STABILITY ANALYSIS OF CYLINDRICAL VLASOV EQUILIBRIA
BY

ROBERT W. SHORT

A thesis submitted in partial fulfillment of the
: requirements for the degree of

DOCTOR OF PHILOSOPHY

(Physics)
at the

UNIVERSITY OF WISCONSIN-MADISON

1979



ACKNOWLEDGEMENTS

I would Tike to thank my thesis advisor, Professor Keith R.
Symon, for his interest, encouragement, and advice over the course
of this research.

The staff of the National Magnetic Fusion Energy Computer
Center, particularly Kirby Fong, has given valuable advice and
assistance on the computational aspects of the project. Gregory
Benford deserves thanks for suggesting one of the applications of
the work.

I am grateful to the National Science Foundation, the Plasma
Physics group, and the Physics Department for their support of my
graduate study. Financial support for this research was provided
by USDOE.

I thank Linda Dolan for her speed, excellence, and patience

in the typing of this thesis.

This thesis is dedicated to my father, L. W. Short, for

his unfailing love and encouragement.

i



I1.

Iil.

TABLE OF CONTENTS

INTRODUCTION . & v v v v v v v o v e e e e e e e e e e e 1

ELECTROSTATIC CASE AND APPLICATION TO

LOWER-HYBRID DRIFT INSTABILITY . . . . « v+ ¢ o o v o v 2
EXTENSION TO ELECTROMAGNETIC CASE . . .« ¢« - v v v - 38
STABILITY ANALYSIS OF RELATIVISTIC E-LAYER . . . . . . . 59
APPENDIX A

EQUIVALENCE TO METHOD OF LEWIS AND SYMON . . . . . . . . 176
APPENDIX B

SOME BESSEL FUNCTION FORMULAE . . . . « « » & 0 o e v o 191

REFERENGCES v & v v v v v v o v e o o v o v v o s o0 e 197






INTRODUCTION

Plasmas are inherently very complex systems, and any attempt to
understand and predict their behavior must include simplifications
and approximations. In stability analysis we commonly make two
types of approximations: dynamic and geometric. MWe replace the
individual particle equations of motion by an equation of motion for
a continuous fluid either in configuration space (MHD and other
"fluid" models), or phase space ("kinetic" models such as the Viasov
.and Fokker-Planck equations). And we often simplify the geometry by
| ignoring boundaries and regarding the plasma as filling all space
homogeneously or varying only in one linear direction {the "local

||(23)) .

approximation There is generally a trade-off between these
types of approximation in that the wore sophisticated the dynamics,
fhe cruder the geometry, and vice-versa, in order that the resulting
“equations be solvable. Thus stability analysis of a toroidal system
can be carried out with a fair degree of rigor only in a fluid
approximation, such as MHD, while velocity space instabilities are
calculated by kinetic theory in greatly simplified geometries. Only
recently, with the availability of Targe and fast computers, has it
been feasible to treat problems which are both kinetic and non-local.
We describe here a general wethod of stability analysis which

may be applied to a large class of such problems, namely those which

are described dynamically by the Vlasov equation, and geometrically



by cylindrical symmetry. In Chapter I, we present the method for
the simple case of the Vlasov-Poisson (electrostatic} eauations, and
apply the results to a calculation of the lower-hybyrid-drift insta-
bility in a plasma with a rigid rotor distribution function, a prob-
Tem which has been treated by Davidson(7) using a somewhat different
method. In Chapter II the method is extended to the full Viasov-
Maxwell (electromagnetic) equations, and in Chapter III we apply
these results to a calculation of the instability of the extraordi-
nary electromagnetic mode in a relativistic E-Tayer interacting with
a background plasma. The results of these calculations are compared
to those of Striffler and Kammash,(]z) who have treated this problem
in the Tocal approximation.

One of the most important aspects of the present work is the
method of carrying out the integration of the perturbed distribution
function over phase space., The approach used here was inspired by
the work of Lewis and Symon,(1) who expand the perturbed distribu-~
tion function in eigenfunctions of the Liouville operator. In

Appendix A we show that the two approaches are equivalent.



1. FELECTROSTATIC CASE AND APPLICATION
TO LOWER HYBRID DRIFT INSTABILITY

In this chapter, to illustrate the general approach as simply
as possible, we consider a cylindrical plasma in the electrostatic
approximation. This approximation is often referred to as the "low-

(2,3,4) that a more approp-

beta” Timit. However, it has been shown
“viate characterization of a plasma for which the electrostatic
approximation is valid is wpe << ck, where Ype is the electron plasma
frequency, k is a typical wavenumber, and c¢ is the velocity of light.
The cylindrical coordinate system to be used is shown in Fig.
(1.1). The plasma column is taken to be infinitely long in the
z-direction and azimuthally symmetric. 1Its axis of symmetry is
taken as the z-axis of coordinates, and it is surrounded by a coaxial
.conducting cylinder of radius R. The purpose of introducing this
~cylinder is simply to make the radial mode numbers discrete; if we
are dealing with a problem in which a conducting boundary plays no
significant role, we may recover the continuum modes by taking the
1imit R » . To make the modes discrete in the z-direction as well,
we impose periodic boundary conditions in the z-direction with peri-
odicity length LZ. Again, this restriction is simply for mathemati-
cal convenience, and we may remove it by allowing LZ + o,
| The only non-ignorable coordinate is r, and so the equilibrium

scalar and vector potentials are ¢°(r) and A°{r), where the 0



denotes the equilibrium value. The equilibrium fields are then:
CE° = E°(r)r ,

BO

Bg(r) + B;(r)z .

The equilibrium distribution functions will be functions of the

particle constants of the motion:

foa(f;_\i) = ij(H’PG’PZ) . : (]2)

Here the subscript “j" denotes particle species, and

j ;.2 2 2 o
H = m%.(vr tovg tvy) toesd (r) » : (1.3)
e |
Py = mirve + —E-Az(r) R (1.4)
&)
P, = mv, + —E~Az(r) . (1.5)

In the collisionless electrostatic approximation the plasma is

described by the Vlasov-Poisson equations:

3 ej .Y.x_B_ 3
Lp + vV + 2= (E+ ) 5y flr,v,t) = 0, (1.6)
J o
2 - 3
Voo (r,t) = - ) hire 4 { d vf(r,v,t) . (1.7)
J

For purposes of stability analysis we Tinearize the above equa-

tions, writing



(et = fo(rsy) + filr.v,t)

o(rst) = olr) + ¢y{r,t) .

Here f} and ¢, are small perturbations to be added to the quantities
of equations (1.1} and (1.2). (Since in the electrostatic approxi-
mation V x E = 0, the magnetic field and the vector potential A are

notzperturbed.) The linearized equations then read

En LS 2
(Bt + L ) f1(f_aigt) =T, E_ (Y‘ t) - 3V ij(r"’y*)
- J B (1.8)
= . [y t ,
W L [0, (r,t)] + 57 Fo3(tsy)
V2o, (rat) = - § are J d3vfij(g;g;t) , (1.9)

‘where we have defined the equilibrium Liouville operator

bl

L:y_ovﬂk

1 P
; [E, * E‘(VXEO)] "W

From (1.3) - (1.5) we have the relations

oP oP
0 _ o zZ _
miYo s 5y mrd 5 w5y m

CLig
5V 3

MO

Consequently (1.8) may be rewritten:



; b oy . s .
(3 * Lo) Tyy =&y [ v 3P, re + L z] - Vo,
{(1.10)
2 . 2 .
o Med g Sedn y Tod B
ey [ vV o, t W, 570 91

We are interested in unstable modes, so we take the time depen-

dence of all perturbed quantities to be of the form e"iwt; with
Im(w) > 0. Thus we write
~iwt -t
_¢}(£}t) = ¢](£) e 1w 2 f}'(f}ﬁ;t) = f]j(f)!) v

The operator ng + Lo) in (1.10), acting on a function of phase
space variables and time, is equivalent to the total (or comoving)
time derivative. It represents the time derivative of the function
as seen by a particle moving along an unperturbed trajectory (i.e.,
the trajectory it would follow in the equilibrium fields go’ Eo

which appear in LO). Thus we may write

B+ L)IF5(esw) €798 = G (Fy5Ir(1),u(t)] ity | (1)

where r(t), v(t) represent the unperturbed particle orbits. We may

solve (1.10) for the first order distribution function by integrat-

ing over time:

-jwt . t 1 d ) 1 1 t -iwt’
O e T L LB G
t A L af . af .
= ] "-H.Ut OJ d OJ 3 OJ 3 ] i
ej J“it e [ BH dt? + ape 88‘ + BPZ 82‘:] ¢'| [r_ (t )1 ]

(1.12)



where r'(t'), v'(t') represent the unperturbed trajectory of a par-

ticle as a function of the dummy variable t' and

'ty = L) =NV . (1.13)

- In obtaining Eq. (1.12), we have used the fact that v' « V= E%T'
when acting on a function of r'.

_ 'As we have assumed periodicity in the z-direction with periodi-
city length L_, we may resolve ¢1(£) into its Fourier components in

the ignorable coordinates © and z:

(r) ei(%e+kz) ,

¢1(r) = ﬂgk 0.k (1.14)

where k = %ﬂﬂ-, n an integer,

Z
Using (1.12) and (1.13), Poisson's equation (1.7} becomes

P4 2
+1 3 3 1 9 ]
._(_.______Y-W+__,..._+m__) Z b (r) e
ro3r . ar r2 382 az2 P 2.k

i(f8+kz)

503
el a o3 5, ol s
W atT " @, G %, a7’
z i i | 1
CT g () RO (1.15)

Note that though the right side of (1.15) contains t, it is actually

independent of the value of t. In fact, we could remove i altogether
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by defining a new variable T = t' -t and replacing Jt dt' by

Io dt. We retain the formal t "dependence", however:mgs it will be
 useful below.

To isolate one Fourier component on the left side of (1.15), we

nultiply by 4= e”1(467K2)

and integrate over & and z. From Eq.
(1.13), we see that the quantities 6' - © and z' ~ z are independent
of 6 and z, respectively, since for fixed t' and t changing 6 changes

g' by the same amount, and similarly for z. Using the identities

k'z' - kz = k'(z'-z) + {k'-k})z ,

e
[a]
P
joa)
1t

L'{e'-0) + ('-2)6 ,
we obtain

2
13 3 £ 2 =
Garrar 2 K)ol =

r ar
t . of . af . of .
2 3 C -iw(tt-t) o d 0oj 3 0j 3
- e’ f d-v f dt'e [ -+ it t]
} e . 3 dtT *ap, a0’ | AP, oz
2 1 4 t
. Cbﬁ?.,,k (l’") eﬂ:ﬂ’(e 6) k(z Z)] ) (1.16)

Note from the above argument that the right side of (1.16) does not
depend on the ignorable coordinates, even though they appear there.
Next, we wish to expand the radial dependence of the perturbed

potential in eigenfunctions of the Laplacian:

dg i (1) = ; opdp(r) > . - 0an



where ¢n(r) satisfies the eigenvalue equation

QZ

15 2 L2
(;'gg'r T - ;éﬁ ¢n(r) = "An¢n(r) . (1.18)
 Here we have suppressed the subscripts £ and k on ¢n' Thus we have

¢n(r) = An Jg(hnr) s

where J, is the ' order Bessel function of the first kind,

th root of the equation

is a normalization constant, and An is the n
JR(AHR) = 0. The functions ¢n(r) then satisfy the orthonormality
relation

R
[ drran(r) o(r) = gpr - o (1.19)
0

Substituting (1.18) into (1.16), multiplying by r¢n,(r), and

integrating over r yields

R t .
2 .2 _ 2 3 v ~tw{t'-t)
Z un(-Annk ) Snn' = - Z 4wej f drr¢n.(r) J dvv f dt' e
n J 0 -
[Bfoj d . afoj 5, afoj 5 |
oH dt' BPG 30" ab 3z’
e DE-ekz 2y g () (1.20)
n

This equation is a Tinear relation in the expansion coefficients
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Oy and we can write it as

2.2 .
I @0 ey = 0

where
4ﬂe§ R 3 -1 (20+kz-wt}
Dnn'(w) = St L ——E—-f drr f d v¢n(r) e w
J ok 0
n
- t A A of . of .
. det ettt pood 4oy g 00 gy 0
f-m oH dt Py z 9P,
c g (rr) el (0K (1.21)
and
2 . .2 2
kn = )\n + k& .

To carry out the time integral in (1.21), we must determine the
unperturbed orbits r'(t'). The particle Hamiltonian does not depend

on 8, z, or t, so H is a constant equal to the particle energy and

we have
H(r,Pr,PB,PZ) =k .

Since Pe’ Pz’ and E are constants of the motion, we can solve for Pr

as a function of r:

Pr(r) = Pr(r,E,Pe,Pz) .
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This gives r as a function of r:

If the particie motion in r is bounded and non-asymptotic, then a
particle which is at r_ at some time t must return to rj at some
latter time t + T. Since the Hamiltonian depends only on r, when

_the particle returns to oo it must have the same radial velocity

. ?(ro). Thus the motion in v is periodic with period T(PG,PZ,E).
Now & = %%w-depends on t only through r so it too must be periodic,
5 =P

.Thus we can write

8(t) = nt + 6(t) + 6, ,

where n is a constant, 8(r) is periodic with period T, and % is an
initial value chosen so 6(0) = 0. Similarly, we have z(t) =

ot + Z(t) + z,» where o is a constant, Z(t) is periodic with period

T, and Z, is chosen so Z(t = 0) = 0. Consequently we may write
1(£eo+kzo)

i(20'+kz") A ei(£n+ko)

, - (1280 ikz!
¢n(r e . + JR(Anr Je e e

(1.22)

In order to perform the time integration in (1.21), we wish to

express the function in (1.22) as a Fourier series in time. First

, ikz' (t' P
consider the z term e kz'(t ). Since Z is periodic in time, we may

write
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- . 2n
7(t) =} b, sinnit ; Q= . (1.23)
=l TZE,Pg,Pzi

Using the identity

oipsing _ ) Jn(p) o 1ng

- -0

we have

SR ikb sinnQt
e1kz(t) -qe M - 1
n

ot
3. (kb)) MULLUSES (1.24)
n

ikz(t) in a Fourier series in
time. MNext we wish to represent Jg(lnr) e1£e in this form as well.

