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Chapter 1: Introduction

From astrophysics to nuclear physics, from the Earth’s magnetic field to its polar aurorae, plasma

science has changed the way we think of our universe. In addition to their scientific interest, plasmas

have many technological applications such as semiconductor processing, medical product steriliza-

tion, hazardous waste removal, energy efficient light bulbs, and television screens [1]. One application,

however, has eluded scientists for decades: the net generation of useful energy from controlled ther-

monuclear fusion. Often viewed as the only viable very-long-term energy solution for the human

race, more scientific research into the nature of plasmas, material science, and reactor engineering is

necessary before this application will contribute to the energy portfolio powering our world.

This thesis investigates measurements of natural plasma relaxation events in a laboratory fu-

sion experiment. Though the experiment was designed to study the plasma physics associated with a

specific controlled fusion concept, the physics exhibited offers a unique opportunity to study concepts

and phenomena that are applicable to many plasmas, including naturally occuring astrophysical plas-

mas. One such phenomenon, magnetic reconnection, is a ubiquitous plasma process which is viewed

by some as a bane to fusion science because the associated magnetic fluctuations reduce confinement

properties, and in some cases reconnection will even cause a catastrophic plasma termination event.

In reversed field pinch plasmas, reconnection occurs in the form of sawtooth oscillations—periodic

events that rarely disrupt the plasma but rather seem determined to flaunt the configuration’s global

stability. Moreover, these reconnection events are an efficient ion heating mechanism, pouring a

significant fraction of the energy released by magnetic field annihilation directly into the ion tem-

perature. An understanding of reconnection dynamics may therefore lead fusion scientists to view

this process as a tool for fusion rather than a hindrance: reconnection may someday turn out to be

a fundamental ingredient to achieving economically viable fusion energy.

Regardless of the subject’s terrestrial applications, the process of reconnection is a beautiful

natural phenomenon that occurs all around us. On the surface of our Sun, solar flares have been

identified as reconnection events that fling plasma far into space. In front of our planet (on the day

side), the Earth’s magnetic field protects us from the solar wind by deflecting plasma particles near a
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steady state reconnection site known as the magnetopause. Behind us (on the night side), the Earth’s

magnetotail also undergoes magnetic reconnection, but in an impulsive manner which periodically

accelerates plasma particles toward the poles of the earth, resulting in the polar aurorae. Everywhere

we look, it seems, we can find a plasma. And in nearly every plasma we examine, we can find the

process known as reconnection.

Whenever a process is found in such a variety of places, we expect it to exhibit itself in a

variety of ways. Not surprisingly, there are a large number of theoretical models for reconnection

which may or may not be applicable to any given situation. As such, it is the goal of this thesis to

advance the understanding of the reconnection within our experiment, and to report measurements

which will contribute to a better understanding of reconnection in general.

1.1 Background

The concept of magnetic reconnection–the often violent process by which magnetic fields are topo-

logically rearranged into a new magnetic geometry–was first introduced in 1946 by R. G. Giovanelli

to explain solar flares in the sun’s chromosphere, which were observed to coincide with areas of high

magnetic field known as sunspots [2]. Since then, reconnection has been identified in a variety of

astrophysical and laboratory plasmas, and is thought to be a common, if not ubiquitous, ingredient

in plasma dynamics. Sweet [4] and Parker [5] offered the first quantitative description of this process

to explain astrophysical observations. Many theoretical variations have been proposed to describe

reconnection more accurately, particularly focusing on the explanation of fast and impulsive recon-

nection. Models which treat the electron fluid and ion fluid independently allow for the inclusion of

the Hall term in the applicable Ohm’s law [3] and are a particularly promising way to explain the

observed rates of fast reconnection. Models which result in impulsive reconnection typically invoke

nonlinear or three-dimensional effects [6].

Reconnection appears in nature and in laboratory plasmas in two general forms: driven and

spontaneous. Driven reconnection occurs only because of external forcing, whereas spontaneous

reconnection results from the development of a local instability which allows the plasma to reach a

lower energy state [3]. A classic form of spontaneous reconnection, known as a tearing instability, will



3

occur in a toroidal plasma when two conditions are met: First, if the geometry permits a quantized

wave vector with no parallel component (~k · ~B = 0), the mode will be resonant. Commonly, a toroidal

plasma is approximated by a periodic cylinder. In such a system, the resonance condition can be

written in terms of the safety factor, q = rBφ
RBθ

, of the plasma. Any surface on which the safety factor

is a rational number, q = m
n , a tearing mode with wave vector ~k = m

r θ̂ −
n
R φ̂ is resonant. Second,

depending on the details of the plasma equilibrium, the mode may also be unstable [7]. In particular,

instability can be induced by a strong gradient in the plasma current density such that the associated

gradient length scale is shorter then k−1 [3]. If the mode is both resonant and unstable it is called a

spontaneous tearing mode.

The reversed field pinch (RFP) [8], depicted in Figure 1.1, is a toroidal plasma equilibrium

configuration with strong magnetic shear which is particularly prone to the development of tearing

modes. Typically, an RFP displays a periodic sawtooth cycle which is characterized by a slow peaking

of the current profile followed by a sudden, global plasma relaxation event. It has been previously

shown that during these sawtooth events multiple reconnecting Fourier modes develop: core modes

are predicted to be linearly unstable and measured to be spontaneous, while edge modes are linearly

stable and have been inferred to develop from nonlinear drive [9] [10].

The Madison Symmetric Torus (MST) [11] is an RFP at the University of Wisconsin-Madison.

Figure 1.2 lists typical machine parameters used for this work, though MST is capable of running in

many modes of operation and with a wide range of plasma parameters. A typical safety factor profile

for MST has q ∼ 0.2 on axis and negative in the edge, as seen in Figure 1.3.

1.2 Overview of the Thesis Results

This thesis reports detailed magnetic field measurements of the reconnection associated with the

n = 1 Fourier mode in the edge of MST. The goal of this work was initially to investigate the presence

or absence of Hall effects with regard to the reconnection in the edge. The plasma parameters of

MST indicate that this is a collisionless plasma, in which we expect to see significant Hall physics

associated with the reconnection on scales below the ion inertial length, c/ωpi ≈ 8cm. Previously, the

Hall dynamo was observed to contribute significantly to the mean-field Ohm’s law in both the core [12]
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Conducting Shell
Surrounding Plasma

BT  Small & Reversed at Edge

BT
BP

B

Figure 1.1: Depiction of the magnetic field configuration of the Reversed Field Pinch.

Quantity Symbol Value
Major Radius R 1.5 m
Minor Radius a 0.52 m

Electron Density ne 1× 1019 cm−3

Plasma Current Ip 225 kA

Figure 1.2: Machine and plasma parameters for typical MST plasmas in this study.
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q 

Minor radius (m) 

Figure 1.3: A typical q-profile for MST. Locations of resonant modes and their typical saturated
island widths are indicated.
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and edge [13] of MST. Here, we study the Ohm’s law governing fluctuations by measuring the terms

which which are accessible through an assortment of magnetic diagnostics. We find that the Hall

term is indeed large compared to both the electric field and the resistive term ( 1
neJ×B >> E > ηJ),

indicating that two fluid effects are important in the physics governing this reconnection.

The large-scale radial structure of the reconnection magnetic field is found to agree with

resistive magnetohydrodynamic (MHD) tearing mode calculations. Although the large-scale radial

structure agrees with MHD, the dynamics of the reconnection layer and drive do not. Understanding

the role of Hall physics in Ohm’s law at the reconnection X-point requires an understanding of

nonlinear mode coupling physics.

The study of the nonlinear physics of tearing modes in the RFP has a rich history in Madison

as well as in the broader community. Nonlinear physics which couples plasma fluctuations to the

plasma equilibrium has been studied in great detail [14]: the RFP equilibrium would not be possible

without the MHD dynamo, a process by which fluctuations modify the mean field of the plasma

[15], and experimental modification of the plasma equilibrium has been used to directly reduce the

level of plasma fluctuations [16]. Investigation of fluctuation induced transport of heat, particles,

momentum, and energy highlights the variety of effects these nonlinear processes can cause (see,

e.g., [17] [18]). Nonlinear three-wave coupling has also been previously studied [9]. A cascade of

three-wave couplings (or higher order correlations) has been identified as a primary mechanism for

the development of small scale turbulent fluctuations: when m = 0 modes are removed from the

plasma, large scale three-wave interactions are reduced and the consequences can be observed in the

reduced fluctuation levels at all scales.

The term “Hall reconnection” is usually used to describe a scenario in which a reconnection

process can achieve faster reconnection rates by the inclusion of the Hall term in the relevant Ohm’s

law. It has been previously observed that these two fluid effects, rather than the mechanism which

decouples the electrons from the magnetic field and allows the frozen flux condition to be broken, are

the primary feature necessary to achieve fast reconnection [19]. This Hall effect modifies the outflow

region of the reconnection, which in our case is toroidally displaced from the X-point, but provides

zero contribution to the parallel (out-of-plane with respect to the reconnection field) Ohm’s law at
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the reconnection X-point. In contrast, the plasmas observed in this work exhibit reconnection with a

nonlinear Hall term measured directly at the reconnection X-point. This contribution to Ohm’s law is

large compared to the relevant electric field and ηJ , and we conclude that this reconnection is driven

by the nonlinear two-fluid Hall term. Therefore, we adopt the phrase “Hall-driven reconnection” to

describe our observations. This does not imply that the more conventional roles of Hall reconnection

are not at play, but they are difficult to interpret in the RFP using present methods. In other

experiments, Hall reconnection effects have been indirectly observed by measuring the signature

“quadrupole field” that is present between the ion and electron dynamic scales [20], but in the RFP

this effect is reduced by the presence of a strong guide field and a strong current gradient across the

asymmetric reconnection layer.

We measure that the nonlinear Hall term provides significant drive for the n = 1 edge mode

reconnection, and the strongest contributions come from three-wave coupling to unstable modes

which are resonant elsewhere in the plasma. Three wave effects have been previously reported in MST

plasmas [21], and have been inferred to drive edge mode reconnection [10], though the mechanism was

previously unidentified. Here, we observe one mechanism through which these couplings come into

play in the physics of edge mode reconnection. We conclude that spontaneous n = 6−8 tearing modes,

developing in the core of the plasma, provide the “external” forcing necessary to drive this stable but

resonant edge mode. The measured forcing is produced through nonlinear coupling of the modes in

the form of three wave interactions mediated by the Hall term of Ohm’s law. This observation is

seemingly at odds with reconnection intuition because it is well known that a Hall term cannot break

the frozen flux theorem, and therefore isn’t expected to contribute to Ohm’s law at the X-point of

reconnection. However, like the v × B terms in resistive MHD simulations of the RFP, our plasma

manages to get around this issue, perhaps because of the nonlinear coupling of m = 0 edge mode

effects. At the reversal surface, the magnetic island fieldline structure is significantly distorted by

the presence of n = 2− 4 modes. This distortion may allow n = 1 flux to freely move about in ways

that frozen flux conditions would otherwise prohibit in a linear model.

This research highlights the need to understand toroidal effects, Hall physics, and nonlinear

interactions in order to understand the reconnection processes of the RFP.
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1.3 Coordinate systems

There are two commonly used coordinate systems on MST. The first, illustrated in Figure 1.4, is used

for physics applications, and is right handed in the coordinates r̂, θ̂, φ̂. Notice that θ is measured

from the inboard edge, starting in the upward direction.

top view of 
MST

vt, Ip

0° 360°

Bt, z

∇ p

Er
Bp

vDi

vE x B

vmode

M S T

Directions in MST
v. 1.1, 16 May 1995
D. J. Den Hartog

core

edge

Bt, z

θ

Jθ

vt, vmode, Ip
∇ p Er

Bp

vDivE x B

core

edge

poloidal cut view

Vpg

+     –

+

–

Vtg
during

sawtooth

edge

Figure 1.4: The right handed coordinate system used for most of this thesis.

The second commonly used coordinate system is identical to the system above except the θ̂

direction is reversed, with θ measured from the outboard edge, starting in the upward direction. The

left handed coordinate system was used to create the MST porthole map, and is currently used to

identify the location of hardware on MST.

In this thesis, I will refer to these as the “right-handed coordinate system” and the “left-handed

coordinate system” respectively. If no coordinate system is indicated, the right-handed coordinate

system is assumed.
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Chapter 2: Magnetic Probes

2.1 Probe Design

One of the simplest, most robust, and most useful diagnostics on MST, or any plasma physics

experiment, is the magnetic pickup coil. Nearly every measurement in this thesis was performed

using magnetic “b-dot” pickup coils embedded in an insertable probe. These take advantage of

magnetic induction to reproduce reliable measurements of magnetic field [1].

Each probe consists of wire wrapped around a boron nitride core, which is placed in a precisely

machined boron nitride housing to control relative alignment. The housing is covered with a con-

ducting silver paint to prevent electrostatic pickup, and the entire probe is encased in a boron nitride

protective particle shield. Boron nitride is a ceramic with good thermal shock properties, and has

proven to be a robust material in the harsh environment of MST plasmas. Additionally, this material

is easy to machine (it has a consistency similar to chalk), safe to handle, and vacuum compatible.

Figure 2.1: Insertable magnetic probe. This probe consists of 16 coils: 5 for Bφ, 5 for Bθ, and 6 coils
wound directly on the probe housing to measure Br.

