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Long-lived coherent structures in small-scale plasma turbulence are considered
in the context of spatial intermittency. Connections are made with observations
of anomalous pulsar signal scintillation in the interstellar medium (ISM).

Anomalous scaling of pulsar signal widths with dispersion measure in-
dicate that integrated electron density differences do not follow a Gaussian
distribution as expected. If the density difference follows a Lévy distribution
then the pulsar signal scaling can be brought into a consistent theoretical frame-
work. The scales at which these non-Gaussian density fluctuations are inferred
to exist are near the ion sound gyroradius ρs.

We propose a kinetic Alfvén wave (KAW) turbulence model that is known to
produce intermittent structures at scales near 10ρs and smaller. It is shown via
two-timescale analysis that localized structures are able to persist for timescales
long in comparison to typical turbulence timescales. Assuming equipartition
between magnetic and internal energies, it is shown that the probability den-
sity function for density gradients around a coherent structure admits a Lévy
distribution.

Results of numerical simulations of the KAW system are presented. A struc-
ture segmentation method based on ψ field topology is described. The method
allows the separation of localized flux tubes from the rest of the turbulent do-
main. The flux tubes selected by the method have an excess of energy density;
the localizations of the current, magnetic, and electron density fields are shown
to correspond to expectations; and the structure cores are quiescent for many
eddy turnover times. These results confirm key predictions of the two-timescale
analysis.

The kurtosis and PDFs of simulation ensembles for density, density gradi-
ent, current, and magnetic fields are presented. The density gradient field is
shown to be strongly non-Gaussian, even though the density field is consis-
tently Gaussian. Specific values of damping parameters suppress filamentary
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structures and favor elongated density gradient sheets. Simulation ensembles
in the sheet regime yield statistics similar to the filamentary regime: both have
non-Gaussian density gradients. This suggests that non-Gaussian statistics are
robust to variation in damping parameters, and lends credence to the claim that
small-scale electron density gradients in the ISM have non-Gaussian statistics.
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abstract

Long-lived coherent structures in small-scale plasma turbulence are considered
in the context of spatial intermittency. Connections are made with observations
of anomalous pulsar signal scintillation in the interstellar medium (ISM).

Anomalous scaling of pulsar signal widths with dispersion measure in-
dicate that integrated electron density differences do not follow a Gaussian
distribution as expected. If the density difference follows a Lévy distribution
then the pulsar signal scaling can be brought into a consistent theoretical frame-
work. The scales at which these non-Gaussian density fluctuations are inferred
to exist are near the ion sound gyroradius ρs.

We propose a kinetic Alfvén wave (KAW) turbulence model that is known to
produce intermittent structures at scales near 10ρs and smaller. It is shown via
two-timescale analysis that localized structures are able to persist for timescales
long in comparison to typical turbulence timescales. Assuming equipartition
between magnetic and internal energies, it is shown that the probability den-
sity function for density gradients around a coherent structure admits a Lévy
distribution.

Results of numerical simulations of the KAW system are presented. A struc-
ture segmentation method based on ψ field topology is described. The method
allows the separation of localized flux tubes from the rest of the turbulent do-
main. The flux tubes selected by the method have an excess of energy density;
the localizations of the current, magnetic, and electron density fields are shown
to correspond to expectations; and the structure cores are quiescent for many
eddy turnover times. These results confirm key predictions of the two-timescale
analysis.

The kurtosis and PDFs of simulation ensembles for density, density gradi-
ent, current, and magnetic fields are presented. The density gradient field is
shown to be strongly non-Gaussian, even though the density field is consis-
tently Gaussian. Specific values of damping parameters suppress filamentary
structures and favor elongated density gradient sheets. Simulation ensembles
in the sheet regime yield statistics similar to the filamentary regime: both have
non-Gaussian density gradients. This suggests that non-Gaussian statistics are
robust to variation in damping parameters, and lends credence to the claim that
small-scale electron density gradients in the ISM have non-Gaussian statistics.
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1 introduction and motivation

Spatial intermittency in turbulence is widely observed in nature, in experiment,

and in numerical simulations. To cite just a few examples: Jupiter’s great red

spot (Marcus, 1988); persistent structures in plane flow; vorticity enhancement

via vortex-tube stretching, as in tornadoes (Laval et al., 2001); intermittent

“blobs” in the Large Plasma Device (Carter, 2006); intermittency in the MST

reversed field pinch (Marrelli et al., 2005); and long-lived coherent structures

observed in many numerical studies (McWilliams, 1984; Kinney et al., 1995;

Waleffe, 1998, 2003).

The Kolmogorov 1941 theory of universal scaling in hydrodynamic turbu-

lence (K41) (Kolmogorov, 1941) does not account for spatial intermittency. K41

implicitly assumes that the energy transfer rate ε is constant everywhere in

space, and assumes that the energy-containing structures are space-filling at

all scales. Observations indicate intermittent structures exist predominantly

at small scales relative to an energy injection scale, and are not space-filling.

Models have been proposed to account for intermittency in the K41 frame-

work. One such model is the β model (Frisch et al., 1978) which argues for a

fractal dimension to account for the non-space filling nature of Navier-Stokes

turbulence. The β model is incomplete, however, in that it provides no means

to calculate the fractal dimension of intermittent turbulence. Later models

(She and Leveque, 1994) provided a complete one-parameter model based on

structure functions; this model has justification in experiment.

Models of intermittency are generally phenomenological and statistical

in nature. They do not describe intermittent structures locally; neither do

they account for intermittent structure persistence in the midst of a turbulent

background. By not describing detailed physics of intermittent structures,

phenomenological theories do not completely characterize all aspects of inter-
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Figure 1.1: Representative pulsar signal intensity vs. time.

mittent structures in turbulence. The present work aims to take initial steps

to describe intermittent structures locally in a simple turbulent system, and

identify their persistence mechanism.

Besides studying the local physics of intermittent structures and the means

by which they persist in turbulence, it is natural to consider the effects that these

intermittent structures have on physical processes. Figure 1.11 shows a pulsar

signal intensity as detected at Earth at 430 MHz. The signal has a sharp rise

and a long tail. The tail results from random refractions of the rf signal when

interacting with electron density fluctuations along the line of sight between

the pulsar and Earth. It is possible to infer features of the statistical distribution

of electron density from the shape of pulsar signals (Williamson, 1972; Sutton,

1971; Lee and Jokipii, 1975a). If it is assumed that integrated electron density
1From Boldyrev and Gwinn (2003a), used with permission.
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Figure 1.2: Pulsar signal width τ vs. dispersion measure DM .

differences,
∫

dz [n(x1, z)− n(x2, z)], are distributed according to a Gaussian

distribution, then it can be shown that the temporal width τ of pulsar signals

scale with dispersion measure, DM =
∫

dz n, to the second power. Figure

1.22 plots on log-log axes τ versus DM for many pulsars. The line of best fit

goes like DM4, not consistent with electron density differences being Gaussian

distributed. If it is postulated that electron density differences are distributed

according to a Lévy distribution, then the τ ∝ DM4 scaling can be recovered

in a consistent theoretical framework (Boldyrev and Gwinn, 2003a). A Lévy

distribution is a species of non-Gaussian distributions that is stable and char-

acterized by a power-law tail that render the distribution non-integrable. In

this work, we propose that intermittent density gradient fluctuations in kinetic

Alfvén wave (KAW) turbulence may account for the non-Gaussian fluctuations

inferred.
2From Boldyrev and Gwinn (2003a), used with permission.
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The remainder of this chapter serves to motivate (1) the local study of

intermittent structures and (2) the effect that intermittent structures have on

pulsar scintillation. A brief survey of previous work will be offered, and an

outline of the rest of the thesis will conclude the chapter.

1.1 Structures in Decaying Turbulence: Local Physics

Just as there is no generally agreed-upon definition of turbulence (Schekochihin

et al., 2008), there is no general definition of a turbulent structure, and efforts

to provide one will likely fail in a number of specific cases. Some central

considerations are:

1. Resolving the differences in structures between two-dimensional and

three-dimensional domains.

2. Whether structure boundaries should be defined vis-a-vis the intrinsic

physics of the system (e.g. boundary shear criteria or separatrix surfaces

defined by isocontours of X points), or can be approximated in terms of an

external parameter (e.g. isosurfaces of |B|2 at some adjustable threshold).

3. The extent to which temporal persistence is essential to the definition of a

structure; and if so, the means by which structures persist in time, and

the processes that govern their creation and destruction.

4. Whether a field’s topology is sufficient to define structures (e.g. the X

points and O points in a 2D field; the separatrices in a 3D configuration),

or if the details of the geometry, gradients, integrated quantities, etc., are

necessary to define structures.

5. Whether there is a strict separation between structure and turbulence, or if

structures are at the large-amplitude, large-area, or temporally-persistent

end of an adjustable scale of turbulent fluctuations.
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6. The morphology structures assume. The dominant large-amplitude fluc-

tuations at small scales often take the form of isolated coherent filaments

or extended sheets. What governs the formation of each structure type?

Over the course of the present work, we will address the above consid-

erations in our efforts to define localized structures in decaying turbulence.

Our principal concern with regard to localized structures is understanding the

interactions of structures with turbulence, and characterizing the structures

that arise in small-scale turbulence. The mechanism by which structures arise

and persist in turbulence will be investigated, and techniques to distinguish

structures from turbulence will be developed. The local-interaction emphasis

is complementary to statistical descriptions of filamentary structures such as

approaches based on structure functions (She and Leveque, 1994).

1.2 Background Considerations for Structure Formation

Previous simulations of decaying two-dimensional Navier-Stokes turbulence

(McWilliams, 1984, for example) observe the spontaneous emergence of large-

amplitude localized coherent structures in the vorticity field. These intermittent

structures persist in time and are not disrupted by interactions with surrounding

turbulence.

Simulations of decaying MHD turbulence (Kinney et al., 1995) and decaying

kinetic Alfvén wave turbulence (Craddock et al., 1991) also see the spontaneous

generation of large-amplitude coherent structures in the current density field.

The associated magnetic field structures are also large-amplitude. The MHD

system studied was incompressible, and the kinetic Alfvén wave system heavily

damped density fluctuations, so no conclusions can be drawn from those papers

as to the sorts of structures that arise in the density field. As will be discussed
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in the next section, fluctuations in the density field are of central importance to

pulsar scintillation measures.

The coherent structures observed in Craddock et al. (1991), whether elon-

gated sheets or localized filaments, are similar to structures observed in Kinney

et al. (1995). In the latter, the randomized flow field initialization gives rise

to sheet-like structures. After selective decay of the velocity field energy, the

system evolves into a state with sheets and filaments. During the merger of

like-signed filaments, large-amplitude sheets arise, limited to the region be-

tween the merging filaments. These short-lived sheets exist in addition to the

long-lived sheets not associated with the merger of filaments. In Craddock et al.

(1991), however, there is no flow; the sheet and filament generation is due to a

different mechanism which will be discussed in chapter 2. 3

Other work (Biskamp and Welter, 1989; Politano et al., 1989) observed the

spontaneous generation of current sheets and filaments in numerical solutions,

with both Orszag-Tang vortex and randomized initial conditions. These 2D

reduced-MHD numerical solutions modeled the evolution of magnetic flux

and vorticity with collisional dissipation coefficients η and ν, the resistivity

and kinematic viscosity, respectively. The magnetic Prandtl number, ν/η, was

set to unity. These systems are incompressible and not suitable for modeling

compressible density fluctuations; they do however illustrate the ubiquity of

current sheets and filaments, and serve as points of comparison. For Orszag-

Tang-like initial conditions with large scale flux tubes smooth in profile, current

sheets are preferred at the interfaces between tubes. Tearing instabilities can

give rise to filamentary current structures that persist for long times, but the

large scale and smoothness of flux tubes do not give rise to strong current

filaments localized at the center of the tubes. To see this, consider a given flux
3The three-field KAW system does include flow, but for small-scales the flow does not par-

ticipate strongly in the dominant energy exchange between magnetic and density fields, so the
two-field analysis applies to the more general three-field system.
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tube, and model it as cylindrically symmetric and monotonically decreasing in

r with characteristic radial extent a,

ψ(r) = ψ0

[
1−

( r
a

)2
]
,

for 0 . r . a. The current is localized at the center with magnitude

J = −4
ψ0

a2
.

Thus flux tubes with large radial extent a have a corresponding small current

filament at their center. Hence, initial conditions dominated by a few large-scale

flux tubes are not expected to have large amplitude current filaments at the flux

tube centers, but favor current sheet formation and filaments associated with

tearing instabilities in those sheet regions. At X points, current sheet folding

and filamentary structures can arise (see, e.g. Biskamp and Welter, 1989, Fig.

10), but these regions are small in area compared to the quiescent flux-tube

regions. Note that if, instead of Orszag-Tang-like initial conditions, the initial

state is random, one expects some regions with flux tubes that have a small,

and therefore a sizable current filament at the center.

Consider now the effect of comparatively large or small η. In the case of

large η, the central region of a flux tube is smoothed by collisional damping,

thus having a strong suppressive effect on the amplitude of the current fila-

ment associated with such a flux tube. Large-amplitude current structures

are localized to the interfaces between flux tubes. In the process of mergers

between like-signed filaments (and repulsion between oppositely signed fil-

aments), large current sheets are generated at these interfaces, similar to the

large-amplitude sheets generated in MHD turbulence during mergers (Kinney

et al., 1995). For small η, relatively little suppression of isolated current fila-
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ments should occur; if these filaments are spatially separated owning to the

buffer provided by their associated flux tube, they can be expected to survive a

long time and only be disrupted upon the merger with another large-scale flux

tube. Large η, then, allows current sheets to form at the boundaries between

flux tubes while suppressing the spatially-separated current filaments at flux

tube centers. Small η allows interface sheets and spatially separated filaments

to exist.

To understand and quantify filamentary structures, we apply two-timescale

analysis to a two-field kinetic Alfvén wave system in chapter 2. We then develop

techniques in chapter 4 to separate filamentary structures from surrounding

turbulence and sheets. We show that filamentary structures have enhanced

energy density and that their core regions are regions of enhanced alignment

between ∇ψ and ∇n. We show particular examples of filamentary structures

to give an indication of the variety of coherent localized structures that exist.

These filamentary structures are shown to correspond to key predictions of the

theory of filamentary structures from chapter 2.

The simple arguments above suggest that the evolution of the large-amplitude

structures and their interaction with turbulence is strongly influenced by the

damping parameters. In chapter 5 the magnitudes of the damping parameters

will be shown to affect the pulsar scintillation scalings. That chapter considers

the effect of variations of damping parameters η and µ in detail, and shows

the emergence of non-Gaussian density gradient PDFs from Gaussian initial

conditions, over a range of η/µ ratios.

1.3 Background Considerations for Pulsar Scintillation

Models of scintillation have a long history. Many (Lee and Jokipii, 1975a,b;

Sutton, 1971) carry an implicit or explicit assumption of Gaussian statistics,
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applying to either the electron density field itself or its autocorrelation function

(herein referred to as “Gaussian Models”). Lee and Jokipii (1975a) is a repre-

sentative approach. The statistics of the two-point correlation function of the

index of refraction ε(r), A(ρ) =
∫
dz′ 〈ε(x, z)ε(x+ ρ, z′)〉 determines, among

other effects, the scaling of pulsar signal width τ with dispersion measure DM .

The index of refraction ε(r) is a function of electron density fluctuation n(r).

The quantity A(0) enters the equations, representing the second moment of

the index of refraction. If the distribution function of ε(r) has no second-order

moment (as in a Lévy distribution) A(0) is undefined. The assumption of Gaus-

sian statistics leads to a scaling of τ ∼ DM2, which contradicts observation for

pulsars with DM > 30 cm−3 pc. For these distant pulsars, τ ∼ DM4 (Sutton,

1971; Boldyrev and Gwinn, 2003a,b).

To explain the anomalous DM4 scaling, Sutton (1971) argued that the pul-

sar signal encounters strongly scattering turbulent regions for longer lines of

sight, essentially arguing that the statistics, as sampled by a pulsar signal, are

nonstationary. Considering the pulse shape in time, Williamson (1972, 1973,

1974) is unable to match observations with a Gaussian Model of scintillation

unless the scattering region is confined to 1/4 of the line of sight between the

pulsar and Earth. These assumptions may have physical basis, since the ISM

may not be statistically stationary, being composed of different regions with

varying turbulence intensity (Boldyrev and Gwinn, 2005).

The theory of Boldyrev and Gwinn (2003a,b, 2005); Boldyrev and Königl

(2006) takes a different approach to explain the anomalous DM4 scaling by

considering Lévy statistics for the density difference (defined below). Lévy

distributions are characterized by long tails, and a Lévy distribution has no

defined moments greater than first-order [i.e., A(0) is undefined for a Lévy

distribution]. The theory recovers the τ ∼ DM4 relation with a statistically sta-
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tionary electron density field. This theory also does not constrain the scattering

region to a fraction of the line-of-sight distance.

The determinant quantity in the theory of Boldyrev et al. is the density

difference, ∆n = n(x1, z)−n(x2, z). According to this model, if the distribution

function of ∆n has a power-law decay as |∆n| → ∞ and has no second moment,

then it is possible to recover the τ ∼ DM4 scaling (Boldyrev and Gwinn, 2003b).

Assuming sufficiently smooth fluctuations, ∆n can be expressed in terms of the

density gradient, σ(z): n(x1)− n(x2) ' σ(z) · (x1 − x2). Perhaps more directly,

the density gradient enters the ray tracing equations [Eqns. (7) in Boldyrev

and Gwinn (2003a)], and is seen to be central to determining the resultant

pulsar signal shape and width. This formulation of a scintillation theory does

not require the distribution of ∆n to be Gaussian or to have a second-order

moment.

The notion that the density difference is characterized by a Lévy distribution

is a constraint on dynamical models for electron density fluctuations in the

ISM. Consequently the question of how a Lévy distribution can arise in electron

density fluctuations assumes considerable importance in understanding the

ISM.

Previous work has laid the groundwork for answering this question. It has

been established that electron density fluctuations associated with interstellar

magnetic turbulence undergo a significant change in character near the scale

10ρs, where ρs is the ion sound gyroradius (Terry et al., 2001). At larger scales,

electron density is passively advected by the turbulent flow of an MHD cascade

mediated by nonlinear shear Alfvén waves (Goldreich and Sridhar, 1995). At

smaller scales the electron density becomes compressive and the turbulent

energy is carried into a cascade mediated by kinetic Alfvén waves (KAW)

(Terry et al., 2001). The KAW cascade brings electron density into equipartition
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with the magnetic field, allowing for a significant increase in amplitude. The

conversion to a KAW cascade has been observed in numerical solutions of the

gyrokinetic equations (Howes et al., 2006), and is consistent with observations

from solar wind turbulence (Leamon et al., 1998; Harmon and Coles, 2005; Bale

et al., 2005). Importantly, it puts large amplitude electron density fluctuations

(and large amplitude density gradients) at the gyroradius scale (∼ 108 − 1010

cm), a desirable set of conditions for pulsar scintillation (Boldyrev and Königl,

2006). It is therefore appropriate to consider whether large amplitude non-

Gaussian structures can arise in KAW turbulence.

The previous studies of filament generation in KAW turbulence leave sig-

nificant unanswered questions relating to structure morphology and its effect

on scintillation. It is well established that MHD turbulence admits structures

that are both filament-like and sheet-like. Can sheet-like structures arise in

KAW turbulence? If so, what are the conditions or parameters favoring one

type of structure over the other? If sheet-like structures dominate in some

circumstances, what are the statistics of the density gradient? Can they be

sufficiently non-Gaussian to be compatible with pulsar scintillation scaling? It

is desirable to consider such questions prior to calculation of rf wave scattering

properties in the density gradient fields obtained from numerical solutions.