Thus we have expanded the function e

. . . 10, ., . s
consider first the function re ; it is periodic, and so we can

write it as a Fourier series:

L% i{Q tt
r(t) 18t o ! a, e1( o) , (1.25)
n

where the a, are chosen real, v, is a phase factor, and R, = m.2s

m, an integer and @ given in Eq. (1.23). Here m, is taken to be the
frequency of the nth largest term, so that the Targest terms in the
series occur first. In other words, instead of ordering the terms

in the Fourier series by their frequency as is normaliy done, we or-
der them by the magnitude of their coefficients. This is done solely
for heuristic reasons, to simplify the representation of the particle

orbits given below. To illustrate the approach, suppose we wish to

take four terms of {1.24) as an adequate approximation to the
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- particle motion. Then

i6 (G t+yy) N

P{(Q,tty,)
re’” = a; e e 2 _2

22
{§,t+y,) P(Q,tty,)
3773 4% '4
+aBe +a4e .
This function can be represented in the complex plane as in Fig.
(1.2). Note that it corresponds to the particle motion in the x-y
plane with the constant precession e1nt factored out.
Next we make use of Graf's theorem,(B) an addition theorem for

Bessel functions, which states that for any triangle

we have

Jp(c) eipB = § J . (a) Jm(b) eimY . (1.26)

= 0D

pm

We apply this theorem repeatedly to the triangles in Fig. (1.2),

obtaining

F2(Q,t+yq) w0, Lot H {2, =80 YE+Y 5=V ] m
e 1Ty 3y (a7) 3 Oe)e TRy
my 1 1
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and finally

' iMmao

272 _
I (Kf).e -
2

Y (ra,) J_ (ha,) e
iy m2+m3 3 My 4

Combining these expressions we have

926 _
Jg(kr) e =

) J,.. {raq) J (ha,) J
M sl o f4my VR T dmy P27 Ty tng

i, HR, M
(23) Iy (ag) () b

i[(’“'ml ) (Q] t+Y] )- (m-‘ +m2) t+Y2 )+ {(m +m3) (& t+Y3) ﬂ13(94t+Y4)]
e .

(1.27)
Using (1.24) and {1.27), we can now write

d)n(\") e1($16+k2) - X Gm(E’Pe’PZ) ei(ﬂ,n'*'k(ﬁmﬂ)t , (].28)
m

where the coefficients Gm depend on the constants of the motion H,
Pe, and PZ through the coefficients a of (1.27) and b of (1.24}.
The best way to determine these coefficients, and the number needed

for a good approximation to the particle orbit, will depend on the
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problem at hand. For the simple fiéld configurat?on treated below,
they may be found analytically; for a more complex equilibrium, it
may be easiest to use a Galerkin method, substituting a certain
number of terms of the series (1.24) and (1.27) into the equatzons
6f motion and solving the resulting algebraic equations for the a,
.ahd bn' _In most cases of practical interest we would expect to need
only a few epicycles, as in Fig. (1.2), to represent the particle
motion well enough for a linearized stability analysis.

Using the expression (1.28) for the cylindrical harmonics we

may rewrite (1.21) as

2

dwe? (R . t .

_ S 3 - (20+kz-wt) v ~iwt!
. J 4] . —C0
n
af . af . of
o 0] 0j 0J (£n+ko+mﬂ)t‘
il (antkotm@)—p= + 4 g ¥ k ", ] Z G,

6

Note that GO and Z, cancel out of the exponentials due to the fact

that the dispersion matrix is diagonal in & and k. Remembering that

Im{w) > 0, we can perform the t' integration:

R .
[ drp J d3v¢n(r) e~1(£e+kz)

BfOJ Bf 0j of LAy
. 1[(£n+kzo-%m9) st 2 55- + k BP -1

.76 e1(£n+ko+m9)t

0 /il entkotm-w] . (1.29)

m

Next we make use of the t “dependence" of the integrand in (1.29).
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Writing the integrand as I(r,v) we have
I{r,v) = I(r,v,t) = I(r(t), v(t))

_where in the last equality r{t) and v{t) represent the trajectory of
a_partic]e as a function of time. Varying t thus generates a curve
in phase space along which I is invariant. We now use this fact to
éarry out part of the integration of I over the phase space variables.
First we transform the variables of integration from the velocities

to the canonical momenta:

3(P _,P. ,P_}

r* ez’ _ 3 3, -1

IR = myr > rdrd”v = — drdP dP,dP_ . (1.30)
re’z mj

Next we wish to change the integration variables r, Pr to t, H.

o . _1
dh = -P dr + rdP , dt = : dt ,
SO
a(t,H . - '
la P l =1 , drdP, = dtdd . (1.31)

From {1.30) and (1.31) we have
3, _ -3
rdrd”v mj dthdP@sz .

so using (1.28), we can write (1.29) as
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2 T

dre’ .
= o - : % —i{Antkotm'Q)t
_ Ik, - T To o |

e P lan _.0] 0
. _L(Rn+ko+m9) st [) aPa + k

Oj] ) m
BPZ 0 Lntko+m-w

i 4we§
= S L gt f aHdPdP_T (H,P.P,)
: Jj ok
1
2
o 5 5F . 16 (H,P,P )]
0 . 0] 0jy LmT9% 7

(1.32)

Now we are left with integrals over the constants of the motion

H, P Pz to perform in order to evaluate the elements of the dis-

83
persion matrix D. These must usually be carried out humericaily.

The normal modes of the system are found by solving
det{i(w)] = 0

for w, where D represents a suitable truncation of D (i.e., one that
includes enough of the expansion functions by, to represent the nor-
mal modes to the desired accuracy). If w has a positive imaginary
part, the corresponding mode is unstable, and the imaginary part of
w gives its growth rate.

To illustrate this procedure further, we next consider a simple
class of problems for which the series (1.24) and (1.27) have only

one term. We take the equilibrium magnetic field to be uniform and
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directed in the z-direction B = BOE, and the electric field to be
radial and proportional to r: gﬂ = E T where BO and EO are con-
stants. These fields give the equilibrium bulk motion of the plasma
a "rigid-rotor" character, as explained below. The equation of mo-

tion for a particle in these fields is

d-!- ~ ej o~
Mo G - ejEOrr Ty Boz R
or, in Cartesian coordinates
e.B e.B
u jTo - v o _.Jb: 3 o
mX emon + =Y mjy eony X s 2 0

e.
Froim b - L EE=
g ¥ 1wcj€ mj EOC 0, {1.33)
e.BO
where Wy = m%c , the cyclotron frequency for species j. This is a

: J
second order linear equation, and the solution may be written

a

iw_t iwbt
£ = ae + be

’ (1.34)
where we may take a and b to be real and non-negative, so that

Substituting (1.34) into (1.33), we determine Wy and W, from the re-

sulting algebraic equation:
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W . . e
- R ¢/ﬁé __Jdo
W STty Wej i . {1.35)

oW

For the particle motjon to be bounded, we must impose the condition

5 dejEO

w._ . =
c M.
! i

wb.
The coefficients a and b in {1.33) determine the particie’s

Note that wy 2

.radial position and its velocity, so they may be written in terms of
H and Pe. In practice, as shown below, it is more convenient to ex-
press H and Py in terms of a and b, In this equilibrium z is a con-
stant of the motion, so 7 = 0 in (1.22) and 0 = z.

The particle motion in the x-y plane can be represented as in

Fig. (1.3). Applying Graf's theorem (1.26) to the triangle (r, a,

b), we have
. ilw, t o
126 _ b 186
¢n(r) ) = A, e Jg(knr) e
Plw, t —im(w_-~w, )t
_ b m a b
= A, e é_m (=117 g1 (Agb) Jp{ra) e

(1.36)
Substituting this expression into (1.21) and writing
- J
Dppr () = o § X+ {0)

we have
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j 4’?Te2- R 3 oo m'
W) = - —h A [ e ol T 0™ 008 9, 000)
- m.k 0 m'=w—oe
in
=i, Fkv_-m (w,_ ~w, ) ~w]t ot o
w0 m.‘:....oo
of . oFf . af .
. O rig, - - ; _0J . 5 8]
{mj H, [ 12w -m(w, wb)] + iamy P, + ik ) }
T o, kv ~m{w, ~w, )-w]t'
‘ m b "'z a b
where we have defined
M.
= d (ylrP
H = 5 (viavg) + esoq(r)

and replaced PZ by v,

using PZ =MV, We will refer to the x's as
"susceptibilities", since they contain the response of the plaswa to
the field. Since z is an ignorable coordinate, HL and v, are also

constants of the motion,

Doing the integral over t' we obtain

2
. dre’ R o 1
j AR P 3 -1y
an @) = = = A, JO arr [ @ LI 3000 3y002)
Jn
—i[ 2w, kv _~m! (w_~w )-w]t @ {af .
. b ™z a b 0] _ _
e E_w BH¢ mj[ﬁwb m(wa wb)]t + ij
P[ow, tky_ ~m{w_-w, )-w
' §;°j ¥ kaij}(—n’“ Jyun(A,0) 4 (A a) T )
8 avZ Lemtn mn gwb+kvz"m(ws_mb)"w

(1.37)
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Using (1.30) and (1.31) we change the variables of integration from

r, v tot, Hl, Pe, and v, and do the resulting integral over t to get

'4ﬂe2

— 2 AAL [w =] ] f dH dP.dv,
kan b

3 y
Xnn'(w) -
m

J SH j ov av

Bf aof . of .
. - 0] 0J
{ [wa m{w Wy wb)] + om. 3 + k. - }

AD)I (a0, (D), (@)

. J£+m(
m+m(wa—mb)»kvz—£wb

(1.38)

where - f“ appears as the period T of the motion in r.

For this equilibrium we have
NS 22 2

1o - 1

o
1

When r = a + b, the particle is at its maximum in r, so that Vo © 0,

8 = 0, and Vo= wa f wbb. Thus

1 2 1 - 2
P.=m (ath)(w_ atw,b) + i} MW (a+b)2 (1.40)
&) It a b A o ' :

Equations {1.38} and (1.37) could be solved for a and b in terms
of HL and P8 and the results substituted into {1.35). However, the
expressions for a and b in terms of Hi and Pe are considerably more

complicated than (1.36) and (1.37), so it is more convenient to use
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(1.36) and (1.37) to convert the HL and PB integrals in (1.35) to

integrals over a and b. We have

B(H_L’PG) 7 2 ejEO 2
By | T " ap) | (ea2tuph) T+ (ugatupblugglarb)r 55 = (ath)
(1.47)

" We shall now demonstrate that the expression inside the absolute
value signs on the right of (1.41) is always negative, so that we
may replace the absoTute value signs with a factor of -1. Since

Wo = Wy > 0, the expression can be positive only if

E

e.F
e vy 2+ L0, (1.42)

c .
J mg

where

waa+wbb

2= ~p

1f we take the equality in (1.42), we have the same algebraic equa-
tion for z as that from which w, and wy, were determined in Egs.

{1.33) ~ (1.35). Thus

2 eon .
zo + wcjz + mj = 0 iff z=w., or 2= Wy

and the expression on the right of (1.42) can change sign only if 2z

passes through one of the values w, or wy. But since a + b >0,

- =
wy T oWy 2 Q, we have
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Sw s W £ Z 5w . oo (1.43)

Since the left side of (1.42) is clearly positive for z + e, and

must change sign at z = Wy Or Z = wy, we see that for a in the range

of (1.43) the left side of (1.42) must be non-positive. Therefore

3(H Pg) 2 2 e3fs 2
W = -mj(wa-wb)[(waa+wbb) + (maa+mbb)wcj(a+b)+ 'm_ (a+b) 1.
U (1.44)
Using (1.44}, (1.38) now becomes
5 8TT2€§ o R Rea g
o) = - —ane 1 [ e[
m.k =ec0 Q) 0 -
Yitn
afo af of
0
. {mJ_BH J [ﬁwb—m(wauwb)] + Qmj BPOJ kz oYY J}
i 8 Z
e.F
. [(waa+wbb)2 + (waa+wbb) wcj(a+b) + %_0 (a+b)2]
J
. J£+m(knb)3m(lna)J2+m(kn.b)Jm(An.a) (1.45)

w+m(wa-mb)»kzvzwﬁwb

The integrals over a and b in (1.45) have been taken over the
.range a+ b < R so that all orbits éonsidered 1ie entirely within
fhe cylinder of radius R. Strictly speaking, we can only allow equi-
Tibrium distribution functions foj which vanish identically outside
the cylinder. This is because orbits extending outside R will not

be treated correctly by the integration over unperturbed orbits,
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since the expansion of the perturbed potential is not valid there.
In many cases, however, it is most convenient to choose a simple
_analytic function for foj and allow the Eimits of the phase space
.integration to exclude the unwanted orbits. This is more easily
accomplished when the matrix elements are written in the form (1.45)
than in the form (1.38), since the region in Hi, Pe space which
corresponds to orbits lying entirely inside the cylinder is much
more complicated in structure than the simple triangle in a, b space
which is integrated over in (1.45}.

