2

)
, (5.10)

where nZ refers to the total impurity species density (including all ionization states), δnZ

refers to the increased accumulation at the hollow bump for the impurity species Z, δr/a

is the normalized location of the bump and wr/a is the normalized width of the bump.

We typically treat αZ, βZ, δr, and wr as being the same for all impurity species.

It should be noted that we are not directly modeling the physics of ion transport.

Instead previous analysis has informed us that classical transport tends to result in the

formation of hollow profiles, and we have therefore modified our model to include this

as a phenomenological feature. This is the kind of “additional information” that is

referred to by the symbol I in the notation of the likelihood function p(d|θ, I).

Rather than treat all impurity ion densities as free parameters, we will typically

treat nC as an input to the model and constrain the other low-Z impurities based on

empirically-established ratios [7]: nO/nC = 0.9, nN/nC = 0.3, and nB/nC = 0.3. As

these species all tend to be fully-ionized and do not feature recombination steps or lines

in the SXR spectrum, they essentially just serve to contribute to the overall Zeff. This

means that any analysis routine using this model would not be able to distinguish be-

tween, for instance, an increase in nC vs an increase in nO. So we circumvent this by

fixing all but one of these densities, and leave nC as a free parameter to ensure that we

correctly capture the behavior of Ze f f . Al in the MST is not fully ionized and contains
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multiple constraining features in the SXR spectrum, so nAl is left as a free parameter.

Finally, the neutral density was modeled by a parametric estimation of A. Xing’s

results discussed in Section 4.2.2. This is given by

n0(ρ) = n0,0 + n0,1ρα0 (5.11)

where the three parameters (n0,0, n0,1, α0) were chosen so that n0(0) = 2 × 1014 m−3,

n0(0.6) = 10× 1014 m−3, and n0(1) = 450× 1014 m−3. This results in a neutral den-

sity profile which is flat throughout the core but grows exponentially by two orders of

magnitude near the edge. These parameters are fixed and are not included in the fitting

procedure.

Examples for each of the input profiles discussed here using parameters typical of

400 kA PPCD were shown in Figure 4.13. The values used to generate this figure are

given in Table 5.1. These are the default input values for the ME-SXR model and should

be assumed whenever no other values are specified. As implemented, the model has six

free parameters represented in the parameter vector,

θ = (Te,0, αT, nAl,0, nC,0, δnAl, δnC). (5.12)

The remaining parameters are held fixed at the default values. This set of parameters

was settled upon as a compromise between model flexibility (including more parame-

ters) and computational requirements (including more parameters requires more steps

to converge).

5.5.2 Likelihood and priors

A summary of all the parameters which describe the plasma in the ME-SXR model, and

their default values, is given in Table 5.1. Most of the priors taken to be uniform (see

Equation B.11), with bounds given by the [Min,Max] values listed in the table. This
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PPCD model parameters
Parameter Units Default Min Max
Te,0 eV 1100 0 2000
αT N/A 7 2 14
βT N/A 7 Fixed
nAl,0 1019 m−3 2e-3 1e-4 1e-2
nC,0 1019 m−3 6.8e-3 N (2.8e− 3, 1.4e− 3)
αZ N/A 12 Fixed
βZ N/A 4 Fixed
δnAl 1019 m−3 2.5e-3 1e-4 1e-2
δnC 1019 m−3 1.8e-2 1e-4 5e-2
δr/a N/A 0.635 Fixed
wr/a N/A 0.09 Fixed

Table 5.1: List of PPCD model parameters, including units, default values, and [Min,

Max] range for uniform priors. Parameters which are fixed in the model are noted.

equates to an assertion that the probability of that parameter taking on any value within

this range is equal, while any value outside of this range has a probability of zero.

These bounds were mostly chosen by physical considerations (Te,0 must be positive)

or constrained by previous expectations (Te,0 > 2 keV is implausible for these bank

settings).

One exception to this is the core carbon density, which will be assigned a normal dis-

tribution based upon an ensemble of prior charge exchange recombination spectroscopy

measurements [7]. This is given by

ln p(nC,0|µC, σC, I) = −1
2

(
nC,0 − µC

σC

)2

− 1
2

ln 2πσ2
C, (5.13)

where µC = 2.8e-3 and σC = 1.4e-3, measured in the units shown in Table 5.1.

A likelihood function was chosen for each diagnostic (ME-SXR, SXR tomo., and

NICKAL2). Each likelihood model, which quantifies the probability that one might have

measured the data d given some known parameters θ, was chosen by combining the rel-

evant diagnostic forward model with a statistical model of the measurement noise. For
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Figure 5.18: Prior distributions over the (a) electron temperature, (b) deuterium density,

and (c) aluminum density, (d) carbon density, and (e) ion-effective charge (Zeff) profiles.

The orange line represents the median profile and the shaded regions encompass the 1-,

2-, and 3-σ credibility regions.



202

each case the measurement noise was assumed to be Gaussian, giving a general form of

ln p(d|θ, I) = −1
2

N

∑
i

(
di − f (pi, θ)

σi

)2

, (5.14)

where f (pi, θ) is the diagnostic forward model for the ith pixel given the chord radius

pi, and σ2
i = σ2

d,i + σ2
m,i where σd,i is the measurement noise and σd,i is the systematic

uncertainty in the model. The diagnostic forward model and model uncertainty σm for

the ME-SXR was described in Chapter 4. A similar model had previously been developed

for the SXR tomography and NICKAL2 diagnostics [10], and the associated σm was taken

to be 2% [11].

Although the noise model for the ME-SXR diagnostic is more properly described

by a Poisson distribution, given the relatively high count rates during PPCD the Gaus-

sian approximation σd,i ≈
√

N was considered to be adequate. Prior to the analysis

the the ME-SXR 1D profiles (like those shown in Figure 3.26) were smoothed and in-

terpolated using Gaussian process regression interpolation (so-called “kriging”) [12, 13],

implemented using Sci-kit Learn [14]. This is a nonparametric regression scheme which

estimates the intermediate values from the existing values based on a smoothness crite-

ria (defined by a kernel). This method allows for an accurate estimate on the uncertainty

of the interpolated data points, assuming Gaussian statistics. Data was interpolated

to exactly 60 shared lines of sight, significantly reducing the computational overhead

required for each evaluation of the model.

The likelihood were combined via an iterative application of Bayes’ Rule, yielding

the posterior distribution. For the ME-SXR + TS analysis this is given by

p1(θ|D1, I) ∝ pMESXR(dMESXR|θ, I) pTS(dTS|θ, I) p(θ|I), (5.15)

where D1 = (dMESXR, dTS). For the full IDA framework, the likelihood is given by
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p2(θ|D2, I) ∝ pMESXR(dMESXR|θ, I) pSXT(dSXT|θ, I)

× pN2(dN2|θ, I) pTS(dTS|θ, I) p(θ|I),
(5.16)

where D2 = (dMESXR, dSXT, dN2, dTS). The posterior distribution describes how well a

given set of parameters θ describes the data D, so the process of model-fitting is re-

placed with drawing many samples from this distribution and analyzing their statistical

properties.

5.5.3 Results: ME-SXR + TS

This analysis was performed for a single time point (averaged over 1 millisecond) near

the end of the enhanced confinement period of a 300 kA PPCD plasma. The poste-

rior distribution p1(θ|D1, I) was sampled using the emcee MCMC sampling software

[15] until good converge was achieved. The results of this analysis are summarized in

the corner plot shown in Figure 5.19. This type of plot, common in Bayesian sampling

problems, shows the marginal distributions on the diagonals and contours of the joint

two-parameter semi-marginal distributions on the off-diagonals (all but the two spec-

ified parameters have been marginalized out). This allows the user to see both how

well-constrained the various parameters are, all-things-considered, as well as see how

strongly they correlate with other parameters.

We see that some of the model parameters are strongly correlated, especially nAl,0

and nC,0. This makes sense, as both parameters affect ME-SXR count rate. We also see

a correlation between core impurity densities and the amplitudes of the hollow pro-

file bumps. These correlations provide a significant opportunity for these results to be

improved with more measurements, as will be done in the next section.

N samples were drawn from the posterior distribution, {θ̂1, θ̂2, . . . , θ̂N}, which were

used to produce an ensemble of N plasma profiles, i.e. {Te(ρ|θ̂1)}, {Te(ρ|θ̂2)}, . . . , {Te(ρ|θ̂N)}

for the temperature profile, each of which were calculated over a grid of 100 ρ points.
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Figure 5.19: Corner plot showing marginal (diagonals) and first-order joint (off-

diagonals) distributions for parameters in the joint posterior distribution.
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Figure 5.20: Posterior distributions for the ME-SXR + TS analysis, showing (a) electron

temperature, (b) deuterium density, and (c) aluminum density, (d) carbon density, and

(e) ion-effective charge (Zeff) profiles. The orange line represents the median profile

and the shaded regions encompass the 1-, 2-, and 3-σ credibility regions of all possible

profiles.
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This ensemble was used to estimate the median profile, 〈Te(ρ)〉, and the 65%, 95%, and

99.7% credibility regions (the Bayesian equivalent to 1-, 2-, and 3-σ confidence intervals

[16]) at each point. These profile samples are shown in Figure 5.20 (a), (c), and (d). The

ensemble of profiles can also be used to compute the profiles for derived quantities, like

nD and Zeff, shown in (b) and (d) respectively. These profiles are the primary result of

this analysis.

The integration of ME-SXR and Thomson scattering data allows for a highly accurate

estimate of the core electron temperature, Te = 1125± 12 eV. The ion densities have also

been well-constrained compared to the priors, with core values of nAl = 1.99± 0.44×

1016 m−3 and nC = 7.01± 1.3× 1016 m−3. However, because the nC profile is actually

a stand-in for all of the low-Z impurities (C, B, O, and N), its individual value is not

necessarily physically meaningful. Instead, the important result is the Zeff profile, which

is well-constrained to Zeff = 1.97± 0.08 in the core. This is consistent with previous

estimates [7].

This analysis does not, however, do a good job constraining the ion density profiles

outside of the core. This is because the ME-SXR model, with the 100 µm filter, has

difficulty discerning between nAl and nC in the lower-signal regions. This can be seen in

the strong correlations between nAl, nC, and δnAl in the corner plot. The overall estimate

for Zeff, however, is relatively well-constrained. The high uncertainty in the individual

measurements presents a significant opportunity for additional diagnostics to improve

these results. Even so, the obtained profiles represent a significant improvement over the

priors p(θ|I).

The best way to assess the quality of a fit is to compare the the output of the mod-

els with the original measured data. This too is accomplished through sampling. For

each diagnostic, the forward model is calculated for each profile in the ensemble. This

produces an ensemble of synthetic measurements for each channel, which are then an-

alyzed statistically. Because these ensembles tend to be very nearly Gaussian, they are
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Figure 5.21: Comparison between diagnostics data and model results for (from top left,

clock-wise): ME-SXR, Thomson scattering, SXR tomography, and NICKAL2. Results

were constrained using only ME-SXR and TS measurements.
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well-characterized by the mean and standard deviation. Figure 5.21 shows this data/-

model comparison not only for the ME-SXR and Thomson scattering diagnostics, which

were included in the analysis, but also for the SXR tomography and NICKAL2, which

were not. Agreement for the included diagnostics is good, while the uncertainty is high

for the remaining diagnostics. This is because both the SXR tomography and NICKAL2

diagnostics are highly sensitive to the aluminum density, so the large uncertainty on δnAl

results in a significant variation in their signals. This implies that incorporating these

measurements into the analysis will significantly constrain the ion profiles. This also

clearly shows that the ME-SXR sensitivity to aluminum lines, with the 100 µm Mylar

filter installed, is relatively weak. However the overall sensitivity to impurities (i.e., Zeff)

is strong.

Overall, these results serve as a demonstration that the ME-SXR measurements, when

combined with Thomson scattering, can be used to reconstruct Te, nAl, and Zeff profiles

which are well-constrained in the core. These results are both more accurate and more

informative than the direct Te inversion method discussed in Section 5.3, although they

require more information and assumptions about the underlying plasma equilibrium.

Uncertainty in the ion densities is still large in the edge, though, providing an opportu-

nity for additional diagnostics to further constrain the results. This will be explored in

the next section.

5.5.4 Results: Full IDA

The analysis was repeated with the full likelihood function p2(θ|D2, I), which incorpo-

rates the SXR tomography and NICKAL2 data and forward models. The posterior was

again sampled, with the resulting profiles and credible intervals shown in Figure 5.22. In

comparison to the ME-SXR + TS analysis, the addition of new measurements has done

little to affect the Te profile. However, the ion density profiles have been significantly

refined with nC now clearly demonstrating a hollow profile while nAl nearly flat. The
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core values have also been further refined, especially nAl. However, the change to the

resulting Zeff profile is modest. The new profiles are all within the uncertainty bands of

the previous analysis (Figure 5.20).

Figure 5.23 repeats the comparison between the forward model samples and the

original data. The agreement is not perfect, but agreement is much better than in the

previous less-constrained analysis. In particular, uncertainty in the SXR tomography

and NICKAL2 models has been dramatically reduced, corresponding to the reduction

of uncertainty in nAl. Some level of disagreement is to be expected when simultaneously

fitting multiple models, each with their own sources of uncorrelated systematic uncer-

tainty. This is in-fact a feature of IDA, and is the reason we included the σm terms in

the likelihood functions. The fact that all four diagnostics are in good agreement with

the synthetic measurements, and that the resulting profiles are in good agreement with

prior results, lends a significant amount to confidence in the ME-SXR forward model.

Finally, it is of interest to make a direct comparison between these results and the

ME-SXR + TS analysis. This is shown in Figure 5.24, which compares the marginal

distributions for the core values of Te, nAl, nC, and Zeff for both analyses, as well as

their priors. Both analyses show a similar level of uncertainty in Te, although the central

value shifts somewhat. The most striking difference is nAl, where the addition of SXR

tomography measurements has reduced the uncertainty by an order of magnitude. Also

notable is that for the ME-SXR + TS analysis the marginal p(nC|D1, I) is similar to the

prior, implying that the value was not strongly constrained by the data. However by

imposing an informed prior based on previous measurements, we were able to infer nAl

to reasonable accuracy.

First and foremost, the results of these two analyses demonstrate that the ME-SXR

diagnostic, when constrained by additional information (such as Thomson scattering

measurements) can be used to infer accurate impurity density profiles for the plasma

core to mid-radius. They also demonstrate that by integrating additional information
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Figure 5.22: Posterior distributions for the full IDA framework, showing (a) electron

temperature, (b) deuterium density, and (c) aluminum density, (d) carbon density, and

(e) ion-effective charge (Zeff) profiles. The orange line represents the median profile

and the shaded regions encompass the 1-, 2-, and 3-σ credibility regions of all possible

profiles.
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Figure 5.23: Comparison between diagnostics data and model results for (from top left,

clock-wise): ME-SXR, Thomson scattering, SXR tomography, and NICKAL2. Results

were constrained using all four diagnostics.
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Figure 5.24: Comparison between the marginal posterior distributions for the core (a)

electron temperature, (b) aluminum density, (c) carbon density, and (d) Zeff for both

analyses. Prior distributions are also shown.
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into the IDA framework, these profiles can be further refined and extended out towards

the plasma edge. Profiles are inferred in a way which is self-consistent, and the uncer-

tainty analysis is an automatic part of the methodology. This is a powerful methodology,

which will form the basis of the QSH analysis performed in Section 6.4. Another impor-

tant conclusion is that Figure 5.23 shows that it is possible to simultaneously produce

synthetic ME-SXR and SXR tomography measurements using physically-realistic profiles

which are quantitatively consistent with the measured data. Since the SXR tomography

forward model has previously been well-vetted, this provides a significant amount of

confidence in the ME-SXR forward model developed in Chapter 4.
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Chapter 6

Evolution of the helical RFP

The MST features a robust selection of x-ray diagnostics which can be used on a rou-

tine basis: the new ME-SXR detector is highly versatile, and can be used to diagnose

thermal properties, impurity content, and non-thermal populations; the SXR tomogra-

phy diagnostic, now operated with thin 45/172 µm Be filters, which features a strong

sensitivity to both continuum and aluminum line emissions; and the fast x-ray camera,

which is specifically for non-thermal populations. In this chapter this entire suite of

diagnostics will be applied to the quasi-single helicity, or QSH, regime of MST plasmas.

Using an integrated analysis framework, time resolved 2D measurements of Te struc-

ture and evolution have been produced for the first time in a QSH plasma on the MST.

These measurements suggest the presence of a transport barrier around the helical core.

A brief period of greatly enhanced confinement is also observed when the secondary

mode activity is suppressed. A brief overview of the contents of this chapter is provided

below.

Section 6.1 reviews the existing literature on QSH plasmas in the MST and RFX-mod,

and discusses the distinct phases of the saturated QSH state. Section 6.2 discusses a

theoretical model of the QSH state based on shear-suppression of energy transfer, and

present presents recent measurements that are consistent with this model. Section 6.3
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uses the ME-SXR and FXR detectors to analyze the buildup, sustainment, and decline

of runaway populations in the QSH state. Section 6.4 uses SXR tomography and FIR

data to analyze the time-evolving Te, ne, and nAl profiles over the duration of a QSH

flattop, revealing a period of significantly enhanced confinement. Finally, Section 6.5

presents recent observations of high-frequency turbulent fluctuations which correlate to

the position of the helical structure.

6.1 Quasi-single helicity plasmas in the MST

The term quasi-single helicity (QSH) is used to describe the scenario in which plasma’s

magnetic spectrum is dominated by a single core-resonant tearing mode [1]. This is op-

posed to “multi-helicity” (MH), a term which has been adopted to refer to standard RFP

plasmas in which the magnetic energy is more-evenly distributed across many m = 1

modes. The “quasi-” prefix is included to emphasize the fact that the mode spectrum

is not purely single helicity — the non-dominant modes have finite amplitude and con-

tribute significantly the physics. The “strength” of a QSH state is commonly quantified

by the so-called spectral index [2],

NS =

[
∑
n

(
b2

n
U

)2]−1

, (6.1)

where bn is the amplitude of the nth magnetic perturbation and U = ∑n b2
n is the total

magnetic energy. This is a measure of how concentrated the magnetic energy is within

a single mode, and will approach one as b2
n′ � b2

n 6=n′ . By convention, a plasma is

considered as QSH when NS < 2. All plasmas with NS > 2 are considered to be MH.

QSH spectra can occur under various operating conditions in the MST. QSH states

may form spontaneously during the sawtooth cycle of standard reversed plasmas, typi-

cally with a large n = 6 mode surviving for a few milliseconds before crashing back to

MH. The improved confinement state of PPCD also technically meets the requirement
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Figure 6.1: Set of plots demonstrating the evolution of a high-performance F = 0 QSH

plasma, showing: (a) core-resonant m = 1 magnetic mode amplitudes normalized to the

equilibrium field, (b) spectral index, (c) mode rotation velocity, exhibiting locking, (d)

plasma current, and (e) a core slice of the SXR emissivity.
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for QSH (NS < 2), however it is rarely referred to as such because the overall mode am-

plitudes are very low, including the dominant n = 6 mode [3]. In recent years, however,

the term QSH has mostly come to refer to the very large, long-lived n = 5 modes that

tend to form when MST is operated in the “non-reversed” (F = 0) mode, meaning that

the toroidal field has been set to exactly zero at the shell. In the standard RFP, three-wave

mode coupling to an m = 0 mode is known to provide a significant pathway for energy

transfer between the core-most unstable tearing modes and other higher-n modes in the

plasma [4], so removal of the m = 0 resonant surface from the plasma is presumed to

greatly reduce this coupling and therefore promote the accumulation of energy. Plasma

rotation tends to rapidly slow down and lock as the mode amplitude grows large due to

interaction with eddy currents induced in the conducting shell [5]. This typical evolution

is shown in the various panels of Figure 6.1.

Plasma with a strongly QSH spectrum have been observed to exhibit a three-dimensional

helical structure [6], much like that of a stellerator [7]. The plasma undergoes a change

in magnetic topology where the island associated associated with the dominant mode

grows to such amplitude that it encompasses the magnetic axis, shedding its separatrix

in the process [8]. Such a plasma is said to be in a single helical axis (SHAx) state. Not

all QSH plasmas are in a SHAx state, but a plasma in a SHAx state must necessarily

exhibit a QSH mode spectrum. High current F = 0 plasmas in the MST tend to both

exhibit QSH and SHAx properties, so the term “QSH” is often used as a shorthand for

this configuration. However, properly QSH and SHAx are distinct terms.

SHAx equilibria are associated with a restoration of good flux surfaces within the

helical perturbation [9]. On RFX-mod this has been demonstrated to lead to improved

confinement and the introduction of an internal transport barrier around the helical

structure [10]. This is illustrated in Figure 6.2, which compares the typical stochasticity of

MH with the restored good flux surfaces of SHAx. Soft x-ray tomography measurements

have been used to directly observe internal helical structure in both devices. This was
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Figure 6.2: Representative Poincaré plots for a poloidal cross-section of the MST showing

(a) multi-helicity and (b) quasi-single helicity SHAx euilibria. Figure reproduced from

Munaretto, et al. [11].

shown in Figure 2.11.

RFX-mod has robustly demonstrated that electron thermal confinement is signifi-

cantly enhanced during the SHAx state [12]. This can be seen in Figure 6.3, which shows

a nearly two-fold increase to the core temperature. This improvement is also associ-

ated with a substantial increase in the edge temperature gradient to ∇Te > 1 keV m−1.

Gyrokinetic modeling suggests that such strong temperature gradients are expected to

drive microtearing modes, a class of very short wavelength electromagnetic turbulence,

unstable [13]. Direct measurements of the magnetic spectrum using ḃ coils provides

some support for this claim, observing that coherent fluctuations form around 200 kHz

during QSH periods with n ≈ 200 [14]. Similar observations have not previously been

explored in the MST. Because of these significant improvements in electron confinement,

QSH has been suggested as the possible operating regime for a hypothetical RFP fusion

reactor [15].

Studies of ion confinement during QSH have had somewhat more mixed results,

however. Studies at RFX-mod have confirmed a general improvement to the confinement
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Figure 6.3: Electron temperature confinement is significantly improved on the RFX dur-

ing SHAx. Panels show: (a) red and blue data points correspond to opposite sides of the

magnetic axis during SHAx, and green is a typical MH plasma; (b) The reconstructed

2D Te profile exhibits a helical symmetry with strong gradients. Figure reproduced from

Lorenzini, et al. [15].

of thermal ions [16]. However they have also noted to tendency for an external transport

barrier to form which results in the buildup of impurities into hollow profiles with

peaks well outside of the core [17]. This tendency has not been observed on the MST.

Multiple studies on the MST using neutral beam injection have shown that fast ions

exhibit generally worse confinement in the SHAx regime than in MH [18]. This fact

poses a serious obstacle for SHAx as a fusion reactor concept. However, it has since been

seen that the poor confinement is related to remnant secondary mode activity [19]. Since

secondary mode amplitude tends to decrease with increasing current, it is possible that

sufficiently high current might suppress this instability and achieve sufficient fast ion

confinement for a reactor.

The transition to, and persistence within, the SHAx state in F = 0 conditions has

been strongly correlated to the Lundquist number,
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S =
τR

τA
∝

IpT3/2
e

n1/2
e

, (6.2)

where τR is the resistive time and τA is the Alfvén time [20]. This can be seen in Figure

6.4, which shows a nearly-linear relation between S and QSH persistence until saturat-

ing at high S. Note that this plot does not control for variation in Te, which is likely

responsible for some of the observed variance. The dependence on Lundquist number

helps to explain why RFX (which has a typically operates at both higher Ip and higher

ne than the MST) and the MST observe relatively similar dynamics. QSH states can be

observed with Ip as low as 300 kA in the MST, however in such cases these states tend

to be intermittent and very short-lived.

Previous observations of thermal electron profile evolution during SHAx in the MST

have been somewhat rare. A 2015 study by S. Munaretto, et al. [11] used V3Fit (see

Section 2.2.2) constrained by FIR and Thomson scattering measurements. That study

found the electron density to be relatively smooth and well-confined during the SHAx

period, while Te displayed a surprising intermittency. These results are reproduced

in Figure 6.5. The same study also demonstrated that a radial magnetic perturbation

(RMP) [20] applied by a ring of magnetic coils around the poloidal gap could be used to

effectively re-introduce stochasticity in the core. An RMP has also been used to control

the plasma’s locking phase. This technique was not used for the data presented in this

thesis.

6.1.1 Phenomenology of the QSH flattop

In previous work, the evolution of non-reversed QSH/SHAx plasmas in the MST have

typically been divided into a small number of distinct phases:

1. The early phase: From the beginning of the plasma discharge until the start of the

rise phase. Plasmas typically exhibit MH behavior, but will occasionally exhibit
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Figure 6.4: QSH persistence vs Ip/n1/2
e , which is a proxy for Lundquist number. Here

persistence is defined as the percentage of time that NS < 2 during the current flattop.
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Figure 6.5: Previous observations of electron density (b) and temperature (c) evolution

during the saturation of a large single magnetic mode (a) in the MST. Reproduced from

S. Munaretto, et al. [11].
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Figure 6.6: The evolution of the dominant n = 5 mode can be further subdivided into

the rising, quiet flattop, and dynamic flattop phases.
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short intervals of small amplitude, short-lived QSH.

2. The rise phase: The period during which n = 5 mode is growing rapidly to large

amplitude. Plasma rotation typically locks during this phase, and the bifurcation

to a SHAx equilibrium is believed to occur.

3. The flattop phase: The growth of the n = 5 mode stops and the amplitude remains

large for tens of milliseconds. NS ≈ 1 for this entire phase, and secondary mode

activity is minimal. This phase ends as the plasma current begins to decrease and

the equilibrium breaks down.

This thesis claims, and will demonstrate, that the flattop phase should actually be further

divided into two distinct phases:

3a. The quiet flattop phase: A period of minimal secondary mode activity, when the

n = 5 mode amplitude is very large and stable. This phase always immediately

follows the rise phase, and lasts for a few ms.

3b. The dynamic flattop phase: The rest of the flattop, marked by a resumption of

low-amplitude secondary mode activity. The dominant mode typically exhibits

more substantial oscillations in amplitude.

Not every MST QSH plasma features a quiet phase, but they occur in most high-

quality discharges (for example, the discharge shown in Figure 6.5 does feature a quiet

phase). As with many QSH features, it appears preferentially in low-density discharges.

