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NUMERICAL SIMULATIONS OF RESISTIVE MAGNETCHYDRCDYNAMIC
INSTABILITIES IN A PCLQOIDAL DIVERTOR TOKAMAXK
Eijiro Uchimeto

Under the supervision of Professor James D. Callen

A new 3-D resistive MED initial vaiue code RPD has been
successfully developed from scratch to study the linear and
nonlinear eveolution of long wavelength resistive MHD instabilities
in a square cross—section tokamak with or without a poloidal
divertor. The code numerically advances the full set of
comnpressible resistive MED equations in a toroidal geometry,
with an important cption of permitting the diverter separatrix
and the region outside it to be in the computational demain.
A severe temporal step size restriction for numerical stability
impesed by the fast compressional waves was removed by
developing and implementing a new, efficient sermni—implicit
scheme extending cne first propesed by Harned and Kerner. As
a result, the cede typically runs faster than that with a mestly
explicit scheme by a factor of about the aspect ratio. The
equilibrium input for RPD is generated by a new 2-D ccde EQPD
that is based on the Chodura—~Schifiter methed.

The RPD cede, as well as the new serni~implicit scheme,
has passed very extensive numerical tests in bath diverter and
diverterless geometries.  Linear and nonlinear simulations in a

diverterless geornetry have reproduced the standard, previcusly
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knewn results. In a geometry with a four—nede divertor the
m=2.n=1 (2/1) tearing mode tends tc be linearly stabilized as
the q=2 surface approaches the divertor separatrix.  Hewever,
the m=1,n=1 (1/1) resistive kink mode remains relatively
unaffected by the nearness of the g=1 surface to the diverter
separatrix. When plasma current is added to the regien
outside the divertor separatrix, the 2/1 tearing mocde is linearly
stabilized not by this current, but by the profile modifications
induced near the g=2 surface and the divertor separatrix.- A
similar stabilization effect is seen for the 1/1 resistive kink
mode, but te a lesser extent. Nonlinear runs of the 2/1
tearing meode suggest saturation of the 2/1 magnetic island.

for the nonlinear i/1 mede, partial reconnection of the 1/1
island has been observed for one eguilibrium. All these

numerical results compare favorably with the Wisconsin

Tekapele 1l experiments.
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Cnapter 1. INTRODUCTION

1-1. Motivation for Research

Moest tokamaks in the world are designed and built to be
stable  against virulent ideal magnetohydredynamic (MHD}
instabilities in their nermal cperaticnal ranges. When a small
bBut finite resistivity is added to the ideal MHD plasma, a new
ciass of instabilities known as resistive MHD instabilities! corne
into existence. Although such instabilities grow on a much
slower time scale that is a hybrid of the rapid Alfven transit
and the very slow resistive diffusion time scales, they have
profound effects on the eveolution of the magnetic field structure
and confinernent of piasma.2 With finite resistivity the
rnagnetic field lines are no longer frozen inte the plasma. As a
result, the magnetic fleld lines are allowed te break and
reconnect to form magnetic islands in the vicinity of singular
layers where helical perturbations resonate with the equilibrium
magnetic field. (See Fig.1-1.)

When a magnetic island develops, it changes the magnetic
tepology in which plasma transport occurs;€ the thermal
insulatien quality of the magnetic field disappears significantiy in
the region of the magnetic island. Still worse, an overlap of
magnetic  islands of incommensurate helicity leads to
stochasticity of the magnetic field lines and a loss of plasma

confinement. 24 It is not surprising, therefore, that tokamak

X\
©

{a} (b)

Fig.1-1. Schematic cross sections of (a) simply nested magnetic
flux surfaces and (b) magnetic flux surfaces with magnetic
islands. 3 The magnetic flux surface is tangent te magnetic
field line{(s) everywhere.

ischarges cften exhibit macroscopic MHD behavior that can be
atiributed to the resitive MHD instabilities.

Resistive tearing meodes, which are the resistive
counterparts of current driven ideal kink modes, are believed to
be at least partially responsible for three kinds of macroscopic
MHD phenomena ocbserved in tokamak discharges: Mirnov
oscillaticns,5 the sawtooth osciliations,6 and major disruptions.7

Mirnov osciliations are small poloidal magnetic field
csciliations detected at the edge of the plasma in the steady
state of a tokamak discharge. (The words 'poloidal’ and 'torcidal’

refer to the short way arcund and the leng way around a



3
toroid, respectively.) During the initial current ramp-up a
sequence of oscillations with discrete and decreasing poloidal
mode numbers is observed as the plasma column shrinks. This
usually starts with the poleidal mede number m > 6 and
decreases to m = 2 by the time the current {lat fop of a
discharge is reached. The magnetic perturbations were fcund
to be rescniant with the equilibrium magnetic field that is helical
and the pattern rotates approximately at the electron
diamagnetic drift frequency. Furthermore, the plasma
confinement time was shown 1o decrease as the magnetic
perturbation amnplitude increases. Mirnev osillaticns are
interpreted %o be a manifestation of nonlinearly saturated
magnetic islands generated by the resistive tearing modes that
rotate at the electron diamagnetic drift f1‘\<2<.1u<2n<:3,r\8»9 The
Mirnev signal is usually dominated by an m=2,n=1 magnetic
island (n is the toroidal mode number) and it is sometimes
accompanied by an m=3,n=1 magnetic island.

‘Sawtooth oscillations refer to a wide range of repetitive
relaxation oscillations observed in the soft X ray signal and/for
electron temperature measurements from the central core of
the plasmma.  Each sawtooth basically consisis of a slowly rising
phase where the plasma center is Ohmically heated and an
abrupt drop phase where the heat rapidly redistributes itself
over the central region of the plasma. Unfortunately, there is

net a shmple unified theoretical moedel presently available that

£
accounts for all the features of different types of sawteeth.1®
The standard model,11“13 however, can explain meost features
of classical sawteeth where significant precursor oscillations are
observed prior ic the sawtcoth crash and the safety factor q in
the central regien returns to above unity after the crash. (qis
the ratio of the toroidal winding number to the peloidal winding
number of a magnetic field line.} In this model the precursor
oscillations are thought to be a manifestation of a rotating
m=1,n=1 magnetic island that was generated by the m=1, n=1
resistive kink mede. This mode is linearly unstable when the
g value on the magnetic axis becomes less than unity as the
central region is heated preferentially and the plasma current
concentrates there. Unlike the m=2,n=1 magnetic island, the
m=1,n=1 island does not saturate nonlinearly in a standard
tokamak but grows until it completely takes over the central
region including the original magnetic axis. 14,15 When this
topological flip takes place, the heat is removed frem the plasma
center and deposited in the region outside the original g=1
surface where the plasma is colder. As a result, the plasma
ternperature in the central region suddenly dreps, which we
perceive to be a sawtcoth crash.
The major disruption is an abrupt expansion of the
temperature and current profiles that leads i¢ an abnormal
termination of the tokamak discharge. it is accompanied by a

sudden inward shift of the plasma column, a very large
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negative voltage splke and a less of runaway electron
confinernent. The standard thecretical piCtUI’QiS“lS of the
rnajor disruption includes a nonlinear destabilization of m=5,n=3
tearing mede in additien te the nonlinear growth of m=2,n=1
and m=3,n=2 tearing modes. The m=2,n=1 and m=3,n=2
islands are usually well separated spatially even late in the
nonlinear phase, but their nonlinear ewvolution results in the
steepening of the current profile of the intervening region.
This destabilizes the m=5,n=3 tearing mede and eveniually leads
to an explosive growth of all three medes as the three sets of
islands Dbegin to overlap. With an excitation of a number of
satellite islands particularly when torcidal coupling effects are
included, a very large portion of the plasma wvelume suddenly
turns inte a stochastic sea of the magnetic field lines and the
major disruption takes place.

At the Physics Department of the University of Wisconsin—
Madison a series of experiments have been conducted to study
the macroscopic MHD behavior of a poleidal divertor tckamak.
The device used in this work is the Wisconsin Tekapole 11,19 a
four node poleidal divertor tokamak with a square cross
section. (See Figs.1-2 and 1-3.) The c¢ross section of the
vacuum vesse! s 44 cm x 44 ¢m and the major radius is 50
cm.  Typical plasma parameters are as follows.,  The electron
temparature is 80-1b0 eV, ion temperature 40-70 eV, electron

and ion densities 5x1012 ~ 1x1083em™3, torcidal magnetic field

Primery Ccntinul?y\ Wingding

X~ Bond Waveguide
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lron Core \ insuigted Gop
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Fig.1-2. Schematic illustration of the Wisconsin Tekapole 1.

3-5kG, plasma current 15-30kA, plasma beta (ratio of thermal
pressure to magnetic energy density} 0.1-0.4 percent, magnetic
Reynolds number (ratioc of resistive diffusion time te Alfvén
transit time) 5x105-1x10% and discharge length 4-1C msec.

Unlike rnost other poleidal divertor tokamaks (e.g., ASDEX,20
DIVA,21 PDX22 which is now known as PB¥X), the divertor

rings of the Tokapole II are placed not too close to the wall and



.~ Divertor Ring

il- Divertor Separatrix

4 Cormrmon Flux Region
(Region outside the
divertor separatrix
or scrape—off region)

Fig.1-3. Contour plot of poleidal magnetic flux surfaces on a
constant teroidal angle plane.

a considerable amount of the magnetic flux is present ouiside
the divertor separatrix. The currents in the divertor rings are
inductively driven. One very interesting feature of this device
is that the MHD behawvior can be studied over a wide range of g
values. 23730 In addition, discharges can be obtained with and

witheut plasma current outside the divertor separatrix

8
depending on the position of retractable scrape—off plates. The
twe operational modes are referred to as the magnetic and
material limiter discharges, respectively. Key experimenta}
results are summarized in Fig.i—4.23"30 There are at least
twe points that deserve special attention. They are both
favorable features from the viewpoint of effective tokamak
operation but they do not agree with the results of the standargd
theoretical models for circular cross—section divertorless

tckamaks.

1) Low g discharges (q on the magnetic axis as low as 0.5)
can be cbtained in both magnetic and material limiter
discharges. Despite sawtooth oscillations the q wvalue
on the magnetic axis does not return to unity after the
crash.

2) The major disruption does not take place in magnetic
limiter discharges regardless of the wvolume averaged g

inside the divertor separatrix.

A major stimulus for the research in this thesis was to
develop theoretical tools to aquire an understanding of these two

important characteristics of Tokapole il operation.



Magnetic Limiter Case <q> Material Limiter Case

{with plasma in the —+  (with little or no plasma
common flux region) in the commen flux region)
-4 3.0 . .
No major disruptions. Minor and majer
Repetitive miner < disruptions
disruptions F depending upon
{q=2 “sawteeth”) I strength of
plasma/limiter
~ interaction.
, (== 2.0
No minor or major
disruptions. ~
q=1 internal <

disruptions. ‘ )
No minor or majer

disruptions.
Helica] m=n=1
e 1)
sawtooth crash.
Sawtooth oscillations Sawtooth oscillations
with Gy < 1 with Qs <1
througheout throughout

a sawtooth period. a sawtooth peried.

whee 0.0

Fig.1-4. Summary of long wavelength MHD activity in the
Wisconsin Tokapole 11.23-30 <g> i3 the g at the edge of a
uniform current circular plasma with the same current and
roughly the same cross sectional area as the actual discharge.
For the magnetic limiter case m=2,n=1 modes are present for
<g>2>2.2 and m=1,n=1 meodes for <g><$2.2. For the material
limiter case the dividing line between these two different types
of macroscopic modes is <g>~1.7.

10
1-2. Objectives and Qverview of Research

One of the ultimate goals of theoretical research in fusien
plasma physics is to conceive of a theoretical mode! that can
explain a wide range of experimental data and guide the
development of future devices. When an apparent conflict
between Atheory and experiment is discovered, the applicability
of an existing theoretical model to such an experiment needs to
be reevaluated.

Existing theoretical models for Mirnov oscillations, the
sawtooth oscillations, and the major disruption were originally
developed fer a cylindrical model of a tokamak (no toroidal
effect) with a circular cross section. The plasma is assumed to
be in the collisional regime where the resistive MED equations
are applicable. The magnetic Reynolds number of a typical
Tokapole discharge is of order 10% and neoclassical correctionss1
to resistive MHD are small because of the fairly collisional
(plateau or Pfirsch-Schliiter regime) plasma. On the other
hand, the very large geometric deviations from a straight
circular cylinder due to the poloidal divertor should definitely be
taken seriously. Flux surfaces become highly noncircular as
we move away from the magnetic axis to the divertor
separatrix. The region outside the divertor separatrix or the
commeon flux region has a strong muitipcle character. In fact,
it is not possible to map the Tokapele geometry onto a standard

tokamak geometry because of a nen-simply connected boundary
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condition due to the diverter rings. The linear and nenlinear
evolution of resistive instabilities in such a configuration could be
significantly different. A high magnetic shear near the
divertor separatrix and the presence of a plasma in the commen
fiux region could medify the linear growth rate. Interactions
of magnetic islands with the divertor separatrix could lead to
considerable stochasticity before the total reconnection of an
m=1,n=1 island and the saturation of an m=2,n=1 island. To
investigate such effects, it is essential to include the region
outside the divertor separatrix and the separatrix itself in
resistive MHD simulations.

At the tirmne this research was started several years ago,
however, a computer code that was suited for this purpose did
net exist. Resistive MHED simulations in a poleidal diverter
tokarnak were Llmited to the region inside the divertor
separatrix.32 This stemed frorn the fact that most previously
written major resistive MHD initial value codes for production
runs employed a spectral representation in both the poleidal and
toreidal  directions. A two dimensional (2-D) spectral
representation would require a very large number of peloidal
Tourier harmonics to describe an axisymmetric equilibrium of
the Tokapole ]I magnetic geometry including the divertor rings.

Despite such a shortcoming, the HIB codes3: 34 was used
to simulate the nonlinear evolution of the m=1,n=1 resistive

kink mode including a portion of the diverter separatrix by

12
placing the divertor rings just outside a circular boundary.%

The simulation demonstrated that the interaction of the
m=1,n=1 island and the divertor separatrix indeed leads to
stechasticity.  This work, however, was lirmited in that the
divertor rings were not included in the computaticnal domain,
plasma in the cermmon flux region was not included, and the
reduced MHD mode!3d was employed.  The reduced MHD mede}
15 not suitable for studying lew g discharges because the
rdering assumptions in this medel break down when g is
considerably smaller than unity.

Te overcome such limitations we have developed from
scratch a new three dimensienal (3-D}, compressible, full
resistive MHD initial value code RPD36.37 (Resistive MHD code for
a Poloidal Divertor tokamak). Te handle the complicated
geomelry the dependent wariables are written in a finite
difference form in the two Cartesian directions of a constant
torcidal angle plane.  They are, however, Fourier analyzed in
the toroidal direction to facilitate efficient mode representations.

The code is torcidal and can be run with or without a
poloidal divertor. A severe step size restriction for numerical
stability imposed by the fast compressional mode is rernoved by
a new, efficient semi~implicit scheme®’ based on that prepesed
by Harned and Kerner.38 Azisyrmnmetric MHD equilibria for
the resistive MHD simulations are generated by a new 2-D

equilibrium cede EQPDsg(MHD EQuilibrium code for a Poleidal
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Divertor tokamak) that utilizes the basic features of the
Chodura-Schliiter methed. 40

The newly developed 'resistive MHD package' that consists
of the 2-D Chodura-Schliiter code EQPD and the 3-D resistive
MHD initial value code RPD is written in FORTRAN 77 and
designed te run efficiently on the supercomputers that use the
Cray Time Sharing System {CISS). They include the Cray-1
{C rmachine}, Cray-iS {D machine), Cray X-MP/24 (E
machine), and Créy—2 {B machine)} of the Naticnal Magnetic
Fusion Energy Computer Center (NMFECC) at Lawrence Livermore
National Laboratory{LLNL) and the Cray X-MP/48 (A machine)
of the San Diego Supercomputer Center(SDSC) at the University
of California—San Diego.

Our RPD code has passed very extensive, if not
exhaustive, numerical tests both linearly and nonlinearly in a
divertoriess tckamak with a square cress section.¥/  Particular
atiention is paid to checking the integrity of the new
sermni-impiicit scheme. In the course of this study a number of
standard theoretical resuits are repreduced.

The RPD code has also passed numerical tests in a poloidal
divertor geometry.37:41 The new semi-implicit scheme is
shown to be a simple bui quite powerful method to improve the
code efficiency in the divertor gecretry as well.  The effects of
the divertor separatrix and the plasma current in the common

flux region on the linear andfor nonlinear resistive MHD

14
instabilities are studied.3/,41-43 The m=2,n=1 tearing mode

tends to be linearly stakilized when the g=2 surface is brought
clese to the divertor separatrix. On the other hand, the
m=1,n=1 resistive kink mode remains linearly unstable
regardless of the nearness of the gq=1 surface to the divertor
separatrix. The addition of a plasma current outside the
divertor separatrix tends to stabilize strongly the iinear
m=2,n=1 mode and modestly the linear m=1,n=1 mode. This
is due to a profile medification near the mode rational surface |
but not due to the mere presence of the current outside.
Nonlinear results, which are still preliminary in nature, suggest
that the m=1,n=1 magnetic island may not totally reconnect
but instead saturate for at least one divertor equilibrium. The
m=2,n=1 magnetic island may become stochastic before
saturation. Although a complete understanding of Tokapole
discharges would undoubtedly require inclusion of other effects
such as thermal transport and impurities, resistive MHD
simulation results so far compare favorably with the Tokapole II

experiments.

1-3. Organization of Thesis

This thesis is organized as follows. Chapter 2 deals with
our work on axisymmetric MHD equilibria of noncircular and
pcloidal divertor tokamaks. This is an important prerequisite

for conducting resistive MHD simulations in such devices.
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Chapter 3 describes the details of the 3-D resistive MHD initial
value code RPD, the rnain tool that was developed and used in
this thesis research. Also described in this chapter is the new,
efficient semi-implicit scheme that was developed and
implemented %o improve the code efficiency. Chapter 4
presents the linear and nenlinear simulation results of the
m=2,n=1 resistive tearing mode and the m=1,n=1 resistive kink
mede in a divertorless geometry. The primary purposes of this
chapter are ic demonstrate the correctness of our RPD code and
the accuracy of the new, efficient semi-implicit scheme.
Chapter 5 presents the linear and nonlinear simulation resuits of
the m=2,n=1 and m=1,n=1 modes in a poloidal diverter
geormnelry. The ramifications of our nurerical results for the
interpretation of Tokapole 1l experiments are alse  briefly
discussed., Chapter 6 summarizes what we have accomplished

in this research. We also make suggestions for future research.

Chapter 2. IDEAL MED EQUILIBRIUM

2-1. Intreduction

Before embarking on the resistive MHD studies we need to
generate a family of azisymmetric MHD equilibria. 1t is to this
equilibriurn state that a helical magnetic perturbaticn is added.
Cnce the azisymmetry is broken, the tearing andfor resistive
kink meodes will develop in the resistive MHD plasma provided
that the equilibrium is unstable o such mades.

Because of the highly nonlinear nature of the MHD
equilibriurn  problemn compounded by geometries that lack
sufficient symmetry, an analytic solution is not possible in
general for noncircular and polcidal divertor tokamaks. We
therefore turned to a numerical approach. We have developed
fremm scratch an  azisymmetric eguilibrium cede EQPD  that
adopts the basic features of the Chodura-Schliiter method.4C
This methoed was perceived as being able to handle effectively a
geometry with rmultiple magnetic axes; the multiple-valuedness
of flux quantities need be considered only in the initialization
procedure. Unfortunately, significant spurious numerical
oscillatiens in the current density were cbserved in the vicinity
of the diverter rings and the divertor separatriz.  This preblem
was overcome partially by intreducing a small but finite
resistivityS? in the Chedura-Schifiter method. A simpler

version of EQPD without a poloidal divertor calculates an
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axisymmetric MHD equilibrium for a square cross—section
divertorless tokamak over a wide range of plasma beta (ratio of
thermal pressure to magnetic energy). The resistivity term is
not required in this case.

In this chapter we first present two metheds for
computing an axisymmetric MHD equilibrium. We then
describe the EQPD code that was used to generate input files for
resistive MHD studies. The test results of the code are also

given.