Having calculated the susceptibilities xgn.(w) in (1.45), the

stability analysis is completed by solving the equation
det[s . + § a1 (@)1 =0

for w using a suitable truncation of the dispersion matrix. How to
determine a suitable truncation will be discussed further in Chapter
III. The roots w of this eguation with positive imaginary part y
correspond to the unstable modes of the plasma, with y being the
growth rate,

R. C. Davidson(7) has presented a similar method of stability
analysis for the special case when foj is a rigid rotor equilibrium.
A rigid rotor equilibrium is_characterized by a distribution func-

tion of the form

foj(—" l) = ij(HJ«"ijB’VZ) s
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i.e., foj depends on Hl and-?e.oniy through the Tinear combination
Ho- m3P8 » where ws is a constant for each species. It can be
shown that in a reference frame rotating about the z-axis with fre-
 quehcy 0 the rigid rotor distribution is isotropic in velocity
space. Thus in the multi-fluid Timit each species appears to rotate
in bulk with angular frequency w5 and this gives rise to the name
“rigjd rotor." |

For a rigid rotor distribution function we have

. Qe o
- _ J _am.
_Xnnf(w) o m kﬁ Aol Ya 9 me oo f H, f g J #VZ

e aij Sfoj
: {mj oL [eyng) g1+ K g }

TP 0205, 0y 10D, 02)

(1.46)
w+m(wa—wb)—kvz~£wb

Defining

Vx =V, + wjy , Vy = vy - wjx s V¥

we may write Davidson's result for the same problem as
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dre R of .
' 1
xgn.(w) = - —5 AR f drr 3, (A r) 3, (0 0r) [ &y Vw_gvgg“
Jn :
_ 5 : _ .
4me’ R oo W= . W =l
. N J J 4 J
+ m.kz AnAn' Jodrr pg_ng(h“r)Jp[wf-w" An.r]Jﬁ_p(w+"w_ Anri
J-n i 33
v =80 -
: ez 3 j 9
o AL 2t ) A el o AP
3 2; n1 z L4
A N e _ i
= oo G ¢ -~ .- {p+ T T
m w30 uw QwJ (p m)(wJ wJ) v,
(1.47)

- Note that (1.46) 1is somewhat simpler than (1.47) because in the
derivation of (1.46) we were able to carry out analytically the inte-~
gral corvesponding to the r-integral in (1.47).

The two results (1.46) and (1.47) are not analytically identical.
This is due to the fact that the phase space integration in (1.47)
includes the paths of all particles having any part of their orbits
inside R, while in (1.46) we include only those particles with orbits
which lie entirely within the cylinder. However, to the extent that
the plasma density at the cylinder wall is negligible, the two
methods should give essentially the same numerical result.

To verify this, a numerical calculation of a particular case of
the fower hybrid drift instability was carried out and the results
compared to those Davidson obtains from (1.47). The equilibrium dis-

tribution function is taken to be a Gibbs distribution:
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m, B -

~ J 13/2
oj = NilmT) T e
The density profile may then be shown to have the Gaussian form

o —rz/Rg
n.{r) =n.e s {1.48)
where RO represents the characteristic radius of the plasma column

and is given by

) 227 #T;)
RO = 2 2 . (1.49)
Zme( oo e) ~ITh (w w1wc1)

Here 7 is the multiplicity of the ion charge and Weg and w.; are the

absolute values of the electron and ion gyrofrequencies, respectively

For the numerical calculation, we take k = 0, RC/RO = 2.5,

.Te/Ti =1, wER /v = 3, and m.m, = 1836, where Davidson dgfihes wp as
2(27 +7.}
2 :
RS, = 3 . (1.50)
Zme(wewce“we ) “‘mi (wﬁmiwci )

Davidson carries out his calculation using the strongly magne-
tized electron and unmagnetized ion approximation, and the further
_assumption that AnRO > 1, all of which are valid for the equilibrium
configuration and modes dealt with in this calculation. In addition,
Davidson shows that under these assumptions it is only necessary to

consider the diagonal elements of the dispersion matrix to determine
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the unstabie modes; to facilitate comparison of results we likewise
use only the diagonal terms of (1.46).

The results of the calculation are shown in Figs. (1.4) - (1.8)
| for several n's and &'s. The circles represent the results obtained
from (1.46), the squares Davidson's results. The two approaches are
seen to be in quite good agreement. The discrepancies tend to be
largest for large & and small n; that is to say, for those modes
where the potential fluctuations are localized near the conducting
wall. As remarked above, the dispersion relation (1.46) does not
include the effects of orbits extending outside the wall, so that
.strictly speaking the distribution function is no Tonger of the rigid
rotor form. This does not affect the validity of (1.46) however,
since the approach used to derive it is valid for any distribution
function. The phase space integral Iéading to Davidson's result
(1.47) however, includes orbits extending outside the cylinder, so
that these particles are not treated correctly in the orbit integra-
tion. Davidson justifies this with the assumption that the plasma
density at the wall is 'negligible", due to the Gaussian form of the
density function (1.48). As an example, 1f.we take the density at
ﬁhe center of the cyiinder to be f, the density at the wall will be
ng = e™0-250 = 1,03 x 10"36, so that the plasma density at r = R 15
indeed negligible compared to the density at the center. However,

if we consider the mode ¢ = 30, n = 1, the maximum of ¢i(r) {and

thus of n](r)) occurs at approximately v = r = .90R, so that
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3

) = 3,65 x 1077n. Thus in this case the density at the maximum

no(rm
of ¢, is less than twice that at the cylinder wall, and could have a
significant effect on the frequency and stability of the mode. The
séme may be said for other high ¢ or low n modes, and this may
account for much of the difference between the two sets of results

as presented in Figs. {1.4) - (1.8). We note also that Davidson
finds the highest growth rate to be associated with the £ = 44,

n = 1 mode, which is localized close enough to the wall to be affecfn
ed by the above considerations. In fact, the difference in the two
results for this mode, as shown in Fig. {1.8), amounts to about 10%,

so that the effect of finite density at the wall seems to be non-

negligible for the most unstable modes.
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I1. EXTENSION TO ELECTROMAGNETIC CASE

'.For probiems with g ~ 1, where considerable free energy resides
in the magnetic field, or for high frequency modes with w v ck, we
expect significant coupling between the longitudinal (electrostatic)
and transverse (electromagnetic) modes. In relativistic plasmas,
where a significant fraction of the particles have v/c = 1, we ex-
pect that fundamentally electromagnetic modes may be driven unstable
by resonant particles. Consequently, for many problems an accurate
stability analysis will require consideration of transverse as well
as longitudinal modes.

‘In the preceding chapter we have shown how a linearized stabil-
ity analysis may be carried out for the Vlasov-Poisson equations in
cylindrical geometry. In this chapter we extend this analysis to
the full set of Vlasov-Maxwell equations and in the following chap-
ter we shall illustrate this formalism with two numerical analyses
of relativistic beam-plasma interactions.

We again assume the geometry and coordinate system of Fig. (1.1)

The Tinearized Vlasov-Maxwell equations in the Lorentz gauge are:

3 -
(5‘{ + LO) f]‘](r_alat) -

e af

J 1 1
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2 ~ Awe.

2 1 ) J 3 '
-y e - -1 T e
¢ ath T i Rt
(2.2)
2 .
2 1 a 3
(V5 - = %) ¢1{r,t) = - ) Aue, J d?vf, . (r,v,t) .
C2 atZ 1v— . -j ] ]J LA
with gauge condition
19
V o. E\“‘I + E'S—E'—z 0. (2.3)

We assume that all perturbed quantities have e-mt time dependence,
with Im{w) > 0.
The Lorentz condition (2.3) does not uniguely specify A, as we

(8)

may introduce a further restricted gauge transformation

A+A+ VA,
(2.4)
3 .
b -t L,
where A{r,0,z,t) is any function satisfying
2 2
2 1 3 2w
(VE = 2 =S5)h = (V5 + =)A= 0 . {2.5)
c2 Btz c2

We now show that we can use the transformation (2.4) to pick a gauge

in which the potentials satisfy the boundary conditions

v-A
L r=R ¢1‘r=R

=0, (2.6)
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where R is again the radius of the conducting cylinder.
Since the potentials are periodic in the 0 and z coordinates,

we may write

#(R,0,2) = ﬁzk a(,k) of (4OTKZ) (2.7)

" If we define A{r,8,z) by

ei(£e+kz)

Ar,6,2) = zk ML) (0 1) : (2.8)
Q} . L] .

where A(%,k) and Ak are constants depending on ¢ and k, then we

have
2 . W22 2 i (R6+kz)
(v© + ~§)A = (w§-— kﬁ,k - k%) JQ(AQ’kr) e . (2.9)
C L.k
Clearly A will satisfy (2.9) if we choose
A, L= S - kP (2.10)
%,k C2 ? '

and from (2.7) and {2.8) we see that (2.6} will be satisfied if
- iw
AR,k) = ®{(n,k)/ c Jg(Ag’kR) . (2.11)

Note that since Im{w) > 0, (2.10) shows that Ak is always complex
(non-real), and since all the zeros of the Bessel functions of the

first kind are real, the depominator in (2.11) never vanishes. Con-
sequently, we may always impose the boundary condition (2.6), and in

doing so uniquely determine the gauge of A and ¢ (up to an additive
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" constant in A).
Using the gauge condition (2.5) we may e]iminate ¢ from the

' éduations::-
RS [ -
¢ o= - w‘v A, (2.12)

where we now drop the subscript "2" on the perturbed quantities.

Eg»

(2.12), and

Ez’ énd Br must be zero at the cylinder wall, so from (2.6),

we have for boundary conditions on A:

veA =0 5 A =0 , A =0 . (2.13)

| =R r=R “lr=R

In the preceding chapter, we expanded the scalar potential in
cylindrical harmonics in order to obtain a matrix dispersion rela-
tion. These expansion functions were chosen to satisfy the boundary

condition ¢(r) = 0. For the electromagnetic case we now define

+ ,
A™ = Ax * 1Ay .

and show that a suitable expansion for the vector potential satisfy-

ing the boundary conditions (2.13) is the following:
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ei{(£+1)e+kz]

4 '
A = T Do 3y (i) + gy Jpa7 O]

- = 1 1[(2"1)6"‘[(2]
Al = L Tong 91 Oagr) = By Jp 1 Oggri] e ’
i(26+k
A0 = T gy dg(Aggr) @ T (2.14)
L,n,k
Here Unek® Bnok? Yngk 27€ the expansion coefficients representing

the three independent components of the potentials, A, is the nth

ng
th

root of JR(R) = 0 and k% is the n”" root of JQ(R) = 0. Thus the

2
third equation in (2.14) shows that the third boundary condition in
(2.13) is satisfied. To show that the second boundary condition 1is

satisfied, we must express AB in terms of A+ and A”. We have

. + o~ 1 + .-
Ay = <A, sing + A coso LA = (AR LA =gy (AR
and thus
- . it - - + =i
Ae:-%(A++A)s1n8--%~(A-A)cose=%—[Ae]9~Aem].

Using (2.14) this gives
i i '
Rg =7 L y Tong [9g1(hngr) = dpaq (er)]

i(Lo+kz)
= Bogy [9gq () + Jgaq (it e 3

Using the Bessel function identities
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00+ 00 = B 00,9y (00 5 300 = 204

R e L& i(L8+kz)
Bg =3 b (g D300e7) = Bugye + 5 Jp D)l e

JQ(Anﬁr) = Ji(&ﬁgR) =0,

we see that the second of the boundary conditions (2.13) is satis-
fied.
From a similar though longer calculation (given in Appendix B},

we find:

. (L0t
Vo= i k (Brgk Ang + 7Kz Yagi) g (Angt) A ALY
2,0,

and thus the first of (2.13) is also satisfied.
As in the electrostatic case, we now determine the perturbed
distribution functions by integration over unperturbed orbits. From

(2.1) we obtain;

(b - } of .
fi5(09) = ;i.f—m qe plelt-t )[V¢(§) - 1%—ﬂ(r) . Mx(Vcﬁlr)], 83? .
(2.16)

Using
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Bfo af . Bfo. Bfo.
WEE%- m—-gvma_ sﬁgi-mjr@ + 55;1-mj2 (2.17}

and substituting (2.14) into (2.16), we obtain after considerabie

algebra:

S ) Elcgi-(-- I8 1K ¥ gp) gor ©
R N oonok Lo o F Pk 2 ek’ At o
ils Z

1

1 ' :
oy oo (Croaqvl + Cro Vi) + 7 By (CpgiqVe - Chp-1v4)]
. idv!
0j rhc . = 'z -
* 3Py o ngBogk * iKY nek? Cng © T Ynsk Co
k! Lk v!

lZZ Wl 1 ZZ ey
7 ¢ gk (Milpg-y = 126 art1) An & ProkCng

“nek

+ e (Cpgoyrs ~ Cpgatl) (2.18)
- wigﬁk (Cni 1r+ + Cng+1rl) - 1;i2 (vir! + viry) o ALk Chz
* 2:Zj [ka OvgBnk * Tknaid Cng - i%%’Ynnk
- (v Copm ) Vilhg-1) + Yagk Eﬁﬁ
ik ik

_Z 1t z '
52 Ongk(V4Cng-1 v C

FvIC) 7 e BuekY]

ng+t - V;Cn£-1)]} '

In (2.18)
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Here the prime indicates dependence on t' and

‘r_!(tl,.__.,t) - r_ﬂ R ll(tlzt) = l .

and we have defined

» i(£6'+kzz') 1[(m])e’+kzz']
Cho = JoAgerile s Cngat = Jga1(gertle :
_ 1(29'+kzz') 1[(%11)e'+kzz']
Crg = JglApgrtle s Chgat = Jpa1 Opgrtle
1kzz’
Now we can use {1.24), (1.25) and (1.28) to express e , r',

v;, and the C's as Fourier series in time and proceed with the inte-
gration as in the electrostatic case, obtaining a set of linear
equations in the expansion coefficients o o 5 Boovs Ypor- This is
quite cumbersome for the general equation (2.18), however, so for
.the purpose of illustration and with a view toward the applications
in the next chapter we carry out the calculation in full only for
the simple case of k = AZ = 0, i.e., we consider only perturbations
depending solely on r and 6. We note, however, that the extension
tq z-dependent perturbations, though algebraically lengthy, is
straightforward.