Plasmas also tend to lack quiet phases when the QSH state forms unusually late in

the discharge or when the rise phase takes unusually long. The thing which makes

the distinction between the quiet and dynamic phases important, and the thing which

caught my attention in the first place, is that the quiet phase corresponds to a noticeable

enhancement in core properties like Te, ne, and nZ. Since the plasma is ohmically heated,

the increase in Te is suggestive of improved confinement.
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The reduction in confinement which occurs at the transition from the quiet to dy-

namic flattop phases is readily seen in a tomographic inversion of the SXR emissivity.

Figure 6.7 shows the same shot as featured in Figure 6.6. Two time slices only 4 mil-

liseconds apart are singled out, one during the quiet phase at t = 25 ms and another

in the early dynamic flattop at t = 29 ms. The panel in the lower left shows the full

tomographic inversion during the quiet phase, which exhibits a large, bright emissivity

structure. The panel in the lower right shows that only four milliseconds the emissivity

has dropped by a factor of two and the width of the structure has significantly narrowed.

The middle panel shows that this narrower structure remains consistent throughout the

rest of the dynamic flattop. It also confirms that the loss of the hot island corresponds

exactly with the end of the quiet phase.

We will also see in Section 6.3 that the end of the quiet phase tends to trigger a sudden

reduction in fast electron confinement, providing further evidence for a reduction in the

size of the good flux surfaces. We will also find in Section 6.4.3 that the quiet phase is

associated with an increase in electron temperature, electron density, and impurity ion

densities. It is clear that understanding the quiet phase, in particular how to extend

it, could contribute significantly to the development of a hypothetical QSH-based RFP

reactor.

We do not yet fully understand what triggers the transition between the quiet and

dynamic flattop phases. The dynamic flattop is defined by the resumption of small

amounts of tearing mode activity. This might be related to a change in the current profile,

as some distinctions can be seen in the shape of the Ip flattop for plasmas which feature

a quiet phase relative to those that do not. The transition is frequently seen occur around

the time that the current from the third capacitor bank becomes large, which could be

responsible for disrupting a marginally-stable equilibrium. There is also some indication

(Section 6.5) that the large Te gradient can trigger an increase in turbulence, which may

be responsible for enhancing the coupling between the dominant and secondary modes.
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Figure 6.7: Demonstration of enhanced SXR emission during the quiet flattop phase.

Panels show: (top) dominant and secondary mode amplitudes with two time slices indi-

cated by vertical lines; (middle) Radial slice of the inverted SXR tomographic inversion

over time; (bottom) 2D SXR tomographic inversions at the two indicated time slices.



229

A more compelling hypothesis, based on increased flow shear due to mode locking, is

discussed further in Section 6.4.4. Future work will be necessary in order to test these

hypotheses.

6.2 Theoretical models of QSH dynamics

A fully-consistent physics-based model of QSH formation and sustainment has proven

to be an elusive goal for the RFP community. Early models found that by imposing a

high-dissipation regime, cylindrical RFP-like plasmas could made to exhibit a single-

helicity equilibrium in simulations [21]. Simulations using the SpeCyl code found that

QSH tended to form at low Hartmann number [22],

Ha =
S√
Pm

(6.3)

where S is the Lundquist number and Pm is the magnetic Prandtl number, which corre-

sponds to a high-dissipation regime. One consequence of this model is the formation of

an electrostatic drift velocity vD = ∇φ× B/B2 which shares the dominant mode helicity

and sustains a steady-state MHD dynamo [23]. These simulations were not necessarily

considered to imply that high dissipation is the driving mechanism of QSH formation

in the real experiments, but mainly served to force a simulation to “emulate” the SHAx

state. Nonetheless, features of these experiments have been used to interpret experimen-

tal data [24, 25].

An immediate problem with this framework can be seen in Equation 6.3, which

shows a linear scaling between the Hartmann and Lundquist numbers. However, as

shown in Figure 6.4, QSH formation and persistence has been observed to prefer large

Lundquist number. A low Hartmann number regime would imply QSH should form

preferentially at low plasma current, which seemingly contradicts experimental obser-
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vations1. Furthermore, the value for Ha required to achieve QSH in these simulations is

orders of magnitude lower than what can be achieved experimentally [26]. Recent mea-

surements of velocity flow patterns all show inconsistency with the SpeCyl results, and

are more consistent with NIMROD simulations[27] run at reduced periodicity (1/5th of

the torus) and significantly higher Hartmann number [28]. It has also been found that

the application of an edge radial magnetic perturbation (RMP) can induce a SHAx state

both in experiment and in theory [29, 30]. However, this does not present a clear model

for the spontaneous formation of SHAx states when no RMP is applied. For a more

thorough description of the various models of QSH/SHAx formation, I refer the reader

to J. Boguski’s thesis [26].

6.2.1 Shear suppression of secondary tearing modes

An alternative framework has been developed by P. Terry, et al. [31, 32] which proposes

that shear (either in the magnetic field or flow velocity) is responsible for decoupling

energy transfer between the dominant and secondary (sub-dominant) tearing modes.

This allows energy to accumulate in the dominant mode, giving rise to the QSH state.

This model exhibits multiple phases, proceeding from a multiple-helicity state through a

limit cycle regime and then on to fixed-point single helicity as a current-like parameter is

increased. So unlike the high-dissipation models, the shear-suppression model satisfies

the experimental scaling with Lundquist number. It is also a fully dynamic model which

features the QSH state as an emergent feature rather than imposing it via some arbitrary

constraint.

The development of the model begins within the framework of reduced MHD. The

goal of this exercise was not to provide a detailed model of QSH evolution but rather

to capture the fundamental physical principles at work. Hence, a reduced model is

appropriate. Note that this model was derived assuming that the n = 6 mode is the

1This also depends on the exact scaling of the viscosity with Ip, which is not clearly established.
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dominant mode, but the resulting behavior should be similar for n = 5.

The reduced MHD model for the magnetic potential ψ and the electrostatic potential

φ is given by

dω

dt
+∇‖ j = 0 (6.4)

dψ

dt
+∇‖φ = 0, (6.5)

where ω = ∇2
⊥φ is the vorticity and j = ∇2

⊥ψ is the current. Separating the magnetic

fluctuations into two fields, the dominant mode D = |ψn=6|2 and secondary modes

S = ∑n>6 |ψn|2, and introducing a strong shearing rate associated with the dominant

mode, it can be shown that the reduced MHD equations yield a predator-prey model for

D and S,

∂D
∂t

= QD −
σ1S2 + σ2SD

γ′ + aΩ′
− αDD (6.6)

∂S
∂t

= QS +
σ′2DS + σ′1D2

γ′ + aΩ′
− βS2 − αSS, (6.7)

where QD is the ohmic drive, αD is the linear forcing, β represents the transfer of energy

to unresolved modes, and σ1, σ′1, and σ2 are nonlinear coupling coefficients. The term in

the denominator, γ′+ aΩ′, is the shear of the dominant mode. Because of the symmetries

in Equations 6.4 and 6.5, the shear rate is actually determined as a composite of the

magnetic and flow shears, assuming that one or the other dominates:

Ω′ =
im
r

max
[

∂φ

∂r

∣∣∣
n=6

,
∂ψ

∂r

∣∣∣
n=6

]
. (6.8)

The shearing term can also be written in a more convenient form as
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Figure 6.8: Evolution of the dominant mode D and secondary modes S during the limit

cycle QSH regime. Figure reproduced from I. McKinney and P. Terry, [33].

γ′ + aΩ′ = 1 + ε

(
D
D0

)1/2

, (6.9)

where ε is a normalized coefficient related to the plasma current, and D0 is the dominant

mode amplitude at the transition to QSH. It was also shown that ε ∼ B3/5
θ , reproduc-

ing the desired scaling with plasma current. An example of the evolution of D and S

which clearly demonstrates the predator-prey relationship during the limit cycle phase

is shown in Figure 6.8.

Further work extended this model to account for its impact on the evolution of the

electron temperature profile [33]. It was shown that the temperature profile evolves

according to
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∂Te

∂t
−
{

χ0

[
1 +

( ar
r0

)2
]
+

χ1S
1 + ε[D f (r)]1/2

}
× 1

r
∂

∂r

(
r

∂Te

∂r

)
= C(r) (6.10)

where a is the minor radius, χ0 is the equilibrium diffusivity, χ1 is the flutter-induced

diffusivity localized to the region outside of the dominant mode’s rational surface,

f (r) =
1

δ
√

π
exp

[
−
(

r− rs

∆

)2]
(6.11)

is a Gaussian packet of width ∆ which serves to localize the effect of shear suppression

to a layer around the resonant surface rs of the dominant mode, and

C(r) = 4πT0χ0

(
1 +

( ar
r0

)2
)(

1−
( r

r0

)2
)
×

1.05r2 − r2
0

(r2 − r2
0)

2
(6.12)

is a steady-state heat source which was chosen phenomenologically to provide a realistic

seed profile Te(r) = T0(1− r2/r2
0)

1.05.

In this model, the quality of the thermal confinement is mostly determined by the

amplitude of the secondary modes. As shown in Figure 6.9, as the mode amplitudes

oscillate so does the height of the temperature profile. At its highest point the edge

gradient can become quite steep, which can be interpreted as an edge transport barrier.

A small phase shift is observed between∇Te and D, although its magnitude is somewhat

dependent on the various model parameters. This type of behavior also exists in the

saturated SHAx (high ε) state, though due to the small amplitude of the secondary

modes the resulting oscillations are much less dramatic than in Figure 6.9.

As with any theoretical model, it is important to validate the shear suppression model

for QSH against experimental data. Measurements of temperature profile dynamics in

RFX-mod have shown evidence of large of temperature gradients which oscillate along

with the dominant magnetic mode amplitude [12]. Recent measurements of flow ve-

locity shear in the MST show that it may be large enough to suppress energy transfer

with secondary modes, although the uncertainty in the calculation is large [28]. How-



234

Figure 6.9: Evolution of the dominant mode D and the maximum temperature gradient.

These signals are closely correlated, with ∇Te leading D by a small phase shift due

to finite heating. The small panels show the profile Te(r) for two time slices. Figure

reproduced from I. McKinney and P. Terry, [33].
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ever, there is still a need for additional validation. Section 6.2.2 provides two additional

such observations, demonstrating a predator-prey-like relationship between the domi-

nant and secondary modes and confirming that the link between thermal confinement

and dominant mode amplitude extends to the MST.

Before moving on, it is worth taking a moment to draw out some connections be-

tween this model and other developments in plasma turbulence theory. Sheared flows

have long been understood to produce transport barriers in fusion plasma devices [34].

The existence of these transport barriers is in-fact critical to the existence of modern

high-performance fusion plasmas. Flow shears are known to play a key role in the

transition from L- to H-mode in tokamaks [35], and predator-prey interactions between

equilibrium E× B flow and zonal flows have been directly observed to precede the L-H

transition in DIII-D [36, 37]. In many ways, the model outlined in the preceding para-

graphs is a natural extension of these existing ideas to the RFP.

6.2.2 Observation of predator-prey dynamics during QSH

One of the fundamental consequences of shear suppression model for QSH is a predator-

prey relationship between the dominant and secondary tearing modes. Although it can

easily be seen that increases in the amplitude of the n = 5 mode corresponds with

decreases in the secondary mode and vice-versa (as in Figure 6.6), no study had previ-

ously been conducted to test whether the relationship between fluctuations during the

saturated state can be classified as a predator-prey system.

The main computational tool for this analysis is the cross-correlation, which is a

measure of the similarity between two (semi-) periodic signals. For continuous signals,

it is defined as

C( f , g) =
∫

f (t + τ) ḡ(t) dt (6.13)
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where ḡ is the complex conjugate of g and the offset τ measures the lag of f (t) relative

to g(t). The phase shift between f and g is therefore given by ∆φ = 2π f τ. In practice

digitized signals are discrete, so the integral is replaced by a sum over the data points.

This was implemented using the numpy.correlate Python module [38].

In order to make the various bn signals corresponding to the measured tearing mode

amplitudes easier to directly compare, the magnetics signals were normalized according

to

yn(t) =
bn(t)− 〈bn〉

σn
(6.14)

where 〈bn〉 is the average and σn is the standard deviation of the signal bn. This has the

added benefit of ensuring that the computed cross-correlation varies between approxi-

mately ±0.3 no matter the size of the input signals.

We begin by considering three time windows, highlighted in Figure 6.10, and com-

puting C(y6, y5), C(y7, y5), and C(y8, y5) during each time window. The results are

shown in Figures 6.11, 6.12, and 6.13, respectively. During the quiet phase we see that

the secondary modes evolve together with the dominant mode, with the addition of

large amounts of uncorrelated random noise. This is not the case during the two dy-

namic phase time windows. During the earlier window (28-32 ms), we see that all three

secondary modes are strongly correlated to the dominant mode with a phase shift of

approximately 180◦. During the final window (34-38 ms) the situation is much the same

except that the correlation between the n = 5 and n = 7 modes has been lost. This

demonstrates that the transfer of energy may not always be evenly distributed between

the various core-resonant tearing modes.

On the individual shot level these signals can be pretty noisy, so it is desirable to per-

form this analysis on an ensemble of similar time windows. This presented a challenge

as QSH plasmas are highly variable. I searched through the data set and identified 15

short (3 ms) time windows which feature this ∼ 1 kHz tearing activity on top of the
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Figure 6.10: Three highlighted windows corresponding to the cross-correlation analyses

shown in Figures 6.11, 6.12, and 6.13.
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Figure 6.11: Cross correlations between the n = 5 and n = 6, 7, 8 tearing mode ampli-

tudes during the quiet phase, 23.0 to 25.5 ms.
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Figure 6.12: Cross correlations between the n = 5 and n = 6, 7, 8 tearing mode ampli-

tudes during the early dynamic phase, 28.0 to 32.0 ms.
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Figure 6.13: Cross correlations between the n = 5 and n = 6, 7, 8 tearing mode ampli-

tudes during the late dynamic phase, 34.0 to 38.0 ms.
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dominant mode during the dynamic flattop, like the later two windows highlighted in

Figure 6.10. These perturbations tended to be most frequent in high-performance QSH

plasmas. I carefully chose the starting points of these windows in order to align the

n = 5 signals as best as possible. Using this ensemble I created ȳ5, ȳ6, etc., which are

the average normalized tearing mode amplitudes. These signals, along with their cross

correlations, are shown in Figure 6.14.

For the ensemble data set, we see that all three secondary modes are all closely corre-

lated to the dominant mode, with a 180◦ phase shift. Whatever caused the discrepancy

with the n = 7 mode in Figure 6.13 is not a consistent feature of these plasmas, sug-

gesting that it may have been due to noise. Also notable is that there is that signals are

all perfectly anti-correlated at τ = 0 with no measurable lag (that is, they are exactly

180◦ out of phase). This means that the transfer of energy between the modes must be

happening on a faster time scale than can be resolved by this analysis. The magnet-

ics signals are digitized at 200 kHz, but the resolution of this analysis is likely much

lower than that would suggest due to the variability in the ensembled signals (as repre-

sented by the semi-transparent bands in Figure 6.14). Regardless, these measurements

present clear evidence of a predator-prey relationship between the dominant and sec-

ondary tearing modes during the dynamic flattop phase of QSH that is consistent with

the shear-suppression model.

We also want to show a relationship between oscillations in the tearing mode am-

plitude and changes in thermal confinement. Although in Section 6.4.3 we will extract

measurements of Te(ρ) and ∇Te from the data, those will turn out to have enough un-

certainty to make if difficult to extract a clear phase relationship with y5. These measure-

ments will also be difficult to ensemble, since the technique requires good flux surface

reconstructions be available for every plasma in the data set. Instead we will rely di-

rectly on soft x-ray emissivity, obtained by inverting SXR tomography measurements, as

a proxy.
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Figure 6.14: Cross correlations between the n = 5 and n = 6, 7, 8 tearing mode ampli-

tudes for an ensemble of 3 ms time windows for plasmas which feature regular ∼ 1 kHz

oscillations during the QSH dynamic flattop phase. Semi-transparent bands represent

ensemble variation.



243

Figure 6.15: SXR emissivity is found to vary in-phase with the dominant mode. Panels

show: (a) the ensembled normalized signals for the n = 5 tearing mode amplitude and

the slope of the emissivity; (b) cross-correlation between the two signals.

As shown in Equation 2.19, variations in emissivity are likely due to variations in

one of three parameters: Te, ne and ni. We have seen that electron density tends to be

fairly constant during QSH discharges (Figure 6.5), so this is unlikely to the the source of

observed SXR variations. Although we have few measurements of ion densities during

QSH, their confinement is expected to be reasonably similar to the electrons. This means

that it is justifiable to interpret fast variations in emissivity (fluctuations at ∼ 1 kHz) as

being primarily due to changes in Te.

For each time window in the ensemble, data from the SXR tomography 45 µm chan-

nel was re-sampled to 100 kHz. Tomographic inversions were performed for each time

point to extract the emissivity ε(x), like that shown in Figure 2.11. The absolute value

of the gradient, |∇ε|, was computed for each time point, and the maximum value was

identified. The resulting signal was normalized in the same way as the magnetic signals

were,
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yε(t) =
|∇ε|max(t)− 〈|∇ε|〉

σε
(6.15)

and assembled into an ensemble signal ȳε.

The cross correlation between emissivity and the dominant mode, C(yε, y5), is shown

in Figure 6.15. Although the uncertainty in yε is high, it is clear that the b5 and ∇ε

change in phase with one another. When the dominant mode is at its highest amplitude,

and correspondingly the secondary modes are at their lowest, the plasma emissivity is at

its peak. Conversely, when the dominant mode is at its lowest, the emissivity is too. As

with the magnetics signals, any phase shift is below the resolution of this analysis. Since

we have argued that on these short time scales the behavior of the emissivity is a good

proxy for the behavior of the electron temperature, we can conclude that the model for

temperature evolution put forth in Equation 6.10 is consistent with observations on the

MST.

6.3 Runaway electron generation in the helical RFP

The presence of runaway electrons in QSH plasmas on the MST was briefly studied in

a 2010 paper by Clayton et al. [39]. Using the 13-chord CdZnTe HXR array, the study

found that a high flux of hard x-rays was associated with the presence of a hot island in

the plasma core as measured by the SXR tomography diagnostic. It was also found that

the HXR flux is relatively uniform throughout the torus. This is explained as resulting

from a small core region with significantly reduced transport in which the electrons

accelerate before scattering into the highly stochastic surrounding plasma volume. This

picture was supported by some basic ORBIT simulations, which showed that the most

energetic electrons tended to be found in the n = 5 island.

In this section we extend upon these previous results using the ME-SXR diagnostic

in conjunction with the FXR camera (Section 2.1.4). The ME-SXR detector has been
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set into an eight-color high SNR configuration (Config. #1 in Section 3.5) using the

midE (medium gain) calibration which allows for thresholds between 4-to-14 keV. The

thresholds were set to Ec = 5, 6, 7, 8, 9, 10, 11, and 12 keV. This configuration allows

for some sensitivity to thermal electrons on the low end, but also extends into the HXR

range. For non-PPCD plasmas with Te < 1 keV, the signal from thermal electrons above

5-6 keV is expected to be negligible. The FXR detector was attached to a core-viewing

radial channel and is calibrated for detection of photons between 5 and 30 keV. The

combination of the two detectors allows for a synthesis of high spatial (ME-SXR) and

spectral (FXR) resolution.

6.3.1 Observations of runaway electron generation and confinement

ME-SXR, FXR, and SXR tomography data for MST shot #1200701056 (500 kA, F = 0)

are shown in Figure 6.16. As found in the Clayton study, HXR flux is typically stronger

when a hot island is visible in the SXR tomography data. However, this observation can

be expanded to fit the full picture of QSH evolution. Peak HXR flux is achieved during

the rise phase, when the applied loop voltage (represented by the poloidal gap voltage,

Vpg, in the figure) is still high. The HXR flux “calms down” but remains relatively high

during the quiet phase, even though Vpg is now minimal. Then, at the transition to the

dynamic phase, there is another burst of HXR flux. This coincides with the loss of the

hot SXR island. After that point the HXR flux does not totally vanish, but remains at

a much lower level than it was previously at. The highly non-thermal behavior is most

evident in the ME-SXR data, where at times pixels with Ec = 5 keV and Ec = 12 keV

are recording nearly identical counts. This implies the presence of very high-energy

photons.

I would like to draw some extra attention to the burst in the ME-SXR data which

occurs around t = 26.5 ms at the end of the quiet phase. This feature is a very robust

predictor of a “good” quiet phase in which a very bright island can be seen in the
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Figure 6.16: Evolution of (a) the dominant and secondary mode amplitudes, (b) the core

SXR emissivity, (c) HXR flux, (d) ME-SXR profile with Ec = 5 keV with a logarithmic

color scale, (e) single-chord ME-SXR counts along the dotted line in (d), and (f) the

poloidal gap voltage.
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SXR tomography data. I initially thought of it as an annoyance, likely resulting from

poor confinement; it was only later that I realized that this burst was the signature of

unusually good confinement. It was actually this feature which initially brought my

attention to the distinction between the quiet and dynamic flattop.

As seen in Figure 6.7, there appears to be a rapid reduction in the extent of the good

flux surfaces around the helical core when the quiet phase ends and secondary mode

activity reactivates. The Clayton ORBIT simulation shows that fast electrons are well-

confined to this region, so a rapid reduction in the volume of that region means that a

substantial quantity of fast electrons suddenly find themselves in a region dominated

by rapid stochastic transport. These electrons are then rapidly transported to the wall

where they collide with various components, giving off target emissions which are seen

by the ME-SXR detector. This provides pretty strong corroborating evidence for the

general picture put forth in the Clayton paper. This burst is largely invisible to the

SXR tomography diagnostic, as the 35 µm Si photodiodes are relatively transparent to

photons in the low-HXR range.

Figure 6.17 (a) shows the ME-SXR signal vs threshold for several different spatial

chords for t = 28.5 ms. The counts for all thresholds have been normalized such that

N = 1 for Ec = 5 keV. This can be compared against a model spectrum, ε ∝ E−γ, by

using the model response function developed in Section 4.3:

Nm(γ; Ec) ∝
∫ ∞

0

R(E; Ec) E−γ

E
dE, (6.16)

where γ is a parameter indicating the slope of the HXR spectrum, R(E; Ec) is the com-

posite response function of Equation 4.23 with σE = 550 eV for midE settings, and the

subscript m indicates that this is a model. Note that charge-sharing effects were included

in this calculation. The resulting model output for a range of γ values is shown in Figure

6.7 (b). It should be noted that the E−γ shape of the model spectrum is heuristic and

was inspired by its use in a paper by A. M. Dubois studying sawtooth energization [40].
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Figure 6.17: (a) ME-SXR measured spectrum for a set of pixels sharing a single line-of-

sight, vs energy. The spectrum has been normalized to the counts measured with Ec = 5

keV. Different colors correspond to different lines-of-sight. (b) Model ME-SXR spectrum

over a range of γ values.

This model can be used to infer the value of γ which best describes the data. This was

accomplished using a simple Bayesian calculation (see Appendix B) with the likelihood

function for each set of 8 thresholds (which approximately share a line-of-sight) given

by

lnL(γ) = −1
2

12

∑
Ec=6

(
REc − f (γ; Ec)

σR

)2

(6.17)

where REc = NEc /N5 is the ratio of the measured counts for the threshold Ec to the

counts measured for Ec = 5 keV, f (γ; Ec) = Nm(γ; Ec)/Nm(γ; 5), and σR is uncertainty

in the ratio given by

σR

R
=

[(
σEc

NEc

)2

+

(
σ5

N5

)2]1/2

(6.18)

where σEc =
√

NEc is the Poisson uncertainty on the measured data. It should be noted

that Equation 6.18 is based upon a normal approximation to the Poisson distribution
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and can break down if the total counts for either the numerator or denominator are very

low, roughly in the single digits. Priors were chosen to be uniform, p(γ) ∼ U (−2, 7),

where some negative values were permitted in order to easily identify times when the

E−γ model is inapplicable.

Posterior distributions were found to be approximately normal, and therefore well-

characterized by the mean and standard deviation. These values were obtained for all

chords with sufficient signal at each time point during the QSH state. Figure 6.18 shows

the resulting evolution of the γ profile over time. We see that the spectrum exhibits a

strong high-energy tail early on, before undergoing a rapid transition after ∼ 26 ms and

settling into a calmer equilibrium. This is generally consistent with the trends observed

in the FXR data. Note that the plots presented throughout the rest of this section tend to

show −γ so that a higher value corresponds to a greater high-energy population.

Notably, the spectrum is almost completely spatially homogeneous, and does not

feature a peak at the n = 5 core. This suggests that, outside of the helical core, the

fast electron transport is quite rapid so that they reach the edge without having lost

much kinetic energy to collisions. As a result the normalized HXR spectrum (though

not necessarily the absolute intensity) is the same across the MST radius.

The spatial uniformity presents an opportunity to refine our estimate by averaging

the chords at each time point. The result is shown in Figure 6.19. This makes clear the

trend that is being observed. The electron distribution is highly non-Maxwellian early

during the early phase sawtooth cycle and into the rise phase. Many of these data points

feature γ < 0, implying that the E−γ model does not do a good job describing these

data points. However it is still sufficient to infer that during this period the plasma is

strongly non-Maxwellian. Once the quiet flattop phase begins, we find that γ begins to

increase, implying that the energy of the fast electrons are being gradually lost. This is

interrupted at a single time point by the burst at the end of the quiet phase, but then

continues to drop off into the dynamic phase. The value of γ eventually stabilizes late in
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Figure 6.18: Time evolution of inferred E−γ spectrum evolution for all ME-SXR chords

with sufficiently high signal. The spatial structure is almost entirely uniform.
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Figure 6.19: Evolution of the HXR spectrum, showing (top) the dominant and secondary

mode amplitudes, (middle) FXR photon events, and (bottom) the radially-averaged spec-

trum coefficient, −〈γ〉.
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the quite phase until declining plasma current causes the QSH equilibrium to dissipate.

This behavior is typical of all high-quality QSH discharges in the dataset.

6.3.2 Energy of the runaway population

In order to expand upon these observations, we want estimate the average energy of the

fast electron population in each of the three phases (rise, quiet, and dynamic) of the QSH

flattop. The relatively slow time resolution of the ME-SXR diagnostic makes it unsuitable

for this task, so the FXR camera will instead be used. The FXR detects individual events

with an accuracy of tens of nanoseconds, so these counts can easily be checked against

the corresponding magnetics signals to build up and ensemble for each phase. This was

done for an ensemble of 12 similar high-performance QSH discharges. The counts were

then sorted into energy bins in order to estimate the spectrum. The resulting spectra for

each phase are shown in Figure 6.20.