In chapter 5, we show that both current filaments and current sheet struc-

tures naturally arise in numerical solutions of a decaying KAW turbulence

model. Each has a structure of the same type and at the same location in the

electron density gradient. These structures become prevalent as the numerical

solutions progress in time, and each is associated with highly non-Gaussian

PDFs. Moreover, we show that small-scale current filaments and current sheets,

along with their associated density structures, are highly sensitive to the mag-

nitude of resistive damping and diffusive damping of density fluctuations.
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Current filaments persist provided that resistivity η is small; similarly, electron

density fluctuations and gradients are diminished by large diffusive damping

in the electron continuity equation. The latter results from collisions assuming

density fluctuations are subject to a Fick’s law for diffusion. The magnitude

of the resistivity affects (1) whether current filaments can become large in am-

plitude, (2) their spatial scale, and (3) the preponderance of these filaments as

compared to sheets. The magnitude of the diffusive damping parameter, µ,

similarly influences the amplitude of density gradients and, to a lesser degree,

influences the extent to which electron density structures are non-localized.

In the ISM, resistive and diffusive damping become important near resistive

scales. However, it is well known that collisionless damping effects are also

present (Lysak and Lotko, 1996; Bale et al., 2005), and quite possibly play a

significant role at scales near the ion Larmor radius. The collisional damping

in the present work should be understood as a best attempt to model damping

using a fluid model. This approach facilitates analysis of the effects of different

damping regimes on the statistics of electron density fluctuations. By varying

the ratio of resistive and diffusive damping we can, as suggested above, control

the type of structure present in the turbulence. This allows us to isolate and

study the statistics associated with each type of structure. It also allows us

to assess and examine the type of environment conducive to formation of the

structure. We consider regimes with large and small damping parameters,

enabling us to explore damping effects on structure formation across a range

from inertial to dissipative.

In chapter 5 we present the results of numerical solutions of decaying KAW

turbulence to ascertain the effect of different damping regimes on the statistics

of the fields of interest, in particular the electron density and electron density

gradient. In the η � µ regime (using normalized parameters), previous work
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(Craddock et al., 1991) had large-amplitude current filaments that were strongly

localized with no discernible electron density structures. (The collisional damp-

ing parameter µwas large to preserve numerical stability.) This regime is unable

to preserve density structures or density gradients. The numerical solutions

presented here have η ∼ µ and η � µ; in each limit the damping parameters

are minimized so as to allow structure formation to occur, and are large enough

to ensure numerical stability for the duration of each numerical solution. We in-

vestigate the statistics of both filaments and sheets in the context of scintillation

in the warm ionized medium.

First we develop in chapter 2 a fluid model of kinetic Alfvén waves and a

nonlinear model of decaying kinetic Alfvén wave turbulence, and give reasons

for studying kinetic Alfvén waves in the context of small-scale intermittent

density fluctuations. Applying two-timescale analysis, we derive conditions

under which circularly symmetric intermittent structures can persist while

interacting with turbulence, and we derive the PDFs associated with these

intermittent structures.
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2 coherent structures in fluid models of kinetic alfvén wave

turbulence

The kinetic Alfvén wave (KAW) (Stéfant, 1970; Goertz, 1984; Lysak and Lotko,

1996; Hollweg, 1999) is the manifestation of the shear Alfvén wave at scales

near the ion gyroradius when the wave has a large perpendicular wavenumber,

k⊥ � k‖ with ⊥ and ‖ indicating directions perpendicular and parallel to the

mean magnetic field, respectively. Finite gyroradius effects account for the

deviations of KAW physics from shear Alfvén wave physics. These effects

play an important role only when KAW wavelengths are on the order of ρi,

so KAWs have large k⊥ wavenumbers transverse to the local magnetic field

direction. The governing relation is ρsk⊥ ∼ 1 where the ion sound gyroradius

ρ2
s = (Te/mi)/ω

2
ci = C2

s/ω
2
ci. Here Te is the electron temperature, mi is the

ion mass, ωci = eB/mic is the ion gyrofrequency, e is the magnitude of the

electron/ion charge, B the magnitude of the mean magnetic field, and Cs

is the sound speed. When ρsk⊥ ∼ 1, kinetic Alfvén wave modifications to

shear Alfvén wave physics begin to take effect and become more prominent

for larger ρsk⊥. While shear Alfvén waves are linearly incompressible, kinetic

Alfvén waves allow for coupling between density fluctuations and magnetic

fluctuations, and are linearly compressible. This compressibility is one means

by which electron density fluctuations are generated at small scales.

Despite the name, kinetic Alfvén waves are often modeled with reduced

fluid equations rather than the Vlasov-Maxwell equations. Throughout this

work, we use fluid models to describe the KAW mode. Our reasons for doing

so are these:

1. As will be demonstrated in this chapter, the nonlinear three-field and

two-field fluid models have the same dispersion relation as the KAW, and
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capture the same physics as in the conventional two-fluid description of

the KAW mode.

2. Fernandez and Terry (1997) argue that the KAW mode becomes dynam-

ically active at scales as large as L . 10ρs. Density fluctuations can no

longer be considered passive at this scale, and the KAW nonlinear inter-

actions detailed below begin to dominate in the energy interchange with

the magnetic energy. This scale lies in a regime where Landau damping

is not active, at length scales somewhat above the scales at which energy

dissipation rates significantly dominate the small-scale dynamics.

3. The L . 10ρs scale regime is sufficiently large to mitigate concerns that

collisionless damping at small scales will destroy the nonlinear structures

that spontaneously emerge.

4. The KAW fluid equations are amenable to both full closure theory calcu-

lations (Terry and Smith, 2007) and numerical simulation with moderate

spatial and temporal resolution (Terry and Smith, 2008; Smith and Terry,

2011). The emergent features of the equations would be challenging to

observe and analyze in a more detailed kinetic simulation, as these fea-

tures exist on length scales L ≈ ρs, which lies at the outer length scale of

kinetic simulations.

5. Investigation of the statistical properties of the emergent features of KAW

turbulence requires many simulation runs, which again favors model

equations that can be numerically solved in a reasonable time frame, with

reasonable storage requirements. Modeling the same scales in time and

space with a kinetic simulation requires significant increases in simulation

time and storage.
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Figure 2.1: Polarization vectors for the shear Alfvén wave with a large |ky|
component.

Before presenting the nonlinear KAW model, it is instructive to derive the

linear KAW dispersion relation to see how the KAW differs from the shear

Alfvén wave.

2.1 Kinetic Alfvén Wave Dispersion Relation

As a starting point1, consider a shear Alfvén wave with a large k⊥ = ky com-

ponent. The polarization vectors for fields of interest are represented in Fig.

(2.1), with ẑ the direction of the mean magnetic field; the ŷ − ẑ plane lies in the

plane of the page, and x̂ is out of the page. The fluctuating component of the

electric field of the shear Alfvén wave, dE, is in the −ŷ direction, and dB and

dV , the components of the magnetic and velocity fields, are in the +x̂ and −x̂

directions, resp.

The x̂ component of Faraday’s Law yields
1Here we summarize the derivation of the KAW dispersion relation given in Hollweg (1999).



17

(
δEy −

ky
kz
δEz

)
= −ωδBx

ckz
. (2.1)

In Eqn. (2.1) we do not exclude the possibility for a finite (but small) δEz , and

will justify its inclusion a posteriori. The shear Alfvén wave has δEz = 0.

Accounting for nonzero compressive effects in the ŷ direction is achieved

by substituting

δEy → δEy −
(∇δpi)y
qin0i

. (2.2)

With this substitution, the ion polarization drift in the ŷ direction for the shear

Alfvén wave becomes2

δVyi = − qi
mi

iω

ω2
ci

(
δEy −

ikyδpi
qin0i

)
. (2.3)

Assuming the bulk ion motion is dominated by the polarization drift and

δVyi � δVzi, then the ion continuity equation yields δni/n0i = kyδVyi/ω. Using

this in Eqn. (2.3), we have

δVyi
(
1 + ρ2

sk
2
y

)
= − qi

mi

iω

ωci
δEy (2.4)

where we observe the finite gyroradius correction term—proportional to ρ2
s—

enter the equations.

The relation for the ẑ component of the linearized electron momentum

equation ismeωδVze = −ieδEz + kzδpe/n0e. From this we can derive a relation

between δEz and δEy, assuming quasi-neutrality and that electron motion is

primarily along the mean magnetic field:
2Eqn. (20) in Hollweg (1999).
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δEz
δEy

=

qi
e

(
me
mi

ω2

k2z
− γeT0e

mi

)
ω2
ci(1 + ρ2

sk
2
y)

. (2.5)

We can substitute Eqn. (2.5) into Eqn. (2.1) to remove δEz . Employing the ŷ

component of Ampere’s Law to yield a relation between δVyi and δBx,

n0iqiδVyi = δjy =
ickz
4π

δBx, (2.6)

we can express δBx in Eqn. (2.1) in terms of δVyi, and using Eqn. (2.4), we can

express all quantities in terms of δEy . The resulting dispersion relation for the

kinetic Alfvén wave is3

ω2

k2
zV

2
A

=
1 + ρ2

sk
2
y

1 + k2
yd

2
e

, (2.7)

where V 2
A = B2/(4πn0imi) is the squared Alfvén speed and d2

e = c2/ω2
pe =

c2me/(4πnee
2) is the squared electron skin depth.

In Eqn. (2.7), the right-hand-side contains small-scale corrections from finite

Larmor radius and finite skin-depth effects resulting from electron inertial

effects. In the limit ρs → 0, de = c/ωpe → 0, Eqn. (2.7) reduces to the shear

Alfvén wave dispersion relation.

The KAW dispersion relation deals with the linear physics of kinetic Alfvén

waves and its derivation reveals how KAWs yield density fluctuations at scales

near ρs and smaller. Being “descendants” of the shear Alfvén wave, KAWs

propagate along the local magnetic field, and are guided by it. This is evident

from the expression for the group velocity

vg(k) =
∂ω

∂k
≈ VA

4ρ2
sk

2
y√

1 + ρ2
sk

2
y

[
ẑ

(
1 +

1

ρ2
sk

2
y

)
+ ŷ

kz
ky

]
+O

(
d2
e

ρ2
s

)
. (2.8)

3Eqn. (25) in Hollweg (1999).
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Figure 2.2: Illustration of a small-scale KAW, wavelength k̃−1 propagating along
a magnetic field line bk0 with length of variation k−1

0 . There is scale separation,
such that k0 � k̃.

For KAWs, kz/ky � 1, so to orderO(kz/ky) the KAW group velocity propagates

along the mean magnetic field. It is seen from the expression for vg and the

dispersion relation that KAWs are dispersive waves.

In Eqn. (2.8), the small parameter d2
e/ρ

2
s = (me/mi)(2/β), constraining

β � me/mi from below for the KAW to propagate.

Packets of interacting KAWs propagating along a mean magnetic field are a

small-scale manifestation of nonlinear interaction of wave packets in models of

large-scale MHD shear Alfvén wave turbulence.4

To better illustrate this point, sketched in figure 2.2 is a small-scale KAW

wavepacket with wavelength k̃−1 propagating along the “secondary” mag-

netic field line bk0 with variation scale k−1
0 . The wavepacket and field line

4KAWs are not the only mode excited at small scales in a turbulent cascade; whistler turbulence
is also expected at small scales (Saito et al., 2010). Which mode dominates in the dissipation range
of interstellar turbulence is an active area of research, but is not a question we will address in the
present work.
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vary on different scales such that k0 � k̃. The wavepacket is guided by the

magnetic field according to the expression for the group velocity, Eqn. (2.8).

The background magnetic field B0 is directed into the page, along which shear

Alfvén waves propagate linearly. The secondary magnetic field bk0 lies in the

plane of the page and could be generated by the current filament of a coherent

structure, or may be the magnetic field associated with a larger-scale KAW.

The small-scale wavepacket propagates along the secondary bk0 field, and it

is this nonlinear interaction of waves with the fields of larger-scale KAWs and

coherent structures that we wish to capture in the models developed below.

2.2 Nonlinear Fluid Model of Kinetic Alfvén Wave

Turbulence

In this section, we propose two systems of nonlinearly coupled scalar fields

that capture the essential physics of KAWs at varying outer length scales. In

particular, the KAW property of active density fluctuations is a central element

of the mode that the simplified scalar models aim to capture. The first model,

the three-field model, couples electron density n, the ẑ component of the vector

potential, ψ, and the electrostatic potential, φ (Hazeltine, 1983; Rahman and

Weiland, 1983; Fernandez et al., 1995; Fernandez and Terry, 1997). The second

model is a small-scale simplification of the three-field model, and is valid for

length scales L < 10ρs. The two-field model decouples the vorticity evolu-

tion ∇2
⊥φ from the ψ and n evolution, leaving only magnetic-internal energy

exchange (Craddock et al., 1991; Terry et al., 1998; Terry and Smith, 2007, 2008).

Fluid models of KAWs are unable to capture dissipation physics contained

in kinetic descriptions such as Landau damping, transit-time damping, or

cyclotron resonances (Hollweg, 1999). The advantage of fluid models is their

relative simplicity that allows analytic tractability and exploration of length
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regimes near the transition region from shear Alfvén waves to kinetic Alfvén

waves. These length regimes are challenging to resolve with present kinetic

simulation methods, as they are orders of magnitude larger than kinetic length

scales of interest.

Three-Field Model

The normalized three-field equations for KAWs are 5

∂tψ +∇‖φ = α∇‖n+ η0J − η2∇2
⊥J, (2.9)

∂t∇2
⊥φ−∇φ× ẑ · ∇∇2

⊥φ = −∇‖J, (2.10)

∂tn−∇φ× ẑ · ∇n+∇‖J = µ0∇2
⊥n− µ2∇2

⊥∇2
⊥n, (2.11)

where

∇‖ = ∂z +∇ψ × ẑ · ∇, (2.12)

and

J = ∇2
⊥ψ = ∂xxψ + ∂yyψ. (2.13)

The perturbed magnetic field is perpendicular to the mean field and can be

written as b/B = ∇ψ × ẑ, where ẑ is the direction of the mean field and

ψ = (Cs/c)eAz/Te is the normalized parallel component of the vector potential.

The flow has zero mean and is also perpendicular to the mean field B. It is
5Notation: In Eqns. (2.9) - (2.13) “∂t” is equivalent to the more explicit “ ∂

∂t
”; multiple subscripts

indicate higher order partial derivatives with respect to the subscript.
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equivalent to the E×B flow and can be expressed in terms of the electrostatic

potential as −∇φ× ẑ, where φ = (Cs/VA)eφ/Te is the normalized electrostatic

potential. The normalized density fluctuation is n = (Cs/VA)n/n0, where n0 is

the mean density, and α = (ρs/L)2 is a coupling parameter that determines the

relative influence of the∇‖n term over the∇‖φ term in Eqn. (2.9). The quantity

L is the largest length scale of interest, thus α� 1 corresponds to a large-scale,

MHD regime and α� 1 corresponds to a small-scale regime. In this system,

η0 = (c2/4πVAρs)ηSpitzer is the normalized resistivity, where ηSpitzer is the

Spitzer resistivity. The diffusive damping coefficient µ0 = ρ2
eνe/(ρsVA) captures

Fickian collisional diffusion where ρe is the electron gyroradius and νe is the

electron collision frequency. The quantities η2 and µ2 are the hyperresistivity

and hyperdiffusivity, and are numerical conveniences to preserve fluctuation

amplitudes at medium and large scales. Spatial scales are normalized to ρs

(defined above), time is normalized to the Alfvén time τA = ρs/VA, and VA =

B/(4πmin0)1/2 is the Alfvén velocity.

In Eqn. (2.11), the density continuity equation, the term∇‖J is a compress-

ible nonlinearity that allows compressible electron motion along magnetic field

perturbations to couple to the density field. The∇‖n term in Ohm’s law allows

electron pressure fluctuations to act on the magnetic field in Eqn. (2.9). At

scales larger than the ion gyroradius, i.e. for α � 1, the magnetic-density

coupling is weak and density fluctuations are passive to a good approximation.

At scales approaching L . 10ρs and smaller, corresponding to α & 10−2,∇‖n

begins to dominate∇‖φ in Eqn. (2.9) and∇‖J begins to dominate∇φ× ẑ · ∇n

in Eqn. (2.11) (Fernandez and Terry, 1997). In this length regime, the system

behaves very differently from incompressible MHD where the only energy

interchange is between the magnetic and velocity fields via shear Alfvén waves.

In a turbulent cascade, the magnetic-velocity energy exchange is diminished
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relative to the magnetic-density exchange, and flow decouples from the mag-

netic field, evolving as a go-it-alone Kolmogorov cascade. As α increases, the

electron density and magnetic fields increasingly interact compressively via

kinetic Alfvén waves; once this interaction reaches prominence, the internal

and magnetic energies become equipartitioned,
∫
n2 dV ≈

∫
|∇ψ|2 dV . This

equipartition at small scales takes place even if internal energy is a fraction of

the magnetic energy at large scales.

Four ideal invariants exist: total energy E =
∫
d2x(|∇ψ|2 + |∇φ|2 + αn2);

flux F =
∫
d2x ψ2; cross-correlation Hc =

∫
d2x nψ; and enstrophy G =∫

d2x(n − ∇2
⊥φ)2. Energy cascades to small scale (large wavenumber) while

the flux and cross-correlation undergo an inverse cascade to large scale (small

wavenumber) (Fernandez and Terry, 1997). The inverse cascades require the

initialized spectrum in numerical solutions to peak at k0 6= 0 to allow for

buildup of magnetic flux at large-scales for later times.

Linearizing the system and introducing dimensional quantities yields a

dispersion relation

ω2

V 2
A(b0 · k)2

= 1 + ρ2
sk

2
⊥. (2.14)

To O(d2
e/ρ

2
s), this is equivalent to the more accurate dispersion relation

given in Eqn. (2.7). The mode combines perpendicular oscillation associated

with a finite gyroradius with fluctuations along a mean field (ẑ-direction). For

ρ2
sk

2
⊥ � 1 the dispersion relation reduces to that of the shear Alfvén wave,

and the term proportional to ρ2
s is the finite gyroradius correction term. For

ρ2
sk

2
⊥ & 1, the waves are increasingly dispersive, which has implications for

timestepping constraints in explicit numerical solution schemes.
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Two-Field Model

For small-scales, when α & 1, the model can be simplified by decoupling the

flow evolution. The remaining equations couple electron density fluctuations

with magnetic fluctuations, and the ions form a neutralizing background. The

two-field system is

∂tψ = α∇‖n+ η0J − η2∇2
⊥J, (2.15)

∂tn−∇‖J = µ0∇2
⊥n− µ2∇2

⊥∇2
⊥n. (2.16)

This model assumes isothermal fluctuations. The dispersion relation for Eqns.

(2.15)-(2.16) is further simplified: ω2/{V 2
A(b0 · k)2} = ρ2

sk
2
⊥. This two-field

model removes all shear Alfvén wave effects, evident by the absence of the

constant term on the RHS.

In the limit of strong mean field, quantities along the mean field (ẑ-direction)

equilibrate quickly, which allows ∂/∂z → 0, or kz → 0. Kinetic Alfvén waves

still propagate, as long as there is a broad range of scales that are excited, as

in fully developed turbulence. As kz → 0, all gradients are localized to the

plane perpendicular to the mean field. Presuming a large-scale fluctuation at

characteristic wavenumber k0, smaller-scale fluctuations propagate linearly

along this larger-scale fluctuation so long as their characteristic scale k satisfies

k � k0.