We therefore take vy, = k = 0, so that Eq. (2.18) becomes
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| t . of . : :
_ v iw(t-tt) “oj [ ic d iy 188"
13 7 8 f_wdt ¢ QEH['BH o Patng Ger [p(ggrtle ™ |

jw Coves Ji{e+1)e" - coi(e-1)e!
- 7¢ Ongldgay (pgrivle o aOyert) vy e ]
iw fyg S1{8FT)0! e Li{e=1)e!
= 7 Ml (griivioe = JgqApgrivy e ]
af ., )
_0J jhc 120"
* aPe { w Anﬁxni JR(AnRP )e (2']9)
i 1oal t [l 1 1 i%' W
" ?E'(V+r~ tvlrg) g rng Jz(knﬂr e T 5¢ g

S&

Brg[Ig1 g vhrg o 108y Iy (Apgr' el ei(£+])8']}}

Mext we use the techniques of the previous chapter to represent
fhe integrand of (2.19) as a Fourier series in time,. Since we still
: have only one non-ignorable coordinate, the arguments which in the
electrostatic case led to the expansions {1.25) and (1.28) remain
valid, and terms of the form r;, vi, and Jﬁ(r‘)eige' may all be
readily represented aé Fourier series in time. To make the method
as clear as possible and avoid unduly lengthy algebra, we utilize
only the first two terms in the expansions (1.25) and (1.28) in the
foltowing calculations. (The extension to more than two terms is

again straightforward, as in the electrostatic case.) Two terms
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will also be found to be sufficient for the numeri¢a1 ¢a1éu}ations
of the next chapter. | |

Thus as in Chapter I we may write:

L +iw_t’ i, L' tiw_ ' i, L'
; = r’eije- = ae . 24 pe b s v; = tiwaae + 1wbbe b s
. it o N ~im(w_ o, )t
L TR8Y b m a b
Jg(ar')e = e mgmm Jg+m(8b) Jm(xa)(-l) e ,
(2.20)

where here W and wy, may depend on the constants of the motion H and
P

e’ .
' From Appendix B we have the results

_ 29
. . . . 129
(v % A), = -1 ain ong Mg Vg lhpgr) e
Equation (2.2) then yields
2 2 .
2 W 2 ) i%0
(Ve ) v A= T (Fan, t ) B A Jo(Aer) e
C2 | “in nL C2 ng “nd TLnk
dre
. 3
= ~ip % J [ d”v flj , (2.21)
2 2 .
2w s Wi iLe
(Vo + =5)(VxA}, = -i Doy ¥ 2) o e Ang Jp{hner) @
C %,N
4TTeJ 3
=-) "E"J dov [V X(Mf1j)] . (2.22)
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To isolate one term on the left side of {2.21) and (2.22), we multi-
Ply (2.21) by v 3p(Ay1gr) e ang (2.22) by v 3o O rpr) 9_1£¢ and

integrate over r and 6 to obtain:

( An 2 2)[ £+1(An£R)] Anﬂ 6nn' Snz (2.23)
dne . .
=gy Z CJ I drr J (A gr) e 148 f dzv f]j .
J

2
- R (T B R, ¢ %) Mg, ¢

n'e °nn' %ng (2.24)

-] [ are 9,00 r) €80 [ dPume(un )1

Note that the right sides of (2.23) and (2.24) do not depend on 8

1£8, see the discussion preceding Eq. (1.16).

Also, we have taken the integral over d2v rather than d3v since v

since f]j contains e

z
does not enter the calculations. If fo depends on Vs we take the

f] in (2.23) and (2.24) to have already been integrated over v,

Next we must substitute (2.20) into (2.19) to obtain ij:

¢ o 2
f.o=e. J gt el0lt-t") oy ym [ Lxy + 2 vy,
1J J e n{m aH 0P,

where
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i{%wbum(wa~wb)]t‘

o) = (-3 4 4

Xp =i w Pngtng GET [J2+m(3n2b) Jm(AnQa) ¢ ]
i ST ~fu, t!
- EE—[(-iwaa e - 1wbb e ){anﬂ J£+m+](kﬁ£b) Jm(mﬁla)

i[(£+1)wb-m(wa-wb)]t'

+ 8 (Angb) Jm(Anﬁa)}- e

ng Amt]

iwat' iwbt’
o+ (1waa e T oiwb e ){ung Jg+m—](ln£b) Jm(knga)

1[(£~1)wb-m(wa—wb)]t‘
= Bag Ipama1 Pngb) Iy Rpg2)d e | 13

”'im(ma—(x)b)t'

- ¢
)= {_E'Bnkkn J2+m(hn2b) Jm(knka) €

1wat 1wbt

* be ){ani J£+m—1(kﬁzb) ngxﬁza)

i[(£~])wb—m(wa—wb)]t'

J (Anib) Jm(knza)} o e

= Bng Yrm-1

s 1 i i
1wat 1wbt

- (ae + be ){anz J£+m+](kﬁzb) Jm(xﬁﬂa)

1[(£+1)wb~m(wa—wb)]t‘

* Bnﬁ J£+m~1(An2b) Jm(knza)} €

1 {w_~w, )t ~i{w, ~w, )t
ab a b a b ) 1
* 53-(wa~wb)[e - € 1 Cngtng J£+m(hn2b)

i R, -m{w_-w )]t
IMCN, T gy

1 n%a) * €
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After performing the time integral we have

| of . of Dyl ) ]t
fi. = e, _Z ('1) [BH J {U}.+ gﬁgl'{v}] 1[2w " _wb)_w] » (2.25)

[wa-m(ma—wb)]c
W} = { uw Baatng 2+m(k b) Jm(knﬁa) (2.26)
cha m
+ o Lo dpam(Agb) IplAgea) + 8, Agd Jgam(Pagb) Ip(Apgal]
s B (Ah,b) 3 Mg, (ALb) 3 (A,
%I grm g Apd) - By b Yt tng ) a)lp
v} = {&ﬁ B A (A 4b) Iy(Anq2) (2.27)
w "nini £+m m"nf '
w - m
* E'[aanﬂ 2+m(k b) Jm(lnﬂa) * agnﬁ Anz Q+m(k Jm(xnma)
£,+m
+ oy Jgn(Agb) Jp(Apea) - bBy, Aogb gD A2
ab i m t ¥ §
t (wa-@b) ongrng I g JoaemPngb) IplAnga)

¢ ng

53,+m H
- H 0y Og®) Jé(xnga)]} .

Using (1.36), (1.30) and (1.31), we change the variables of integra-

tion in (2.23) from r and v to t, H and Py and get
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2 .

(2 b R 2
(g * Cz) Baetng L2 Jgay (pgRYI
B e,
= 3 ._._._J_ - m
o T b [ d dPydt T (D" g, 00 0b)
J mic m
im{w_~w, ) -2, ]t
a b b
. Jm(Anﬁa) e f}j . (2.28)

- Combining (2.25) and {2.28) we can do the integral over t and get

(2 +9 8 5 B2 (o ry]
n c2 nene L2 e+ ng
4?1-@? { 217 Z ( ) ( )
= oy} —m= b odH dP, ——— } ] Aoob)y 3 {h ca
§ m?c 5] 2% L+m*"ne m*nd
of . af .
. 0] 0j 1

with {U} and {V} given by (2.26) and (2.27).
To get the corresponding result for (2.24), we must first deal

with the term V x (xf1j). Using

10 13
Vo (vfys) = w o (rvefrg) - g (nfyy)

and integrating by parts over r we have



(-1 4 ) (-1) - (s ) %1 05 00gR) Mgy
) dne drr g -i20 [ 4 v f
_.f.gl f re Jo{hper) e [ v [ ar - = (12)] 1
1A’ 4ﬂe % .
] - }
" § [ drr f d*v [v, 2+1(K r) e 1(2+1)0
+ v Jg_](kﬁzr) e_i(ﬂnl)e] fij . {2.30)

Now we can make the change of variables of integration

2 1

rdrd®v > ;§~dHldPedt
]
and obtain
' 2 .2
2, wy R L 22 12741
(-2 ¥ ‘?’ 7~ L1 - (AnQR) 395 (qgR) oy
4ﬂ@ m ; .
1t J dH P dt X (-1)™ [iwa 3, (Ah,b) 31 (A} oa)
J
i[m(wa—wb)—ﬁwb]t
+ ]wb Jﬁ+m( nzb) Jm(xnga)] e f1j
dwe§ o : .
) Z 2 f dHLdPG W, = ! ¢ [waa J2+m(An2b) Jm(knﬁa)
J mjc a b m,n

1
ﬁmb—m(wa-wb)-w

of .
| OJ[ OJ[
* mbb‘]!?ﬁm()\njlb) m nﬂ a)l- faH Uk + BPG V3]

(2.31)
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- Egquations (2.29) and {2.31) represent a linear relation among
the expansion coefficients which corresponds to Eq. (1.20) in the
electrostatic case. As in that case, it is useful to write the re-

lation in terms df a dispersion matrix D{w). If we write {2.31) as

[t}
o

oot o
gt Dﬂn.(w) Qn; + g' Dnn|(w) Bnl

and_(2.29)_as

il
<

§| DE%&(M) ani + %l DSE.(&) Bnl

we may combine both equations into a dispersion relation in matrix

form:

o boaaB
Dnn'(w) | Dnn'(w) Gt
- - { _____ e (2.32)
B 1 BB
Dnn;(w) \ Dnnl(W) Bnr

. A .

The "normal modes" of the plasma are again found by truncating

D for some suitable range of n's and solving the equation
detfD(w)] = 0 .

For each root W, the eigenvector of D(wo) with zero eigenvalue gives

the expansion of the potentials for the corresponding mode according

to (2.14).



- For future reference, we write the submatrices of (2.32) explicitly

as
' da _. mz ' 2 R2
L IORE R St -(nﬂ)la R) S,

75 JdH ap, a;m-b 003034y (o003 g2 #0503y Oy 013 (2]

Bfoj w2 wu)bb
) {BH L= Tpam (P gP) I (gegad + =g Jguhigh) I (hgnpa)]

Oj W t ) \ 1
+ [ (ady, (Ahigb) 9100, a) + bad, (A,

b) 3, (A1 a)}

m

-(J.)
b AL

* n's

{mbJ b} J (A'

L a} + (&+m) ad

b) J, (A5 )}]}

2+m( n'g 2+m(

1
iwb—m(wawwb)“w

» (2.33)

dyre’
?
J

2
J

2 ol 2 w
- J gH dp, 2Ty (22, + W)
nn 5 mlc L8 w0y o hn.gw n'g P4

+ w.b J! Al.b

* Loga Jgun(Aggbd Ip(anpa) + b Jp (i) iy

Mpd)]

of
: {BHOJ Lo mas, - )] 0y, (0 1gb) 9, (3,1 p0)

of .
O

BPB

1
th ‘]R+m(>k ‘Qb) Ji(kn‘ﬂ )} wa-m(wamwb)ww i (2'34)
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: 2
Are’
Boi _ j 2
DPY (w) = w ) f dH dP, ——— } g (x b) (r_.a)
onn’ 3 m?c 1 e_wa-wb 0 2+m m n£
f . wae.a win, b
. 4_09J a NS ET : i
_'{BHi [ c qg+m( b) I ( a) e J52,+m(>‘n g b) Jm(hn'za)]
afo. 3
* BPe ["E‘Jﬁ+m(hn Rb) m( a) c £+m(A b) Jm()\n R a)
Wy
e {mb J£+m(hn.2b) Jm(xn,ga) 4+ (2+m) aJ£+m(An,£b) Jm(kn.ga)}]}
1 : o (2.35)

2 2
BB w 2 R
Dpn (w) (zﬁ“ Ang) 7~ Jga1 (AngR) 8
of . af .
AN “Toj _ 03}
de dPe = ) J£+m b) Iy n%a){BH [wa—m(wa mb)] oA
a bm 1 5]
. J£+m( 2Py Ry ) (2.36)

wa ~mb) -1

As a check on the consistency of our results, we now wish to
show that for the Timit ¢ » « in Eqs. (2.32) - (2.36), we recover
the electrostatic dispersion relation of Chapter I. Using (1.19),
{1.38) and (1.40), and taking k, = 0, we may write the electrostatic

dispersion relation as

det[DEﬁi(w) = 0]



where the matrix DES is given by
5 _
dre’;
Ohe (0) = 8y - [ 5 f ey 5
] mjlnﬂ R J2+1(An2R)J£+](An.RR) a b
ﬁ afoj afo.
) % Jﬂ+m(An£b) Jm(AnRa) {BHL [Q'wb"m((")a"mb):j t A 9Py }
i JpamPn1gP) (A1 02)

o mlw, -0 ) -w (2.37)

As we let ¢ +  in (2.33) - (2.36), we find that 0% becomes a

B 0

constant diagonal matrix and D Thus the dispersion relation

becomes
1im o Aapriim . 1im
oroo det[Dnn.(m)] = det{ D {w)] « det[ D

cro nnt Coo nn‘(w):I

=0 . (2.38)
For Im{w) > 0,

det[llg Dnnl(w)] =0 ,

so we may factor Dﬁﬁ. out of (2.86) and the unstable modes are deter-

mined by DFP:

det[' p (w)] (2.38)

kCmee RN =0.
If we define
EM _ 2 T1im BB
Dnn:(w) = 3 2.5 Cro0 Dnn|(w) (2.40)

AR 91 (gR)
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we may alternatively write the diépers{on relation as _:
det[of" ()1 = 0, | (2.4
where from (2.36) and (2.40). -

: L 4ﬁe
EM - _
"Dnn'(w) ann’ §

0

. J£+m(ln'£b)dm(kn'£a) (2.42)

£wb—m(ma—wb)—w )

Comparing (2.42) and (2.37) we see that

pEM () = pES () - M1gdge1 (g gR) (2.43)

[} i .

nn nn kn£J2+1(kn£R)

Now suppose we are given an arbitrary matrix M = (Mnn‘) and an

arbitrary set of nonzero numbers s and consider the matrix M' =

(M where

nn')’
v Ny
Mant = 7 Man
Thus det{M'} consists of a sum of products of elements of M', each
product containing exactly one element from every row and column of
M'. Consequently, each a appears exactly once in the denominator

and once in the numerator of this product, so that all the ak's
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cancel out in the product and we have
det[Mnn.] = det[Mnn.] .

ES

nn.(w) are related in the same way

Since by (2.43) DE&'(M) and D
as M and M' above, we see that the dispersion relations (2.41) and
(2.36) are equivalent. Thus we have shown that as ¢ ~+ =, the elec-
tromagnetic dispersion relation obtained in this chapter reduces to

“the electrostatic dispersion relation of Chapter I as it should.



IIT, STABILITY ANALYSIS OF A RELATIVISTIC E-LAYER

In this chapter we apply the formalism of the preceding chapter
to the calculation of unstable interactions between -a relativistic
E—]ayer and a warm background p?asma. Interest in fhis interaction
stems from plasma confinement experiments such as Astron(g) and

(10,11) First we will use a

various microwave generation devices,
fluid model with uniform geometry to elucidate the nature of the
1nstabi1ity,.and thén give a fully kinetic, non-local treétment
based on the methods of Chapter II, - |
The mode of interest was first analyzed by Striffler and..