The photon energy was estimated by assuming a “Maxwellian-like” scaling for the

high-energy tail, given by

ε(E) = C exp (−E/Er), (6.19)

where C is treated as an arbitrary scale factor and Er is the runaway electron population

average energy. This function was fit directly to the logarithm of the HXR data using a

linear least-squares algorithm, and the results also shown in Figure 6.20. At lower ener-

gies the thermal population contributes the to x-ray flux, so the fits were only performed

for data to the right side of the dashed line in each plot.

We found that during the rise phase, the fast population has an average energy of

Er = 18.2± 0.7 keV. During the quiet phase, this reduces slightly to Er = 15.3± 1.2 keV

before dropping of substantially to Er = 5.0± 0.1 keV during the flattop. These results

support our ongoing narrative that the most energetic fast electrons are accelerated dur-
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Figure 6.20: The hard x-ray spectrum for an ensemble of plasmas during the rise, quiet,

and dynamic phases. The bottom right panel shows all three (normalized) spectra to-

gether on the same plot. It can be seen that the spectra for the rise and quiet phases are

very similar, while the dynamic flattop spectrum is significantly reduced.
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ing the rise phase and largely maintained during the quiet phase until confinement is

severally degraded by the increased secondary mode activity that characterizes the dy-

namic flattop phase. Note that the ± ranges cited here are uncertainties in the mean, not

the range of variation across the dataset.

We can use the average fast electron energy observed during the rise phase to estimate

a rough approximation for the magnitude of the net electric field that would be required

to generate this runaway population. We will assume that electrons are well confined

within the core so that collisional momentum loss (rather than diffusion) sets the upper

limit on the speed of the runaway population. The maximum speed is then given by the

balance between the electromagnetic acceleration and the collisional momentum loss.

A simple model of the slowing-down force on a single particle in a plasma due to

collisions [41] is given by

F =
d
dt
(mv)

= −νe(v)mv
(6.20)

where m is the particle mass, v is the particle velocity, and νe(v) is the velocity-dependent

collisional frequency given by

νe(v) =
4πniZ2

i e4

(4πε0)2m2
e v3 ln Λ, (6.21)

where Zi is that charge number for the background species and ln Λ is the Coulomb log-

arithm, which is approximately 15.6 for typical F = 0 parameters. When the background

contains multiple species, the collisional effects are summed together, meaning that the

niZ2
i terms can be replaced with neZeff via quasi-neutrality.

Assuming that other loss terms are not important (a big assumption), the equilibrium

speed is determined by the balance between the force from the net parallel electric field
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and the collisional losses,

eE‖ − νemev = 0, (6.22)

which can be used to get an estimate of the magnitude of E‖:

E‖ =
1

(4πε0)2
2πne(2 + Zeff)e3(1

2 mev2
) ln Λ (6.23)

For the case of the rising phase where mev2/2 ≈ 18 keV, and we will assume Zeff ≈ 2

and ne ≈ 0.8× 1019 m−3. The extra factor of 2 in (2 + Zeff) accounts for electron-electron

collisions. Plugging these in Equation 6.23, we get an estimate of E‖ ≈ 0.8 V/m.

To provide some context for this estimate, we turn to a 2004 study by Piovesan,

et al. [24]. In the study, careful correlation between magnetic field fluctuations and

measurements in the IDS spectrometer all an estimation of the MHD dynamo, Edyn =

〈ṽ(1,n) × b̃(1,n)〉 ≈ 1− 2 V/m in QSH conditions. This dynamo field is relatively small

but constant, unlike for multi-helicity discharges which tend to briefly feature very large

dynamo fields during a sawtooth crash [42]. The dynamo field was observed to oppose

the applied field of approximately Eloop ≈ 2 V/m. The difference between Edyn and

Eloop is sufficient to explain the observed runaway population. This is consistent with

the picture that the buildup of a runaway population is the result of reduced radial

transport in the core in the presence of an applied loop voltage opposed by a constant

MHD dynamo.

6.4 QSH profile evolution

This section will talk about building an analysis model to tackle the questions posed in

the previous section. Although the ME-SXR diagnostic will be essential, TS, FIR, and

SXT will also play a role. Although well-resolved density reconstructions of SHAx states
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in the MST have been produced in the past using V3Fit [11], temperature reconstructions

have always been limited by the use of Thomson scattering data which tends to perform

poorly at low densities (see Figure 6.5). Instead, we will rely on measurements of soft

x-ray emission to simultaneously constrain the electron temperature and the aluminum

density by employing a novel IDA methodology. This will result in a much higher-

fidelity reconstruction of the thermal evolution of the plasma than has been achieved

previously. This result will allow us to observe how the structure of the temperature

profile evolves as secondary modes are suppressed during the quiet phase.

Section 6.4.1 begins by presenting the analysis framework which integrates FIR and

SXR tomography data to infer the best-fit for parameterized profiles. Section 6.4.2 ex-

amines the quality of fits and develops the methodology for calculating the gradient.

Finally, Section 6.4.3 presents the time-resolved profile evolution and examines how

changes in the magnetic mode dynamics affect thermal confinement. Comparisons will

be made to observations from RFX-mod, and the implications of these results on the

shear-suppression model of QSH will be considered.

6.4.1 Building the analysis framework

This analysis was conducted primarily using data from the soft x-ray tomography (Sec-

tion 2.3.2) and FIR interferometry (2.1.3) diagnostics. The magnetic equilibrium is ex-

pected to exhibit an n = 5 helical distortion, meaning that the geometry of the magnetic

equilibrium is dependent on the toroidal angle. The SHEq code (Section 2.2.2) was used

to to provide a consistent mapping between diagnostics. Figure 6.21 illustrates this ge-

ometry and shows that the helical O-point should be well-resolved for both diagnostics.

Data was re-sampled to a resolution of ∆t = 0.5 ms in order to focus on equilibrium

evolution.

Parameterized profiles were chosen in order to obtain good agreement between the

model and measured data while still providing enough constraints to avoid over-fitting
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Figure 6.21: Viewing chords for the FIR interferometry (left) and SXR tomography (right)

diagnostics. Flux surface contours taken from the SHEq reconstruction are also shown.

and ensure that results are physically plausible. Profile selection can be the most difficult

part of the IDA process, and may require many stages of trial and error. The model

electron density profile, which was inspired by a similar model used in Auriemma, et al.

[43], is given by

ne(ρ) = (ne,0 − ne,1) · (1− ραn)βn + n1(1− ργ) (6.24)

where ne,0 is the density at the helical axis, ne,1 is the density at the edge, αn and βn are

shape parameters, and γ controls the shape of the background density at the edge. In

practice FIR measurements are minimally sensitive to γ, so a constant value of γ = 100

is assumed.

Selection of the temperature profile was more difficult. The typical α− β style models

used in Section 5.5 tended to produce reconstructions which deviated significantly from

SXR tomography data. Through trial and error a different parameterization was found

which produced better agreement. This model is given by
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Te(ρ) = Te,0 exp
[
−
(

ρ

wρ

)βT]
(6.25)

where Te,0 is the temperature at the helical axis, wρ controls the width of the core struc-

ture, and βT is a shape parameter related to the steepness of the gradient. This parame-

terization was found to be flexible enough to represent both broad and narrowly-peaked

thermal structures.

Very little prior information was available about impurity ion density profiles in the

helical RFP. In order to avoid imposing unphysical structure, it was decided to use flat

profiles,

nZ(ρ) = nZ,0(1− ραZ)βZ (6.26)

where nZ,0 is the core impurity density and αZ = 12 and βZ = 4 are shape parameters

chosen so that the density remains flat until near the edge. As in Section 5.5, the densi-

ties of the other low-Z impurities were scaled based on the carbon density. It was found

that leaving both nC and nAl as free parameters tended to yield unphysical results, so a

representative value of nC,0 = 6.8× 1016 m−3 was chosen based on prior RFP measure-

ments [44]. Because the effect of low-Z impurities on SXR emission is less significant

than aluminum, this is an acceptable compromise. The neutral density profile, n0(ρ),

was implemented in the same way as described in Section 5.5.

The SXR tomography diagnostic has some sensitivity to background emissions from

the non-thermal electron population, although it is far less sensitive to this than the

ME-SXR. In order to account for this offset, two additional background emissivity terms

have been included in the analysis, ε1 and ε2, which accounts for the offset in the 45

µm and 172 µm data respectively. Altogether, this model four free parameters for the

FIR model, θFIR = (ne,0, ne,1, αn, βn), and six free parameters for the SXR model, θSXR =

(Te,0, βT, wρ, nAl,0, ε1, ε2).
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The soft x-ray emissivity ε
(t)
Z (Te, ne, n0) was modeled using a well-validated software

model developed primarily by my colleagues P. Franz and L. Reusch [45], and the geom-

etry of the diagnostic is was modeled using the tools developed for the ME-SXR model

in Chapter 4. For each line of sight, the model solves the integral

fSXT(pi, θ) =
∫

ne(`)

[
∑
Z

nZ(`) ε
(ti)
Z
(
Te(`), ne(`), n0(`)

)]
d` (6.27)

where t is the beryllium filter thickness associated with the ith chord, pi is the chord’s

impact parameter, and ` is a measure of the distance along the chord. The model trans-

forms ` → (x, y) → ρ which is used to evaluate the profiles as defined above. This

will then be compared against the data dSXR = (d1, d2, . . . , dN) which has associated

uncertainties σSXR = (σ1, σ2, . . . , σN).

The FIR diagnostic was implemented by modeling the chord geometry depicted in

Figure 6.21 and directly solving for the line-averaged density

fFIR(pi, θ) =
1
Li

∫
ne(`)d`, (6.28)

where Li is the length of the ith chord. A more thorough model could be constructed

which models the measured phase shift ∆φ directly via Equation 2.9. However, given

that the uncertainty in the beam wavelength λ is low this was not considered to be

necessary. Note that some FIR chords are at φ = 250◦ and others are at φ = 255◦, which

is correctly accounted for in the geometry model.

All priors were chosen to be uniform, implemented according to Equation B.11.

Bounds were chosen to restrict parameters to to be physically meaningful (i.e., Te > 0)

and within the bounds of plausibility based on previous experience (i.e. Te < 1 keV for

these conditions). The upper and lower bounds for each parameter is given in Table 6.1.

These priors are represented as profiles in Figure 6.22, illustrating the allowable range.

All likelihoods were assumed to be Gaussian,
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Figure 6.22: Prior distributions over the (a) electron temperature, (b) electron density, and

(c) aluminum density profiles. The orange line represents the median and the shaded

regions encompass 1-, 2-, and 3-σ ranges of possible profiles.
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FIR Model SXT Model
Parameter Units Min Max Parameter Units Min Max
ne,0 1019 m−3 0.2 1.0 Te,0 eV 0.0 1e3
ne,1 1019 m−3 0.0 0.2 βT N/A 0.1 5.0
αn N/A 1.0 14.0 wρ N/A 0.2 1.0
βn N/A 1.0 14.0 nAl,0 1019 m−3 1e-4 1e-2

ε1 W m−3 sr−1 0 6
ε1 W m−3 sr−1 0 1

Table 6.1: The parameters for the SXR tomography and FIR models with associated units

and [Min, Max] prior bounds.

ln p(d|θ, I) = −1
2

N

∑
i

(
di − f (pi, θ)

σi

)2

(6.29)

where I represents the additional knowledge that has been included in assembling the

model. An additional 2% error has also been included in the SXR tomography likelihood

function to account for known systematic uncertainties [46].

The likelihood and priors were combined according to Bayes rule (see Appendix B)

to obtain the posterior distribution

p(θ|d, I) ∝ p(d|θ, I) p(θ). (6.30)

The posterior was sampled using the emcee MCMC software (see Appendix C). In this

analysis the FIR and SXR tomography models were not solved simultaneously. Rather,

the density profile was solved first using the FIR model and the result was taken as

an input to the emissivity model. This may lead to a slight underestimation of the

uncertainty on the Te profile due to ignoring potential correlations with ne. However, in

practice the uncertainty on the density profile was seen to be very small, meaning that

this effect is minimal.
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6.4.2 Analyzing the fits

Samples were obtained from FIR and SXR tomography posterior distributions, which

we will write as p(θFIR|d, I) and p(θSXT|d, I). Corner plots of the distributions are

shown in Figures 6.23 and 6.24 respectively. The diagonal entries show the marginal

distributions (Equation B.20) while the off-diagonals show the first-order correlations

(all but two variables have been marginalized). The corresponding profiles are shown

in Figure 6.25, along with 1-, 2-, and 3-σ uncertainty bands. Comparison to Figure 6.22

shows a significant reduction in uncertainty compared to the priors.

Most marginal distributions are seen to be nearly Gaussian, with the exception of

two shape parameters, βn and wρ (written as ∆ρ in the plot). The posteriors for these

parameters are maximal near the boundaries of their respective priors, leading to a non-

normal shape. This is not considered to be a problem, though, since at large values

both parameters exhibit “diminishing returns” (that is, a increasingly large change in

the parameter results in an increasingly small shift in the resulting profile). Several

parameters are strongly correlated (such as Te,0 and nAl,0), but these correlations are

approximately linear.

Next, we want to assess how well the model is able to reproduce the measured data.

This is an important check which will provide us with confidence in the quality of the

model. The model measurements in this section will be based on the means of the

marginal posterior distributions for each parameter,

〈θi〉 =
∫

p(θi|d, I)θidθi, (6.31)

which will then be plotted against the measured data. For convenience I will refer to

these as being the “best-fit” parameters, although that is not a proper Bayesian terminol-

ogy.

Figure 6.26 shows the comparison between the best-fit FIR model and the FIR data.
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Figure 6.23: Corner plot showing marginal (diagonals) and first-order joint (off-

diagonals) distributions for parameters in the FIR model posterior distribution for t = 25

ms.
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Figure 6.24: Corner plot showing marginal (diagonals) and first-order joint (off-

diagonals) distributions for parameters in the SXR tomography model posterior dis-

tribution for t = 25 ms.
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Figure 6.25: Posterior distributions over the (a) electron temperature, (b) electron den-

sity, and (c) aluminum density profiles. The orange line represents the median and the

shaded regions encompass 1-, 2-, and 3-σ regions of all possible profiles.
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Figure 6.26: Results for the FIR fit showing (left) the measured data compared with the

best-fit model and (right) the reconstructed 2D best-fit density profile.

Agreement is generally good, although the FIR data exhibits some small variation which

is above the reported noise level but not accounted for in the model. Figure 6.27 shows

the same comparison for the SXR tomography data. As with the FIR, the model does

a very good job replicating the SXR data. Finally, Figure 6.28 shows a comparison be-

tween the reconstructed SXR emissivity and a direct inversion using the Cormack-Bessel

technique (Section 2.3.3). The best-fit model closely matches the tomographic inversion

while providing significantly more information about the underlying plasma. Taken to-

gether, these assessments allow us to have a high degree of confidence in the underlying

model and the resulting reconstructed profiles.

To study the possibility of transport barrier formation, we want to evaluate the gra-

dient of the best-fit profiles. As shown in Figure 6.29, the spacing (or packing) between

adjacent flux surfaces is not even throughout the poloidal cross-section. The helical per-

turbation compresses flux surfaces between itself and the wall, and so physical profiles

which are constant along flux surfaces will be steepest in this region. In order to evaluate

this geometry, the profiles were evaluated along a chord which passes through the origi-

nal (Shafranov-shifted axisymmetric) magnetic axis and the helical o-point. The distance

along this chord is represented by the coordinate X (with a capital letter). It is assumed
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Figure 6.27: SXR tomography best-fit model compared with the input data for each

diagnostic channel.

Figure 6.28: Comparison between the reconstructed SXR emissivity profile using (left)

the best-fit model and (right) the Cormack-Bessel tomographic inversion.
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that the maximum gradient lies along this chord such that max |∇Te| = max |dTe/dX|.

The evolution of ∇Te will be considered further in Section 6.4.3.

Figure 6.29: Profiles and associated gradients were evaluated along a chord passing

through the location of the axisymmetric magnetic axis and the helical o-point. Distance

along this line is represented by the X coordinate.

Drawing samples from a multidimensional posterior distribution defined by a com-

plex model using an MCMC (or any other) algorithm is not a quick process. Al-

though ideal for thoroughly analyzing a single time point, the computational require-

ments are prohibitive when attempting to analyze profile evolution over dozens of time

points. In order to compensate for this, the MCMC sampling procedure was replaced

with a Gaussian approximation using a nonlinear least-squares algorithm (based on

scipy.optimize.curve_fit [47]) which uses bounds to enforce the uniform priors. The

algorithm produces a mean parameter vector µθ which describes the best-fit and a covari-

ance matrix Σθ which describes the shapes of the distributions. Samples can be drawn

using scipy.stats.multivariate_normal.rvs, which is based on Cholesky decompo-

sition. An comparison between the resulting posterior Te profile using the Bayesian
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Figure 6.30: Comparison between the inferred Te profile using Bayesian inference (left)

and non-linear least squares (right).

MCMC method and the Gaussian least-squares approximation is shown in Figure 6.30.

As anticipated, the posterior profiles are very nearly identical.

The next step is to extend this analysis to multiple time points. The algorithm will

proceed as follows. For each time point:

1. Determine the best-fit θFIR using the least-squares method, using the previous fit

as a starting point.

2. Determine the best-fit θSXT using the least-squares fitting method, taking θFIR as

given and using the previous fit as a starting point.

3. Evaluate the profiles across the chord X and calculate the gradients.

4. Assess uncertainties by ensembling over samples drawn from N (µ, Σ).

5. Store the results and precede to the next time point.

It is worth pointing out that this procedure does have some weaknesses. Since the

FIR and SXT models are solved individually rather than together it is not a proper
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IDA procedure, and may not properly interpret the uncertainty. This analysis is also

prone to over-estimating the temperature in the edge. SXR tomography signals fall

off with temperature and are therefore very low in the edge region, providing a poor

constraint. Therefore the edge Te should be viewed as an extrapolation outside of the

fitted region. The chosen model also does not explicitly enforce Te → 0 at the wall.

This could be corrected with the addition of edge measurements (such as from Thomson

scattering) and/or a modified profile model, but since this analysis is focused on core

confinement (where the signal is strong) this was not considered to be a major flaw.

Finally, this analysis strictly enforces a helical symmetry based on the underlying SHEq

reconstructions, so any behavior which deviates from this symmetry will not be detected.

Finally, before moving on to the profile evolution results, I would like to discuss why

the ME-SXR diagnostic was not used in this analysis as it was originally intended to be.

As discussed throughout Section 6.3, the thick 450 µm Si absorber gives the ME-SXR a

strong sensitivity to x-rays in the low-HXR part of the spectrum. Although this is not a

problem when the population is mostly thermal, high-performance QSH plasmas in the

MST feature a significant population of runaway electrons which constantly emit HXR

radiation and complicate interpretation of the measurements. This could addressed by

modeling the emissivity from a non-Maxwellian distribution, but that is a complicated

task beyond the scope of this analysis. We could have also have added additional offset

terms (like ε1 and ε2 in the SXR tomography model) to account for the HXR contami-

nation, but that would have added eight additional free parameters to the model which

would greatly increase the required computational time and the probability of over-

fitting. So, the present approach was adopted where SXT data was used to extract Te

and the ME-SXR was used separately to diagnose the runaway population.
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6.4.3 Temperature and density profile evolution

The results of the time-resolved analysis are summarized in Figures 6.31 and 6.32, which

show the evolution of the equilibrium profiles and profile gradients, respectively. Profiles

are plotted as a function of the spatial X coordinate in order to clearly demonstrate the

spatial structure. Consistent with previous observations, we see in Figure 6.31 (b) that

the electron density is well-confined throughout the discharge and changes very little

in response to the resumption of tearing activity at ∼ 26 ms. At most there is a slight

increase in the core electron density that builds up during the latter half of the quiet

phase, but this effect is small. As was seen in Figure 6.26, the density profile is very

broad and only weakly helical in character. The observed electron density gradient,

|∇ne| ≈ 4× 1019 m−4, is steep, but less-so than observed in high-performance PPCD

plasmas [48].

The temperature profile, however, displays a strongly helical character and evolves

significantly during the course of the plasma discharge. A seen in Figure 6.31 (c), a broad,

hot temperature structure develops during the quiet phase, when secondary mode activ-

ity is minimal. This structure is seen to collapse rapidly at the transition to the dynamic

phase, leaving behind a hot peaked core surrounded by a cooler stochastic region. This

hot core survives until the plasma begins to fall off at the end of the discharge. This

is illustrated in Figure 6.33, which shows the reconstructed Te cross-section at two time

points only 4 milliseconds apart, one before the resumption of tearing activity and one

after. The electron pressure, p = neTe, is significantly increased in the quiet phase relative

to the rest the plasma lifetime.

The maximum gradient reaches its zenith during the quiet period (|∇Te| ≈ 3.5 keV

m−1), but remains high (|∇Te| ≈ 1.5 keV m−1) around the remnant hot core throughout

the duration of the discharge. This is similar to the gradients observed in RFX [12], and

strongly suggest the formation of a transport barrier. Note that Figure 6.32 (c) shows a

very strong positive temperature gradient forming around 26 ms. This seems to be due
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Figure 6.31: Plasma profile evolution for a single high-performance QSH plasma. Panels

show: (a) dominant and secondary mode amplitudes; the reconstructed (b) electron

density, (c) electron temperature and (d) electron thermal pressure profiles as a function

of the X coordinate; and (e) core aluminum density.
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Figure 6.32: Plasma profile gradients for a the reconstructed QSH plasma shown in Fig-

ure 6.31. Panels show: (a) dominant and secondary mode amplitudes; the reconstructed

(b) electron density, (c) electron temperature, and (d) electron pressure gradients as a

function of the X coordinate; and (e) magnitude of the maximum Te gradient, ignoring

artifacts.
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to a small, highly-localized kink in the reconstructed profile shape and is likely a quirk

of Equation 6.25. This artifact was ignored in Figure 6.32 (d) and in later analyses.

Figure 6.31 also shows an ∼ 50% increase in the aluminum ion density during the

quiet phase, suggesting a significant improvement to thermal ion confinement coinciding

with the improved electron temperature confinement. This observation is consistent

with the hypothesis that a broad internal transport barrier has formed during the quiet

phase. Unfortunately this analysis does not resolve the nAl ion spatial structure, so it

is unknown to whether the improved confinement is global (like ne) or restricted to the

helical core (like Te).

This analysis was performed on several additional MST plasmas other than the one

presented in this Section. These reconstructions confirmed the results that were pre-

sented here, although it was observed that reconstructions for higher-density QSH plas-

mas showed overall reduced confinement. Figure 6.34 presents one such reconstruction,

which is of particular interest because the electron density is significantly higher than

for the plasma discussed above, and its flattop does not exhibit a quiet phase at all. Con-

sequently, a region of broad thermal confinement does not develop, although a small hot

spot does form in the plasma core. The temperature gradient is also less-steep, owing in

part to the overall lower Te, and the aluminum density decreases throughout the flattop,

suggesting that ions are not well-confined.

6.4.4 Discussion: enhanced confinement during QSH

The time-evolving profiles presented in the previous section makes it clear that confine-

ment is significantly improved during the MST’s QSH/SHAx state. For plasmas which

exhibit a quiet phase, this improvement is substantial: a broad Te structure forms with

steep gradients suggestive of a transport barrier, and the electron density increases, and

impurity ions accumulate. It was also seen (Section 6.3) that runaway electrons are well-

confined in this phase, suggesting the existence of good flux surfaces. The situation
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Figure 6.33: Comparison between the reconstructed 2D temperature profiles (a & b)

for the best-fit parameters at 25 ms (quiet phase) and 29 ms (dynamic phase) and the

associated gradients (c & d). A significant reduction in the size of the hot spot can be

seen, corresponding to a relaxation in the gradient. Note that the small peak near the

core in (d) is likely a fitting artifact.
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Figure 6.34: Plasma profile evolution for a single high-density QSH plasma with no quiet

period. Panels show: (a) dominant and secondary mode amplitudes, the reconstructed

(b) electron density, (c) electron temperature, (d) maximum temperature gradient, and

(e) core aluminum density.
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is somewhat akin to PPCD, but spontaneously self-organized rather than induced by

applied current drive. After a few milliseconds, secondary mode activity suddenly re-

sumes. The broad thermal structure is reduced, but a hot helical core survives. The

impurity ion concentration drops, and the runaway electron population is rapidly re-

duced as stochasticity is restored. However, if the plasma lacks a quiet phase (instead

going straight from the rising into the dynamic phase), the enhancements are reduced. It

is clear that the existence of a quiet phase early in the lifetime of the QSH state is predic-

tive not only to improved confinement during that phase, but also during the dynamic

phase.

The change from a broad to a narrow structure is reminiscent of the distinction made

at RFX between SHAx and DAx (double axis) equilibria [12]. DAx refers to an inter-

mediate equilibrium in which a large magnetic island has formed but has not grown

large enough to overtake the magnetic axis [49], leaving both a magnetic and helical axis

in the plasma separated by a separatrix. In the SHAx state the separatrix vanishes and

only the helical axis remains. The region of healed flux surfaces tends to be smaller

for DAx states than SHAx states, and correspondingly the region of enhanced thermal

confinement is smaller. A comparison between SHAx and DAx at RFX and MST temper-

ature profiles from this reconstruction are shown in Figure 6.35. The similarities in the

structure of the temperature profile are suggestive of similar underlying physics. Un-

fortunately, the SHEq reconstructions used in this analysis are not able to conclusively

diagnose the existence or lack of a separatrix, so further analysis is needed.

These measurements, for the first time, provide strong evidence supporting the for-

mation of a transport barrier during the QSH state in the MST. This is consistent with

both previous studies at RFX-mod and the theoretical model described in Section 6.2.1,

in which secondary tearing mode amplitudes are suppressed due to magnetic or flow

shear, leading to enhanced confinement and formation of a transport barrier. Unfor-

tunately, the uncertainty on ∇Te is too large to establish a direct phase relation with
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Figure 6.35: (Top) RFX Te measurements for plasmas exhibiting SHAx and DAx equilib-

ria, reproduced from Franz, et al. [12]. (Bottom) Temperature profiles during the quiet

(left) and dynamic (right) flattop phases, separated by only four milliseconds.
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oscillations in the dominant mode amplitude. This could be addressed in future work

by ensembling over multiple reconstructions, or by incorporating additional information

(such as Thomson scattering data) to better constrain the Te profile. However, the ob-

servation that ne changes very little over the course of the QSH state bolsters the claim

made in Section 6.2.2 that oscillations in emissivity, which were observed to vary with

the dominant mode amplitude, are due primarily to variation in Te.