2.3 Two-timescale Analysis

The nonlinear interaction of KAWs in a fully turbulent system can give rise to

interesting and non-obvious structures that evolve on a much longer timescale

than the turbulence (Craddock et al., 1991). A simple calculation serves to
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demonstrate that the system of Eqns. (2.9)–(2.11) can give rise to persistent

structures with near circular symmetry in two dimensions.

In polar coordinates, if the fields n(r, θ) and ψ(r, θ) have no θ dependence,

then the parallel gradient term,∇‖, simplifies to∇‖ = (−θ̂ · r̂)∂rψ∂r = 0. Since

θ̂ ⊥ r̂, the α∇‖n and∇‖J are identically zero. The same holds for the∇φ× ẑ ·∇

advective nonlinearity. In this radially symmetric system the only nonzero

terms are the linear diffusive terms, and the circularly symmetric structures are

affected by linear damping only. If a structure has a large characteristic length

scale relative to the linear damping scales, it can persist for a long time relative

to small-scale turbulence.

A similar argument in Cartesian coordinates for structures with one ig-

norable dimension, such that ∂yψ(x, y) = 0, reveals that elongated, sheet-like

structures have no nonlinear interaction either. These trivial derivations yield

little physical insight as to how structures persist when interacting with tur-

bulence at their boundary, but they indicate that one can expect long-lived

structures in KAW turbulence to take the form of localized, circularly symmet-

ric filaments or elongated sheets. Both of these formations have one ignorable

coordinate in their local frame.

To better understand the means by which a (circular) structure persists when

interacting with turbulent fluctuations, outside the region where the structure

has no θ dependence, we summarize the two-timescale analysis in Terry (1989,

2000); Terry and Smith (2007). We focus on the dimensional analysis part of

the discussion and do not cover the full closure theory. We refer the reader to

Terry (1989) and Terry (2000) for an application of two-timescale analysis to

Navier-Stokes turbulence, and Terry and Smith (2007) for a fuller treatment,

including the eddy-damped quasi-normal Markovian closure calculations for

Eqns. (2.15)-(2.16).
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Assume a circular current structure, azimuthally symmetric with an associ-

ated polar coordinate system. We presume that the current in this structure

is localized such that for all r > R, J0(r) = 0 for some radial distance R. The

current filament has an associated θ̂-directed magnetic field, Bθ(r). Using sym-

metry and Ampere’s Law, it is elementary to show that, for r > R, Bθ(r) ∝ r−1.

This structure interacts with turbulence at its boundary, and the structure is

assumed to evolve on a long timescale τ , while the turbulence evolves on a short

timescale t. The n and ψ fields of equations (2.15)-(2.16) can be decomposed

into long- and short-timescale parts,

F̂ = F0(r, τ) + F̃ (r, θ, t), (2.17)

where F is either n or ψ, with F0 the magnetic flux and density of the structure

and ψ̃ and ñ the turbulent fields of flux and density.

An evolution equation for the turbulent fields can be derived from Eqns.

(2.15)-(2.16) by means of the two-timescale analysis6. With circular symmetry,

it is appropriate to introduce a Fourier transform in the θ coordinate. The turbu-

lence evolves from some initial state, so we can transform the time coordinate

using a Laplace transform. The fields (2.17) can be expressed as

F̃ (r, θ, t) =
1

2πi

∫ +i∞+γ0

−i∞+γ0

dγ
∑
m

F̃mγ(r) exp(−imθ) exp γt. (2.18)

We find that the evolution equations for the fast-timescale turbulent fluctu-

ations are
6Equations for the evolution of the structures can be derived as well, but are not presented

here. See Terry and Smith (2007), Section 3.
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γψ̃mγ + im
Bθ(r)

r
ñmγ +

1

2πi

∫ +i∞+γ0

−i∞+γ0

dγ′×

∑
m′

[
im′

r
ψ̃m′γ′∂r −

i(m−m′)
r

∂rψ̃m′γ′

]
ñm−m′,γ−γ′

=
im

r
ψ̃m,γ∂rn0(r),

(2.19)

γñmγ + im
Bθ(r)

r
∇2
mψ̃mγ −

1

2πi

∫ +i∞+γ0

−i∞+γ0

dγ′×

∑
m′

[
im′

r
ψ̃m′γ′∂r −

i(m−m′)
r

∂rψ̃m′γ′

]
∇2
m−m′ ψ̃m−m′,γ−γ′

=
im

r
ψ̃m,γ∂rJ0(r),

(2.20)

where

∇2
m =

1

r
∂r (r∂r)−

m2

r2

is the Laplacian. (The dissipative terms are not shown, motivated by our

focus on inertial scales.) Three terms drive the evolution of ∂tψ̂ and ∂tn̂ in

Eqns. (2.19)-(2.20). The first term describes linear KAW propagation along the

inhomogeneous secondary magnetic field Bθ of the coherent structure. The

nonlinearity—the second term—describes turbulence of random KAWs. The

third term is a source term proportional to mean field gradients.

Magnetic shear in the second terms of Eqns. (2.19)-(2.20), implicit in the

above expressions, plays a central role in structure-turbulence interaction. It

can be made explicit by expanding the shear term in a Taylor series about some

radius r0 > 0,

Bθ(r)

r
=
Bθ(r0)

r0
+ (r − r0)

d

dr

Bθ
r

∣∣∣
r0

+ · · · . (2.21)
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Eqn. (2.21) can be truncated as indicated if Bθ(r) varies smoothly, as is the

case when the current profile is monotonically decreasing. When substituting

Eqn. (2.21) into Eqns. (2.19)-(2.20), the Bθ(r0)
r0

term Doppler shifts the frequency

by a constant amount. The remaining term in the expansion describes KAW

propagation in an inhomogeneous medium.

Substituting Eqn. (2.21) into Eqn. (2.20) yields

γ̂ñmγ − im (r − r0)
d

dr

Bθ(r)

r

∣∣∣
r0
∇2
mψ̃mγ −

1

2πi

∫ +i∞+γ0

−i∞+γ0

dγ′×

∑
m′

[
im′

r
ψ̃m′γ′∂r −

i(m−m′)
r

∂rψ̃m′γ′

]
∇2
m−m′ ψ̃m−m′,γ−γ′

=
im

r
ψ̃m,γ∂rJ0(r)

(2.22)

where

γ̂ = γ + im
Bθ(r0)

r0
. (2.23)

We focus on the SBθ ≡ d/dr[Bθ/r]|r0 term. When it is large, the shear in

Bθ refracts KAW activity, as can be argued using asymptotic analysis. The

refraction of KAW phase fronts is visualized in Fig. 2.3, where in the core

of the structure, with Bθ ∝ r, the phase fronts propagate in the θ̂ direction

undistorted. In the core, SBθ is zero. As nonzero radial shear develops for

greater r, the phase fronts of KAWs are distorted by the nonzero SBθ . In the

limit that SBθ becomes large asymptotically, the solution develops a small-scale

boundary layer structure to allow the higher derivative nonlinear term to remain

in balance with SBθ term. The boundary layer’s width is constrained to become

narrower as SBθ becomes larger; otherwise the highest order derivative drops

out of the balance and the equation changes order (Bender and Orszag, 1978).

Dimensional analysis gives an estimate of the boundary width ∆r. Noting
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Figure 2.3: Illustration of propagating KAW phase fronts in an azimuthally-
symmetric filamentary structure. Near r = 0 the phase fronts form radial
spokes; as radial shear in the Bθ field of the structure develops for greater r,
the phase fronts are distorted.

that r − r0 ∼ ∆r, ∂rñm(t) ∼ ñm/∆r, and treating d/dr[Bθ/r]|r0 ≡ j′ as the

diverging asymptotic parameter, the balance is

∆rj′ñm(t) ∼ ψ̃m(t)

a

ñm(t)

∆r
(j′ →∞). (2.24)

Simplifying,

∆r ∼

√
ψ̃m
aj′

(j′ →∞). (2.25)

The length ∆r is the scale of fluctuation variation within the coherent structure,

and represents a fluctuation penetration depth into the structure. An analogous

derivation applies to the terms in Eqn. (2.19), and yield the same scaling. Hence
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Figure 2.4: Illustration of the boundary layer inBθ/r for a filamentary structure.
The boundary layer has characteristic width ∆r, and the turbulent fluctuations
b̃ and ñ cannot penetrate many ∆r layer widths into the structure.

∆r is the width of a single layer with respect to refracted fluctuations in both

density and current structures. The boundary layer is visualized in Fig. 2.4,

with the structure Bθ/r constant in the core, and has a large radial derivative.

The turbulent fluctuations are visualized to the right in the figure, and the

turbulent amplitude is unable to sustain itself many ∆r layer widths into the

structure.

While this analysis yields a layer width, it does not give the functional

variation of current and density fluctuations within the layer, either relative

or absolute. The details of structure-turbulence interaction are investigated in

numerical simulations, and will be addressed in the following chapters.

2.4 Global PDFs and Structure Geometry

Scintillation in the ISM depends on the statistics of the density difference,

∆n ≡ n(x, z) − n(x + ∆x, z) (Boldyrev and Gwinn, 2005) which is approxi-

mated by the density gradient, ∆n ≈ ∆x · ∇⊥n|x,z for small |∆x|. The KAW
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system, by coupling fluctuations in the density and magnetic fields, is expected

to yield similar amplitudes and structures in these fields. If the magnetic field

around a structure with J0(r) = 0 for r ≥ R yields a 1/r mantle due to Am-

pere’s Law, then, arguing from turbulent equipartition between δn fluctuations

and δB fluctuations via kinetic Alfvén wave interactions, the density field will

have a mantle of a similar form, and extend to the same radius. We will show

in this section that assuming n(r) ∝ 1/r in the mantle of a filamentary density

structure is sufficient to yield non-Gaussian statistics for the density gradient

field. This analysis neglects the influence on the PDF from fluctuations be-

tween structures, and considers only the immediate region around structures

themselves. Accounting for fluctuations between structures poses considerable

challenges, as this region is a mixture of turbulence and non-filamentary struc-

tures that are not easily characterized by a few parameters, such as maximum

current amplitude, or structure radius.

Assuming n(r) ∝ 1/r in the structure mantle makes the density structure

less localized than the associated current filament, and results in a greater

likelihood of low values of density than those of decaying turbulence. This

yields a density kurtosis closer to the Gaussian value of 3 than the current

kurtosis. The density PDF will not likely be Gaussian, however.

Consider an idealized density structure, sketched in figure 2.5. It has a flat

core that extends to radius r = a, and for r > a,

n(r) = an0/r, (2.26)

where n0 is the value of the density at r = a. As indicated in figure 2.5, the

area occupied by a given density value in the mantle region is 2πr dr. When

normalized, this area is proportional to the probability of density value n(r);

thus
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Figure 2.5: Schematic of an idealized density structure. The structure core
extends to radius a, and its mantle for r > a goes as n(r) ∝ r−1.

P (n) dn = 2πr dr. (2.27)

Eqn. (2.26) can be used to remove rdr from Eqn. (2.27); doing so yields

P (n) dn =
Cn
n3

dn (2.28)

whereCn is a normalization constant chosen such that the probability integrated

over the whole filament is equal to filament packing fraction, which is the

probability of finding the filament in a given area.

The PDF for density gradients is found following the same procedure as

above, and noting that ∇n ≡ n′ ∼ r−2. Expressing rdr in terms of n′ dn′ using
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r ∼ (n′)−1/2, we have

P (n′) dn′ =
Cn′

(n′)2
dn′, (2.29)

where Cn′ is another normalization constant. This is a Lévy distribution, the

type of non-Gaussian distribution inferred from pulsar signal width scaling

(Boldyrev and Gwinn, 2003b).

2.5 Initial averaging during structure formation

In the previous section, it was argued that a density profile n(r) = an0r
−1 is a

reasonable assumption from KAW dynamics and turbulent equipartition. A

significant correction to this argument addresses the effect of density fluctuation

averaging during the initial stages of filament formation.

In the initial stages of structure formation, when a circular structure is estab-

lishing its shear boundary layer, the region that eventually becomes a structure

entrains density fluctuations of positive and negative sign. The entrained initial

density fluctuations mix preferentially in the θ̂ direction—being the direction

of KAW propagation within a structure core—which gives rise to radial density

variations inside a structure’s boundary. This averaging process results in the

density of the structure having arbitrary sign and amplitude relative to the cur-

rent. Correlation between the radius of the density structure and the radius of

the |B| structure is expected, as they both have 1/r mantles, beyond which the

density field is no longer preserved from turbulence. For structures with radial

extent on the order of the initial density correlation length, the density field in

the structure has decreased radial variation, and will be nearly monotonic in

the radial coordinate.

Upon formation, the density field inside the structure is preserved from

mixing with turbulence by virtue of being inside the shear boundary layer,
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where turbulence cannot disturb it.

2.6 Discussion and Conclusions

In this chapter we derived the KAW dispersion relation, making note of the

capacity of this mode to generate density fluctuations on small scales. A nonlin-

ear scalar three-field fluid model was shown to capture the essential physics of

the KAW mode. The model and its two-field simplification allow for nonlinear

interaction of KAWs at varying scales, such that a KAW with small wavelength

can propagate along the B field of a larger-scale KAW wave.

By considering non-trivial configurations in which the nonlinearities of

Eqns. (2.9) - (2.11) are zero, it was a simple matter to demonstrate that long-

lived structures can be expected to be circularly symmetric with arbitrary radial

profiles, or elongated, sheet-like structures with one direction of symmetry;

however, this yields no insight into how these structures persist in the midst of

turbulent mixing at the structure boundary.

Dimensional analysis applied to a two-timescale formulation of Eqns. (2.15)-

(2.16) revealed the importance of a shear boundary layer in Bθ(r) at the edge

of a circular structure as the means by which a structure preserves itself when

interacting with turbulence.

The statistical properties of a density structure with a n(r) ∝ 1/r mantle

were shown to yield non-Gaussian statistics for the gradient of density. This re-

sult is significant for pulsar scintillation in the ISM which predicts non-Gaussian

statistics in the density difference field.

More detailed aspects of structures will be investigated in the next chapters.

Chapter 4 discusses in detail the means by which a structure clearly distin-

guishes itself from turbulence. It proposes the Hessian field of ψ as a way

to measure the combined importance of a large current filament in the core
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of a structure that is surrounded by a shear boundary layer in Bθ(r). It will

be shown that flux tubes that are delimited in isosurfaces of ψ are an appro-

priate way to robustly and algorithmically separate circular structures from

turbulence.

In contrast to the local analysis of individual structures in chapter 4, the global

statistical properties of the magnetic, current, density, and density gradient

fields will be presented in chapter 5. That chapter will investigate the deviations

from Gaussian statistics in the fields of interest, and investigate the effect of

structures on the kurtosis.

The next chapter gives details of the numerical scheme used to evolve Eqns.

(2.9) - (2.11) and describes the initialization of the ψ, φ, and n fields.
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3 numerical solution method and initial conditions

We present here an explicit pseudo-spectral method for numerically integrating

a nonlinear PDE in the Fourier domain. We employ an explicit rather than

implicit scheme to resolve physics at all timescales, as is often required in

multi-scaled turbulence simulations. Before devising a numerical scheme for

evolving a solution, we employ an integrating factor transformation (Canuto

et al., 1990). To within numerical precision, this transformation makes possible

the exact integration of the linear terms and removes their associated time

stepping constraints (Courant et al., 1967). All stability constraints come from

the numerical evolution of the nonlinear terms. We formulate the scheme in

general and then apply it to model Eqns. (2.9) - (2.11) for completeness.

We begin with a generalized PDE in time t and space x, with periodic

boundary conditions. We collect the linear terms in a linear transform L and

the quadratic nonlinearities are collected in N :

∂tv(x, t) = Lv(x, t) +N [v(x, t)] . (3.1)

We make the substitutions

v(x, t) = F−1 [vk(t)] (3.2)

Lv(x, t) = F−1 [Lkvk(t)] (3.3)

and

N [v(x, t)] = F−1 [Nk [vk(t)]] (3.4)

into Eqn. (3.1), where y(x, t) = F−1 [yk(t)] is the inverse Fourier transform
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of y(x, t) with y(x, t) = F−1 [F [y(x, t)]]. The resulting nonlinearly coupled

ODEs are

d

dt
vk(t) = Lkvk(t) +Nk [vk(t)] (3.5)

where we assume the Lk matrix is time-independent.

To employ an integrating factor that transforms Eqn. (3.5), we use the ma-

trix exponential exp(tLk), noting the commutability relation exp(tLk)Lk =

Lk exp(tLk). To use the integrating factor, we note the equality

d

dt

[
e−tLkvk(t)

]
= e−tLk

[
d

dt
vk(t)− Lkvk(t)

]
, (3.6)

which allows us to introduce the integrating factor exp(−tLk) into Eqn. (3.5)

and express it in the compact form

d

dt

[
e−tLkvk(t)

]
= e−tLkNk [vk(t)] . (3.7)

The matrix exponential of tLk is computationally feasible if the linear coefficient

matrix Lk is diagonal (the case for Eqns. (2.9) - (2.13)) or easily diagonalizable.

Defining

uk(t) = e−tLkvk(t) (3.8)

and

Nk [t,uk(t)] = e−tLkNk [vk(t)] = e−tLkNk
[
etLkuk(t)

]
, (3.9)

Eqn. (3.7) becomes

d

dt
uk(t) = Nk [t,uk(t)] , (3.10)
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which is the canonical form appropriate for discretization by a numerical

scheme.

For example, a simple two-stage second-order Runge-Kutta scheme to ap-

proximate uk(t+ ∆t) given uk(t) is

u
(n+1/2)
k = u

(n)
k +

∆t

2
Nk

[
t(n),u

(n)
k

]
u

(n+1)
k = u

(n)
k + ∆tNk

[
t(n+1/2),u

(n+1/2)
k

]
, (3.11)

where ∆t is the time step. In Eqns. (3.11) we used the standard notation x(n)

to indicate discrete time level n, so t(n+1/2) = t(n) + ∆t/2 and u
(n+1)
k is the

numerical approximation for uk(t+ ∆t).

In terms of vk(t) = exp(tLk)uk(t), Eqns. (3.11) take the more explicit form

v
(n+1/2)
k = e∆t/2Lk

[
v

(n)
k +

∆t

2
Nk
[
v

(n)
k

]]
v

(n+1)
k = e∆tLkv

(n)
k + e∆t/2Lk∆tNk

[
v

(n+1/2)
k

]
. (3.12)

To apply scheme (3.12) to model Eqns. (2.9) - (2.13), we make the substitu-

tions

vk(t) =


ψk(t)

k2φk(t)

nk(t)

 , (3.13)

Lk = −


η0k

2 + η2k
4 0 0

0 ν0 + ν2k
2 0

0 0 µ0k
2 + µ2k

4

 , (3.14)
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and

Nk [vk(t)] =


F
[
α∇‖n−∇‖φ

]
F
[
∇‖J −∇φ× ẑ · ∇∇2

⊥φ
]

F
[
∇φ× ẑ · ∇n−∇‖J

]
 , (3.15)

where ψk, −k2φk, and nk are the spatial Fourier transform of ψ, ∇2
⊥φ, and n.

Here we do not expand the nonlinear transformed terms in convolutions over

k because the numerical scheme will integrate these terms pseudospectrally.

The matrix exponential takes the simple form

etLk =


e−(η0k

2+η2k
4)t 0 0

0 e−(ν0+ν2k
2)t 0

0 0 e−(µ0k
2+µ2k

4)t

 . (3.16)

We evolve Eqns. (2.9) - (2.13) according to a second-order scheme similar

to scheme (3.12) or a fourth-order scheme with minimal storage requirements

(Carpenter and Kennedy, 1994). The equations are modeled in a 2D periodic

domain of size 2πL× 2πL on a mesh with typical resolution of 512× 512. The

nonlinearities are advanced pseudospectrally and with full 2/3 dealiasing in

each dimension (Orszag, 1971).