(12)

Kammash to account for radiation observed near the upper hybrid

fkequéhcy in Astron.(13) They showéd that extraordinary electro-

]4).of the background plasma may be driven unstable

magnetic modes(
by resonant ihferaction with perturbations in the relativistic

| E-layer. We begin'by outlining their derivation of the dispersion
relation for this mode in the fluid approximation.

| "The.geometny of the problem and the coordinate system to be
~used are shown in Figure (3.1). The thickness of the E-layer, e
is approximately 20 cm for Astron, and its average radius is 40 cm.
We assume the modes we are dealing with have wavelengths smaller
than these dimensions (this assumption will be quantified below) so

that we can use the uniform beam and plasma approximation. We con-

sider a uniform cold plasma of density np immersed in a constant
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uniform magnetic field Eo' The plasma will be described by the -

fluid equations:

Bn.(_)_(_,t)
—hp—t Veng(xt) v (x,t)1 =0,
'mi%f_y"isxf’t) = a[E(ot) + ¢ g0 t) < Bu)] s (3.1)

] d_ .23 4, .
SRR TR B

where nj(ﬁ,t), !j(g}t), mj, and 43 are the density, velocity, parti-
.q1e mass and charge, respectively, of species j. We are interested
in high frequency modes so we ‘ignore ion motion and deal only with
the plasma electrons.

We consider the beam particles to have essentially straight-
Tine orbits in the Tocal approximation and ignore the effect of the
external magnetic field on the beam. Thus the E-layer consists in
this approximation of an infinite monoenergetic homogeneous beam of
density g and relativistic velocity !B' However, we do assume that
perturbations in the beam are periodic in the direction of beam

motion, with periodicity length 2wR. We neglect self-fields and

collisions, so that the beam is described by the re]ativistic fluid

equations;
Eon(x,t) + VeIn(xt) v(x,t)] = 0,
g-t{mV(?(_st)] = q[E(x>t) + %y_(,x_,t) x By (x,t)1 , '(.3_2)

,\,],_ nq,y_’%f:a.t'{-l'v-
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“Here Eq represents only the perturbed fie1d, and

VoV .
n.= Toyei/2
n mO“ - (:2) MyY s

where my is the rest mass of the electron and y is the relativistic

“mass. factor.

"_”The.e}ectromagnetic Tield 1s taken to be a plane wave:

E(X,t) = E(}ism) ei“l"(“‘i—iwt s

- ikex-iwt
B(xot) = blkew) e X0t 4 p

and from Maxwell's equations we obtain the wave equation:

2 .
k(kee) + %y e = - 458 g(e) (3.3)
Cc C

where J{e) is the induced current density and can be written as the

sum of contributions from the plasma and from the beam:

e = dgepaule) + dpp psuale)

We wish to perform a linearized stability analysis of the beam-
plasma system, so we calculate the induced current densities from
‘the linearized versions of {3.1) and (3.2). For the plasma, the
result is
H | 2 2 .

brig y . Ypp e - Tuep Xe - (uopwugy

- s (3.4)
2 V1P 2 2o
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where

m

4mqing)1/2 Gp8,
Wpp ~ 5 > wep = Jugpl =

are the electron plasma and cyclotron frequencies, respectively.

"For the beam we obtain

2 _
i w (Voog)
P Iz'E
4“5‘-0 ::118 = ....,_2_ B 2— (m*_&-!B) [wg + y‘B X (_]S_XE) - W __......2.._...!8]
C C (w-is—o!B) c
(Vg-e)
+ Vpke[we + ¥ x (kxe) - w ¥ Volt (3.5)
where
2, 3
s"p 1/2

is the beam plasma frequency and
vi)-1/2
Y-“}*-Tz“ .
B c

Combining (3.4) and (3.5) the wave equation {3.3) becomes

(Ygee)
2 {(w-ke¥5) [we + Vg x (kxe) - ~;—2-}{B

(Vge)

+ Voke[we + Vg x (kxe) - o ‘iz V1. (3.6)
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e wish to consider modes with k perpendicular to the magnetic

fie]d.: Taking golin_the z-direction, !B in the y~direction we have

k= (kx’ky’o) s EF (Ex’Ey’Ez) ’

Vg = (Q,VB,O) ,

and the x, y, and z components. of (3.6) become

2 2 . ?
e (keke ) + EE.E _upp u Ex+1waP?17+ Wpg (m~kyVB)gx+kvagy
YT T 2 ST T TR T AT
( ) m2 wgP w Ey—iwwcpgx
-k (ke -k € + —g =
XUXKY ¥YX c2 y C2 w2 - w2
k‘.!:( -k Vq) +(‘i’-2—+k2\l2)
2 “x'B\TRy'B/%x 2 "x'B’Fy
4+ oPB Y3
2 . Z H
.‘.‘jk_LE:Z"I'E'Z—EZ:-—C—Z—EZ“‘__—-:é-SZ, _ki:kx-i.k‘y'

One solution is £y~ ay = 0, e, ® 0, which represents a purely

electromagnetic model {called the ordinary mode(]4)) with dispersion

relation

2,272 2 2
w = klc + Wpp + wpg *

{learly this mode is stable. The other solution to the wave equa-

tion has Ey> €y VA €, = 0. The corresponding dispersion relation

is



w 2,,2
2.2 2.2 7 **x'p
[k 2 S0 2|22, 2 TR 2 B
2.2 " “PB VI IR
cp cp y'B

¥ w2 2 w=-k VB J

2 wwcpwgp “gakxva p . Wocpw PP wPB Vgl
~lkky® + 1= - ik 2 - -
x -
wep

(3.7)

If we set the beam density to zero (wPB = 0), we get the dispersion

relation for the extraordinary mode of a cold plasma:

2,2 2 2 4
)2 - wy (wi-wgp=2upp) + wpp
2 72
Pk " Ycp T “pp

(klc

Plots of this equation for w~p > wpp and for wep < wpp are shown in

Fig. (3.2). There are two branches, one above and one below the

2,2 41/2
(ugprupp) /-

above the velocity of light Tine, so that no resonant interaction

upper aybrid frequency wy = The upper branch is also

with particles can occur. We expect the unstable modes to occur
near resonance with the beam, i.e.,

W v kyVB oy
If we let & be the azimuthal model number for the beam, we have

Zﬁ
“yle = %, oes = e -
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For the va11d1ty of the 1oca11zed pTane wave approx1mat1on we
must assume the wave]ength in the rad1a1 or X- d1rect1on 1s sma?ler
.than the sma11est relevant radial d1mens1on of Astron, which we take

to be t .the thickness of the E-layer. Thus we assume Ax <<

EL? EL
“or for typical Astron parameters tEL = 20 cm, Wep * 2 X 108 Hz,
k.c k.c . . .
O L L (3.8)
CB . CBjmin ELTCB o

The condition on the total perpend%cu]ar wave vector k is then

2.2 1/2

LT e Ky€ e + 9 #F2—>>1 " (3.9)
“c8 m2 2 wz “cB
. CR Yes A7CB _ SR
for kX >> ky‘

For the 1imit of large kxc the dispersion relation (3.7)

becomes
2
(wz-wﬁ)(w-kva)z PB (wz—w§+y§msp) =0 . (3.10)
i

" The frequencies and growth rates for the resulting modes are shown
in Fig. {3.3) for a range of pTaéma densities.
- Striffler and Kammash also give a kinetic treatment of this
probiem: their results will be discussed in comparison with the
results to be obtained later in this chapter.
Next we will apply the methods of Chapter II to treat this

problem taking into account the effects of finite geometry. We
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treat the beam and plasma as separate species, and consider first
the dispersion relation for the background plasma. Since we are

taking kz = 0, we ignore ﬁhe_z-dependence of the distribution func-

tion and take f  to be a two-dimensionat Maxwellian

~H /T
o, | {3.11)

where n and T are the density and temperature of the plasma. Since

there is no electric field in equilibrium, we have

2
L

-~ The only force acting on the plasma particies in equilibrium is due

to the magnetic field, so the particles simply move in circles in
the x-y plane at frequency W Thus for the plasma electrons we

have

Vj_ - -wca Y

where a is the electron gyroradius, and

mV2
fm, - 77
= el
fO(V¢) 5F @ . (3.12)

- We now write (2.33) - (2.36) in the form

2

nn' \¥ 2 g’ 2 AngR £ ng nn' pnt e
af . OB Bal . yBo
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pBB (W) = (%5 -a5,) A RZJ-()\ R) 6 . + xPB () "(313)
nn' C2 ng/ “pg 2 VE+1 "l nn' nn' ‘@7 - L
wiﬁh Wy = - ’.“b = 0, we hgve
2 af
oo B dre 21 0
Xnn.(w) = - m2C f dH dp@ "l—l"z ["wcaJMm( nSLb) d! (?\ a)] hé_l:i:
W |
O 7 T LTy ) B M O (3.14)

Next we reintroduce the variables a, b from Chapter I. Recall that
a is the gyroradius of a particle and b is the distance of the gyro-
~center from the origin. He change the variables of integration from
_dH.LdP_e tp,dadb using (1.44), which for the present case becomes

B(HL’PG)
3(a,b)

- 3
= |

Equation (3.14) thus becomes

' 2,2
2 R R-a 3f , ww
4re” 2 3 21 c?
X% (w) = - m-{w_ | J daa J dbb )
nn msc piTc o o foel & BH c
, 1
£+m(l b)Jm(A a)J£+m( )J (A ) ﬁﬁ;ﬁﬁ .
(3.15)

In terms of a, the equilibrium distribution function may be

written
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2

Mmw- a

O N

el

_ ﬂma
fo(V_L) = 5T e

F

We assume that the temperature T of the background plasma is iow
enough that the plasma electrons are much less energetic than the
. beam electrons, ansequently, fo is essentially zero unless a << R,
and we may take the integral over b in {3.15) to be from 0 to R, and

the integral over a from 0 to ». Defining

R
(678 - 1 l
;Bnn‘m B Jo dbbJQ+m(3n£b) J2+m(angb)_ _ ‘3'16)
we have
mwza2
4 4 3| mh - B’
oo, _ _ 4me b : ar VI nn'm
X (@) ‘;ﬁ‘ W f: daa™ ", € % Jm(AnQa)Jm(An'za)mwc-w ’
(3.17)

Using the Bessel function identity

o’
Im dxx e‘a2x2 J (px) J (gx) = ~l-e % 1 (B9 (3.18)
o n n 2a2 n Za2

we can complete the integration in (3.17). Differentiating (3.18)

with respect to p and g we have

2 e 2.2 o 29
- -a X - 3 -a"x ) \
393G fo dxx e Jp{px) . (ax) = fo dxx™ e Jp (px) J,(ax)
_ o ) 5
.
2,2 ;
- E"—%— IQ(EHEJG 4a
'——-‘} ' 1
= oo B rpar, (B9 -(pP4a") 1 (B tpary (B 1+ 2a ;
8a  2a 2a 2a 4a
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Applying this result to {(3.17) we obtain after some é1gebra__'

_ : 20
ok () = dne n

X § o
. mcl o MW
_ Mae
2 32 1 1 ) 1 ]
ST [Maetate ety Mnotate
w0l 2 M g w2 ) ngn'etm{ 2
pe ' pec ' pc
' 2.2
_ Opgtrarg)T
_— Wl AT 2 v
+ m _I_P‘T"_'I“‘“‘m Bwn e p
A o ldom 2 nn'm
ntn'g m.w
pc _
' {3.19)
Similarly, defining
e " dbb J.. (A’ b) J,, (A ,,b)
nntn 0 L+m " ng Mt nte 2
BRO = " dbb J.. (A.b) J.. (A',.b)
nn'm o 24mr Ik gHmrntet 2
R, = ? b 4 Goob) 3,0 (A ob)
nn'm o Ltmng M nt L * .
we have the results
2 2n
aB @ 2 dwe™n m
x.(w)*[-““?uj 7 L
nn 2 'm'g An.gwmp L ORE L,
]
) (Ang e )T
AL AT AL a T 7
. - ' ni n'L ~ 1 ng'n' g ol 2m w
An'zIm[ 2 } Anﬂlm[ 2 ] Bon'm® e
N _w m_w

pc pc
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2~ 2
Bou _Adre™n w 1
Xoo{w) = e Y e L _
nn m C2 We m My =
P (Az +>“2 3T
_ ni '%
NRL Anﬁxn QT ST Anﬂkn RT BBa 2m wg
ngm » wZ n'4Lm m w2 nn m P ?
pc PpC 2
BB () = {gg?_ 2 ]41re2ﬁ e, Tp_l {)‘nz)‘n iT]BBB Zmpmg ’
nn C2 2 kn‘gmp o s~ T ™m n g nn'm®
p" (3,20)
“where the B's can be evaluated as follows:
oL - R
Bnn m 1,2 A,Z by ng £+ﬂ+1(xn£R) J5L+m R)
nd n'L
- >\ n'e g}_{_m()\ ) J£+m+1()\lf\',Q,R)] nn,
.Of-B - R 1
Bnn'm - A'Z P [ ng 2+m+1(kn£ ) Ji+m(kn'£R)
ng “n'g _
- ;\-nﬁl Rl.l_m(k ) JR{‘"m(An'ﬂ,R)] L] (3'2-[)
B - R
Bnn "m o A A.Z [Anﬂ £+m+1( nRR) JMm( R)
ng "n's
= Mg FanPnaR) Jamey PRI s
88 _ R
Ban'm = 727 Mg Jgame1 PngR) (A1 gR)
nt “n'g
- A n'e J£+m( ﬂlR) J£+m+l(kn‘2R)] nen'
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For the diagonal terms, where n = n', the above expressions for 8%

and BP® should be rép]aced'by

: 2
oo, _ R 2 ) N ) .
Bnnm T 7 [J£+m(kn2R) E Jz+m~1(xn£R) J£+m+1(AnRR)] }

(3.22)
2

aBB _ RT -2
Bnnm pa [J£+m(hn£R) B J2+m—1(Kn2R) J2+m+1(AnRR)] :

To obtain the contribution of the E-layer to the dispersion
matrix we must use a relativistic version of the anatysis of
Chapter II. First we determine a suitable distribution function,
In the cold beam approximation, the E-layer consists of particles
moving in circles with center at the origin and radii between Fmin

, where r -r =t

dr .
and Toax max min

EL* To simplify the analysis, we
will calculate the contribution to the susceptibility only for par-
ticles at one radius s the total contribution of the beam will

to r Since

then be obtained by integrating over ™y from Fiin nax "

kz = 0, we ignore the z-direction and PZ and write the equilibrium
distribution function as a function of the remaining two constants
of the motion: the energy and the azimuthal canonical momentum.