As previously mentioned, there have been proposals that the QSH state could play a

role in the design of a hypothetical RFP fusion reactor [15]. In this context, the observa-

tion of enhanced confinement across a broad section of the plasma volume during the

quiet phase is very promising. However, before this behavior can be exploited we must

first understand the onset of the quiet phase, as well as what triggers its end. This is

not presently understood, but the presence of predator-prey oscillations in the magnetic

mode amplitudes and the SXR emissivity suggest that flow shears may be involved. This

has led me to develop a hypothesis for the quiet phase based on temporarily-increased

flow shear due to the sudden onset of magnetic mode locking.

In multi-helicity plasmas, it has been observed that when mode rotations temporar-

ily lock due to a sawtooth crash, the plasma bulk velocity tends to slow down very

rapidly along with it (on a τ < 1 ms timescale) [50]. This is partly attributed to the fact

that multiple magnetic islands are present in the plasma, meaning that a torque (arising

from the error field) is applied to multiple locations in the plasma volume. This rapidly

slows the fluid down through viscous coupling, before coming to rest at a lower, but

non-zero, velocity. In QSH, however, there is only the one core mode with a large am-

plitude, meaning that the torque is probably much less uniform, concentrated near the

location of the n = 5 island. Not only might this increase the slowing-down time, but

it is possible that the non-uniformity of the force could create a strongly-sheared flow

velocity profile. According to the Terry, et al. model (Section 6.2.1), this increased shear

might serve to further suppress the transfer of energy to secondary modes. This could
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potentially explain both the n = 5 mode’s sudden rise to very large amplitude and the

brief enhanced confinement regime that sets in once the mode amplitude has saturated.

Under this hypothesis, the resumption of low-amplitude tearing mode activity at the end

of the quiet phase is because the flow profile has had time to slow down and even out

such that the shear drops below some critical threshold. This also suggests that the way

to extend the good confinement period is to somehow inject some momentum into the

plasma rotation. For now this hypothesis remains unproven, but it provides a possible

avenue for future work (Section 7.3).

6.5 Turbulent fluctuations in QSH plasmas

One of the major results of Section 6.4.3 is that low-density QSH plasmas can exhibit

steep gradients, on the order ∇Te ∼ 2− 4 keV m−1. Large gradients like these tend to

drive turbulence in plasmas. For example, the large densities gradients that accumulate

near the edge in PPCD plasmas have been found to drive trapped electron mode (TEM)

turbulence during PPCD [48]. The steep ∇Te is raises the potential of microtearing tur-

bulence, a very high wavenumber temperature-driven cousin of the longer-wavelength

current-driven instability which dominates the standard RFP spectrum. Gyrokinetic

modeling of RFX-mod QSH states have suggested microtearing modes might be un-

stable in the transport barrier region [13], and limited experimental evidence seems to

support this [14]. In light of the observations of improved confinement during the QSH

period presented in the previous chapter, it is prudent to check if any new turbulent

fluctuations can be observed.

Section 6.5.1 will discuss how digitized ḃθ ≡ ∂bθ/∂t signals in the MST can be used

to detect high-frequency fluctuations. Section 6.5.2 will apply this methodology to QSH

plasmas, revealing the presence of a peak in the fluctuation spectrum around 600-1000

kHz which exhibits n = 5 symmetry and is only detectable when the helical structure
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is aligned with the magnetic coil. These results are preliminary, so further investigation

will be needed. Still, they suggest that the improved confinement of the QSH/SHAx

state may introduce new types of turbulent fluctuations.

6.5.1 Methodology

In order to retain sensitivity to fluctuations with frequencies in the hundreds of kHz,

this analysis was conducted on the ḃθ signals measured by the toroidal array prior to

passing through the integrator (which limits the bandwidth). These signals are digitized

at 3 MHz, meaning that FFT analysis can be used to sense fluctuations up to 1.5 MHz.

Since we are searching for fluctuations which potentially have mode numbers far above

the resolution of the toroidal array (n � 15), we will focus our analysis on single ḃ coil

measurements. The signals were divided into windows of ∆t = 0.1 ms, and FFTs were

performed using the numpy.fft package [38]. For a more sophisticated analysis wavelets

could be used, but given the high sampling rate of the input data this technique was

found to be sufficient.

We are ultimately interested in the the frequency spectrum for the integrated mag-

netic field fluctuations, so we need to “integrate” the ḃ signal by dividing each element

in the FFT by its corresponding frequency. We will write the Fourier transform of the

input signal as F [ḃ(t)] ≡ ḃ(ω) where ω = 2π f is the angular frequency. Then, the

measured signal is related to b(ω) by

ḃ(ω) = iωb(ω) (6.32)

where i is the imaginary unit. The input signal ḃ(t) is real, the power spectral density is

defined as
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S(ω) = 2 b(ω) b∗(ω) (6.33)

= 2
ḃ(ω) ḃ∗(ω)

|ω|2 (6.34)

where b∗ is the complex conjugate of b and ω > 0 is assumed. Note that the ω = 0

component has been dropped to avoid division by zero.

We can use two adjacent coils to estimate the toroidal mode n of an observed fluc-

tuation. This is accomplished by calculating the wavenumber spectrum S(k, ω), where

k = n/R is the toroidal wavenumber and R is the major radius at the position of the coil

(R = 1.25 m for the toroidal array). This technique has a resolution of of k = ±π/d,

so closer coils are able to resolve higher mode numbers. First, we calculate the cross-

spectrum between the two signals b1 and b2,

S12(ω) = b1(ω) b∗2(ω) (6.35)

which has an associated phase Θ12 = tan−1 =S12
<S12

. The local wavenumber is then given by

K(ω) =
Θ12(ω)

d
(6.36)

where d = 2πR|φ1 − φ2| = 0.25 m is the distance between adjacent coils in the toroidal

array. The wavenumber spectrum is then given by

S(k, ω) = I(k− K(ω); ∆k)
S1(ω) + S2(ω)

2
(6.37)

where ∆k sets the resolution on the mode number and

I(x, ∆x) =


1, if 0 ≤ x ≤ ∆x

0, otherwise .
(6.38)
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is a “boxcar” function used to isolate k to a wavenumber window. For a more detailed

(but still concise) discussion of this methodology, I refer the reader to J. Duff’s Ph.D.

thesis [51]. More thorough discussions can be found in standard signal processing text-

books.

6.5.2 Observation of high-frequency fluctuations during QSH

The power spectral density was computed for two coils in the toroidal array, one at

φ = 76◦ where the O-point of the helical structure is locked very close to the magnetic

coil (in-phase) and the other at φ = 42◦ where the O-point is locked on the opposite side

of the vacuum vessel. This is shown in Figure 6.36, which shows the SHEq reconstruction

at each toroidal angle. Although a reconstruction is more accurate (see Appendix D), we

can approximate the poloidal position of the O-point as

θop(φ) = 241◦ + 5 · φ− δ5, (6.39)

where 241◦ is the poloidal angle of the toroidal array and δ5 is the phase of the dominant

magnetic mode, as decomposed according to Equation 2.3. Coil locations were chosen

by selecting locations φ which minimize θop − 241◦ (that is, as close to φ = δ5/5 as

possible).

A substantial difference was observed in the fluctuation spectra for the in-phase coil

vs the out-of-phase coil. The in-phase coil, shown in Figure 6.37, shows a significant

suppression of fluctuations during most of the quiet phase. Increased activity appears

slightly before the end of the quiet phase and persists into the dynamic period. By the

t ≈ 30 ms, substantial activity can be seen in the 400-100 kHz range. This activity grows

even stronger after t = 35 ms, when the plasma current begins to ramp down (Figure

6.1 (d)). This evolution can be seen clearly in the top plot of Figure 6.39, which shows

the power spectral density averaged over the four windows indicated in Figure 6.37.
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Figure 6.36: Sheq reconstructions for φ = 76◦ and φ = 42◦, where the black dot repre-

sents the location of the toroidal array. The O-point is locked in-phase and out-of-phase

with the toroidal array, respectively.

Figure 6.38 shows the power spectral density for the out-of-phase coil. We still see the

suppression of activity during the quiet phase, but the development of high-frequency

activity in the dynamic phase is almost entirely absent. The bottom plot of Figure 6.39

shows that the spectrum changes only minimally as the plasma evolves. Even as the

plasma current begins to ramp down, we do not see the emergence of strong activity for

f > 400kHz. These observations have been repeated for multiple other QSH plasmas

with different locking phases, using different ḃθ coils in the toroidal array. The robustness

of these observations strongly suggest a connection between these observed fluctuations

and the orientation QSH state. This may have to due with the coil’s proximity to the

steep gradient region.

If this increased activity is connected to the orientation of the helical structure, it

should exhibit a clear n = 5 symmetry. This was tested by computing S(ω), averaged

over a 30-40 ms, for all 32 coils in the helical array. This is plotted versus φ in Figure 6.40,
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Figure 6.37: Spectrogram showing the evolution of the power spectral density of bp over

time when the helical O-point is locked near the toroidal array, showing significant high-

frequency activity. The windows highlighted in the mode amplitude plot are averaged

in Figure 6.39.
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Figure 6.38: Spectrogram showing the evolution of the power spectral density of bp over

time when the helical O-point is locked away from the toroidal array. Very little high-

frequency activity is observed.
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Figure 6.39: Time averaged spectra for the windows indicated in Figures 6.37 and 6.38,

respectively. Note that significant high-frequency activity occurs during the dynamic

phase only when the helical structure is aligned with the magnetic coil.
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showing a clear periodicity. θop − 241◦ is also overplotted, showing that the periodic

increases in high-frequency activity do indeed correspond to angles where the helical

structure is near the toroidal array. However, the intensity of the peaks show a toroidal

variation. This may be in-part due to the finite spacing of the toroidal array coils2

leading to variation in the distance of closest approach. However, it may also suggest the

presence of additional toroidal structure (such as a superposition of multiple n modes),

or a coupling to the error correction field.

The plot also shows a the same analysis but averaged from 15-20 ms, when the plasma

was still in a multi-helicity (MH) state. As expected, the MH case entirely lacks the n = 5

periodicity seen in the QSH case, confirming that the observation of periodic increases

in the spectrum is real and not due to systematic hardware effects.

Next, we want to estimate the wavenumber spectrum S(k, ω) in order to get an idea

of the n numbers this new “mode” might be operating at. A small dataset of 6 low-

density F = 0 plasmas exhibiting similar QSH properties was assembled, and Equation

6.39 was used to select the optimal coil locations. Equation 6.37 was averaged over a 5

ms window for each plasma, and then averaged together over the ensemble. The result is

shown in Figure 6.41. The same analysis was performed using early time points in order

to deduce S(k, ω) for equivalent multi-helicity plasmas, shown in Figure 6.42. Note that

in both cases +k is the ion drift direction and −k is the electron drift direction.

A broad “streak-like” feature can be seen in the 400-1000 kHz region of the QSH

spectrum which is absent in the MH spectrum. There is also substantial background

noise in this region for both spectra. The group velocity of can be estimated fom two

points within the streak:

2360◦ / 32 coils = 11.25◦ between each coil, corresponding to a shift in θop of 5 · 11.25◦ = 56.25◦.
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Figure 6.40: Increases in the power spectral density during QSH (top) show a clear n = 5

periodicity which aligns with the position of the helical O-point; during multi-helicity

(bottom), no periodicity is observed. Note that the activity around f ≈ 1.1 MHz for

φ > 300◦ is likely due switching noise from from the poloidal gap feedback system.
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Figure 6.41: Ensemble-averaged wavenumber spectrum S(k, ω) for low-ne QSH plasmas

exhibiting high-frequency fluctuations.
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Figure 6.42: Ensemble-averaged wavenumber spectrum S(k, ω) over the same dataset as

Figure 6.41 but during the early multi-helicity phase. Standard tearing mode activity

can be seen at the bottom of the plot, at f ∼ 10-30 kHz and k ≈ +0.05 cm−1.
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vg =
∂ω

∂k

≈ 2π(680− 500 kHz)
(0.08− 0.0 cm−1)

≈ 141 km s−1

(6.40)

The value of vg estimated above is quite high. To put it into context, we can com-

pare it against the diamagnetic electron drift velocity for these plasma conditions. The

diamagnetic electron drift is driven by the thermal pressure gradient and has a velocity

given by

v∗e = −
∇p× B

eneB2 (6.41)

where p = neTe + niTi is the thermal pressure and e is the electron charge. Although the

helical geometry somewhat complicates the the direct calculation of the cross product,

by focusing solely on the region where the gradient is steepest some simplifications can

be assumed. By assuming that the vectors are nearly perpendicular with ∇p ≈ ∂p
∂r r̂ and

B ≈ Bθ θ̂, the (scalar) diamagnetic electron drift speed reduces to

v∗e ≈
∂p
∂r

/
(
eneB

)
. (6.42)

In the steep-gradient region we have ne ≈ 0.3× 1019 m−3, B ≈ 0.35 T, and (∂p/∂r) ≈ 4

kPa m−1 during the quiet phase and 3 kPa m−1 during the rest of the flattop (see Figure

6.32). This results in v∗e ≈ 24 km s−1 in the quiet phase and ≈ 18 km s−1 later, which

for simplicity we will average out to v∗e ≈ 20 km s−1. This is significantly lower than

the group velocity estimate from S(k, ω) above.

One possible explanation is that the vg estimated above was artificially high due

to aliasing from wavenumbers beyond the resolution of the two-point technique, and

actually corresponds to a mode with k < 0 (that is, propagation in the electron drift
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direction). If we assume that the observed instability actually travels at the diamagnetic

electron drift speed, then we can estimate the range of wavenumbers we would expect

the fluctuations to fall within. By setting ω/k = v∗e, where k = n/R, we find n ≈

2πR f /v∗e, which gives n ∼ 200− 300 for an frequency range of f ∼ 600− 800 kHz. This

corresponds to k ∼ 5− 6 cm−1, which is well outside of the resolvable range for two

adjacent coils in the toroidal array.

Attempts to examine the fluctuations using coils with closer spacing have not yet

proven fruitful. No signatures of this new mode could be found in the dense array ḃφ

measurements, though it is possible that these fluctuations are drowned out by the am-

bient background fluctuations that tend to dominate toroidal component measurements.

Still, that means that the turbulence does not lead to an enhancement of bφ. More cu-

riously, no substantial activity in the 400-1000 kHz range was observed in the ḃθ coils

on the dense array either, despite examining multiple plasmas with different locking

phases. It is unclear if this is due to the φ dependence that was observed previously, or

if something about the mode favors inboard rather than outboard measurements. This

would be somewhat unusual, given a toroidal plasmas tendency to shift towards the out-

board side of the vessel. Additional measurements will be needed to clarify the mode’s

properties and identity.
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Chapter 7

Summary and future work

A versatile new multi-energy soft x-ray (ME-SXR) diagnostic has been developed as part

of a collaboration between UW-Madison and PPPL. It has been calibrated, installed, and

tested on the MST for a wide range of plasma conditions. Its ability to accurately infer

core Te and nZ has been demonstrated. It serves as a compliment to an existing suite of x-

ray diagnostics, including a diode-base soft x-ray tomography array, a Ross spectrometer,

and a hard x-ray camera. Together with FIR interferometry, these diagnostics were used

to explore the temporal evolution of the saturated quasi-single helicity state in the MST.

Time-resolved 2D Te profiles of an MST QSH plasma were produced for the first time.

Clear evidence was found of a brief period of significantly enhanced confinement.

Section 7.1 reviews the progress that has been made by the ME-SXR diagnostic pro-

gram at UW-Madison. Section 7.2 reviews the physics results presented in this thesis.

Finally, Section 7.3 discusses the remaining loose threads and recommends ideas for

future work which naturally follow from the results presented in this thesis.

7.1 ME-SXR: A versatile new soft x-ray diagnostic

The ME-SXR diagnostic is based on a novel calibration PILATUS3 100K hybrid photon

counting detector. The lower threshold for each of the detector’s nearly one-hundred
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thousand pixels can be independently adjusted in-situ, permitting wide range of appli-

cations. Previously tested on C-Mod, the ME-SXR program was expanded to the MST

in order to continue testing and developing the technology. MST plasmas provide ideal

conditions due to their relatively high temperatures, novel magnetic configuration, and

native presence of mid-Z impurities (aluminum).

An energy calibration was performed to determine the mapping between pixel trim-

bit settings and the corresponding energy sensitivity. This was done by exposing the

detector to multiple sources of known photon energy, generated by x-ray fluorescence

of a specified target, and scanning the trimbit setting. Using the calibration results, the

pixel-to-pixel variation across the detector was examined. Since the trimbit setting must

take an integer value between 0-63, some deviation from the requested lower threshold

is unavoidable. This deviation was found to be ∆E < 100 eV for the high gain (lowE)

settings and ∆E < 200 eV for standard gain (midE) settings. The pixel’s sensitivity is

well-modeled by an S-curve, and the widths were found to be σE = 300 eV for lowE

settings and σE = 550 eV for midE settings. A simple model for charge sharing, the

phenomenon which occurs when the energy from an absorbed photon is split between

two adjacent pixels, was validated for both threshold ranges.

The ME-SXR diagnostic was installed on the MST in the Spring of 2018. A spatial

calibration using an insertable probe tip with an Fe-55 source was performed in order to

determine the line-of-sight of each pixel looking through the pinhole. The detector was

then commissioned for routine operation with plasmas. Multiple configurations were

tested, including high signal-to-noise 1D imaging, high spatial resolution 1D imaging,

and energy-resolved 2D imaging. The custom calibration was tested by doping the

plasma with argon gas, resulting in an increase in signal for thresholds below the 3 keV

emission lines. Sensitivity to runaway electrons, which feature strong emissions in the

lower hard x-ray range (∼ 10 keV), was also demonstrated.

Images collected during the initial phases of ME-SXR operation showed noticeable
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and consistent distortions. It was eventually determined that this was due to pulse-

pileup resulting from the extremely high flux of photons from Al+11 and Al+12 transition

lines at ∼ 2 keV. Even when the chosen threshold is set high, pulses from multiple low-

energy photons can pileup resulting in an apparent single high-energy photon being

counted. This was resolved by installing a Mylar filter which cuts the transmission at 2

keV down by an order of magnitude. Initially a 50 µm Mylar filter was used, but it was

found that sufficient numbers of low-energy photons were still transmitted as to distort

the apparent spectrum when using high-gain settings. Upgrading to a 100 µm Mylar

filter resolved this issue.

A sophisticated diagnostic forward model was developed to produce synthetic ME-

SXR measurements given a set of plasma input profiles. This model incorporates infor-

mation from the spatial and energy calibrations as well as atomic physics modeling from

ADAS to simulate the underlying physics, geometry, and detector response. Charge-

exchange with the neutral hydrogen population was shown to be important when simu-

lating MST plasmas. A systematic uncertainty in the model of σm ≈ 18% was estimated,

due mostly to the uncertainty in the Mylar filter thickness.

The ME-SXR diagnostic was used to observe plasma temporal evolution. Photon

counts were seen to evolve appropriately as the plasma heats up, and decrease as the

plasma cools. A method for identifying the energy of an emission line was presented,

and tested using Ar-doped plasmas. A technique for determining the electron tem-

perature profile by directly inverting the emissivity was shown to agree with Thomson

scattering measurements up to an ∼ 180 eV offset, which may be due to the presence of

background hard x-rays from the runaway population known to develop during PPCD.

The ME-SXR diagnostic was also incorporated into an integrated data analysis (IDA)

framework based on Bayesian inference. Using this methodology, it was shown to be

possible to simultaneously extract Te and nZ profiles from ME-SXR and Thomson scat-

tering data. The resulting profiles can be further refined by adding the SXR tomography
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and NICKAL2 diagnostics into the analysis. The ability to simultaneously fit multiple

diagnostics to their respective data using physically-reasonable profiles provides a high

level of confidence for the ME-SXR forward model.

7.2 Physics results

The 2D structure and evolution of the Te profile have been studied for the first time in

a QSH plasma on the MST. This was permitted by recent advances in x-ray diagnostic

modeling which allowed the SXR tomography diagnostic to be operated with thinner

beryllium filters. A brief self-organized period of significantly enhanced thermal con-

finement was observed during a brief “quiet” phase at the start of the QSH flattop.

The good confinement region was observed to contract, but not vanish, during the “dy-

namic” phase of the flattop, defined by the resumption of (small-amplitude) secondary

tearing mode activity.

Large populations of runaway electrons were seen to form during low density QSH

plasmas. The runaway population energy was seen to peak at Er = 18.2 keV during

the rising phase and remain high at Er = 15.3 keV during the quiet flattop phase before

dropping substantially to Er = 5.0 keV during the dynamic flattop phase. This reinforces

the view that a broad region of restored flux surfaces exist in the core during the quiet

phase, but are rapidly lost as tearing mode activity resumes. These suddenly-liberated

fast electrons then rapidly stream to the wall, where they create a burst of target emis-

sion. The runaway x-ray spectrum was also seen to be spatially uniform.

The physics of the transition to, and persistence of, the saturated quasi-single he-

licity state is not well-understood. A theoretical model put forward by Terry, et al.

proposes that magnetic or velocity flow shear de-correlates the turbulent eddies and

suppresses the transfer of energy between the core-resonant dominant and secondary

tearing modes. This allows energy to accumulate in the dominant mode, driving it to
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large amplitudes. The proposed mechanism is similar to the L-H transition in tokamaks,

which is governed by flow shear. This model also predicts a predator-prey relationship

between the dominant and secondary modes, as well as the formation of a thermal trans-

port barrier which oscillates along with the dominant mode amplitude. Direct evidence

of a predator-prey relationship between b̃5 and secondary mode amplitudes was pro-

vided by ensembling over small fluctuations in the QSH flattop. The fluctuations were

observed to be nearly 180◦ out of phase. SXR tomography measurements were used

to establish an in-phase relationship between the emissivity gradient ∇ε and b̃5. This

is strongly suggestive of the transport barrier dynamics predicted by the model. Both

of these observations represents successful tests of the model and provide some confi-

dence that the underlying mechanism (reduction of mode coupling due to shear) is an

important part of QSH physics.

A novel analysis based on Bayesian inference, constrained by SXR tomography and

FIR interferometry data, has allowed the observation of time-resolved Te profiles during

QSH.The Te profile is seen to broaden during the quiet phase. Simultaneously, the nAl

concentration increases, and a modest increase in ne can be seen. At the transition to

the dynamic phase the hot spot rapidly collapses down to the helical core, while ne

is largely unperturbed. The helical hot spot remains through the rest of the plasma

discharge. These dynamics show that Te confinement is strongly linked to secondary

mode amplitude, as predicted by the Terry, et al. model. It also shows strong evidence of

the formation of an internal thermal transport barrier, with steep gradients developing

around the hot core.

Unexpected fluctuations in the magnetic spectrum were observed to exist in the 400-

1000 kHz range during high-performance QSH plasmas. These fluctuations were found

to be highly localized, and could only be detected when the helical O-point was posi-

tioned near the toroidal array coils. However, some irregularities were seen in this n = 5

pattern, and the fluctuations could not be detected on the dense array. The wavenum-
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ber range could not be determined due to aliasing, but a rough estimate puts the mode

in the n = 200 − 300 range. This data is reminiscent of microtearing modes in RFX-

mod, which have been predicted to be unstable using gyrokinetic modeling. These are

very short-wavelength fluctuations driven by steep gradients in the electron temperature

profile, as have previously been observed to develop in RFX-mod and have now been

observed in the MST. However, more work will be needed to confirm the identity of

these fluctuations.

7.3 Suggestions for future work

The next phase of the ME-SXR project is currently underway at the WEST (Tungsten

Environment Steady-state Tokamak) facility in Cadarache, France [1]. WEST is a long-

pulse tokamak which aims to sustain plasma discharges up to 1000 seconds. This long

duration is highly favorable for the detector’s ∼ 500 Hz data collection rate. A hard

x-ray variation of the multi-energy concept (ME-HXR), which incorporates a cadmium

telluride-based PILATUS detector, is currently under development for WEST [2]. An Si-

based ME-SXR diagnostic like the one described in this thesis will also be installed. This

system will be used to simultaneously diagnose plasma thermal properties while also

tracking core impurity accumulation, which is critical for sustaining the plasma in the

tungsten-rich ITER-like environment. It is possible that two Si-based PILATUS detectors

may be installed, in which case tomographic inversion techniques can also be tested.

Aside from WEST, the ME-SXR is also being used in the MST to study runaway electron

generation and suppression in tokamak plasmas.

There is still work to be done on ME-SXR diagnostic development. The most pressing

issue is to measure the saturation behavior of the PILATUS detector using the custom

calibrations. This will require a much higher-flux x-ray source than was used to perform

the calibration trimbit scans, and requires a secondary measurement of the true photon
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count rate. Such a measurement would be invaluable, though, for determining whether

the measurements are being affected by dead time or pulse-pileup. It would also be

worthwhile to develop a physics-based model of the charge-sharing behavior. This could

be used to determine the limits of the heuristic model presented here and to better

account for the effect in a forward model.

The ME-SXR model presented in Chapter 4, while thorough, assumes that the plasma

electron distribution function is Maxwellian. This is not always a good assumption, as

seen with the buildup of runaway populations during some phases of QSH. It should

be possible to develop a model a model based on a non-Maxwellian distribution with

a high-energy tail, such as the kappa distribution. Although it would be challenging,

significant progress has already been made modeling non-Maxwellian emission spectra

in the context of astrophysics [3]. This could plausibly be adapted into a fusion plasma

model, allowing for the simultaneous diagnosis of thermal and non-thermal properties.

The greatest difficulty would likely be modeling the non-Maxwellian rate coefficients

〈σv〉 for mid-to-high Z impurities, which are not commonly found in the astrophysical

setting.

It would be worthwhile to continue improve the characterization of thermal transport

during helical MST equilibria. The most direct task remaining is to make a direct esti-

mate of the χe profile, thereby proving that the observed structure is indeed indicative

of a thermal transport barrier. It would also be worthwhile to reduce the uncertainty of

of the inferred Te profiles in order to more directly correlate transport barrier strength

(∇Te) with tearing mode amplitude during flattop fluctuations. This could most readily

be accomplished by incorporating Thomson scattering measurements, though this can

be challenging due to the low ne required to achieve a high-performance QSH/SHAx

state. A more thorough study of impurity transport during QSH would also be interest-

ing. Are the impurity ion density profiles broad, like ne, or do they peak in the helical

core? Finally, it would be of great interest to determine the physical mechanism behind
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the quiet phase, and to determine whether it can be extended by some form of active

control. Measurements of flow velocity using ion Doppler spectroscopy could help de-

termine whether the sudden increase in flow shear immediately following mode locking

is a sufficient explanation.