2-2. Methods of Solution for Axisymmetric MHD Equilibria
2-2-1. Direct solution of the Grad-Shafranov equaticn
A plasma in a static MHD equilibrium state is described by

the set of time independent, flow—free ideal MHD equations:

JXB=vVP, (2.1)
VXB=yu,J, (2.2)
v-B=0, (2.3)

where B is the magnetic field, J the current density, P the
thermal pressure, and u, the magnetic permeability. Eq. (2.3)
suggesis that if the plasma geometry possesses a symmetry
translational, axial or helical}, a stream function can be
intreduced to describe the magnetic field. In the case of an
axisymmetric torus, this leads to the well known Grad-

Shafranov eguation: 44,45

A% = - p RPE - & (2.4)

Here, ¢ and | are the poloidal flux and poloidal current
functions, respectively, which are related to the magnetic field

by the relations

- I ~
B=VX(¢§}+§§, (2.5)
) =R By (2.6)
where i Is a unit vector in the toroidal direction. The

coordinate systern used is the cyiindrical coordinate systern
(R,y,0) with the angular variable taken to be in the toroidal
direction. It is shown in Fig. 2-1.

symimetry axis

ANY
~ )
\\ N
<

Fig.2-1. Cocordinate system used for an axisymmetric torus.
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The solution of the Grad—Shafranov equation requires a
nurnerical approach in general because P = P(¢) and 1 = 1(¢);
the egquation becomes highly nonlinear unless unrealistically
simple functional forms are chesen for P and 1.

In the direct apprcadn‘q‘-"“ﬁ18 the Grad—-Shafrancv equation
is solved for ¢ in the two Cartesian variables R and y. (This
contrasts with the moment approach49 in which Eq.(2.4) is
transformed tc and solved in flux surface wvariables.  Although
the moment approach is the fastest computational method
available for a divertorless tokamak equilibrium, it is not
suitable for a peleidal divertor fokamak in which P and 1 are
multiple—valued functions of ¥.}  To sclve for ¢, the functional
forms of P=P{{) and 1=1{{) are usually specified first.  After
making a reasonable choice for the initial ¢ = ¢H{R,v}, we
solve Eq.(2.4) iteratively for ¢ = ¢N(R,y). The simplest
iteration methed is the Picard iteration scheme:

—87(R, Y)=¢(R, 02 (R, ¥)), (2.7)
where g is the right side of Eq.{2.4) and the superscript denotes
the iterationn level, To prevent ¢ from converging to a
physicaily uninteresting solution, we impose a constraint such as
a constant total ioroidal current during the iterations. The
matriz that resulis from having to invert the N operator in
each iteration step is sclved with a fast sclver for a sparse
matrix, usually by either the SOR(successive averj—relaxation)

or the ICCG{incomplete Choleski conjugate gradient) method.
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A code of this type (TOPEC) was developed by M.W.
Phillip550 for studying axisyrmmetric MHD equilibria in the
Wisconsin Tokapole II. Although the code has been used quite
extensively to interpret the experimental results, it is lmited in
that plasma current and pressure were exciuded from the
region outside the divertor separatrix. This & not a
fundarnental limitation of the direct Grad-Shafranecv sciver and

TOPEC can in principle be modified to include such effests. 24

2-2-2. The Chodura~-Schliiter method

An alternative approach to the ideal MED equilibrium
problem is to treat it as a minimization problem for the plasma
potential energy W =[d% [B%/2u_ +P/(T-1)], where T is the ratio
of specific heats. This approach is particularly usefui for a
general 3-D cenfiguration in which there are no symmetries.

Chedura and Schiiiterd? propesed an iteration scheme
using a spatially fixed Eulerian grid that brings a plasma of an
arbitrary configuration to a stationary state 5W=0 subject 1o
the constraints of magnetic flux and mass conservation.

Consider the ideal MHD equations:

d

e Ll yxB)XxB-VP, (2.8)
dt M

2B

at

v-B=20, (2.10)
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¥ . _rpyv, (2.11)
4
gw.(pv) =0, (2.12)

where d/dt =2/t +(v-V), o is the mass density, and v is the
flow wvelocity. in the Chedura—Schiliter method the inertial
response p{dv/dt) in the momentum balance equation is
replaced by a frictional response aw, where a is a positive
number, function or operator. This gives rise to the MHF
{magneto-hydro—friction) model of a plasma. The time t
should now be regarded as a relaxation parameter. Since the
friction force extracts energy from the plasina subject to the
constraints of magnetic flux and mass conservation {Eqs.(2.9)
and (2.12)), the plasma relaxes into an equilibriurm state.
Convergence to the stationary state can be accerclated
significantly by introducing a conjugate gradient term of the

form

2 t+At
+b 5-53«;-“ v (2.13)
<F2>

where F = (1/4,}[(¥X B) XB] - ¥P.  The superscripts t and

t+At t+At
v = F

t+At denote the old and new ‘t{ime’ levels, < > denotes an
average over the entire plasma wvelume, and b is a numerical
censtant that is slightly less than unity. The use of the

Eulerian grid allows us to treat a geometry with more than one
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magnetic axis effectively.

Although the Chodura—Schiliter method was developed with
3-D MHD equilibrium calculations in mind, it can also be used
te calculate azisymmetric MHD equilibria. The assumption of
axisymmetry reduces a 3-D problem to a 2~D problem on a
constant toroidal angle plane. By introducing the poloidal flux
function, the divergence—free condition for the magnetic field
can be imposed very accurately. Magnetic flux conservation
implies that the functional form of the safety factor q(¢) =
d$/d¢, where ¢ is the toroidal flux function, is preserved in the
Chodura-Schliiter method. (This is an alternative expression for
q that was defined to be the ratio of the torcidal winding
number to the peleidal winding number in chapter 1.) The
poloidal current function 1(¢), which is difficult to guess, need
not be prespecified; it comes out numerically as an output of
the code. Furthermore, the multiple-valuedness of P{{) and
a{$) in a poloidal diverter geometry need not be considered

except for the initialization step.

2-3. Description of the 2-D Chodura—Schliiter Code EQPD

In this séction we describe key features of cur EQPD code
that calculates axisymmetric MHD equilibria for square cross—
section tokarnaks with and without a poloidal divertor.

The code employs a 2-D wversion of the Chodura-Schliiter

methed which uses the conjugate gradient iteration scheme.
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By introducing the poleidal flux function ¢ and the poloidal
current function I, as defined in Eqs.(2.5) and {2.6), the set of

2-D equations can be written in the numerically convenient

form
N TR S S} 2.14
fnw-g‘a“f{‘lﬁq} lioaR R2 oR ( )
1 30 . P 1 .2l

N L 3 BRI - -2 (2.185)

FY R2 2y A -, 3y p? dy
2 t+At
t+at | _i+Al <F™> t (2.16)
VR = FR + h <F2>t VR ]
2 t+At
I R S {2.17)
y y <Fht Y
B [ v )+ (v ) ]+ (R oY)
at - MeRYR Ty Yy R oy
+ng &%, (2.18)
3 ly__r2 (1 2 (1 2.19
s =g (v eyl (229
av, oV,

P _ 12 2 +P(=2 +==2), (2.20
D= Py Z)I+P(5E + 57D . @2

where A" is the elliptic differential operator of the Grad-
Shafranov equation (Eq.{2.4)) and <F2> = <FR2+I~"y2> is the
average over a constant torcidal angle plane. The toroidal
resistivity 7 is added to the poloidal flux advancement equation
(Fg.(2.18)} as an option. This tends to smooth nurnerical

ripples of the toroidal current density in the vicinity of the
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divertor rings and the divertor separatrix.

The plasma pressure P is convected according to Eq.
(2.20). (The right side of this equation is ~v-VP in a constant
torcidal angle plane.) As a resuit, the 'time’ advancement
equations for ¢ and P assume the same form provided that Ny =
G. It follows that the functional form P(§} will be preserved
throughout this calculation.  Also preserved when 7 C=O is the
functional form of q{} because all magnetic fluxes are
convected by a perfectly conducting fluid.  On the other handg,
the poloidal current function I(R,v) may deviate significantly
from a function of ¢ during the iteration process since its 'tirme’
evelution equation is not convective. As the plasma evolves
into a stationary state {F- ¢ and v - 0), hewever, the poloidal
current function I should become a function of ¢ and Eqs.
(2.14) and (2.15) then reduce to the Grad-Shafranov equation.

The vacuum vessel and the divertor rings are assumed to
be perfect conductors. The poleidal flux function ¢ at the
boundaries is frozen in ‘time'. The wvelocity v at the
boundaries is set equal to zero, which is consistent with the
final state of a static MHD equilibrium. Furthermore, the
pressure P is assumed to vanish at the boundaries.

Cur EQPD code numerically advances the dependent
variables ¢, I, P, Vg, and Vi The numerical precedure
proceeds as follows. Egs.{2.14) and (2.15) are used to

calculate the ficticious force F.  The force is related to a new
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velocity by using the conjugate gradient scheme given by Egs.
(2.16) and (2.17). This new velocity is then wused In
Egs. (2.18)-(2.20) to advance ¢, I, and P. In doing sc, the
left side of the equation is discretized as {f **8t —f1)/At, where
fis ¢ I/R or P. We then go back to Eqs.(2.14) and (2.15)
to start a new iteration loop. The iteration loop is repeated
until the fictitious force F becomes sufficiently small and the
peloidal current function | converges to a function of ¢.

In the code Egs.(2.14)-{2.20) are finite differenced in R
and v. We consider only the upper half of a square cross—
section tokamak assuming up-down symmetry. An equally
spaced but staggered two dimensional grid is set up on this
rectangular region.. The way the plasma quantities are placed

in a grid ceil is shown in Fig.2-2.  All the first and second

VY»‘FY
{i+%2, j+1)
\"‘ ibv 1,-? ! VR , FR
(i+Y2, j+12) (i+1, j+ %)

y
0
s

Fig.2-2. Placernent of plasma quantities in a grid cell.
i and } are indicies in the R and y directions.

(i,4)
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derivative terms with respect to R and/or y are discretized in
the standard secoend-eorder accurate form taking into account

the location at which the quantities are evaluated.

T
H

he grid is
extended one row and one column beyond the physical
boundaries and two rows beyond the midplane to efficientl
impose the boundary conditions. For simplicity, the
cross-section of the divertor ring is assumed to be a square.
Cur EQPD code can in principle evolve any axisymmetic
MHD plasma to an axisymmetic MHD equilibrium state. To
facilitate convergence to a desired state, however, we have
developed a separate program SETPD.  This program creates an
input data file for EQPD as follows. The elliptic differential
equaticn -A*p=RJy that relates the poloidal flux function and
the torcidal current density is solved first for ¢=¢! with a
parabclic current distribution peaked at the magnetic axis
(G=¢ min)- The matrix inversion is dene by using a
band-storage direct solver. The same equation is then sclved
for p=¢2 with a reasonable choice for J;zJC(Q)l{R,y)). Upon
cheosing 1{{), which we take to be spatially uniform at the
beginning of an EQPD run, the functional form gq{¢) is specified.
Note that the (2 obtained with SETPD does not in general
satisfy the Grad-Shafranov equation for the P{{) we choose.
We wuse EQPD o relax ¢, P, and [ to satisfy the
Grad-Shafranov equation while retaining the functional forms of

P($) and q(9).
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The EQPD code creates three output files.  One of them is

& binary sequential file that can be read by our 3-D resistive

MHD initial wvalue code RPD. The second file contains the

machine and plasma parameters of the equilibrium. It also

prints out various plasma quantities at all the grid points. The
third file is a graphic file and it consists of the contour level
plots of ¢(R,y), PR,v), I(R,y), and Jr(R,y), the plots of
various plasma guantities on the midplane, and the 'time’
evolution plots of the square of the unbalanced ficticious force

F|2 and the shift of the maghnetic axis.

We conclude that we have found an axisymmetric MHD
equilibriurm when the output meets the foliowing criteria:

1) The contour shapes of ¢, P, and | agree reasonably well (by
visual examination) indicating that P=P({} and 1=1{(¢).

2) The square of the unbalanced ficticious force decreases by
several crders of magnitude and the magnetic axis shift
saturates with 'time’.

3) The toroidal current density does not exhibit large numerical
ripples in the wvicinity of the divertor rings and the divertor

separatrix for the case of a poloidal divertor geornetry.

2—4. Code Tests
2-4-1. Divertorless tckamak
We first present an example of a divertoriess tokarnak

equilibriurn calculated by our EQPD code. The aspect ratio Ay
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= R, /a of the device is chosen to be five, where K4 Is the

major radius {the distance between the symrmetry axis and the

geometric center of the poloidal cross section} and a is one half

the width of the square. Fig.2-3 shows the contour plots of
¢, P and [.  The grid size used in this calculaticn is 60 by 30,
Poleidal Flux Function
1.¢
0.5 1
Y 0.0
-C.5 ]
-1'0 T 3 T
4.0 4.5 50 5% &.0

R

Pressure Function Poloidal Current Function

1.0
6.5 - 0.5 -
72
v 0.0 - %a ) ¥ 0.0 - |

-0.5 \J -0.5 -
-1'0 “10+ T

40 45 50 55 6.0 40 45 5.0 5

R R
Fig. 2-3. Contour plots of ¢, P, and I.
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To betier illustrate the global features of the three quantities,
the coniour levels are equally spaced between their minimum
and mazximum values. R and v are normalized to a. The
pressure is chesen to be proportional to v -¢ wail)/ (4’0 -
q;wan}}? and the peak beta (B ay) and the volume-averaged
beta, {<f>) are 6.3 and 1.4 percent, respectively. Here, dg
and yn,a) are the values of the poloidal flux' functien on the
magnetic axis and the wall. The toroidal current density J;
and the q profiles of this equilibrium on the midplane are shown
in Fig.2-4.  Jy is measured in units of B{o/ (auy), where Bro
is the toroidal magnetic fleld on the magnetic axis. The g
value on the magnetic axis is chosen to be 1.00.  The g value

at the wall goes to infinity because the poloidal compenent of the

Jy on the midplane g on the midplane

0.5 4.0 ;
':c', C 4t 20 F :;?fnetic /
< 03¢ q , /
S ' 0.0+
e :

- 02 r H
=7 1.0 F
0.1 ¢ R
OO ;/\‘-_.-—_ - - O_G - » . Y
. . £.0
40 45 50 55 0o >0 55
R R

Fig.2-4. Jr and q profiles on the midplane.
q is plotted only for RG£R<R,*a
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magnetic field vanishes at the sharp corners of the square
cross—section container that is assumed te be a perfect conductor.

Convergence of the calculations is illustrated in Figs.2-5,
2-6, and 2-7. The two contour plots of Fig.2-5 on the next
page compare P and [ with ¢, The contour curves for twe
quantitieé in each plot are launched from the same points on
the midplane of the poloidal cross section. Except for the
outermost contours of [ and ¢, the three quantities are in good
to excellent agreement. A slight discrepancy between 1 and ¢
on the ocutermost contours should not be taken too seriously
because the poloidal current functien I is found to be aimost
constant near the wall. This shows that P and ! are indeed
functions of ¢ for all practical purposes.

Fig.2-6 on page 32 shows the evolution of the square of
the unbalanced ficticious force as a function of iteration step
number. This quantity diminished by more than five orders of
rmagnitude in 15000 iteration steps with a step size At=0.0001
and the constant in front of the conjugate gradient term of b=
0.999. When b is reduced to 0.%99, it required as many as
50000 iteraticn steps to reach the same convergence level. On
the other hand, a further increase of b closer to unity, say b=
C.9995, resulted in run—terminating numerical instabilities.
Fig.2-7 shows the evolution of the shift of the magnetic axis.
After about 7500 iteration steps the axis shift seems to saturate

as it asymptotically approaches its terminal value.
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To examine the effect of the spatial discretization of the
equations on the caiculated MHD equilibrium, the EQPD code
was run with the same machine and plasma parameiers but
with three different grid sizes of 20 by 10, 40 by 20, and &C
by 30. In all three cases the shift of the magnetic axis was
found to be 0.31iBa. We conclude that the grid convergence is
excellent indicating very good numerics in the code.

To dermonstrate the versatility of the cede, we changed the
plasma pressure while keeping the machine parameters, the
pressure profile (P(0)/Pmax ) and the q profile (q(¢))
unchanged. Here, Ppay is the plasma pressure on the

magnetic axis. Fig.2-8 shows the effect of a finite plasma beta

N W o A ]
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| | | I I
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Axis shift in units of a

2) TIPS AT I I SL AT ATES A o AN A0 AN RSP UTET I S ST
0.6 5.0 10.8 15.0 26.0 £25.0 30.0

Plasma beta on the magnetic axis (percent)

Fig.2-8. Magnetic axis shift from the geometric center of
the poloidal cross section due to finite plasma
pressure.
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on the shift of the magnetic axis. At a very low B the axis
shift is found to be 0.053a, which is of order z:x/Ar.2 = () Dda,.
As the piasma pressure is increased, the magnetic axis is
displaced toward the outer edge of the vacuum vessel due to an
additional outward force. At a very high B the axis shift
approaches its terminal value which is of order a/2. These
results are in geod agreement with those previously
cbtained 46,91-93  1p Fig.2-9 on the preceding page, we plot
the peoleidal current. function on the midplane for the three
lowest beta cases in Fig.2-8. The second case has poloidal beta
8o (~2P/B;,2, where By is the poloidal magnetic field) of about
unity. As a result, I{¢) is almost constant. The first and
third cases clearly exhibit the weli-known46 paramagnetic and
diamagnetic effects for these ﬁp <1 and iSp > 1 cases.

it is reasonable to conclude from the above tests, as well
as a number of cther tests, that cur EQPD code weorks very
well for a diverterless tokamak for a wide range of plasma
parameters. An example of other tests includes conservation of
the functional form of q{$} during the iterations, which was
found to be satisfactory. As for the code efficiency, a typical
run with a 60 by 30 grid takes 30 seconds to 2 minutes of
Cray—-1 CPU time. The pregram size is about 600 thousand

octal words including graphic routines.
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2-4-2, Poloidal divertor tokamak

The EQPD code has been run extensively for a tokamak
with a four-node poloidal divertor. The contour plot of ¢ in
Fig.2-10 is obtained by setting Ny = 0 as in a divertoriess
tokamak calculation but subject to an additional constraint that
¢ at the divertor rings is fizxed. In the plot the contour levels

are equaily divided between the minimum and maximum values

Poloidal Flux Function

Fig.2-10. Contour plet of ¢. {n§ = 0}

of ¢ in the regions inside and outside the divertor separatrix,
respectively. The ratio of poloidal flux inside and outside the
divertor separatrix is one to four. R and v are normalized as

in a divertorless tokamak. Although the ¢ contour plot locks
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very smooth, the code failed to converge to a physically
meaningful solution. To best illustrate this problem, we present
two plots of the torcidal current density Jy in Fig.2-11.
Sericus spurious numerical oscillations that criginate from the
regions near the diverter rings and the divertor separatrix
occupy the buik of the plasma.  This is not surprising because
JZ involves second derivatives of ¢ and even the slightest
irreguralities in ¢ will show up in J§'

The problem can be alleviated considerably by introducing
a small but finite resistivity term in Eq.(2.18}.  To minimize
signif}cant resistive diffusion of the plasma during the iterations,
we turn on the resistivity term oniy after some numerical
osciilations begin to develop.  Furthermore, m is chosen so that
it rises sharply (by a factor of 100) near the divertor rings.

Fig.2-12 on page 39 shows an approximate MHD
equilibrium generated in this way in terms of contour plots of
¢, P and I.  The contour levels of P and | are equally divided
between their minimum and maximum values, while the
contour levels of { are chosen in the same way as in Fig.2-10.
The peak plasma beta By is chosen to be 2.0 percent. The
volume averaged betas excluding and including the region
outside the divertor separatrix are 1.2 and 0.44 percent,
respectively. For this particular run, n, at the plasma center
is raised from 0.0 to 0.3 [poa‘?/'time‘] during the iterations.

The grid size is 60 by 30. The torcidal current density thus

Fig.2-11.
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Torcidal Current Density
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for a run with ny = 0. 'd.s.’ denotes the divertor
separatrix.
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41
obtained is shown in Fig.2-13 on page 40, which should be
compared with Fig.2-11 on page 38. Except for the remnant
of the numerical oscillations near the diverter separatrix, the
toroidal current density has been smoothed out significantly.
Note that plasma current is allowed to flow outside the divertor
separatrix. The ratio of current carried by the divertor rings
to that carried by the plasma is 3.7. The q profile on the
midplane is also plotted in Fig. 2-13. The g wvalue goes to
infinity on the divertor separatrix surfaces because the poloidal
magnetic field vanishes at the separatriz x—peints.