For a particle with_gyroradius ry the energy is

: / w.r '
E = ym.c s Y T + {—" . .

Here as usual W, is the non-relativistic signed cyclotron frequency

for the particle. For a particle with gyro-orbit centered at the
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- origin,

so that the angu]ar momentum is given by
- 1.2 _ 1 2
L= ymyrvg + 5 rimuw, = = 5 mory . (3.24)
Thus the distribution function for these particles can be written
_fo(r’Pr’Pa) = AG[H(r,Pr,Pg)«E] 6(P6~L) . {3.25)

" To find the factor A we define the density of particles at radius r

n(r) = [ P dPyTo(raPsPe) (3.26)
" and require that
n(r) = nrgs(e-ry) 0 (3.27)
so that
J drden(r) = j drdodp dPf_ = 2nfirp . (3.28)

Equation (3.28) represents the total number of particies in fo’ and
fi is a constant representing the particle density of the E-layer.

To find A from (3.25) - (3.27), we need to evaluate the integral in
(3.26). This is more easily accomplished in velocity space, so we

convert the variables of integration from Pr and PB to v and. v

r 6°



73

Using
P = vmv .P = ym.r. v, + l—rzm W v. =0
poo YWy o Py = YTV T 7 Pplipe o0 Vi »
we have for the Jacobian of the transformation:
_ 9y ay
My F Ve v MYy By
r B
B(Pr,Pe)
Blvevg)
. . 3 v,V 3 vg
| YWy — o YTy 3t ymry
_ C C
v2 .
= y4mgrb ~%-+ yzmgrb = quﬁrb . (3.29}
c ‘

~ We again introduce the particle coordinates a, b of Chapter I,

i.e., & is the gyroradius and b is the distance of the gyrocenter
' ;! -

from the origin. When v = a + b, v8 = - w$-, s0 we have
2 w.d o
(3.30)
- 1.2 _ 1 2_.2
Py = YMrvy f:?'r=mbwc_f 5 mbwc(b a
If we write
v, = Vv cos oSN vy = v sin ¢.,
we have Vg =V sin(¢-6), SO
SO . 1 2 '
Pe = ymrv sin{¢-8) + 5 Mrow. s (3.31)
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which combined with (3.30) yields

. T 2_.2 2
s7n(¢f8) Coymry 2 mo [b"-a v ]
o | (3.32)
 pPealey?
2ar e
w3
since v = ——— . Since o y3mv; we may write
f & 8(H-E) §(Pg-L) = f dvv [ do —+— 6(v-v(E)) 8(P,-L)
| ; omv
_ 1 . 1 2
= —x do s[ymrv sin(¢-0) + = mr wC—L] . (3.33)
my
Now for all a, r we have b = (r-a) so that b2 > r? - 2ar + a®

Z _ hz]/Zar < 1. Thus {3.32) will be satisfied for two

or [a2 +r
values of ¢, which we denote by ¢](L) and ¢2(L). We let ¢{L} denote

either ¢1(L) or ¢2(L) and write
{cos [¢(L)-6]] = |cos[py(L)-8]| = |cos[¢{L)-0]]

- so that (3.33) becomes

1 1
a3 |YmrveosTo{L)-6T] fd¢[§{¢'¢1(L)]+5[¢-¢2(L)i]

fdzvd(HfE)G(Pe—L) .

[H]

Z )
my3 [ymrvcos{¢(L)-01]

from (3.32) we have

|cos[o(L)-6] /z .._ = o/ L(r+a) b1 [b"- (r-2) ]
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and

f a2y S(H-E) a(Pe-L) = 13)(Ym;rv dar

/ [(r+a)2-bP1[b"- (r-2) ]
” U (3.38)

mby

Since we are dealing with a cold beam of radius 'y centered at

i

the origin, we wish to take a = rh and b = 0 in (3.34). The right

0, as we expect from

fl

side of (3.34) is ¢1ear1y s{ngu1ar for b
- {3.27). To elucidate the nature of this singularity, we consider

the limit as b » 0:

Tim f dPv S(H-E) 8(Py-L) = - 1im dar
b0 - o Y TV b0 v//(r+a)2_-b2 /bz—(r-a)2
. 2 ’
=7 ; Tim r . {3.35)

vy o /427 (a)?

The right side of (3.35) will be real and non-zero only for r = a,
"at which point it will be infinite. It thus is proportional to a
delta function in accordance with (3.27). To find the proportion-
' aiity constant we write
lim ——Te——— = C §(r-a)
b fpe (pa)’ |
and find C by integrating over r froma - b toa+b {the 1imits for

which the square root is real). Defining r - a = s, we have
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_Ja+b rdr _ Ib (ats)ds . , Ib ds . an
__éfb Y bzf(rfa)?_ =b J:bzwsz -b

Thus C = ar and

| [ 62y §(H-E) 8(P,-L) = 52— 8(r-a) = 2 §(r-a) .
' myY TV s mgy v

Using (3.29), (3.25), and (3.27),_we then may write

' 4 2 2 .
J dp dP,F, = Av'miry J d%y S(H-E) 8(Py-L) = 2mha s(r-a) = fir, 8(r-a).

Solving for A, we obtain

f (H,Pg) = n ;ﬂ 6(H E) 6(Pg-L) = n lw S(H-E) 8(Py-L) . (3.36)

Using (3.30), we may write the equilibrium distribution function in

terms of a and b. The result is

- sla=ry) 8(b) - _' (3.3)

1f we write the VYlasov-Maxwell equations (2.1) and (2.2) in
terms of the phase space variables r, P rather than r, v, they re-
in valid relativistically. Thus to make (2.33) - (2.36) relativis-
_ tacaiiy valid, we need only convert f from representing the number

of part1cles in dzrdzv to the number of part1c1es in dzrdP dpP, or

2
foj e-mj ij .
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The susceptibilities due to the beam are then

2

U - e 21
Yan' (@) = - =% f dit, APy o] )
_- e a b''m
* Lw,a Jz+m(5ﬁnb1 Ip{Angd) + wpb Jorm(Angh) dy{Apea)]
Bf W, wwbb
-{BH 8 Spumars®) 00e) + =2 i) h5152)]

af
0 [0V} 1 1 1 1
55;‘[5-{6 Joamt iy o) Ir(aiga) + b J£+m(ln'2b) 3 (A 02)

-+

UJ'UJ
U0 gy, (05D () * (Bmdadg, (0 b)Onga) 1}

]
wa~m(wa—wb)-w

% g 5 (- 5 ntg ¥

2

C

+ Lwga I (b)) dniiea) + wb 3oy (aeb) 3, (ap,a)]

£+m( Lm

5F |
: 0
: {aH_L Lo -m(wy =0 )] I (i gb) Ip(hpag2)

af 1

0
ﬁ% Mmu M In nﬂﬁn M%mm%m%%w

3

+ 8

(3.39)
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Bat 4we”
VB () = w [dndp za 3 ()
nn | C Wy =y R’,+m nk
of , ww.a mbb
{ BH [— c 2+m( b) J (An 2 Y £+m(l b) Jm(ln'za)]
.Bfo va . . wb o
¥ 55E'EME‘J£+m( Mgb) Ip(hngad =2 dpn O b) Jm(p\n‘ka)
wa-wb . . :
* SR 03 O0140) Jylhgig) + (3om) @05 G B) 9y (g2}
. 1 S (3.40)
Rmb~m(wa-wh)-w
el 4me” w42 2m
Ypnt (w) = - Ayt (c Mg f dH, dPg o, ~w | % IpemPngP) InlAgea)
of 3F 1y dgp (A gb)d (4 ()
L
(22 eyt 1 ) POt e)
a

where ¥ is used instead of y to distinguish the E-layer susceptibil-
ity from that of the background piasma giveh by (3.19) - (3.20).

The next step is to substitute the beam distribution function

(3.37) into (3.38) - (3.41) along with

a

Since the calculations are very similar for all four matrix elements,
we treat only the ao element (3.38) in detail. First we express the

constants of the motion in terms of a and b. We have
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k., P,
21 2.2y e %o . -
Py =3 mbmc(b -a“) P UL T mw.b . (3.42)
Thus
B(H,Pg)  mlu | ab __
ala,b) y . ' (3.43)
af f
Ay Ay of ’ o, g B, )
aHl mmga 98 mwgb 3b - BPe mwcb 3b
- 4ﬁe2m§ R R-a o w.a
Yo () = - — L, da fo dbab(2m2) T 5 Iy (high) 3 O0gga)
of of
» .—9—_._w_ ) 1 1 .....-...Mg-
{Ba my,w.C J£+m(kn‘2b) Jm(kn’za) * b
. [§£+m!a m_ g

ymbcb J£+m(kﬁ'zb) Jé(kﬁ'ﬂa) ¥ Y C 2+m(kﬁ'ﬁb) Jm(kﬁ'za)

—_—.-_.‘-.w i 1 ] ]
- mbw C JR,'I'm()\n‘R,b) Jm()\n|£a)]} —-——————-—w—w . (3.45)
c . c
m “§'~m

We write this as
oo -

where {X} and {Y} are defined below, and the ry argument indicates
that this is the contribution from the E-layer particles of gyro-
radius T Using the expression (3.37) for the equilibrium distri-

bution function we have
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{X}
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Ate™m b [R R Z a
da f dbab( 2ﬁw )} — ALob) 3L (Al ,a)
c o o - Y £+m nR mni
Bfo N
33 mbw o £+m(k b) Jm(xn’ﬂa)
c C
: m— -w
2~ (R R w_a 7
dre“n J J We
e da dba Z — (A b) J! (h a)
C o 0 = N L+ ng
. \ , 1
8 (awrb) 5(b) J£+m(ln.2b) Jm(A a) - wcc ,
m ~§-—w

Integrating by parts on a we have

{X} =

4we§ﬁb .
[ dado s(b) sta-ry) 2 3pan(ag) panisd)
) _
] wCa 1 1 1 ' 1 2w
Ba [ Y In{Apgd) InAqigd) =5 mw C
o b*c
i3] T =}

Since Jp(O)

__-yield (remembering that J db S(b) = %.);

Since

o

w 8 1 t
z "o, arp [rb 3, (pgry) 9 (egrphl

2 iy 7y S i
7 ory 9y (ngth) Iplhniets) B [ch+wY] :

0 only for p = 0, the integrals over a and b



81

we have

: 2

21 .. Wep 1

ar. Flw Hwy 32 w '
b c Y € e
o (2 ¥ w)
and
4ﬁezﬁb " 3
{x} TR TN [ 3 hagny) 9" ("n 1"

2~ ' 2,2
4.Mewb95 (w )J )wcb 1
2 2 ne'b n's’b 2 W
Ymco C YT (g =S )P
Y
{3.46)
The remainder of the right side of (3.45) is
4me’h
UCIIN 2wcrb
M = - — [ b —£2 L 3gn(hag) J5ary)
_ m,.C
b
g W
: wE' G(b)] L- 2+m(ln Rb) J n e b)
(24m)ry ' "
¥ Yb £+m(l % b) J (k '% b) v J£+m(l b) J (An '% b):I
S N . | (3.47)
n S
Y

Integrating by parts on b, we may write {Y} as the sum of two terms

o) = {Yy + (Y}, ,
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where
. 4ﬂezﬁb ﬁ Z ( w .
Y}, = - “**———"f _-—-~ g Y (A e ) (— - D)
B .mbCZ Yo : bt “mttn'eb e,y
] ] 1 -l
6(b) [b J2+m(kn£b) Jm(hn.gb)] o ) (3.48)
m “§'-w o
. 4ﬂezﬁb wcrﬁ 1 o (£+m)rb
Wh=—=2 7 Jdb’ﬁa(b) Y 3nng ) Inlgery) ——
bC m
' %B' [ ( ) 521..|.m(A I,Q,b)] T -.. . (3.49)
m_g;-

In Appendix B we derive the formulae

R
[ b & 6tb) F D03gunlipg) Fgam(hy )]

o
Ay S |
- & _Mng
7 (8, -ge1 * On,-g-1) Smog * (3.50)
R'db Ls(b) 210, (A b) J,, (AL b)]
Jo b~ b " g+tm' ng M nt L
_ 1 . . .
=7 Mo 2(5m,-g+1 * 6m,~ﬁ-]) - z'(kn A 2) S,
(3.51)

With the aid of {3.50) Eq. (3.48) becomes
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4ne2nb 2 k‘ | o '
¥}y = 7 " { g1 (Aagrp) I gy b)
ym,

¥ 3 Ongrp) Jsa+1( )1 7 Anrg Jplhngrp) S gt b)}

and using (3.51) Eq. (3.49) becomes

2n 2 .
- 4we Ny Wy Anﬁkn 2
2 o _Ymb 2 y | pd

{Y

351 g 1 pegry) 3 (i) 9gan (An )

[IV] W
.1y £ o +1) -£ +
(2-1) ¥ + w 3 L {2+1) y o

Combining these results we have for the susceptibility of the E-layer

electrons at radius p

2.
4re™n
o _ b W 3
ynn'(w’rb) cT 2w 5r [rb 2( b) J (An 'R b)]
- ymbc g €4 " b
: Y
'4ﬂe23b w2 wgrﬁ : 4ﬁezﬁb 2
P 2 95 (ngrp) o ngre) T ot o
YAy, Y (8= ) b

-

Ay
{ (31 Oa"p) Jgq (pegrp) * Iy (ngl) daq eglp)]

2" 3 1
dre ny wc b AloA

'L
- A, d ( r.) J (AL, )} n
o g, Y ne"b! Yt e | YmbCZ Y 9

190 O, ), (v ) dp (o )0 ()
2-1 g b/72-1 "8 b? T4t ng "h/Yg41 0ty b:} . (3.52)

(2-1) Ye ( 1) e
{p- + +
A Y w £ Y w
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The other matrix elements are obtained through very similar cal-

culations, and are given below:

2/\
dmen 2
of ; = b [ 2 L 3 ! '
ynnf(w’rb) YAy gwm ( 2 - kn'ﬁ) W ar [rbdﬂ(knzrb) Jz(kn'zrb)]
: n'g b ¢ s c . b
——r w
Y
4ﬁe26b 2 » B , szrb
"y (Eﬁ'"hn'ﬁ) Jp(aggry) 9 (gegry) o 2 a8
g (5w n'eY
2" 1 1 .
_ Ame, (QE_“AZ ) Png 2 351 (narp) g1 P Tp)
wny. C2 'y’ 2 b @,
S : (2-1) =+ w
Yy v
241 g b)Jﬁ+1 ) bi1 | (3.53)
9;"]) “-\"{— +w
2/\
dre™n Fid
BOﬂ - b f_i)___ .‘ 3 1 1
Vnn'(m’rb) T mw 2 W ary, [rb JR(AnQ b Jﬁ(Kn'irb)j
€ ¢t
[4\] .
Y
4ﬂezﬁb 2 : ngrb
- g T g dp (prp) S (el " T
e © (L-S+w)? Y
- Y
2
dre™n A
] b nk 1
Yol T2 " {“ﬁ” (391 (gl g1 (PegTp)
C mbC . . _
ot J£+1(an b) 2+1(A o] = Mg Sengry) (e b)}

2"‘ 3
Amen Vbdz-1(Rng”b)dz-1(*n'grb) " Q+T(An£rb)dg+1 (ob)

- W
w w
Yy () *%.+ ® o (a) —$-+ 0

A ‘
. *~——{§3311 , | (3.54)
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2n : -
: 4we n : 2
BB b ] w 2 L 1 g
y |(UJ_,I" ) (_ - A, ) —
nn' b iy An'z CZ n'y Wo . W . arb
: —= )
MR L SRV YO Wt
+ |d (A Y' J, (A, + — 1, {5 - A, Euh
L AT AU A | .mb b C2 SRR A c2Y2
D P W
3 One") g lAgegry) - =mm G s Apg) o
(2 £+ w)z b c o
Y _
® :
c
@) Ongrp gy (gry) = 9 (ogrp)dgey g7y
d
w [
Y . Y2 .
. Zn
) 4re N, . Anz (QE__ Az )
Yy, b 2 CZ n'L

o1 g 091 Pae ) * 9y g (g ry) (3.55)

c

)

For an E-layer of finite width, with orbits lying between L

and r__ , we can find the contribution of the E-layer particles to

max
the total susceptibility by integrating (3.52) -~ (3.55) over rL from
Fmin 0 Ynax® Thus using (3.19) - (3.20) and (3.52) “.(3f55)’ the

‘elements of the dispersion matrix may be written
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2 2
o oo 2y RT R EEYAIRTS
Dnnf(w) — (c2 " Apg) 27 L0 (AégR) ] g (ngR) Sy
; &u "max
+ Xnnl(w) +_ Ir drb Vﬁﬁl((&)srb) P
: 2 min
' max
Dﬁﬁ.(m) = Xnn.(m) Jr drb ﬁn.(w rb) R
. min
(3.56)
- Vnax
Dl (@) = Xnn o) + fr dry, nn’(w’rb) ’
R ' ‘min
DB8, (w) = (& - 22)) A R 2 6ory 6. ()
nn' \® 2 nt! *ng 7 Y1t Yant Xnn' w
max 8
" [r ar, VB (uory)
S min

The unstable roots are then obtained by truncating the disper-
sion matrix for some suitable range of n and solving the resuiting

dispersion relation:
det[D(w)] =0 . o (3.57)

We will next iliustrate this procedure with two numerical exam-
ples. For the first, in order to compare our results with those of
~ Striffler and Kammash, we consider parameters appropriate to the

Astron experiment. The dimensions in Fig. (3.1) are then

1

r .. =30 cm, 1 381

min wax 50 ¢cm, tEL = 20 cm, R = 70 cm, and B

Gauss. For these calculations we take the temperature of the
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| baékground piasma_td be one eV and consider a range of p?asméidensi»
_.fies.with the paraﬁéter ;Eg-réﬁging from .1 td..é we'také.the
-E—layer to be "cold" in the sense that the gyrocenters of all the
E-layer particles are 10cated at the or1gan Thus un13ke the uni-
form monoenergetic beam treated by Str1ff1er and Kammash, in the

| actual cylindrical geometry the value of the relat1v1st1c factor v,
. and thus of the cyclotron frequency_wCB, will vary across the width
B of the E- 1ayer The va1ue of Y waé taken to be 9.0 in the ca1éu1a—
t10ns of Striffier and Kammash, so we take y = 9.0 in the middie of

the E-layer, which gives

“ep 8 -1

= 7.45 x 107 s ' at r =40 cm .

Wep T

The particle density of the E-layer is taken, as in Striffier and
Kammash to be given b g%g—x 3. | : |

It now remains to decide how to truncate the D-matrix, and then
to evaluate numerically the terms in (3.56) and (3.57). An approp-
riate truncation of D may be determined by trial dnd error: that is,
Qe choose an N x N submatrix DV of D, find Wg that satisfies
det[DN(wo)] 0, and 100k at the eigenvector of DN(w } corresponding
to the zéro eigenvalue. If the coeff1c1ents Oy B of th1s eigen-
véctor are negligible for n = N compared to the coefficients with
Sma?] n, we may tentatively conclude that we have taken a large

encugh range of values of n to represent this mode accurately. This

is not a rigorous conclusion, however, since there is the possibility
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chat for some values of n > N the coefficients o, and Bn might be
sjgnificantly large. If this behavior 1is suspected for a mode, it
can be checked for by trﬁncating the dispersion matrix at an N so
large {about 100 in the present problem) that the Tocal uﬁifdrm
approximation used by Striffier and Kammash is valid for n $ N._ The
D-matrix is diagonal in n in the 1oca1 approximation, so that solu-
iions (both frequencies and eigenvectors) of an N x N submatrix dis-
persion relation will also be solutions of any higher order trunca-
tipn. This is usually not very feasible in practice, however,.since
the larger matrices involved require much larger amounts of computer
time and storage. |

For the problem considered here, a 20 x 20 truncation of the
~dispersion matrix was used; we shall see that this size appears to
be more than adequate for most of the modes we find. An example for
.which a much larger truncation of the dispersion matrix must be used
will be discussed later. |

To evaluate the elements of the dispersion matrix, we must per-
form the integration over ' in (3.56) numerically. Looking at
(3.52) - (3.55), we see that if y were independent of rys We ¢0u1d
take the resonant denominators outside the integrals, and thus make
fhe integrands independent of w. Thus in evaiﬁating the dispersion
matrix for several values of w (as we must to find the roots of the
dispersion relation), we would have to perform the numerical inte-

gration only once, saving a great amount of work. Since actually
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¥ Qariés through a.range of +25% arqund the r = 40 value of 9.0 (it
is essentially proportional to rb), this simplification would give
rather crude results. However, we can subdivide the E-layer into
nested sections, across each one of which y may be regarded as con-

stant, and perform the integrais of (3.56) for each of these sub-

" divisions separately. Since y varies by only 25% across the width

of the E-layer and its variation is smooth (essentially linear), only
a few of these subdivisions are necessary compared to the many re-
quired to accurately integrate the rapidly varying products of Bessel
functions which form the remainder of the integrand. Thus in the
numerical calculation of most of the modes, y was considered to vary
in ten steps across the E-layer, while 100 subdivisions were used
for the rest of the integrand. Simpson's rule was used to perform
the integration. For purposes of comparison, as described below,
some calculations were also done with y constant across the E-layer
and with y varying in 20 steps across the layer.

Two approaches were used for finding the roots of the disper-
sion relation. In the preliminary calculations, for simplicity vy
was regarded as constant across the E-layer. It was desired to find
all the roots in the vicinity of the upper hybfid frequency, which
can be accomplished by determining the number of roots.in fhis re-
gion by contour integration. If we have a region R of the complex
plane bounded by a closed regular curve S, it is a well-known re-

sult(15) that for any analytic function f(z) if N is the number of
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roots of f(z) (counting multiplicites) in R and P is the number of

poles in R_(again_counting multiplicites) then

' _ 1 f'{z L
N“P*'ZET%S f‘Z.dZ. (3..58)

“From {3.52) - (3.55), we see that the only poles of det(D{w)) occur
“for real values of w; since we are interested only in unstable roots,
we take the region R to Tie entirely in the upper half of the com-

plex plane. lriting G(w) = det[D(w)], we have

1 [ g 1 [ d
N = 7 §s GE{S% do = oy §s & [In6(w)] do |
| (3.59)
1

By ATnG{w) = 5— AD

t]

where A is an operator representing the change in a function in go-
ing once around S, and A@ s the change in the argument of G{w)
in going once around S. If we represent S by N pqints S on S,

k= 0,1,25...,N with s = 5., we have

0
N G(sp,q) '
-1 k+1
A = t s 3.60
k§1 an [ G‘ski ] ( )

and (3.60) is exact, provided that the intervals {s,, s} are short

enough that

G(sy 1)

-1 k41

tan < T,
Glskj

Equation (3.60) simply insures the proper sign for the inverse
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tangent. The discrete sum (3.60) is of course much easier to use

:than the continuous integral (3.58). | |
The initial region R of the w-plane is shown by the dotted

~rectangle in Figs. (3.4) - (3.7). After determining the number of
roots in this region, using (3.59) and (3.60), the region was re-
peatedly subdivided until each root was isclated and its position
:__known with sufficient accuracy that it could be found by_Newton‘s
method. This procedure was necessary because the roots occur clus-
tered together in the w-plane, as can be seen in Figs. (3.4) - (3.7),

and unless good approximations to the roots are known, Newton's
method fails to converge. Only those roots with growth rates great-

~1

er than 2 x 107 sec”' were found. There are eight of these in

Fig. (3.4), twelve in Fig. (3.5), ten in Fig. (3.6) and eleven in
Fig. (3.7). It should be observed that all the roots for a given

value of & occur very near resonance with the ﬂth harmonic of the
W i )
beam cyclotron frequency, 2-%% .

&
A similar calculation was carried out for & = 8, PP .1, and

[43]
cp
y varying in ten steps across the E-layer, yielding 19 roots as

shown in Fig. (3.8). These roots have a wider spread in their real
parts than those for the constant y calculation; it can be seen that
the range of their real parts agrees quite well with the variation
in E$E~across the E-layer. We might expect that these modes will be
localized in that part of the E-layer for which the ch harmonic of

fay
the local beam gyrofrequency ?Téj‘ is approximately resonant with
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" the real part of the mode frequency, and we shall see shortly that
this is the case. Consequently, only a small part of the E-layer
width is able to transfer energy to the mode, and thus we expect the
growth rates for these modes to be smaller than for the constant vy
| ¢é1¢u1ations in which the entire E-layer is in near resonance with
the mode. Comparison of Figs. {3.5) and (3.8) shows that this is
true. | | - o

. .The process of finding all the roots of the dispersion relation
by contour integration, as in Figs. (3.4) - (3.8), is rather costly
in terms of computer time especially when y is varied across the
E-layer. Also, in the varying y case, we find fhat the roots are
not as tightly bunched in the comp]éx plane as in the constant y cal-
culation. Thus it turns out that if we scatter some guesses Over an
.area of the complex w-plane near the appropriate harmonic of the
.E-layer cyclotron frequency, we find that for a fair fraction of the
.guesses Newton's method converges. By this method we can obtain a
reasonable sample of the roots of the dispersion relation in much
less time than it would take to find all of them. For most of the
remainder of the calculations then, we will use this approach and
take y to vary in ten steps across the width of the E-layer. We
_gha11 also see below that taking 20 steps does not significantly
éffect the results.

| After finding the frequency and growth rate for an unstable

mode, it is also of some interest to look at the structure of the
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'mOQQ,_part%;u1ar]y_its radial dependence. If W, is a complek root
of the dispersion relation, we_can_fjnd the.ejgenvector of D(wo)
corresponding to the zero eigenvalﬁé; and this will represent the
vector:of qn‘s and Bn‘s whiph when substituted into Eq. (2.14) will
yield the vector potential 34(5) for the mode. From Eq. (2.2) we
can then determine the perturbed chafge density as

2“"2

o) = - g (V) A

Figures (3.9) to (3.62) show the results of these calculations
for several modes. In each figure is given: the azimuthal mode

b
numbeyr %, the value of GEE" the real frequency and growth rate for

. the mode, and the abso1u%g values of the coefficients o, and g,
plotted against n (the squares represent |un!, the circles ]Bn}).
The upper graph in each figure represents [p](r)| plotted against
radius. For most of the modes shown it can be seen that for n near

20, the coefficients a_ and Bn are near zero compared to their

n
values for lower n. This indicates that by truncating the disper-
sioh matrix at n = 20, we have probably kept enough expansion func-
tions to represent the mode quite well. For some of the modes,

however, e.g., {3.15), the values of o _ and Bn are still appreciable

n
at n = 20. These modes could either be artifacts of the truncation
procedure, and would disappear if a larger truncation of the disper-
sion matrix were used, or they may represent actual modes which re-

quire a larger number of expansion functions for their accurate
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representat1on

To clarify the s1gn1f1cance of p1, we compare the perturbed
_charge density in the background p?asma to that in the E-layer,
us1ng the results of Straffier and Kammash for the 1nf1n1te homo -
geneous case as g1ven in the first part of th1s chapter From

{3.4), (3.5) and the equataon of cont1nu1ty for charge dens1ty

Ko+ dy = wey
e have
imgp [w (keg) - iwk * (_Cpxe)]
P1p = 5 5 » S _(3.61)
4y W = Wep
. 1“58 : . o . _
P1g = T3 7 | - (3.62)
T e (w-keVp)

c WP (kee) + ukB(Vgee) - wlkelp) (ko) - % (k=¥p) (¥ge2)] -

As a rough approximation, we take the terms in square brackets

in (3.61) and {3.62) to be the same order of magnitude, and assume

a1so.m2 E-wz--~w€p . Then we have

D ? - : :
lp1gl . wpg 1 o

_ 5 - . ' (3.63)
ol W2, (wkevy)?