The resolution is not large due to unfavorable scaling of dispersive KAWs.

The dispersion relation Eqn. (2.7) indicates that the wave frequency of KAWs

with large wavenumber scale as ω ∝ k2. To double the dynamic range for 2D

KAW turbulence requires a factor-of-four decrease in the time step to suffi-

ciently resolve all Fourier modes in time, which becomes prohibitive for large

resolutions.
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3.1 Initial Conditions

The ψk, φk and nk fields are initialized such that the energy spectra are broad-

band with a peak near k0 ∼ 6 − 10 and a power law spectrum for k > k0.

Spectral exponents of decaying turbulence are not of central concern for the

present work. As long as the initial conditions excite a broad range of KAW

modes such that they interact nonlinearly for many Alfvén times, the results

are not sensitive to the particulars of the spectral exponent, but are sensitive

to the values of the damping coefficients. The falloff in k is predicted to be

k−2 for small-scale turbulence. Craddock et al. (1991) use k−3, between the

current-sheet limit of k−4 and the kinetic-Alfvén wave strong-turbulence limit

of k−2. The numerical solutions considered here have either k−2 or k−3. The

primary qualitative difference between the two spectra is the scale at which

structures initially form. The k−2 spectrum has more energy at small scales,

leading to small initial characteristic structure size relative to simulations with

k−3. After a few tens of Alfvén times these small-scale structures merge and

the system resembles the initial k−3 spectra.

The mode amplitude for magnetic, internal, and kinetic spectra is set ac-

cording to

E(k) ∝ k

k−s+1 + k−s+1
0

, (3.17)

where s = −3 or s = −2 is the spectral exponent. In figure 3.1 the initial energy

spectrum for a representative simulation with resolution 512× 512 is shown.

The spectra approach E(k) ∝ k−3 for intermediate and large k.

In terms of the discretized transformed quantities ψk, nk, and φk, the spectra

are
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spectral exponent k−3 is plotted for comparison. The energy spectra approach
k−3 for medium-to-large k.
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EB(k) = k2|ψk|2

EK(k) = k2|φk|2

EI(k) = α|nk|2.

(3.18)

The initial phases are either cross-correlated or uncorrelated. By cross-

correlated we mean that the phase angles for each Fourier component for

different fields are equal. In general,

nk = Akeiθ1(k), ψk = Bkeiθ2(k), φk = Ckeiθ3(k), (3.19)

where Ak, Bk, and Ck are the (real) amplitudes of the Fourier modes, set

according to the spectrum power law. For cross-correlated initial conditions,

θ1(k) = θ2(k) = θ3(k) for each k. For uncorrelated initialization, there is no

phase relation between corresponding Fourier components of the nk, ψk, and

φk fields.

The initial correlations have implications for the amplitudes of the long-

lived structures in density, magnetic, and current fields. Ampere’s Law dictates

that mergers between circular structures occur for parallel current filaments

only. When the initial conditions are correlated, a positive (negative) current

filament will be associated with a positive (negative) density fluctuation for the

duration of the simulation. A merger between two current filaments will merge

their like-signed density fluctuations, and like-signed density fluctuations will

frequently merge with other like-signed fluctuations. This provides many

opportunities for merged density fluctuations to grow in intensity through

successive mergers. For uncorrelated initial conditions, a positive current

filament may be associated with a positive or negative density fluctuation.

Mergers between current filaments will frequently merge density fluctuations

of opposite sign, providing the opportunity for net cancellation of the density
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field in the merged region. If significant differences in the large-scale structures

in the density field exist between uncorrelated and correlated initial conditions,

this merger cancellation effect may be in play.

One mitigating factor in the above picture of density structure amplification

through mergers is the generation of uncorrelated turbulence in the course of

merger events. Mergers being high-energy events, they generate turbulence in

a local (in real space) cascade. Relative to the length scales of merging density

structures, the generated turbulence has a small correlation scale. A fraction of

the turbulence inevitably is incorporated into the merged structure, and this

incorporated turbulence decreases the density structure amplitude.

The effect of phase correlation on the profiles of filamentary structures and

on the global statistics will be seen in chapters 4 and 5.

The results in Craddock et al. (1991) focused on the formation and longevity

of current filaments in a turbulent KAW system, and solved the two-field model,

Eqns. (2.15) - (2.16). To preserve small-scale structure in the current filaments,

these numerical solutions set η = 0 and had µ ∼ 10−3, with a resolution of

128× 128, corresponding to a kmax of 44. Large-amplitude density structures

that would have arisen were damped to preserve numerical stability up to an

advective instability time of a few hundred Alfvén times, for the parameter

values therein.

The numerical solutions presented in subsequent chapters explore a range

of parameter values for η and µ. They make use of hyper-diffusivity and hyper-

resistivity of appropriate strengths to preserve structures in n, B, and J . An

advective instability is excited after ∼ 102 Alfvén times if resistive damping is

negligible. The η = 0 solutions—not presented here due to their poor resolution

of small-scale structures—see large-amplitude current filaments arise, but they

can be poorly resolved at this grid spacing. With no resistivity, the finite number
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of Fourier modes cannot resolve arbitrarily small structures without Gibbs

phenomena resulting and distorting the current field.

We have found through experience that small hyper-resistivity and small

hyper-diffusivity preserve large-amplitude density structures and their spatial

correlation with the magnetic and current structures, while preventing the

distortion resulting from poorly-resolved current sheets and filaments. They

allow the numerical solutions to run for arbitrarily long times, and the effects

of structure mergers become apparent. These occur on a longer timescale than

the slowest eddy turnover times.

3.2 Discussion and Conclusions

This chapter has described a general framework for explicit numerical schemes

that employ an integrating factor to evolve the linear terms exactly. The inte-

grating factor formulation can incur significant computational cost, depending

on the difficulty in diagonalizing the linear coefficient matrix Lk and the com-

putational cost in computing exp(∆tLk). These computational costs are to be

weighed against the stability constraints coming from the linear terms in L. If

the CFL constraints are dominated by constraints stemming from discretizing

the parabolic damping terms, then the integrating factor formulation may pos-

sibly provide net computational gain by evolving these terms exactly. Parabolic

constraints are often more strict than hyperbolic constraints stemming from

nonlinear terms. An alternative method to evolve equations with strict stability

constraints is to formulate the scheme implicitly, rather than explicitly. In our

system, it is desirable to resolve KAW modes over a wide range of scales so

that the long-term emergent features that result after small-scale structures

merge may become evident. Resorting to implicit numerical schemes to evolve

quadratic nonlinearities incurs some degree of approximation for small-scale
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modes. Employing an implicit scheme to evolve the nonlinear terms does not

resolve the small-scale features as accurately as an explicit scheme, which can

be a requirement in turbulent systems. It is possible to evolve the linear terms

implicitly and the nonlinear terms explicitly, however, and would circumvent

these shortcomings.

The second part of this chapter described the initializations used in the

numerical solutions to be presented in subsequent chapters. The importance of

the effect of different phase correlations on the amplitudes of density structures

was also described.
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4 local analysis of structures in kaw turbulence

Filaments, sheets, and active turbulence comprise the three categories into

which decaying turbulence partitions itself, and these three components are

expected in driven turbulence as well.1 The two-timescale analysis and subse-

quent asymptotic balances presented in chapter 2 indicate that KAW turbulence

can be expected to have quasi-circular filaments in density, current, and mag-

netic fields. A large-amplitude current filament at the center of each filament

generates a Bθ(r) field with sufficient radial shear to preserve the structure

from turbulent disruption. In addition to these radially symmetric structures,

elongated sheet-like structures are also expected in KAW turbulence, as both

quasi-circular and sheet-like structures have identically zero nonlinear terms in

Eqns. (2.9)–(2.11). The significance is that filaments and sheets do not partici-

pate in nonlinear transfer of energy to different scales, and can exist on long

timescales in relation to turbulent timescales.

In this chapter we focus on refining methods and techniques for separating

filamentary structures from the rest of a turbulent domain. First we investigate

the Hessian of ψ, a scalar field calculated from the matrix of second-order

derivatives of ψ. The usefulness of the Hessian is its ability to characterize

coherent structures having a magnetic shear boundary layer in the edge. Fol-

lowing that, we develop a technique inspired by Geographical Information

Science using, again, the ψ field to separate all flux tubes from the background

field. We will show that the flux-tube population in decaying KAW turbulence

has unique properties as compared to the background field. We argue that the

flux tubes serve as an adequate proxy for the filamentary structures defined in

chapter 2.
1No analytical development for sheet-like structures was presented in chapter 2, however, and

sheet-like structures will be quantified statistically in chapter 5.
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This chapter does not develop techniques for separating long-lived sheet-like

structures from filamentary structures or turbulence. Sheets are non-localized,

and their boundaries are significantly more difficult to delineate in a robust

fashion, whether analytically or algorithmically. Certain statistical properties of

sheets will become evident in following chapters; their local analysis is deferred

to future work.

Throughout the chapter, our focus is on the local physical properties of

quasi-circular structures, rather than a global statistical description of the tur-

bulent fields. Our approach makes necessary a means to define the center and

boundary of filamentary structures, which motivates our development of a

technique for distinguishing filaments from everything else. Other approaches

that emphasize a global statistical understanding do not require separating

components from each other in a turbulent field. Representative of the global

statistical approach are the structure functions of She and Leveque (1994). Here

we confine our focus to a localized understanding of how filamentary structures

can exist when immersed in a turbulent bath, and how these structures can

then contribute to making the turbulent field intermittent. For example, rather

than describing the structure functions for the velocity field, we are interested

in the radial profiles of the current, magnetic, density, density gradient, and

Hessian fields of individual quasi-circular structures.

In the following sections we investigate the theoretical properties of the

Hessian of ψ for turbulence, sheets, and quasi-circular structures. We then

develop a technique for robustly distinguishing flux tubes from turbulence,

and investigate their properties. Combined, these two means of distinguishing

quasi-circular structures from the other two components of decaying KAW

turbulence emphasize the quantifiable uniqueness of quasi-circular structures

when compared to the remaining components, suggesting that these structures
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may contribute significantly to large scattering events in pulsar scintillation.

Examples of four individual structures demonstrate the variety of radial

profiles in different fields associated with each structure. We show that the

characteristic radii of structures in different fields correspond to theoretical

expectations; that structures have suppressed nonlinearity densities and en-

hanced energy densities; and that structures have a greater degree of alignment

than the background.

4.1 Structure Identification - Hessian Field

Key aspects of the analysis in chapter 2 can be quantified via the Hessian matrix,

H , and its determinant (Servidio et al., 2010; Craddock et al., 1991; Terry, 2000;

Terry and Smith, 2007) 2. (Hereafter the term Hessian is used interchangeably

with Hessian determinant.) If ξ is a C2 scalar field, the Hessian of ξ is the matrix

of second partials of ξ,

H(ξ) =

 ∂xyξ −∂xxξ

∂yyξ −∂yxξ

 . (4.1)

Equating mixed partial derivatives, the determinant of Eqn. (4.1) is

det(H(ξ)) = ∂xxξ ∂yyξ − (∂xyξ)
2. (4.2)

The Hessian has desirable properties, among which are its ability to distin-

guish some coherent structures from turbulence, and to serve as a predictive

diagnostic. By formal inspection, the Hessian field is positive (and has a local

maximum) whenever the underlying scalar field ξ is at a local maximum or
2In Craddock et al. (1991), Terry (2000) and Terry and Smith (2007), the field known as the

Gaussian Curvature, CT is actually the determinant of the Hessian. The Gaussian Curvature is
directly proportional to the Hessian determinant; the quantities differ by a denominator term.
Compare the definition for CT in Porteous (1994) to the Hessian in Binmore and Davies (2007).
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minimum, where the repeated partial term dominates the mixed partial term.

The Hessian is negative at saddle points (and has a local minimum) where the

mixed partial term dominates the repeated partial term.

It is helpful to consider H(ψ), the Hessian of the flux field, in polar co-

ordinates. Transforming Eqn. (4.2) from Cartesian to polar coordinates and

distinguishing fluctuating from coherent components yields

det(H(ψ)) =
[
J0 + j̃

]2−[r∂r ( b̃r
r

)
− 1

r
∂θ b̃θ

]2

−

[
r∂r

(
Bθ + b̃θ

r

)
+

1

r
∂θ b̃r

]2

.

(4.3)

In Eqn. (4.3), det(H(ψ)) is large and positive at the center of a structure, where

turbulence is suppressed and J0 is at a maximum. At the edge of a coherent

localized structure, J0 diminishes relative to the core, and the shear term,

∂r(Bθ/r) becomes maximum, making det(H(ψ)) large and negative. Outside

the filament, det(H(ψ)) is governed by b̃θ, b̃r and j̃. These components are in

approximate balance; otherwise the conditions for forming a coherent structure

are satisfied and a structure should be present. Hence, det(H(ψ)) for a coherent

structure will have a large positive core surrounded by a negative annulus of

magnetic shear. In turbulent regions, det(H(ψ)) will be small.

The Hessian of ξ can be formulated in terms of the local curvature of a field,

and this formulation can help give insight into the Hessian’s limitations as a

diagnostic tool. At every point on the scalar field ξ one defines two quantities

termed the principal curvatures. For a hemisphere, the principal curvatures at

every point are both constant, and are both positive for domes, both negative for

cups. At saddle points, the principal curvatures are of opposite signs. For a flat

region, both principal curvatures are exactly zero. An elongated sheet will have

one curvature zero, the other positive or negative. The Hessian is proportional

to the product of the principal curvatures, and this has implications as to the
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Hessian’s suitability for distinguishing sheet-like structures from turbulence.

This formulation makes it obvious as to why the Hessian is always positive for

both peaks and troughs, since the product of two negative principal curvatures

will be a positive quantity. The Hessian is always negative for saddle-like

regions because the principal curvatures there are of opposite sign.

Elongated sheet-like structures have one dimension that has large curvature

(the dimension transverse to the sheet’s length) and a second dimension with

diminished curvature that approaches zero (the dimension along the sheet’s

length). The Hessian for sheet-like structures is diminished by the diminished

curvature dimension, and the Hessian for sheets is small. As demonstrated

previously, the nonlinear terms in the KAW equations are identically zero for

sheets, so sheets do not participate in nonlinear interactions and may persist

for long timescales in comparison to turbulent timescales. The Hessian will

not distinguish sheets from turbulence even though sheets are persistent, large-

scale and large-amplitude structures. The Hessian’s value is in distinguishing

coherent filaments from turbulence and sheets.

Figure 4.5 shows |B| and the Hessian of the underlying ψ field after evolving

some time from randomized initial conditions for a representative run with α =

1. Associated with each quasi-circular structure in |B| is a prominent peak in

H(ψ), and each large peak in H(ψ) is surrounded by a negative annulus where

the radial shear in Bθ is at a maximum. The elongated sheet-like structures

visually prominent in |B| are suppressed by H(ψ).

The positive-core-negative-annulus signature of the Hessian field for a

coherent structure gives an indication that a coherent filamentary structure

has a center containing a large current filament and an edge with large radial

magnetic shear. Another formulation of structures by means of flux tubes and

their separatrices encompasses all coherent structures as defined by the Hessian
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Figure 4.1: |B| andH(ψ) for the same ψ field. The nearly circular |B| structures
are enhanced in the H(ψ) field, while the elongated sheet-like structures in |B|
are suppressed in H(ψ). The enhanced structures in H(ψ) have the positive-
core-negative-annulus signature discussed in the text.
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field and has the added benefit of easily delineating the structure boundary.

This technique is developed in the next section.

4.2 Structure–Turbulence Discrimination

Magnetic nulls, the set of points at which∇ψ = B = 0, include all points that

are local extrema in ψ—known as O points, peaks, or pits—and the locations

of magnetic reconnection—known as X points, saddle points, or passes. In a

turbulent field, O points and X points move as the magnetic field is advected in

time. The nulls are destroyed when reconnection merges two like-signed flux

regions (or like-signed current filaments), and they are created in the presence

of tearing instabilities. Details of critical point selection and identification on a

discrete grid are discussed in appendix A.

There exist physically meaningful spatial regions definable by X points and

O points, and the boundaries of these regions separate filaments from turbu-

lence and sheets in a robust manner. To describe these regions, it is instructive

to consider the two-dimensional ψ field as a topological surface embedded in

three dimensions. By treating ψ as a surface, we can bring to bear the constructs

developed in Geographical Information Science (Servidio et al., 2010; Rana,

2004; Carr et al., 2003; Carr, 2004), which has developed useful techniques for

extracting connections between critical points on an N-dimensional scalar man-

ifold (in our case, the magnetic nulls on the 2-dimensional ψ field) (Rana, 2004).

The O points are local extrema of ψ, and the X points are the saddle points of

ψ. One way of connecting X points and O points, the surface network, will be

described presently. Each saddle point has associated with it one direction of

positive curvature c+ and one direction of negative curvature c−. By ascending

along every ridge line starting at ±c−, it is possible to associate each X point

with two peaks (possibly not unique). By descending along every course line
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Figure 4.2: The surface network for a generated 2D scalar field. The critical
points are indicated as red squares for local maxima (peaks), blue circles for
local minima (pits) and black diamonds for saddle points (passes). Together,
the peaks and pits comprise the O points, and the saddle points are the X
points. The surface network of connections between X points and O points are
indicated. Each X point is connected to four O points, two peaks and two pits.
Each peak and each pit is connected to one or more saddle points.
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starting at ±c+, one can do the same for two pits. These connections form

the surface network, and in it every X point is connected to two peaks (local

maxima) and two pits (local minima). Every O point in the surface network is

connected to one or more X points.

A surface network for generated data is shown in figure 4.2. There, the edge

connectivity is periodic in both dimensions, and the connections of the surface

network are shown in dotted lines. In the figure, the number of X points equals

the number of O points, a constraint dictated by the Euler equality and the

edge connectivity (Rana, 2004).

The surface network allows one to define disjoint spatial regions, each

of which encompasses a magnetic flux tube. Consider a peak critical point

in the surface network, pa, and the set of its connected saddle points, SX =

{X|X is connected to pa in the surface network}. Each saddle point in SX has

aψ value ofψ(X), all of which are smaller thanψ(pa), pa being a local maximum.

The saddle pointXm with the largest value of ψ(X) for allX ∈ SX is the closest

saddle point to pa in terms of the flux field ψ isocontours. The point pa and

its maximal saddle point Xm define bounding isocontours, pa from above, Xm

from below. The spatial region of ψ bounded by these isocontours is the flux-

tube region we are after. By associating every O point with its closest X point

in this manner, and defining the region in ψ bounded by their isocontours, one

defines a flux tube associated with every O point. An advantage to this method

of defining flux tubes is that it is not dependent on an amplitude cutoff or

adjustable parameter, and the method distinguishes both small- and large-scale

flux tubes from their surrounding environment.

In addition to selecting individual flux-tube regions, the surface network

also associates flux tubes in an hierarchical manner, such that flux tubes that

are “closest” in terms of flux coordinates are grouped before flux tubes that are
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further away. These higher-order flux tubes can be thought of as larger flux

tubes with interior structure, and a hierarchy of nesting flux tubes results.

Coherent filamentary structures correspond to flux tubes with a large asso-

ciated area, with large amplitude in an appropriately averaged sense, and with

no or very little interior structure—i.e. the interior of the flux tube contains

exactly one magnetic null, an O point. Turbulent regions correspond to regions

that contain flux tubes with small area and small amplitude. Sheet regions are

regions devoid of magnetic nulls, and are what remains after discarding coher-

ent filaments and turbulent flux-tube regions. Sheets have large amplitude and

contain no X points or O points.