The resuits of convergence tests are presented in
Figs.2-14, 2-15, and 2-16. The two contour plots of Fig.2-14
compare the pressure P and the poloidal current function | with
the poloidal flux ¢. The contour curves for the two guantities
in each plet are launched from the same peoints on the
midplane. P and § are in wvery geed to excellent agreement
except for the region near the divertor separatrix. The
pressure ridge that surrounds each divertor ring is difficult to
represent numerically and a lack of adequate spatial resolution
- there manifests itself in the iregularities of the pressure
contours near the divertor separatrix. (P is assumed to go to
zero at the wall and the divertor rings.} On the other hand,
¢ is easler to represent numerically near the ring in part
because the value of ¢ changes monotonically between the ring

and the closest wall. I and ¢ are in very good agreement

Contour Plot of P and &

Fig. 2-14. Comparison of P and I with ¢ contours.

4z
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inside the divertoer separatrix but they exhibit slight to moderate
discrepancies outside the divertor separatrix. The discrepancies
can be atiributed in part to a finite toroidal resistivity that was
included for numerical purposes.

Fig.2-1% shows the evolution of the square of the
unbalanced ficticious force during the iterations. By using At=
0.0001 and b=0.999, this quantity was reduced by more than
five orders of magnitude in 15000 iteration steps. Fig.2-1%
lustrates the shift of the magnetic axis during the iteraticns.
in contrast to the diverterless tokamak calculations in section
2-4-1, the axis shift here, which is small, fails to saturate.
This is due to the finite Ny that gives rise to resistive diffusion of
Jr. As this gradually takes place, the poleidal beta of the
plasma increases and, as a result, the axis shift continues to
increase. When Ny is set to zere, the axis shift does saturate
during the iterations. However, such a run cannot be
accepted because of the numerical problems with the current
density near the divertor rings  described before. As a
reasonable compromise, we are forced to terminate the
calculation when all other criteria in Sec.2-3 are satisfied
approximately. The computer time reguirement for such
divertor calculations is about 10 percent longer than calculations
for a divertoriess tokamak.

Although the EQPD code can generate acceptable divertor

equilibria for a number of cases, it cannot be used reliably
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Fig.2-15. The evolution of the square of the unbalanced
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when the axis shift is large. A poleidal diverter tokamak with
a small aspect ratio and/or a high beta must be excluded from
investigation.  We thus conclude that the Chodura—Schliiter
methed is not the best approach for a tockarnak with meoere than
one magnetic axis. In retrospect, the standard direct solution
of the Grad-Shafranov equation should have been used despite
the extra bookkeeping needed to handle multivaluedness of fiux

gquantities.

Chapter 3. 3-D RESISTIVE MHD INITIAL VALUE CODE(RPD)

3-1. Introduction ‘

Most resistive MHD initial value codes (e.g., HIB,33,34
RSF,18.%4 ang FARS5.58) for a tokamak Fourier analyze
dependent variables in both torcidai and poleidal directions to
take advantage of the symmetry or approzimate symimetry of
the device. However, when a vacuum vessel with a circular
or elliptical cross section is replaced by that with a square or
rectangular cross section, the advantage of a Fourier
representation in the poloidal direction diminishes considerably.
in the case of a poloidal divertor tokamak the problem is
complicated significantly by the divertor separatrix that divides
the computational domain into several topelogically distinct
regions.  The equilibrium flux coordinates that would ctherwise
facilitate an efficient spatial representation for a noncircular
tokamak®/ are no longer appropriate because of the singularities
at the separatrix x-points and the multivaluedness of the flux
funiction.

Te simulate resistive tearing modes in a complicated
geornetry including the region outside the divertor separatrix,
we have developed a new 3-D resistive MHD initial value code
RPD. 36,37 Key features of the RPD are as follows.

1) Numerically advance the 3-D compressible full resistive

MHD equations linearly or nonlinearly in a toroidal
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geometry,

2) Fourier analyze dependent wvariables in the toroidal
direction only. Use a finite difference representation in
the two Cartesian directions of a constant torcidal angle
plane.

3) Adopt a new, efficient semi—implicit schermne based on that
proposed by Harned and Kerner.38

4) Handle nonsimply connected boundaries including poloidal

divertor rings.

J.X. Lee has alsc developed a 1-D spectral, 2-D grid peint
resistive MHD initial value code CART®8 and studied the linear
evolution of n=1 and 2 medes in highly elongated and poloidal
divertor tokamaks.2? He has shown that the separatrix has
cnly a small effect on the linear behavior of global rnodes.  His
work, however, is limited in that the reduced MHD model was
used, only the linear phase of mode evelution was studied and
the divertor rings were kept outside the computational dornain.
With the features described abeve, the RPD code is capable of
studying many effects that are important but neglected in the
CART c¢ode work. They include the effects of toroidicity,
nonlinearlity and compressibility on the resistive MHD evolution
of nencircular and poloidal divertor tokamaks. The rest of this

chapter elaborates the details of our RPD code.

3-2. Descriptien of RPD
3-2-1. Plasma model

The full set of 3~D compressible resistive MED equations
used in this work are

p[aa_‘:ﬂv-v}v] =-1-*(VXB)><B—VP+vV2v, (3.1)
uO

Z—? = VX {vXB) - VX[E;(VXB)} , (3.2)
v.-B =0, (3.3)
‘;—}: = ~(v-V)P - TP¥-v , | (3.4)

where B is the magnetic field, v the flow velocity, P the
thermal pressure, p the mass density, n the resistivity, v the
viscosity, and [ the ratio of specific heats.

The magnetic field, velocity, and pressure are allowed to
evolve linearly or nonlineariy by keeping linear terms only or
by keeping both linear and nonlinear terms in the above set of
equations.  On the other hand, the resistivity and viscosity are
frozen in time for simplicity. We should keep in mind that
this simplification could lead to physically incerrect resuits in a
highly nonlinear regime since the resistivity and wviscosity of a
plasma change significantly as the magnetic field lines become
stochastic. Such effects, however, are of a highly global

nature and cannot be readily included in the standard resistive
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MHD model.

The continuity equatien (Eq. (3.4) above)} is dropped as is
done in the CYL codef0 and the FAR code®9:56 of Oak Ridge
National Laboratery, under the asswmption that the effect of
mass density fluctuations on the tearing mode evolution is
negligibly small.  This is known to be a good approximation for
the tearing modes. This alsc has a numerically desirable
consequence that then all the nonlinear terms can be evaluated
easily by a straightforward convolution routine. Should the
mass density be allowed to evolve in the momentum balance
equation, the terms such as {(1/p){((VX B) xB) and (1/0) (Vv P)
would require special treatment. They would have to be
evaluated using a fast Fourier transform routine, which is
significantly slower and requires considerably more memory
space than a convelution routine unless the number of Fourier
harmonics is very large.

Geometries considered in this work are square cross section
tockamaks with and without a poloidal divertor. Full toreidal
effects are included in both geometries. In the case of the
divertor geometry each divertor ring is also assumed to have a
sguare cross secticn for simplicity.

The wall and the divertor rings are assumed to be perfect
conductors. In addition, we impose impermeable and no—slip
boundary conditions on the surfaces of the conductors. We

also require the pressure perturbation to vanish there. Then,

50
the boundary conditions that the dependent wvariables must

satisfy at the wall and ring boundaries are

n-B=o9 , (3.5)
nx (vxB) =0, (3.6)
v=0, (3.7)
P=0, (3.8)

where n is the unit vector normal to the boundary and ~

denotes a perturbation value.

3-2-2. Dimensionless set of equations
First, we introduce dimensionless wvariables as follows,

The magnetic field is normalized to the equilibrium teorocidal
magnetic field ng the velecity to the Alfven velocity vp = BCO
/{ Ho p)VZ, and the thermal pressure to the equilibrium value
Po’ all at the magnetic axis. To absorb the constant in front
of the pressure gradient term in a dimensionless form of
Eq.(3.1), however, we measure the dimensionless pressure in
units of one half the plasma beta B, where B =P,/ ((BCO)Q/Q%}-
The length and the time are normalized tc one half the size of
the poloidal cross section of dimension 2a by 2a and the fast
Alfven time TAE a/vA {characteristic time for the propagation
of the compressional Alfvén wave perpendicular to the toroidal
direction), respectively. The mass density is assumed to be
constant and set equal to unity everywhere. The resistivity is

nermalized to the value T at the magnetic axis and measured
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in units of the reciprocal of the ‘fast Alfvenic' magnetic
Reynolds number Sy = /1y = (aQuo /me)/(afvy).  This should
be distinguished from the standard magnetic Reynolds number S
= TR/THp = (a.?';.lo /mp)/(Rfvy) often used in resistive MHD papers
on tckamaks, where THp is the time required for the shear
Alfven wave to circumnavigate once toroidally divided by 2m.
It follows from these definitions that THp=Ta Ar and S =S alArs
where the aspect ratio A, is the ratio of Ry (major radius) to
a(one half the width of poloidal cross section). Furthermore, the
viscosity is normalized to the value v, at the magnetic axis and
measured in units of vy /{av,).

Egs. (3.1)-(3.4) can then be written in the compact

dimensionless form

== ~(TV)V+(FxB)x B - VP +3¥2% | (3.9)
%?i:vx(ﬁxé)—ﬁﬁx(vxﬁ)ﬂﬁzﬁ, (3.10)
v-B=0, (3.11)
§ - ~%.(B%) + (1-1)P¥ (3.12)

where a bar over a symbol signifies a dirnensionless quantity.

However, the overbar will be dropped from the rest of this
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thesis for brevity of notation.  Henceforth, all the gquantities
should be regarded as dimensicnless unless otherwise noted.

We adopt a cylindrical coordinate system (R,y,0) and
choose the angular wvariable in the toreidal direction (See

Fig.2~1}.  Then, Egs.(3.9)-(3.12) become

v v v v v
= = v v —Eay (2R 2y
at R 3R Y 3y "R & R
apP 2 2 oV Yy
+ - — — —_— 2
(JyBc J‘:By) 0 + v{v Vp Z Rz), (3.13)
Mo ey Ty, 1y
at R 3R Y 3y IR 3L
aP 2
+(U B, - JRBC)—aR vV (3.14)
oV v, oV ov v
L S (VAL AL A 11,2y
at R 3R Y 3y 'R A R
1 3P 2 9V V¢
+(J B -J B )-= — +y(viv+S R __%
(Jg o~ Y, Bg) R (¥ v ¥ T RZ), (3.15)
oB
—R o - -1 -
= [ay(VRBY vyBR) R 3 (V;BR VRBC)}
9B B
S0y 4n(viB, -2 Lo Ry (3.16)
oy . R? A 2
aBY

i A - - 19 -
p” [R 7 (vth VCBy) R 3R (R(VRBY vyBR})]

+~a-n— J_+n Vsz

3R % (3.17)

1
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B
an an o 2 9By By

SRALN IR £ R 3.18

Ry Ty Rt Bt TR ) (3.18)

12mp)+2-8 +12p =9, (3.19)

P _ _ 1.2 2 (py yut @
ot [RaR(RPV)+ (P )+Rag(Pv)]

av
+(1- F)P[—ngﬁ(Rv Y+ Y %u&-‘} , (3.20)

where the current density J ={Jp,Jy,Jp) is given by

These equations must be numerically advanced linearly or
nonlinearly subject to the boundary conditions as follows:

At the vertical boundary
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B,=20, (3.21)
"
—a—éz =0, (3.22)
+ ZRB)=0, ' (3.23)
VR = Vy = V{ = { ) (324)
P=0. (3.25)

At the horizontal boundary

2By

e = ) _
oy : (3.27)
—L-o0, (3.28)
oy

VR = Vy = vy =0, (3.29)
P=0. (3.30)

3-2-3%. Spatial discretization

The seven dependent variables B = (BR,By, BC)’ v o=
(VR,vy,vc}, and P are Fourier analyzed only in the toroidal
direction io take advantage of the periodicity in this directicn.

Thus, a function {e.g., B, J) will be expanded as
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fRY, L) = 'R, y3 1)

+Z [ fn+(R,y;t) cos{nl} -i-fn_(R,y;t) sin (n0)] . (3.31)

n=1
Assurning a slow toroidal variation of the plasma quantities, we
usually truncate the Fourier series keeping only several terms.
We distinguish between Fourier cosine and sine terms by adding

* and T to the toroidal mode number. For

superscripts
example, n = 2% and 37 refer to cos{2nl) and sin{3nl) terms,
respectively.

As for the two Cartesian directicns R and y, an equally
spaced but staggered two dimensional grid (see Fig. 3-1) is set
up to handie the complicated geometry including the divertor
separatrix and the diverter rings. The grid is extended one row
and one column beyond the physical boundaries te properly
advance the plasma quantities near the edge subject tc the
boundary conditions. Al the first and second derivative terms
with respect to R andfor y are discretized by using the standard
second-order accurate difference form.

Use of the staggered grid requires more interpclation steps
and additional beokkeeping compared with an unstaggered grid,
but it does have the desirable feature of strongly coupling the
plasma quantities at even—numbered and odd-numbered grid
points. In addition, our choice of placing By, By, and BC in a

grid cell allows us to evaluate the nonaxisymmetric part of BC

accurately by using Eq.(3.19) with By and By that are only
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AR/2 and Ay/2 away. Had we used the unstaggered grid
instead, By and By would be twice as far from the center of a
grid cell where By is evaluated and this results in a larger

discretization error.

By VR, Y, %
(e, +1) ] GHLID
@ [ BR

(i+%, j+¥) | (+1,j+%)

R

™)
Fig.3-1. Placement of dependent variables in a grid cell.
i and j are indicies in the R and v directions.

It would be desirable to have more grid points near the
tearing layers where the plasma gquantities vary rapidly and
near the divertor separatrix where the magnetic field structure
s expected to be sensitive to a small perturbation. A grid
packing is found to be impractical, however, because such
regions are not confined to a few rows andfor columns of the
grid. The extra logical IF statements needed to identify such
regions would slow down dramatically the execution of the code
on the Cray computers by making many DO leops
nenvectorizable. Furthermore, in a highly nonlinear regime a
large number of secondary meodes are excited and a significant

pertion of the plasma could become stochastic. In such a case
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the grid density must be increased everywhere. A more
practical option for grid packing would be to increase grid points
near the divertor rings where the gradients of plasma
quantities are large. This option should be included in a

future version of the RPD code.

3-2-4. Time advancement

The first successful version of the code adopted a mostly
explicit, first—order accurate time advancement scheme as in
the CYL code. The dependent variables are not staggered in
time and time advancement is not time-centered. This
scheme can be summarized as follows.

First, the three components of the velocity vy, Vs and
vy are advanced fuilly explicitly as

vt+M_vt

At

where F'= —(vil.9¢)vt + (v X BYX Bt -vPt + y¥2vt and At

= F, (3.32)

is the temporal advancement step size. The superscripts t and
t+ At refer to values at the old and new times.

Next, the two Cartesian cornponents (BR,BY) and the
axisymrmnetric part of the toroidal component of the magnetic

field {Bgnzﬂ) and the pressure P are advanced as

t+AL |4
B -8B

B t+AL
At

=¥ x {v th)—anVth

+1 (VZB)ADI , (3.33)
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t+at_
At

by evaluating the velocity at the new time t+At that was Just

t b teAt

P = -v- PV s @-DRtv vt (334)

P

calculated in Eq.(3.32). This essentially makes the time
advancernent of the magnetic field and the pressure partiaily
implicit.  When the old time was used for the velocity iﬂ these
equations, the scheme was found to be unconditicnally unstable.

We also treat the resistivity term implicitly. The
superscript ADl in Eq. (3.33) stands for an alternating direction
implicit method. The second derivative terms of the resistivity
terms are treated implicitly (i.e., evaluated at the new time)
one term at a time. This reduces a large rnatrix inversion
problem to the sojution of a set of small tridiagonal matrices.

Finally, the nonazisymmetric parts of BC are evaluated by
using the divergence-free conditien for the magnetic field in the
form

t+At

B

1 3 t+AL 3 St+at
+ = ——(RRB + R
- [ aR( g ) ayBY ], (3.3%)

where the + or — sign must be chosen for Fourier cosine and
sine terms, respectively.

Despite some implicitness we call this scheme rmostly explicit
because the maximum step size for numerical stability is found

to be limited by the fully explicit time advancerment of the



59
velocity. We wili come back to this point in section 3-3 and
present an efficient, new semi-implicit scheme in section 34,

We could make the scheme second-crder accurate in time
by adding a predictor corrector step as in the RSF code. 18,54
However, for the small step sizes that were used in runs with
the mostly explicit scheme first—order accuracy in time was
shown to be very satisfactory. This is because nurnerical errors
in such a code are dominated by spatial discretization.
Furthermore, additicnal 3-D arrays and extra numerical steps
were found to cause an unacceptable extra cost in terms of
mernory and CPU time requirements. This was especially true
before the advent of the Cray-2. To facilitate efficient code
runs, we use the first-order accurate scheme throughout this

thesis research.

3~2-5. Some numerical details
3-2-5~a. Treatment of unresolved force in the equilibrium

An axisymmetric MHD equilibrium input for this cede is
generated by the 2-D Chodura—-Schliiter code that was described
in Chapter 2. Unfertunately, the numerical equilibrium
usually contains a small but finite unresolved force and it could
becomne significant when the poloidal flux function is transformed
numerically to the two Cartesian components of the magnetic
field. To eliminate the effect of this residual force on the

evolution of the resistive instabilities, we calculate the three

€0
compenents of this residual force at the beginning of a run,
store them in three 2-D arrays, and substract them from the
right hand sides of Egs. (3.13)~{3.15).

3-2-5-b. Addition of a helical perturbation

To excite a tearing mode in a tokamak plasma, we need
to break the axisymmetry of the eriginal MHD equilibrium.
This can be accomplished by adding any perturbation as long as
it includes a helical component that is resonant with the tearing
mode of interest. In fact, even a random perturbation will
most likely serve this purpese because it consists of a very large
number of small but finite helical harmonies. To facilitate a
rapid convergence to a ftrue eigensolution, however, it is
desirable to add a helical perturbation that is reascnably close to
the final state. Furthermore, the perturbation needs to be
divergence~free.

To this end, we first add a small helical perturbation
l.bpez—t to the equilibrium poloidal flux function @eq of the form
bog10,)

¥ = A
t 1 10{-1
per + exp [10( +¢eq/¢q)

] cos(m®-nl), (3.36)

where A is a constant, ¢q is the wvalue of ¢eq on which g =
m/n, and @ is the poloidal angle measured with the center

shifted to the location of the magnetic axis. beq is set equal
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to zero at the rnagnetic axis and it is normalized to the wvalue
at the wall or that at the inner divertor separatrix in
diverteriess or divertor geometries, respectively.

Next, the perturbed poloidal flux function is transformed to
(BR};.)ert and (By) pert- Each component is then expanded into
a form f7(R,v} cos(nl) + {~(R,v) sin{n} and the coefficients
in front are stored In preper arrays to initialize a resistive MHD

mnin.

3-2-5-c. Suppression of resistive decay of the equilibrium

It is well known that the time scale for the linear growth
of a resistive tearing meode is significantly faster than that fer
the resistive decay of the MHD equilibriurn.  Nevertheless, in a
nenlinear run that extends as long as several resistive diffusion
times the effect of resistive decay could become quite
important. From a theoretical viewpoint, it is desirable to
distinguish the modification of the equilibriumm due to the
nenlinear meode couplings from that due merely to resistive
diffusion which takes place even in the absence of tearing
modes, To this end, we apply to the plasma an electric field
that eliminates the resistive diffusion effect completely. This is
accomplished by breaking up the axisymmetric (n=0) part of
the magnetic field into two parts: the equilibriurmn part that was
originally prezent and the additional axisymmetric part that is

generated by nonlinear mode couplings. The former part is
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excluded from the resistivity terms of the time advancement

equations for the magnetic field (Eqs. (3.16)-(3.18)).

3-2-5-d. Treatment of divertor ring regions

The regions near the divertor rings, especially near the
sharp corners, tend te cause numerical problems. They almost
invariably manifest themselves as growing ripples in vr and BE
at first and gradually propagate to other quantities over the
entire plasma. The ripples result from the steep gradient of
the plasma quantities that are not accurately represented by a
limited number of grid points and the singularities at the sharp
corners where the normal and tangential directions are not well
defined. Te overcome such difficulties, both resistivity and
viscosity are increased sharply near the divertor rings.
Although numericaily rmotivated, this is qualitatively consistent
with the real physical characteristics of the plasma in a poloidal

divertor tokamak.