The induced voltage on the wire (which is proportional to ∂B/∂t) is integrated using a low-

drift active analog integrator, and recorded using a commercial digitizer. In this study, we have used

a digitization rate of 20 kHz. The probe coils are approximately 1 cm long, with an effective area

(number of turns times the average area of a single turn) of about 10 cm2, as measured using the

method of Appendix C.1.
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2.2 Probe Calibration

Probe calibration is accomplished in two steps: The probe’s effective area is measured on the bench

(see Appendix C.1), then in situ measurements are used to orthogonalize the alignment of the coils

before each run (see Appendix C.2).

We can do a similar correction to orthogonalize the radial coil; however, even with this cor-

rection the radial coil signal will usually be significantly contaminated by poloidal field. The probe

cannot always be pointed in a direction perpendicular to the equilibrium flux surface of the plasma–

even the location of the magnetic axis will shift significantly during a sawtooth crash, so it is difficult

to make a measurement that is even approximately a purely radial field. Instead we subtract from

the radial coil’s signal a time-dependent fraction of the poloidal field. The fraction of poloidal pickup

is determined by requiring that the ensemble-averaged (n = 0 component) radial field is zero, a

condition which must be true at each time point as a direct consequence of ∇ · ~B = 0.

2.3 Probe Perturbations

The presence of a probe will, of course, perturb the plasma. In particular, the probe blocks the flow

of plasma current, diverting this current around the edges of the probe. A very simple model treats

this diverted current as a pair of wires, diverting a total current of JA where J is the plasma current

density and A is the effective surface area of the probe as seen from the Ĵ direction. The magnetic

field perturbation inside the cylindrical probe resulting from this diverted current can be calculated

from this wire model, depicted in Figure 2.2. Interestingly, if we use a model consisting of two sheets

of current diverted symmetrically around an infinite cylinder, the resulting internal field is zero [2];

a more appropriate model may be something between wire-like currents and sheet-like currents such

as a half-infinite cylinder.

This wire current model results in a spatially dependent radial field

Br(x = 0) =
µ0I0/2

2π

(
1

R− y
− 1
R+ y

)

where R is the radius of the probe, and I0 is the total current interrupted by the probe body. This can
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I0/2 

I0/2 
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r 

Figure 2.2: Simple model of a probe perturbation.

be used to calculate appropriate tolerances for radial coil magnetic probe design. A coil of diameter

d offset from center by a distance δ inside a probe of radius R will measure a perturbation field

Br =
µ0I0/2

2πd
ln

(
R2 − (d2 + δ)2

R2 − (d2 − δ)2

)
.

In the final measurement iteration, we designed a probe with tolerances tight enough to measure

the expected 2-5 Gauss non-perturbed fluctuation field, but the specifications of the probe were not

sufficient to detect the actual magnetic field of the n = 1 mode on the outboard edge, which turned

out to have a strength of only 0.5 Gauss. Because of this, we will use ∇ · B = 0 to determine Br

for this thesis. The lower than expected magnetic field strength has been accounted for by stronger

than previously expected toroidal effects.

The model shown here is nearly consistent with measurements taken using radial coils that

were deliberately placed off-center within a probe body. Off center coils may be used in the future,

together with a more sophisticated model, as a new method to measure plasma current. (Currently

a mapping of the full magnetic field structure, as done in this thesis, or the use of a more complex

Rogowskii probe is required to measure currents in MST).
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Chapter 3: Pseudospectrum

A significant part of my thesis project was the development and implementation of the correlation

analysis of fluctuations. Correlation analyses have been done before by many previous graduate

students and scientists on MST, yet nearly each instance of this was done in a different manner, often

with surprisingly little documentation on the individual method used or how it could be related to

previous work. For this reason, I have dedicated a fairly long Chapter to what I call pseudospectral

analysis. For the reader interested only in adapting this method to his or her own measurements, a

User’s Guide to Pseudospectra can be found in Appendix A.

Fluctuations are defined to be non-axisymmetric plasma perturbations. Therefore, it is natural

to use a spatial Fourier basis set to describe the fluctuations of a toroidal plasma. Here, the Fourier

decomposition is developed for a periodic cylinder. In a true torus, poloidal mode numbers are

not “good” quantum numbers, requiring modification of the periodic cylinder treatment which will

be discussed in Chapter 4. For the remainder of this Chapter, MST is presumed to be a periodic

cylinder with good quantum numbers in both symmetry directions.

Here, we develop a method to extract the mode spectrum of a given signal. Typically, one must

have 2nmax × 2mmax measurements in order to resolve mode numbers nmax and mmax. However,

using this method one can resolve the n and m spectrum of a single point measurement. This is done

by correlating the measurement with the toroidal array of magnetic pickup coils, using a mathematical

technique that I call pseudospectral analysis.

3.1 Spatial Fourier Decomposition in MST

MST is treated as a periodic cylinder, so that any signal, X, that is measured everywhere in the

plasma can be decomposed by a 2-D fourier transform:

X(θ, φ) =
∑
m

∑
n

amn cos(mθ + nφ− δmn)

Here, θ and φ are defined (as usual) to be the poloidal and toroidal angles, respectively. The
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third spatial coordinate is implied: X, amn, and δmn are all functions of radius, r. Therefore, pseu-

dospectral analysis must be performed on each flux surface (surface of constant r) of the equilibrium

separately.

For the rest of this Chapter, a capital letter (such as X above) represents something that is a

function of θ and φ. Lowercase letters are constants in space (but may vary from shot to shot).

The first step to simplify the analysis is to reduce the m-spectrum. MST is most sensitive to

(m = 0, n = 1− 4) and (m = 1, n = 5− 8) modes. So, we will assume that if we find the n-spectrum

of our signal, we know the m-spectrum as well. For example, if we have an n = 6 mode, we can be

pretty certain it is m = 1, and similarly for other modes. (If this were not the case, we could still

take a pseudospectrum, but we would need a poloidal array of magnetic pickup coils in addition to

the toroidal array.) This is discussed in more detail in section 3.7.

Just to reiterate, m = (0 or 1) is treated a function of n, so we can drop the m subscript on

our coefficients. We rewrite X as

X(θ, φ) =
∞∑
n=0

an cos(mθ + nφ− δn) (3.1.1)

Complex notation can be employed to make the math easier to follow. However, we want to be

explicit about our notation so there is no confusion about how to interpret the final expressions (i.e.

Do I take the real part in the end? What does the imaginary part mean?). To avoid this confusion,

we will require that X be a real number. This is achieved by expanding X in terms of a complex

number plus its complex conjugate.

X(θ, φ) =
x0

2
+
∞∑
n=1

1
2

(
xne

i(mθ+nφ) + x∗ne
−i(mθ+nφ)

)

Notation can be greatly simplified by defining x−n ≡ x∗n, and m(−n) = −m(n), so that

X(θ, φ) =
1
2

∞∑
n=−∞

xne
i(mθ+nφ). (3.1.2)

Note that these expressions are a mathematical description of a mode’s spatial variation at
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a given time point. In this presentation, the sign of n is not related to the rotation direction of the

nth mode. Also note that, since m is a function of n, we are not considering the possibility of the

coexistence of (m,n) and (−m,n) modes.

A third equivalent representation is given by

X =
∞∑
n=0

αn cos(nφ) + βn sin(nφ). (3.1.3)

This presentation (3.1.3) is used in the MST data acquisition routines, then converted into amplitude

and phase notation (3.1.1) for storage in the MST database. This thesis will be working primarily with

the complex notation (3.1.2), because it is more convenient for derivations. A fourth presentation can

be found by explicitly splitting the complex number xn into its amplitude and phase, xn = |xn|eiδxn .

Conversion between these four presentations is summarized in Figure 3.1.

Presentation Amplitude Phase α β Eq.

an cos(nφ− δn) an δn an cos(δn) −an sin(δn) a0

αn cos(nφ) + βn sin(nφ)
√
α2
n + β2

n tan−1
(
βn
αn

)
αn βn α0

1
2

(
xne

inφ + x∗ne
−inφ) |xn| tan−1

(
− Im(xn)
Re(xn)

)
Re(xn) − Im(xn) x0

2

1
2

(
|xn|e−iδxn einφ + |xn|eiδxn e−inφ

)
|xn| δxn |xn| cos(δxn) −|xn| sin(δxn) x0

2

Figure 3.1: Fourier Presentation Transformations. The tan−1 function always refers to a two-
argument inverse tangent with output range (−π, π). All entries in the same column are equivalent.
The first column is equal to the real-valued physical field. The final column indicates the value of
the mean (equilibrium) field.
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3.2 Discrete Spatial Fourier Decomposition with the Toroidal

Array

The toroidal array measures Bφ and Bθ at 64 toroidal locations. The array is fixed at r ≈ a and at

θ = 119 degrees using the standard right handed MST coordinate system (θ = 241 degrees in the

left handed coordinate system). The set of magnetic signals is decomposed into the Fourier basis

functions

B(φ) =
∞∑
n=0

αn cos(nφ) + βn sin(nφ).

So, a single coil (the ith toroidal array pickup coil) sees

B(φi) =
∞∑
n=0

αn cos(nφi) + βn sin(nφi). (3.2.1)

In a 64-coil discreet decomposition, we can determine only α0−31 and β1−32. The inverse transform

(equation 3.2.1) can be written in matrix form:

0BBBBBBBBBBBBBBBBBBBBB@

B(φ1)

B(φ2)

B(φ3)

B(φ4)

B(φ5)

B(φ6)

...

B(φ32)

1CCCCCCCCCCCCCCCCCCCCCA

=

0BBBBBBBBBBBBBBBBBBBBB@

1 sin(φ1) cos(φ1) sin(2φ1) cos(2φ1) · · · sin(31φ1) cos(32φ1)

1 sin(φ2) cos(φ2) sin(2φ2) cos(2φ2) · · · sin(31φ2) cos(32φ2)

1 sin(φ3) cos(φ3) sin(2φ3) cos(2φ3) · · · sin(31φ3) cos(32φ3)

1 sin(φ4) cos(φ4) sin(2φ4) cos(2φ4) · · · sin(31φ4) cos(32φ4)

1 sin(φ5) cos(φ5) sin(2φ5) cos(2φ5) · · · sin(31φ5) cos(32φ5)

1 sin(φ6) cos(φ6) sin(2φ6) cos(2φ6) · · · sin(31φ6) cos(32φ6)

...
...

...
. . .

1 sin(φ32) cos(φ32) sin(2φ32) cos(2φ32) · · · sin(31φ32) cos(32φ32)

1CCCCCCCCCCCCCCCCCCCCCA

0BBBBBBBBBBBBBBBBBBBBB@

α0

β1

α1

β2

α2

β3

...

β31

α32

1CCCCCCCCCCCCCCCCCCCCCA
The above is a 32× 32 invertible matrix, which has values between ±1. Designating this matrix A,

Bcoils = A ·Bmode
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Therefore

Bmode = A−1 ·Bcoils

So, to perform the Fourier decomposition of the toroidal array signals, we need only to take the

inversion of the A matrix, using the angles of the physical coils (φ1, φ2, ...), and multiply by their

signals. This is the method that is used by the standard MST software to find the toroidal array

mode quantities. These values are converted to the amplitude and phase notation of equation 3.1.1

before they are stored in the MST database, using the relations (which are also found in Figure 3.1)

an =
√
α2
n + β2

n

δn = tan−1(αn, βn)

where tan−1 is the two argument inverse tangent function, which has an output range of (−π, π).

3.3 The Random Phase Approximation

The ability to take a pseudospectrum relies heavily on the assumption that we can take a large

number of shots in lieu of a large number of measurements. We will start by defining a somewhat

abstract quantity: Suppose we had taken a global measurement of the quantity of interest (that is,

suppose instead of a point measurement, we had an infinite number of measurements spread around

in space). It is then simple to take an average over a single flux surface:

< X >=
∮
XdA∮
dA

where
∮
dA represents an integration over the flux surface.1

The total quantity, X(θ, φ), can be decomposed into an average part plus a fluctuation, X̃,

defined by
1Under the other assumptions of this method (cylindrical plasma with m = m(n)), an average over the flux surface

is equivalent to an average over toroidal angle. Strictly speaking, the random phase approximation only relates a
toroidal average to an ensemble average.
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  Figure 3.2: Cartoon of a typical saw-
tooth signal. We can find < X > by
averaging across the ensemble (into the
page) without losing time resolution.

X̃ ≡ X− < X >

Note that < X̃ >= 0. That is, the fluctuations have a flux surface average of zero by def-

inition. Using the complex Fourier notation of 3.1.2, < X >= x0
2 and X̃ =

∑∞
n=1Xn, where

Xn ≡ 1
2

(
xne

i(mθ+nφ) + x∗ne
−i(mθ+nφ)

)
.

To measure something that approximates < X >, we can take many shots and do a sawtooth

ensemble instead of measuring the entire flux surface. This will be done at each time point (relative

to the sawtooth crash) separately. The average over many similar sawtooth events is approximately

equal to the flux surface average of a single event, < X >, but only if the phase of the fluctuating

component, X̃, is sufficiently random from shot to shot (this is ill defined at the moment, but will

be clarified later).

Mathematically speaking, we approximate

< X(θ, φ) >≈ [x(point)]

where [ ] represents an average over realizations of the sawtooth and <> still represents an actual

flux surface average in space. This principle will be called the random phase approximation.
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3.4 Products of fluctuations

Although fluctuations of a single quantity average to zero by definition, products of fluctuations may

not.