Examples of Flux-Tube Selection

An example of flux-tube detection using a randomly generated scalar field is

shown in figure 4.3. It uses the same example data as figure 4.2. In the figure,

flux tubes are shown in white, and each flux tube encompasses an O point,

and abuts an X point on its edge. The abutting X point for each flux tube is

the closest X point in ψ contour distance to the O point of the flux tube, and

in many cases is not the nearest X point to an O point in Euclidean distance.

Also evident is that not every X point abuts a flux tube – these X points are

associated with higher-order flux tubes, i.e. flux tubes that are a conglomerate

of nested flux tubes. Details of the algorithm used to select flux tubes is given

in appendix A.

Figure 4.4 visualizes the ψ field for numerical results that have advanced

in time before many large structure mergers have taken place. Also plotted in

the figure are the critical points—blue circles are local minima, red squares

are local maxima, and black diamonds are the saddle points (X points). Three

features are qualitatively apparent:
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Figure 4.3: Same example data and surface network as figure 4.2, with flux-tube
regions shown in white. Each flux tube encompasses an O point (red square for
local maximum, blue circle for local minimum) in its interior and abuts an X
point on its edge. The X point abutting a flux-tube region is the closest X point
to the O point in flux surface contours. In many cases the nearest X point to an
O point in flux contours is not the nearest X point in Euclidean distance.
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Figure 4.4: The ψ field with associated critical points. Blue circles are local min-
ima, red squares are local maxima, black diamonds are saddle points. Together
the local minima/maxima comprise the O points and the black diamonds are
the X points.
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• isolated large-scale basins with a minimum (maximum) point and large

separation between the minimum (maximum) and the nearest critical

point;

• regions with small inter-point distance and clustering of many critical

points;

• regions devoid of all critical points and not evidently associated with

either of the previous two classifications.

If a qualitative mapping from critical point regions to domain classifications

is to be made, then the critical points with large separation correspond to the

O points and X points of large-scale flux tubes, the critical points with small-

separation are turbulent regions, and regions associated with no critical points

are associated with magnetic field sheets.

The magnitude of the magnetic field, |B|, computed from the ψ field of

figure 4.4 is shown in figure 4.5. The visually prominent large quasi-circular

regions in |B| correspond to the peak or pit basins in ψ associated with large-

scale flux tubes. Each quasi-circular structure has |B| = 0 at the center where

|∇ψ| = 0 and has a large-amplitude annulus surrounding the |B| = 0 core.

Some quasi-circular structures in |B| have a secondary ring at larger radius,

often elliptically distorted. It is these large-scale quasi-circular regions that we

propose to select and separate from the surrounding turbulence and elongated

sheet-like structures. The behavior of the radial shear in Bθ outside the |B| = 0

core is of central interest to the theory developed in chapter 2.

Also prominent in figure 4.5 are elongated sheets that extend throughout

the domain. Other than their elongation, sheets have arbitrary geometry and

are not easily characterized by a few parameters; neither are they locatable

to a confined region. The maximum sheet amplitudes are on the order of the
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Figure 4.5: The |B| field computed from figure 4.4. Visually prominent are
the large-amplitude quasi-circular structures associated with the O points
designated in the ψ figure.
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Figure 4.6: The regions selected using the algorithm described in the text. The
field is the same |B| field as in figure 4.5 with the unselected regions set to
white. The selection procedure captures the large-amplitude/large-scale fea-
tures visually evident in figure 4.5 in addition to small-scale features associated
with turbulent regions.

maximum amplitudes for the quasi-circular filamentary structures. Given their

non-local extent, sheets pose challenges for selection that filaments do not, and

we do not develop techniques in the present work for separating sheets from

the other components. Their aggregate features are described below and their

statistical properties are included in subsequent chapters.

Figure 4.6 shows the same |B| field as figure 4.5 with the non-flux-tube areas



61

masked out (shown in white). The flux-tube regions and their associated quasi-

circular structures are selected by the algorithm, and the algorithm captures the

visually prominent circular features in |B|. The areas of the flux-tube regions

range from a few grid points to thousands of grid points for the largest regions.

The smallest flux-tube regions are associated with turbulent regions and the

clusters of critical points in figure 4.4. The largest flux-tube areas contain a cen-

tral filamentary structure that is quasi-circular, and the surrounding penumbra

is often highly distorted and non-circular. It is the central quasi-circular struc-

ture that the shear boundary layer theory describes; the region surrounding

the core structure is a secondary region that evolves with the background.

The primary limitation of the surface network and flux-tube selection as

analysis tools is that they are only defined for a scalar valued field (ψ in our case).

The analogue of the surface network for a three-dimensional magnetic field is

the magnetic skeleton (Haynes and Parnell, 2010). The magnetic skeleton of a

three-dimensional magnetic field is significantly more challenging to robustly

calculate, and its generality is not necessary for the present work.

The isolation of individual flux tubes makes local region analysis possible.

For example, a large amplitude flux tube selected by the selection algorithm can

be characterized by its value at the O point and its associated X point, and the

boundary radial magnetic shear can be approximated by probing the values of

the magnetic field amplitude at the flux-tube boundary. The selected regions

follow the magnetic field lines of the local separatrix, and gives a natural and

physical delineation of the boundary for each flux tube, which is to be contrasted

with threshold-based measures based on curvature. Selection methods based

on the amplitude of current filaments, or on the amplitude of the Hessian of

ψ (Terry and Smith, 2008), are successful at identifying the largest amplitude

structures with a strong central filament that distinguishes it from surrounding
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turbulence and sheets. However, these criteria do not yield information on the

radial extent of a coherent structure, and they are dependent on an arbitrary

threshold parameter to select structures. The Hessian has value in that it is

large and positive in amplitude at the core of filamentary structures, which can

be used to indicate which filaments are the most dominant in amplitude and

persistent in time in a domain. But it is unable to partition the domain into

components.

The contour tree of the density field, as above, partitions the density field

into three components: filaments, sheets, and turbulence. The KAW system

would be expected to have general correspondence between structures in the

density field and structures in the magnetic and current fields.

4.3 Radial Profile of Filamentary Structures

After defining structure boundaries via flux-tube extraction in the previous

section, it is possible to investigate the dependence of fields of interest on

distance from the flux-tube center. Here distance can specify radial distance

from the flux tube’s O point, or it can specify the ψ flux coordinate from the

O point. The flux coordinate is a well-defined proxy for distance from the O

point within the flux tube, where there is a one-to-one relationship between a

single connected isocontour and flux coordinate. Radial distance from an O

point is an acceptable measure for sufficiently quasi-circular flux tubes, but fails

to accurately quantify distance from the O point in the case of elongated flux

tubes. In the following figures, we use Euclidean distance as the radial measure,

as it is generally applicable when the ψ vs. r relation is non-monotonic.

Figures 4.7–4.10 show four representative quasi-circular structures across

six scalar fields. The field visualization for the structure is shown on the left and

the θ̂-averaged radial profiles for each field are plotted on the right. The error
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bars in the θ̂-averaged profiles indicate the ±2σ spread in values. The fields

shown in each figure are, top to bottom, ψ, |B|, n, |∇n|, J , and H(ψ). Overlaid

on the field visualizations on the left are the separatrix in black surrounding the

central quasi-circular structure. In many cases the separatrix is highly irregular

and non-circular. The radial plots on the right include a horizontal zero-level

in orange for reference.

Ideal Structure

Figure 4.7 displays a structure that corresponds to the theory in both qualitative

and quantitative aspects. The ψ vs. r dependence is nearly linear with small

deviations, and the core magnetic field structure is azimuthally symmetric and

extends to r ∼ 0.1ρs. In the density field, inside the separatrix, the core density

structure is also azimuthally symmetric and well defined as determined by

the error bars for r < 0.15ρs. The same can be said for the |∇n| field, with a

well-defined central core and small values between the central core and the

separatrix radius. The density structure in the core is monotonically decreasing

with radius until r ∼ 0.07ρs. The |∇n| field has a similar structure to the |B|

field: nearly zero for r = 0, a linear rise with a turn over at r ∼ 0.05ρs and flat

outside the central core, with large fluctuations about the mean. The core |∇n|

structure is contained within a smaller 〈r〉 than the core |B| structure. This is to

be expected; if n(r) ∼ B(r) ∼ r−1, then n′(r) ∼ r−2, and 〈r∇n〉 < 〈rn〉, where

〈rF 〉 =

∫ rmax
0

dr r|F (r)|∫ rmax
0

dr |F (r)|
. (4.4)

The current field and J vs. r plot in figure 4.7 correspond to the theoretical

expectations. The J field peaks at r = 0 then monotonically decreases to radius

rJ ∼ 0.07ρs, which is less than the |B| core structure radius of rB ∼ 0.10ρs. For

r > rJ the J(r) profile is near zero.
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shown in color on the left, with the separatrix indicated in black. The θ̂-averaged
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for reference.
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The Hessian of ψ,H(ψ), in figure 4.7 also corresponds closely to theory for a

coherent structure. From a peak at r = 0,H(ψ) has a zero crossing at r ∼ 0.05ρs,

and is negative out to radius r ∼ 0.10ρs. The positive central core is the large

J2
0 component in Eqn. (4.3). For 0.05 < r/ρs < 0.10, H(ψ) is negative, which

corresponds to the negative square of the radial shear in Bθ, −[∂r(Bθ/r)]
2 for

the coherent structure. The shear is largest in absolute value surrounding the

core J2
0 component. For r > 0.10ρs, H(ψ) is zero, with small fluctuation levels

in relation to the maximal squared shear (about −2 at r ∼ 0.07ρs) and the

maximal squared current (about 14 at r = 0). The H(ψ) core structure extends

to r ∼ 0.05ρs < rJ , which is expected from the form of Eqn. (4.3). In Eqn.

(4.3) the competition between the positive J2
0 term in the core and the negative

−[∂r(Bθ/r)]
2 term at the edge of the coherent structure necessarily reduces the

zero-crossing point for H(ψ) in relation to rJ .

Structure with Density Variation in Core

In comparison to the circularly symmetric structure in figure 4.7, the structure in

figure 4.8 is an example of a coherent structure with strong elliptical distortion,

but retains many expected characteristics nonetheless. The elliptical distortion

inψ is manifest in the distortion in the separatrix as well as the large fluctuations

about the mean evident in the θ̂-averaged plots. Despite the elliptical distortion,

it is possible to identify a coherent structure in all fields. In the n and |∇n|

fields it is discernible where the separatrix outlines the boundary between a

region with lower overall density values inside as compared to outside, and

the peak in |∇n| that coincides with the separatrix demonstrates this fact quite

clearly. The n(r) and |∇n|(r) plots show variation in the core. The variation in

n(r) is an example of the θ̂-smoothing process described in section 2.5, and the

variations are seen in |∇n| as well.
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The J and H(ψ) radial profiles are less well-defined than the structure in

figure 4.7, but the general theoretical predictions for these fields hold. The

large fluctuation values in all radial plots are a manifestation of the elliptical

distortion of the field, and the nearby structures that add to the fluctuation

values for r > 0.25ρs.

The correspondence between the interior and exterior of the separatrix is

clearly seen in the n and |∇n| fields, revealing that the n and B fields have, in

aggregate, similar correlation length scales in the vicinity of coherent structures.

For this structure, despite the elliptical distortion, n-B correspondence is

evident, as expected from KAW interaction.

Structure with Small Bθ Amplitude

The third structure, shown in figure 4.9, is an example of a structure with weak

|B| amplitudes in the core while retaining strong n amplitudes in the core. The

structure is well-defined and persistent, despite the weak |B| core amplitudes.

This structure gives an indication, again, that the overall amplitudes of n and

|B| may not correlate strongly in the core, but their spatial distributions do

tend to correlate, when restricted to regions inside the separatrix for a given

structure.

Magnetic Structure with Small Density Variation

The structure in figure 4.10 is an example of a structure with a localized separa-

trix region—about 1/4 the area of the separatrix region of the previous three

structures. The separatrix delineates the core structure in ψ, and cuts the |B|

field at its maximum value for the core structure. Notable is the absence of a

structure in both n and |∇n|, despite the presence of a structure in all fields

derivable from ψ. The absence of a structure in n and |∇n| is borne out in the
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Figure 4.10: Structure with localized separatrix and clear definition in ψ, |B|,
J and H(ψ). The n and |∇n| fields do not indicate the presence of a structure,
however.
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radial profiles, which are relatively flat with large fluctuations about the mean.

The structure in figure 4.10 is a specific example of a central characteristic of

KAW physics: that is, correspondence between n and B in the previous struc-

tures is an emergent feature of a turbulent KAW system. The averaging of n

during structure mergers in the initial stages of turbulence decay accounts for

the absence of a structure in n in this case.

Results in following sections will show that, despite the absence of a nec-

essary link between n and B structures, the presence of a coherent structure

in ψ, B, J , and especially H(ψ) does tend to imply the presence of a density

structure in n and |∇n|.

4.4 Radial Extent of Structure Fields

Key aspects of the theory in chapter 2 predict whether a field is more or less

localized for an ideal structure. We use as measure of localization a typical

radius, defined by Eqn. (4.4). For the particular structure shown in figure 4.7,

the principal aspects of the theory hold: 〈rJ〉 . 〈rB〉, 〈rJ〉 . 〈rB〉 and, of

particular significance, 〈rB〉 ∼ 〈rn〉. Do these relations hold over the range of

structure sizes, amplitudes, and shapes?

Figure 4.11 shows 〈r∇n〉 vs. 〈rn〉 for a range of structure sizes. The squared

correlation coefficient is 0.82, and the trend line has slope 0.89, indicating that

〈r∇n〉 ∼ 0.89〈rn〉 over a range of typical radii. Gradients tend to enhance and

sharpen small features, and the typical density-gradient radius is expected to

be smaller than the typical density radius. The non-negligible spread in values

about the trend line is due to at least four factors:

• Elliptical distortion of structures introduces uncertainty in the structure

radial profiles—uncertainty that grows with r. These are legitimately co-
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Figure 4.11: 〈r∇n〉 vs. 〈rn〉 for a range of structure sizes and time values. The
trend line has slope 0.89, indicating that the typical radius for gradient struc-
tures is smaller than that of density structures. Processes that contribute to the
spread about the trend line are described in the text.
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herent structures, but their distortion from circular symmetry introduces

error into 〈rF 〉.

• The calculation of 〈rF 〉 for significantly non-circular structures includes

averaging fluctuations at the edges that are not within the structure sepa-

ratrix.

• The 〈rF 〉 calculation yields consistent results for monotonically varying

F (r). Variation within the structure core can place more weight in the

periphery of the density structure than would otherwise be present for a

non-varying density structure.

• While the O point of structures is a slowly varying point in space, the

X point can change from one time-step to the next for X points that are

in dynamically active regions. The X-point variation changes the outer

boundary of the separatrix from one timestep to the next, sometimes by

large values. In terms of 〈rF 〉, this means the separatrix region can change

by large values from one time step to the next, and tends to affect the

structures with the largest areas. This is consistent with the typical spread

in values being small for 〈rn〉 < 0.07ρs as compared with the spread at

〈rn〉 ∼ 0.20ρs.

Each of these factors introduces variation in the relation between 〈r∇n〉 and

〈rn〉, and contributes to the variation about the trend line in figures 4.11-4.14.

As in figure 4.11, figure 4.12 shows 〈rJ〉 vs. 〈rB〉 for the same structures.

Again, the trend line fits 〈rJ〉 ∼ 0.90〈rB〉, indicating that the typical radius of

the current field tends to be within the typical radius of the magnetic field of

the structure.

Figures 4.11 and 4.12 plot the typical radius for the gradient of a field versus

the typical radius for the field itself, limited to structure radii only. Given the
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Figure 4.12: 〈rJ〉 vs. 〈rB〉 for a range of structure sizes and time values. The
trend line has slope 0.90, consistent with the 0.89 slope for the trend line in
figure 4.11. The characteristic radius for the current of a coherent structure is
typically smaller than that of the magnetic field. See the text for discussion of
processes that contribute to the spread about the trend line.
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Figure 4.13: 〈rB〉 vs. 〈rn〉 for a range of structure sizes and time values. The
trend line has slope 0.75, with a squared correlation coefficient consistent with
figures 4.11 and 4.12. The slope value and moderate correlation indicate the
density field is less localized than the magnetic field over a range of structure
sizes, consistent with theoretical expectations.
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strong relation between a field and its gradient in the core of a coherent structure,

the relations shown in these figures are not unexpected. When either J or n are

monotonic in the core of a coherent structure, the B field and the∇n field take

simple forms that have consistently larger 〈rB〉 and smaller 〈r∇n〉, respectively.

The n and B fields are not related through a gradient; nevertheless figures 4.7-

4.9 suggest that in many cases these fields can be expected to have comparable

characteristic radii in the vicinity of coherent structures. The strength of the

relation between 〈rB〉 and 〈rn〉 is a key test of the theory, which posits a near-

linear scaling, and strong correlation.

Shown in figure 4.13 is 〈rB〉 vs. 〈rn〉 for the same population of structures.

The trend line indicates 〈rB〉 ∼ 0.75〈rn〉, with squared correlation coefficient

C2 = 0.79. The value for the trend-line slope indicates that density is signif-

icantly less localized than B for a structure; the strong correlation indicates

that quasi-circular density structures and magnetic field structures tend to exist

together.

Lastly, with the relation 〈rJ〉 ∼ 0.9〈rB〉 and 〈rB〉 ∼ 0.75〈rn〉, it is expected

that 〈rJ〉 < 〈rn〉, with a slope somewhat less than 0.75. Figure 4.14 plots 〈rJ〉 vs.

〈rn〉. Although it has a large spread in values and a correspondingly smaller

squared correlation coefficient, the trend is consistent with the 〈rB〉 vs. 〈rn〉

and 〈rJ〉 vs. 〈rB〉 plots, with slope 0.68.

4.5 Critical Point Numbers over Time

Over the course of a simulation of decaying turbulence, the number of crit-

ical points of all kinds will generally decrease, as mergers between regions

reduce the number of critical points, and the median flux-tube area increases.

Figure 4.15 plots the number of critical points and median areas of flux tubes

vs. normalized time for the duration of a simulation initialized with energy
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Figure 4.14: 〈rJ〉 vs. 〈rn〉 for a range of structure sizes and time values. The
trend line has slope 0.68, a value which is consistent with the product of the
slopes in 〈rB〉 vs. 〈rn〉 (slope=0.75) and 〈rJ〉 vs. 〈rB〉 (slope=0.90). The large
spread in values about the trend line is discussed in the text.
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Figure 4.15: Number of critical points vs. time, according to the type of critical
point. Passes (saddle points or X points) are plotted with black diamonds,
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equipartition. The number of critical points decreases markedly in the initial

stage, as many mergers occur between flux-tube regions. The quantity |∆N∆t |

decreases, where ∆N indicates the change in number of critical points for

peaks, pits, or passes over a time step. This decrease in the rate of change of the

number of critical points indicates a relatively constant flux-tube population

for small-sized flux tubes, corresponding to turbulent regions.