3-2-6. Additional features of the code

A number of run options are made available for our RPD
code. Control parameters in the input file are an essential part
of the code to make the code versatile. Here, we discuss only
two control parameters: a start/restart flag and a
linear/nenlinear flag.

When the code is run with a start option, it reads an
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equilibrium file and adds a helical perturbation to the
axisymmetric MHED equilibrium. Just before the end of the
run the code creates a data file that contains information about
the latest plasma state and the initial MHD equilibrim at all the
grid points. When a restart option is chosen in the next run,
the code reads this data file instead and resumes calculations
from the state it had reached previously. This data file can
also be used as an input file for data analysis routines, some of
which are not attached to the RPD itself.  This restart option
is very important for two reasons.

First, a typical nonlinear run takes hours, sometimes tens
of hours, of Cray CPU time and there is a small but finite
pessibility that the calculation gets contaminaied or even lost
due te computer preblems before a successful completion of the
run. By breaking up a long simulation run into several
shorter run segrments, however, we can always restart the code
frem the most recent data file that is wvalid, and thereby
minimize the damage due to such an event.

Secondly, it is not always easy to predict in advance what
and¢ when ta piot in the course of a leng simulation run. it
is also not efficient to attach all the diagnestic rouiines o the
main simulation program because of the larger program size
required. Cn the other hand, keeping track of the entire
history of the sirmulation would not be feasible due to the

encrmous disk space requirements and slow disk /O rates. A
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family of data files created at the end of run segments
constitute a convenient data base te study the time history of
the resistive MHD evolution later.

The coede can be run linearly or nonlinearly by properly
setting the linear/nonlinear flag. When the linear opticn is
chosen, all the equilibrium quantities are frozen in time
regardless of the size of the perturbationn. When the nonilinear
optien 1s chosen instead, all the nonlinear terms are caleulated
by a fully vectorized convelution reutine.

By combining the nonlinear and restart optiens together
we can use the data file created by a linear run as an input for
a nonlinear run. This facilitates an efficient nonlinear
simulation because the initial transient phase that contaminates
nenlinear mode interactions can be calculated through with a

faster linear simulation.

3~3. Code Efficiency Improvement
3-3-1. Limitations of the mostly explicit scheme

Our RPD code is almost fully optimized for the Cray
computers. Virtually all the wvectorizable DO loops are
vectorized. When the CIVIC or CFT compiler fails to vectorize
a vectorizable DO loop by errcnecusly detecting a vector hazard,
we invcke a compiler directive to force vectorization. Fer
nested DO loops, a DO leop with the largest range is usuaily

placed inside since the CIVIC and CFT compilers on the Cray only
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vectorize innermost loops.  Additicnal care is taken to minimize
bank conflicts and quadrant conflicts in memery access that
could slow down the code precipitously.

Despite such care, the efficiency of the first successful
version of the code was found to be too poor to conduct efficient
code tests, let alone an extensive parameter survey. To obtain
a highly converged linear result with a 60x60 grid, we need to
run the code for 30 to 120 minutes of Cray-1 CPU time,
depending on the growth rate of the mode. This stermns from
the large number of grid points required by the finite difference
representation in two directions and a small temporal step size
due to the mostly explicit scheme. The size of the executable
file (controlee) of such a case ranges from 1.2 to 1.4 million
octal words depending on the geometry {(with or without a
poloidal divertor) chosen, which compiler (CFT or CIVIC) is
used, and the amount of diagnoestic routines attached. This
means that a fairly high priority must be used on the Cray-1
{also on the Cray X-MP) except when the machine is
underutilized.

When the grid size is increased for higher spatial
resolution, the simulation becomes prohibitively expensive. For
example, for a case with a 1002100 grid and only three toroidal
harmonics (n=0,1F,and 17) the size of the executable file
increases to about 3 million octal words and it can no longer be

run on the smaller Cray-1 {C machine). Not only need

. &6
plasma quantities be advanced at many more grid points, but
the temporal step size needs to be reduced because of the
mostly explicit scheme.  We now examine the twe factors that
make a higher resclution run almost infeasible.

The first factor is the quadratic increase in the number of
grid points in the RPD code for a higher spatial resciution run.
The quadratic increase may seem to be much worse than the
linear increase of the number of grid points in the 2~D spectral
code. However, we need toc keep in mind that we are
primarily interested in a poloidal divertor tokamak. A higher
resolution run in such a geomeiry using a 2-D spectral code
would require more poloidal Fourier harmonics as well as more
radial grid points. Worse yet, these additional poloidal Fourier
harmonics interacting with a helical perturbation need to be
evaluated wusing a relatively time-consuming  convolution
routine. The quadratic dependence of computational
requirements for a higher resolution run is indeed an intrinsic
feature of a poloidal divertor tckarmnak and there is nothing
much we can do abeut it except for a grid packing near the
divertor rings.

The second factor is the linear dependence of the
maximum temporal step size Aty,,y for numerical stability on
the grid spacing Ax. The number of time steps reguired to
reach the same physical state, therefore, increases linearly with

the number of the grid peints in the R (or v) directien. This is
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the well known Courant-Fredrichs-Lewy{CFL) stability criterionbl
for an expiicit scherme.  When the step size At is made greater
than the time required for the fastest wave in the plasma
model ic propagate from one grid peint to the nearest neighber,
the wawve can no longer be represented properly by this
numerical scheme.  The velocity ai the new time would then
depend on the region that extends beyond the grid points from
which the new wvelocity is calculated. The fastest wave that a
compressible full resistive MHD plasma can support in a tokamak
is the compressional Alfvén wave that propagates in the
direction perpendicular to the equilibrium magnetic field. By
analytically or numerically removing the step size restriction
imposed by this wave in a tokamak geometry, we can expect to
improve the cede efficiency dramatically. We will focus on

this point in the next section.

3~3-2. Options to increase the temporal step size
3~3-2-a. Reduced MHD model3®

In a large-aspect-ratio tokamak (¢ = 1/A, << 1) the full
resistive MHD equations can be expanded in powers of ¢. By
ordering the pressure ( 8~¢% for a low beta tokamak and P~e
for a high beta tokamak) and retaining terms up to a specified
order in € we obtain the reduced resistive MHED equaticns that
are correct to that order. For example, the low-8 second—

order equations in dimensionless form are
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3¥ 2% 1 W
— = —y VY - D= J, - K
—!=—v-vU—i(v‘?va)—aJ;+3v2U (3.38
at 1 { 3 R -38)

where ¥ is the poloidal flux function, ¢ the velocity stream
function, U the toroidal component of the vorticity, EW the
toroidal component of the electric field at the wall, S the
magnetic Reynolds number, and X the fluid Reynolds number.
The subscript 1 denotes the constant toroidal angle plane. The

velocity, the stream function and the toroida: component of
verticity are related by

v =Vexl, (3.39)

U= vfcp , (3.40)
and the torcidal current density is given by

Jy = viv (3.41)
The normalization convention here foliows that of Ref. 54
instead of that in section 3~2-2.

In addition to its simplicity in containing fewer equations
and dependent variables than in the full set, the lower—order
reduced set of equations has the very attractive numerical
feature of eliminating the fast compressional waves from a
tokamak plasma. The maximum temporal step size for

numerical stability is no longer limited by the fastest time scale
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but by the less restrictive shear Alfvén time scale. It has
been shown that such a simplication does not modify
significantly the tearing mode evolution, even at an aspect ratio
of five. 60

When a 1-D spectral, 2~D finite difference representation is
employed in spatially discretizing the reduced set of equations,
however, the solution of Eq.{3.40) for ¢ requires much more
work space and CPU time than the case with a 2-D spectral,
1-D finite difference code. Because of finite differencing in two
directions the matrix problem is not a set of small, simple
tridiagonal systems. Instead, for each toroidal Fourier
compenent a very large band matrix (iridiagonal matrix with
fringes) needs tc be solved using a fast iterative methed or an
operater splitting method.

Furthermeore, to study a tokamak that departs greatly
from the standard ordering assurnptions, higher order terms in
€ must be kept in the reduced set of equations. R. Izzo and
coworkers at Princeton Plasma Physics Laboratory extended the
reduced set to fifth—order in ¢.62  Not only are such equations
more complicated, but the step size restriction due to the fast
compressional wave will reappear unless parts of the magnetic
field and the wvelocity respensible for this wave are advanced
implicitly.

Althcugh a formalism utilizing a small inverse aspect ratio

expansienn has the advantage of revealing the physical
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contributions of wvarious terms for a wide range of MHD
instabilities, the reduced moedel as applied to noncircular and
poloidal diverter tokamaks including torcidal and separatrix
effects seems to defeat its purpese. Frem a pragmatic
viewpeoint, an implementation ‘of the reduced MHD rmedel in our
RPD cede clearly represents an unnecessary duplication of effort
since the CART code,58’59 although limited to a linear wversion
of the third-order accurate reduced model, has already been

developed.

3-3-2~b. Incompressible model

When an MHD plasma is assumed to be incompressible by
impesing a V-v = Q condition, all the compressional waves are
eliminated. This includes elimination of the fast compressionai
Alfven wave that propagates approximately in the poleidal
plane, and thereby, as in the lower—order reduced resistive
MHD model, the severe step size restriction for nurmerical
stability due to the fast wave can be removed,

A novel feature of this analytic simplification is that it can
be applied to the full set of equations in which no ordering

assumnption is rade. [f the equation of state is chosen to be
VP = V- [-(v-¥)v + (VX B)XB + vVv2v] (3.42)

instead of that described by Eq.(3.12), the velccity will remain
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divergence—free at all time if it is so initially. This can be

readily seen by noting
g ov
— \V-v) = V¥-{ —
at ( ) ( ot )

=V-{~(v-¥)v + (VX B)XB + vv2v] -~ v2P. (3.43)

The incompressible model has been implemented, at least
as an option, in several full resistive MHD initial value codes; a
partial list includes the full resistive MHD code at the Institute
of Fusion Studies of the University of Texas~Austin®3 and the
incompressible versions of CYL80 and FARD5.56 of ORNL.

These codes use a 2-D spectral, 1-D finite difference
representation and the solution of Eq.(3.42) can be essentially
reduced to a set of small tridiagonal mairices. Or: the other
hand, the RPD code is finite differenced in two directions and
Eq.(3.42} poses a very large band matrix problem as Eq. (3.40)
does in the reduced MHD model.  This makes the compressional
model less attractive for RPD.

Furthermore, as an application of RPD, it is of
considerable interest to study in future work implications of the
diverior separatriz for H meode ope:’attéon.é‘4 To this end, it is
desirable, if ever possible, to retain compressibility in improving

the code efficiency.

3~3~2-¢. Fully implicit scheme
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A fully implicit scheme in MED calculations usuailly refers
to a time advancement algorithrm in which all the linear parts
of the right hand side of the magnetic field, wvelocity, and
pressure advancement equations are zvaluated at the new time
level t+At 56,65 (A truly fully implicit scheme should evaluate
everything on the right hand side at t+At, but such a scheme
would result in an extremely large set of nenlinear eguations
that cannot be solved in general. ) The way the plasma
quantities at a grid peint evolve from t to t+At, therefore,
depends not only on their old wvalues at that point and its
nearest neighbors but on how they evolve at all other grid
peints from t to t+At Information about a plasma
disturbance can propagate instantaneously from one grid point
to the rest of the computational domain.  As a result, the step
size for time advancement can be made arbitrarily large
without numerical instabilities while all the modes are retained
in the plasma including the fast compressional and the shear
Alfven waves.

The fully implicit scheme has been successfully
implemented in the 2-D spectral, 1-D finite difference full MED
code FAR5.%6 that makes no analytic ordering assumption.
The linear eigenvalue (linear growth rate) requires only a few
time steps when a reasonable initial perturbation is chosen.
Efficiency of the nonlinear simulation is also improved

dramatically although the nonlinear part is treated expiicitly in
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the code.

Unfortunately, the fully implicit scheme requires the
solution of very large and complicated matrices. Setting up
such matrices involves a considerabie amount of bockkeeping
and the matrix inversion calls for significant work space and
computer time. The FAR code circumvented these problemns
by developing a routine that automatically generates the matrix
elements and by performing an LU decomposition, the expensive
part of a direct solver, only at the cutset of a simulation. 56

Although this approach can be extended in principle to a
1-D spectral, 2-D finite difference code, it is not practical to
implernent in RPD presently due to the CPU memoery limitation
of the current generation of supercomputers. Even with a
moderate grid size of 60x60 the executable file cannot be ‘fit into

the CPU memoeory of the Cray—-2.

3-3-2—-d. New semi—implicit scheme

The semi-implicit scheme in MED refers to a new class of
time advancement algorithms that was first proposed by Harned
and Kerners8 for a compressible full MHD plasma. By adding
a simple semi-implicit term to the full set of eguations and
ireating the part of the eguations responsible for linear parasitic
waves implicitly or approximately implicitly, we can remove
the step size restriction imposed by such waves without altering

the physics of the MHD plasma.
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To iillustrate this point, consider a fully explicit time
advancement of the velocity as given by Eq.(3.32}. The
maximum siep size for numerical stability is limited by the fast
compressicnal waves in a poleidal plane. Let £-v be the linear
term that is responsible for these waves. {€ is a matrix.}) A
semi~-implicit scheme that elirmninates the fast wave temporal
step size restriction can be constructed by making implicit only
the term C-v in Eq. (3.32). This can be achieved by
subtracting £-v at the new time level from the left hand side
of Eq. (3.32) and C-v at the old time from the right hand side.
In this procedure, however, the fast compressional wave itself is
retained in the plasma.
In general, the semi-implicit scheme for the wvelocity

advancement can be written as

v oV
L =F +aht -2, 3 44
2t ¢ 2t (3.44)

where & is the semi-implicit operator, At is the temporal step
size, and a is a positive constant. The case where G = Cfa
sorresponds to the previcus example.

The real advantage of the semi-implicit scheme comes
from the great flexibility in choosing the sermni-implicit operator
G We need not cheose the semi—implicit operator so that it
exactly matches the term that limits the mazimum step size
for numericai stability. As long as the semi-implicit operator

contains the dominant part of the exact term, a significant step
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size increase can be attained cver the mostly explicit scheme
without numerical instabilities. By making a Judicious choice
for the operater form, we can keep each time advancement
step with a much larger step size almost as simpie and fast as
that with a much smaller step size for the explicit scheme.
This would yield a very efficient code. On the other hand, an
exact choice would almost invariably result in a very
complicated matrix problem as in the fully implicit scheme.
The exact choice, therefore, it most likely couterproductive.

A simple semni-implicit operator that rermoves the fast
wave step size restriction was successfully implemented in a 2-D
spectral, 1-D finite difference resistive MHD code.38,66 The
semi-implicit scheme was then extended to remove the shear
Alfvén step size restriction as well 67 Later a very simple
isotropic operator was shown to be adeguate to remove both
step size restrictions although the accuracy tends to degrade for
a larger step size. %8

Being encouraged by the novel features of the semni~
implicit scheme, we decided to develep for and implement in

RPD a new numerical procedure that is based on it.

3-4. Implementation of the New, Efficient Serni-Implicit Scheme
3-4-1. A simplified semi~implicit operator
The linearized ideal MHED equations without an equilibrium

flow in a dimensionless form are
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! B)XxB -vp (3.45)
—g=(VxBo)xBl+(Vx ,JXB -vP .

2B

i _

v -Vx(vixBD), (3.46)
v-B =0, (3.47)
Py ; (3.48)
el -(v,-¥)P - I“PO{V-VI} , .

where the subscripts o and 1 denote equilibrium and perturbed
quantities. Taking a time derivative of Eq.(3.45) and

cornbining it with Egs. (3.46) and (3.48), we obtain
v,
—;3:% = (VxBo}x[Vx(le B )] +{vx[v x (v, x Bo}}}xB0

«H?[(vl-v)PG +FPO(v-v1)} ) {3.49)
This equation contains the kink and interchange medes in
addition to the fast cornpressional and shear Alfvén waves. To
exiract the latter part we take B, and P, to be spatially

uniform. Then, Eq.{3.49) becormnes

82v
—1t= {(vxVx(vx B} B +TPV(F-v) . (3.50)
at2 fa] a}

The right hand side of this equation is still much too
complicated to implement in the semi—implicit scheme.

By assuming that the magnetic field is predominantly in
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the toroidal direction, however, the part that is responsible for
the compressional waves with the wave vector perpendicular to
the equilibrium magnetic field can be approximately written as

2
SVi _ (g2 51
- = (B.+TP) v, (Vv ). (3.51)

at
This leads us to propose a serni—irnplicit term at(3fat) (v, (V-v )]
which is the same as that used by Harned and Kerner.38
Three components of the velocity advancement equation are

t+At_ t

2
v V. t+At 3 t+AL
R R _g 2l 2@my - eV
At 3R [R aR( R ] gRay ¥
t 2 1l 3 (ot & (3.52)
- _—gd T2 2 - g——v .
=Fy - a5g [ (Ve 2R3y Y
t+at  t 2
Vy Yy _ Q;_Q-[l-a—(RVHM )]—u "a"EVHM
At 3y RaR R v ¥
2
et g2k 2Ry -a vt (3.53)
_}-'y a oy [R aR( R ay2 v
b+t b
Vi g (3.54)
At ’

where Fpt, Fyt, and th are three components of
Ft = —(vtv)vt + (¥ x BO)x Bt -vPt + voivh.

I+ is very important to note that no approximation has
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been mmade tc F; all the physics in the original set of
compressional, full resisitive MHD equations are kept except for
a small dispersive effect introduced by the semi-implicit term.
All the approximations are applied only 1o the semi~implicit
term.

The simplified semi-implicit term of our choice should
work best in a large aspect ratio tokamak without a poloidal
divertor. In the case of a poloidal divertor tokamak the
simpiifying assumption breaks down in the wicinity of the
divertor ring where the poloidal magnetic field is comparable to
the toroidal field. The stabilizing properties of the semi-
implicit scheme are expected to degrade there considerably.
The simplifying assumption alse tends to break down in a smail
aspect ratio tokamak. Despite such limitations, however, we
can justify the use of such a serni~implicit term by neting that
even a modest increase of the step size would represent a
considerable saving of computer resources in a large scale
numerical simuiation. Furthermore, the extent to which such
simplifications affect the stability of the scheme has to be

determined from numerical experiments.

3-4-2. Operator splitting methed
Despite gross simplifications, a direct solution of Eqgs.(3.52)
and {3.53) as applied to our RPD code would still inveive a

large matrix preblem because of the coupling of vy and Vyr and
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the mixzed partial derivative ierms. This essentiaily stems
from a f{inite-difference representation in two directions. Were
the dependent variables Fourier analyzed in one more direction,
Egs. (3.52) and {3.53) could be combined into a single equation
that includes only one dependent variable, say vp. This can be
solved for vRt"‘M by a simple tridiagonal matrix seolver and
vyt"-’lt can be found by a simple substitution into the equation
that relates vp'*4t and vyt+At.

To alleviate the large matrix problem, we proposed to split
the serni-implicit operator as follows.3/-41  For odd-numbered

time steps vy and Vy are advanced as

t+AL t .

Vi "V g ri 2 t+AL t 3 r4 2

s R_40 Rv F.- Rv 3.55
At R R R =g *3a R 3 RV )] (3.55)

Vt+m—vt 3
At a R R ayz v
=F - 2a a [1 2 (Rv)] Ca (3.56)

y R 3R ay‘z y )

VpttAl s first found from Eq.(3.55); it is then substituted
into Eq.{3.56) to solve for Vyt+At. For even—numbered time

steps they are advanced in reverse order as
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t+ar

v, vy, _a_éivtm':: gt _a“af_“ ot (3.57)
At ayz Y Y ayz b4
V:;At—v;; g 3 [1 a (Q t+At\} De—B 2 vtmt
At 3k "R oR aRa b4
: 2 A
=F -a= [R aR(R - 20‘3‘@; Voo (3.58)

Vyt+At is first found from Eq.(3.57); it is then substituted into
Eq. (3.58) to solve for VRt+At. The mixed partial derivative
terms of the semi-implicit operator in Egs. {3.56) and (37. 58)
are multiplied by a factor of two to make up for the fact that
they appear half as often as other second derivative terms. '

All four egquations require only a simple tridiagorial matrix
solver.  Qur new scheme, therefore, is very fast to execute ; it
results in only about a ten percent increase of computer iime
per single time step compared with the original scherne that is
mostly explicit. The size of the executable file remains
essentially unchanged because the tridiagenal solver requires
very little work space and it has aiready been introduced in the
code to handle the resistivity term using the ADI methed.