Finally, additional work will be needed to understand the source of the high-frequency

magnetic fluctuations observed when the helical structure is oriented near the ḃ coil. Are

these the result of a microtearing instability resulting from the formation of steep tem-

perature gradients, or maybe TEM driven by ∇ne (as in PPCD)? What is wavenumber is

associated with the mode? Why are the fluctuations not not visible in dense array mea-

surements? A good next step is use the full 64 bθ coils in the toroidal array, decreasing

the distance between adjacent coils and thereby increasing bandwidth for k. The lack

of a signature in dense array measurements should also be resolved. Comparisons can

be made with gyrokinetic modeling, although improved edge Te measurements may be

needed to reduce the uncertainty in the normalized gradient a/LT = a∇Te/Te.
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Appendix A

Python ME-SXR code

All of the code that I developed for ME-SXR operation, calibration, and modeling is

available for future reference at https://github.com/pdvanmeter/meSXR. Some modifi-

cations may be requiered to integrate the code with local systems, MDSplus tree imple-

mentations, etc. Also note that I have not included the emissivity databases due both to

their prohibitive size and because they are subject to the licensing agreement governing

ADAS.

This appendix contains the Python module that I wrote to arm the detector for data

collection on a runday. Although it is in the repository, I have reproduced it here because

it provides a good example of how to interface with and operate the PILATUS3 detector.

In particular I expect that future users will find the camserver class to be useful. This pro-

vides a relatively straightforward example of how to communicate with the PILATUS3

via socket connection. An example of the code’s usage is also provided.
1 #!/usr/bin/env python
2 # -*- coding: utf -8 -*-
3 """
4 Package: mesxr.operation
5 Module: camera
6 Author: Patrick VanMeter
7 Affiliation: Department of Physics , University of Wisconsin -Madison
8 Last Updated: January 2019
9

10 Description:
11 This module is an updated version of the camera operations code. This
12 version has been modified to work with the new naming conventions for
13 pixel configurations and contains other feature updates.
14
15 This code is made specifically for the PILATUS3 100K-M and might require

https://github.com/pdvanmeter/meSXR
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16 some modifications for use with other PILATUS models.
17 Usage:
18 TBD
19 Acknowledgements:
20 - Novimir Pablant for the original IDL code this module is loosely based upon.
21 - Luis Felipe Delgado -Aparicio , for heading the PPPL/MST collaboration.
22 - Daniel Den Hartog and Lisa Reusch , for advising me.
23 """
24 import socket
25 import time
26 import os
27 import re
28 import numpy as np
29 import tifffile as tif
30 import MDSplus
31 import mesxr.calibration.utilities as util
32
33 # Module -level constants for the camera - these should eventually be read in
34 COMP_NAME = ’dec1424 ’
35 PORT = 41234
36 IP_ADDR = ’127.0.0.1 ’
37 NUM_CHIPS = 16
38 M_SIZE_Y = 195
39 M_SIZE_X = 487
40 BASE_IMAGE_PATH = ’/home/det/p2_det/images/MST_data ’
41 TAKE_DATA_ADDR = ’aurora.physics.wisc.edu’
42
43 class camserver ():
44 """
45 An instance of this object is helpful in facilitating remote operation
46 of the camera via the camserver. This class is currently under development.
47 """
48 def __init__(self):
49 self.sock = socket.socket(socket.AF_INET , socket.SOCK_STREAM)
50 self.online = False
51 self.set_output_mode(’verbose ’)
52 self.set_timeout(None)
53 self.connect(IP_ADDR , PORT)
54
55 def __del__(self):
56 if self.online:
57 print(’Error detected. Automatically closing socket connection.’)
58 self.disconnect ()
59
60 def connect(self , ip_addr , port):
61 """
62 Establish a connection to the PILATUS detector.
63 """
64 try:
65 self.sock.connect ((ip_addr , port))
66 self.online = True
67 print(’Camserver connection established with ’ + COMP_NAME + ’.’)
68 except:
69 print(’Camserver connection cannot be established. Check settings.’)
70 self.online = False
71
72 def disconnect(self):
73 """
74 Close the connection with the PILATUS detector.
75 """
76 if self.online:
77 self.sock.close ()
78 self.online = False
79 print(’Disconnected from the camserver.’)
80 else:
81 print(’Alread disconnected from the camserver.’)
82
83 def execute(self , command):
84 """
85 Exectute a command on the camserver and wait for a return code.
86 """
87 if not self.quiet:
88 print(’CMD >> ’ + command)
89
90 if self.online:
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91 self.sock.send(command + ’\n’)
92 code , message = self.recieve ()
93 else:
94 code = -1
95 message = ’OFFLINE ’
96 print(’Must be online to execute commands.’)
97
98 if not self.quiet:
99 print(’p3det >> (’ + str(code) + ’) ’ + message)

100
101 return code , message
102
103 def wait(self , end_code):
104 """
105 Wait until a specified end code is returned.
106 """
107 code , message = self.recieve ()
108 while code != end_code and code != -1:
109 code , message = self.recieve ()
110
111 if not self.quiet:
112 print(’p3det >> (’ + str(code) + ’) ’ + message)
113
114 return code , message
115
116 def recieve(self):
117 """
118 Read the next socket output , out to the \x18 message termination code.
119 Consider implementing a timeout function if this becomes an issue.
120 """
121 if self.online:
122 end_of_message = False
123 message = ’’
124 while not end_of_message:
125 next_char = self.sock.recv (1)
126 if next_char == ’\x18’:
127 end_of_message = True
128 else:
129 message += next_char
130
131 # Remove the numerical code from the start of the message
132 code = int(message.split()[0])
133 message = ’ ’.join(message.split()[1:])
134 else:
135 code = -1
136 message = ’OFFLINE ’
137 print(’Must be online to communicate with the camserver.’)
138
139 return code , message
140
141 def set_timeout(self , timeout):
142 self.timeout = timeout
143 self.sock.settimeout(self.timeout)
144 print(’Camserver timeout set to ’ + str(timeout) + ’.’)
145
146 def set_output_mode(self , mode):
147 """
148 Set mode to either "verbose" or "quiet". This controls whether camera
149 commands and returned messages are output to the console.
150 """
151 if mode.lower() == ’quiet ’:
152 self.quiet = True
153 elif mode.lower () == ’verbose ’:
154 self.quiet = False
155
156 # --------------------------------------------------------------------------
157
158 def arm_detector(shot=0, mode=’cycle’, load_mds=False , write_mds=True ,
159 quiet=True , timeout=None , retrigger=False , rate_corr=True ,
160 acq_time =10, config_name=’ppcd_8_color ’, calibration_name=’midE’,
161 n_frames =30, exp_period =0.002 , exp_time =0.001 , delay=0,
162 image_path=’/home/det/p2_det/images/MST_data ’):
163 """
164 Description
165 ===============
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166 The main routine of
167 Parameters:
168 ===============
169 - shot = (int) The shot number corresponding to the given plasma discharge. This
170 is used in the resulting image filename.
171 - mode = (string) One of the following strings:
172 ’trigger ’ - Exposure is initiated by external trigger one time.
173 ’manual ’ - Exposure initiated by this script one time.
174 ’gate’ - Exposure is controlled by external gate signal one time.
175 ’cycle ’ - Exposure is initiated by external trigger repeatedly. The shot number
176 is also overridden by the current shot in the MDSplus tree. This is the mode
177 that should be set at the beginning of a run day. Use a keyboard interrupt
178 (CRTL+C) to end the loop and close the camserver connection.
179 - load_mds = (bool) Set to true to load default exposure settings from the MDSplus
180 tree. This overrides any values set manually.
181 - write_mds = (bool) When True ME-SXR data is written to the MDSplus tree. When False
182 data is only written to the specified output directory.
183 - quiet = (bool) Set to true to print all camserver outputs to the console.
184 - timeout = (float) Set the camera to time out if an exposure is not taken within the
185 specified number of seconds. Default is None , which is no limit.
186 - retrigger = (bool) Set to True to enable instant retrigger technology. This
187 increases the max count rate but may cause problems with the
188 calibration.
189 - rate_corr = (bool) Enable to use the rate correction files loaded during
190 calibration. This is not needed used running in the ’dectris ’
191 calibration mode.
192 - acq_time = (int) Time in seconds to wait while cycling after data is written in the
193 tree before reading in the next shot number. This may need to be extended
194 if a long many diagnostics are running.
195 - calibration_name = (string) The name used for the desired calibration.
196 Use ’dectris ’ to load factory calibrations
197 - config_name = (string) The name associated with the desired trimbit configuration.
198 For the ’dectris ’ calibration this is the command passed to the
199 camserver (e.g. ’setthr 4000 ’).
200 - n_frames = (int) The number of exposures to take once initialized.
201 - exp_period = (double) The cycle time for an exposure period , in seconds. This is
202 the time from the start of one exposure until the start of the next exposure.
203 - exp_time = (double) The length of time for each exposure , in seconds. This should
204 be shorter than exp_period.
205 - image_path = (str) Change this to save files in a different directory.
206 This is generally useful for testing.
207 Returns:
208 ===============
209 - success = (bool) True if the function executes successfully , false if
210 any errors are thrown.
211 """
212 if load_mds:
213 print(’Loading default exposure settings from the MDSplus tree.’)
214 try:
215 mesxr = MDSplus.Tree(’mst_me_sxr ’, shot=-1)
216 n_frames = mesxr.getNode(r’.CONFIG:N_IMAGES ’).getData ().data()
217 exp_time = mesxr.getNode(r’.CONFIG:EXPOSUR_TIME ’).getData ().data()
218 exp_period = mesxr.getNode(r’.CONFIG:EXPOSUR_PER ’).getData ().data()
219 delay = mesxr.getNode(r’.CONFIG:DELAY ’).getData ().data()
220
221 print(’n_frames: ’ + str(n_frames))
222 print(’exp_time: ’ + str(exp_time))
223 print(’exp_period: ’ + str(exp_period))
224 print(’delay: ’ + str(delay))
225 except:
226 print(’ERROR: Could not load settings from the model tree.’)
227
228 # Make sure the exposure period is permissible
229 if exp_period <= exp_time + 0.001:
230 exp_period = exp_time + 0.001
231
232 filename = ’s’ + str(shot) + ’.tif’
233 settrims_prefix = ’autotrim_ ’
234 setdacs_filename = ’setdacs_b01_m01.dat’
235 base_shot = int(shot /1000)
236
237 config_path = os.path.join(’/home/det/meSXR/configurations/’, calibration_name ,

config_name)
238 setdacs_path = os.path.join(config_path , setdacs_filename)
239
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240 # Write settings to the model tree , if desired
241 if write_mds:
242 set_model_tree(n_frames , exp_period , exp_time , delay , config_path ,

setdacs_path)
243
244 # Camserver commands
245 command_nimages = ’nimages ’ + str(n_frames)
246 command_expperiod = ’expperiod ’ + str(exp_period)
247 command_exptime = ’exptime ’ + str(exp_time)
248 command_delay = ’delay ’ + str(delay)
249
250 # Select camserver exposure mode - see function description
251 if mode.lower() == ’trigger ’:
252 command_exposure = ’ExtTrigger ’ + filename
253 elif mode.lower () == ’manual ’:
254 command_exposure = ’Exposure ’ + filename
255 elif mode.lower () == ’gate’:
256 command_exposure = ’ExtEnable ’ + filename
257 elif mode.lower () == ’cycle’:
258 command_exposure = ’ExtTrigger ’ + filename
259 else:
260 print(’ERROR: Mode selection not recognized. Defaulting to manual.’)
261 command_exposure = ’Exposure ’ + filename
262
263 # Extablish the connection to the camserver
264 try:
265 print(’Attempting to open socket connection on ’ + COMP_NAME + ’.’)
266 cam = camserver ()
267
268 # Configure client settings
269 if quiet:
270 cam.set_output_mode(’quiet ’)
271
272 cam.set_timeout(timeout)
273
274 if calibration_name == ’dectris ’:
275 cam.execute(’setCu ’)
276 cam.execute(config_name)
277
278 else:
279 # Set up camera settings
280 cam.execute(’dacoffset off’)
281 cam.execute(’LdCmndFile ’ + setdacs_path)
282
283 # Load the trimbit configuration
284 for index in range(NUM_CHIPS):
285 settrims_filename = settrims_prefix
286 settrims_filename += ’b01_m01_c {0:02d}.dat’.format(index)
287 cam.execute(’prog b01_m01_chsel 0x0’)
288 cam.execute(’trimfromfile ’ + os.path.join(config_path ,
289 settrims_filename))
290
291 # Reset the readout chip selection
292 cam.execute(’prog b01_m01_chsel 0xffff ’)
293
294 # Manually disable flat -field correction
295 cam.execute(’ldflatfield 0’)
296
297 # Set the pixel rate correction
298 if rate_corr:
299 print(’Enabling rate correction.’)
300 cam.execute(’ratecorrlutdir ContinuousStandard_v1 .1’)
301
302 # Set up remaining exposure settings
303 cam.execute(command_nimages)
304 cam.execute(command_expperiod)
305 cam.execute(command_exptime)
306
307 if delay != 0:
308 cam.execute(command_delay)
309
310 # Disable instant retrigger
311 if not retrigger:
312 cam.execute(’setretriggermode 0’)
313
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314 if mode == ’cycle ’:
315 # To get the current shot from Aurora
316 conn = MDSplus.Connection(TAKE_DATA_ADDR)
317
318 cycle = True
319 while cycle:
320 try:
321 # Get the next shot number from the tree
322 shot = int(conn.get(’current_shot ("mst")’)) + 1
323 base_shot = int(shot /1000)
324 filename = ’s’ + str(shot) + ’.tif’
325 command_exposure = ’ExtTrigger ’ + filename
326
327 output_path = os.path.join(image_path , str(base_shot), str(shot))
328 command_imgpath = ’imgpath ’ + output_path
329 cam.execute(command_imgpath)
330
331 # Write out the trimbit configuration
332 cam.execute(’imgmode p’)
333 cam.execute(’imgonly trimbit.tif’)
334
335 print(’Waiting for trigger for shot ’ + str(shot) + ’.’)
336 cam.execute(command_exposure)
337 cam.wait (7)
338 print(’Data collected for shot ’ + str(shot) + ’.’)
339
340 # Write data to tree if desired
341 if write_mds:
342 write_to_tree(shot , n_frames , exp_period , exp_time ,
343 delay , output_path)
344
345 # Wait an appropriate amount of time for the shot to increment
346 time.sleep(acq_time)
347
348 except KeyboardInterrupt:
349 cam.execute(’k ’)
350 print(’\nME -SXR trigger manually disarmed. Cylcing stopped.’)
351 cycle = False
352 else:
353 # Use the supplied shot number for a single exposure
354 output_path = os.path.join(image_path , str(base_shot), str(shot))
355 command_imgpath = ’imgpath ’ + output_path
356 cam.execute(command_imgpath)
357
358 # Write out the trimbit configuration
359 cam.execute(’imgmode p’)
360 cam.execute(’imgonly trimbit.tif’)
361
362 print(’Beginning exposure.’)
363 cam.execute(command_exposure)
364 cam.wait (7)
365
366 cam.disconnect ()
367 return True
368 except:
369 print(’ERROR: Camera comunication error. Check settings.’)
370 return False
371
372 def write_to_tree(shot , n_frames , exp_period , exp_time , delay , imgpath):
373 """
374 This should be run after every data acquisition period. Given a shot number and
375 time parameters , this loads in the output tiff files , generates a time base ,
376 and loads the data into the tree.
377 """
378 # Load shot data from the output tiff files
379 data = np.zeros ([M_SIZE_X , M_SIZE_Y , n_frames ])
380 for index in range(n_frames):
381 fname = os.path.join(imgpath , ’s{0:010d}_{1:05d}.tif’.format(shot , index))
382 try:
383 data[:, :, index] = tif.imread(fname).T
384 except:
385 print(’ERROR: Data acquisition failed for shot {0:010d} frame {1:05d}.

Setting to -1.’.format(shot , index))
386 data[:, :, index] = -1
387
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388 # Generate the time array
389 time = ( np.array([n*exp_period + exp_time /2. for n in range(n_frames)]) +
390 delay )*1000.
391
392 # Write data and settings to mdsPlus
393 try:
394 # Connect to the tree
395 #mesxr = MDSplus.Tree(’me_sxr_ext ’, shot , ’NORMAL ’)
396 mesxr = MDSplus.Tree(’me_sxr_ext ’, shot , ’EDIT’)
397
398 # Write image data with time points
399 imagesNode = mesxr.getNode(r’.ME_SXR_EXT:IMAGES ’)
400 compiled_data = MDSplus.Data.compile("BUILD_SIGNAL($1,, $2)", data , time)
401 imagesNode.putData(compiled_data)
402
403 # Write camera settings and configuration data
404 mesxr.write()
405 print(’Data for shot {0:10d} written to the tree.’.format(shot))
406 except Exception as e:
407 print(’ERROR: Writing to MDSplus tree failed.’)
408 print(str(e))
409
410 def set_model_tree(n_frames , exp_period , exp_time , delay , config_path , setdacs_path):
411 """
412 This function should be executed once at the beginning of data acquisition. It sets
413 various parameters in the model tree which will not be changed until the next
414 iteration of the acquisition loop.
415 """
416 # Read in the detector voltage parameters
417 with open(setdacs_path) as dacs_file:
418 v_cmp = np.zeros (16)
419
420 for line in dacs_file:
421 if ’VTRM’ in line:
422 v_trm = float(line.split()[-1])
423 elif ’VCMP’ in line:
424 # Extract the chip number and the setting value
425 line_elements = re.split(’_| | ’, line)
426 vcmp_chip_index = int(line_elements [-2]. split(’VCMP’)[-1])
427 vcmp_chip_value = float(line_elements [-1])
428 v_cmp[vcmp_chip_index] = vcmp_chip_value
429 elif ’VCCA’ in line:
430 v_cca = float(line.split()[-1])
431 elif ’VRF’ in line and not ’VRFS’ in line:
432 v_rf = float(line.split ()[-1])
433 elif ’VRFS’ in line:
434 v_rfs = float(line.split()[-1])
435 elif ’VCAL’ in line:
436 v_cal = float(line.split()[-1])
437 elif ’VDEL’ in line:
438 v_del = float(line.split()[-1])
439 elif ’VADJ’ in line:
440 v_adj = float(line.split()[-1])
441
442 # Read in the trimbit and threshold maps
443 trimbit_map = tif.imread(os.path.join(config_path , ’trimbits.tif’)).T
444 threshold_map = tif.imread(os.path.join(config_path , ’thresholds.tif’)).T
445
446 # Generate the bad pixel map
447 bad_pixel_map = get_bad_pixel_map(config_path , trimbit_map.shape)
448
449 # Write the data to the tree
450 try:
451 # Connect to the tree
452 mesxr = MDSplus.Tree(’mst_me_sxr ’, -1, ’EDIT’)
453
454 # Write the exposure timing settings
455 n_images_node = mesxr.getNode(r’.CONFIG:N_IMAGES ’)
456 n_images_node.putData(n_frames)
457 exp_period_node = mesxr.getNode(r’.CONFIG:EXPOSUR_PER ’)
458 exp_period_node.putData(exp_period)
459 exp_time_node = mesxr.getNode(r’.CONFIG:EXPOSUR_TIME ’)
460 exp_time_node.putData(exp_time)
461 delay_node = mesxr.getNode(r’.CONFIG:DELAY ’)
462 delay_node.putData(delay)
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463
464 # Write the detector voltage settings
465 vtrm_node = mesxr.getNode(r’.CONFIG:V_TRM ’)
466 vtrm_node.putData(v_trm)
467 vcmp_node = mesxr.getNode(r’.CONFIG:V_COMP ’)
468 vcmp_node.putData(v_cmp)
469 vcca_node = mesxr.getNode(r’.CONFIG:V_CCA ’)
470 vcca_node.putData(v_cca)
471 vrf_node = mesxr.getNode(r’.CONFIG:V_RF’)
472 vrf_node.putData(v_rf)
473 vrfs_node = mesxr.getNode(r’.CONFIG:V_RFS ’)
474 vrfs_node.putData(v_rfs)
475 vcal_node = mesxr.getNode(r’.CONFIG:V_CAL ’)
476 vcal_node.putData(v_cal)
477 vdel_node = mesxr.getNode(r’.CONFIG:V_DEL ’)
478 vdel_node.putData(v_del)
479 vadj_node = mesxr.getNode(r’.CONFIG:V_ADJ ’)
480 vadj_node.putData(v_adj)
481
482 # Write the trimbit , threshold , and bad pixel maps
483 threshold_node = mesxr.getNode(r’.CONFIG:E_THRESH_MAP ’)
484 threshold_node.putData(threshold_map)
485 trimbit_node = mesxr.getNode(r’.CONFIG:TRIMBIT_MAP ’)
486 trimbit_node.putData(trimbit_map)
487 bad_pix_node = mesxr.getNode(r’.CONFIG:BAD_PX_MAP ’)
488 bad_pix_node.putData(bad_pixel_map)
489
490 # Write camera settings and configuration data
491 mesxr.write()
492 print(’Data for shot -1 written to the model tree.’)
493
494 except Exception as e:
495 print(’ERROR: Writing to MDSplus model tree failed.’)
496 print(’Output: ’ + str(e))
497
498 def initialize_model_tree(px_size =172, si_thick =450, be_thick =25):
499 """
500 This function only needs to be executed once , or when any of the physical
501 parameters of the detector are changed.
502 """
503 try:
504 # Connect to the tree
505 mesxr = MDSplus.Tree(’mst_me_sxr ’, -1, ’NORMAL ’)
506
507 # Write data to the model tree
508 px_size_node = mesxr.getNode(r’.CONFIG:PX_SIZE ’)
509 px_size_node.putData(px_size)
510 si_thick_node = mesxr.getNode(r’.CONFIG:SI_THICK ’)
511 si_thick_node.putData(si_thick)
512 filt_thick_node = mesxr.getNode(r’.GEOMETRY:FILT_THICK ’)
513 filt_thick_node.putData(be_thick)
514
515 # Write camera settings and configuration data
516 mesxr.write()
517 print(’Model tree updated.’)
518
519 except Exception as e:
520 print(’ERROR: Writing to MDSplus model tree failed.’)
521 print(’Output: ’ + str(e))
522
523 def get_bad_pixel_map(config_dir , map_dims):
524 """
525 This function loads in the bad pixel map from the calibration directory and puts
526 it in the expected format. It marks as bad the pixels contianed in the bad_pixels.csv
527 file as well as the gap pixels.
528 """
529 bad_coords = np.loadtxt(os.path.join(config_dir , ’bad_pixels.csv’),
530 delimiter=’,’).astype(int).tolist ()
531
532 bad_pixels = np.full(map_dims , False , dtype=bool)
533 for x in range(map_dims [0]):
534 for y in range(map_dims [1]):
535 if [x,y] in bad_coords:
536 bad_pixels[x,y] = True
537 elif util.get_chip_coords(x,y)[0] == -1:
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538 bad_pixels[x,y] = True
539
540 return bad_pixels

The following script is a wrapper which is designed to be more user friendly. It

checks the configurations directory for all available options and walks the user through

the setup process.
1 #!/usr/bin/env python
2 """
3 """
4 import os
5 import numpy as np
6 import mesxr.operation.camera as cam
7
8 base_dir = ’/home/det/meSXR/configurations ’
9 test = False

10
11 # Print introductory message
12 print(’ME -SXR runday startup script.’)
13 print(’Version 1.0’)
14 print(’Code by Patrick VanMeter , UW -Madison ’)
15
16 # Determine the desired energy range
17 calib_options = [f for f in os.listdir(base_dir) if not f.startswith(’.’)]
18 calib_options.sort()
19 calib_descriptions = [None for x in range(len(calib_options))]
20 for index , opt in enumerate(calib_options):
21 try:
22 with open(os.path.join(base_dir , opt , ’.description.txt’), ’r’) as f:
23 calib_descriptions[index] = f.read().rstrip ()
24 except:
25 calib_descriptions[index] = ’Description not available.’
26
27 print(’\nAvailable energy ranges ’)
28
29 for index in range(len(calib_options)):
30 print(’{0:d}) {1:}: {2:}’.format(index , calib_options[index],
31 calib_descriptions[index]))
32
33 user_input = raw_input(’Select an energy range: ’)
34 cal_index = int(user_input)
35 calib_choice = calib_options[cal_index]
36 calib_dir = os.path.join(base_dir , calib_choice)
37
38 # Determine the specific configuration
39 config_options = [f for f in os.listdir(calib_dir) if not f.startswith(’.’)]
40 config_options.sort()
41 config_descriptions = [None for x in range(len(config_options))]
42 for index , opt in enumerate(config_options):
43 try:
44 with open(os.path.join(calib_dir , opt , ’.description.txt’), ’r’) as f:
45 config_descriptions[index] = f.read().rstrip ()
46 except:
47 config_descriptions[index] = ’Description not available.’
48
49 print(’\nAvailable configurations:’)
50
51 for index in range(len(config_options)):
52 print(’{0:d}) {1:}: {2:}’.format(index , config_options[index],
53 config_descriptions[index]))
54
55 user_input = raw_input(’Select a configuration: ’)
56 config_index = int(user_input)
57 config_choice = config_options[config_index]
58
59 # Determine the camera settings
60 exp_time = 0.001
61 exp_period = 0.002
62 delay = 0
63 n_frames = 30
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64
65 print(’\nDefault camera settings:’)
66 print(’exp_time ={0:} sec., exp_period ={1:} sec., delay ={2:} sec., n_frames ={3:} ’.

format(exp_time , exp_period , delay , n_frames))
67 user_input = raw_input(’Are these settings OK? (y/n): ’) or ’y’
68
69 if user_input [0]. lower () == ’y’:
70 print(’Using default values.’)
71
72 elif user_input [0]. lower() == ’n’:
73 while user_input [0]. lower () != ’y’:
74 print(’Please input new settings. Leave empty to keep default value.’)
75 exp_time = float(raw_input(’exp_time (seconds): ’) or exp_time)
76 exp_period = float(raw_input(’exp_period (seconds): ’) or exp_period)
77 delay = float(raw_input(’delay (seconds): ’) or delay)
78 n_frames = int(raw_input(’n_frames: ’) or n_frames)
79
80 print(’New camera settings:’)
81 print(’exp_time ={0:} sec., exp_period ={1:} sec., delay ={2:} sec., n_frames ={3:} ’.

format(exp_time , exp_period , delay , n_frames))
82 user_input = raw_input(’Are these settings OK? (y/n): ’) or ’y’
83
84 else:
85 print(’Input not recognized. The default settings will be used.’)
86
87 # Arm the detector
88 print(’\nArming the detector.’)
89 if test:
90 print("cam.arm_detector (0, mode=’cycle ’, write_mds=True , calibration_name ={0:} ,

config_name ={1:}, n_frames ={2:}, exp_period ={3:}, exp_time ={4:}, delay ={5:})".
format(calib_choice , config_choice , n_frames , exp_period , exp_time , delay))

91 else:
92 cam.arm_detector(mode=’cycle’, write_mds=True , rate_corr=False , calibration_name=

calib_choice , config_name=config_choice , n_frames=n_frames , exp_period=exp_period
, exp_time=exp_time , delay=delay)
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Appendix B

Overview of Bayesian inference and

Integrated Data Analysis

Typically in experimental plasma physics data is taken with several independent diag-

nostics and analyzed separately. Generally, each diagnostic is designed with a specific

plasma parameter (or a small number of parameters) in mind. Thomson Scattering, for

instance, is considered to be a dedicated Te diagnostic, FIR interferometry an ne diagnos-

tic, etc. However in reality diagnostic signals are complex and often depend on many

of the same plasma parameters. For instance, though MST’s SXR tomography system

has traditionally been considered to be a Te diagnostic [1], the plasma emissivity also

depends on ne and the the impurity densities {nZ}. Traditionally, these additional de-

pendencies are treated as a background signal and removed during analysis (e.g. by

taking the ratio of measurements). However there is considerable information contained

in these dependencies, if they can be correlated with the measurements from other di-

agnostics. This section aims to describe a consistent methodology for exploiting these

correlations in order to extend measurement capabilities. In the fusion community this

class of methodologies generally goes by the name of “integrated data analysis,” or IDA

[2].