4.6 Energy Densities and Nonlinearity Densities

Variation of ψ within Flux Tube

Figure 4.16 plots the maximal change in flux inside the flux-tube regions vs.

flux-tube area. This approximates ∆ψ inside a flux tube as a function of the

areal extent of the flux tube. It is expected that ∆ψ varies with the flux tube

area, as a larger flux tube samples a larger region and is expected to have a

greater change in flux over its domain. Included in the figure is a trend line of

this dependence, indicating a nearly-linear scaling between ∆ψ and flux-tube

area. Also plotted (red circles) for comparison are ∆ψ for random regions in the

domain. The quantity ∆ψ for random regions is an order of magnitude larger

than for flux-tube regions for a given area, and the spread in values for ∆ψ is

also an order of magnitude larger. The flux-tube regions are, in comparison

to randomly chosen regions, areas within the domain with relatively small

variation whose amplitudes scale as the area of the flux tube.

Energy Densities vs. Time

The coherent structures separated by the flux-tube selection algorithm de-

tailed above form a sub-population embedded within a turbulent and dynamic

background. It is of interest as to whether the energy density of the coherent

structures is greater than that of the background. Theoretical expectations are
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that these structures would display a measurable increase in energy density

over the background population, and retain their increase in energy density

over time. This is an ancillary property of the shear preservation mechanism,

preserving the fluctuation levels within the coherent structures from turbulent

decay.

Shown in figure 4.17 is the energy density vs. time for four components:

EBoutside/EBinside , the magnetic energy outside and inside the flux-tube regions,

and EIoutside/EIinside , the internal energy ∝ n2 outside and inside the flux-

tube regions. The time scale on the plot is from initialization until just prior

to the merger between the largest coherent structures. All four components

decrease in time due, primarily, to the nonzero damping terms in the KAW

system. It is evident thatEBinside > EBoutside for the majority of the time values,

and this relation is reversed only during the initial stages. More significant

is that EIinside > EIoutside for the entirety of the run. Because the flux-tube

regions are selected based solely on the ψ field, the fact that EIinside is greater

than EIoutside is further corroboration that the KAW fluctuations are trending

together. Whether the field under consideration is B or n, a quasi-circular

structure in one is likely to correspond with a quasi-circular structure in the

other. The selection routine based on X and O point bounding iso-contours

tends to select regions that have larger-than-background energy densities in

the fields of interest, B and n.

Shown in figure 4.18 are the ratios Einside/Eoutside for magnetic, internal,

and kinetic energy densities. The figure indicates that for the majority of the

time values, the magnetic and internal energy density ratios are as large as 1.3,

and are consistently above 1. For the simulation shown, the magnetic energy

density is initially a factor of 2 greater outside the structures as compared to

inside. They equilibrate in a few Alfvén times, after which EBinside > EBoutside



82

0.0 0.5 1.0 1.5 2.0

t (norm. units.) 1e2

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

E
in
si
d
e/
E
ou
ts
id
e 

(n
o
rm

. 
u
n
it

s)

Einside/Eoutside vs. time

EIinside/EIoutside

EBinside/EBoutside

EKinside/EKoutside

Figure 4.18: Ratio ofEinside/Eoutside for internal, magnetic, and kinetic energies
vs. time. After an initial correlation stage,EBinside andEIinside are up to a factor
of 1.3 times their corresponding Eoutside energy densities.
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Figure 4.19: Internal energy density of flux tube vs. flux-tube area. For reference,
the red line indicates the background internal energy density. The largest
variance is for small flux tubes; larger flux tubes have energy densities near the
background level.

for the remainder of the run shown.

Structure Energy Densities vs. Area

To determine which structures contain the largest share of enhanced energy

density, we show in figures 4.19 and 4.20 the internal and magnetic energy

densities for individual flux tubes vs. the flux-tube area. For internal energy, the
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largest energy densities belong to small-sized flux tubes. For magnetic energy,

the largest energy densities are found at intermediate-sized flux tubes. The

discrepancy—large internal energy density values for small flux tubes, large

magnetic energy density for intermediate flux tubes—is consistent with the

density-averaging process that takes place during mergers. Larger structures

become larger as a result of mergers, and mergers occur only between like-

signed current filaments and like-handed magnetic field orientations; thus

larger B structures would be expected to have a larger share of energy density.

The density fluctuations associated with the flux tubes before mergers may

be of either sign; the density fluctuation associated with the merged structure

results from the averaging of the initial density fluctuations. The averaging in

density suppresses the internal energy density for larger structures relative to

the internal energy density in smaller structures, consistent with figure 4.19.

Nonlinearity Amplitudes vs. Time, Inside and Outside

The nonlinearities in all fields—ψ, n, and∇2
⊥φ—for an ideal circularly-symmetric

structure are identically zero. As evident in figure 4.6, the flux-tube regions

of all sizes are not circularly symmetric. The larger regions have a circularly

symmetric core with an asymmetric buffer surrounding the symmetric core

structure. From observations of time sequences of flux-tube regions, the struc-

ture boundaries for the largest structures evolve on a shorter timescale than

do the symmetric cores of the structures. Hence, the flux-tube regions do not

encapsulate only the quasi-circular structure cores, but include regions that

have larger nonlinearity amplitudes in the buffer regions. A measure of the

total nonlinearity amplitudes in flux-tube regions will conflate the minimal

core values with the nonzero edges.

Shown in figure 4.21 are the integrated nonlinearity density amplitudes for
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Figure 4.21: Nonlinearity areal density vs. time for each nonlinearity in Eqns.
(2.9)–(2.11). The nonlinearity density amplitude inside the flux-tube regions is
initially suppressed for the ψ nonlinearities. The flux-tube regions have sup-
pressed nonlinearity amplitudes, even in the initialized state of the simulation.
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both inside and outside flux-tube regions. The nonlinearity density amplitudes

are defined, for the nonlinearities in Eqns. (2.9)–(2.11), as

ψnl =
∫

Ωin
dx (α∇‖n−∇‖φ)2/Ain

∇2
⊥φnl =

∫
Ωin

dx (∇φ× ẑ · ∇∇2
⊥φ−∇‖J)2/Ain

nnl =
∫

Ωin
dx (∇φ× ẑ · ∇n−∇‖J)2/Ain

(4.5)

where Ωin restricts the integration domain to regions inside selected flux tubes,

and Ain =
∫

Ωin
dx, the total area of the flux-tube regions.

In figure 4.21, the nonlinearity density amplitude inside the flux-tube re-

gions is initially suppressed for the ψ nonlinearities. This suppression holds

for the initial, randomized state of the system. Evidently the flux tubes select

regions with small ψ nonlinearity densities in comparison to the background,

and these regions are identifiable from the ψ field in an initially randomized

state. The nonlinearities in n and ∇⊥φ show no significant suppression inside

flux-tube regions in relation to the background. The ψ nonlinearity inside flux

tubes equilibrates with the background values after initial stages; both the

inside and outside regions see nonlinearity amplitudes decay with time.

Only two nonlinearities in Eqns. (2.9)–(2.11) distinguish the KAW from the

shear Alfvén wave, these being α∇‖n in Ohm’s Law, and ∇‖J in the density

continuity equation. The nonlinearity density amplitudes for α∇‖n and ∇‖J

are shown in figure 4.22, and are separated into inside and outside components.

In both the∇‖J and α∇‖n nonlinearities, the inside regions have suppressed

nonlinearity densities. Also noteworthy is the rapid decline in α∇‖n in com-

parison to ∇‖J . From an initially randomized state, the KAW system quickly

evolves so as to minimize α∇‖n. The discrepancy between inside and outside

flux-tube regions is apparent, again, from the initial state.

What the nonlinearity densities demonstrate is that for flux-tube regions,

the nonlinearities are diminished relative to the background. The flux-tube
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regions, particularly the circularly symmetric core regions of large flux tubes,

are privileged in relation to the regions outside the flux tubes, and are allowed

to evolve on a longer timescale. The difference in KAW nonlinearity densities,

α∇‖n and ∇‖J , demonstrate that the flux-tube regions evolve on a longer

timescale.

4.7 ∇ψ and∇n Alignment Inside and Outside of Structures

In a circularly symmetric structure with no radial shear, phase fronts of KAWs

form radial spokes, and B and ∇n are perpendicular to each other. The gra-

dient in ψ, which is perpendicular to B, will be parallel or anti-parallel to∇n

in coherent structures. Measurement of the alignment angle between ∇ψ and

∇n is another way to quantify the extent of the coherence of a structure. The

alignment angle measure generalizes beyond purely circularly symmetric struc-

tures. A structure with non-circular distortion will demonstrate a high degree

of alignment between ∇ψ and ∇n. For example, the coherent structures in figs.

4.8 and 4.9 have elliptical distortion in the separatrix, but these modes have∇ψ

parallel or anti-parallel to ∇n for the core of the structure. This alignment is

expected so long as the structure is coherent, and is one manifestation of that

coherence.

We plot in figure 4.23 the alignment angle θ between ∇ψ and ∇n. The

four histograms capture different time periods in the evolution of the system.

Initially, the histograms for inside and outside flux-tube regions are flat, as

shown in the upper left plot. This is to be contrasted with the lower right

figure, which is the alignment for later times. Here, the alignment for inside

and outside flux tubes has peaks at θ = 0 and θ = π, indicating parallel and

anti-parallel alignment between ∇ψ and ∇n. The alignment inside flux tubes

is enhanced.
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Figure 4.23: Histograms of θ, the alignment angle between ∇ψ and ∇n for
inside (red) and outside (blue) flux-tube regions, and for four time values. The
upper left is at time t = 0; upper right 10 < t < 50; lower left 1000 < t < 1100;
lower right 1980 < t < 2000.
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The upper right histogram, the alignment for the initial stages of the sim-

ulation, indicate that the background has a greater degree of alignment than

coherent structures. By the time of the lower left plot, the coherent structures

have greater alignment than the background, and this relation continues. The

reduced rate of alignment inside flux tubes suggests that coherent structures

align on a longer timescale, but nevertheless have a greater degree of alignment

than the background. This longer timescale is seen also in the suppressed

nonlinearity densities, and is consistent with the two-timescale hypothesis that

treats the coherent structures on a longer timescale than background turbu-

lence.

To better demonstrate the alignment within flux tubes over time, figure 4.24

shows ζψn vs. time, where ζψn is defined as

ζψn =
4

π

〈∣∣∣θψn − π

2

∣∣∣〉− 1, (4.6)

with θψn the angle between∇ψ and∇n. Here, ζψn ranges from−1 < ζψn < 1. A

ζψn value near zero indicates no overall alignment; ζψn values near −1 indicate

overall perpendicular alignment, and ζψn values near 1 indicate overall parallel

or anti-parallel alignment.

In figure 4.24, both regions inside and outside flux tubes begin with no net

alignment, with ζψn = 0. As the simulation evolves in time, both regions inside

and outside have a sharp rise in alignment, and the outside region initially has

a greater degree of alignment, consistent with the histograms in figure 4.23.

Around a normalized time of t ∼ 25, the alignment within flux-tube regions

overtakes the alignment outside flux-tube regions, and the flux tubes retain

greater alignment from that point onwards. The rate of alignment decreases for

greater time values, with alignment inside the flux-tube regions approaching

an apparent asymptote of 0.6; outside the asymptote is 0.5.
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Figure 4.24: Plot of ζψn vs. time for inside (red) and outside (blue) flux-tube
regions. The ζψn value of zero at t = 0 indicates no overall alignment inside
or outside flux-tube regions. As time progresses, alignment between ∇ψ and
∇n increases, with ζψn approaching an asymptote of 0.6 for inside flux-tube
regions, and approaching 0.5 for outside flux-tube regions.
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4.8 Structure Core Values in Time

The theory of coherent structures posits that structure cores are relatively

quiescent regions, undisturbed by the surrounding turbulence. So long as

a structure does not interact with another like-signed structure of sufficient

amplitude, it will sustain itself when interacting with background turbulence.

Consequently, the ψ, n, and J value at the O point of each structure is expected

to be slowly varying in time.

Figure 4.25 plots the ψ value at the O point for every flux tube versus time

in a typical simulation. To reduce visual clutter, only structures that last for

more than 20 time units are shown. The relative variation in ψ is at most a few

percent of the average ψ value for any given structure. The cores of structures

are seen to be quiescent and undisturbed.

Plotted in figure 4.26 are the n values at O points versus time. To reduce

visual clutter, structures that last for more than 40 time units are shown. (A

threshold of 20, used in figure 4.25, did not sufficiently reduce visual noise.) As

in figure 4.25, the density core values for many structures are fairly constant,

exhibiting relative fluctuations on the order of 10%. The density core values

exhibit more relative variation in each structure core than do the ψ core values.

This increased variation can be attributed to a number of factors:

• For one, the time frame under consideration is the initial stages of a

simulation, where the structures are still forming, so greater variability

in the initial stages is expected.

• The values shown are the approximate O points on the grid, so some

small degree of variability can be attributed to interpolation errors.

• Third, the algorithm used to track structures from one time frame to the

next has a small error rate, which contributes to the fluctuation levels.
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Figure 4.25: ψ field at structure O points vs. time. A structure tracking algorithm
tracks structures between time steps, and each O-point time trace is identified
in a different color. Notable are the 1% to 3% relative fluctuations in ψ values,
indicating that the core of coherent quasi-circular structures are quiescent and
preserved from background turbulence. To reduce clutter, traces that last fewer
than 20 time steps are not shown.
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Figure 4.26: n field at structure O points vs. time. The n O-point values have
fluctuations of about 5% to 10%, particularly for time values t . 20. This is
during the initial phase correlation stage of the simulation, when coherent
structures are forming. For later times, the density values at O points are
quiescent, consistent with the ψ values at O points as shown in figure 4.25. To
reduce clutter, traces that last fewer than 40 time steps are not shown.
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Figure 4.27: J field at structure O points vs. time. The J O-point values have
fluctuations of about 10% to 15%, particularly for early time values. To reduce
clutter, traces that last fewer than 20 time steps are not shown. There is an
absence of O points with absolute J values less than some threshold; the
threshold decreases in time and asymptotes. This suggests there is an absolute
minimum J value at structure cores, below which no structure can form or
persist.

The tracking algorithm has an especially difficult time in regions with a

high density of O points. Despite these fluctuations, regions of quiescent

density cores are evident.

The theory proposes a current threshold at the structure core, below which
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a coherent structure cannot sustain sufficient radial shear inBθ to preserve itself

in the midst of turbulence. Figure 4.27 plots the J core value at a structure O

point versus time, with structures less than 20 time units in longevity omitted.

The core current absolute values are consistently greater than∼ 2−3 for all time

values shown, suggesting that there is, indeed, a core current threshold below

which coherent quasi-circular structures are not found. For t = 0, the threshold

is greater, around J ∼ 10 in normalized units for this instance of a simulation.

The threshold value of J ∼ 10 is an approximate threshold value below which

coherent structures will not form from randomized initial conditions.

4.9 Discussion and Summary

The analysis presented in this chapter serves to demonstrate several significant

features of flux-tube regions, which we summarize here:

Structure significance relative to background: Flux-tube regions contain a greater

fraction of the total energy of the system than can be attributed to the

area they occupy. This total increase in energy density is as much as 1.3

times the background for magnetic energy, and nearly 1.2 times as much

for internal energy. In spite of the increase in energy levels, these regions

evolve on a longer timescale.

Longer evolution timescale: Flux-tube regions evolve on a longer timescale

than the background. Nonlinearity densities inside flux-tube regions are

suppressed, indicating a decrease in nonlinearity evolution inside these

regions. The rate of increase in alignment between∇ψ and∇n is smaller

than the same rate for the background, indicating again that the flux tube

regions evolve on a longer timescale.
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Structures have greater degree of alignment: The parallel or anti-parallel align-

ment inside flux-tube regions is greater than for the background, a signa-

ture of the coherence of the flux-tube regions.

Derivative fields within structures have smaller radii than integral fields: The

characteristic radii for derivative fields of structures, 〈rJ〉 and 〈r∇n〉, are

generally smaller than for 〈rB〉 and 〈rn〉, respectively, as indicated by the

trend lines.

Density field less localized than B, 〈rn〉 scales with 〈rB〉: The characteristic

radii for B and n scale linearly, suggesting that density structures and

magnetic field structures align. Further, the observation that 〈rn〉 is gen-

erally greater than 〈rB〉 suggests that density structures are less localized

than their corresponding magnetic field structure, which is in turn less

localized than 〈rJ〉.

Wide variety of structure shapes within core regions: Detailed analysis of in-

dividual structures reveals a variety of structure shapes—circular, ellip-

tically distorted—and non-monotonic variations in n and ∇n inside the

cores of structures.

These characteristics support key features of the theory of coherent struc-

tures in KAW turbulence. Specifically:

• Coherent structures evolve on a longer time scale than the background.

• Inside coherent filaments, the KAW nonlinearities are suppressed in

relation to the background and the coherent structures are highly aligned.

• Coherent structures are regions with a large, localized J filament at their

core, and a correspondingly large B and n mantle surrounding the J
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filament. The B field around the J filament is less localized than J , and

the n mantle is also less localized.

• A large J filament generates a B field with larger energy density than its

surroundings. The KAW equipartition between B and n suggests that

the internal energy density is larger in regions associated with filaments

as well.

We demonstrated in this chapter a physically-based selection process to

distinguish all flux-tube regions from sheets and turbulent regions. We showed

examples of four coherent structures that give a sample of the variety of struc-

ture shapes and the field relations within structures. Characteristics of the

flux-tube regions were shown to correspond with key features of the theory.

In summary, we claim that the cores of flux-tube regions correspond with the

coherent filamentary structures described in chapter 2.

In the next chapter we investigate the global statistical properties of de-

caying KAW turbulence, where intermittent and non-Gaussian fluctuations

are expected to contribute strongly to the scattering of radio frequency pulsar

signals in the interstellar medium.
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5 global statistics of decaying kaw turbulence

In chapter 4, the focus was on the analysis of localized flux tubes that have a

well-defined boundary, and it was established that quasi-circular structures

are contained within flux-tube regions. Further, quasi-circular structures were

shown to have qualities that suggest they may strongly influence the statistics of

KAW fields of interest, and may yield non-Gaussian pulsar signal broadening.

Pulsar scintillation is not, of course, biased towards any type of structure. It

is possible that large-scale and large-amplitude sheet-like structures strongly

influence pulsar scintillation. Fluctuations that influence pulsar scintillation

may be found at significantly larger length scales than ρs. For example, a

scintillation model was proposed by Boldyrev and Königl (2006), whereby

pulsar signals are refracted by the compressed density shells of supernova

remnants. This process occurs at larger scales than small-scale KAW turbulence.

The non-Gaussian fluctuations under current consideration are an alternate

pathway to yield anomalous scintillation scaling.

We investigate in this chapter the means by which non-Gaussian electron

density gradients may arise in small-scale KAW turbulence under varying

damping parameters. First, simulations of density structures with r−1 and r−2

mantles are presented, and are shown to yield non-Gaussian statistics. This

suggests a connection between the non-localized circular structures studied in

chapter 4 and the non-Gaussian statistics predicted in chapter 2. Numerical

solutions of the two-field KAW system, 1 Eqns. (2.15)—(2.16), are shown to

yield non-Gaussian statistics for the cases of correlated and uncorrelated initial

conditions, and under variations in damping parameters, η and µ. Also, non-

Gaussian statistics in∇n are shown to be robust to variations in the damping
1The two-field study in this chapter is based on a study that used a two-field code. The code

used in chapter 4 is a full three-field code. The results in this chapter for these values of α are
consistent with the results in chapter 4 for values of α near 1.
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parameters. For specific regimes of damping parameter space, the KAW system

evolves such that elongated, non-localized density gradient sheets are strongly

favored over coherent, localized flux-tube structures. Regardless, non-Gaussian

statistics still result.