The numerical stability of the code, on the other hand,

improves dramatically with our new scheme that approximately
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removes the fast compressional wave step size restriction. The
maximum step size can be typically increased by a factor of one
to three times the aspect ratio for a divertorless tokamak and
by a factor of somewhat less than the aspect ratio for a poleidal
divertor tokamak. Because the increase in the CPU time
requirement per single time step is so small, the overall code
efficlency increases tremendousiy.

Stability alone does not ensure a good numerical scheme,
however. Both accuracy and consistency need to be examined.
To this end, we have conducted very extensive numerical tests
comparing the mostly explicit scheme and the new, efficient
serni—implicit  scheme. Grid convergence, step size
cenvergence, linear and nenlinear evolution of mzé,n=1 and
m=1,n=1 resistive moedes were all found to be satisfactory.
Detailed comparisons in a divertorless geosmetry and in a poleidal
divertor geometry are presented in chapters 4 and &,

respectively.

3-4-3. Attempts to further improve code efficiency

A natural extension of the above work would be to apply
an operater splitting method te a semi-implicit term that
remeves the shear Alfven step size restriction as well. The
simplest choice for the semi-implicit term would ke an isotropic
operator VZ2v as in Ref.68. We simplified this further by

ignering the weak couplings of vp and vr due to the torcidal
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curvature.  This allows us to decouple the R and { components
of the velecity advancement equation.

To aveid a large band matrix problem that results from
partial derivatives in both the R and y directions, we tried
several operator splitting methods.  One such method advances

VR in two steps as

x x
t ot .
v, -V
B R 1 8 1 2
R F R 3.59
At R BR( aR ) R R aR{ ) ( J
Jrat_ ot 2 bt ERLI
R__VR_ R n° tHAt, R _n° t
= a v Il Vg 3= ot[————ay2 oz vol, (3.60)

where n is the toroidal mode number. vy and vy are advanced
sirnilarily.

Unfertunately, all the methods tried for the semi-implicit
operator were found te be highly dispersive and impractical to
use.  Throughout this thesis research the semi-implicit scheme
described in sections 3-4-1 and 3~4-2 was used very
extensively and benchmarked against the results cbtained with

the mostly explicit scheme.

3-5, Code Diagnostics

A numerical experiment conducted with the RPD code
yields an enormous armount of data and it is not practical to
store it ail, not to mention subjecting it to a thorough

examination. Proper diagnostic routines are indeed a crucial
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part of the code to facilitate efficient production runs.
. During a run RPD keeps track of the temporal evolution of
the toroidai, nontorcidal{poloidal plus radial), and total energies
of the magnetic and kinetic energy components for each Fourier
componert. The volume integral for each component can be
reduced to a 2-D integral on a constant teroidal angle plane
because of a spectral representation in the toroidal direction.
RPD alsc computes the 'instantaneocus’ growth rates of magnetic
and kinetic cornpenents of each torcidal mode on time intervals
of a few Alfven times. This is doene by assuming an
exponential growth of the mode as B {or v) = e Y1 over the
time interval from t to t+At and sciving for the growth rate y
using the energy of the mode at time t and t+At.

The individual Fourier components of the magnetic field,
plasma current density, flow velocity and pressure, and their
total va]ues- can be plotted on various toroidal angle cross
sections in the course of a simulation run. To keep the size of
the graphics files manageable, however, we usually plet them
only on the midplane at { = G at the end of each run segment.

To efficiently unravel the global structure of the
instabilities, we have developed two diagnostic routines, FLOW
and HFLUX, that are separate from RPD. FLOW plots a 2-D
flow pattern of the plasma at a desired constant torcidal angle
plane. This helps us visualize the global dynamic structure of

the instabilities, HFLUX plots an approximate helical flux
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function by subtracting from the calculated magnetic field a
sheariess field that is resonant at the mode rational surface of
interest. (The exact helical flux function cannot be constructed
because of the truly 3-D nature of the code.) This allows us
to make a quick examination of the island structure.

A distinguishing feature of a 3~D magnetic geometry,
however, lies in the interactions of modes of incommensurate
helicity.  This could lead to stechasticity of the magnetic field
lines when the magnetic perturbations are sufficiently large.
To properly identify such regions and to understand the exact
magnetic field structure, we need to follow the field lines and
generate puncture (Poincare) plots. It turns out that one of
three input optiens of the field line tracing code TUBE %% is a
1-D spectral representation of the magnetic field. We have
successfully interfaced TUBE with RPD outputs and used it
extensively to study the development of stochasticity in
nenlinear simulations of both divertorless and poloidal divertor

tokamak plasmas with RPD.43
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Chapter 4. RESISTIVE MHD INSTABILITIES IN A DIVERTORLESS
TOKAMAK

4-1. Intreduction

A square cross—section divertorless tokamak is a simple
and convenient choice for testing ocur 3-D resistive MHD initial
value code RPD, The shape of the wall boundary matches
perfectly with the arrangement of the grid peoints. By net
including a peloidal divertor we eliminate a potential source of
numerical error that could contaminate the code resuits.
Noncircularity does <change the details of the linear and
nenlinear behavier of resistive instabilities by modifying the
equilibrium and/or by coupling modes with the same torcidal
but different poleidal mode numbers. 9/, 70,71 Nevertheless,
the basic characteristics of an instability should conform to
those in a circular cross-section tokamak if the mede rational
surface is moved sufficiently far away from the region where
the flux surface is considerably noncircular. This suggests that
by making a judicious choice for the equilibrium the standard
theoretical and numerical results in a circular cross—section
tokamak, 94.60,72,73 such as the resistivity scaling of the linear
growth rate, can be used to check the correctness of RPD.

A rigorous test of RPD requires detailed cormparisens of the
RPD results with the results obtained with other resistive MHD

codes for the same equilibrium input. Unfortunately, we did
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net have access to other initial value codes that were designed
for a square cross—section tokamak including toroidal effects.
Another possibility was to develop a linear boundaryﬁlaﬁrer code
using a A’ formalism. 1,72 Although this option would allow us
to check the linear behavier of the tearing medes with m>1 for
sufficiently high S, it cannot be extended to a nonlinear regime
or to a poloidal divertor geometry. In view of our main
objective of understanding the resistive instabilities in a divertor
geemnetry and the great compilexities of developing such a code
in a toroidal and noncircular geometry, we did not pursue this
option either.

Instead, RPD was run for a large number of cases with
different equilibria and input parameters. The code reproduced
the standard theoretical and numerical results pertaining to the
tearing and resistive kink modes in a divertorless tokamak.
Significant efferts were made to demonstrate the convergence of
the solution by changing the grid size, the time step size and a
rniumber of Fourier harmonics for selected cases. The new
serni—implicit scheme was compared very exiensively with the
mostly explicit scheme to check stability, accuracy, and
consistency of the scheme. All these allowed us %o collect a
sufficlent data base to conclude that our RPD code is essentially
correct and that our sermi-implicit scheme is indeed a powerful
numerical method for dramatically improving the code

efficiency.
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In sections 4-2 and 4~3 we present the simulation results

for the cases in which either the m=2,n=1 tearing mode is
dominant or the m=1,n=1 resistive kink mode is dominant.

Each section is broken up into three parts: description of MHD

equilibriurmn inputs, linear results, and nonlinear resuits.

4-2. m=2,n=1 Tearing Mecde Dominant Case
4-2-1. MHD equilibria

Over a dozen divertorless tokamak equilibria with 1 <
dawis < 2 have been considered in our study. (This number does
not incilude equilibria with the same machine and plasma
parameters but different grid size.} In Table 4-1 we list some
key parameters of five equilibria whose linear and/or nonlinear
results are discussed in sections 4-2-2 andfor 4-2-3.

In ali five cases the toroidal current density is
parameterized’> approximately as (1/R) [1+(p o /Pc yany =(/m),
where Py is the distance from the magnetic axis and it is
noermalized to a, one half the width of the square cross section.
o is the distance between the magnetic axis and a particular
flux surface. We choose this flux surface to be the one that
crosses the midplane at the halfway point between the magnetic
axis and the outer wall, A Is set equal to 3.24 to permit a
fairly broad profile with a steep Jr gradient in the vicinity of
the gq=2 surface. The plasma beta is chosen to be less than

C.C1 percent in ail five cases; this makes the plasma essentially
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force free.

aspect axis dg
ratio | Jayis! shift do ig=2

Fquil.#1 | 5.0 | 1.80 { 0.053 | 11.1

Equil #2 1.5 152|018 16.4

Equil. *3 5.0 | £.82 | 0.053 15.6

Equil.#4 | 15.0 | 1.54 | 0.018 i5.9

Equii.® | 50.0 | 1.54 | 0.0053| 16.0

Table 4-1. Five equilibria with 1 < quy < 2. The axis shift
and dq/d¢ at the gq=2 surface are normalized to alone haif the
width of the square} and (Bgo aR )i

The contour plots of the poloidal flux function ¢ and the
plots of ‘}C and g profiles on the midplane of these five equilibria
are shown in Figs. 4-1 to 4-5. The q=2 surface is placed
sufficiently far away from the square wall to lessen the
noncircularity effect.  The primary difference between Equil. #1
and Equil. #*3 is the g value on the magnetic axis. This affects
the proximity of the gq=2 surface to the central region where
the JC and q profiles are flat. Equil. #2, #3, #4 and #5
constitute a sequence of MHED equilibria with increasing aspect

ratio but almost identical q=q(J).
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Fig 4-1. Contour ploet of ¢ and plots of Jy and g on the
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Fig.4-2. Contour plot of ¢ and plots of J; and g on the
midplane for Equil #2. ¢ contour levels are equally spaced
between their minimum and mazimum values.
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4-2-2. Linear results

For a linear simulation we keep only the linear terms of
the n=1 component ({both the n=1%t and 1~ terms which
correspend to Fourier cosine and sine terms) in addition to the
axisymmetric (n=0) component that is frozen in time.
Because of our 1-D spectral, 2-D finite-difference spatial
representation, all the helical modes with |m|> 2 and n=1 are
effectively included in the calculations. The cut-off at high m
depends on the number of spatial grid points included in the
calculation. For our choice of equilibria, however, the
m=2,n=1 tearing mode is found to be invariably dominant and
the linear results can be used to extract the behavior of the
m=2,n=1 tearing mode.

Equil. #1 was used very extensively to test our RPD code
and to compare the mostly explicit and the new semi-impiicit
schernes. The eigenfunctions obtained with the two numerical
schemes are found to be in very good agreement except for the
somewhat smoother fine structure in the case of the serni-
implicit scherne.

Te illustrate this, we present in Figs.4~6 to 4-8 the plots
of the perturbed J?; on the midplane at {=0 degree and the
plasma flow patterns at [=0 and 90 degrees as examples. The
temporal step sizes used in the two runs are 0.0195 tp (=
0.0025 THp) for the mostly explicit scheme and 0.1 t4(=0.02

THp) for the new semi~impiicit scheme. The sermi—implicit
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Fig.4-6. Plots of the perturbed Jc on the midplane caiculated
with (a) the mostly explicit scheme and (b) the new
semi—implicit schemne. In addition to the m=2,n=1 tearing
mede that is dominani, a small but finite m=3,n=1 rmode is
excited.
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Fig.4-8. Plasma flow patterns at {=90 degrees calculated with
(2} the mostly explicit scheme and (b} with the new semi-
implicit scheme.  Along with Fig.4-7, the force on the plasma
15 shown to be that of the m=2,n=1 tearing meode.
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Fig.4-9. m=2,n=1 rmagnetic island at {=0 and 9C degrees
calculated with the mostly explicit scheme. The semi-implicit
run yields virtually identical results.
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ceefficient a is chesen to be 0.05. In both cases the grid size
of 100 by 100 is used and the magnetic Reynolds number S is
assumed to be 10% everywhere. The m=2,n=1 helical flux
function at [=0 and 90 degrees is shown in Fig.4-9 to illustrate
that an m=2,n=1 magnetic island is indeed present. Here, we
only inciude the case with the mostly explicit scheme because
the results obtained with the two schemes are virtually
identical. It must be emphasized that the temporal step size
At=0.175 for the semi-implicit run exceeds the numerical
stability limit of the mostly explicit run by about a facter of
seven.

As for the eigenvalue, the semi—implicit scheme has a
tendency to reduce the linear growth rate of the n=1
comperient as the time step size is increased. Equil. #1 with a
cearse grid of 60 by 60 was used extensively to examine this
effect. A rule of thumb for the reduction in the growth rate
is that it is within 15 to 20 percent of that calculated by the
explicit scherne as long as the product aAt is kept smaller than
0.01 in fast Alfven units.

¥ig.4-10 compares the mostly explicit scheme and the
semi-implicit schermne with o=G.05 for different termporal step
sizes. The maximum step size for numerical stability is
increased from 0.027ty (=O.00541Hp) to 0,151, (=O.029THD)
with only a modest sacrifice in accuracy. Because the

serni~implicit scheme requires only about 10 percent more
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Fig.4-10. Effect of temporal step size on the linear growth rate
of the n=1 component {m=2,n=1 tearing mode dorninant} for
Equil. #1. Resuits with the mostly explicit and the semi-
Implicit schemes are compared.

computer time per time step than the mostly explicit scheme
this represents a saving of computer time by about a jactor of
the aspect ratio. In the case of a larger grid size the saving is
even greater; the maximumm step size for numerical stability
with the mostly explicit scherme decreases linearly with the grid
spacing while it remains almost unchanged with the
semi-implicit scheme. In fact, for large grids the semi-implicit

scheme becomes a necessity rather than merely a time saving
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measure. Wifh the mostly explicit scheme, a typical linear
run using the grid size of 100 by 100 would require over six
nours of computer time. With the semi-implicit scheme, the
computer time can be reduced %o under one hour. The
program size of such runs is about 3.2 million words in octal.

One way of testing the code and its numerical scheme is

to examine the effect of grid size. Fig. 4~11 shows the grid
’r:i’]:\
5 o020
= I
s
Z i
< o015 «
= - .
i | hd . Y .
j&H] - -
= 0010 }
D: L.
'S: b
= X
é 0.005 | x mostly explicit scheme
\f i e semi-implicit scheme (a=90.05)
£ 0000 ke
—

.00 0.01 0.02 003 0.04

Grid Spacing

Fig.4-11. Effect of grid spacing (or reciprocal of one half the
grid size) on the linear growth rate of the n=1 compenent
(m=2,n=1 tearing mode dominant) for Equil. #1.  Results with
the mostly explicit and the semi-implicit schemes are
compared.
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convergence of ti’]e linear growth rate of the n=1 component for
Equil #1 using the mostly explicit and semi—implicit schernes.
The grid sizes used are 60 by 60, 80 by 80, and 100 by 100 for
both schemes, and 120 by 120 and 180 by 180 for the semi-
implicit scheme. Although the linear growth rate increases
medestly as the grid resclution Improves, its increase tends to
level off as the grid spacing go to zero. We conclude that the
grid convergence of the code is satisfactory for both numerical
schemes.

Next the scaling of the linear Qrowth rate with resistivit-y
is tested using Equil.#1 with a grid size of 60 by 60.
Simulations are conducted for both explicit and serni-implicit
schemes. {See Fig.4-12.) At a sufficient high S value of
3x104 or larger, the linear growth rate is shown to follow the
standard analytic scalingjwf’[}’?3 of S35 However, the
nurnerical scaling obtained with RDPD deviates greatly from the
analytic scaling at low §. This is due to the fact that the
assumption that gees inte the boundary layer analysis (A’
formalism) fails as resistivity increases. The deviation is very
large in this regime for this equilibriumn because of the nearness
of the g=2 surface to the region where JC and ¢ are flat. As
the resistivity increases, the resistive layer widens and extends
to such a region. This results in a reduction of the effective A'

and the growth rate.

To support this interpretation, the resistivity scaling study
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i¢ repeated using Equil. #*3 in which the §=2 surface is placed
further away from the region where JZ and g are flat. The
resistivity scalings for the linear growth rates using Equil. #1 and
#Z are compared in Fig.4-13. As expected, the analytic and
numerical scalings are in good agreement over a wider range of
S in the case of Equil #3.

One of the novel features of our RPD code is that it can
be used to study the toroidal effects on resistive instabilities
witheut an ordering assumption. To test the toroidal terms in
RPD, we conduct the linear sirnulations for a .sequence of

equilibria (Equil.#*2 to#5) for which the aspect ratio ranges from
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Fig 4-14  Effect of teroidicity on the linear growth rate of the
n=%1 component (m=2,n=1 tearing mode dominant).
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1.5 to B0. A significant reduction in the linear growth rate is
observed at tighter aspect ratios. {See Fig.4-14.) This 15 in
agreement with the previously obiained toroidal
results, 60,70,74,75 Furthermore, the ratio of the torocidal
compenent of the perturbation to the total periurbation is
examined for both the magnetic and kinetic parts.{See
Fig.4-15.) It can be seen that EC ~ €Biota and V¢ ~ €Viotal
where € is the Inverse aspect ratio. This is also in good
agreement with the previously obtained forcidal resulis using
the full set of resistive MHD ecguaticn‘m,s{J and it confirms the

analytic ordering of the reduced set of resistive MHD equations.

4-2-3. Nenlinear resuits

For a nonlinear simulation we keep both linear and
nonlinear terms. As the perturbation amplitude of the n=1
component increases and some of the nonlinear terms become
comparable to the linear terms in magnitude, the dynamic
evolution of the resistive MHD plasma begins to deviate
considerably from that of a linear calculation. 76 When the
perturbation increases further, the nonlinear terms can
significantly medify the original axisymmetric equi]ibrium.8
Not only does this change the growth rate of the n=1
cormnponent but it could destabilize the modes that were linearly
stable ini‘tialiy.g Furthermore, the nonlinear terrms can excite

directly medes with shorter wavelengths. By the time the
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major disruption7 sets in the plasma becomes almost turbulent.
In order to properly simulate the resistive instabilities in a
highly nonlinear regime, it is sometimes necessary to include a
large number of grid points{~240 by 240) and toroidal Fourier
harmonics(~21). Such a run would be beyond the scope of the
Cray 2 computer.

Our cheice of equilibria allows us to keep physically
meaningful nonlinear simulations manageable. By choosing g
on the magnetic axis to be greater than 1.50, we can remove
the m=3,n=2 tearing mode. This eliminates the possibility of a
major disruption of the type proposed in the standard
theoretical senario, 16718 and the m=2,n=1 magnetic island is
expected to merely saturate.®  To test the nonlinear cption of
our RPD cede and the semi-implicit scheme as applied to such a
case, we conduct a number of nonlinear simulations using
Equil . #1.

Fig.4-16 summarizes the resuits of three nonlinear runs
each of which includes only three toroidal Fourier harmonics
(n=0,1%, and 17). Equil. #1 is perturbed initially using the
result of the linear run. Although the exact paths to the
'final’ states are different depending on the numericai - scheme,
grid size, and viscosity used, the energies of the n=1 component
at saturation agree within 15 percent. This translates into a
difference of no more than two percent in the width of the

magnetic island.
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Figs.4-17 and 4-18 show the temporal evolution of the
magnetic and kinetic energies for two nenlinear runs which
includes five toroidal Fourier harmoenics {n=0,17, 17,2%, and
27).  The grid size is 60 by 60. The exact paths to the 'final
states are again different. Because the linear growth rate with
the expliéit scheme is greater than that with the semi-implicit
scheme, the run with the explicit scheme reaches the nonlinear
saturation sconer. (In terms of computer time, the run with
the mostly explicit scheme is much slower. [t takes nearly 12
hours of computer time while the run with semi-impiicit
scheme can be completed in about 2.5 hours.) When the
final' states are compared, however, the resuits of the two
runs are in very good agreement. This justifies the use of the
semi~implicit scheme for nonlinear simulations as well.

Fig.4-19 on page 113 illustrates the magnetic fieid
structure of the plasma at saturation. The result of our RPD
code at 400 THp calculated with a 60 by 60 grid and five
Fourier harmeonics is used as an input for the magnetic field line
tracing code TUBE. The puncture plots at [=0 and 90 degrees
clearly show a fairly wide m=2,n=1 magnetic island. In
addition, an m=3,n=1 magnetic island is revealed near the g=3
surface.  Fig.4-20 shows Jr on the midplane.  The total and
the axisymmetric component of JC are plotied separately. The
latter shews the flattening of the current profile in the vicinity

of the g=2 surface due to the nonlinear terms.
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Finally, we comment on the reliability of the above
resuits. t is encouraging to note thai the n=1 components are
greater than the n=2 components by a factor of 30 for the
magnetic energy and by a factor of 3 for the kinetic energy.
(See Figs.4-17 and 4-18)) This suggests fairly good
convergence with the number of toroidal Fourier harmenics,
especially for the magnetic part. This is also supperted by
Figs. 4-16 and 4-17; a comparison of the two figures suggests
that the n=1 component of the magnetic energies at saturation
agrees within 15 percent whether we inciude three or five
Fourier harmonics. Although a highly converged result would
undoubtedly require meore toroidal Fourier harmonics as well as
a finer grid, we believe that the results obtained here are at

least qualitatively correct.