< XY >=< X >< Y > + < X̃ >< Y > + < X >< Ỹ > + < X̃Ỹ >

=< X >< Y > + < X̃Ỹ >

If the modes are Fourier decomposed, they will obey the familiar orthogonality relationships between

sine waves,

∮
sin(kx)dx = 0

and
∮

sin(kx) sin(lx)dx = 0

but
∮

sin(kx) sin(kx)dx 6= 0

where
∮
means the integral over an integer number of periods. Indeed, this orthogonality is precisely

the reason why a Fourier basis set is convenient for describing our signals.

3.5 Solving the Pseudospectrum

We have established the notation

X =< X > +
∞∑
n=1

Xn =
∞∑
n=0

|xn| cos(mθ+nφ−δxn) =
∞∑

n=−∞

1
2
xne

imθ+inφ =
∞∑

n=−∞

1
2
|xn|ei(mθ+nφ−δxn )

Let us apply the same notation to our magnetic field at the wall, B.

B =< B > +
∞∑
n=1

Bn =
∞∑
n=0

|bn| cos(mθ+nφ− δbn) =
∞∑

n=−∞

1
2
bne

imθ+inφ =
∞∑

n=−∞

1
2
|bn|ei(mθ+nφ−δbn )

To find the pseudospectrum of our signal, X, we must first make the basic assumption that X
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is strongly coupled to the magnetic field at the wall. Namely, our assumption is that for each mode,

xne
i(mθ+nφ) = cnbne

i(mθ+nφ)

so

cn =
|xn|
|bn|

ei(δb−δx)

where cn is a complex constant of proportionality and is deterministic (i.e. cn is the same for every

realization of the sawtooth)

This, of course, is a major assumption–we are saying that the Xn’s are always phase-locked

to the Bn’s. This assumption is very reasonable for magnetic fields since magnetic structures are

radially broad in MST plasmas, but application of this argument to other measurements, for example

temperature or density, may be a bit more subtle. Notice that Xn will have a different (random)

phase for each sawtooth realization, but we assume it will always have a deterministic relative phase

to Bn. Further, since each time point is processed independently, this relative phase will be allowed

to vary in time with respect to the sawtooth crash time.

So, instead of finding the xn’s (which appear at a random phase for each realization), we will

find the quantity

xn = |xn|ei(δbn−δxn) = cn|bn|

This is a more meaningful number: The amplitude of Xn is |xn|, and the phase of xn tells us

whether Xn is in phase or out of phase with Bn. Additionally recognizing that the random phase

approximation will eventually be utilized, we define the pseudospectrum of X to be

{X} =


x0

x1

x2

x3

...

 .

The pseudospectrum is intended to represent the amplitude and phase of the nth mode of X. To

maintain this intuition, we want to define x0 so that it also represents the “amplitude and phase of
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the n = 0 mode”, which we know to simply be the real value x0 = [X].

Now that we have defined what a pseudospectrum is, we wish to calculate it in terms of

measured values. We start by defining three quantities:

X =
∞∑

n′=−∞

1
2
xn′e

i(m′θ+n′φ)

Bn ≡ |bn| cos(mθ + nφ− δbn) =

(
bne

i(mθ+nφ) + b∗ne
−i(mθ+nφ)

)
2

B†n ≡ |bn| sin(mθ + nφ− δbn) =

(
bne

i(mθ+nφ) − b∗ne−i(mθ+nφ)
)

2i

As a quick aside, note that Bn is physically the nth mode of the plasma, while B† is the magnetic

mode in a toroidally shifted reference frame.
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We construct two flux surface averages:

< XBn > = <

( ∞∑
n′=−∞

1
2
xn′e

i(m′θ+n′φ)

)
1
2

(
bne

i(mθ+nφ) + b∗ne
−i(mθ+nφ)

)
>

=
1
4

(xnb∗n + x∗nbn)

=
1
4

(cnbnb∗n + c∗nb
∗
nbn)

=
1
4
|bn|2(cn + c∗n)

=
1
4

(xn + x∗n)|bn|

< XB†n > = <

( ∞∑
n′=−∞

1
2
xn′e

i(m′θ+n′φ)

)
1
2i

(
bne

i(mθ+nφ) − b∗ne−i(mθ+nφ)
)
>

=
1
4i

(−xnb∗n + x∗nbn)

= · · ·

=
1
4i

(−xn + x∗n)|bn|

Solving for xn,

xn =
2 < XBn > −2i < XB†n >

|bn|
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We apply the random phase approximation: Instead of a flux surface average, we take an

ensemble average of data at a single point.

xn =
2 < XBn > −2i < XB†n >

|bn|
≈ 2[X(point)Bn(point)]− 2i[X(point)B†n(point)]

[|bn|]
(3.5.1)

Here, we have made the substitution |bn| = [|bn|]. The pseudospectrum method relies on the as-

sumption that the sawtooth events are similar to one another, so that each event will measure the

same quantity, but at a different phase. If this assumption holds, it must also be true that |bn| does

not significantly vary across the ensemble. Mostly, however, we expect the pseudospectrum to be an

ensemble average quantity, not a rigidly defined relationship that is meant to be applied on a shot to

shot basis, and therefore it should be constructed of only ensemble average quantities.

We can calculate the local Bn and B†n from the toroidal array signals.

Bn(point) = |bn| cos(mθ|point + nφ|point − δbn)

= |bn| cos(∆n − δbn)

B†n(point) = |bn| sin(∆n − δbn)

Here we have defined ∆n = (mθ|point + nφ|point) which is just a geometric factor determined by

the location of the point at which X(point) is measured. In other words ∆n represents the relative

phase difference due to the space between the measurement that is made and the “zero” point used

in the Fourier decomposition of the magnetic array measurements. For the MST toroidal array mode

analysis, this zero point is at (φ = 0, θ = 241) in the left handed coordinate system, located at the

lower inboard side of the poloidal gap. In practice, we use

∆n = nφprobe +m (θprobe − 241) .

with m and n both positive. This form is used in conjunction with the left handed coordinate system,

and accounts for the toroidal array’s physical θ position. This is discussed in more detail in section

3.6.1.
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In terms of measured quantities,

Re(xn) =
2[X(point)|bn| cos(∆n − δbn)]

[|bn|]
(3.5.2)

Im(xn) =
−2[X(point)|bn| sin(∆n − δbn)]

[|bn|]

Where |bn| is the amplitude of the nth magnetic mode, stored in the database under the names

Bt_n01_amp, Bt_n02_amp, Bt_n03_amp, Bt_n04_amp, Bp_n05_amp, Bp_n06_amp, Bp_n07_amp,

Bp_n08_amp. Similarly, δbn are stored as Bt_n01_phs, etc.. We sometimes use Bφ and sometimes

Bθ for reasons discussed in section 3.7.

The physical fields can be found from the pseudospectral values using the conversions listed

in Figure 3.1. In particular, the physical field is

Xn(φ) = |xn| cos(nφ+mθ − phs(xn)− δbn),

while the pseudospectral values directly indicate the field in a frame rotating with the magnetic field

at the wall,

Xn(φ) = |xn| cos(nφ+mθ − phs(xn)).

Here, phs(xn) = tan−1
(
− Im(xn)
Re(xn)

)
= δxn − δbn .

3.6 The Sign of m and n

One common point of confusion is the correct identification of the sign of m and n. The relative

sign of these two wave numbers is not arbitrary, but rather is strictly set by a combination of plasma

physics, coordinate system choice, and analysis method.

First, let us assume that these are resonant tearing modes with the expected (right- or left-

handed) helicity. This, of course, must be measured, and has been done so in the past for standard

plasmas. Since this thesis only deals with standard plasmas, we simply assume that the mode which

appears in the plasma is of the expected helicity.
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The theoretical derivation of tearing modes [1] shows that the unstable mode has a spatial

structure which satisfies the condition (
~B · ∇

)
ψ = 0

on the rational surface. In a periodic cylinder, with a right handed coordinate system, this is

(
~B · ∇

)
ψ =

(
Bθ

1
r

∂

∂θ
+Bφ

1
R

∂

∂φ

)
ψ

and is satisfied by

ψ = ψ(r)ei(nφ+mθ)

when
Bθ
r

(im) +
Bφ
R

(in) = 0

or

q = − rBφ
RBθ

=
m

n
.

Though this is an odd sign-convention for q, it is consistent with q > 0 in the core of MST (in the

right handed coordinate system) because Bφ > 0 and Bθ < 0. This definition becomes necessary

since MST is typically operated with the toroidal field and plasma current in opposite directions.

For a core mode (any mode resonant inside the reversal surface) to satisfy the resonance

condition, m/n must also be positive. (Note, however, that if we are using the left handed coordinate

system, described in section 1.4, then both Bθ and Bφ are positive, and m/n < 0.)

The condition
m

n
> 0

depends solely on the helicity of the mode (set by plasma physics) and the coordinate system chosen.

The next step is to solidify the notation by choosing (rather artificially) a sign for n.

The sign of n is chosen to be positive. This choice has intuitive appeal since we are basically

“counting” the nodes on a measured toroidal structure. This may seem to be an arbitrary choice, but

it has the benefit that it is consistent with the convention used by the toroidal array in its Fourier



28

basis set (equation 3.1.1).

The phase shift, δ, can be found from the toroidal array data, and the direction of wave

propagation (or at least the ±φ̂ component) can be identified from the sign of ∂δ/∂t. Any good wave

vector should, of course, have an overall sign that reflects the direction of wave propagation, so for

physics purposes, we must re-introduce this overall sign to the wave vector,

~k = sign
(
∂δ

∂t

)(m
r
θ̂ +

n

R
φ̂
)

with n > 0 and the sign of m (which happens to be positive) determined by the mode’s expected

helicity.

A second method allows the sign of n to vary. This is discussed further in section A.

3.6.1 Implications for Pseudospectral Analysis

The sign of m and n must be known to perform pseudospectral analysis, since it is required for the

calculation of ∆n. The toroidal array uses the left handed coordinate system, so we usually perform

pseudospectral analysis in this coordinate system. The toroidal array records the mode’s amplitude

and phase in the form

B = |bn| cos(nφ− δ1D).

We would prefer, however, to rewrite this into the two dimensional helical form

B = |bn| cos(nφ+mθ − δ2D).

For the two to be equivalent, we need

mθ − δ2D = −δ1D

to be true at the poloidal location of the toroidal array. Or,

δ2D = mθ|241 + δ1D.
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Therefore, the physical mode must be

B = |bn| cos(nφ+mθ − (mθ|241 + δ1D))

And so, to evaluate the mode at a different point (i.e. the location of the probe), we use

B(point) = |bn| cos(∆n − δn) = |bn| cos(nφ|point +mθ|point − (mθ|241 + δ1D))

Therefore, we must have

∆n = nφ|point +m(θ|point − θ|241).

We are evaluating this in the left handed coordinate system (the toroidal array’s native coordinates),

so we should be using m < 0 and n > 0.
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3.7 Modes

A Current Free Boundary

Since MST has a plasma limiter, it is often claimed that there is a vacuum region between the

plasma and the wall, and therefore the plasma current density is zero near the wall. This leads to

some conclusions about the structure of the modes [2], which we can test against measurement. In

particular,

µ0jr = r̂ ·
(
∇× b̃

)
r=a

0 =
1
a

∂b̃φ
∂θ
− 1
R

∂b̃θ
∂φ

Letting b̃ = |b| cos(nφ+mθ − δb),

0 =
n|bθ|
R

sin(mθ + nφ− δbθ )−
m|bφ|
a

sin(mθ + nφ− δbφ) (3.7.1)

This directly leads to three conclusions:

1. if m = 0, then bθ = 0

2. if m 6= 0, then for a right handed coordinate system (in which m and n have the same sign),

δbθ = δbφ . This phase matching condition is required if equation 3.7.1 is to be valid for all

angles θ and φ.

3. Furthermore, if m 6= 0, then |bφ||bθ| = na
mR
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We can check these results for a single shot (#1090101100):

1) Figure 3.3 shows that the n = 1 mode (which is presumably m = 0) has an amplitude

dominated by Bφ. Although we don’t see Bθ = 0 strictly, we can see that even during a sawtooth

crash Bφ >> Bθ.

2) In Figure 3.4, the recorded phase of the n = 6 mode is plotted between sawtooth, at a time

when the plasma is rotating. Notice that this deviates from the predicted behavior—the magnetic

field components are out of phase by π—because the toroidal array uses the left handed coordinate

system in which m/n < 0.

3) Figure 3.5 shows both the amplitude and phase of the n = 6 mode. To guide your eye, I

have plotted in green quantities related to the conclusions predicted by a vacuum layer: In the first

plot we have shown na
mRBθ, using R = 1.26, the major radial location of the toroidal array. In the

second plot, the green points should be zero if the expected phase relationship is satisfied.

These Figures seem to indicate that the predictions of jr = 0 hold away from this sawtooth,

but aren’t too convincing at the time of the crash. The reason for this discrepancy may be partly

due to plasma breaching the vacuum layer boundary, producing a finite radial plasma current (jr)

at the wall; or, the n = 6 component could be significantly polluted by an m = 0 mode. Though we

we don’t have a direct measurement of the mode amplitude of this (0, 6) mode, we can estimate its

expected value by extrapolating from the n = 1 − 4 modes. Figure 3.6 shows that it would not be

too surprising to find a (0, 6) mode with a Bφ value that is comparable to the 20 Gauss (1, 6) mode

amplitude we would expect from the (1, 6) Bθ value. There may even be a hint of this effect in the

lower plot of Figure 3.5, where the phase difference appears to have a rotation frequency. This could

be arise from the “beat frequency" between the (1, 6) and (0, 6) modes, which may not be propagating

coherently.