320

The benefits of IDA are most apparent when two (or more) separate diagnostic sig-

nals are correlated with the plasma parameters in different ways. This concept is il-

lustrated in Figure B.1, which is based on simplified models of the SXR tomography,

Charge Exchange Recombination Spectroscopy (ChERS), and Thomson Scattering (TS)

diagnostics. The SXR signal is related to Te and nz via the emissivity, which contains a

component εZ ∝ ZnZneT−1/2
e exp (−E/Te) for every impurity Z, such as Carbon. This

means that an increase in the SXR signal can correspond to an increase in Te, ne, or nZ.

The measurements taken by the ChERS diagnostic, however, depend directly on nZ with

no sensitivity to Te. By combining these measurements both Te and nZ can be estimated

with less uncertainty than either diagnostic can achieve alone [3]. This technique has also

been used to provide measurements of plasma properties for which no single dedicated

diagnostic is available on MST, such as the ion-effective charge Zeff [4].

The concept of IDA is agnostic to the particular details of the implementation. In

this thesis I will exclusively make use of a Bayesian implementation of IDA, which is

starting to gain widespread acceptance in the fusion community [5, 6]. We will see that

the Bayesian approach brings with it a number of advantages, such as self-consistency

and the straightforward treatment of uncertainty. The cost of these advantages is the

substantial computational resources required for each analysis.

Bayesian inference is based on the Bayesian interpretation of probability theory. Prob-

ability is interpreted as the quantification of the degree of certainty of a proposition [7].

This can be contrasted with the frequentist interpretation, which views probability as the

expected frequency of results over many repeated trials. This makes the Bayesian ap-

proach a natural fit applications where repeated trials are impractical or impossible, as

is the case for many scientific measurements.

The foundation of Our IDA framework is Bayes’ Rule [8]. This equation mathemat-

ically describes the process by which our prior knowledge is updated after new mea-

surements are taken into consideration. Bayes’ Rule is readily applied to the problem of
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Figure B.1: Independent diagnostics work together to fully constrain the plasma prop-

erties. Figures a) and d) illustrate the correlation between carbon density and electron

temperature in a model representative of a SXR tomography likelihood function. The

ChERS diagnostic, b), is highly sensitive to the nC but almost totally insensitive to Te.

By combining the information from both diagnostics together (as in Equation B.25) we

get Figure c) a much more tightly constrained estimate for both Te and nC than either

diagnostic can independently provide. This process is shown again in e) but using a

Thomson Scattering likelihood which is sensitive to Te only, resulting in the combined

posterior f). Figure reproduced from L. Reusch, et al. [3].
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parameter inference when cast in the form

p(θ|d, I) =
p(d|θ, I) p(θ|I)

p(d|I) , (B.1)

where d = {d1, ..., dN} is the set of N measurements1, θ = {θ1, ..., θM} is the set of M

model parameters to be inferred, and I refers to any additional information that has

been taken into consideration. The goal of Bayes’ Rule is to determine the posterior

distribution, p(θ|d, I), which is the conditional probability distribution over the model

parameters given the measured data. This is equated to the product of the likelihood

p(d|θ, I) and the prior p(θ|I), normalized by the evidence p(d|I). We will look at each

component of this equation separately before moving on.

B.1 The likelihood function

The likelihood describes the conditional probability of having obtained some particular

measurements given some particular values for the model parameters θ. In the IDA con-

text this is generally determined by a physics-based forward model relating the plasma

parameters to a model of the detector output (as developed in Chapter 4) combined with

a statistical model of the detector noise. Typically we will implement this by relating the

probability distribution to some function L(θ, d).

In the majority of applications measurement noise on the ith measurement will be

assumed to normally distributed with variance σ2
i and uncorrelated with the other mea-

surements. Recall that the probability distribution function for the normal (also some-

times called Gaussian) distribution function is given by

f (x|µ, σ) = (2π)−1/2σ−1 exp
[
− 1

2

(
x− µ

σ

)2]
, (B.2)

1Note: The subscript i here refers to a particular measurement out of a set taken simultaneously, such
as different chords on a detector. It does not refer to repetitions of the same measurement over multiple
experiments.
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where x is some continuous scalar variable, µ characterizes the mean, and σ2 is the

variance. In such a case we write that x ∼ N (µ, σ).

Measured data is assumed to differ from the exact model my a noise term,

di = f (xi; θ) + εi, (B.3)

where εi ∼ N (0, σi) is the measurement noise and xi is the abscissa, for instance the

tangency radius of a line-of-sight. In this case the likelihood for a single measurement

di with can be written as a normal distribution with a mean given by the forward model

µ = f (xi; θ) and a known variance σ2
i ,

p(di|θ, σi, I) = (2π)−1/2σ−1 exp
[
− 1

2

(
di − f (xi; θ)

σi

)2]
. (B.4)

The likelihood function we seek describes the probability of obtaining the specific set

of measurements d given some specific model parameters. It is therefore given by the

joint distribution over all the measurements, p(d|θ, I) = p(d1, . . . , dM|θ, I). When these

measurements are independent, as is typically the case2, the distribution is separable,

L(θ) = p(d1, . . . , dM|θ, I)

=
N

∑
i=1

p(di|θ, I)

= (2π)−N/2
( N

∏
i=1

σ−1
i

)
exp−1

2

N

∑
i=1

[(
di − f (xi; θ)

)2

σ2
i

]
,

(B.5)

where fi(θ) is the forward model of the ith measurement given the model parameters

θ. In practice most computational sampling algorithms require the user to specify the

logarithm of the probability distribution rather than the distribution itself [9, 10]. This

2An example of a scenario in which measurements are not independent is when the data has under-
gone a smoothing procedure, such as a smoothing spline, in which measurements are adjusted by using
information from other data points.
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is done to avoid rounding and overflow errors due to very large or small numbers. So,

taking the logarithm and simplifying:

lnL = −N
2

ln 2π − ln
( N

∏
i=1

σi

)
− 1

2

N

∑
i=1

[(
di − f (xi; θ)

)2

σ2
i

]
. (B.6)

It is worth noting an assumption that has been made here. We will generally assume

that the variance σ2
i is known exactly, generally derived from known limitations of the

measurement technique (i.e. the smallest markings on a pair of calipers). However this

variance is usually only an estimate, σ̂2
i , itself subject to variance from measurement

noise. If this “uncertainty of the uncertainty” is small relative to σi then this effect is

typically negligible and can be ignored. If it cannot be ignored it can be accounted for

by incorporating the noise on σi as an additional model parameter with it’s own prior.

An alternative approach is to construct a likelihood function based on the Student’s

t-distribution rather than the normal distribution, which is equivalent to the previous

approach if the priors are completely uninformative [11].

For many types of measurements the assumption of Gaussian noise is reasonable.

However for detectors which count discrete events, such as photon-counting radiation

detectors (like the ME-SXR) the error model is better described by Poisson statistics. The

Poisson distribution characterizes the probability of registering k events (or measure-

ments) in a given interval given a known rate (or expected value) λ. Then we say that

k ∼ Po(λ). It’s PDF is given by

f (k|λ) = λke−λ

k!
. (B.7)

When λ becomes large the Poisson distribution converges to the normal distribution with

σ2 ≈ λ. In many experimental contexts, when count rates are high, this is sufficient.

If we assume that a measurement subject to Poisson distributed-noise, di ∼ Po(λi)

for λi = f (xi; θ), then the appropriate likelihood function is a product of Poisson distri-
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butions. This is given by

L(θ) =
N

∏
i=1

p(di|θ, I)

= exp
(
−

N

∑
i=1

λi

) N

∏
i=1

[
λ

di
i

di!

]
,

(B.8)

where we have written λi = λi(θ) for notational simplicity. Once again, it is actually

the logarithm of the likelihood which must be supplied to most computational sampling

algorithms:

lnL(θ) = −
N

∑
i=1

λi +
N

∑
i=1

ln
[

λ
di
i

di!

]
= −

N

∑
i=1

λi +
N

∑
i=1

[
di ln λi − ln(di!)

]
= −

N

∑
i=1

[
λi − di ln λi + ln(di!)

]
.

(B.9)

The likelihood function can also be used to determine the maximum likelihood esti-

mate for the best fit of a function to the measured data. As the name suggests, this is the

unique input θML such that

θML = argmaxθ

[
L(θ)

]
. (B.10)

If the likelihood is taken to be a normal distribution, this is mathematically equivalent to

the standard physicist technique of χ2 minimization. This estimate can also be used as

the starting point for MCMC algorithms in order to ensure quick convergence. However

in the case that the likelihood is multi-modal, care must be taken to ensure that the

obtained value for θML corresponds to a global maximum rather than a local one.

Additional terms must be incorporated to quantify the uncertainty in the model it-



326

self. In the case in which both the measurement uncertainty and model uncertainty can

considered to be both independent and normally distributed with known variances, the

resulting likelihood is simply another normal distribution

B.2 The prior distribution

The prior distribution p(θ|I) quantifies the state of knowledge prior to any measure-

ment being made. A common criticism of Bayesian inference is that the inclusion of

priors introduces some level of subjectivity to the calculation. However, a substantial

literature exists on the objective selection of priors based on identifying the underlying

symmetries [12] or maximizing the informational entropy [7]. Without choosing a side

in this philosophical controversy, it is sufficient to state that we wish to select our priors

to be as objective as possible.

At the start of an analysis, it is typically the case that we wish for the prior to be as

uninformative as possible. Often that means using a uniform distribution, which assigns

even probability to any value within a specified range x ∈ [a, b]. The boundaries of this

range should be readily justifiable, i.e. that one cannot possibly find Te < 0 eV. The use

of a uniform prior allows one to quantify the “eye test” of whether or not a result is

plausible. We will denote a uniformly distributed random variable as x ∼ U (a, b). The

probability density function for the uniform distribution is given by

p(x|I) =


1

b−a x ∈ [a, b]

0 x 6∈ [a, b]
. (B.11)

Normally-distributed priors are also common, when a mean µ and variance σ2 is known

(from previous measurements, for instance). In this case the prior takes the form of

Equation B.2.

When the underlying model is described by a set of parameters θ, the prior func-
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tion π(θ) is taken to be the product of the individual priors, assuming that they are

uncorrelated:

π(θ) = p(θ1, . . . , θM|I) (B.12)

=
M

∏
i

p(θi|I). (B.13)

This simply reduces to a sum in the case that the logarithm is required:

ln π(θ) =
M

∑
i=1

ln p(θi|I). (B.14)

The parameters a, b, µ, and σ discussed above, which parameterize the prior distribu-

tion, are referred to as hyper-parameters. In many contexts these can be assumed to be

known exactly. However in some cases, such as a Gaussian prior of unknown σ, the un-

certainty on the hyper-parameter must be included in the analysis via a hyper-parameter

prior.

In some situations, such as when quantifying our prior knowledge of impurity con-

tent in plasma, we may not even know the proper order of magnitude to expect. In such

a scenario Equation B.11 is not appropriate as the vast majority of the probability density

is concentrated at the high end of the distribution. For instance, if x ∼ U (101, 104), the

vast majority of samples will have x > 103. In such a situation we may wish to em-

ploy a log-uniform prior. We will define y = 10x as our target random variable with the

scale factor x ∼ U (a, b). This type of scheme can be readily implemented into MCMC

sampling software. We can also apply a change of variables to write the new density

function directly in terms of the uniform distribution πX(x) and the inverse function

x(y) = log10 y:
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πY(y) = πX
(
x(y)

)∣∣ d
dy

x(y)
∣∣ (B.15)

=
1
y

πX
(
x(y)

)
ln 10

. (B.16)

This result, p(θi|I) ∝ 1/θi, is called a scale-invariant prior and is well-known and is often

invoked as a hyper-parameter prior for scale-related hyper-parameters like σ [7].

B.3 The evidence

The final term in Equation B.1 is the evidence, p(d, I), sometimes also referred to as

the “marginal likelihood”. Unlike the other terms in the equation it is not a function,

but a normalization constant which ensures that the posterior is equal to unity. It is

computed by integrating the numerator over the entire parameter space. We will denote

this constant as Z , in analogy to the partition function of statistical mechanics:

Z =
∫
L(θ, d)π(θ)dNθ. (B.17)

If parameter space of θ has a large number of dimensions then direct computation

of Z is often impractical. In practice, it is often sufficient to ignore the evidence and

simply take p(θ|d, I) ∝ L(θ, d)π(θ) in order to obtain samples from the posterior dis-

tribution. However in some cases direct computation of the evidence is essential, such

as when performing Bayesian model selection or performing hypothesis testing using

Bayes factors [11].



329

B.3.1 The posterior distribution

Combining this all together, we can now write the posterior distribution as product of

our analytical likelihood and prior functions,

p(θ) =
L(θ, d)π(θ)

Z . (B.18)

Equation B.18 is a probability distribution over a (typically) high-dimensional param-

eter space. In order to best characterize the distribution of a single parameter “all-else

considered,” we must turn to the process of marginalization. This process averages out

the correlations between other variables and returns a marginal distribution for the de-

sired parameter. For instance, in a simple two-parameter model where θ = (α, β), we

can obtain the marginal distribution for α by marginalizing over β:

p(α|d, I) =
∫

p(α, β|d, I)dβ. (B.19)

More generally, if there are M total parameters θ = {θ1, θ2, . . . , θM} then the marginal

distribution over θ1 is the multi-dimensional integral over the remaining M− 1 parame-

ters:

p(θ1|d, I) =
∫

. . .
∫

p(θ1, θ2, . . . , θM|d, I) dθ2 . . . dθM. (B.20)

Marginalization also provides a way to remove so-called “nuisance” parameters from the

posterior distribution. This is often the case for prior hyper-parameters, which may not

contain any interesting information. In practice marginal distributions can be obtained

by histogramming over samples.

Marginal distributions can be computed analytically only in the simplest possible

cases, when few parameters are involved and the likelihood function has a single form

(i.e., a univariate linear regression model with Gaussian noise). In the majority of cases,
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the problem must be approached computationally. For problems with small parameter

spaces, simple grid-search methods may be sufficient. However, in many cases more

sophisticated sampling methods like Markov Chain Monte Carlo [9] or nested sampling

[10] are necessary. These algorithms draw samples θ̂i from the posterior distribution,

which can then be used to characterize the posterior distribution. These samples can

also be used to compute expectation values. For example, the expectation value of an

arbitrary function f (θ) is given by

〈 f 〉 ≈ 1
N

N

∑
i=1

f (θ̂i), (B.21)

where θ̂i is the ith sample from the posterior distribution p(θ|d, I). This definition works

equally well when the parameter space is multi-dimensional. More information about

sampling methods, including examples, can be found in the next appendix.

One of the main features of Bayesian inference is that a posterior distribution can

always be updated with new information once it is available. This is accomplished by

using Bayes’ Rule iteratively: the posterior from the previous iteration becomes the prior

when new measurements are made. An simple example of this process, inspired by a

similar example in Chapter 2 of Sivia [8], is shown in Figure B.2. In this example, a coin

which might be unfair (weighted) is flipped multiple times in sequence, and a result of

“H” or “T” is recorded each time. After N flips, R heads have been recorded. The coin

is weighted such that “H” is obtained w× 100% of the time and “T” the (1−w)× 100%

(a fair coin is just w = 0.5). The goal is to estimate the weight w of the coin as best

as possible given the data available. Assuming a uniform prior p(w|I) ∝ U (0, 1) and a

binomial likelihood function p(d|w, i) ∝ wR(1−w)N−R, we obtain a posterior which best

quantifies our current state of knowledge. After the first flip comes up as “H”, we can

eliminate w = 0. Subsequent measurements refine our estimate. By the time 100 flips

have been recorded, we are confident that the coin is not fair and is clearly weighted

towards “T” (w < 0.5). The posterior can be refined arbitrarily further, limited only by
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Figure B.2: The posterior distribution p(w|d, I) for the weight of an unfair coin becomes

increasingly localized as it is updated with new measurements. The true weight, w =

0.35, is shown by the red dashed line.

how many measurements can be made.

A significant consideration of the Bayesian approach to data analysis is how to best

report one’s results. The full posterior distribution is the most informative way of de-

scribing the results, it is often desirable to report a single number within some kind of

error bars. When the variables are normally distributed, this is readily accomplished

by reporting a confidence interval µ ± σ, where µ is the mean and σ is the standard

deviation. Under the Bayesian approach, though, it is common to work with distribu-

tions which are not normal, rendering this approach inadequate. In such cases, the most
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Figure B.3: 65%, 95%, and 99.7% credibility regions illustrated for an arbitrary probabil-

ity distribution function p(x) and its associated cumulative distribution function φ(x).

common approach is to report the median along with an asymmetric credibility region,

x̄+∆x+
−∆x− [13]. The bounds on this region are chosen to encompass some fraction C of the

area under the distribution, typically centered about the median. Typically C is chosen

to be one of 0.68, 0.95, or 0.997 to correspond to the 1-, 2-, and 3-σ confidence intervals

commonly discussed in Gaussian statistics.

The credibility region which contains C × 100% of the distribution is computed by

first finding the median x̄ of the distribution, and then determining the upper and lower

bounds x+ and x−. The upper bound, for instance, is chosen to ensure that the area

under the distribution bounded by x̄ and x+ is exactly C/2 (and likewise for x−). This

is most easily accomplished by first computing the cumulative distribution function φ,

which for an arbitrary univariate distribution of the variable x is given by

φ(x) =
∫ x

0
p(x′) dx′. (B.22)

The median is then defined as the point where φ(x̄) = 0.5 and bounds of the credibility

region are given by φ(x±) = 0.5 ± C/2. The relationship between an arbitrary p(x)



333

and its associated φ(x) is shown in Figure B.3. Although phrased here in terms of

analytic functions, the cumulative distribution function can be efficiently estimated given

an ensemble of samples from p(x) by using a numerical cumulative integration function

(such as scipy.integrate.cumtrapz [14]).

B.4 Integrated data analysis

The concept of iteratively updating the posterior with new information provides the

means through which and IDA framework can be effectively implemented. Consider

the situation in which three independent diagnostics, A, B, and C, simultaneously take

measurements of the same plasma. For each diagnostic we can formulate a likelihood

pA(dA|θ, I), pB(dB|θ, I), etc., where θ is a shared set of parameters which describe the

plasma (though each likelihood need not include every parameter in θ). Given some

existing prior knowledge p(θ|I), we can express the posterior distribution for the first

measurement as

p(θ|dA, I) ∝ pA(dA|θ, I) p(θ|I). (B.23)

Given that we have additional information available about the same plasma, include

that information in this analysis. We do that by updating the posterior iteratively using

Equation B.23 as our new prior3:

p(θ|dA, dB, I) ∝ pB(dB|θ, I) pA(θ|dA, I)

∝ pB(dB|θ, I) pA(dA|θ, I) p(θ|I).
(B.24)

This procedure can be repeated for as many diagnostics as are available. An illustration

3A more formal derivation of the operation can be made using the product rule of conditional proba-
bility distributions [7], but the explanation here is sufficient for developing the right intuition.
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Figure B.4: Two probability distributions, pA(x) and pB(x) are combined to form a more-

informed joint distribution. This illustrates what happens when multiple likelihoods are

combined in the IDA process.
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of the effect of this process is shown in Figure B.4, which shows the effect of multiplying

two probability distributions pA(x) and pB(x) for create a new, more-informed joint dis-

tribution. It is natural to think of the resulting posterior distribution as being composed

of two parts, a joint likelihood composed of the product of the individual likelihoods,

and the original prior. For our three-diagnostic example, this joint likelihood is given by

p(D|θ, I) = pA(dA|θ, I) pB(dB|θ, I) pC(dC|θ, I), (B.25)

where D = (dA, dB, dC) is the composite data vector. In practice, we can skip the inter-

mediate steps and use the measured data to construct the joint likelihood immediately.

Then the process of IDA is reduced to drawing samples from the resulting posterior.

In summary, the integrated data analysis framework used in this thesis proceeds as

follows:

1. Take data of the same plasma using multiple diagnostics: dA, dB, . . .

2. Determine a likelihood function L(θ, d) for each diagnostic and assign appropriate

priors.

3. Assemble a joint likelihood function: L(θ, D) = ∏i∈{A,B,...} Li(θ, di).

4. Evaluate the posterior distribution either by direct grid search or with a numerical

sampling algorithm.

5. Summarize the results using credibility regions and/or compute any desired ex-

pected values 〈 f (θ)〉.
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Appendix C

Drawing samples from a posterior

distribution

The goal of this this appendix is to provide a practical overview of some tools available

for drawing samples from an arbitrary probability distribution, and to provide example

code demonstrating their use. Numerous softwares and techniques exist to accomplish

this goal, but this appendix will limit itself to three common choices: grid search, Markov

chain Monte Carlo sampling (using emcee), and nested sampling (using pyMultiNest).

The techniques are demonstrated using a simple toy model. For a thorough review of

many other sampler options, I refer the reader the excellent online article by Pitkin [1],

which was invaluable to the creation of this appendix.

To begin with, we must set up a scientific computing environment. The example

shown in this appendix is written in Python 3.7 [2], and makes use of the Numpy [3]

and Scipy [4] scientific computing packages. The examples were developed using a

Jupyter notebook [5], which is a Python web interface that allows the user to separate

code into executable blocks, include images inline, and embed LATEXformatted text. We

will start by importing the necessary packages:
1 import numpy as np
2 import scipy as sp
3 import scipy.stats
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Figure C.1: Sample data used in the following examples. 50 samples were generated

from Equation C.2 is normally-distributed random noise.

The examples in this appendix will be based on a simple linear toy model,

y(x; m, c) = mx + c, (C.1)

where m = 3.5 is the slope and c = 1.2 is the y-intercept. The simplicity of the model

will allow us to focus on the details of the implementations. To simulate “real data,” we

also need to include measurement noise. Keeping with the simplicity of our model, we

will assume that each data point is subject to normally distributed uncorrelated noise,

di = yi(x; m, c) + εi, (C.2)

where εi ∼ N (0, σ), where σ = 2 is chosen. The data is set up in the following code:
1 def y_linear(x, m, c):
2 return m*x + c
3
4 # True parameters
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5 m_true = 3.5
6 c_true = 1.2
7
8 # Generate the abscissa
9 N = 50

10 x = np.linspace(0, 10, num=N)
11
12 # Generate the noisy data
13 sigma = 2.0
14 data = y_linear(x, m_true , c_true) + sigma*sp.random.randn(N)

The resulting data, as well as the “true” line, are shown in Figure C.1. Our goal will be

to use the noisy data to determine the posterior distribution for the model parameters

p(m, c|d, I) that best describe the true line.

Since this is a toy model, the selection of priors was somewhat arbitrary. In real

problems, we want to choose priors which are "least informative" given the known con-

straints. In practice we will find ourselves relying mostly on uniform distributions,

with bounds chosen by the constraints of physical plausibility. In this example, for

the sake of variety, we will assume two different types of priors, m ∼ N (µm, σm) and

c ∼ U (cmin, cmax), where U is the uniform distribution and N is the normal distribu-

tion. Parameters are chosen to be µm = 0, σm = 10, cmin = −10, and cmax = 10. The

parameters are assumed to be uncorrelated, so the joint prior distribution is separable:

π(θ) = p(m, c|I)

= p(m|I) p(c|I).
(C.3)

For the grid search and MCMC methods1, distributions only need to be defined up to

a multiplicative constant. As explained in Appendix B, we will typically work directly

with the logarithm of a distribution. This can be implemented as a simple Python func-

tion using the following code:
1 m_mu = 0.0
2 m_sigma = 10.0
3 c_min = -10.0
4 c_max = 10.0
5
6 def ln_prior(m, c):

1Nested sampling implements likelihood and priors very differently, so all of this will need to be
redefined for that example.
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7 if c_min <= c <= c_max:
8 return -0.5 * ( (m - m_mu)**2 / m_sigma **2 )
9 else:

10 return -np.inf

Next, we need to define the likelihood function. This function combines the under-

lying data model (Equation C.1) with an model of the measurement noise. Since the

measured “data” is known to be subject to uncorrelated normally distributed noise of

a known variance σ2, the likelihood function is chosen to be Gaussian. Again, we are

typically interested in the logarithm of the likelihood up to a constant,

lnL(θ) = −1
2

M

∑
i=1

(
di − y(xi; m, c)

σ

)2

+ const. (C.4)

This is implemented in Python code:
1 def ln_likelihood(m, c):
2 return -0.5 * np.sum( (data - y_linear(x, m, c))**2 / sigma **2 )

Once the likelihood function and priors have been defined, they can be combined

according to Bayes’ Rule (Equation B.18) to form the posterior distribution. Taking the

logarithm, we get

ln p(θ) = lnL(θ) + ln π(θ)− lnZ , (C.5)

where lnZ is the logarithm of the evidence (Section B.3). If you are just interested in

drawing samples from the distribution, this term can be ignored. In general, it is not

calculated when sampling with MCMC-based methods. However, for a broad range of

model selection and hypothesis testing problems it is an essential result of the analysis.