4-3%3 m=1,n=1 Resistive Kink Mode Dominant Case
4~-3-1. MHD equilibria

Of a half dozen equilibria that were c¢onsidered in our
studies we focus on only two equilibria. Table 4-2 on page 118
lists sorme of the key parameters for the two equilibria.

The toroidal current density Jy is parametrized in the
same way as in Equil. #1 to #5.  p. is chosen to be 0.5 on the
midplane. To make the gradient of JC near the g=1 surface
steeper, however, A is set to 2.0 and 1.0 for Equil.#é and #7,

respectively.  The plasma is essentially force free because the
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plasma beta is

chosen to be less than 0.01 percent.

aspect axis dg dq

ratio | Yaxis | shift | Glg=1| q@lg=2
Equil. *#6 5.0 10.90  0.058 2.97 12.8
Equil . #7 5.0 | 0.66 | 5.055 5.12 10.8

T8

Table 4-2. Two equilibria with qups < 1.  The axis shift and

dq/d¢ are normalized as in Table 4-1.

Figs.4-21 and 4-22 show the contour plots of the poleidal
flux function ¢ and the plots of JC and g profiles on the
midplane.  The g=1 surface is deep inside the plasma and the
noncircularity effect on the m=1,n=1 resistive kink meode is
believed to be negligible. The main differences between
Equil. #6 and #7 are the q value on the magnetic axis and the

siope of Jr and q at the q=1 surface.

4-3-2. Linear results

For a linear simulation we keep the n=0, 1+, and 1~
components and advance the linear terms of the n=1% and 1-
components only.  Because of our spatial representation that is
spectral in the toroidal direction only, all the helical modes with
m| > 1 and n=1 are inciuded in our calculation. This includes
the m=2,n=1 tearing mode which is fairly robust. Fortunately,

the ideal counterpart of the m=1,n=1 resistive kink mode is
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neutrally unstable.  As a result, the linear growth rate of the
m=1,n=1 resistive kink mede is significantly greater than that
of the m=2,n=1 tearing mode unless the JC and g profiles are
extremely flat near the g=1 surface. This allows us to easily
extract the behavior of the m=1,n=1 resistive kink mode.

The mostly explicit and the semi-implicit schemes are
compared using Equil. #6.  The eigenfunctions obtained with the
two schemes are found to be in very good agreement as in the
case of Equil.#1 in which the m=2,n=1 tearing rmode is
doeminant. Figs. 4-23, 4-24, and 4-25 compare plots of the
perturbed Jr on the midplane at I=0 and the plasma flow
patterns at [=0 and 90 degrees, respectively. Fig.4-23 shows
a small but finite m=2,n=1 mode near the g=2 surface in
addition to the dominant m=1,n=1 resistive kink mode. The
time step sizes used in the two runs are 0.02 14 (———0.004th)
for the most explicit scheme and 0.1 1, (=0.021¢Hp) for the
semi-implicit schermne. The semi-implicit coefficient « is chosen
to be 0.05. In both cases the grid size of 60 by 60 is used
and S is assurmed to be 10° everywhere. The m=1,n=1 helical
flux function at [=0 and 90 degrees clearly reveals the m=1,n=1
magnetic island. {See Fig.4-26.) The agreement between the
twe numerical schemes are so good that we omitted the plots of
the semi~implicit run results.

Fig.4~27 compares the linear growth rates of the n=1

component calculated with the two numerical schermes over a

per'turbed JC en the midplane
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Fig.4-23. Plots of the perturbed JC on the midplane calculated
with (a) the mostly explicit scheme and (b) the serni~implicit
scheme. In addition tc the m=1,n=1 resistive kink mode that
is dominant, the m=2,n=1 tearing mode is excited.
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Fig.4-25. Plasma flow patterns at [=90 degrees calculated with

(a) the mostly explicit scheme and (b) the semi—implicit scheme.

Along with Fig.4~24, the force on the plasma is shown to be

predeminantly that of the m=1,n=1 resistive kink mode.
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Fig.4-26. m=1,n=1 magnetic island at {=0 and 90 degrees

calculated with the mostly explicit scheme. The semi-implicit

run yields virtually identical results.
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wide range of plasma resistivity. Although the semi-implicit
scheme has a tendency to reduce the linear growth rate, the
growth rates agree within 10 percent for aAt = 0.005 TA-
Furthermore, the growth rate calculated with our RPD code
scales as S°1/3 for sufficiently high S as predicted by the
analytic theory.77 We can attribute the discrepancies between
our numerical scaling and the standard analytic scaling to the
way the assurnption that goes into the analytic thecry breaks
down depending on the plasma profile.  When the g=1 surface
is moved further away from the region where the g and Jr

profiles are flat, the analytic scaling works better even at

smaller S. (See Fig. 4-28.)

4-3~3. Nonlinear results

It is well known that the m=1,n=1 magnetic island
continues to grow well into the nonlinear regime at a rapid rate
that is comparable to the linear growth rate 14,15 in a
standard tokamak plasma (e.g. A~5, S~105, and B~e2) the
m=1,n=1 magnetic island does not saturate but grows until it
completely takes over the original magnetic axis. Partly
because of a drastic topolegical change that is invelved in this
total reconnection process, the nonlinear simulation of the
m=1,n=1 resistive kink mode usually requires a large number of
toroidal Fcurier components and grid peints to encompass a

broadened energy spectrum.
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Because of the limitation on the available computer
resources, however, we chose to conduct nonlinear simulations
using a fairly coarse grid of 60 by 60 and including only three
(n=0,1%, and 17) and five Fourier harmonics {n=0,1% 1", 2%
and 27). Both Equil.#6 and #7 are considered with a uniform
S of 104, The new semi—implicit scheme with a=0.05 is used
for better code efficiency. Although the simulation results are
not well converged, our RPD code demonstrates the total
reconnection of the m=1i,n=1 magnetic island in all the cases.
In view of the mach'ine and plasma parameters used, it is
reasonable to assume that our results are qualitatively correct.
As examples we present the results with five Fourier
harmenics.  Fig.4-29 shows the temporal evolution of the n=1
and n=2 components of the magnetic energy for Equil. #6. The
magnetic puncture plet at the {=0 plane and the plot of the
total ‘}C on the rnidplane at {=0 are given for =200, 250, 245,
and 300 Typ in Figs. 4-30 to 4-33. Fig.4~34 shows the
temporal evolution of the n=1 and n=2 components of the
rmagnetic energy for Equil.#7. Figs.4-35 and 4-36 show the
magnetic puncture plet and Jg plot on the midplane both at [=0
for t=190 and 250 THp- In both cases the g value rises above

unity everywhere upon total reconnection.
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Fig.4-30. Puncture plot of the magnetic field and the total JC

en the midplane beth at [=0 for t=200'er with Equil #6.

In

addition to a large m=1,n=1 magnetic isiand, a small m=2,n=1
magnetic island is present.
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Fig.4-31. Puncture plot of the ragnetic field and the total Jy

B 3
on the midplane both at [=Q for t=25{)THp.
m=1,n=1 magnetic island continues to increase.

The width of the
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magnetic axis is about to be taken over by the ever growing has taken place.
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Chapter 5.  RESISTIVE MHD INSTABILITIES IN A POLOIDAL
DIVERTOR TOKAMAK

5-1. Introduction _

In the previous chapter we tested extensively our 3-D
resistive MHD initial vaiue code RPD and the new serni—implicit
scheme In a square cross—secticn tokamak without a poleidal
divertor. RPD has passed our exiensive numerical tests both
linearly and nonlinearly, and the new semi-implicit scheme was
shown to be a very efficient, yet quite accurate, numerical
method for a 1-D spectral, 2-D finite difference resistive MHD
initial value code.

In this chapter we test and utilize the full capability of
our RPD code by including a poloidal divertor in the
computational domain. Although poloidal divertor tokamalks
may assume different magnetic topologies depending on the
number of diverter rings, the shape of the wall, and many
other factors, we shall focus on a four—node poloidal diverter
tokarmak with a square cross section. There are two reascns
for this. First and most important, our research is intended
to provide, within the realm of resistive MHD theory, a
theoretical explanation of unusual features observed in the
Wisconsin  Tokapole Il discharges. 23730 (See also Fig.1-4.)
Second, it is far beyond the scope of this thesis to investigate all

the imaginable poloidal divertor configurations.
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To conduct a large number of linear and nonlinear
calculaticns, we heavily rely on the new semi-implcit scheme.
Despite the simplified semi-~implicit operator that assumes a
standard tokamak ordering, the maximum temporal step size
for numericail stability is shown to increase by a facter of
somewhat less than the aspect ratio. Results with the semi-
implicit schemes are compared to those with the mostly explicit
scheme in selected cases te justify its use.

In sections 5-2 and 5-3 we present the simulation results
for the cases in which either the m=2,n=1 tearing mode is
dominant or the m=1i,n=1 resistive kink mode is dominant.
Fach section consists of three parts: description of MHD
equilibrium inputs, linear results and noniinear results. Cur
studies include investigation into the effect of fhe proximity of
the meode rational surface to the poloidal divertor separatrix and
the effect of the plasma current outside the divertor separatrix
on their linear and/or nonlinear evelution. In section 5-4 we
compare our results with the key features of the Tokapole

discharges.

5-2. m=2,n=1 Tearing Mode Deminant Case
5-2—-1. MHD equilibria

About 30 MHD equilibria with 1 < guy < 2 were
generated for a poloidal diverter tokamak with an aspect ratio

(zRy/a) of five. (a is not the distance between the magnetic
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axis and the divertor separatrix but one half the size of the
square wall.}  The aspect ratic was chosen to be about twice
as large as that of the Tokapole II to lessen the toroidal effects.
In all the equilibria four divertor rings are placed at the same
distance {=0.23a) away from the four corners of the square
wall, respectively. In addition, each ring is positioned an
equal distance {=0.16a) away from the nearby horizontal and
vertical wall boundaries. In this section we show five of them
{(Equil #8-#12) as examples. (See Figs.5-1 to 5-5.) All of
them are essentially force free with a plasma beta of less than
C.01 percent.

Equilibria with and without the plasma current outside the
divertor separatrix are considered. Equil. #9 is obtained by
removing the plasma current from the common flux region of
Equil. #8 while trying to keep unchanged the JC and g profiles
inside the divertor separatrix. Because of the limitations of
our equilibrium code EQPD, we are able to keep the profiles
unchanged only up to about half the distance between the g=2
surface and the divertor separairix. Some JC is scraped off
from the region inside but near the divertor separatrix. As a
result, the divertor separatrix moves in by about 0.05a.

Equil #10 and #11 again constitute a pair of equilibria with
and without the plasma current outside the divertor separatrix.
A distinguishing feature of this pair is that the JC profile is

tailored so as to keep the positions of the g=2 surface and the
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Fig.5~1. Contour plot of ¢ and the plots of JC and q on the
midplane for Equil #8. q on the magnetic axis is 1.5%.
Plasma current is inciuded in the commeon flux region outside
the diverior separatrix which is indicated by d.s.
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Fig. 5-2. Contour plot of ¢ and the plots of J; and g on the
midplane for Equil. #9. Plasma current in the common flux
region 1s remocved from Equil.#8 while the Jr and g profiles
mnside the divertor separatrix are kept almost unchanged.
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Fig.5-3. Contour plot of ¢ and the plots of JC and g on the

midplane for Equil #10.

q on the magnetic axis is 1.59.

lasma current is included in the common flux region.
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Fig.5-4. Contour plot of ¢ and the plots of JC and q on the

midplane for Equil. #11.

Plasma current in the common flux

region is removed from Equil.#10 while the positions of the q=2
surface and the divertor separatrix are kept almest unchanged.
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Fig.5-5. Contour plot of ¢ and the plots of J; and ¢ on the
midplane for Equil *#12. g on the magnetic axis is 1.13.
Plasma current s removed from the common flux region.
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divertor separatrixz unchanged. In addition, JC goes to zero
more smoothly in Equil.#11 than in Equil. #9 and it is probably
closer te an experimental profile when the plasma current is
scraped off from the common flux region. 1t should be pointed
out that a small amount of plasma current diffused out of the
divertor separatrix in Equil.#11 as a result of a small but finite
resistivity term in the EGPD code.

Equil.#12 is an equilibrium with about 49 percent meore
plasma current than other four equilibria. As a result, the
divertor separatrix is pushed further out. This case is included
here because it and Equil.#8 are wused in the nonlinear

simulations of the m=2,n=1 tearing mede.

5-2-2. Linear results

As in the case of a divertorless tokamak, we keep only the
n=0, 1F, and 1~ cormnpenents (superscripts * and T refer to
Fourier cosine and sine terms) and advance the linear terms of
only the n=1" and 1~ components. All the helical medes with
Im| = 2 and n=1 are included because of our spatial
representaticn that is spectral only in the toroidal direction.
The high m cutoff depends on the number of grid peints used in
the calculation. Partly because of a very limited flux space
between the ¢=2 surface and the divertor separatrix, magnetic
islands with m > 3 are difficult io identify. The m=2,n=1

tearing rmode is found to invariably dominate the linear
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evolution of the n=1 compenent.

Equil #8 is used extensively to compare the semi-implicit
and the mostly explicit schemes as applied to the divertor
geometry. The eigenfunctions obtained with the two schemes
are found to be in very good agreement despite the fact that
the semi~implicit term enables us tc use a temporal step size At
that is larger than a mostly explicit run by a factor somewhat
less than the aspect ratio. As an example, plots of the
perturbed JC on the midplane at =0 that are caiculated with
the two schemes are compared in Fig.5-6. A temporal step
size At of 0.051, (=0-011Hp} is used for the semi-implicit
scheme and At of 0.01257, (=0.00251y,) is used for the mostly
explicit scheme. The semi~implicit coefficient a is chosen to be
0.05. The grid size is 100 by 100 and the magnetic Reynolds
number is taken to be 104.

As for the eigenvalue, the semi-implicit scheme has a
tendency to reduce the linear growth rate of the n=1
component as the temporal step size At is increased. Fig.5~7
shows the effect of the temporal step size At on the linear
evolution of the n=1 component. Results with the semi-implicit
scheme for a=0.0% are compared with those with the mostly
explicit scherne. At a very rmodest expense in accuracy the
rnaximum step size for numerical stability is increased by a
factor sornewhat less than the aspect ratio of five. Equil.#8

with the grid size of 60 by 60 is used in this survey.

perturbed Jc on the midplane
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Fig.5~6. Plots of perturbed JC on the midplane for Equil. #8

calculated with (a) the mostly explicit scheme and (b) the new
semi—implicit schemne.
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Fig.5-7. Effect of temporal step size on the linear growth rate
of the n=1 component {m=2,n=1 tearing mode dominant} for
Equil. #8. Results with the mostly explicit and the semni-
implicit schemes are compared.

In the case of a divertorless geometry the maximum step
size for nurmerical stability was found to be almost independent
of the grid size. Unfortunately, it is not so in the case of a
poleidal  divertor geometry. The maximum step size for
numerical stability decreases linearly with the grid spacing.
This step size restriction is probably due to the Alfven waves
that propagate tereidaily near the diverter rings. Such waves
are significant in the regions where By~Bpoigiqa), and the step

size restriction impose¢ bv them is apparently not eliminated by
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our simpiified serni—-implicit term. Hewewver, it is noteworthy
that our semi-implicit term does improve the code efficiency
(i.e., the computer time required to reach the same physical

time) by almost a factor of the aspect ratic for ali grid sizes.
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Fig.5-8. Effect of grid spacing (or reciprocal of one half the
grid size} on the linear growth rate of the n=1 component
(m=2,n=1 tearing mode dominant) for Equil.#8.  Results with
the mostly explicit and the semi-implicit schernes are
compared.

Fig. 5-8 shows the grid convergence of the lnear growth
rate of the n=1 component for Equil #8. The grid sizes used

are 60 by &0, 100 by 100, and 180 by 180 for the semi-
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implicit scheme and 60 by 60 and 100 by 100 for the mostly
explicit scheme. Although the number of data peints is
limited, we conclude that the grid convergence is satisfactory in
view of our experience with the divertoriess geometry. (See
Fig.4-11.)

Next we examine the effect of the plasma current outside
the divertor separatrix on the linear evolution of the n=1
component.  To this end, we use Equil. #8 and #9 both with a
grid size of 100 by 100, S is assumed to be 104 everywhere
and the semi-implicit scheme is adopted for better code
efficiency. (Even so, each run requires about 90 minutes of
cemputer time for a well converged selution.) The gross
features of the eigenfunction structures are similar; the MHD
activity is mostly contained in the region near the g=2 surface
and inside the divertor separatrix. However, some minor
differences are found. For example, the perturbed Jt for
Equil. #9 exhibits more asymmetry about the magnetic axis of
the equilibrium than that for Equil.#8 does. (See Fig.5-9.) In
addition, the perturbed Jy for Equil. #9 contains more fine scale
features near the divertor separatrix. Fig.5~10 compares the
kinematics of the instability for the two cases. The divertor
separatrix of the equilibrium is superposed on each plot.

The linear growth rates of the n=! component are found
to be 1.2x1072 [1/typ] for Equil.*8 and 8.7x1073 {1[THD] for

Equil. #9. This may appear rather surprising because the
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Fig.5-9. Perturbed Jy of the n=1 component for (a) Equil.#8
(with plasma current in the common flux region) and (b)
Equil. #9 (nc plasma current in the commoen flux region).
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Equil. #8 (with plasma current in the common flux region) and
{(b) Equil. #3 (no plasma current in the common flux region).
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plasma current in the wings usually stabilizes the m=2,n=1
tearing mode in a divertorless tokamak. However, we can at
least partially attribute this discrepancy to the noncircularity
effect. Because the g=2 surface is closer to the divertor
separatrix in Equil #8, the stabilizing effect due to
noncicularity70 is stronger. (This stabilizing effect has also
been confirmed by our RPD code in a divertoriess gecmetiry by
placing the g=2 surface near the square wall.) In support of
this explanaticn, we find that the fractional difference in the
linear growth rates is smaller for a pair of equilibria with the
g=2 surface further away from the divertor separatrix.

Te gain some insight into the linear instability of the
m=2,n=1 tearing mede In a real experiment, we study a family
of equilibrium pairs with more realistic JK profiles as in
Equil.#1C and #11. The g wvalue on the magnetic axis is
changed from 1.89 to 1.1%, and thereby the distance between
the g=2 surface and the divertior separatrix is changed from
C.26a to 0.0Ba. The result of this parameter survey is shown
in Fig.5-11.

The case with g,4c=1.8% is found to be stable with a
negative growth rate. As the g=2 surface is moved away
from the central region where the JC gradient is smali, the
m=2,n=1 tearing mode becomes unstable and the linear growth
rate of the n=1 component increases. An equilibriurn with no

plasma current outside the divertor separatrix invariably yields
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Fig.5-11. Effects of plasma current in the commen flux region
and the value of guyis on the linear growth rate of the n=1
component (m=2,n=1 tearing mode dominant). As Qaxis
decreases, the =2 surface moves closer tc the diverter
separatrix.

a larger lnear growth rate than its counterpart with plasma
current outside. This is in contrast to the result with the
earlier equilibrium pair (Equil.#8 and #9) and suggests the
importance of the profile effect, The mode is stabilized again
when the g=2 surface is brought toc close to the diverter
separatrix regardless of whether or not there is plasma current
in the common flux region. For this parameter survey a

fairly coarse grid of 60 by 60 was used and S was assurned to
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be 104 everywhere.  The resuits were later confirmed by using
a finer grid of 100 by 100 for selected cases.

Frem our studies it is reascnable to conclude that the
mere presence of the plasrna current in the common flux region
is net important for the linear stability of the m=2,n=1 tearing
mode. What is more important is the way the plasma
current in the common flux region affects the JC and g profiles

in the vicinity of the g=2 surface and the divertor separatrix.