Though the jr = 0 predictions are a bit shaky for this single shot, in a sawtooth ensemble

average the predictions hold more strongly. Figure 3.7 shows the average mode amplitude of Bφ and

the adjusted amplitude na
mRBθ assuming m = 1. The poloidal field value is an indicator of the modes

m = 1 content, while the difference between poloidal and toroidal curves indicates the mode’s m = 0

content.
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Figure 3.3: Single shot comparison of Bφ and Bθ n = 1 amplitude.
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Figure 3.4: Single shot comparison of Bφ and Bθ phases for n = 6 away from sawtooth.
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Figure 3.5: Single shot comparison of Bφ and Bθ mode amplitude and phase for n = 6.
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Figure 3.6: Single shot comparison of Bφ for n = 1− 4.

3.7.1 Implications for Pseudospectral Analysis

If we assume that the boundary is current free, we are led to the following conclusions: We must

use Bφ to calculate the amplitude and phase of the m = 0 modes, because we expect that any Bθ

component is either an experimental error, an m = 1 mode, or some unaccounted for effect (i.e.

toroidal effects, field errors, etc.). The m = 1 modes, however, must use Bθ for correlation because

this is the only way to ensure that the mode amplitude is not significantly polluted by the m = 0

modes.

If we need to compare the phase of an m = 1 mode with the phase of an m = 0 mode, such

as in the calculation of a three wave nonlinear interaction term, we must again take these behaviors

into account. The best procedure to do this is to measure the m = 1 mode using Bθ, and convert

this to the phase relative to Bφ by assuming a phase difference of exactly π.

3.8 Checking the Random Phase Approximation

It was mentioned that the random phase approximation must be valid for us to legitimately talk

about a pseudospectrum. To check this, we must check the randomness of δxn : if this value samples
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Figure 3.7: Ensemble averaged mode amplitudes of Bφ and na
mRBθ assuming m = 1.

all phases evenly (for each time point relative to the sawtooth crash), then the conditions of the

random phase approximation have been satisfied.

Recall that the phase of the pseudospectrum, phs(xn) = tan−1
(
− Im(xn)
Re(xn)

)
, is constant across

the ensemble, while the notation δxn refers to the actual phase of the quantity Xn, which is usually

rotating in time and random between ensemble events. After we have calculated the pseudospectrum,

δxn can be found:

xn = |xn|ei(δxn−δbn )

∴ δxn = tan−1

(
− Im(xn)
Re(xn)

)
− tan−1

(
− Im(bn)
Re(bn)

)
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So, the random phase approximation is valid if and only if a histogram of δxn, or equivalently

a histogram of δbn, looks flat (is evenly sampled) for all time points of interest.

3.9 Error of the Pseudospectrum

Error calculations can be performed by the error propagation of ensemble variation[3]. This event-

to-event variation can be assumed to be random and follow a Gauss distribution. When performing

error propagation, however, we must be careful to use methods associated with dependent variables

(i.e. not quadratic sums) since separate measurements (such as probe measurements and toroidal

array measurements) are correlated.

To calculate error, we begin with the ensemble quantities of a signal. Suppose we have mea-

sured x using a probe, and we calculate

x̄ =
∑
xi
N

σx =

√∑
(xi − x̄)2

N

Here, x̄ is the average value of the measurement, and σx is the standard deviation, or error, of

that signal. (Both of these quantities are outputs of the standard MST sawtooth ensemble software,

discussed further in Appendix A ) Defined in this way, note that σx always has the same units as x.

This error can be interpreted as a confidence level, such that we are 68% confident that any

given measurement will have a value

xi = x̄± σx

and we are 95% confident that each measurement will be within 2σ. The error associated with the

value x̄ is much smaller, and is given by the standard deviation of the mean,

σx̄ =
σx√
N

Each individual measurement, however, is still stuck with an error of σx.
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Recall that the pseudospectrum is given by

Re(xn) =
2[X(point)|bn| cos(∆n − δbn)]

[|bn|]

Im(xn) =
−2[X(point)|bn| sin(∆n − δbn)]

[|bn|]

The spread in Re(xn) is maximized if the cos(∆n − δbn) = ±1 and always conspires to have

the same sign as X. So, for purposes of error analysis, we will find the error associated with the

quantity

q =
[|X(point)||bn|]

[|bn|]

and to simplify notation, X(point) = X, bn = b

One could argue that the spread in |bn| tends to cancel since it appears in the numerator and

denominator of q, in which case we would simply have gotten

σq =
σ|X|√
N
.

This is equivalent to saying that < AB >≈< A >< B >, which we know isn’t quite true. To take it

one step higher in sophistication,
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σq
q

=
σ[|Xb|]

[|Xb|]
+
σ[|b|]

[|b|]

σ|Xb|

|Xb|
=
σ[|X|]

[|X|]
+
σ[|b|]

[|b|]

=
σ[|X|]

[|X|]
+

2σ[|b|]

[|b|]

=
σ|X|√
N [|X|]

+
2σ|b|√
N [|b|]

σq =
1√
N

(
σ|X|[|Xb|]
[|X|][|b|]

+
2σ|b|[|Xb|]

[|b|]2

)

Next, we calculate the quantities of interest:

σRe(xn) ≤ 2σq

σIm(xn) ≤ 2σq

3.10 Pseudospectrum Performance

The pseudospectral method can be verified by calculating an autocorrelation function using a single

toroidal array coil (i.e. using one coil of the toroidal array as the “probe”). Figures 3.8 and 3.9 show

that the pseudospectral method correctly reproduces the average mode amplitude for modes n = 1−8

for a typical ensemble. The relative phases of each mode are also correctly reproduced, as shown in

Figure 3.10. In particular, this ensemble reproduces the n = 1 mode amplitude well. Furthermore,

the width of the lines, which represent one standard deviation in the ensemble statistics, produce a
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reasonable representation of the error in the measurement. Discrepancies between the true amplitude

and the pseudospectral reproduction can usually be attributed to a peaked phase distributions for

the mode in question. These errors can be reduced by increasing the ensemble size and ensuring even

phase sampling. The discrepancy of error size in toroidal versus poloidal fields could be reduced by

enforcing tighter constraints on the ensemble (this ensemble was tightly constrained in total plasma

current, which likely reduces the spread in poloidal field).
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Figure 3.8: Pseudospectral reproduction of Bφ mode amplitudes: The pseudospectrum (red) of a
toroidal array coil and the average mode amplitude (green) for n = 1− 8.
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Figure 3.9: Pseudospectral reproduction of Bθ mode amplitudes: The pseudospectrum (red) of a
toroidal array coil and the average mode amplitude (blue) for n = 1− 8.
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Figure 3.10: Pseudospectrum phase plots: Phase reconstructions of (left) Bφ for n = 1 − 4 modes;
and (right) Bφ and Bθ n = 6− 8 modes. The pseudospectrum is calculated relative to Bφ for n < 5
and relative to Bθ then phase adjusted by π for n > 5 modes. These are evaluated in the left handed
coordinate system, so we expect Bφ = 0 for all modes, and Bθ = ±π for m = 1 modes.
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Chapter 4: Magnetic Field Measurements

We have used the magnetic probes discussed in Chapter 2, and the pseudospectral method developed

in Chapter 3 to make detailed measurements of fluctuations in the edge of MST. This produces

measured profiles of three components of magnetic field (with Br inferred from ∇·B = 0; see section

6.2.1). This work focuses primarily on the physics of the n = 1 mode, though the pseudospectral

method results in information about all modes which are detected by the toroidal array and analyzed.

For reference, I have included plots of the other measured modes (n ≤ 8) in Appendix B, though

only the n = 1 mode measurement has been subject to deep scrutiny.

The analysis methods thus far have been derived assuming a periodic cylinder rather than a

true toroidal geometry. In a torus, m is not a “good” quantum number. This means that, though a

quantity may still be decomposed into modes, X =
∑
xne

i(mθ+nφ), the Fourier coefficients, xn, are no

longer necessarily functions of r [1]. So, while a cylindrical model can calculate (m,n) modes, the same

mode in a torus shall here be identified only by its n number. Further, it is important to recognize

that the experimental method actually measures only the n spectrum of the probe measurements,

without measuring anything of the m spectrum. Nevertheless, as discussed in Chapter 3, derivatives

are calculated using the assumedm spectrum from a cylindrical approximation. The results of Section

4.1 may suggest a path to improve this technique in the future.

4.1 Theory comparison of the (0,1) mode

The n = 1 mode is known to be linearly stable for the experimentally realized MST equilibrium;

however, from a computation standpoint, it is much easier to calculate properties of a linearly unstable

mode. Though this mode is nonlinearly driven in the experiment, the comparison with linear theory

is justified by noting that slowly varying magnetic perturbations have robust global spatial structures.

Since the timescales of the sawtooth cycle are much longer than the Alfvenic timescale, the magnetic

components are described by the universal Newcomb-like system of quasi-static equations and are

relatively insensitive to the mechanism—linear or nonlinear—of the mode excitation [2].

It has been shown recently [3] that there is a wide class of equilibrium current profiles for which
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this mode is spontaneously unstable, some of which are very close (in terms of global parameters) to

the experimentally realized equilibrium. One of these profiles, which supports an unstable n = 1 mode

but has an equilibrium close to that of the experiment, was chosen for evaluation. The cylindrical

(m,n) = (0, 1) magnetic eigenmodes were calculated using a resistive MHD eigenvalue code [4]. Here,

we used the force-free condition j = λ(r)
µ0a

B, with

µ0aλ(r, d, w, α) = λ0
(e

rα−dα
w + 1)−1 − (e

1−dα
w + 1)−1

(e
−dα
w + 1)−1 − (e

1−dα
w + 1)−1

.

The equilibrium with λ0 = −3.35, α = 3, w = 0.08, d = 0.76 was examined in cylindrical geometry

with an aspect ratio of 3 (as the experiment). This profile has realistic values of the pinch and reversal

parameters (Θ = 1.8, F = −0.22) and a realistic position of the reversal surface (rs/a = 0.78). In

this specific case, the edge m = 0, n = 1 mode is spontaneously unstable, allowing the code to detect

its eigenmode structure.

This same profile was used to run a linear initial value single-fluid simulation using NIMROD

[5]. This was run with Lundquist number S = 104 in a toroidal geometry. Here, the n = 1 mode

was again observed to be unstable. By incrementally increasing the aspect ratio, convergence of this

eigenmode’s shape with the shape of the cylindrical (m,n) = (0, 1) eigenmode was observed. At all

aspect ratios, the magnetic structure of the toroidal calculation observed along the R = R0 vertical

axis closely matches the cylindrical result; this matching is shown for the Br compenent in Figure

4.1. Due to these observations, it is believed that these modes represent the same instability. The

horizontal eigenmode shows a significant Br contribution at r = 0, indicating that this mode has

a significant m 6= 0 content. Though quantitative investigation is still underway, this can likely be

accounted for by the coupling of the m = 0 mode to the (m,n) = (1, 0) effect of toroidicity.

In Figure 4.2, we compare the measured n = 1 mode with the two linear theoretical cal-

culations. The comparison illustrates substantial differences between the cylindrical and toroidal

computations (using θ = 15 degrees in the left-handed coordinate system, as the experiment), and

shows strong agreement between experimental profiles and toroidal computation. Comparison with

full nonlinear modeling of the RFP in toroidal geometry is yet to be accomplished.

Future work should prioritize verification of these toroidal eigenfunctions at different θ posi-



44

1.1 1.3 1.7 1. 9

0.6

0.4

0.2

0.2

0.4

R (m)

Z(m)

B R
( tor )

B R
( cyl )

-

-

-

(a) Horizontal

1.1 1.3 1.7 1.9

0.4

0.2

0.2

0.4

-

-

Z(m)

R (m)

B   Z

 ( cyl )

B ( tor )
Z

(b) Vertical

Figure 4.1: Eigenmodes calculated in cylindrical (blue) and toroidal (red) for the radial field, Br (ar-
bitrary units). The two cases match along the vertical axis (R = R0), while significant deformations
are observed in the horizontal field.
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Figure 4.2: Comparison of magnetic field

profiles. The magnetic field profiles plot-

ted are the dominant part (real or imag-

inary) of the magnetic field component

(Bt, Bp, or Br). Since the complimen-

tary part (imaginary or real) is small,

these can be interpreted as the mode’s

amplitude with relative sign information

included. The experiment’s radial mag-

netic field, Br, is inferred from ∇· ~B = 0.

Measurements of Br are consistent with

the inferred values but have much larger

error bars.
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tions. In particular, the theoretical profiles indicate that magnetic field measurements near θ = 90

degrees will agree with cylindrical calculations, while measurements at inboard poloidal angles will

have a substantially larger signal, and measurements at outboard poloidal angles will have a sub-

stantially smaller signal.

4.2 Summation of Modes

The pseudospectral method of Chapter 3 calculates each mode’s phase with respect to Bn(a), ef-

fectively removing information about the relative phase between two different n modes. In order to

sum the mode structures of modes n = 1− 4 and preserve their relative phases, we must recover this

information. We wish to add

Bn = bn cos(nφ− δn)

and

Bn′ = bn′ cos(n′φ− δn′).

Taking φ→ φ+ δn
n will move to the rotating reference frame of the nth mode. Then

Bn = bn cos(nφ)

and

Bn′ = bn′ cos(n′φ+
n′

n
δn − δn′) = bn′ cos(n′φ− δrel),

with

δrel ≡ δn′ −
n′

n
δn.

It is interesting to note that, for a rigidly rotating plasma—or, more specifically, a plasma which has

all modes locked relative to one another—this combination, δrel = δn′ − n′

n δn is a constant in time.