As such, it will be calculated in the grid search and nested sampling examples. The

posterior distribution is implemented in Python:
1 def ln_prob(m, c):
2 lp = ln_prior(m, c)
3 if np.isfinite(lp):
4 return lp + ln_likelihood(m, c)
5 else:
6 return -np.inf

Now, the only remaining task is to characterize the properties of the posterior distri-



342

bution we have just defined. We will consider three different approaches. Section C.1

begins with a straightforward-but-expensive grid search method, in which ln_prob(m,c)

is evaluated directly over a large two-dimensional grid. This will allow us to evaluate the

marginal distributions directly using numerical integration, and samples can be drawn

by inverse transform sampling. Section C.2 will introduce MCMC sampling using the

emcee software. This is a more sophisticated tool which enables the user to efficiently

draw samples from a high-dimensional parameter space, though it does not calculate the

evidence. Section C.3 introduces nested sampling and model testing using pyMultiNest.

This technique allows the user to both draw samples from a potentially-multimodal

distribution and compute the evidence, though it is somewhat less efficient and the sig-

nificantly more complex than emcee. Finally, an example of model selection using nested

sampling is presented in Section C.4.

C.1 Grid search

The most straightforward method for analyzing a probability distribution function is

the grid search. Using this method, the value of the distribution is calculated over

an N-dimensional grid of predefined points, where N is the number of parameters in

the model. Numerical integration can then be used to directly compute the marginal

distributions, moments, and credible regions. The evidence Z can also be computed

directly, meaning this method can be used for model selection.

The main benefit of the grid search method is its conceptual simplicity. Because

the user actually has direct access to the evaluated probability distribution, calculations

(such as marginalization) closely resemble their textbook forms, and there is no need

for specialized software beyond a standard scientific computing environment. However,

there is a very significant drawback: the grid search method is inefficient. Substantial

computational time is often spent evaluating points in regions of the parameter space
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with very low probability. Even worse, the method scales exponentially with the num-

ber of parameters, O(nN), meaning that this method quickly becomes impractical for

problems with large numbers of parameters. In my experience, I prefer to use a grid

search to evaluate one- or two-dimensional distributions for which the likelihood can be

evaluated quickly (� 1 second). If there are more than two parameters, it is best to use

a more sophisticated method.

The following code demonstrates how to implement a grid search of the toy model

(Equation C.5) using only standard numpy and scipy libraries. The grid size and bounds

were chosen based on the desired level of accuracy. Multiple iterations may be required

until an adequate grid has been chosen, since a priori we may not know where, or how

localized, the peak(s) in the posterior distribution will be.
1 # The parameter grid
2 ms = np.linspace(0, 5, num =1000)
3 cs = np.linspace(-2, 6, num =1000)
4
5 # Evaluate the pdf over the grid
6 ln_pdf = np.zeros([len(ms), len(cs)])
7
8 for i,m in enumerate(ms):
9 for j,c in enumerate(cs):

10 ln_pdf[i,j] = ln_prob(m, c)
11
12 pdf = np.exp(ln_pdf)
13
14 # Caclulate the marginal distributions
15 pdf_c = np.trapz(pdf , x=ms, axis =0)
16 pdf_m = np.trapz(pdf , x=cs, axis =1)
17
18 # Scale by the evidence
19 Z = np.trapz(pdf_c , x=cs)
20 pdf /= Z
21 pdf_c /= Z
22 pdf_m /= Z

The posterior distribution is shown in Figure C.2 (a), in the form of a corner plot.

The corner plot is a common tool for examining multidimensional probability distribu-

tions. The diagonal entries show the one-dimensional marginal distributions (p(m|d, I)

and p(c|d, I), in this case) while the off-diagonals show the two-dimensional marginal

distributions (just p(m, c|d, I) for this example). This allows the user to simultaneously

understand how well-constrained the individual parameters are as well as how they are

correlated to one another. In the case of our example, we see that m and c both seem to

be well-constrained by the data. But how well, exactly?
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Figure C.2: Corner plots showing (a) the posterior distribution evaluated directly on the

(m, c) grid, and (b) histograms generated from samples obtained using inverse transform

sampling. The blue lines mark the true values.

This question is best answered by calculating the 68% credible interval for each pa-

rameter. As explained in Section B.3.1, this is the Bayesian equivalent to a 1-σ confidence

interval. In fact, since both the likelihood and prior are described by normal distribu-

tions, this will turn out to be almost2 equal to the 1σ confidence interval. However

the method presented here is more general and is applicable to any arbitrary distribu-

tion. We will use the cumulative distribution function, Equation B.22, to determine the

credible intervals:
1 import scipy.integrate
2
3 # Compute the CDFs
4 cdf_m = sp.integrate.cumtrapz(pdf_m , x=ms, initial =0)
5 cdf_c = sp.integrate.cumtrapz(pdf_c , x=cs, initial =0)
6
7 # Get the 0.68 credibility regions
8 m_mean = ms[np.argmin(np.abs(cdf_m - 0.5))]
9 m_upper = ms[np.argmin(np.abs(cdf_m - (0.5 - 0.68/2)))]

10 m_lower = ms[np.argmin(np.abs(cdf_m - (0.5 + 0.68/2)))]
11

2Since p(c|I) is zero outside of the range [cmin, cmax], the posterior distribution is technically not a
normal distribution. However, since the posterior is localized to a region of parameter space far from the
boundary, this distinction is insignificant.
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12 c_mean= cs[np.argmin(np.abs(cdf_c - 0.5))]
13 c_upper = cs[np.argmin(np.abs(cdf_c - (0.5 - 0.68/2)))]
14 c_lower = cs[np.argmin(np.abs(cdf_c - (0.5 + 0.68/2)))]

This calculation returns intervals of m = 3.43+0.10
−0.10 and c = 1.67+0.55

−0.55, which do in-fact

encompass the true values. Again, the upper and lower errors are equal in this case

because the distribution is Gaussian. For arbitrary distributions this is not always true.

Some computational tasks are most readily performed by drawing samples from a

distribution, θ̂, which allow for techniques based on ensemble averaging. Unlike the

sampling methods presented later in this appendix, the grid search analysis presented

above does not produce samples. In this case, since the posterior is known to be Gaussian

it is possible to estimate the mean µ and covariance matrix Σ of the distribution from

the data and use a packaged multivariate normal distribution sampler (such as the one

included in scipy.stats). However, that is not generally applicable to all distributions.

Instead, we will make use of inverse transform sampling, a trick which allows us to

map a uniformly distributed random variable u ∼ U (0, 1) to an arbitrary distribution

using the cumulative distribution function. For a one-dimensional distribution p(x), we

transform a uniform sample û into the desired parameter x̂ by

x̂ = φ−1(û), (C.6)

where φ(x) is the cumulative distribution function.

For multidimensional distributions, such as our toy model, this method is a bit trick-

ier. We must first use some other transform to map the multidimensional distribution

p(m, c|d, I) to a one dimensional distribution of some other variable z which enumer-

ates the entire space. Since p(m, c|d, I) is evaluated on a finite grid, the simplest choice

is to enumerate each point in the grid and generate a new cumulative distribution us-

ing a cumulative sum function scaled by the area/volume of the grid spacing. This is

demonstrated in the following code, using the built-in numy.ravel function to provide a

consistent enumeration:
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1 # Create a flattened version of the CDF
2 pdf_flat = pdf.ravel ()
3 cdf_flat = np.cumsum(pdf_flat) * (ms[1] - ms[0]) * (cs[1] - cs[0])
4
5 # Draw samples from the distribution using inverse transform sampling
6 num_samples = 5000
7 us = np.random.rand(num_samples)
8 ns = np.array([np.argmin(np.abs(u - cdf_flat)) for u in us])
9

10 ns_m , ns_c = np.unravel_index(ns , shape=pdf.shape)
11 samples = np.zeros ([ num_samples , 2])
12 samples [:,0] = ms[ns_m]
13 samples [:,1] = cs[ns_c]

It is initially tempting to just implement the one-dimensional scheme for the marginal

distributions p(m|d, I) and p(c|d, I), but this will eliminate the covariance between sam-

ples, artificially broadening the posterior distribution. As with other aspects of the grid

search method, inverse transform sampling quickly becomes intractable as the number

of dimensions increases beyond two or three.

Figure C.2 (b) shows a corner plot composed of histograms of the sampling results.

This was created using the corner software package [6], which was also used throughout

this thesis. This shows that samples provide a good estimation of the parent distribution,

allowing them to be reliably used in further computations.

We will use the ensemble of posterior samples {(m̂, ĉ)i}i∈[1,M] to illustrate the uncer-

tainty range of our fit results. At each point xi along the abscissa we will evaluate

E[yi] ≈
1
M

M

∑
j=1

ŷij (C.7)

Var[yi] =
1
M

M

∑
j=1

(
yij − E[yi]

)2 (C.8)

ŷij = y(xi; m̂j, ĉj) and where M is the number of samples drawn from the posterior

distribution. The result is shown in Figure C.3. The dashed “Fit” line is the expectation

value at each point and the uncertainty bands are given by σ =
√

Var[x].
1 xs = np.linspace(0, 10, num =1000)
2 ys = np.zeros([ num_samples , len(xs)])
3
4 for i in range(num_samples):
5 ys[i,:] = y_linear(xs , samples[i,0], samples[i,1])
6
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Figure C.3: Comparison of the posterior results with the original data points. The 1- and

2-σ bands were determined by averaging over the set of samples {(m̂, ĉ)i}.

7 y_mean = np.average(ys , axis =0)
8 y_std = np.std(ys, axis =0)

C.2 Markov Chain Monte Carlo (MCMC) using emcee

In many cases, evaluating the posterior distribution over a predefined grid of points is

impractical. This could be because the parameter space is too large (N & 3), because

evaluation of the likelihood is slow, or both. Regardless of the reason, what we want is

an efficient method for producing samples θ̂ from the distribution, which can then be

used to discern its properties. The first such method we will consider is Markov chain
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Monte Carlo sampling (MCMC).

Without going into too much detail, MCMC is a general class of algorithms in which a

sequence of random variables θ1, θ2, . . . are produced in such a way that the distribution

of samples converges to a target probability distribution. This sequence has the property

that future steps in the sequence (θt) depend only on the present position (tt−1), which

is called the Markov property. Numerous algorithms fall under this category, including

Gibbs sampling, the Metropolis-Hastings algorithm, and Hamiltonian Monte Carlo. A

more detailed discussion on the theory and technical details of MCMC can be found in

Gelman, et al. [7], and other textbooks on Bayesian statistics.

In this section we will implement an example analysis using emcee, a Python module

which implements a distinctive affine-invariant ensemble sampler which has favorable

convergence properties when evaluation of the evidence is computationally expensive

[8]. We will initiate a number of independent Markov chain, which emcee calls “walk-

ers”, which will explore the parameter space and generate a set of samples {θ̂i} which

can be used to characterize the system. The use of multiple simultaneous independent

Markov chains makes parallelization straightforward. MCMC analyses typically require

a “burn-in”time, which is the number of steps required for the Markov chain to con-

verge to the posterior distribution. This can be quantified via the autocorrelation time,

τf , which can itself be estimated from the previous steps in the chain (see A. Sokal [9]

for a more detailed discussion). For our purposes, it will suffice to visually examine the

path of the Markov chain through parameter space in order to deduce convergence.

The emcee EnsembleSampler object requires our posterior distribution be slightly

redefined so that it accepts a single parameter array (which I will call “theta”):
1 def ln_prob(theta):
2 m, c = theta
3 lp = ln_prior(m, c)
4 if np.isfinite(lp):
5 return lp + ln_likelihood(m, c)
6 else:
7 return -np.inf

In order speed up the convergence process, it is often desirable to start the walkers
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out in a region near the peak of the distribution. A good way to do this is to first

make a maximum likelihood estimate θML (Equation B.10). This be be done using the

scipy.optimize module:
1 from scipy.optimize import minimize
2
3 # Inital guess and bounds
4 theta0 = np.array([0, 0])
5 bounds = [(-25, 25),
6 (c_min , c_max)]
7
8 # Maximum likelihood estimate
9 nll = lambda theta: -ln_likelihood (*theta)

10 soln = minimize(nll , theta0 , bounds=bounds)
11 theta_MLE = soln.x

For our toy model this results in mMLE = 3.427 and cMLE = 1.673. We will start each

of our walkers at an initial position which is a small random displacement away from

θMLE. Note that this strategy works best for unimodal distributions. For multimodal

distributions, it may be a better idea to distribute starting positions according to the

prior distributions.

The python code for analyzing the toy model with emcee is given below. We will

(arbitrarily) use 50 walkers and extend each chain for 10,000 steps, far longer than neces-

sary for convergence. Note that although we will not need it here, the EnsembleSampler

class also supports multiprocessing via a Python “Pool” object.
1 import emcee
2
3 # General emcee settings
4 n_steps = 10000
5 nwalkers = 50
6 ndim = len(theta0)
7
8 # Initial sampling positions
9 pos0 = np.zeros ([nwalkers , ndim])

10 for ii in range(nwalkers):
11 pos0[ii ,:] = theta_MLE + 0.05 * theta_MLE * np.random.randn(ndim)
12
13 # Run the ensemble sampler
14 sampler = emcee.EnsembleSampler(nwalkers , ndim , ln_prob)
15 sampler.run_mcmc(pos0 , n_steps , progress=True)

A plot of the walkers’ initial movements through the parameter space is shown in Figure

C.4 (a). This shows that the chain’s behavior becomes stationary quite quickly, before

even 100 steps. We Can expect the Markov chain to be well-converged after that point,

and so will omit the earlier steps from the final analysis as burn-in. The following code
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Figure C.4: Results of the emcee run, showing (a) walker position in the parameter space

for the first 500 steps of the Markov chain, and (b) histogram corner plot of the posterior

distribution.

drops the first half of the samples 3 and merges the independent walker chains to form

a single set of samples:
1 samples = sampler.get_chain(discard =5000 , flat=True)

The corner plot for these samples is shown in Figure C.4 (b). Unsurprisingly, the

results are nearly identical to those seen in the grid search example (it is the same pos-

terior distribution, after all). These samples can be used to calculate E[yi] and Var[yi]

according to Equations C.7 and C.8, respectively. The resulting mean and uncertainty

bands are nearly identical to those shown in Figure C.3, so an additional plot has not

been included here.

C.3 Nested sampling with pyMultiNest

Nested sampling is a technique that was originally created to efficiently evaluate the

evidence Z for general Bayesian inference problems [10]. A side effect of the algorithm’s

3Since chains have no “memory,” there is no harm in dropping more early steps than necessary.
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design is that it also produces samples from the distribution. The “nested” part of nested

sampling refers to the way that the algorithm subdivides the sampling space into multi-

ple sub-domains, which allows it to much more effectively sample multimodal distribu-

tions than MCMC-based methods. However, it is generally less efficient for producing

large numbers of samples from unimondal or weakly multimodal distributions.

Nested sampling works by reducing the N-dimensional integral for Z (Equation B.17)

to a single-dimensional integral over the “prior volume” X, given by

X(λ) =
∫
L(θ)<λ

π(θ) dNθ (C.9)

where λ defines contours of constant likelihood L(θ) = λ. The integral for Z is then

reduced to

Z =
∫ 1

0
L(X) dX. (C.10)

The goal, then, is to evaluate L(X) for a finite set of X values between 0 and 1 and then

approximate Z using numerical integration. In this example we will use the pyMultiNest

code, a Python wrapper for the popular MultiNest algorithm [11].

The MultiNest algorithm requires that your priors be parameterized in terms of a unit

hypercube prior, p(uj|I) ∼ U (0, 1) for each model parameter uj. This requirement is in

part because the algorithm depends on the parameter space having a finite and easily

quantified volume. Taken on its face, this seems to be a very strict requirement. However

we can get around this by introducing a transformation f (u) between the hypercube

parameters u = {u1, u2, . . . , uM} and the physical parameters θ = {θ1, θ2, . . . , θM}, f :

u 7→ θ which properly conserves the probability density. The algorithm will perform

this transformation before evaluating the likelihood.

The transformation is described in detail in Feroz, et al. [11], but we will go over the

basics. The goal is to preserve the total probability over a given volume of the parameter
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space:

∫
du1 du2 . . . duM =

∫
dθ1 dθ2 . . . dθMπ(θ1, θ2, . . . , θM). (C.11)

We will assume that the the joint prior probability distribution is seperable, i.e. π(θ1, θ2, . . . , θM) =

ΠM
j=1πj(θj). In such a case, we can satisfy the conservation of probability density by re-

quiring that

duj = πj(θj)dθj. (C.12)

Integrating this, we obtain a way to convert between parameters:

uj =
∫ θj

−∞
πj(θ

′
j)dθ′j. (C.13)

In our linear toy model, we have two different kinds of priors: (non-unit) uniform

and normal. Let’s first work through the transformation of the uniform prior over c,

which is more straightforward. Following the conventions of the GaussianSolver code

outlined later in this section, we will label this hypercube parameter u2. We begin with

the distribution over the physical parameter, c ∼ U (cmin, cmax), defined as

π(c) =


1

cmax−cmin
c ∈ [cmin, cmax]

0 c 6∈ [cmin, cmax]

, (C.14)

and then apply Equation C.13 to get

u2 =
∫ c

−∞
π(c′)dc′

=
∫ c

cmin

dc′

cmax − cmin

=
c− cmin

cmax − cmin
.

(C.15)
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Finally, this can be inverted to give the forward transformation u2 → c,

c = u2 · (cmax − cmin) + cmin. (C.16)

In this derivation I have assumed θ ∈ [cmin, cmax]. This is because u = 0 for all values

of c < cmin and u = 1 for all c > cmin, effectively collapsing each of those spaces down

to a single point in u-space with zero probability weight. So for and draw of u ∼ U (0, 1)

we only need to worry about the non-zero subdomain.

Next we turn to m, which is normally distributed m ∼ N (µm, σm). As before, we

begin with the definition for the probability density function,

π(m) =
1

σm
√

2π
e−

1
2

(
m−µm

σm

)2

, (C.17)

and plug this into Equation C.13. The integral is readily solved using a change of vari-

ables, z = m−µm
σm

. APllting this,

u1 =
∫ m

−∞

1
σm
√

2π
e−

1
2

(
m−µm

σm

)2

dm (C.18)

=
1√
2π

∫ z

−∞
ez′2/2dz′ (C.19)

= Φ
(

m− µm

σm

)
, (C.20)

where Φ(z) is the cumulative distribution function for standard normal distribution.

The inverse function, Φ−1(z), can be calculated by a computer4. This gives the desired

mapping,

m = σmΦ−1(u1) + µm. (C.21)

4There seems to be some inconsistency regarding the name for Φ−1(z). Some sources call this the
“probit” function, while scipy implements it as “ndtri”.
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Next, we want to check that these transforms do indeed result in the correct distri-

butions. We can confirm this via brute-force by drawing a large number of samples ûi

from a uniform distribution, using Equations C.16 and C.21 to map each sample to m̂i

and ĉi, and binning the results into a histogram. The sampling step is implemented in

the following Python code:
1 from scipy.special import ndtri
2
3 us = np.random.rand (100000)
4 ms = m_sigma*ndtri(us) + m_mu
5 cs = us*(c_max - c_min) + c_min

The resulting histograms are shown in Figure C.5, with the target distributions (Equa-

tions C.14 and C.17) overplotted for comparison. This verifies that the transforms im-

plemented in Equations C.16 and C.13 behave as intended. In fact, these transforms are

closely related to the inverse transform sampling methodology discussed back in Section

C.1.

With these transformations in-hand, we can run the pyMultiNest analysis. There are

several ways to go about this, but I will follow the example of the Pitkin article [1] and

create a new class which inherits from the pymultinest.Solver class. This provides a

clean and consistent interface for the analysis. One more detail to note is that nested

sampling requires the full normalized likelihood function (constants included), so we

will need to implement Equation B.6 in full. The code for the new “GaussianSolver”

class is given below.
1 import pymultinest
2 from pymultinest.solve import Solver
3 from scipy.special import ndtri
4 LN2PI = np.log (2.*np.pi)
5
6 class GaussianSolver(Solver):
7 """
8 A simple straight line model , with a Gaussian likelihood.
9

10 Args:
11 data: an array containing the observed data
12 abscissa: an array containing the points at which the data were taken
13 modelfunc: a function defining the model
14 sigma: the standard deviation of the noise in the data
15 ** kwargs: keyword arguments for the run method
16 """
17 # define the prior parameters
18 cmin = -10. # lower range on c
19 cmax = 10. # upper range on c
20 mmu = 0. # mean of the Gaussian prior on m
21 msigma = 10. # standard deviation of the Gaussian prior on m
22
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Figure C.5: Samples from the prior distribution p(m, c|I) = p(m|I) p(c|I) are generated

by transforming M samples {(û1, û2)i}i∈[i,M] from the the unit hypercube. These samples

(blue histograms) are compared against the original analytic distributions (red lines).

These transformations are required for the MultiNest algorithm.
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23 def __init__(self , data , abscissa , modelfunc , sigma , ** kwargs):
24 # set the data
25 self._data = data # oberserved data , d_i
26 self._abscissa = abscissa # data points , x_i
27 self._sigma = sigma # standard deviation
28 self._ndata = len(data) # number of data points
29 self._model = modelfunc # model function
30
31 # log sigma here to save computations in the likelihood
32 self._logsigma = np.log(sigma)
33
34 Solver.__init__(self , ** kwargs)
35
36 def Prior(self , cube):
37 """
38 Transfrom from the unit hypercube to true parameters
39 Args:
40 cube: an array of values drawn from the unit hypercube
41 Returns:
42 an array of the transformed parameters
43 """
44 mprime = cube [0]
45 cprime = cube [1]
46
47 m = self.mmu + self.msigma*ndtri(mprime)
48 c = cprime *(self.cmax -self.cmin) + self.cmin
49
50 return np.array ([m, c])
51
52 def LogLikelihood(self , cube):
53 """
54 Args:
55 cube: an array of parameter values.
56 Returns:
57 the log likelihood value.
58 """
59 m = cube [0]
60 c = cube [1]
61
62 # calculate the model
63 model = self._model(x, m, c)
64 norm = -0.5* self._ndata*LN2PI - self._ndata*self._logsigma
65 chisq = np.sum ((( self._data - model)/(self._sigma))**2)
66
67 return norm - 0.5* chisq

The analysis is performed as soon as the solver object is created. This can be done with

single line of Python. We will also go ahead and get the posterior distribution samples

from the solver object.
1 # Solver parameters
2 nlive = 1024 # number of live points
3 ndim = 2 # number of parameters
4 tol = 0.5 # stopping criterion
5
6 # Run the solver
7 solution = GaussianSolver(data , x, y_linear , sigma , n_dims=ndim , n_live_points=nlive ,

evidence_tolerance=tol)
8
9 # Get the results

10 logZ = solution.logZ
11 logZ_err = solution.logZerr
12 samples = solution.samples

Once the analysis is complete, we can get a summary of the analysis by passing the

solver object to the print() function,
1 print(solution)
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which ouptuts:
1 Model in "( temporary directory)" (2 dimensions)
2 Evidence ln Z = -108.9 +- 0.1
3 Parameter values:
4 Parameter 1 : 3.584 +- 0.097
5 Parameter 2 : 0.623 +- 0.559

Note that this example was run over a different synthetic data set than the previous

two examples (using the same yi points, but with different randomly generated noise).

This is the primary reason that the parameter estimates are slightly different than the

previous two examples. Once again, we can use the samples to make corner plots and

calculate E[yi] and Var[yi] according to Equations C.7 and C.8. As expected, the results

are nearly indistinguishable from those in the previous two examples, and so are not

repeated here.

Unlike the previous analyses, pyMultiNest has also provided a well-constrained es-

timate of the log-evidence, lnZ = −108.916 ± 0.083. Although Z is not used in the

IDA methodology presented in this thesis, it is useful quantity with many applications

in Bayesian inference. The most direct application of the evidence, model selection, is

demonstrated below in the final example of this appendix.

C.4 Model selection with pyMultiNest

This final example extends the previous section to demonstrate how pyMultiNest can

be used to perform basic model selection. Instead of normally-distributed measurement

noise, we will subject each measurement to Poisson noise. Then, we will attempt to fit

the data using both a Poisson likelihood function and a Gaussian likelihood function.

By calculating the evidence Z , we will see that the Poisson model provides a better

description of the data. This provides a Bayesian alternative to common frequentist

technique of comparing each model’s reduced χ2.

The true model, y(x; m, c), will again be represented by Equation C.1. Instead of

adding normally-distributed noise, each “measurement” di are perturbed from yi by
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drawing a sample from di ∼ Po(yi) from the Poisson distribution, Po(λ), given by

Equation B.7.

The proper likelihood function, then, should also be a Poisson distribution. The

correct form for a Poisson lnL(d|m, c) was previously derived in Equation B.9. Addi-

tionally, we will need to modify our priors slightly to be consistent with the new noise

model. Since a Poisson process cannot ever return fewer than zero counts, the priors

were changed to c ∼ U (0, 10) and m ∼ U (0, 10)5. The resulting posterior distribution

was implemented into a new solver class, the “PoissonSolver,” using the following code:
1 class PoissonSolver(Solver):
2 """
3 A simple straight line model , with a Gaussian likelihood.
4
5 Args:
6 data (:class:‘numpy.ndarray ‘): an array containing the observed data
7 abscissa (:class:‘numpy.ndarray ‘): an array containing the points at which

the data were taken
8 modelfunc (function): a function defining the model
9 ** kwargs: keyword arguments for the run method

10 """
11
12 # define the prior parameters
13 cmin = 0. # lower range on c
14 cmax = 10. # upper range on c
15
16 mmin = 0. # Lower range on m
17 mmax = 10. # Upper range on m
18
19 def __init__(self , data , abscissa , modelfunc , ** kwargs):
20 # set the data
21 self._data = data # oberserved data
22 self._abscissa = abscissa # points at which the observed data are taken
23 self._ndata = len(data) # number of data points
24 self._model = modelfunc # model function
25
26 # d!, to speed up calculation of the likelihood
27 self._ln_d_fact = np.log(sp.special.factorial(self._data))
28
29 Solver.__init__(self , ** kwargs)
30
31 def Prior(self , cube):
32 """
33 The prior transform going from the unit hypercube to the true parameters.