5-2-3. Nonlinear resuits

When magnetic islands grow sufficiently wide in a divertor
tokamak, they can interact with the divertor separatrix to alter
the tearing mode evolution from that in a divertorless tokamak.
Investigation of such an effect requires nonlinear simulations.
As discussed in section 4-2-3, a well converged nonlinear
simulation all the way to the onset of a major disruption is
extremely difficult and demanding. It is reasonable to
anticipate that a divertor geometry would require substantiaily
more grid peints and toroidal Fourier harmonics to achieve
convergence. Such a nonlinear run would require hundreds,
even thousands, of hours of computer time per run even with
the help of the semi-implicit scheme and it is far beyond the
scope of this thesis. Instead of attempting such a run, we are
centent tc test the nonlinear option of our RPD code for cases in

which a major disruption is not likely to take place.
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Fig.5-12 on page 156 summarizes the results of three
nenlinear runs for Equil.#8.  With qayic=1.56 this equilibrium
has the advantage of excluding the g=1.5 surface. S is taken
10 be 10% everywhere. In ali three cases the growth of the
n=1 component of the magnetic energy {m=2,n=1 mode
dominant) saturates. The saturation energies agree within 25
percent. Table 5-1 shows that the magnetic and kinetic
energies of the toroidal Fourier components diminish rapidly
with increasing toroidal mode numbers. This Justifles a
truncation of the Fourier series after only a few terms. For a
higher code efficiency the new semi-implicit scheme is used for
all the nenlinear runs. Even so, the run with nine Fourier
harmonics with a 60 by 60 grid took about seven hours of Cray

2 computer time.

n=2/n=1 | n=3/n=1 | n=4/n=1

' =3 n 55
magnetic part | 9.0x10 > | 4.1x10 * | 2.6x10

kinetic part | 6.7x10°% | 2.4x10 ° | 4.6x10

Table 5—1. Ratios of the energies of various Fourier components.

Fig.5-13 shows puncture plots of the magnetic field lines
at {=0 and 180 degrees for t=300t1yp for the case with nine

Fourier cornponents. Besides the m=2,n=1 magnetic island, a
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Fig.5-12. Temporal evolution of the n=1 component {m=2,n=1
tearing mode dominant} of the magnetic energy for Equil. #8
with $=104.  Results of three nonlinear runs are compared.
The magnetic energy is measured in units of as (BC) 2/2;.10. nk is
the number of toroidal Fourier harmonics.
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very narrow m=3,n=1 island is identified near the divertor

separatrix. (It is easier to teil this while the program is
generating a plot on the screen.}  The flux surfaces are found
to be quite resilient. It is only in the region very near the
divertor separatrix where the magnetic field becomes stochastic.

Fig.5-14 is a plot of the total Jr on the midplane at =0
for this run.  The pesitions of the =2 surface and the divertor
separatrix are indicated. Small oscillations outside the divertor

separatrix are numerical in origin,

0.3
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0.2 F ' =2
’ | ]
J
T I d.s. || la.s
0.1 K i\
: b !
) 11
0.0 bt L H T |

40 45 50 55 6.0

Fig.5-14. The total J?; on the midplane at =0 for 1=300 THp-

To force the m=2,n=1 tearing mode to interact more
strongly with the divertor separatrix, we carried out a
nonlinear run with Equil. #12 in which the q=2 surface is placed
closer to the divertor separatrix. To eliminate the possibility of

interaction of m=2,n=1 and m=3 n=2 modes, we deliberately
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ran a case with only n=0, 1+ and 1- components. The results
are shown in Figs. 5-15, 6-16, and 5-17. Before the growth
of the n=1 component saturates, the m=2,n=1 magnetic island
begins to overlap with the divertor separatrix. As a result,
significant stechasticity develops in the region near the divertor

separatrix.

5-3. m=1,n=1 Resistive Kink Mode Dominant Case
§-3-1. MHD equilibria

About 20 MHD equilibria with daxis < 1 were generated for
a poloidal divertor tokamak with an aspect ratio of five. As in
equilibria with 1 < quys < 2, four divertor rings are placed at
the same distance (=0.23a) away from the four corners of the
square wall. In addition, each ring is positioned an equal
distance away from the nearby horizontal and wvertical wall
boeundaries. in this section we again present five of them
(Equil #13-#17) as examples. (See Figs.5-18 to 5-22.) The
plasma beta is chosen to be less than 0.01 percent in all five
equilibria.

Fquil. #13 and #14 are a pair of equilibria with and
without plasma current outside the divertor separatrix.
Equil. #14 is obtained by removing the plasma current from the
region outside the divertor separatrizx of Equil.#13 while not
altering the J; and q profiles inside the divertor separatrix.

Pragmatically, the limitations of our equilibriurm cede EQPD
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rmidplane for Equil #14.

Plasma current in the common flux

region is removed from Equil #13 while the Jr and g profiles
inside the divertor separatrix are kept almost unchanged.
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allow us tc keep the profiles unchanged only up te about half
the distance between the g=1 surface and the divertor
separatrix. A small amount of Jy is scraped off from the
region Jjust inside the divertor separatrix. As a result, the
diverter separatriz moves in by about 0.03a.

Equil. #15 and #16 constitute a different pair of equilibria
with and without plasma current outside the divertor
separatrix. Unlike Equil. #13 and #14, the J; profile is tailored
so as to keep the positions of the g=1 surface and the divertor
separatrix unchanged.  Although the Jy profile is more peaked
than that for a low q discharge (q,qis < 1) in Tokapole II, the
way JC goes to zero at or near the divertor separatrix is
probably more realistic than that of Equil . #13.

Equil.#17 is an equilibrium with the g=1 surface wvery
close to the divertor separatrix. This is one of the two
equilibria used in the nonlinear simuEatiof:s of the m=1,n=1

resistive kink mede. (The other is Equil.#13.)

5~3-2. Linear resuits

Linear simulations of the n=1 component are repeated
using equilibria with Qayie < 1. As in a divertorless tokamak,
the m=1,n=1 resisitive kink mode is found to be dominant over
all other moedes with n=1.

Both the semi~implicit and the rnostly explicit schemes are

used for Equil. #13 with a grid size of 100 by 1G0. The
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eigenfunctions cbtained with the two schemes are again in very
good agreement.(See Fig.5-23 as an example.) The
sermni-implicit run with o=0.05 and At=0.051, reduces the linear
growth rate by only five percent compared with the mostly
explicit run with At=0.0125 15.  This along with the results of
more extensive numerical tests performed for the equilibria with
1<q,416<2 in section 5-2-2 strongly suggest a reliability and
usefulness of the new sermi-implicit scheme in the divertor
geometry as well.

Next we examine the effect of the plasma current in the
common flux region on the linear evolution of the n=1
component when the m=1,n=1 resistive kink mode is dominant.
Equil. #13 and #14 both with a grid size of 100 by 100 are
studied wusing the semi-implicit scheme with o=0.05 and
Lt=0.05 1p. The eigenfunction structures are in very good
agreement.  Figs.5-24 and 5-25 show the perturbed J; on the
The linear

growth rates are found to be 4.28x10_2[l/THp} and

midplane and the plasma flow patterns, all at {=0.
é.iQxiD‘z{i/THp], respectively. This comparison is repeated
for other equilibrium pairs including and excluding the plasma
current in the common flux region while keeping the Jg and g
profiles inside the diverior separatrix unchanged for each pair.
We find the effect of the plasma current outside the divertor
separatrix on the linear evolution of the m=1,n=1 resistive kink

mede to be small.
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Equil. #13 calculated with (a) the mostly explicit scheme and
(b) the new semi~implicit scheme.
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Fig.5-25. Plasma fiow patterns of the n=1 component for {(a:
Equil. #13 (with the plasma current in the common flux regien
and (b} Equil #14 (no plasma current in the common f{lux
region)
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Te facilitate a comparison with experiment, we conduct
linear calculations for a family of equilibrium pairs that have
more realistic JC prefiles. A representative pair are Equil.#15
and #16. The g value on the magnetic axis is changed from
0.83 to 0.5%, and thereby the distance between the g=1 surface
and the divertor separatrix is changed from 0.1%a tc 0.05a.
The result of this parameter survey is shown in Fig.5-26.

Unlike the m=2,n=1 tearing mode, the effect of the divertor

a
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Fig.5-26. Effects of plasma current in the common flux region
and the wvalue of qu,4is on the linear growth rate of the n=1
cormponent (m=1,n=1 resistive kink mode dcminant}. As Quyig
decreases, the g=1 surface moves closer to the divertor
separatrix.
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separatrix is small on the m=1,n=1 resistive kink mode; no

significant stabilization effect is observed, if any.

5-3-3. Nonlinear results

The nonlinear calculations of the m=2, n=1 tearing mode in
section 5-2-3 strongly suggest that the nonlinear option of our
RPD code works quite well for a square cross-section tokarnak
with a four—node poloidal divertor. It is of great interest to
extend our nonlinear work to the case in which the m=1,n=1
resistive kink mode is initially dominant. This would allow us
to address the question of partial reconnection of the m=1,n=1
magnetic island in a poleidal divertor tokamak.

Equil. #13 and *#17 are used to c¢onduct nonlinear
simulations. Because of the limited computer time allocation
available we must presently restrict ourseives to cases with enly
a few toroidal Fourier harmonics.  Thus, the resuits presented
here are subject to considerable numerical errors and should be
regarded as preiirhinary in nature.

The nonlinear simulation of the m=1,n=1 resistive kink
mode using Equil. #13 is very noteworthy because, as we shall
see shortly, it exhibits a behavior that is consistent with partial
reconnection of the island. The temporal evolution of the n=1
and 2 components of the rnagnetic energy are shown in

Fig . 5-27. For this particular run, a 60 by 60 grid was used
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with only five Fourier components (0, 11, 1=, 2%, and 27).
Interestingly, the n=2 component is larger than, or at least
comparable to, the n=1 component in the later phases of the
simulation, This clearly suggests a definite need for many
meore torcidal Fourier harmonics for a converged result.

Setting aside this convergence problem, however, we move
on to generate the puncture plots of the magnetic field structure
and the plots of the total JZ on the midplane all at =0 for
t=1007hy (Fig.5-28), 125ty (Fig.5-29), 1751yp (Fig.5-30),
and 20071y, (Fig.5-31). The criginal magnetic axis was never
taken over comnpietely by the huge m=1,n=1 magnetic island.
Instead, 1t survived the reconnection process and recovered
sormewhat by t=20f}THp. The q value of the original magnetic
axis at 1=200typ is found to be about 0.91.

A similar result (i.e., partial reconnection) is also
obtained when we increase the grid size to 10C by 100 or the
number of the toroidal Fourier harmonics to nine( 0, 1%, 17,
ot o~ 3t 37 4% and 47). For example, the total Jp on
the rmidplane at t=200THp again has a distinctive hump near
the inner side of the divertor separatrix. (See Fig.5-32.) This
corresponds to a small region surrounding the original magnetic
axis that has been displaced from its initial pesition by the huge
m=1,n=1 island. As for the convergence with the number of

toroidal Fourier harmonics, the n=3 and 4 components of the
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Fig. 5-28. Puncture plot of the magnetic field and the total JC

on the midplane at =0 for t=iOOTHp with Equil #13.
m=1,n=1 magnetic island is present.
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Fig . 5-31. Puncture plot of the magnetic field and the total JC

on the midplane at =0 for t=20€JTHp with Equil #13.
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Fig.5-32. The total J; on the midplane at [=0 for t=200T1yp.
For this, a 100 by 100 grid is used with five Fourier harmonics.

magnetic energy are smailer than the n=1 component by factors
of about 4 and 10, respectively,

A nonlinear simulation of the m=1,n=1 resistive kink mode
using Equil.#17 results in a total reconnection of the island.
We first show the temporal evolution of the n=1 and 2
components of the magnetic energy in Fig.5-33. A 100 by 100
grid is used with only five Fourier components. The magnetic
Reynolds number S is taken to be 104 everywhere. As in the
divertoriess tokamak runs (see section 4-3-3), the n=l
cormnponent remains larger than the n=2 compenent throughout

the simulation although the magnitudes are almost comparable

in the later phases.
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Figs.5-34 and 5-35 show the puncture piots of the
magnetic field structure and the plots of the total Jy on the
midplane at (=0 for t=1201yp and 1907yp. The original
magnetic azis is completely taken over by the m=1,n=1

magnetic island and the q value rises above unity everywhere.
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Fig.5-36. Puncture plot of the magnetic field that illustrates the
interaction of the m=1,n=1 magnetic island with the region
cutside the diverter separatrix. A magnetic field line is
tollowed starting from the point "A
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It is not well understand why the m=1,n=1 island
partially reconnected in one case while it totally reconnected in
the other. A potentially relevant observation is that the
magnetic stochasticity near the divertor separatrix is greater in
the latter case. By connecting the regions inside and outside
the divertor separatriz as in Fig.5-36, the m=1,n=1 magnetic
island may continue growing even after the helical flux between
the g=1 surface and the divertor separatrix is exhausted for the
reconnection process. This has also been seen in HIE code
runs. 24 However, if for some reason the flux surfaces near
the diverter separatrix are resilient, the island growth has to
come to a halt when the helical flux supply is used up. It is
possible that this is the case for Equil.#13 because the g=1
surface is further away from the diverter separatrix and the
interaction of the m=1,n=1 island with the divertor separatrix

is weaker.

5—4. Comparison with Tokapele II Experimer:tsm’"‘1"5‘3

A large number of linear runs and a limited number of
nonlinear runs have been carried out for a four-node poloidal
divertor tokamak. = We are now in a position to start
comparing our RPD results with the MHD behavior of Toka;ﬁoﬁe
discharges obtained by the experimental group.23:24:25'3_0
However, we need tc proceed with caution.

To lessen the toroidal effects that could contaminate and
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obscure the effects of the divertor separatrix on resistive MHD
instabilities, a fairly straight geometry of R,/fa =5 was used

throughout our numerical work. Cn the other hand, Tekapcle

]

il is a more tightly curved tokarmak with RO/a= 50em/22cm
2.27. In the laboratory experiment toroidal effects might be
playing quite an important rele.

Numerically, we have considered two types of MHD
equilibria: one with and one without plasma current flowing
outside the divertcrr separatrix. The former corresponds to a
magnetic limiter discharge. The latter was intended to
simulate a material limiter discharge in which little plasma is
present outside the divertor separatrix.  However, because of a
constant resistivity assumption the physical characteristics of
the common flux region are different from those in the
experiment. Our numerical work allows a conducting fluid in
the common flux region even if the plasma current is removed.

In view of such differences as well as a lack of sufficient
experimental data for the - current profile in Tokapole Il
discharges, we do not attempt any detailed quantilative

comparisons of the numerical and experimental results.

Instead, we just peint out aspects of our numerical results that .

are qualitatively consistent with the experimental resuits
obtained by the experimental group. Readers are encouraged
1o refer back to Fig.1-4 of chapter 1 to remind themselves of

the key features of Tokapole Il discharges.
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Fig.5-11 shows numerically that the m=2,n=1 tearing
mode tends to be linearly stabilized as q,yi5 is lowered and the
q=2 surface is brought ¢loser to the divertor separatrix.  This
agrees with the experimental result that the major and/or
minor disruptions, for which the m=2,n=1 tearing mode is
believed to be at least partially responsible, are suppressed at
lewer woiume averaged q. Furthermore, it has been shown
numerically that the m=2,n=1 mode tends to be linearly
stabilized at a lower quys Vvalue when plasma current is
removed from the common f{lux region. Experimentally, the
MHD behavior due to the m=2,n=1 tearing mode disappears at a
lower wvolume averaged q for the material limiter discharges
than for the magnetic limiter discharges {(namely, <gq>~1.7 for
the material limiter discharges and <g@>~2.2 for the magnetic
limiter discharges). Thus, the numerical and experimental
results are in qualitative agreement.

The m=2,n=1 magnetic island was shown to saturate
nonlinearly befere the onset of significant stochasticity if the
separaticn between the gq=2 surface and the diverter separatrix
was large. Rotation of such an island can account for the
m=2,n=1 Mirnov oscillations cbserved in the Tokapcle II
discharges as in a standard divertorless tokamak.

As for the m=1,n=1 resistive kink mede, it was found to
be linearly unstable regardless of the plasma current outside the

divertor separatrix as long as guyis<1. (See Fig.5-26.) This is
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consistent with experimental observations where sawtooth
oscillations, which are believed to be due to the m=1,n=1
resistive kink mode, are seen in both magnetic and material
limiter discharges for sufficiently low <g> values.

Our RPD cede has shown that at least for one equilibrium
the m=1,n=1 magnetic island does not totally reconnect. This
is a wvery significant result because this partial reconnection
phencmenon can account for attainment of icw g discharges in
Tekapole i, It is possible that the divertor separatrix is
resilient enough to prevent the growth of a rmagnetic island
beyond the divertor separatrix for certain divertor equilibria.
However, it should be emphasized that the nonlinear
calculations of the m=1,n=% resistive kink mode are still of a
preliminary nature; further investigation is required before a

final verdict can be reached.
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Chapter 6 SUMMARY, CONCLUSION, AND SUGGESTIONS FOR
FUTURE WORX

6-1. Summary and Conclusions

We have successfully developed from scratch a resistive
MHD simulation package for a sguare cross-section tckamak
with or without a poleidal divertor. The package consists of
the axisymmetric MHD equilibrium cede EQPD {with the
initialization code SETPD) and the 3-D nonlinear resistive MHD
initial value code RFD. _

EQPD uses the basic features of the Chodura—Schliiter
method in which a plasma with a small ficticious friction is
relaxed into a stationary state that is an MHD equilibrium.
EQPD assumes axisymrnetry, thereby reducing the problem to
two dimensions. In advancing the three dependent variables
¢ (poloidal flux function), P{pressure), and I(poloidal current
function), the functional forms of P=P{¢} and the safety factor
qg=q{§) are preserved. As a result, EQPD is capable of
generating axisymmetric MHD equilibria over a wide range of
plasma beta for a divertorless tokamak. In a divertor
geornetry, however, significant spurious numerical osciilations in
the current density were observed in the wvicinity of the
divertor rings and the divertor separatrix. This problem has
been overcome partially by introducing a small but finite

resistivity in the code. Although calculation of the MHD
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equilibrium is not the main topic of this thesis, it was an
indispensable part of our work. All of the axisymmetric
equilibria for the resistive MHD instability studies in this thesis
were calculated with EQPD.

The RPD code numerically advances a full set of 3-D
compressible resistive MHD equatiens either linearly or
nonlinearly. The code is fully toroidal and no aspect ratio
ordering assumption is rnade. in order to handle the
complicated geometry including the poloidal divertor separatrix
and the region outside it, ail the dependent variables are finite
differenced in the tweo Cartesian directions of a constant torcidal
angle plane. They are, however, Fourier analyzed in the
toroidal direction to facilitate an efficient mode representation.

An earlier version of our RPD code employed a rnostly
explicit time advancement scheme and the mazximum step size
for numerical stability was quite restrictive. This was
overcome by developing and implementing a new semi-implicit
scheme that approximately removes the step size restriction
imposed by the fast compressional waves. The new
serni~implicit scheme is based on that propesed by Harned and
Kerner, but an operating splitting method is applied tc the
simplified semi~implicit operator. As a resuit, only a set of
small tridiagonal matrices need be solved in advancing the
plasma velocity despite a 2-D finite difference, 1~D spectral

spatial representation. Typically, the serni—implicit scheme
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speeded up the code by a factor of one to three times the aspect
ratio in a divertorless geormnetry and by a factor of somewhat
less than the aspect ratio in a poleidal divertor geometry.

We first conducted wvery extensive, if not exhaustive,
numerical tests of our RPD c¢ode and the new semi-implicit
scherme using a number of divertorless tokamak equilibria.  The
linear and nenlinear resuits for the m=2,n=1 tearing mede and
the m=1,n=1 resistive kink mode were all shown to be in-good
agreement with the standard analytic and/or numerical resuits.
The results obtained with the semi-implicit scheme were alse
shown to be in good agreement with those from the mostly
explicit scheme except for some minor differences due to the
dispersive effect of the semi-implicit term. The numerical
characteristics of the code, such as grid convergence and step
size convergence, were found te be satisfactory. We conclude
that our 3-D resistive MHD initial wvalue code RPD werks
correctly for a divertorless tokamak and our new semi-impilicit
scheme is a simple yet very powerful method for significantly
improving the efficiency of a 2-D finite difference, 1-D spectral
resistive MHD code.