Considering a sawtooth ensemble, it is seen experimentally that δrel is a constant of the ensemble,

as can be seen from Figure 4.3.
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Figure 4.3: The phase distributions for a test

ensemble, δ1, δ2, and δrel ≡ δ2 − 2δ1. It is

seen that while δ1 and δ2 have random phases

(a flat histogram), the relative phase, δrel is

strongly peaked. Note that the two peaks are

separated by 2π and can therefore be thought

of as a single peak, indicating that this num-

ber is a constant of the ensemble.

So, choosing n = 1 and n′ = 2− 4, we can sum the individual modes using

Btotal = B1 +
4∑

n=2

Bn

= b1 cos(φ) +
4∑

n=2

bn cos
(
nφ− (δn −

n

1
δ1)
)
.

Of course, this is all applicable at the wall. To find the appropriate phase shift between the

wall measurement and the probe location, we must also include the pseudospectral phase shift:

Btotal =
4∑

n=1

bn cos (nφ− (δn − nδ1)− phase(xn)) .

This is the form used for Figure 4.4.

Calculation of an “average phase” must be done correctly to get a meaningful δrel. To avoid av-

eraging problems with this potentially periodic quantity, this is accomplished by finding the ensemble
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average of the sine and cosine of the phase:

< δrel >≡ tan−1

(
< sin(δrel) >
< cos(δrel) >

)
. (4.2.1)

4.3 Reconnection Structure

With measurement of the mode-resolved magnetic field in hand, the reconnection field structure can

be visualized by plotting contours of toroidal flux. Integration of the measured toroidal field from the

wall using the equilibrium field plus the n = 1 component results in the toroidal flux associated with

the n = 1 reconnection, and contours of this flux yield a visualization of the associated 2-dimensional

field lines, shown in Figure 4.4 (Upper). The addition of the mode contributions from n = 2, 3, 4

provide a more complete visualization of the magnetic field, seen in Figure 4.4 (Lower). In particular,

the addition of these modes does not destroy the overall shape of the n = 1 island, indicating that a

coherent m = 0 dominated structure likely exists in these plasmas. Though the mode content with

n > 4 is measured, it is not possible to include them in this picture since these modes have a different

m content and therefore a different direction of symmetry. Without the same symmetry direction, a

scalar flux cannot be used to describe field lines and a fully 3-D description is required.

The adjustment in the shape of the X-line due to n > 1 modes (including the unknown

adjustment for n > 4) would be a critical consideration for a Sweet-Parker like analysis of reconnection

rates. However, if we restrict ourselves to considering the contributions to Ohm’s law, the analysis

can be evaluated in a Fourier mode basis.

Simulation using DEBS [6] also shows a coherent structure in the edge when plotting contours of

toroidal flux. DEBS—a single fluid, 3D, nonlinear resistive MHD simulation in a periodic cylinder—

was run using Lundquist number S = 5 × 105, resistivity profile η = (1 + 9( ra )20)2, and Prandtl

number of about 100. The plasma equilibrium was initialized with a paramagnetic pinch equilibrium

profile and self-consistently evolved. An ideal wall and force free plasma conditions were used.

Figure 4.5 shows a similar “squashing” of the magnetic structure in the analogous plots. In

DEBS, the island width is about twice that of the experiment, which is a direct consequence of the

large mode amplitudes produced by DEBS. These large modes have typically been observed in DEBS
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Figure 4.4: Coherent structure in experiment: Contours of constant toroidal flux are shown including
the equilibrium and (Upper) n = 1 (Lower) n = 1− 4.
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Figure 4.5: Coherent structure in simulation (DEBS): Contours of constant toroidal flux are shown
including the equilibrium and (Upper) n = 1 (Lower) n = 1− 4.



50

but the discrepancy with experiment is not yet understood.

Though an obvious comparison to make here would be to recent studies of plasmoid-mediated

reconnection [7] [8], it is not possible to conclude from these measurements that the smaller “islands”

in the Figure are related to the existence of plasmoids in our experiment. The toroidal resolution

available for the experimental plots is limited to n ≤ 4 (the m = 0 modes), which results in these

artificial features. Using DEBS we can observe the simulated structure in more detail (since the m

content is identifiable) where these features are broken up into even smaller fragments, but the main

squashed O-point structure remains intact.
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Chapter 5: Dynamo

The equilibrium that exists in the RFP would not be possible without another prevalent feature of

plasma dynamics known as the dynamo [1]. A dynamo is a process by which magnetic field is self-

generated by the plasma through an inverse cascade of fluctuation quantities. Here, we will use the

word a little more loosely to mean any mean field quantity that arises from fluctuation interactions.

In particular, we will consider the Hall dynamo term of the equilibrium Ohm’s law,

< E > + < v0 ×B0 > + < ṽ × B̃ >=< ηJ > +
1
ne

(
< J0 ×B0 > +< J̃ × B̃ >

)
+ · · ·

where the Hall dynamo (the underlined term) is calculated as the average product of fluctuating

quantities (as discussed in Chapter 3.4). Ohm’s law will be discussed in more detail in Chapter 6.

5.1 Total Dynamo

Previously, the total Hall dynamo has been measured in MST. It can be shown that the total Hall

dynamo is given by

< J̃ × B̃ >θ=
1
µ0

(
∂

∂r
+

2
r

)
< (B̃θB̃r) > . (5.1.1)

This well known result is derived in Appendix C.3, and includes contributions from all modes in the

plasma. A previously published measurement of this term is presented in Figure 5.1.
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5.2 Modal dynamo

A new way to measure the Hall Dynamo uses the pseudospectral method to measure the individual

nonlinear dynamo contribution from each mode:

< J ×B > = <

( ∞∑
n=−∞

Jn

)
×

( ∞∑
n′=−∞

Bn′

)
>

since < Jn ×Bn′ >∝ δnn′

= <

∞∑
n=−∞

Jn ×Bn > .

This measurement is the same as that of Equation 5.1.1, but now it is mode-resolved: here it is

possible to identify the contribution of each n mode to the overall dynamo.

< J ×B >=< J0 ×B0 > + < J1 ×B1 > + < J2 ×B2 > +...

The Dynamo contribution by each term is

(Dynamo)n = < Xn cos(mθ + nφ+ δx)Yn cos(mθ + nφ+ δy) >

= < |xn||yn|
1
2
(

cos(δx − δy) + cos(2mθ + 2nφ+ δx + δy)
)
>

= |xn||yn|
1
2

cos(δx − δy)

where |xn| and |yn| are the amplitudes associated with the m,n fourier component of the signals, as

usual.

Recall the pseudospectrum was defined as

xn = |xn|ei(δxn−δbn)

and therefore,

Dynamo =
∑
n

|xn||yn|
1
2

cos(phase(xn)− phase(yn)). (5.2.1)
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5.3 Comparison

Comparison of Figures 5.1 and 5.2 shows the agreement between these two methods. Figure 5.1 shows

a published result using the total dynamo measurement of equation 5.1.1. Figure 5.2 is done using

the pseudospectral technique and calculating the contributions of individual modes, as in equation

5.2.1. It is noteworthy that these measurements were taken by different probes, in different plasmas,

and at different poloidal angles.

The decomposition into modes shows that the contribution from m = 0 modes is small, while

the m = 1 modes contribute nearly the entire poloidal Hall dynamo EMF. This result was previously

unexpected since these modes are not resonant in the edge. In contrast, DEBS simulation shows that

the v ×B dynamo in this region is dominated by m = 0 modes.

Note that these measurements were optimized for m=0 modes (in terms of phase histograms,

etc.), and are only analyzed up through n = 8, so this modal dynamo measurement may be incom-

plete. The main motivation for this comparison has been to benchmark these measurements with a

previous result, lending some confidence to the method.
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Figure 5.1: Total dynamo published by Kuritsyn et. al.[2] using the method of Equation 5.1.1. The
direction of the Hall dynamo, J × B, is negative in the right handed coordinate system (or upward
at the outboard edge).
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Figure 5.2: Hall dynamo calculated on a mode-by-mode basis using the pseudospectrum of Equation
3.5.1. This method clearly indicates that the dynamo terms are dominated by the n = 5− 8 modes
(which are assumed to be m = 1). This measurement is reported as −(J × B) in the right handed
coordinate system, to be consistent with Figure 5.1.
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Chapter 6: Ohm’s Law

Magnetic reconnection is governed by Faraday’s law of induction, ∂B/∂t = −∇ × E, which relates

the amount of reconnecting flux to the presence of an electric field. This, in turn, is governed by

Ohm’s law, which determines the value of the electric field. In resistive MHD, Ohm’s law takes the

form E = ηJ − v ×B, which allows reconnection on a resistive time scale.

A more sophisticated Ohm’s law can be derived from the electron and ion equations of motion.

Roughly speaking, addition of these two equations will produce the plasma momentum balance

equation, while subtraction results in the generalized Ohm’s law,

E + v ×B − ηJ − 1
ne
J ×B +

1
ne
∇ · P − memi

ρMe2

∂J

∂t
= 0,

where v is the ion velocity, n is the electron density, and P is the pressure tensor (see, for example,

reference [1] for details). Since this form is derived from treating ions and electrons independently,

it is referred to as the two-fluid generalized Ohm’s law.

In this Chapter, several terms of the generalized Ohm’s law are examined. In section 6.1, I

show that Ohm’s law can be treated on a mode-by-mode basis; section 6.2 explains how I calculate

terms using magnetic probe measurements; section 6.3 discusses nonlinear contributions; and section

6.4 discusses measurement results, which show that the Hall term is large, and therefore a two-fluid

description is needed to describe reconnection in MST plasmas.

Some notational difficulties arise in this Chapter, so I want to introduce a new variable to

represent magnetic field at the wall. In this Chapter, the nth magnetic mode at the wall will be

described by

Magnetic field at the wall = |bn| cos(mθ + nφ− δbn).
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6.1 Generalized Ohms Law for a Single Mode

The generalized Ohm’s law can be evaluated for a single mode. This single mode behavior can be

extracted using toroidal array data. We define the complex quantity

Bn ≡ Bn − iB†n = |bn|e−i(mθ+nφ−δb)

where |bn| and δbn are the amplitude and phase of the nth magnetic mode at the wall. We multiply

and integrate over θ and φ (i.e. a flux surface) to pick out a single mode.

∮
Bn(E + v ×B − ηJ + · · · )dA = 0

For notational convenience we will rewrite Ohm’s law as a sum of generic terms,

∮
Bn(R+ S + T + · · · )dA = 0

The first term is

∮
Bn(R)dA =

∮ (
|bn′ |e−i(m

′θ+n′φ−δb)
)(∑

n

1
2
|rn|ei(mθ+nφ−δr)

)
dA

=
1
2

∑
n

δ(n′, n)|bn′ ||rn|ei(δbn′−δrn )

=
1
2
|bn||rn|ei(δb−δr),

and other terms are treated similarly. Therefore

|bn|
2

(
|rn|e−i(δrn−δbn ) + |sn|e−i(δsn−δbn ) + |tn|e−i(δtn−δbn ) + · · ·

)
= 0. (6.1.1)
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This procedure picks out the nth mode of each term; thus, we can legitimately talk about satisfying

the Generalized Ohm’s Law for a single mode. Furthermore, we can divide by |bn|/2 to reduce this

to

rn + sn + tn + · · · = 0 (6.1.2)

in which each term is simply the pseudospectrum of the quantity of interest.
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6.2 Calculation of Ohm’s Law Terms

Using only measurements of the magnetic field, we can calculate many of the terms in Ohm’s Law.

We start with a single-mode measurement the magnetic field, ~Bm,n, and thus we know it’s derivatives:

1
r

∂B

∂θ
=

1
r

∂

∂θ
|bn|ei(mθ+nφ)e−iδbn =

im

r
B

∂B

∂z
=

1
R

∂

∂φ
|bn|ei(mθ+nφ)e−iδbn =

in

R
B

A radial profile of magnetic measurements is required to find radial derivatives (and radial integrals)

of B.

6.2.1 Br

Measurement of Br has proven to be difficult, due to its small amplitude and high susceptibility

to noise. However, we can use the more reliable measurements of Bt and Bp in conjunction with

∇ ·B = 0 to accurately calculate Br.

∇ · ~B =
1
r

∂

∂r
rBr +

1
r

∂Bθ
∂θ

+
1
R

∂Bφ
∂φ

= 0

Br = −1
r

∫
r

(
im

r
Bθ +

in

R
Bφ

)
dr

Since Br = 0 at the conducting wall,

Br(r) = −1
r

∫ r

a

r′
(
im

r′
Bθ +

in

R
Bφ

)
dr′
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6.2.2 η J

To calculate the resistive term, ηJ , we use the Spitzer resistivity,

η =
πe2m

1
2 ln Λ

(4πε0)2(kTe)
3
2

For the data presented, we have used η|| = 4.25×10−6Ωm, corresponding to Zeff = 3, ne = 1019m−3,

and Te ≈ 60eV as measured by a Langmuir probe near the reversal surface.

J is calculated directly from the curl of B.

∇×B = µ0J

J =



1
µ0

im
r Bφ −

1
µ0

in
RBθ

1
µ0

( inRBr −
∂
∂rBφ)

1
µ0

(
1
r
∂
∂r (rBθ)− im

r Br

)



r̂

θ̂

φ̂

6.2.3 ∂
∂t

J

The electron inertia term
memi

ρMe2

∂J

∂t
≈ 3.5× 10−12 ∂Jθ

∂t
,

has also been calculated, but is experimentally seen to be negligibly small compared to other Ohm’s

Law terms and will be neglected from now on.