This function
34 has to be called "Prior".
35
36 Args:
37 cube (:class:‘numpy.ndarray ‘): an array of values drawn from the unit

hypercube
38
39 Returns:
40 :class:‘numpy.ndarray ‘: an array of the transformed parameters
41 """
42 # extract values
43 mprime = cube [0]
44 cprime = cube [1]
45
46 m = mprime *(self.mmax -self.mmin) + self.mmin # convert back to m
47 c = cprime *(self.cmax -self.cmin) + self.cmin # convert back to c

5The Gaussian prior was also changed since it always permits a finite probability that m < 0, causing
problems with the likelihood calculation.
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48
49 return np.array ([m, c])
50
51 def LogLikelihood(self , cube):
52 """
53 The log likelihood function. This function has to be called "LogLikelihood ".
54
55 Args:
56 cube (:class:‘numpy.ndarray ‘): an array of parameter values.
57
58 Returns:
59 float: the log likelihood value.
60 """
61 # extract parameters
62 m = cube [0]
63 c = cube [1]
64
65 # calculate the model
66 model = self._model(x, m, c)
67
68 return -np.sum(self._ln_d_fact + model - self._data*np.log(model))

The new solver was initiated the same way as before
1 nlive = 1024 # number of live points
2 ndim = 2 # number of parameters
3 tol = 0.5 # stopping criterion
4
5 # run the algorithm
6 solution1 = PoissonSolver(data , x, y_linear , n_dims=ndim , n_live_points=nlive ,

evidence_tolerance=tol)
7
8 # Get the log likelihood and samples
9 logZ_pois = solution1.logZ

10 logZerr_pois = solution1.logZerr
11 samples_pois = solution1.samples
12
13 # Print the summary
14 print(solution1)

1 Model in "( temporary directory)" (2 dimensions)
2 Evidence ln Z = -139.0 +- 0.1
3 Parameter values:
4 Parameter 1 : 3.425 +- 0.162
5 Parameter 2 : 1.583 +- 0.594

The “GaussianSolver” class was also updated with the modified priors and new mea-

surement uncertainties σi =
√

di and executed again, returning:
1 Model in "( temporary directory)" (2 dimensions)
2 Evidence ln Z = -156.3 +- 0.1
3 Parameter values:
4 Parameter 1 : 3.411 +- 0.150
5 Parameter 2 : 0.737 +- 0.475

The corner plots for the “PoissonSolver” samples are shown in Figure C.6 (a), and

the “GaussianSolver” samples are shown in Figure C.6 (b). Although both models are

able to infer m to a reasonable accuracy, the Gaussian model is not able to fully resolve

the marginal distribution over c. This is also reflected in the less-accurate estimate for

the parameter. This discrepancy is due to the fact that the measurements are quite low

(di < 5) near the y-intercept, meaning that the Gaussian approximation σ2 ≈ di begins
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Figure C.6: Corner plots from the posterior distribution assuming (a) a Poisson likeli-

hood function and (b) a Gaussian likelihood function. Due to the low count rates di for

low xi, the Gaussian model is not able to fully resolve the distribution over c.

to break down. If the overall count rate was significantly higher, the results of the two

solver methods would be nearly indistinguishable. The best-fit models for each case,

with associated 1σ uncertainty bands, are shown in Figure C.7 along with the data and

true model. The Poisson model and the true value is nearly overlapping, which Gaussian

model somewhat underestimates the true model for all x.

Although it may seem obvious from just looking at the corner plots and the fits, the

evidence provides us a definitive way to determine which model is in better agreement

with the data. For the Poisson model we found that lnZP = −139.0± 0.1, and for the

Gaussian model it was lnZG = −156.3± 0.1. The better model is the one for which Z

(not the logarithm) is greater. For our case ZP > ZG, meaning that the Poisson model

does indeed explain the data better than a model based on Gaussian noise.
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Figure C.7: The original data points, true model, and inferred models given (a) a Poisson

likelihood function and (b) a Gaussian likelihood function. The shaded regions corre-

spond to σ =
√

Var[yi], as calculated from the posterior samples.
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C.5 Conclusion: which sampler do I use?

The final question remaining is perhaps the most basic: for a given Bayesian inference

problem, which sampling method should I use? Although this choice is often guided

by preference, there are some basic guidelines I have developed over the course of my

graduate school career. These are not meant as hard rules, nor is it intended to be

comprehensive (there are dozens of types of samplers I have never even used!). Instead,

it is meant as a starting point for someone who has been newly introduced to Bayesian

integrated data analysis and wants to try it out for themselves.

My suggestions are summarized as a flow chart in Figure C.8. Basically, if the model

only has one or two parameters, a simple grid search will typically be the most efficient

method. Otherwise the choice depends on whether you need to calculate the evidence,

or if the distribution is strongly multimodal (that is, the distribution contains multiple

peaks which are distant from one another in parameter space). In both cases, nested

sampling is the best choice. Otherwise, if all you need are samples from the distribution,

MCMC will typically be the most efficient (and simplest) option This is especially true

if the likelihood is expensive to calculate.
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Figure C.8: Flow chart for selecting a sampling method.



364

Bibliography

[1] M. Pitkin, “Samplers, samplers, everywhere...” feb 2018. [Online]. Available: http:
//mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/

[2] “Python Language Reference, version 3.7.” [Online]. Available: https://www.
python.org/

[3] S. Van Der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: A structure
for efficient numerical computation,” Computing in Science and Engineering, vol. 13,
no. 2, pp. 22–30, 2011. [Online]. Available: https://numpy.org

[4] E. Jones, T. Oliphant, P. Peterson, and Others, “SciPy: Open source scientific tools
for Python,” 2001. [Online]. Available: http://www.scipy.org/

[5] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla,
and C. Willing, “Jupyter Notebooks—a publishing format for reproducible
computational workflows,” Proceedings of the 20th International Conference on
Electronic Publishing, pp. 87–90, 2016. [Online]. Available: doi.org/10.3233/
978-1-61499-649-1-87

[6] D. Foreman-Mackey, “corner.py: Scatterplot matrices in Python,” Journal of
Open Source Software, vol. 1, no. 2, p. 24, jun 2016. [Online]. Available:
https://doi.org/10.21105/joss.00024

[7] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin,
Bayesian Data Analysis, 3rd ed. Boca Raton, FL: CRC Press, 2014.

[8] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC
Hammer,” Publications of the Royal Astronomical Society of the Pacific, vol. 125, pp.
306–312, 2013. [Online]. Available: http://dan.iel.fm/emcee.

[9] A. D. Sokal, “Monte Carlo Methods in Statistical Mechanics: Foundations and New
Algorithms,” in Functional Integration, C. DeWitt-Morette, P. Cartier, and A. Folacci,
Eds. Boston, MA: Springer, 1997, ch. 6.

[10] J. Skilling, “Nested Sampling for General Bayesian Computation,” Bayesian Analysis,
vol. 1, no. 4, pp. 833–860, 2006.

[11] F. Feroz, M. P. Hobson, and M. Bridges, “MULTINEST: an efficient and robust
Bayesian inference tool for cosmology and particle physics,” Mon. Not. R. Astron.
Soc, vol. 398, pp. 1601–1614, 2009. [Online]. Available: http://www.superbayes.org.

http://mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/
http://mattpitkin.github.io/samplers-demo/pages/samplers-samplers-everywhere/
https://www.python.org/
https://www.python.org/
https://numpy.org
http://www.scipy.org/
doi.org/10.3233/978-1-61499-649-1-87
doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.21105/joss.00024
http://dan.iel.fm/emcee.
http://www.superbayes.org.


365

Appendix D

Quantifying the effect of toroidicity on

tearing mode phase

This appendix concerns a project that I worked on during the earlier part of my tenure

as an MST graduate student to quantify a perceived phase shift between soft X-ray

emission structure observed by the SXT system and magnetic perturbations measured

by the toroidal array. It is not directly related to the rest of my work described in this

thesis (other than that it concerns SXT measurements), but is included here because it is

potentially useful for future reference.

This investigation began as an extension of an internal report by Alberto Ruzzon [1],

a graduate student at Consorzio RFX, considering both MST and RFX-mod data. This

study assumed a cylindrical relation between the phase of the magnetic perturbations

measured at the wall and those measured by the SXT system in the core, then quantifies

the percieved discrepancy into single parameter ∆δ. RFP devices are often said to be

“cylindrical-like,” so this kind of cylindrical phase mapping has been commonly used.

On MST ∆δ (with reference to Bp signals in 500 kA PPCD) was found to have a value of

about 25◦, with a relatively large variation between shots. On RFX-mod it was found that

∆δ ∼ 5◦ − 10◦, with somewhat more observed variation between individual cameras.
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The study does not attempt to explain the origin of this shift. I began with the goal

of verifying this study, accounting for additional systematic effects, and explaining this

supposed discrepancy.

The discrepancy is explained as a physical manifestation of poloidal mode coupling

inherent in a system with toroidal symmetry. This effect results in a perceived shift in

tearing mode phase in the core (where x-ray signal is strong) vs the outer edge (where

the b-dot coils are located). This effect was explored in a series of NIMROD simulations

performed by J. Sauppe, which is the subject of Section D.1. Section D.2 discusses the

methodology for measuring ∆δ using the SXR tomography diagnostic, Section D.3 con-

siders the ideal cylindrical reference case, Section D.4 discusses the additional systematic

effects which were accounted for, and Section D.5 discusses the results.

D.1 NIMROD simulations

The impact of poloidal mode coupling on phase is an inherently non-linear phenomenon,

so direct comparison to analytical theory is difficult. Thankfully, early in the analysis I

learned that another graduate student, J. Sauppe, had previously run a series of NIM-

ROD simulations comparing cylindrical and toroidal geometries using MST-like condi-

tions. To my knowledge these results remain unpublished, so their description here will

be brief. I will summarize the results only to the extent necessary to understand my

measurements.

NIMROD is a resistive MHD code with two-fluid and kinetic capabilities [2] which

can be used to model fusion-relevant magnetically-confined plasmas. For the work dis-

cussed here, a simplified single-fluid model was used. The code solves momentum

equation, Faraday’s law, and the low-frequency Ampere’s law,
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min
(

∂v
∂t

+ v ·∇v
)
= J × B−∇ ·

(
minνW

)
(D.1)

∂B
∂t

= −∇×
(
− v× B + ηJ

)
(D.2)

µ0 J = ∇× B (D.3)

where mi is the ion species mass, n is the number density, ν is the viscosity, W is the rate-

of-strain tensor, and η is the resistivity. Boundary conditions were chosen consistent with

frozen-in flux and no-slip constraints. Other parameters were chosen to be consistent

with standard operating conditions in the MST.

Computations were performed assuming both a cylindrical and a toroidal equilib-

rium. In both cases general coordinates (ρ, θ, φ) were defined such that ρ is a normal-

ized flux surface label (B ·∇ρ = 0), θ is the normal poloidal angle, and φ is the normal

toroidal angle (in cylindrical system φ = 2πz/L). In the cylindrical simulation there is no

coupling between poloidal modes (that is, both m and n are good “quantum numbers”).

As a consequence, the safety factor is only a function of radius, B ·∇φ/B ·∇θ ≡ q(ρ).

In the toroidal case, however, nearby poloidal modes m couple to one another meaning

that in general the field line pitch is defined locally as B ·∇φ/B ·∇θ ≡ q̂(ρ, θ). It is pos-

sible to define a transformation into so-called “straight field-line” coordinates (θ f , φ f )

in which B ·∇φ f /B ·∇θ f = q(ρ). This transformation is shown in Figure D.1. This

provides a sense of the phase shift between the plasma core and the edge. However it

should be noted poloidal mode-coupling still occurs even when modes are expressed in

terms of straight field-line coordinates.

Coupling between poloidal harmonics, as observed in the toroidal case, can signifi-

cantly effect the phase of a tearing perturbation. Near the plasma core, resonant modes

are broadly similar to the cylindrical case. However, as the radius is increased a phase

shift occurs. One result of this effect is that a ∼ 30◦ phase shift develops between
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Figure D.1: Lines of constant ρ (rational surfaces in color) and lines of constant straight-

field angle θ f (dashed) and geometric angle θg (solid), evenly spaced by π/6. Courtesy

of J. Sauppe.
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toroidal and poloidal components of b̃. As shown in Figure D.2, this effect depends

on the poloidal location of the measurement, with the current location of the magnetics

toroidal array happening to be near the maximum. This is also expected to lead to a

noticeable phase shift between the soft x-ray tomography diagnostic (which measures

mostly the plasma core) and the edge magnetics.

Figure D.2: Eigenmode phases of br , bθ , and bφ and phase difference, δφ − δθ, at r = a

for the linear computations in cylindrical and toroidal geometry. Courtesy of J. Sauppe.

D.2 Measuring SXR phase

A simple model was developed relating the phase of the O-point of a soft X-ray emis-

sivity island, θop, to the impact parameter associated with the line of sight passing from

a given SXT camera through that O-point. See Figure 1 for a schematic of how the im-

pact parameter is defined. This model does not require performing full inversions of the
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emissive profile. To do so, we will make a few assumptions:

1. A chord passing from a camera through the O-point has a larger line-integrated

brightness signal than any other chord originating from the same camera.

2. The “fanning out” of the camera lines of sight is ignored. That is, the model

assumes that all lines of sight for a camera are parallel as shown in Figure 2. This

effect is small and has a minimal effect on the overall phase.

3. The island is assumed to rotate circularly around a Shafranov-shifted axis, and the

camera poloidal positions θ` are determined with respect to this axis.

In addition to these assumptions, we used the standard convention for the sign of

the impact parameter in which chords to the outboard side of the geometric axis are

assigned p>0 and chords to the inboard side are assigned p < 0. Putting this together,

Equation A.1 was developed:

p`max(t) = A`
0 ∓ (A`

1)
2 sin

(
θop(t)− θ`

)
(D.4)

where p`max is the impact parameter of a chord passing through both camera ` and the

emissive O-point at any time t, ` ∈ {A, B, C, D} is the SXT camera label, θ` is the camera

poloidal position with respect to the axis of rotation, A`
0 is the average impact parameter,

and (A`
1)

2 is the amplitude of oscillation. A1 is squared so that when it is fit to data it

will always be positive. The plus (+) sign connected the two terms is used when ` = D,

otherwise the minus (-) sign is used.

Next, we considered specifically the case in which the plasma tearing mode spectrum

is dominated by a single large (m = 1, n) mode (QSH, but not SHAx, plasmas). In this

scenario, it is expected that the emissive O-point will align with the magnetic O-point

Source?. Adopting this as an additional assumption, we can then write the phase of the

SXT impact parameter model in terms of the magnetic phase δn of the dominant mode
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n. The result is a model relating SXT brightness measurements (left side) to magnetics

phase information (right side) via three fit parameters:

p`max(t) = A`
0 ∓ (A`

1)
2 sin(A`

2 − δn(t)) (D.5)

In Equation D.5 we have introduced an additional parameter, A`
2, representing the

constant phase shift between the magnetics phase at φ = 0◦ and the SXR phase at

φ = 90◦. For now we will treat this as an arbitrary fit value. An expression for the value

of A`
2 in a purely cylindrical plasma will be developed in Section D.3.

A database of time intervals from 55 PPCD shots (n = 6) and 66 non-reversed shots

(n = 5) was collected, all at 500 kA. The intervals were chosen which feature rotating

plasmas with NS < 2 for PPCD and NS < 2.5 for non-reversed. The impact parame-

ter passing from a given camera through the O-point, p`max, at a given time step was

determined by fitting the brightness measurements to a quadratic and determining its

maxima, as shown in Figure D.3. This is data forms a time series which is then fit to

Equation D.5, with A`
0,1,2 as the fit parameters and δn coming from the standard MST

magnetic mode analysis routine. This process is illustrated in Figure D.4. Not that all

data considered here was recorded during a period in 2017 when SXR-C was not opera-

tional due to a mechanical failure.

For each camera during each shot a value for the phase A`
2 was determined via

nonlinear fit. These values were then averaged by camera, giving a set of three phases

〈A`
2〉. This was done for both δθ and δφ (later referred to by component index i = θ, φ).

This process was performed separately for the PPCD and non-reversed datasets. The

results of these fits are described later in Table A.1 (in Section A.4). Before that, Section

A.2 describes the expected value of A`
2 in a cylindrical model, and Section A.3 describes

the treatment of additional systematic effects related to hardware delay and geometry.
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Figure D.3: The impact parameter corresponding to the brightest line of sight, pmax, is

determined by fitting a quadratic to SXT brightness measurements and determining its

maxima. This permits interpolation between the actual camera measurement chords.

Dashed lines characterize uncertainty
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Figure D.4: Impact parameter pmax plotted versus time for all four cameras (this illustra-

tion is from an older dataset). The solid line is the model described by Equation D.5. The

qualitative time-series agreement of the model with SXT data provides strong support

in favor of the assumption relating X-ray emission to the magnetics O-point.
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D.3 SXR phase in the cylindrical approximation

The δn referred to in the previous sections is defined by the conventions of the magnetic

toroidal array mode analysis code. This code decomposes perturbations to the magnetic

field at θ = 241◦ as follows:

b̃i(φ, t) = ∑
n>0

cn cos
(
nφ− δi,n(t)

)
(D.6)

Since the array exists only at a single poloidal angle, it is not sensitive to poloidal har-

monics. However, with the expectation that these perturbations are largely due to tearing

modes we can assume that they are dominantly m = 1 in nature.

Now we must introduce a complication to the analysis: MST angles nominally form a

left-handed coordinate system. That is, r̂× θ̂ = −φ̂ for the vector components described

in Equation A.3. Since my goal was to compare these results to Nimrod simulations

performed in a right-handed coordinate system, the MST data must be converted. There

are two natural options to accomplish this: either swap the direction of θ̂ or swap the

direction of φ̂. Here I will adopt the second option and define a new direction φ̂′ = −φ̂.

This also means that b̃φ′ = −b̃φ leading to a π phase shift. A consequence of converting

to a right-handed coordinate system is that m and n for tearing modes now have the

same sign, i.e. for m = 1 we have n > 0. The use of primed notation to designate the

RH coordinate system is used consistently throughout the rest of this appendix, and the

reader is cautioned to pay careful attention to this potentially confusing notation.

For a single-helicity magnetic perturbation the SXR structure can be assumed to have

a toroidal symmetry determined by n, and will be aligned with the magnetics array

when

φ′0 = −δi,n

n
, (D.7)

where n > 0 and i ∈ {θ, φ′}.
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In a cylindrical RFP equilibrium, magnetic field lines lie on toroidal flux surfaces

nested about the geometric axis. The trajectory of a field-line on a rational surface

q = −m/n is readily related to geometric coordinates. If we consider a field-line passing

through the magnetic O-point at (θ = 241◦, φ′0), then we can say that at some other φ′

the O-point can be found at θop:

∆φ′

∆θ
=

φ′ − φ′0
θop − 241◦

(D.8)

= −m
n

, (D.9)

which gives

θop(φ
′) = 241◦ − n(φ′ − φ′0). (D.10)

Equation D.10 makes use of the fact that unstable tearing modes in the core of MST

are expected to have helicity m = 1. It is also assumed that n > 0 for the right-handed

coordinate system we are now working in. This can be combined with Equation D.7 to

obtain an equation relating the O-point position θop to magnetic phase δi,n at any give

φ′. We are specifically interested in φ′ = φ′SXR = −90◦, which gives

θop = 241◦ + n · 90◦ − δi,n. (D.11)

Subtracting the camera poloidal position θ` immediately yields an analytic expression

for A`
2 in a cylindrically-symmetric plasma:

A`
2 ≡ 241◦ + n · 90◦ − θ` (D.12)

MST, however, is not a cylindrical device and should not be expected to behave pre-

cisely as one. Determining 〈A2〉 from SXR/magnetics data as described in Section A.1
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and comparing it Equation D.12 permits quantification of the degree to which MST data

deviates from the cylindrical model on average. This will be expressed by the parameter

∆δ, defined as

∆δ`i ≡ A`
2 − 〈A`

2〉i (D.13)

where A`
2 is defined by Equation D.12, ` is the SXT camera label, i ∈ {θ, φ′} is the label

designating the component of the magnetic field δ was taken from, and 〈A`
2〉i is the

average measured phase for the given camera label and vector component. Although

δθ,n and δφ′,n are in phase in a cylindrical system, this is not generally true in a toroidal

system, so different ∆δ values will be measured for each component. The results are

given and in Table 1 in Section A.4.

To correctly interpret the meaning of ∆δ, we can consider the form of the phase of

the cosine in Equation D.5 if we substitute the measured average A2. That is, on average

the brightest line of sight for a given camera will oscillate like

p`max ∼ sin
(
〈A`

2〉 − δi,n
)

(D.14)

∼ sin
(

A`
2 − δi,n − ∆δ`i

)
. (D.15)

The Nimrod simulations that I will compare my data with in Section A.4 define δ

with the opposite sign compared to the convention adopted by the MST mode analysis

software. To make the comparison more straightforward we can switch to this conven-

tion δ̂i,n = −δi,n yielding

p`max ∼ sin
(

A`
2 + δ̂i,n − ∆δ`i

)
(D.16)

Written this way it is clear that ∆δi represents the phase by which the SXR structure lags
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that which would be expected from the phase of a specified component of the magnetic

field perturbation in a cylindrical model.

D.4 Systematic effects

Before the SXT can be fit to the magnetics model as described in Section A.1, some

known systematic effects need to be accounted for. The amplifiers through which the

photodiode signals pass before being digitized were known to have a delay long enough

to affect the phase of signals oscillating at typical tearing mode frequencies. This delay,

as well as the delay associated with the integrators in the magnetics data collection

system, needs to be properly accounted for to reliably measure a phase shift between

the two signals. This section also considers the appropriate values to use for the camera

poloidal positions θ`.

When SXR emission strikes a photodiode in an SXT camera that diode generates

a signal which is sent along a transmission line to an amplifier where its amplitude

is increased by a preset factor (typically 108) before continuing to a digitizer which

converts the analog input into digital information and records that into the data tree.

There is a frequency-dependent phase shift on signals passing through the amplifiers,

which for the frequency range of interest (5-20 kHz) is approximately linear. This delay

was measured by driving an oscillating current through an LED stored inside each SXT

camera on the same board as the photodiodes. The signal is given an overall positive

offset to avoid reverse-biasing the LED. Data was then collected as normal. The signal

driving the LED was also collected directly via a spare channel in the digitizers using

cables of the same length as used in the diode data collection. Data was collected for

each over a range of driving frequencies, and FFT analysis was used to determine the

shift in phase between the driving signal and the amplifier output. Results are shown in

Figure D.5.
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Figure D.5: Data was collected for all thin-filter channels over a range of LED frequencies

spanning from 0.5 to 30 kHz. Over this range the amplifier phases shift is highly linear.

The y-intercept in the resulting fit equation was permitted to be non-zero to account for

nonlinear behavior at low frequency.
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Signal delay of a signal through the magnetics array is also important. Although

the digitizers used in this system are the same as those used in the SXT system (so

any delay should affect both systems equally), there is a non-negligible delay through

the integrator circuit which converts voltage measurements (proportional to dB/dt) to

signals proportional to B. To a reasonable degree of accuracy this circuit can be modeled

as a simple RC integrator circuit with a pole at f0 = ω0/2π ≈ 250 kHz. This circuit can

be shown to have a phase lag between the input and output signals given approximately

by δmag ≈ f / f0 = (0.229◦/kHz) f for input signals f � 250 kHz.

It was also noticed that the results of the fitting procedure were sensitive to the choice

of the magnetic axis location (the size of the Shafranov shift), which is used to calculate

the poloidal position of the SXR cameras (θ`). Equilibrium reconstructions were not

generally available for the entire dataset, so the magnitude of the shift was chosen to

minimize the variance in the resulting ∆δ. This is shown in Figure D.6.

D.5 Results

Results for both the non-reversed (n = 5 core-resonant) and PPCD (n = 6 core-resonant)

datasets are summarized in Figure D.7. Somewhat surprisingly, there was a substantial

difference between the tow scenarios. For the non-reversed (n = 5 core-resonant) data it

was found that on average ∆δθ = 9.7◦ ± 0.5◦ and ∆δφ = −19.4◦ ± 0.5◦. This is in good

agreement with the NIMROD calculations, as illustrated in Fig. D.8, and demonstrates

that the phase of the toroidal component of a core tearing mode is more significantly

affected by toroidicity than the poloidal component. Although the simulations did not

feature unstable n=5 eigenmodes, since mode number does not strongly affect the phase

of core-resonant eigenmodes this is a useful comparison.

This same analysis was performed on on the PPCD dataset, which feature relatively

large n=6 tearing modes (though the amplitude of all modes are suppressed). From this
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Figure D.6: The optimal magnitude of the Shafranov shift (used to determine θ`) was

chosen to minimize the standard deviation of the resulting ∆δ dataset.
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Figure D.7: Average results of the fits for SXR-A,B, and D for both PPCD and F = 0 RFP

scenarios. SXR-C was not included in the analysis.
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data it was found that on average ∆δθ = 20.3◦ ± 0.3◦ and ∆δφ = −5.9◦ ± 0.3◦, which

displays an additional ∼ 10◦ shift from the NIMROD simulations and the non-reversed

data. It is possible that this discrepancy emerges from the relatively small dominant

mode amplitude, resulting in a weaker correlation between the dominant mode phase

and the SXR structure. It is also possible that the discrepancy is due to some additional

physics particular to PPCD (i.e., the current drive) which the NIMROD simulations do

not capture.
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Figure D.8: (a) Phase of θ and φ component of n=6 eigenmode phase from a nonlinear

NIMROD simulation of an MST plasma. Also plotted is the mode phase from a linear

cylindrical calculation. This figure illustrates how ∆δφ and ∆δθ from the SXT data relate

directly to the NIMROD calculations. The points along the dotted line represent the

average ∆δφ and ∆δθ found from data. (b) Data from shot 1170313021 illustrating the

observed phase shift between the SXT o-point oscillations in the core (cylindrical-like)

and the two components of magnetic fluctuations data measured at the wall (toroidal-

like). The black points are data while the black line is the pop model. Magnetics data has

been normalized to the offset and amplitude of the SXT data to aid in comparison.
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