Next we extended our work to a poloidal divertor
geometry. A wersion of RPD with a four—-ncde poloidal diverter
was used exclusively to study the effect of the divertor
separatriz and the plasma current outside of it on resistive MHD

instabilities. After successful verification of the code in such a
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geometry and of the new semi-implicit scheme, we studied the

linear and nonlinear behavior of the m=2,n=1 tearing mede and -

the m=1,n=1 resistive kink mode,

The new physics results obtained can be summarized as
follows. Placing the diverter separatrix near the g=2 surface
tends to strongly stabilize the linear growth of the m=2,n=1
tearing mode. On the other hand, the proximity of the
divertor separatrix to the g=1 surface has only a very small
effect on the lnear stability of the m=1,n=1 resistive kink
mede. For experimentally realistic equilibria, plasma current
cutside the divertor separatrix tends to linearly stabilize the
m=2,n=1 tearing meode by modifying the current profile near
the mode rational surface and the divertor separairix. A
sirailar effect is seen for the m=1,n=1 resistive kink mode, but
to a lesser extent. However, merely removing the plasma
current from the commeon flux region without significantly
altering the current profile inside the divertor separatrix does
net destabilize the m=2,n=1 or m=1,n=1 linear modes.

The nonlinear simulation results are still of a preliminary
nature. Our observations inciude the saturation of the
m=2,n=1 magnetic island as is common in a standard
divertoriess tckamak. If the separation between the g=2
surface and the divertor separatrix is small, however, the
m=2.n=1 magnetic island and the diverior separatrix overiap

and stochasticity develops before the saturation of the island
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growth. Similarly, for the m=1,n=1 resistive kink, for at
least one equilibrium the magnetic island fails o totally
reconnect but instead saturates. In this case stochasticity of
the magnetic field near the diverior separatrix is not as
prevalent as the case in which the m=1,n=1 magnetic island did
totally reconnect.

Finally, our numerical results were compared qualitatively
with the MHD behavior observed in the Tokapcle II discharges.
Partly because of a lack of sufficient experimental profile data
and partly because of simplifying assumptions empioyed in our
numerical work (e.g., larger aspect ratic and uniferm
resistivity except near the divertor rings), a detailed
guantitative comparison of the numerical and experimental
results was not possible. Nevertheless, the numerical and
experimental results were found to be qualitatively in gocd

agreerment.

6—2. Suggestions for Future Work

Although over 500 hours of supercomputer time has been
used te carry out this research project, our work is far from
complete. Qur resistive MHD package for a poloidal divertor
tokamak is not totally problem—free and some modifications and
improvements afe desirable. We are still left with a virtually
unbounded parameter space to explore. In this last section of

my thesis, [ present a partial list of future work te be done on
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and with our resistive MHD package for a poloidai diverter
tokamak. _

The main weakness of our resistive MHD package lies in
the generation of an equilibrium input. The highly nonlinear
nature of a divertor equilibrium makes it difficult to come up
with a good set of numerical equilibria to study and compare;
changing one parameter almost invariably results in changing
many others that we want to keep fixed. A systematic
approach should be developed and implemented in the
equilibrium code to generate a better set of controlled equilibria.
In addition, a divertor equilibrium obtained with cur EQPD code
sometimes suffers from a minor convergence problem in the
region near the diverter separatrix that we are most interested
in. The problem becomes significant for a high beta and/for
tight aspect ratio plasma in which the axis shift is large.
Although this problem can be overcome partiaily by increasing
the numerical resistivity, the plasma profile will then be
altered.  To circumvent such problems, we need to develop a
new axisymmetric MHD equilibrium code that would most likely
employ a standard Grad-Shafranov solver.

The 3-~D resistive MHD code RPD including the poicidal
divertor works very well for a wide range of plasma
parameters. The new serni—irnplicit scheme allows us te
increase the code efficiency by a factor of sermewhat less than

the aspeét ratio compared with the mostly explicit scheme.
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Yet, the code efficiency becomes too poor for a high resolution
run.  An option of grid packing in the vicinity of the divertor
rings would help us alleviate this problem somewhat. To make
major progress, however, we need to develop an improved
semi~implicit scheme that would further relax the temporal step
size restriction for numerical stability.  For such a scheme we
alsc need to add a predictor-corrector step to make the
termnporal advancement second—order accurate in time.

To better simulate the material limiter discharge, it is
desirable to use a resistivity profile that rises sharply in the
cormnmon flux region.  Unfortunately, a very high resistivity in
the vicinity of a divertor ring tends tc make the RPD code
numerical unstable due to the step size restriction imposed by a
rapid diffusive time scale there, We need to improve our
treatment of the resistivity term near the ring io overceme this
problem.

Many nonlinear runs, especially the ones in which the
m=1,n=1 resistive kink meode is dominant, were not well
converged because of an insufficient number of toroidal Fourier
harmonics and grid peints for the problem. To ascertain the
partial reconnéction of the m=1,n=1 magnetic island, it is
essential to repeat our calculations including more Fourier
harmonics and grid points. Furthermore, at least several rnore
poloidal divertor tokamak equilibria with quys<1 need to be

studied to establish a correlation between the equilibrium profile
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and the occurence of partial reconnection,

‘To bring out the effect of the diverter separatrix on the
resistive MHD instabilities, we chose to use a fairly straight
tokamak of R,/a=5. On the other hand, the Tokapole 1l is a
more tightly curved tokamak with R,/a=~2.27. It is possible,
and even probable, that toroidal effects are also playing a major
rele in the exzperiments. It is of great interest to repeat-t};le
linear and nenlinear simulations of resistive MHD instabilities in
a tightly curved poloidal divertor tokamak.  Along with better
experimental profile information, we could then embark on a
quantitative comparison of the numerical and experimental
results.

in a four—node divertor tokamak such as Tokapole II the
flux surfaces near the divertor separatrix become highly
noncircular and squarish. Although the squarishness is a
consequence of the four-node divertor, this obscures the effect
of the diverter x point itself on the linear and nonlinear
evolution of resistive MED instabilities. It would be instructive
to repeat our simulation work for different diverter
configurations. A simpler versicn of RPD without a poloidal
divertor is alsc helpful for this investigation. By choosing an
equilibrium with the mode rational surface clese to the square
wall, the effect of squarishness cn the resistive MHD instabilities
could be exarmnined.

Although the RPD code employs the set of compressible
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resistive MHED equations, the effect of finite plasma pressure was
never vigorously studied. By - including the finite pressure
effects in a divertor geometry, we may be able t¢ shed some

light on the H-mode of divertor tokamak operation. £4



10.

11.

References

H.P. Furth, J. Killeen, and M.N. Rosenbluth, Phys. Fluids
6, 459 (1963).

J.D. Callen, B.V. Waddell, B. Carreras, M. Azumi, P.J.
Catto, H.R. Hicks, J.A. Holmes, D.K. Lee, S.J. Lynch, J.
Smith, M. Soler, K.T. Tsang, and J.C. Whitson, in
Plasma Physics and Controlled Nuclear Fusion Research
1978 {Proc. 7th Cenf., Innsbruck, 1978) wvol.1, IAEA,
Vienna, p.415 {1979).

G. Baternan, MHD Instabilities (MIT Press, Cambridge, MA,
1978).

A B. Rochester and T.H. Stix, Phys. Rev. Letters %6, 587
{1976).

S.V. Mirnov and 1.B. Semenov, Sov. J. Atemic Energy
20, 22 (1971).

S. von Goeler, W. Stodiek, and N. Sauthoff, Phys. Rev.
Letters 33, 1201 (1974).

E.P. Gorbunov and K. A. Razumova, J. Nucl. Energy, Part
C 6, 515 (1964).

R.B. White, D.A. Monticello, M.N. Rosenbluth, and B.V.
Waddell, Phys. Fluids 20, 800 (1977).

B. Carreras, B.V. Waddell, and H. R. Hicks, Nuclear Fusicn
19, 1423 {1979).

W. Park, Bull. Am. Phys. Soc. 31, 1527 (1986).

B.B. Kademtsev, Sov. J. Plasma Phys. 1, 389 (1975).

i2.

13,

14.

15.

16.

i7.

18.

19.

20.

200

A. Sykes and J. A, Wesson, Phys. Rev. Letters 37, 140
(1976) .

G.L. Jahns, M. Soler, B.V. Waddell, J.D. Callen, and
H.R. Hicks, Nuclear Fusion 18, 609 {1978).

B.V. Waddell, M.N. Rosenbluth, D.-A. Monticello, and
R B. White, Nuclear Fusion 16, 528 (1976).

R.D. Hazeltine, J.D. Meiss, and P.J. Morrisen, Phys.
Fluids 29, 1633 (1986).

B.V. Waddell, B. Carreras, H.R. Hicks, J A. Holmes, and
D.K. Lee, Phys. Rev. Letters 41, 1386 (1978).

B.V. Waddell, B. Carreras, H. R. Hicks, and J.A. Holmes,
Phys. Fluids 22, 896 {1979).

B. Carreras, H.R. Hicks, J A. Holmes, and B.V. Waddell,
Phys. Fluids 23, 1811 (1980).

A.P. Biddle, R.N. Dexter, R.J. Greebner, D.T. Holly, B
Lipschultz, M.W. Phillips, S.C. Prager, and J.C. Sprott,
Nuclear Fusiorn 19, 1509 (1579).

M. Keilhacker, D.B. Albert, K. Behringer, R. Behrisch,
W. Engelhardt, G. Fussmann, J. Gernhardt, E Glock, G.
Haas, G. Herppich, Y. Shie, F. Karger, 0. Kliber, M.
Kornherr, K. Lackner, G. Lisitane, Ch. Liu, H .M. Maver,
D. Meisel, R. Miiller, H. Murmann, H. Niedermever, W.
Poschenrieder, H. Rapp, S. Rossnagel, J. Roth, N. Ruhs,
B. Scherzer, F. Schneider, S. Sesnic, G. Siller, P. Staib,
G. Staudenmailer, F. Wagner, K. Wang, B. Wedler, and F.
Wesner, in Plasma Physics and Contreiled Nuglear Fusion
Research 1980 (Proc. 8th Conf., Brussels, 1$80) wvol. 2,



21,

22,

23.

24.

25.

26.

201

[AEA, Vienna, p.351 (1981).
DIVA Group, Nuclear Fusion 18, 1619 (1978).

D. Meade, V. Arunasalam, C. Barnes, M. Bell, M. Bitter,
K. Bol, R. Budny, J. Cecchi, S. Cohen, C. Daughney, S
Davis, D. Dimock, F. Dvlla, P. Efthimion, H. Eubank, R.
Fonck, R. Goldsten, B. Grek, R. Hawryluk, E. Hinnev, H.
Hsuan, M. Irie, R. Jacobsen, D. Johnson, L. Johnson, H
Kugel, H. Maeda, D. Manos, D. Mansfield, R. McCann, D
McCune, K. McGuire, D. Mikkelson, S$.L. Milora, D.
Mueller, M. Okabayashi, K. Owens, M. Reusch, K. Sato,
N. Sauthoff, 6. Schmidt, J. Schmidt, E. Silver, J. Sinnis,
J. Strachan, S. Suckewer, H. Takahashi, and F. Tenney,
in Plasma Physics and Controlled Nuclear Fusion Research
1980 (Proc. 8th Conf., Brussels, 1980) wel.1, IAEA,
Vienna, p.665 (1981).

T.H. Osborne, R.N. Dexter, and S.C. Prager, Phys Rev.
Letters 49, 734 {1982).

T.K. Osborne, Ph.D. Thesis, University of Wisconsin—
Madison {1984).

N.S. Brickhouse, J.D. Callen, R.N. Dexter, D.E.Graessle,
D. Kortbawi, R.A. Moyer, T.H. Osborne, S.C. Prager,
J.S. Sarff, J.C. Sprott, E. Uchimoto, C.K. Chu, J.
Delucia, A. Deniz, R.A. Gross, A.A. Grossrnan, A.
Holland, F.M. Levinicn, M. Machida, T.C. Marshall, and
G.A. Navratil, in Plasma Physics and Comntrolled "Nuclear
Fusicn Research 1984 (Proc. 10th Conf., London, 1984)
vol.1, 1AEA, Vienna, p.385 (1985).

T.H. Osborne, N.S. Brickhouse, R.N. Dexter, R.A. Mover,
and S.C. Prager, Bull. Am. Phys. Soc. 29, 1337 (1984).

27.

28.

29.

30.

31,

32.

33,

34.

35.

36.

37.

38.

202

N.S. Brickhouse, T.H. Osborne, R.N. Dexter, S.C. Prager,
Phys. Fluids 28, 3429 (1985).

R.A. Moyer, R.N. Dexter, and $.C. Prager, Bull. Am.
Phys. Soc. 30, 1441 (1985).

R.A. Moyer, R.N. Dexter, J.A. Goetz, S.C. Prager, and
[.LH. Tan, Buill. Am. Phys. Soc. 31, 1594 (1986).

R.A. Moyer, Ph.D. Thesis, University of Wisconsin—
Madison, in preparation.

J.D. Callen, ' W.X. Qu, K.D. Siebert, B.A. Carreras, K.C.

Shaing, and D.A. Spong, in Plasma Physics and Controlled
Nuclear Fusion Research 1986 (Proc. 1ith Conf., Kyoto,
1986) vol.2, 1AEA, Vienna, p. 157 {1987},

J. Manickam, W. Park, D. Monticello, A.E. Miller, and
F.W. Perkins, Bull. Am. Phys. Soc. 29, 1295 {1984).

W. Park, D. Monticello, and R.B. White, Bull. Am. Phys.
Soc. 23, 779 (1978).

H.R. Strauss, W. Park, D.A. Monticello, R.B. White, S.C.
Jardin, M.S. Chance, A M. M. Tedd, and A. H. Glasser,
Nuclear Fusion 20, 638 (1980;.

H.R. Strauss, Phys. Fluids 19, 134 (1976).

E. Uchimoto, J.D. Callen, and L. Garcia, Buli. Am. Phys,
Soc. 30, 1421 (1985}

E. Uchimote and J.D. Callen, Sherweod Theory Conference
{(San Diego, California, 1987), paper 1D18.

D.S. Harned and W. Kerner, J. Commp. Phys. &0, 62



39.

44q.

41.

42.

43,

44,

45.

46,

47.

48.

49.

203

(1985). -

E. Uchimoto, J.D. Callen; L. .Garcia,' and B.A. Carreras,
Sherwood Theory Conference (Incline Village, Nevada,
1984), paper 1Q19.

R. Chodura and A. Schliter, J. Comp. Phys. 41, 68
(1981).

E. Uchirnote and J.D. Callen, in the 12th Conference on
the Numerical Simulation of Plasmas (San Francisco, Sept.
20-23, 1987), paper PM23.

R.A. Moyer, E. Uchimoto, J.D. Callen, R.N. Dexter, J A.
Goetz, S.C. Prager, and I.H. Tan, Bull. Am. Phys. Secc.
32, 1774 (1987). '

Zuoyang Chang, E, Uchimoto, J.D. Callen, and S.C.
Prager, Bull. Am. Phys, Soc. 32, 1774 (1987).

H. Grad and H. Rubin, in ‘Progeedings of Second
International Conference on ihe Peaceful Uses of
Atomic Energy" (United Nations, Geneva, 1958), Vol.31,
p.190.

V.D. Shafranov, Sov. Phys.—JETP 10, 775 (1960).

J.D. Callen and R.A. Dery, Phys. Fluids 15, 1523 (1972).

M.S. Chu, D. Dobrott, T.H. Jensen, and T. Tamano,
Phys. Fluids 17, 1183 {1974).

K. Lackner, Comp. Phys. Comm. 12, 33 (1976).

L.L. Lao, S.P. Hirshman, and R.M. Wieland, Phys,
Fluids 24, 1431 (1981). .

50.

51.
52,
53,
54.

55,

56.

57.

58

59.

60.

204

M.W. Phillips, University of Wisconsin PLP 765 (1978).
(PLP is an internal report of the Plasma Physics Group at
the Department of Physics of the University of Wisconsin~
Madison. Coples are available upon request from Plasma
Physics ‘Group, Departrnent of Physics, 1150 University
Avenue, University of Wisconsin, Madison, Wisconsin
53706.)

V.D. Shafrancv, Nuclear Fusion 3, 183 (1963).

E. 1. Yurchenko, Sov. Phys. Tech. Phys. 12, 1057 (1968).
H.R. Strauss, Phys. Rev. Letters 26, 616 (1971).

H.R. Hicks, B. Carreras, J. A. Holmes, D.K. Lee, and B.V.
Waddeil, J. Comp. Phys. 44, 46 (1981); Erratum: J.
Comp. Phys. 53, 205 (1984).

L. A, Charlton, J.A. Holmes, H.R. Hicks, V.E. Lynch, and
B.A. Carreras, J. Comp. Phys. &3, 107 {1986).

J.A. Holmes, L.A. Charlton, B.A. Carreras, and V.E.
Lynch, in the 12th Conference on the Numerical Simulation
of Plasmas (San Francisco, Sept. 20-23, 1987), paper
W3,

B.A. Carreras, J.A. Holmes, H.R. Hicks, and V.E. Lynch,
Nuclear Fusion 23, 511 (1981).

JK. Lee, M.S Chu, F.J. Eelton, J.¥Y. Hsu, and N.
Chyabu, Bull. Am. Phys. Scc 30, 1421 (1985).

J. K. Lee, Phys. Fluids 29, 1629 (1986).

J A. Hoimes, B.A. Carreras, T.C. Hender, H.R. Hicks,



£2.

63,

64,

5.

56.

&7.

68.

69.

205

V.E. Lynch, and B.F. Masden, Phys. Fluids 26, 2569
{1983},

R. Courant, K.O. Friedrichs, and H. Lewy, Math. Ann.
100, 32 (1928).

R. Izze, D.A. Monticello, H.R. Strauss, W. Park, J.
Manickam, R.C. Grimm, and J. Delucia, Phys. Fluids, 26,
3066 {1983)

A Y. Avdemir and D.C. Barnes, J. Comp. Phys. 53, 100
{1984).

F. Wagner, G. Becker, X. Behringer, D. Campbell, A.
Eberhagen, W. Engelhard:, G. Fussmann, 0. Gehre, J.
Gernhardt, G.v. Gierke, G. Haas, M. Huang, F. Karger,
M. Keilhacker, 0. Xliiber, M. Xornherr, K. Lackner, G.
Lisitano, G.G. Lister, H.M. Mayer, D. Meisel, E. Miller,
H. Murmann, H. Niederrneyer, W. Poschenrieder, H.
Rapp, H. R8hr, F. Schneider, G. Siller, E. Speth, A.
Stabler, K.H. Steuer, G. Venus, 0.Voilmer, and Z. Y{,
Phys. Rev. Letters 49, 1408 (1982).

C H. Finan Il and J. Kileen, Comp. Phys. Comm. 24,
441 {1981).

D S. Harned and W. Xerner, Nucl. Sci. Eng. 22, 119
{1986).

D.S Barned and [.D. Schnack, J. Comp. Phys. &5, %7
(1986) .

D.D. Schnack, D.€. Barnes, Z. Mikic, D.S. Harned, E.J.
Caramana, J. Comp. Phys. Z0, 330 {1987).

N.J. ONeill and A.A. Mirin, National Magnetic Fusion

70.

71,

72.

73.

74.

75.

76.

77,

206

Energy Computer Center, LIBRIS Library.

R.C. Grimm, R.L. Dewer, J. Manickam, S.C. Jardin,

A H. Glasser, and M.S. Chance, in Plasma Physics and
Qont.rgllgd Nuclear Fusicn Research 1982 (Proc. 9th Conf.,
Baltimore, 1982) vol.3, IAEA, Vienna, p.35 (1983).

H. Strauss, D.A. Monticello, and J. Manickam, Bull. Am.
Phys. Soc. 32, 1773 (1987}.

B. Coppi, J.M. Greene, and J.L. Johnson, Nuclear Fusion
6, 101 (1966).

H.P. Furth, P.H. Rutherford, and H. Selberg, Phys. Fluids
16, 1084 (1973).

R. lzzo, D A. Monticello, W. Park, J. Manickam, H.R.
Strauss, R. Grimm, and K. McGuire, 26, 2240 {1983}

A.H. Glasser, J M. Greene, and J.L. Johnson, Phys. Fluids
19, 567 (1976).

P.H. Rutherford, Phys. Fluids 16, 1903 {1973).

B. Coppi, R. Gaivdo, R. Pellat, M. Rosenbiuth, and P.
Rutherford, Sov. J. Plasma Phys. 2, 533 {1976).