6.2.4 J × B

The Hall term can now be calculated.

J ×B =

∣∣∣∣∣∣∣∣∣∣∣

r̂ θ̂ φ̂

Jr Jθ Jφ

Br Bθ Bφ

∣∣∣∣∣∣∣∣∣∣∣
=


JθBφ − JφBθ

JφBr − JrBφ

JrBθ − JθBr


r̂

θ̂

φ̂
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This is discussed further in section 6.3.

6.2.5 ∇·P

For the diagonal components of the pressure tensor, we are interested in pressure gradients in the

poloidal direction with m = 0,

(
− mi

2ρMe
∇P

)
θ

=
(m
R

)(
− mi

2ρMe
P

)
θ

= 0.

If off diagonal pressure tensor terms are important, then it is possible to have a significant contribution

to the parallel Ohm’s Law from pressure. Unfortunately, these effects are not currently possible to

measure.

6.2.6 E

To calculate the electric field, we must rely heavily upon the assumption thatm = m(n). In particular,

we assume that the n = 1 mode is purely m = 0. Then, any electrostatic field is

Eelectrostatic = ∇Φ =
im

r
Φ = 0

The remaining electromagnetic field can be calculated from Faraday’s Law.

−∂
~B

∂t
= ∇× ~E

−∂
~B

∂t
=


im
r Eφ −

in
REθ

in
REr −

∂
∂rEφ

1
r
∂
∂r (rEθ)− im

r Er


r̂

θ̂

φ̂

Since m = 0,

Eθ = − iR
n

∂Br
∂t

.
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There is a sticky point to consider here, though. We are using a measurement of B, and applying

a pseudospectrum correlation technique to extract the n = 1 mode of this measurement (designated

by {B}). This correlation does not commute with ∂/∂t, so we must decide whether to calculate E

using

E =
{
∂

∂t
B

}
or E =

∂

∂t
{B} .

In the lab frame, the n=1 Ohm’s Law is satisfied by the first definition; however, we believe that the

physics of reconnection is best described by the second, which represents Ohm’s Law in the frame of

the rotating n=1 island. Since we are interested in studying the physics of island formation, we have

chosen to use the second option,

E =
∂

∂t
{B} .

This choice brings with it the implication that the equilibrium vφ is approximately zero in our chosen

reference frame. This is important when considering the v ×B terms in Ohm’s law.

6.2.7 Error in Ohm’s Law

Section 3.9 gives the error, σ(xn), of the measured pseudospectral quantities. The error for the Ohm’s

Law quantities can be found through error propagation formulae:
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σ(Br) =
in

R
σ

(∫ r

a

Bφdr

)
=
in

R
σ

(
imax∑
i=1

Bφδr

)
=

in

R
√
imax

imax∑
i=1

σ (Bφ) δr

≈ in

R
√
imax

(imax)σ (Bφ)
(
a− r
imax

)
=

in√
imax

(
10
200

)
σ(Bφ)

σ(E) =
iR

n
σ

(
∂Br
∂t

)
=
iR

n
2σ (Br)

σ
(
~J
)

=



1
µ0

im
r σ(Bφ)− 1

µ0

in
R σ(Bθ)

1
µ0

( inR )σ(Br)− 1
µ0
σ( ∂∂rBφ)

1
µ0
σ( ∂∂rBθ)−

im
r σ(Br)


r̂

θ̂

φ̂

where σ(
∂

∂r
B) =

√
σ2(B)|r1 + σ2(B)|r2

∆r
≈
√

2
.1
σ(B)

σ(η) = σ(α0T
− 3

2 ) = α0
3eV

2
σ(T )−

5
2 where α0 = 5× 10−4Ωm(eV 3/2)

σ(J ×B) = (J ×B)
(
σ(J)
J

+
σ(B)
B

)

6.3 Nonlinear contributions to a mode

Directly measured quantities that appear in the single mode Ohm’s law can be calculated using the

pseudospectrum; however, we do not always start with a measurement of the term of interest. In

particular, multiplicative terms such as (J × B)n present an interesting case. When J and B are

separately measured, then multiplied for comparison in the single mode Ohm’s law, we must consider

all modes in the system to find the correct contribution.

The nth mode of the Hall term is itself formed from two terms, the linear and nonlinear

contributions. The linear contribution is formed from the product of an equilibrium term and a
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fluctuation term.

linear (J ×B)θ,n = (Jφ,0Br,n + Jφ,nBr,0)− (Jr,0Bφ,n + Jr,nBφ,0)

= Jφ,0Br,n − Jr,nBφ,0

In these measurements, the linear Hall term has been measured to be nonzero (5 V/m) but out-of-

phase with the n = 1 mode X-point.

The nonlinear contribution to the Hall term is formed from a 3-wave interaction. For example,

the (m,n) = (0, 1) mode can have a Hall term contribution formed from the “beat frequency” of the

(1,6) mode and the (1,7) mode.

J6 ×B7 = |J6| cos(θ + 6φ− δJ6)× |B7| cos(θ + 7φ− δB7)

=
1
2
|J6||B7|

(
cos(1φ+ δJ6 − δB7) + cos(2θ + 13φ− δB7 − δJ6)

)

The underlined term has the spatial form of a (0,1) mode, but only a portion of this wave couples to

the (0,1) mode of the plasma. This coupling is determined by a fraction, γ, called the bicoherence of

the three waves, so that

(
J(1,6) ×B(1,7)

)
(0,1)

=
γ

2
|J6||B7| cos(φ+ δJ6 − δB7) (6.3.1)

where γ (a complex number with magnitude less than unity) will be called the pseudospectral bico-

herence. To correctly account for the Hall contribution, we must sum the linear Hall terms as well

as all the possible nonlinear Hall terms.

6.3.1 Pseudospectral Bicoherence

In section 6.1, we calculated the pseudospectral Ohm’s Law, using

Bn ≡ |bn|e−i(mθ+nφ−δb)
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(
rn + sn + tn + · · ·

)
=

∮
Bn
(
R+ S + T + · · ·

)
dA

|bn|/2

We now explicitly apply this operation to the nonlinear Hall Term:

pseudo
(
J̃ × B̃

)
n

=
∮
Bn(J̃ × B̃)dA
|bn|/2

.

Specifically, we consider the contribution of J1,6 ×B1,7 to the (0, 1) mode, which we then generalize

to include all modes. We start with the single mode contributions of J and B. We assume that these

are known quantities, found by measuring J and B and calculating their individual pseudospectra.

J6 =
1
2
|j6|
(
ei(1θ+6φ−δj6 ) + e−i(1θ+6φ−δj6 )

)

B7 =
1
2
|b7|

(
ei(1θ+7φ−δb7 ) + e−i(1θ+7φ−δb7 )

)

J6 ×B7 =
|j6||b7|

4

(
ei(2θ+13φ−δj6−δb7 ) + ei(−1φ−δj6+δb7 ) + ei(1φ+δj6−δb7 ) + ei(−2θ−13φ+δj6+δb7 )

)

As before, averaging picks out the n = 1 contribution and removes the spatial dependence:

pseudo
(
J̃ × B̃

)
(0,1)

=
< |b1|e−i(1φ−δb1 )|j6||b7|

(
ei(2θ+13φ−δj6−δb7 ) + · · ·

)
>

2|b1|

=
< |b1||j6||b7|e−i(1φ−δb1 )

(
ei(−1φ−δj6+δb7 ) + ei(1φ+δj6−δb7 )

)
>

2|b1|

=
< |b1||j6||b7|ei(δb1+δj6−δb7 ) >

2|b1|

Next, we take advantage of certain ensemble constants: Recall that a basic assumption of
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the pseudospectral method is that any pseudospectral quantity is proportional to its corresponding

magnetic mode at the wall. Therefore, J6 is proportional to b6, and [|j6|]/[|b6|] is a constant of the

ensemble, which can be pulled out of the flux surface average; similarly [|b7|]/[|b7|] is an ensemble

constant. Finally, we recognize (as we did in the derivation of the pseudospectrum) that this expres-

sion is supposed to represent typical ensemble behavior, not be applied to every shot, so we replace

the quantity |b1| with its ensemble average, [|b1|].

pseudo
(
J̃ × B̃

)
(0,1)

=
< |b1||j6||b7|ei(δb1+δj6−δb7 ) >

2|b1|

=
[|j6|][|b7|]

[
|b1||b6||b7|

(
ei(δb1+δj6−δb7 )

)]
2[|b1|][|b6|][|b7|]

We can also pull out the pseudospectral phase (another ensemble constant) using the identity

ei(δb1+δj6−δb7 ) = ei(δj6−δb6 )e−i(δb7−δb7 )ei(δb1+δb6−δb7 ).

Then, we are left with

pseudo
(
J̃ × B̃

)
(0,1)

=
|j6||b7|ei(δj6−δb6 )e−i(δb7−δb7 )

[
|b1||b6||b7|

(
ei(δb1+δb6−δb7 )

)]
2[|b1|][|b6|][|b7|]

=
j∗6b7

[
|b1||b6||b7|

(
ei(δb1+δb6−δb7 )

)]
2[|b1|][|b6|][|b7|]

Comparing to the intuitively derived form of the nonlinear Hall term (equation 6.3.1), we find
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that the bicoherence is apparently given by

γ =

[
|b1||b6||b7|

(
ei(δb1+δb6−δb7 )

)]
[|b1|][|b6|][|b7|]

or

Re (γ) =

[
|b1||b6||b7| cos

(
δb1 + δb6 − δb7)

)]
[|b1|][|b6|][|b7|]

Im (γ) =

[
|b1||b6||b7| sin

(
δb1 + δb6 − δb7)

)]
[|b1|][|b6|][|b7|]

which is to be used in conjunction with

j∗6b7 = |j6|eiδj6 |b6|e−iδb7 = |j6||b7|
(
cos(δj6 − δb7) + i sin(δj6 − δb7)

)

This pseudospectral bicoherence has a similar form to bicoherence found in the literature [2], which

was previously used to calculate three wave interaction coupling coefficients in MST [3].

Finally, we remember to include contributions from all appropriate modes:

pseudo
(
J̃ × B̃

)
(0,1)

=
∑
p,q

(
j∗pbq + jpb

∗
q

)
γ(1, p, q)

where only modes which satisfy the selection criteria p− q = 1 are considered.

6.4 Measurement Results

Figures 6.1 and 6.2 show the values of the measured n = 1 Ohm’s law terms versus time and radius

respectively, using the sign convention E = ηJ+J×B+ (unmeasured terms). Without measurement
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of the remaining terms (v × B and the off-diagonal elements of ∇ · P ), experimental verification of

the balance of Ohm’s law is not available; however, we may still draw significant physics conclusions

from the available terms.

The measured electric field is bipolar in time. It can be observed in Figure 6.6 that island

growth and decay is associated with positive and negative electric field, respectively. This is consis-

tent with the interpretation that the poloidal electric field may be taken as a measurement of the

reconnection rate. The positive sign of the Hall term at this location therefore indicates that it is a

driver for the mode, while the negative sign of ηJ indicates this term is a mode damping term.

The measured ordering, J × B >> E > ηJ implies that two fluid effects are an important

contributor to the dynamics of this reconnection. The Hall term is dominated by the contributions

from the (1,6) and (1,7) coupling and the (1,7) and (1,8) coupling, indicating that it is the nonlinear

coupling of these unstable core modes which provides the nonlinear Hall drive.

The observation of nonlinear terms driving a bipolar electric field is also supported by nonlinear

simulation. In linear single-fluid tearing mode theory, the reconnection electric field is balanced by ηJ ;

but in single-fluid nonlinear calculation using DEBS [4], we have observed large, positive nonlinear

v × B contributions analogous to the nonlinear Hall term seen in the experiment. Since DEBS is a

single fluid code, the Hall term is not included in Ohm’s law. Nonetheless, we see some interesting

similarities between DEBS nonlinear sawtooth behavior and the measured results. Figure 6.3 shows

Ohm’s law versus time for DEBS, analogous to Figure 6.1 of the data. Figure 6.4 shows the magnetic

mode amplitude superimposed on the same Ohm’s law electric field. From these Figures, it can

be seen that the nonlinear v × B term dominates the mode growth phase of the sawtooth, while

ηJ–smaller in amplitude, but with a longer duration–is responsible for mode decay. Figure 6.5 shows

the radial profile of these Ohm’s law terms at a time of peak electric field, in analogy to the data

presented in Figure 6.2.

A parallel can be drawn between this mode-driving nonlinear Hall term and the Hall dynamo

term, which contributes to the plasma equilibrium. Indeed, we could describe the measured nonlinear

Hall term as the n = 1 component of the total Hall effect, while the Hall dynamo is the n =

0 component of the same effect. Perhaps it is not surprising, then, that the large mode-driving
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Hall contribution to the n = 1 Ohm’s Law is in the same radial region as the previously reported

Hall dynamo term. This parallel allows us to draw some intuition from the results of dynamo

studies in simulation, which help to justify the comparison of single fluid nonlinear simulation with

measurements of the two-fluid Hall term. Specifically, recent two fluid simulations at finite beta

have shown that as the ion skin depth is increased relative to the resistive layer, there is a smooth

transition from MHD dynamo drive to Hall dynamo drive near a resonant surface [5]. This is an

indication that the two fluid drive, 1
neJ × B − v × B = ve × B, may be thought of as a generalized

case of single fluid v×B drive; and that we might expect single-fluid and two-fluid simulated plasmas

to be qualitatively similar, even in a nonlinear regime.