In the KAW system used here, the (unnormalized) resistivity takes the form

η = meνe/ne
2 and the density diffusion coefficient is µ = ρ2

eνe, where me is the

electron mass, νe is the electron collision frequency, n is the electron density, e

is the electron charge, and ρe = vTe/ωce, with vTe the electron thermal velocity,

and ωce the electron gyrofrequency. The ratio of these terms, c2η/4πµ = 2/β,

where β = 8πnkT/B2 and is the ratio of plasma to magnetic pressures. When

we vary this ratio, we have in mind that we are representing regions of different

β. However, as a practical matter in the numerical solutions, we must vary

the damping parameters independently of the variation of β, since the kinetic

Alfvén wave dynamics require a small β to propagate. For the warm ionized

medium, typical parameters are Te = 8000 K, n = 0.08 cm−3, |B| = 1.4 µG,

δB = 5.0 µG (Ferrière, 2001). With these parameters, the plasma β formally

ranges from 0.05− 1.2, spanning a range of plasma magnetization.

5.1 Simulated r−1 and r−2 Density Structure PDFs

The quasi-circular structures described in chapter 2 and studied in chapter

4 are expected to generate non-Gaussian PDFs. To isolate the effect of these

structures on density and density gradient PDFs from the effect of sheets and

turbulence, we generated random ensembles of circularly symmetric structures

with either an r−1 or an r−2 mantle outside of the structure core. PDFs for the

ensembles were generated, and are shown in figures 5.1 and 5.2. Figure 5.1 is

the PDF for an ensemble of structures with r−1 mantles outside the structure

cores. Two scenarios are shown: one with a packing fraction of 64 structures per
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Figure 5.1: PDFs of ensembles of circular structures like the one shown in figure
2.5 with r−1 mantles and varying packing fractions: 64 per unit area and 512
per unit area. Best-fit Gaussian PDFs are shown. In both packing fraction cases,
the kurtosis excess indicates non-Gaussian statistics, with enhanced tails.
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Figure 5.2: PDFs of ensembles of circular structures like the one shown in
figure 2.5 with r−2 mantles. The radial exponent of −2 serves as a proxy for
the density gradient field. Packing fractions of 64 per unit area and 512 per
unit area are shown. Best-fit Gaussian PDFs are shown. The kurtosis excess is
consistently an order of magnitude larger than for the r−1 mantle structures.



104

unit area, the other with 512 structures per unit area. The PDFs and Gaussian

best fits are plotted. Both packing fractions demonstrate clear non-Gaussian

tails, with the smaller packing fraction being more non-Gaussian, as measured

by kurtosis excess. The kurtosis excess for the 64 structures per unit area is

κ = 12.3; for 512 structures per unit area, κ = 1.5, both indicating enhanced

tails relative to a best-fit Gaussian. As the structure areal density increases

above 512 per unit area, the kurtosis excess asymptotes to zero.

For a density structure with an r−1 mantle, its gradient has a mantle with

an r−2 dependence. Shown in figure 5.2 are the PDFs for an ensemble of

structures with an r−2 mantle. The r−2 mantle structure ensemble serves as a

proxy for the gradient of density structures with an r−1 mantle, as proposed in

chapter 2. It also demonstrates the effect of greater structure localization on

the PDFs of the density field. The only difference between the PDFs in figures

5.1 and 5.2 are the radial exponents of the mantles. For the r−2 structures, the

PDFs are significantly broadened relative to a Gaussian best-fit. The PDF tails

have larger fluctuations, owing to the greater degree of localization of the r−2

structures relative to their less-localized r−1 cousins. The kurtosis excesses

for the r−2 structure ensemble are an order of magnitude larger than the r−1

structure ensemble. In every way the density gradient field is expected to have

enhanced non-Gaussian statistics relative to the density fields. Further, these

ensemble PDFs suggest that the non-localized density and density gradient

fields associated with circular KAW structures are sufficient to yield strongly

non-Gaussian statistics.

The results in this section consider only the effect of circular structures

on the PDF of a density field. They ignore the effect that turbulence and

sheets have on the density PDF. We expect that turbulence—residing between

circular structures—makes the PDFs more nearly Gaussian in comparison to
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PDFs generated from the circular structures alone. Sheets, like coherent quasi-

circular structures, are capable of generating structures with extended mantles,

and may contribute to the non-Gaussian statistics of the system. The interplay

between all three components and how they affect the global PDFs of the KAW

system is not obvious.

To account for these effects, we must investigate the PDFs of the physical

KAW system. In addressing the statistics of the physical KAW system, we also

need to address the question of whether the initial phase relation between

the n and ψ fields has a dominant effect on the non-Gaussian statistics; this is

discussed in the next section.

5.2 Effect of Initial Phase Correlation on Statistics

It is of interest to examine whether cross-correlated or uncorrelated initial

conditions affect the statistics of the fields of interest. Two representative nu-

merical solutions are presented here that reveal the KAW system’s tendency to

form spatially-correlated structures in electron density and current regardless

of initial phase correlations. This study establishes the robustness of density

structure formation in KAW turbulence and lends confidence that such struc-

tures should exist in the ISM under varying circumstances. The first numerical

solution has cross-correlated initial conditions between the n and ψ fields; the

second, uncorrelated. Damping parameters η and µ are equal and large enough

to ensure numerical stability while preserving structures in density, current,

and magnetic fields. These examples also serve to explore the intermediate η/µ

regime.

The energy vs. time histories for both numerical solutions are given in fig-

ures 5.3 and 5.4. Total energy is a monotonically decreasing function of time.

The magnetic and internal energies remain in overall equipartition throughout
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Figure 5.3: Energy vs. time for cross-correlated initial conditions. Total energy
is monotonically decreasing with time, and magnetic and internal energies
remain in rough equipartition.
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Figure 5.4: Energy vs. time for uncorrelated initial conditions. Total energy
is monotonically decreasing with time, and magnetic and internal energies
remain in rough equipartition.
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the numerical solutions. Magnetic energy increases at the expense of internal

energy and vice versa. This energy interchange is consistent with KAW dy-

namics and overall energy conservation in the absence of resistive or diffusive

terms. The exchange is crucial in routinely producing large amplitude density

fluctuations in this two-field model of nonlinearly interacting KAWs.

The total energy decay rates for the uncorrelated and correlated initial condi-

tions in figures 5.4 and 5.3 differ, with the latter decaying more strongly than the

former. The damping parameters are identical for the two numerical solutions,

and the decay-rate difference remains under varying randomization seeds. The

magnitudes of the nonlinear terms during the span of a numerical solution in

Eqns. (2.9) and (2.11) for uncorrelated initial conditions are consistently larger

than those of correlated initial conditions by a factor of 5. This difference lasts

until 2500 Alfvén times, after which the decay rates are roughly equal in mag-

nitude. The steeper energy decay during the run of numerical solutions with

uncorrelated initial conditions (figure 5.4) suggests that the enhancement of the

uncorrelated nonlinearities transports energy to higher k (smaller scale) more

readily than the nonlinearities in the correlated case. Relatively more energy in

higher k enhances the energy decay rate as the linear damping terms dissipate

more energy from the system. The initial configuration, whether correlated or

uncorrelated, is seen to have an effect on the long-term energy evolution for

these decaying numerical solutions. It will be shown below, however, that the

correlation does not significantly affect the statistics of the resulting fields.

For cross-correlated initial conditions, we expect there to be a strong spatial

relation between current, magnetic field, and density structures through time.

Figures 5.5 and 5.6 show the n and |B| contours at various times. For the latest

time contour, the spatial structure alignment is evident. Further, in figure 5.7,

the circular magnetic field structures (magnetic field direction and intensity
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Figure 5.5: Contours of n for various times in a numerical solution with corre-
lated initial conditions.

Figure 5.6: Contours of |B| for various times in a numerical solution with
correlated initial conditions.
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Figure 5.7: Contour plot of n with B vectors overlaid. The positive, circularly-
symmetric density structures correspond to counterclockwise-directed B struc-
tures; the opposite holds for negative circularly-symmetric density structures.
These spatial correlations are to be expected for correlated initial conditions.
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Figure 5.8: Contours of n for various times in a numerical solution with uncor-
related initial conditions.

indicated by arrow overlays) align with the large-amplitude density fluctuations.

The correlation is evident once one notices that every positive-valued circular

n structure corresponds to counterclockwise-oriented magnetic field, and vice

versa. Figure 5.7 is at a normalized time of 5000 Alfvén times, defined in terms of

the large B0. The system preserves the spatial structure correlation indefinitely,

even after structure mergers.

The second representative numerical solution is one with uncorrelated

initial conditions. Contour plots of density and |B| are given in figures 5.8

and 5.9, respectively. It is noteworthy that, similar to the cross-correlated

initial conditions, spatially correlated density and magnetic field structures are

discernible at the latest time contour.

In figure 5.10 the circular density structures correspond to circular magnetic

structures. Unlike figure 5.7 the positive density structures may correspond to

clockwise or counterclockwise directed magnetic field structures. This serves

to illustrate that, although the initial conditions have no phase relation between

fields, after many Alfvén times circular density structures spatially correlate
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Figure 5.9: Contours of |B| for various times in a numerical solution with
uncorrelated initial conditions.

with magnetic field structures and persist for later times.

The kurtosis excess as a function of time, defined as K(ξ) =
〈
ξ4
〉
/σ4

ξ − 3, is

shown in figures 5.11 and 5.12 for correlated and uncorrelated initial conditions,

respectively. Positive K indicates a greater fraction of the distribution is in the

tails as compared to a best-fit Gaussian. These figures indicate that the non-

Gaussian statistics for the fields of interest are independent of initial correlation

in the fields. In particular, the density gradients, |∇n|, are significantly non-

Gaussian as compared to the current. Because scintillation is tied to density

gradients, this situation is expected to favor the scaling inferred from pulsar

signals.

The tendency of density structures to align with magnetic field structures

regardless of initial conditions indicates that the initial conditions are repre-

sentative of fully-developed turbulence. After a small number of Alfvén times

the memory of the initial state is removed as the KAW interaction sets up a

consistent phase relation between the fluctuations in the magnetic and density

fields. The theory in chapter 2 presented a mechanism whereby these spatially
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Figure 5.10: Contour plot of n with B vectors overlaid for a numerical solution
with initially uncorrelated initial conditions. The positive, circularly-symmetric
density structures correspond to magnetic field structures, although the sense
(clockwise or counterclockwise) of the magnetic field structure does not cor-
relate with the sign of the density structures. Circled in black are symmetric
structures that display a high degree of spatial correlation. The circle gives an
approximate indication of the separatrix for the structure.
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Figure 5.11: Kurtosis excess for a numerical solution with phase-correlated
initial conditions and η/µ = 1.

correlated structures can be preserved via shear in the periphery of the struc-

tures. Figures 5.11 and 5.12 indicate that this mechanism is in play even in cases

where the initial phase relations are uncorrelated.

The preceding results were for a damping regime where η/µ ∼ 1, an inter-

mediate regime. Numerical solutions that explore the regime µ/η → 0 with η

small is the opposite regime used in Craddock et al. (1991), which used η = 0

and µ large enough to preserve numerical stability. In the µ→ 0 regime, circu-

larly symmetric current and magnetic structures are not as prevalent; instead,
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Figure 5.12: Kurtosis excess for a numerical solution with phase-uncorrelated
initial conditions and η/µ = 1.

sheet-like structures dominate the large amplitude fluctuations. Current and

magnetic field gradients are strongly damped, and the characteristic length

scales in these fields are larger.

Contours of density for a numerical solution with µ = 0 are shown in

figure 5.13. Visual comparison with contours for runs with smaller damping

parameters (figure 5.8, where η = µ) indicate a preponderance of sheets in the

µ = 0 case, at the expense of circularly-symmetric structures as seen above. All

damping is in η; any current filament that would otherwise form is unable to
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Figure 5.13: Electron density contour visualization with diffusive damping
parameter µ = 0 for various times.

Figure 5.14: Current density contour visualization with diffusive damping
parameter µ = 0 for various times.
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Figure 5.15: Magnitude of magnetic field contour visualization with diffusive
damping parameter µ = 0 for various times.

preserve its small-scale, large amplitude characteristics before being resistively

damped. Inspection of the current and |B| contours for the same numerical

solution [figures 5.14 and 5.15] reveal broader profiles and relatively few circular

current and magnetic field structures with a well-defined separatrix as in the

small η case. Since there is no diffusive damping, gradients in electron density

are able to persist, and electron density structures generally follow the same

structures in the current and magnetic fields.

Kurtosis excess measurements for the µ = 0 numerical solutions yield mean

values consistent with the η = µ numerical solutions, as seen in figure 5.16.

Magnetic field strength and electron density statistics are predominantly Gaus-

sian, with current statistics and density gradient statistics each non-Gaussian.

Perhaps not as remarkable in this case, the density gradient kurtosis excess is

again seen to be greater than the current kurtosis excess – this is anticipated

since the dominant damping of density gradients is turned off. With fewer

filamentary current structures, however, the mechanism proposed in chapter

2 is not likely to be at play in this case, since few large-amplitude filamentary
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Figure 5.16: Kurtosis excess for a numerical solution with diffusive parameter
µ = 0. Density gradient kurtosis remains greater than current kurtosis for the
duration of the numerical solution.
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Figure 5.17: Electron density gradient (x direction) contour visualization with
diffusive damping µ = 0 for various times.

current structures exist. Sheets, evident in the density gradients in figure 5.17

and in the current in figure 5.14 are the dominant large-amplitude structures

and determine the extent to which the density gradients have non-Gaussian

statistics. The current and density sheets are well correlated spatially. The

largest sheets can extend through the entire domain, and evolve on a longer

timescale than the turbulence. Sheets exist at the interface between large-scale

flux tubes, and are regions of large magnetic shear, giving rise to reconnection

events. With η relatively large, the sheets evolve on timescales shorter than the

structure persistence timescale associated with the long-lived flux tubes.

Sheets and filaments are the dominant large-amplitude, long-timescale

structures that arise in the KAW system. Filaments arise and persist as long

as η is small, with their amplitude and statistical influence diminished as η

increases. Sheets exist in both regimes, becoming the sole large-scale structure

in the large-η regime. Density gradients are consistently non-Gaussian in both

regimes as long as µ is small, although the density structures are different in

both regimes. Density gradient sheets arise in the large-η regime and these
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Figure 5.18: Log-PDF of density gradients for an ensemble of numerical solu-
tions with η/µ = 1 at t = 0 and t = 5000. The density gradient field at t = 0
is Gaussian distributed, while for t = 5000 the gradients are enhanced in the
tails, and deviate from a Gaussian. A best-fit Gaussian for each PDF is plotted
for comparison.

density gradient sheets are large enough to yield non-Gaussian statistics.

5.3 Ensemble Statistics and PDFs

To quantify the extent to which the decaying KAW system develops non-

Gaussian statistics, ensemble runs were performed for both the η/µ ∼ 1 and

η/µ� 1 regimes, and PDFs of the fields were generated.
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Figure 5.19: Log-PDF of current for an ensemble of numerical solutions with
η/µ = 1 at t = 0 and t = 5000. The current at t = 0 is Gaussian distributed.
For t = 5000 the current is non-Gaussian. Unlike the density gradient, the
current is not enhanced in the tails of the PDF for later times relative to its initial
Gaussian envelope.
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For the η/µ ∼ 1 regime, 10 numerical solutions were evolved with identical

parameters but for different randomization seeds. In this case η = µ and both

damping parameters have minimal values to ensure numerical stability. The

fields were initially phase-uncorrelated. The density gradient ensemble PDF for

two times in the solution results is shown in figure 5.18. Density gradients are

Gaussian distributed initially. Many Alfvén times into the numerical solution

the statistics are non-Gaussian with long tails. These PDFs are consistent with

the time histories of density gradient kurtosis excess as shown above. The

distribution tail extends beyond 15 standard deviations, almost 90 orders of

magnitude above a Gaussian best-fit distribution. Similar behavior is seen

in the current PDFs – initially Gaussian distributed tending to strongly non-

Gaussian statistics with long tails for later times. Figure 5.19 is the current

PDF at an advanced time into the numerical solution. It is to be noted that

the density gradient PDF has longer tails at higher amplitude than does the

current PDF. One would expect these to be in approximate agreement, since

the underlying density and magnetic fields have comparable PDFs that remain

Gaussian distributed throughout the numerical solution. The discrepancy

between the density gradient and current PDFs suggests a process that enhances

density derivatives above magnetic field derivatives. Future work is required

to explore causes of this enhancement. This result is significant for pulsar

scintillation, which is most sensitive to density gradients. Although interstellar

turbulence is magnetic in nature, the KAW regime has the benefit of fluctuation

equipartition between n and B. The density gradient, however, is more non-

Gaussian than the magnetic component, suggesting that this type of turbulence

is specially endowed to produce the type of scintillation scaling observed with

pulsar signals.

Ensemble runs for the η/µ � 1 regime yield distributions similar to the
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Figure 5.20: Log-PDF of density gradient for an ensemble of numerical solutions
with µ = 0 at t = 0 and t = 5000. The density gradient field at t = 0 is
Gaussian distributed, while for t = 5000 the gradients are enhanced in the tails,
and deviate from a Gaussian. A best-fit Gaussian for each PDF is plotted for
comparison.

η/µ ∼ 1 regime in all fields. The ensemble PDF for two times is shown in figure

5.20. The initial density gradient PDF is Gaussian distributed. For later times

long tails are evident and consistent with the kurtosis excess measurements as

presented above for the µ = 0 case. The density gradient distribution has longer

tails at higher amplitude than the current distribution; the overall distributions

are similar to those for the η/µ ∼ 1 regime, despite the absence of filamentary

structures and the presence of sheets. The strongly non-Gaussian statistics are

insensitive to the damping regime, provided that the diffusion coefficient is
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small enough to allow density gradients to persist.

5.4 Discussion

Physical damping parameter values

Using the normalizations for Eqns. (2.9)—(2.11) and usingB = 1.4µG, n = 0.08

cm−3 and Te = 1 eV, ηnorm, the normalized Spitzer resistivity, is 2.4× 10−7 and

µnorm, the normalized collisional diffusivity, is 1.9× 10−7. For a resolution of

5122, these damping values are unable to keep the system numerically stable.

The threshold for stability requires the simulation η to be greater than 5× 10−6,

which is almost within an order of magnitude of the ISM value. The numerical

solutions presented here, while motivated by the pulsar signal width scalings,

more generally characterize the current and density gradient PDFs when the

damping parameters are varied. We would expect the density gradients to be

non-Gaussian when using parameters that correspond to the ISM.

Behavior as t→∞

The non-Gaussian distributions presented here are strongly tied to the fact that

the system is decaying and that circular intermittent structures are preserved

from nonlinear interaction. Once a large-amplitude structure becomes suffi-

ciently circularly symmetric and is able to preserve itself from background

turbulence via the shear mechanism, that structure is expected to persist on

long timescales relative to the turbulence. Structure mergers will lead to a

time-asymptotic state with two oppositely-signed current structures and no

turbulence. As structures merge, kurtosis excess increases until the system

reaches a final two-filament state, which would have a strongly non-Gaussian

distribution and large kurtosis excess.
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Corrections from driven turbulence

If the system were driven, energy input at large scales would replenish large-

amplitude fluctuations. New structures would arise from large amplitude

regions whenever the radial magnetic field shear was large enough to preserve

the structure from interaction with turbulence. One could define a structure-

replenishing rate from the driving terms that would depend on the energy

injection rate and scale of injection. The non-Gaussian measures for a driven

system would be characterized by a competition between the creation of new

structures through the injection of energy at large scales and the annihilation of

structures by mergers or by erosion from continuously replenished small-scale

turbulence. If erosion effects dominate, the kurtosis excess is maintained at

Gaussian values, diminishing the PDF tails relative to a Lévy distribution. If

replenishing effects dominate, however, the enhancement of the tails of the

density gradient PDF may be observed in a driven system as it is observed

in the present decaying system. We note that structure function scaling in

hydrodynamic turbulence is consistent with the replenishing effects becoming

more dominant relative to erosion effects as scales become smaller, i.e., the

turbulence is more intermittent at smaller scales. The large range of scales

in interstellar turbulence and the conversion of MHD fluctuations to kinetic

Alfvén fluctuations at small scales both support the notion that the structures of

the decaying system are relevant to interstellar turbulence at the scales of KAW

excitations. This scenario is consistent with arguments suggested by Harmon

and Coles (2005). They propose a turbulent cascade in the solar wind that

injects energy into the KAW regime, counteracting Landau damping at scales

near the ion Larmor radius. By doing so they can account for enhanced small-

scale density fluctuations and observed scintillation effects in interplanetary

scintillation.
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We also observe that, although the numerical solutions presented here are

decaying in time, the decay rate decreases in absolute value for later times

(figures 5.3 and 5.4), approximating a steady-state configuration as measured

by energetics. The kurtosis excess (figures 5.11 and 5.12) for the density gradient

field is statistically stationary after a brief startup period. Despite the decaying

character of the numerical solutions, they suggest that the density gradient

field would be non-Gaussian in the driven case.