Though these measurements alone have strong physics implications, it is much more satisfying

to measure, or at least get a sense for, the balance of Ohm’s law. In an effort to understand the final

balance, we have made a preliminary attempt to measure the v×B term using a spectroscopic probe.

Figure 6.7 shows the radial balance of Ohm’s law including the linear term vr0 × Bt1. This term

appears to be the dominant applicable term, though more data is required to verify this completely.

This data is consistent with a balanced Ohm’s law.
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6.5 Conclusions

These results highlight an underappreciated feature of magnetic reconnection: In linear reconnection,

both v × B and J × B are zero at the X-point, leaving only ηJ to balance the electric field, while

nonlinear reconnection can have significant contributions to Ohm’s law at the X-point from either

v×B as seen in DEBS or from J ×B as observed in the experiment. These nonlinear effects are also

intrinsically related to the problem of describing magnetic reconnection in three dimensions: In our

measurements, the nonlinear drive comes from core modes which have a different axis of symmetry

than the driven mode. Some nonlinear effects, such as the change in shape of the magnetic islands due

to overlapping m = 0 modes as discussed in Chapter 4, can be captured by a purely 2-D description,

but the measured driving term cannot. These Hall effects allow reconnection to be driven directly

by the beating of the n = 6, 7, 8 core modes, while in DEBS these modes are driven by a “cascade”

effect, where core modes beat together and contribute to edge modes, but the n = 1 drive is primarily

through other edge mode beating (n = 2, 3, 4) rather than directly from core mode beating.

The implications of these findings reinforce the need to include Hall physics in future modeling

of the RFP, as is the current trend in computational studies, since the subtle effects that Hall terms

can have on reconnection may prove to have a global impact on plasma dynamics .
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Figure 6.1: Ohm’s law terms versus time, evaluated for the n = 1 mode at a depth of 7cm from
the wall and the phase (toroidal angle) associated with the X-point of n = 1 reconnection. The sign
convention here is E = ηJ + J ×B+ unmeasured terms.
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Figure 6.2: Ohm’s law terms for the n = 1 mode as a function of radius, evaluated at t = −0.075 (the
approximate time of peak electric field) and the phase (toroidal angle) associated with the X-point
of n = 1 reconnection. The sign convention here is E = ηJ + J ×B+ unmeasured terms.
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Figure 6.6: Snapshots in time of island formation and decay. The top trace of each panel is the n = 1
electric field evaluated at the X-point versus time (the same as in Figure 6.1). The lower Figure of
each panel is the toroidal flux associated with n = 1 (as in Figure 4.4).
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“Partial v ×B” +ηJ + J ×B+ unmeasured terms.
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Chapter 7: Summary

7.1

In summary, I have developed probes and a spatial Fourier mode correlation method to measure

the magnetic field associated with reconnection near the reversal surface of the Madison Symmetric

Torus. We discovered that nonlinear processes dominate these reconnection events, and that two-fluid

physics is important.

7.2 Magnetic Probes

Insertable probes were designed, characterized, and used to measure poloidal and toroidal magnetic

fields. The radial component was inferred from ∇ · B = 0. A simple probe-perturbation model was

developed to understand why the measured n = 1 radial field did not behave as expected. The results

of this investigation have lead to the development of a new probe which can use the discovered effect

to measure local plasma current density.

7.3 Pseudospectrum

I have developed a new correlation method, and I have attempted to describe it using a uniform

presentation, clearly identify the intrinsic assumptions, and make contact with previous methods.

This pseudospectral analysis uses only spatial domain mode decomposition and treats each time point

(relative to the sawtooth crash) independently. It has been tested in detail, and its performance has

been characterized.

The method presented has two major shortcomings: the helicity of the mode must be known a-

priori, and the method can only be applied to data which naturally has a random phase distribution.

To address the first shortcoming, it is possible to directly measure the mode helicity using a poloidal

and toroidal array in combination; or to use a double Fourier method, in which signals are decomposed

in both k-space and frequency to distinguish counter-propagating modes. To address the second
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shortcoming, it is possible to develop a weighted average in which sawteeth that contain modes with

underrepresented phase values are given more weight; though for simple measurements it is often

easier to simply take more data until the phase histogram naturally fills out.

7.4 Magnetic Field Measurements

The magnetic field, measured using probes and pseudospectral analysis, has been compared with

linear and nonlinear theory. Comparison with linear theory in both cylindrical and toroidal geome-

tries highlights the stronger than previously expected effects of toroidicity. The next steps on the

experimental front lie in taking similar measurements at new θ positions to further verify the toroidal

eigenmode calculations.

In both experiment and nonlinear simulation (DEBS), m=0 modes align in an interesting way

to produce a coherent structure on the reversal surface. This result suggests interesting reconnection

physics may be present, such as current sheet elongation or filamentation and plasmoid development.

The details of the separatrix at high n value are not accessible through current experimental methods;

however, since there is good agreement with simulation for low n structures, the detailed nature of

this reconnection should be investigated further using RFP simulation.

7.5 Dynamo

The Hall dynamo was measured mode-by-mode using the pseudospectrum, which reproduces an old

result in a new way. Similarity between the new and old measurements gives a measure of confidence

in the applicability of pseudospectral methods. Additionally, it can be seen from the new method that

the Hall dynamo is dominated by contributions from core modes. This unanticipated result provides

yet another mechanism through which core and edge physics can be coupled and deserves further

attention and investigation from the RFP community. This result is consistent with an emerging

picture that, in general, J × B effects behave similarly to v × B effects, but might be more radially

broad, allowing a stronger interaction between radially separated modes.
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7.6 Ohm’s Law

Ohm’s law can be evaluated for a single mode, but the analysis must include contributions from other

modes through three-wave interactions. Several of the terms of Ohm’s law are evaluated from the

magnetic field measurements and supplemental probe measurements. It is seen that the nonlinear

Hall term is a large contributor to the balance of Ohm’s Law and is a mode-driving term. Further,

this term comes primarily from the n = 6− 8 modes, which are resonant in the core, indicating that

this is a mechanism through which core modes and edge modes are coupled.

These findings are partially supported by simulation through analogous behavior of the saw-

tooth modeled in DEBS, though some interesting discrepancies remain. In particular, the n = 1 mode

in DEBS is driven primarily by m = 0 activity, while the Hall term measured in the experiment pro-

vides a mechanism for direct m = 1 drive. A more complete understanding may be accessible in the

future by comparison with nonlinear, two-fluid, toroidal simulation.

7.7 Remarks

It is my hope that the results of this thesis will inspire new ideas and influence future research on

MST. Pseudospectral analysis is a powerful tool, with great untapped potential. Until now, it has

been difficult to use without a deep understanding and significant “re-invention of the wheel” with

each new analysis. I hope that my work will make this tool easier to access for those wishing to study

fluctuations. Reconnection in MST is a rich topic, with much left to discover. In the reconnection

community there is still a disconnect between accessible reconnection experiments, which are typi-

cally single reconnection sites constrained to simple geometries, and the astrophysical reconnection

processes, which are free to develop multiple reconnection sites in very complicated geometries. In

MST, we have a self-organized plasma, undergoing nature-like nonlinear reconnection in a compli-

cated geometry, but which is also very accessible to measurement and extremely repeatable. This is

a rare opportunity to bridge the vast gap between the terrestrial and astrophysical understandings

of plasma physics.
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Appendix A: User’s Guide to Pseudospectra

The pseudospectrum is a quantity constructed to reflect the physical fluctuations associated with a

measurement. This Appendix is intended help the user calculate the pseudospectrum of his or her

signal with relative ease.

Coordinate System

The toroidal array information is recorded using the Left-Handed Coordinate System (see 1.4) . It

is easiest to calculate the pseudospectrum in this coordinate system, then transform to the Right-

Handed Coordinate System before making any physics calculations. If you are measuring a vector

quantity, make sure your signal is recorded in the LHCS.

You will also need to calculate the quantity

∆n = nφprobe +m (θprobe − 241) .

for each mode of interest, using a negative value for m and a positive value for n. The values φprobe

and θprobe represent the angles associated with whatever port hole you are using for the measurement.

Sawtooth Averaging

You will need to input several quantities into the sawtooth averaging software to calculate the pseu-

dospectrum. These are

• Your signal, X.

• The mode structure, calculated from toroidal array information, and evaluated at your position:

Bn ≡ |bn| cos(∆n − δbn)

B†n ≡ |bn| sin(∆n − δbn)
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Typically, Bt is used for m = 0 modes and Bp is used for m = 1 modes. It is possible to

separate a given n mode into it’s m content by evaluating both: the m = 1 content is found

from correlation with Bp, while the m = 0 content is found by subtracting the m = 1 content

from the correlation with Bt.

• The mode amplitudes, |bn|. If you want to save computation time, you can leave these out and

calculate them afterward from

[|bn|2] =
√

2[(bn cos(∆n − δb))2] =
√

2[(bn sin(∆n − δb))2].

Alternatively, you can calculate all three of these terms and use this relation as a quick check

of the validity of the random phase approximation.

• If you intend to add multiple modes together, you will also need the relative phases, constructed

here to use n = 1 as the reference:

δrel ≡ δn′ − n
′δ1

Remember that it is never useful to find the average of a phase (it is always zero, if the random

phase approximation is valid), but rather you should average cos δrel and sin δrel then after

averaging take

average δrel = tan−1(− < sin δrel >,< cos δrel >)

Pseudospectra

Calculate the pseudospectrum, xn, from

Re(xn) =
2[X(point)|bn| cos(∆n − δbn)]

[|bn|]

Im(xn) =
−2[X(point)|bn| sin(∆n − δbn)]

[|bn|]

Remember that you can extract [AB] from dxdxav[∗, a, b] with the indices (a and b) in increasing

order. If you plan to compare multiple modes, convert everything to the same phase basis: Any
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modes calculated by correlating with Bp should be phase shifted by π to agree with the basis of Bt.

Finally, transform your measurement into the Right-Handed Coordinate System before you

make any calculations. This means multiplying all poloidal components of vector quantities by −1.

If you already converted to the same phase basis, you don’t need to do any further phase corrections.

In the RHCS, derivatives and physical quantities are evaluated with both m and n positive.

Mode Summation

To get a physical quantity as a function of poloidal and toroidal angle, θ and φ, you can take a sum

of modes using

X(φ) =< X > +
N∑
n=1

|xn| cos
(
nφ+mθ − δrel,n − phase(xn)

)
.

Here, δrel,1 = 0 since n = 1 was used as the reference mode, and < X > is the equilibrium (n = 0)

component of the measured quantity. This physical quantity in the plasma is referenced the modes

such that φ = 0 is defined to be the (moving) location at which Bt is a maximum for the reference

mode. In other words, this picture is in the moving reference frame of the n = 1 mode, however

the other modes are free to rotate with respect to n = 1. Experimentally, however, they are often

phase-locked to one another such that this reference frame is stationary to all modes.
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Comparison with Other Formulations

The great difficulty of pseudospectral analysis comes from developing a uniform presentation in which

all sign, amplitude, phase, and complex notation conventions are clearly defined and self-consistent.

Nearly every equation in this Chapter can be and has been written with a different convention–I

have tried to present a clear and uniform convention, which is also consistent with historical MST

conventions, though this is not completely possible since historical MST conventions are not self-

consistent. In this section, I will try to make contact with some of the common ideas and notation

used in the past.

Correlation analysis has a long tradition in MST, and some useful computational tools have

been developed. The method presented so far is different from the “standard” method, which uses a

software package named st_corr. The fundamental difference is that here we have used the toroidal

array and a 90-degree phase shift of each mode in k-space to calculate the fictitious B† quantity

introduced on page 23, while the st_corr method uses a 90-degree phase shift of each frequency in a

time-based Fourier transform.

In this st_corr method, correlation is done at different frequencies, so instead of directly

choosing the sign of n, the frequency of each signal is assigned to be positive. In this case, we assume

the wave is of the form

perturbation ∼ ei(~k·~r−ωt).

The sign of ω is chosen to be positive, and the sign of n is then determined by the direction of wave

propagation. The wave vector is given by the traditional expression,

~k =
(m
r
θ̂ +

n

R
φ̂
)
.

Overall, the difference in these two formulations is almost trivial, but can lead to great confusion

if it isn’t understood. Both methods still have the critical shortcoming that they rely on a priori

knowledge of the helicity of the mode. In order to observe the helicity of the mode directly, we must

either use a combination of poloidal and toroidal arrays (whereas these methods use only the toroidal

array), or we must use a more involved mathematical analysis in which the spatial and temporal
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spectra are combined into a complex double Fourier transform analysis. Both of these analyses have

been performed on MST, and the helicity has been verified to be that which is expected, at least in

the case of standard plasmas. Highly reversed plasmas are expected to produce edge resonant m = 1

modes with helicity opposite to the core modes, and these have been detected in OFCD plasmas

using the complex double Fourier analysis.

There are a number of situations in which one might expect the space-domain pseudospectrum

to perform better: This method truly processes each time point (relative to the sawtooth crash)

independently, while st_corr uses the time behavior in the FFT. Therefore, this method can be used

to analyze a non-rotating mode, while st_corr requires mode rotation, and may even formally require

that mode rotation be faster than the timescale of the sawtooth dynamics. Nevertheless, numerical

comparisons of the two methods give very similar results in terms of outputs and reliability.

A check of the methods can be found by calculating the spectrum using a single toroidal array

coil (i.e. using one coil of the toroidal array as the “probe”) as we did in section 3.10. It is seen in

Figure A.1 that three calculation methods correctly reproduce the average mode amplitude for the

n = 1 mode for a large ensemble of about 1000 similar sawteeth. Each of these methods employs at

least part of the st_corr software. This software package identifies the time at which each sawtooth

event peaks, labels this as t = 0, and performs ensemble averages at each relative time. Three

outputs of note are 1) dxav[t, i], the average of the ith signal as a function of time, 2) dxdxav[t, i, k],

the average of signal i times signal k as a function of time, and 3) corr[t, i, k], the correlation of signals

i, and k.

The three calculations considered are

1) Average mode amplitude, < n1_mode_amp >

2) Pseudospectral mode amplitude, amp(x1)

3) a construction taken from the st_corr outputs,

√
2
(√

dxdxav[*,coil,coil]
)
corr[*, n1_cos, coil]
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The first calculation–considered to be the “correct” mode amplitude–is simply the ensemble average

of the mode amplitude recorded by the toroidal array. The second is calculated according to Equation

3.5.1. The third method above is the “traditional” method which uses the outputs of the st_corr

software.

We can derive the proper construction for method 3 by examining the definition of “correlation.”

According to previous work on MST[1][2][3][4], correlation is given by

γ ≡

(
< X̃Ỹ >2 + < X̃Ỹ † >2

)1/2∥∥∥X̃∥∥∥ ∥∥∥Ỹ ∥∥∥ .

For pseudospectral analysis, we are meant to take the correlation of the signal and the mode:

γ(X̃, Ỹ = Bn,cos). Take caution that some authors call this unitless quantity the “pseudospectrum,”

while this thesis uses a presentation in which the pseudospectrum has the same units as X. The

amplitude of the mode is given by the construction

√
2γ
∥∥∥X̃∥∥∥ =

2
(
< X̃Ỹ >2 + < X̃Ỹ † >2

)1/2

|Ỹ |

Here, a factor of
√

2 appears because we switched from the root-mean-square,
∥∥∥Ỹ ∥∥∥, to the amplitude,

|Ỹ |, on the right hand side.

It is important to note that the st_corr method has a number of issues that I have not

resolved. In particular, the phase reconstruction and sometimes even the amplitude reconstruction

are not acceptable for certain ensembles. In principle, it should not matter if you use the cosine or

the sine part of the toroidal array signal for correlation because these two terms are supposed to be

perfectly correlated. In practice it does matter which you use, and the correct choice seems to depend

on the toroidal angle of your measurement. If this is not carefully accounted for, st_corr produces a

poor reconstruction for certain toroidal angles! (Further, st_corr can occasionally produce a correct

reconstruction before correcting for the probe’s toroidal location by including ∆n, but produce a

poor reconstruction when this simple correction is added.) This issue may be resolved by using a

combination of sine and cosine terms to find a reconstruction, or may have been resolved by others in
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Figure A.1: Comparison of the three methods for n = 1. For this ensemble, the three amplitudes
match relatively well and the phase is close to zero for both the pseudospectrum and st_corr methods.
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a different way. This thesis does not use this method to calculate the pseudospectrum, but I mention

these issues here for future users who might wish to try.
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Appendix B: Comprehensive set of Magnetic Profiles

Figure B.1: Toroidal Field, Bφ
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Figure B.2: Poloidal Field, Bθ
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Figure B.3: Radial Field, Br, for m=0 modes, Bφ, calculated from ∇ ·B = 0.
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Figure B.4: Radial Field, Br, for m=1 modes, Bφ, calculated from ∇ ·B = 0.



94

Appendix C: Supplemental Derivations

C.1 Measuring the effective area of a magnetic coil

The voltage on a coil of wire subjected to a magnetic field is given by Faraday’s Law,

V = −dΦ
dt
,

where Φ = ~B · ~A is the magnetic flux through the coil. To measure the effective area, A, of the

magnetic probe coil, it is placed inside a Helmholtz coil which is driven sinusoidally at a particular

frequency.

B(t) = B0 sin(ωt)

We measure the current driven through the Helmholtz coil, I0, by measuring the voltage drop across

a resistor in series with the Helmholtz coil windings. The Helmholtz coil has a known characteristic

constant which relates this current to the magnetic field produced,

k =
B0

I0
,

which can be calculated from the geometry of the Helmholtz coil, or measured directly with a Hall

probe. The Helmholtz coil used for calibration has the following characteristics:

k 0.56 G / A
R 100 Ω

positive Vr B is in +ẑ direction

To ensure that the Br pickup coil has the correct polarity, it is set up to measure positive field, and

the voltage waveforms are verified to have the property that Vc is the negative derivative of Vr.

By measuring the two voltages involved, Vr across the resistor and Vc across the pickup coil,

we can calculate the effective area as follows.
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B(t) = B0 sin(ωt)

= kI sin(ωt)

= k

(
Vr
R

)
sin(ωt)

Vc = −dΦ
dt

= −AḂ

= −AωB0 cos(ωt)

= −Aωk
(
Vr
R

)
cos(ωt)

Therefore, we plot
Vc
Vr

=
Ak

R
ω =

Ak

R
2πf

as a function of frequency. The effective area is given by its slope, m:

Vc
Vr

= mf

A =
mR

2πk
.
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C.2 Calibrating a magnetic probe triplet

To calibrate the relative alignments of a magnetic triplet, we use the magnetic field of MST with the

probe in place, and take three specific calibration shots:

• Bt only shot

• Bt only shot with probe rotated 90 degrees

• Plasma shot

In this section, we use the following notation:

Bφ = True toroidal B

Bθ = True poloidal B

Bt0 = Bt coil measurement in Bt only shot

Bp0 = Bp coil measurement in Bt only shot

Bt90 = Bt coil measurement in Bt only shot with 90 degree rotation

Bp90 = Bp coil measurement in Bt only shot with 90 degree rotation

Bt_plasma = Bt coil measurement in plasma shot

Bp_plasma = Bp coil measurement in plasma shot

We assume that the coils start with the following polarity. These assumptions must be verified

before the alignment matrix is calculated.

Bt0 positive
Bp90 negative

Bp_plasma negative

If the data is not of the correct polarity for Bt0 or Bp_plasma, we multiply it by -1 to put it in the

correct (right-handed) coordinate system. This calibration is derived for the probe rotation (±90)

which results in a negative Bp90, but an equivalent derivation could be done using the opposite probe

rotation.



97

The coordinate system is defined according to the following diagram.

Theta

Phi

Bt0, Beta
Bp0, Alpha
Rotated probe

We can make the following statements based on geometry:

Bt0 = sin(β)Bφ

Bt90 = sin(β − 90)Bφ = − cos(β)Bφ

Bp0 = sin(α)Bφ

Bp90 = sin(α− 90)Bφ = − cos(α)Bφ

Next, we find α and β. Since cos−1 has principle values between 0 and π, we’ll use this to find

β. On the other hand, sin−1 has principle values between −π/2 and π/2, so we’ll use that for α.

β = cos−1

(
−Bt90
Bφ

)
α = sin−1

(
Bp0
Bφ

)
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Now that we have the angles, we calculate the appropriate corrections. During a real shot,

Bt_plasma = Bφ sinβ +Bθ cosβ

Bp_plasma = Bφ sinα+Bθ cosα

Or, in matrix form: (
Bt_plasma
Bp_plasma

)
=
(

sinβ cosβ
sinα cosα

)(
Bφ
Bθ

)
Simply invert the matrix, to find

(
Bφ
Bθ

)
=
(
A11 A12

A21 A22

)(
Bt_plasma
Bp_plasma

)
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C.3 Total Dynamo

In the particular case of the poloidal component of the hall term, (J × B)θ, we can calculate the

total dynamo. A short derivation follows:

µ0 < J̃ × B̃ >θ = < (∇× B̃)× B̃ >θ

We drop the ∼ for convenience.

µ0 < J ×B >θ = < (∇×B)×B >θ

= − < (∇×B)r ×Bφ > + < (∇×B)φ ×Br >

= − < (
∂

∂θ
Bφ −

∂

∂φ
Bθ)Bφ > + <

1
r

∂

∂r
(rBθ −−

∂

∂θ
Br)Br >

Notice that any quantity which is a complete derivative of θ or φ will flux surface average to zero.

There are two occurrences of such a quantity,

< (
∂

∂θ
Br)Br >=<

1
2
∂

∂θ
B2
r >= 0 and < (

∂

∂θ
Bφ)Bφ >=<

1
2
∂

∂θ
B2
φ >= 0

Therefore,

µ0 < J ×B >θ = < (
∂

∂φ
Bθ)Bφ > + <

1
r

∂

∂r
(rBθ)Br >

Notice the following:

< Bθ(∇ •B) > = < Bθ
1
r

∂

∂r
(rBr) > + < Bθ

∂

∂θ

Bθ
r
> + < Bθ

∂

∂φ

Bφ
R

>

= < Bθ
1
r

∂

∂r
(rBr) > + < Bθ

∂

∂φ

Bφ
R

>

∴ 0 = < Bθ
1
r
Br > + < Bθ

∂

∂r
(Br) > + < Bθ

∂

∂φ

Bφ
R

>
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< Bθ(∇ •B) > +µ0 < J ×B >θ = < (
∂

∂φ
Bθ)Bφ > + <

1
r

∂

∂r
(rBθ)Br >

+ < Bθ
1
r
Br > + < Bθ

∂

∂r
(Br) > + < Bθ

∂

∂φ

Bφ
R

>

The first and last terms combine to form < 1
R

∂
∂φ (BφBθ) >= 0.

< Bθ(∇ •B) > +µ0 < J ×B >θ = <
1
r

∂

∂r
(rBθ)Br > + < Bθ

1
r
Br > + < Bθ

∂

∂r
(Br) >

= <
1
r

(Bθ)Br > + <
∂

∂r
(Bθ)Br > + < Bθ

1
r
Br > + < Bθ

∂

∂r
(Br) >

= <
2
r
BθBr > + <

∂

∂r
(BθBr) >

= (
2
r

+
∂

∂r
) < (BθBr) >

∴ < J̃ × B̃ >θ=
1
µ0

(
∂

∂r
+

2
r

)
< (B̃θB̃r) > (C.3.1)

This method was used to calculate the Hall dynamo term in Figure 5.1.
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C.4 Field Lines from Toroidal Flux

For the case of two dimensional reconnection in the r, φ plane, we can visualize the magnetic fieldlines

through a plot of the toroidal flux. To see why, consider

~B = ∇× ~A =

∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z
Ax Ay Az

∣∣∣∣∣∣
= x̂ (∂yAz − ∂zAy)− ŷ (∂xAz − ∂zAx) + ẑ (∂xAy − ∂yAx)

We consider a system with symmetry in the y direction, ∂y = 0. If we can find a function ψ

such that ~B · ∇ψ = 0, then contours of constant ψ will be everywhere parallel to ~B, and thus will be

a visualization of the magnetic field lines.

~B · ∇ψ = −∂zAy∂xψ + 0 + ∂xAy∂zψ = 0

This is satisfied by ψ = CAy where C is any constant.

Near the edge, toroidal flux is given by

Φ =
∫
Bφrdθdr ≈ 2πa

∫
Bφdr,

which has the properties

∂

∂r
Φ = (2πa)Bφ

∂

∂φ
Φ = (2πa)

in

R

∫
Bφdr = −(2πa)Br

Where the last equality comes from

∇ · ~B =
∂

∂r
Br +

in

R

∫
Bφ = 0
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∴ Br = −
∫
in

R
Bφdr

Choosing ψ = 1
2πaΦ,

~B · ∇ψ = Bφ(−Br) +Br(Bφ) = 0

Therefore, contours of toroidal flux represent magnetic field lines.

Equating toroidal flux to Aθ, the relationship between the electric field and reconnection can

be expressed in these terms as well.

∇× ~E = − ∂

∂t
~B

= − ∂

∂t

(
∇× ~A

)
= ∇×

(
− ∂

∂t
~A

)
∴ ~E = − ∂

∂t
~A+∇ΦES

where ΦES is any arbitrary function. If we choose to evaluate ~A in the Coulomb gauge, ΦES can be

identified as the electrostatic potential. (This choice means ∇ · ~A = 0, which puts constraints on the

in-plane components of ~A, but these components are unused in this presentation anyway.)

Figure C.1: Cartoon of fieldlines breaking with new local minimum of Aθ

Since fieldlines can be expressed as contours of Aθ, there must exist a new topology when-
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ever Aθ has a new local minimum. Therefore, in the absence of an electrostatic field (ΦES = 0)

reconnection occurs wherever Eθ has an instantaneous local maximum (see Figure C.1).
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C.5 Supplemental Dynamo information

Examination of the m = 1 radial profiles in Figure C.2 hints at the reason for the radial shape of the

Hall dynamo contribution. The measured dynamo can be traced back to the details of the Bθ profiles

of the modes which dominate this measurement, n = 7 and n = 8. (Curiously, n = 6 is smaller than

these two.) The dynamo is comprised of two terms in opposing directions. Breaking these down into

the terms which dominate the spatial structure,

Dynamo = JtBr − JrBt

∼ iJt − Jr (Br and Bt are relatively flat)

∼ i
∂

∂r
Bp −

in

R
Bp (Br is small)

∼ ∂

∂r
Bp −Bp (phase doesn’t matter)

Looking at the Bp profiles in Figure C.2, it can be seen that the derivative peaks around r/a=.85, but

always has the same sign. Adding this slightly peaked profile to an opposing term that is increasing

in the core gives a pronounced peak in the total hall dynamo term, right on the reversal surface.

Figure C.2: Poloidal Field, Bθ
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