Merger sheets and scintillation

The kurtosis excess—a measure of a field’s spatial intermittency—is itself inter-

mittent in time. The large spikes in kurtosis excess correspond to rare events

involving the merger of two large-amplitude structures, usually filaments. A

large-amplitude short-lived current sheet grows between the structures and

persists throughout the merger, gaining amplitude in time until the point of

merger. The kurtosis excess during this merger event is dominated by the

single large-amplitude sheet between the merging structures. This would likely

be the region of dominant scattering for scintillation, since a corresponding

large-amplitude density gradient structure exists in this region as well. The

temporal intermittency of kurtosis excess suggests that these mergers are rare

and, hence, of low probability. The heuristic picture of long undeviated Lévy

flights punctuated by large angular deviations could apply to these merger

sheets.

5.5 Conclusions

Simulations of an ensemble of circular density structures with r−1 and r−2

mantles are shown to yield non-Gaussian PDFs with enhanced tails and large

excess kurtosis values. The PDF of an isolated structure with r−1 or r−2 was
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shown to have non-Gaussian PDFs in chapter 2. The non-Gaussian statistics

for an ensemble of structures suggest that density and density gradient struc-

tures with non-localized mantles are sufficient to yield non-Gaussian scattering

structures, although the areal density of structures is shown to influence the

degree of non-Gaussianity.

To understand the PDFs of the physical KAW system, decaying kinetic

Alfvén wave turbulence is shown to yield non-Gaussian electron density gra-

dients, consistent with non-Gaussian distributed density gradients inferred

from pulsar width scaling with distance to source. With small resistivity, large-

amplitude current filaments form spontaneously from Gaussian initial condi-

tions, and these filaments are spatially correlated with stable electron density

structures. The electron density field, while Gaussian throughout the numerical

solution, has gradients that are strongly non-Gaussian. Ensemble statistics for

current and density gradient fields confirm the kurtosis measurements for in-

dividual runs. Density gradient statistics, when compared to current statistics,

have more enhanced tails, even though both these fields are a single deriva-

tive away from electron density and magnetic field, respectively, which are in

equipartition and Gaussian distributed throughout the numerical solution.

When all damping is placed in resistive diffusion (η/µ→ 0 regime), filamen-

tary structures give way to sheet-like structures in current, magnetic, electron

density, and density gradient fields. Kurtosis measurements remain similar to

those for the small η case, and the field PDFs also remain largely unchanged,

despite the different large-amplitude structures at play.

The kind of structures that emerge, whether filaments or sheets, is a function

of the damping parameters. With η and µ minimal to preserve numerical

stability and of comparable value, the decaying KAW system tends to form

filamentary current structures with associated larger-scale magnetic and density
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structures, quasi-circular and long-lived. Each filament is associated with a

flux tube and can be well separated from the surrounding turbulence. Sheets

exist in this regime as well, and they are localized to the interface between flux

tubes. With η small and µ = 0, the system is in a sheet-dominated regime. Both

regimes have density gradients that are non-Gaussian with large kurtosis.

The conventional picture of a Lévy flight is a random walk with step sizes

distributed according to a long-tailed distribution with no defined variance.

This gives rise to long, uninterrupted flights punctuated by large scattering

events. This is in contrast to a normally-distributed random walk with relatively

uniform step sizes and small scattering events. The intermittent filaments that

arise in the small η and µ regime suggest the presence of structures that could

scatter pulsar signals through large angles; however, the associated density

structures are broadened in comparison to the current filament and would not

give rise to as large a scattering event. Even broadened structures can yield

Lévy distributed density gradients (Terry and Smith, 2007), but it is not clear

how the Lévy flight picture can be applied to these broad density gradient

structures. In the µ = 0 regime, the large-aspect-ratio sheets may serve to

provide the necessary scatterings through refraction and may map well onto

the Lévy flight model.

An alternative possibility, suggested by the temporal intermittency of the

kurtosis (itself a measure of a field’s spatial intermittency), is the encounter

between the pulsar signal and a short-lived sheet that arises during the merger

of two filamentary structures. These sheets are limited in extent and have very

large amplitudes. At their greatest magnitude they are the dominant structure

in the numerical solution. Their temporal intermittency distinguishes them

from the long-lived sheets surrounding them. It is possible that a pulsar signal

would undergo large scattering when interacting with a merger sheet. This
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scattering would be a rare event, suggestive of a scenario that would give rise

to a Lévy flight.
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6 conclusions and future work

The foci of this thesis are twofold: (1) to provide a general study of the emer-

gence and persistence of intermittent structures in decaying small-scale plasma

turbulence and (2) to argue that intermittent density structures influence the

non-Gaussian statistics inferred from pulsar signal broadening in the ISM.

Chapter 2 presented the theoretical framework for a nonlinear kinetic Alfvén

wave model, and established that the nonlinear model captures the essential

physics of kinetic Alfvén waves. Further, we argued in chapter 2 that KAWs are

one means by which density fluctuations are generated at small scales, and the

KAW model, simple as it is, is an appropriate approximation of the processes

that generate active density fluctuations at scales near 10ρs and smaller. The

nonlinear model provides for the nonlinear interaction of KAWs; of particular

importance is the propagation of small-wavelength KAWs along the magnetic

field of a large-scale perturbation. The nonlinear KAW model captures the

nonlinear interaction between small-scale KAW turbulence and large-scale co-

herent structures. Presuming a time-separation ansatz between long time scale

circular structures and short time scale, low amplitude turbulent fluctuations,

it was shown that radial shear in the θ̂-directed magnetic field at the edge of a

coherent structure can preserve the structure when immersed in a turbulent

bath, if the radial shear in Bθ is large enough. The conditions for sufficient

radial shear in Bθ were derived from asymptotic analysis of the two-timescale

formulation of Eqns. (2.15)–(2.16).

Having established a means by which coherent structures can persist when

interacting with turbulence, the PDFs of the density and density gradient for

an ideal coherent structure were derived. Arguing from energy equipartition,

it was presumed that the density field outside the core of a structure follows

the same r−1 radial falloff as the magnetic field surrounding a large-amplitude
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current filament. Combined with the relation between area and probability

density, it was shown that the density PDF scales as P (n) dn ∝ n−3 dn for the

region outside the structure core. The density gradient for such an idealized

structure was shown to have a PDF which scales as P (n′) dn′ ∝ (n′)−2 dn′,

which follows a Lévy distribution. PDFs for the density and density gradient in

a physical realization of decaying KAW turbulence were addressed in chapter

5.

Chapter 3 presented a general formalism for a straightforward numerical

scheme for evolving a nonlinear PDE in time. The constraints on the PDE are

that (1) the boundary conditions are periodic and (2) the coefficients of the

linear terms are time-independent. These constraints are in place to allow the

system to be evolved using a pseudospectral scheme and to allow the use of

an integrating factor transform. The rationale for using an integrating factor is

that the linear terms are able to be evolved exactly. The transformation incurs

computational cost, having to compute a transcendental function of an array

multiple times per time step. The cost is reduced or in some cases eliminated

by the removing of the CFL stability constraints for the linear terms, and the

integrating factor allows arbitrary values of parabolic damping parameters

to be used in the simulation. If, as in Eqns. (2.9)—(2.11), the linear terms are

diagonal, then the integrating factor transformation takes a particularly simple

and efficient form, Eqn. (3.16). Particulars of the initial conditions for the three-

field KAW model were then presented. Comparison with simulations of a

two-field KAW model (Craddock et al., 1991) were given.

Chapter 4 was concerned with the detailed analysis of coherent localized

structures in decaying KAW turbulence. It was shown that the Hessian of ψ,

H(ψ), has a particular signature for coherent, quasi-circular structures that

quantifies the combination of a large current filament at the structure core,
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surrounded by an annulus of large radial Bθ shear. A structure selection proce-

dure based on the topological features of the ψ field was then presented. This

procedure allows the separation of flux tubes from the rest of the turbulent

domain. It was argued that at the core of large flux tubes is a coherent structure

described in chapter 2, hence, the union of all flux tubes includes the quasi-

circular structures. Examples of specific flux tubes were shown, indicating the

variety of forms that coherent structures take. Noteworthy features of flux-tube

regions and the coherent structures they encompass are:

• The flux-tube regions have enhanced energy densities, up to 30% more,

when compared to the background. The enhancement holds for both

magnetic and internal energy densities.

• The structures have suppressed total nonlinearity amplitudes and, specif-

ically, suppressed KAW nonlinearity amplitudes. This suggests that the

structures evolve on a longer timescale than the background turbulence.

• The flux-tube regions have a greater degree of alignment between ∇ψ

and∇n, indicating a greater degree of coherence.

• The density field in the vicinity of a flux tube is less localized than B as

indicated by the characteristic radii 〈rn〉 and 〈rB〉. The quantities 〈rn〉

and 〈rB〉 scale linearly and correlate with each other.

The above list of features of flux-tube regions correspond with the theoretical

description of structures given in chapter 2.

Simulations of ensembles of ideal density structures with r−1 and r−2 man-

tles were presented in chapter 5. The PDFs for these ideal structures indicate

that r−1 and r−2 structures are sufficient to yield strongly non-Gaussian statis-

tics with heavy tails. Variations in the initial phase relation between ψ and n



133

fields were shown to change the energy evolution and n-J parity inside coher-

ent structures, but the PDFs of density and density gradients were shown to be

non-Gaussian regardless of initial phase relations.

The kurtosis excess and PDFs for simulations with varying damping pa-

rameters were then presented. Non-Gaussian density gradient and current

PDFs were shown to be robust to variations in damping parameters. These

findings support the central claim that intermittent structures can be found in

small-scale turbulence in the ISM.

6.1 Future Work

The numerical simulation and analysis presented in this thesis have corrobo-

rated key components of the theory of coherent filamentary structures in KAW

turbulence. We identify at least three areas to be addressed in future work

that will generalize the conclusions presented here: simulating a driven KAW

turbulence system, simulating a three-dimensional KAW turbulence system,

and generalizing the model to a hybrid fluid-particle system (Yin et al., 2007).

Driven turbulence

The electron density power spectrum in the local interstellar medium follows

a power law that spans many decades (Armstrong et al., 1995), an observa-

tion that is often interpreted as an inertial range in a turbulent cascade. This

suggests that a turbulence model at scales near ρs and smaller should account

for driven turbulence, if energy is indeed cascading from larger scales. The

decaying turbulence system in the present work does achieve a quasi-steady

state as indicated by energy evolution. (See figures 5.3 and 5.4.) Coherent struc-

tures persist in the midst of small-scale turbulence; simulations with driven

turbulence can address the effect that large-scale flow shear has on structure
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coherence and persistence. If filamentary structure lifetimes are shortened by

driven turbulence, it may be the case that sheet-like structures are favored in-

stead, and the density gradient PDFs may still be non-Gaussian. The robustness

of non-Gaussian statistics in decaying KAW turbulence lends credence to this

conjecture. For more details on driven turbulence in the context of the present

work, see the conclusion of chapter 5.

Three-dimensional considerations

The simulations in this work are two-dimensional, a simplification that was

exploited by the flux-tube extraction procedure that is based on critical points

in the two-dimensional ψ field. This assumes that gradients along the mean

B field equilibrate quickly so that gradients along B0 are quickly smoothed.

Generalizing the model to a fully three-dimensional simulation will allow co-

herent filamentary structures to develop variations along B0. The relation

k‖ � k⊥ still holds at scales near ρs for KAWs, so the fluctuation spectrum in

the z direction will have a cutoff at smaller k‖ than the cutoff in k⊥. The present

approach for filament segmentation will not work in three-dimensional turbu-

lence, and another method to separate coherent structures from turbulence will

be required.

Hybrid or fully kinetic simulation

Lastly, to more accurately capture kinetic effects for dissipation-range KAW

turbulence, it is recommended to use either a fully kinetic simulation, or a

hybrid particle-fluid simulation, treating the electrons as a continuous fluid and

the ions as individual particles. A fully kinetic or hybrid simulation is required

to capture wave-particle interactions and to fully address collisionless damping

effects on structure formation and persistence. It is desirable to simulate with
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a fully kinetic simulation the same length scales (0.1 < L/ρs < 10) used in

the present work, a scale regime which is challenging to achieve with kinetic

simulations of the present day.
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a critical point and flux-tube selection on a discrete grid

In this appendix we give computational details for selecting critical points and

flux-tube regions on a discrete grid. For more details on the methods and

topological definitions described herein, see Rana (2004) for an overview, and

Carr (2004); Carr et al. (2003) for an alternative method.

Critical points of a two-dimensional ψ field correspond to locations within

a plasma with physical significance, and the flux-tube regions are defined in

terms of the ψ field and the critical points only. Consequently, there are no

external tuning parameters that define the flux-tube regions. The absence of

tuning parameters is preferable to techniques that use threshold values to define

significant regions, as the flux tubes are defined in terms of the physics of the

system.

A.1 Critical Point Selection on a Discrete Grid

For a C2 scalar field ξ(x, y), the set of all interior critical points of ξ, Scp is defined

to be Scp = {(x0, y0) | ∇ξ|x0,y0 = 0}. This definition captures all local maxima

(peaks), local minima (pits), and saddle points (passes). Together, the peaks

and pits comprise the set of O points, and the set of all saddle points comprise

the X points. The non-critical points in ξ are such that∇ξ 6= 0 and exist on the

slopes of the two-dimensional ξ surface. We do not consider boundary critical

points as we have doubly periodic BCs in our domain. It is possible to handle

boundary critical points in a natural way, and omitting them in the discussion

below is not limiting. See Rana (2004) and Carr (2004) for details.

Consider the set of all points εs around a saddle point s within a Euclidean

distance ε > 0 of s. Let ε+ = {x ∈ εs | ξ(x) > ξ(s)}, and let ε− = {x ∈

εs | ξ(x) < ξ(s)}. The sets ε+ and ε− partition εs into disjoint regions. In
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the limit ε → 0, ε+ and ε− are each the union of disjoint simply connected

regions themselves. A saddle point has at least two ε+ regions and at least

two ε− regions that alternate as one traverses these regions clockwise around

s. A Morse function is one where all ε+ and ε− sets are comprised of 2 disjoint

simply connected regions each. This excludes so-called monkey saddles from

the domain, and removes complication from future analysis with little loss in

generality. A Morse saddle point is a point at which two regions greater than the

point meet, and simultaneously the point at which two regions less than the

point meet.

When considering critical points on a discrete computational grid, compli-

cations arise from the loss of continuity when approximating the surface. A

number of approaches to approximate the X and O points on a computational

grid have been proposed (Rana, 2004), each with advantages and disadvan-

tages. The primary consideration is how precise the approximate X and O point

locations need to be. If it is possible to approximate the X and O points by their

nearest grid location, then a significant simplification in the selection routine

is possible. If one requires higher precision then it is necessary to interpolate

between grid points to locate X and O points, with a commensurate increase in

computational effort.

For our purposes, we take the computationally more efficient path and keep

the X and O points “on the grid.” The O points are easier to select computa-

tionally. A grid maxima O point is a grid location xO such that ξ(xO) > ξ(x)

for all x neighboring xO, with grid minima O point defined analogously.

To define grid X points, consider the set of all immediate neighbors xn to

a grid point xi. Let ∆xn = xn − xi for all xn neighbor points. Order the ∆xn

points such that they are in clockwise order around xi. Let N be the number of

sign changes in the ordered ∆xns. If N = 4, then xi is classified as an X point.
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This algorithmic formulation is a discretized means of finding the ε+ and ε−

regions defined above.

Locating the critical points more precisely requires interpolation between

grid points. One approach described in Rana (2004) considers a 4× 4 or 6× 6

patch centered on every cell in the grid. The patch is used to solve for a zero

point within the cell domain, using bicubic interpolation or other interpolation

schemes.

We choose to use grid critical points rather than interpolated critical points

for the following reasons:

1. The error in the grid critical point loci is bounded by the grid point

spacing, which is sufficient for the simulations presented here.

2. Critical points are located in regions where |∇ξ| ∼ 0, and locating them

requires the subtraction of values already near zero in absolute value. As

such, these calculations are sensitive to loss of significant digits. In nearly

flat regions, we find that interpolation-based methods often overlook

critical points that grid-based methods find. Contrariwise, grid critical

points often give a number of false positives, but these critical points are

easily marked as such based on post-processing techniques.

3. Computational efficiency is paramount, as critical point identification is

a central element of defining flux tubes. This favors the grid method.

4. Tracing the connections between critical points is simple, robust, and not

prone to the difficulties of rounding errors as compared to the techniques

required when tracing trajectories between grid points.
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Input: Set of O points, X points and ξ[N ] array
Output: Set of flux-tube regions
Let regions be an empty container;
foreach O point xO do

Let frontier be a priority queue;
Let region be a set;
frontier.enqueue(xO, priority = ξ[xO]);
region.empty();
while True do

pt, val = frontier.dequeue();
region.add(pt);
if pt ∈ X points then

break;
end
foreach neighbor nbr of pt do

if nbr /∈ region and nbr /∈ frontier then
frontier.enqueue(nbr, priority = ξ[nbr]);

end
end
regions.add(region);

end
return regions

end
Algorithm 1: Flux-tube selection algorithm

A.2 Flux-Tube Selection on a Discrete Grid

For every grid O point, it is possible to associate with that point a simply

connected region that delineates a flux tube with the O point at its center in ξ

iso-contours. An algorithm for doing so is given in algorithm 1.

In algorithm 1, the region set grows each iteration of the while loop. Each

new addition is the next grid point in the frontier priority queue that is nearest

to ξ[xO] in value. The priority queue structure ensures that every time a grid

point is removed from frontier it is the grid point with the ξ value nearest

ξ[xO]. The while loop is terminated after the first X point is added to the region

set. During the while loop, the region set always contains a simply connected

set of points that includes the O point. Once the region set expands to include
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the nearest X point in ξ contours, that delineates the entire flux-tube region.

Servidio et al. (2010) described a flux-tube selection algorithm that yields

results essentially the same as algorithm 1. The critical points in that work were

interpolated between grid points, but the results are the same. The algorithm

in that work, however, requires many restarts and retries, as they do not employ

a priority queue, but rather add neighboring points without ordering them

in ξ values. The restarts are required when an X point is encountered that is

closer in ξ value to ξ[xO] than the previously considered closest X point. The

restarts ensure that their method considers each point multiple times before

defining the flux tube region. The method described above requires no restarts

and need consider each new point only once.
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