Since we find that the modes occur near the resonance frequency, we

expect {pygl > [o1pl-
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_..Another way of seeing this 1slto note that thé frequenqy of the
_mode is much higher than the.background §1ésma frequency, bﬁt in the
.rest frame of the E-layer it is lower than the E-layer plasma fre-
.quency. | R .. |

| From these considerations we e*pect to find the largest per-
.'turbed charge density in the region of the E-layer, between 30 and
50 cn radius. This is seen to be the case in Figs. (3.9) - (3.16),

w
which show some of the modes found for PP g, wpp = 3“PB’ and vy

[iN]

constant across the E-layer. Note that gie perturbed charge density
for these modes is almost entirely confined to the E-layer, with the
'boundaries of the E-Tayer at 30 and 50 cm being guite apparent. The
modes are normalized so that the absolute value of the Targest ex-
.pansion coefficient is one, and the charge densities are then calcu-
1ated from these normalized coefficients. This makes it easier to
tell similar modes {such as Figs. (3.14) and (3.16)) apart.

Figufes (3.17) - (3.35) show modes for the same plasma para-
@eters but with y varying in ten steps across the E-layer. Here we
_sée that the perturbed charge density is confined to the region with-
.in the E-layer where the mode is resonant with the beam particles.
ﬂote that modes of high w,. are localized at smaller radii, where the
E-layer cyclotron frequency is higher. Figures (3.36) and (3.37)
show modes corresponding to {3.35) and (3.25), respectively, but

calculated with y varying in 20 steps across the E-layer. The modes,

whether calculated with ten or twenty steps of vy, are quite similar
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"~ in both charge density distribution and expansion coefficients and
differ by only a few percent in frequency. Thus tﬁe teantep
.approximation to vy is seen to be éufficient to yield the modes fair-
Ty accurately. The rest of the calculations for this problem will
use the ten-step approximation for y. o

B ngures (3.38) - (3.60) show the effect of increasing wpy while
holding Wpg constant, i.e.,_increasing the density of the background
plasma while holding the E-]ayer_density constant. fhis corresponds
“to the situation in the early stages of the Astron experiment,.where
the constant density E-layer ionizes more and more of the neutral
background. Calculations were done for the same range of p?ésma
densities as those used by Strifflier and Kammash. Figures (3.38) ~

W
(3.48) have EEE-* .3, so that wpp = Ywpp. From Eq. (3.64) we expect

to see the pegiurbed charge density extend more outside the E-layer,
since_the background ptasma will now'make a 1arger contribution.
_This effect is evident in the graphs of the charge density, which
also show the region of largest |p]| again occurring near resonance
between the mode and the % = gt harmonic of the E-layer cyclotron
frequency. Note Figs. (3.40) and (3.48)} which show stable modes.
These modes show a similar relation between the peak of the charge
“density and the frequency. Figures (3.49) - (3.56).show the same

w
_ tendencies for modes with PP .5, or Wpp = ]SwPB' Note Figs.

V]
CcpP
(3.55) and (3.56), which show that two distinct modes may be very

close in structure and frequency. For Figs. (3.57) - (3.58), which
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are typical modes for GEEA= .7 or Wp 21m bR and Figs. {3.59) -
cP &P
{3.60), which are typical modes for -——- = .9, or Wpp = = 27 wpp» We

CP
'see that the density of the background plasma has become so large

~that its contribution to the perturbed charge density is nearly
equal to that of the E-layer.
Similar calculations were performed for other values of the

th

azimuthal mode number £, Modes were found near the £ harmonic of

the E-layer cyclotron frequency, and their growth rates and radial

Costructure were guite similar to the £ = 8 case.

Next we compare the results obtained above with those of
Striffler and Kammash. Figure (3.61) shows the growth rates obtained
by Striffler and Kammash in the local approximation for a variety of
2's and n's. In the Tocal approximation the dispersion matrix is
diagonal in n, so that each n corresponds to one mode. Since we
took only the Towest twenty n's, we are only interested in the Teft
portions of the graphs in Fig. {3.63). The growth rate is plotted
versus klc/wCB = Jﬁz + n2, and we see that the growth rates general-
1y peak near the lowest possible values of kic/wCB’ i.e., the Tow-
est values of n. We recall from (3.8) that the condition that the
Jocal approximation be valid {which followed from the requirement
that the radial wavelength be smaller than the thickness of the

E-layer) is
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Thus we see that the local approximation is not really valid
_for those modes which it shows to have the highest growth rate, and

to handle these modes correctly we must take into account the finite
geometry of the system. And in fact, we have seen that the unstable
modes are typically loca1izeq in an annulus with about one-tenth the
thickness of the E-layer itself so that really we should require
n > 150 before using the local approximation.

Actually, however, restrictions on n are not sufficient to jus-
tify the local approximation, and we cannot expect it to give quan-
titively correct results for any value of n. This is because it
assumes that the entire space is filled uniformly with the E-layer,
which corresponds in the actual cylindrical geometry to an E-layer

~filling the entire cylinder. Also all the particles in the E-layer
would have the same cyclotron frequency, regardiess of radius, and
thus all the particles would be resonant with the unstable mode, and
. contribute energy to it. Since in the actual situation only those
particles in an annular radius of fairly small width are resonant
with the mode and contribute energy to it, we expect that the actual
~growth rates will be much smaller than those calculated by the local
approximation. As a crude estimate, we might expect them to be
smaller by a factor of Rres/R = ,05, where Rres is the width of a

typical resonance zone for a mode .(about 3 cm from Figs. (3.17) -

(3.31)) and R is the radius of the cylinder, 70 cm.
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From the graphs in Figs. (3.63), we have an average growth rate
of about .ZwCB = 1.5 x 108 sec"1 for the £ = 8 modes, and multiply-
_fng by .05 gives a growth rate of about .75 % 107 secﬁq, which is
the correct order of magnitude, though somewhat smaller than the
Qrowth rates we find in the non-local calculation. The difference
may be partly due to the fact that in the cylindrical geometry the
normal mode of the background Maxwellian plasma, having radial depen-
| dence Jgkr), will not extend all the way in to r = 0. Thus we should

_ _ p
/Reff’ where Reff < R is the radial extent of the back-

multiply the growth rates for the local approximation not by Rres

but by Rres
_ groqnd plasma mode.

| Striffler and Kammash do not give numerical results for the
feal frequencies corresponding to the unstable modes, but we may
assume they are quite close to the appropriate harmonic of the
E~1ayer cyclotron frequency, as in our calculations for a constant vy
across the E-layer (Figs. 3.4) - 3.7))}. Thus the non-local theory
predicts a considerably wider spread of real frequencies for the
unstable modes of a given azimuthal mode number than the local
theory. | o

To summarize the comparison of Tocal and non-local results:

We find that the non-local theory predicts a wider spread of real

frequencies and substantially smaller growth rates for the unstabie

" modes corresponding to a given value of &.
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The formatism developed in this chapter was also used to
calculate some of the unstable modes for the device shown in Fig.
(3.62), which is used in experiments described in Ref. (16). Brief-
1y, an annular electron beam with energy 1.2 MV, radius 3 cm, and
fhickness .5 cm is injected into a plasma-filled chamber. The beam
zﬁasses through a magnetic cusp in which the axial magnetic field is
reversed from "Boz to +B . This converts most of the electron
.streaming velocity into rotational velocity. Thus we have a rela-
tivistic E-layer in a background plasma, and we may apply the same
methods used for the Astron model. |

In the experiment, radiation is observed near the upper hybrid
frequency. It is believed to be coherent curvature radiation(17)
caused by charge bunching in the E-layer. This bunching is believed
to be due to instability of the extraordinary electromagnetic mode
ds in Astron. However, because of the smaller dimensions of the
_system and especially the fact that tEL = .5 ¢m is smaller than the
| wavelength of the radiation, the local approximation used by
Striffier and Kammash to treat Astron is not suitable. Thus it is
of interest to see if the non-local theory developed here predicts
instabilities near the upper hybrid frequency.

- The background plasma for this calculation was taken to have a

temperature of 1 ev, a plasma frequency of 1.88 x 101] sec'], and a

cyclotron frequency of 2.46 x 1010 sec"1. Thus its hybrid frequency

-1

was 1.90 x 10H sec The E-layer was taken to have an inner
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radius of 2.75 cm, an outer radius of 3.25 cm, a density of 1 x 1013

pértic1es/cm3 (= 1% df the background plasma), and a relativistic
'mass factor v = 3.3. fhese parameters were obtained from the data
given in Ref. (16).

 Since T5§§§7‘: 25.5, it was decided to look for instabilities
0of the 2 = 26 modes. Initially the calculation was carried out
truncating the dispersion matrix at n = 45. This yielded the un-
stable modes shown in Figs. {3.63) - (3.70). The pliots of charge
density for these modes show the pattern we have come to expect from
the Astron model, with the highest peak occurring within or near the
E-layer. However, the plots of the expansion coefficients for the
modes show that a larger truncation of the dispersion matrix must be
taken to obtain an accurate representation of these modes. Two un-
stable modes calculated with a dispersion matrix truncated at
n = 100 are shown in Figs. (3.71) and (3.72). The mode in Fig.
{3.71) seems to have fairly well converged in n, as indicated by the
small coefficients near n = 100 and the small peak in charge density
at small r. The mode is seen to be quite sharply confined radially
to the region of the E-layer. The mode in Fig. (3.72) clearly needs
an even larger set of expansion functions. The large peak at v = .8
is probably an artifact of the truncation, since the mode depends
radially on Bessel functions of the form JR(Anr), which will make
contributions to the mode at small r only for large n. Even in this

case, however, the main peak of the mode is seen to Tie within the



E-Tayer.
Thus we may conclude that the extraordinary electromagnetic
mode will be unstable in this device, and may give rise to charge

bunching in the E-layer which will produce the observed radiation.
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Fig 3.6
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APPENDIX A

Equivalence to Method of Lewis and Symon

" 1In this Appendix we show that the method of handling the inte-
grals over unperturbed orbits used in this paper is equivalent to a
method proposed by lLewis and Symon(1) for solving the inhomogeneous
Tinearized Vlasov equation. First we show that the two approaches
give the same result for problems with one non-ignorable coordinate,
and then we make some comments on the difficulties which arise in
problems with more than one non-ignorable coordinate.

We denote the non-ignorable coordinates and momenta by Q and P,
respectively, and the ignorable coordinates and momenta by g4, P,

respectively. The linearized Vlasov equation may then be written:

2+ 1) fggppt) = Gt

(A1)
0 3 3 ) ¢ @gt)

Here L is the equilibrium Liouville operator (as in (1.8)), gt

the phase space comoving total time derivative, f(T) is the first
order perturbed distribution function, ¢(1) is the first order per-
turbed potential, and U is an operator representing thé effect of
¢(]) on fo. U is assumed to depend on the ignorable coordinates and

time only through the derivatives 2 at H examp1es of typical U

ag ’
operators are seen on the right sides of_(3.8) and (2. 1) The per-

turbed potential ¢(1) may represent a vector of potential fields,
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aé in the eiectfomagnetic case; we will deal with'on1y 6né_poténtia1
function explicitly here to avoid unnecessary proliferation of in-

dices. For the same reason we consider only one particle species.

The linearized field equation may be written
e & 3 oV = [ eareen Qo - (a2)

Here F is field operator {such as the Laplacian or D'Alembertian)
depending on the ignorable coordinates and time only through the
“derivatives, and J is a weighting function (independent of g and t)
which typically makes the right side of (A.2) represent -the charge
‘or current density, as in (2.2).

" We may modify Eqs. (A.1) and (A.2) by introducing the Lewis-

"Holdren substitution.(]) “Given an operator

TR

©ye define

g - 1) . py(1) “ N
so that {A.1) and (A.2) become

e+ g = [u-Cp + LRI 8LV (A.4)

(F - [ cpapsr] o{") = [ cpapsg - (A.5)



These equations are of the_samg_form_as_(A.i) and (A.2) with the re-

placements

...-.;U TR (%+ R

RUNAC

F&F-fd@yR,

The motivation for this substitution is to choose R.so that the
eigenfunctions of the new field operator will more closely resembie
~ the eigenmode of the system, making the dispersion matrix more near-

1y diagonal and the resuiting dispersion relation easier to solve.
Since the substitution does not affect the form of the equations, it
will not affect the methods to be described here, and we will con-
tinue to work with the equations in the notation of (A.1) and (A.2),
assuming that the substitution, if any, has already been carried out.
We begin by assuming that the perturbed quantities have a time
dependence e"iwt with Im(w) > 0, since we are interested in unstable
hodes. We also assume that the system is periodic in the ignorable

coordinates, so that we may Fourier analyze in g space:

H

£ (q,q.P.pst) zﬁ”@@&)éﬁﬁmt, (A.6)
K

) ¢£1)(g)_e15f971“t : (A.7)

6 (Q.qt)
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Here if each ignorable coordinate q, has period Qk’ then

where Rk is an integer.

The Vlasov equation then becomes

d ] jiceq-int
alil fé )(Q.p,p) ' a0ty
. K (h8)
= U(Q ik -iwspap) 6l (Q) e1E LTt
&' K
which we may solve by integration 6ver unperturbed orbits:
Ly oe() ikeg-int |
) t (A.9)
- Z. f dt'U(Q',iE':"iw,f_‘ ,E) q)i((:-f)(g.i) eﬁii 'ﬂ'—iwt' ,
K —® B . —_—

where here Q' = Q'(t') denotes the unperturbed orbit of a particle

as a function of t', subject to the condition that at t' = t,
Qi(tet) = Q (A.10)

and similarly for P' and g'.
We now isolate one Fourier component on the right of (A.9) by
-ik-gtint

multiplying by e and integrating over q. Using the identity

k'+q' - kg = (k'-x)eq - k'-(a-9")
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~and the fact that by virtue of (A.10) g - q' 1is independent of g, we

have

K

'-f£1)(g)E39) = Jt dt!' eiw(t“t()U(gf,1E}fiw:EJaE) ¢(1)(Qf) eiE:(ngg)'

(A.i})

Similarly, we may isolate one term in the field equation (A.2) and

write
F(Q ik i0) o (Q) = f dPdpT(QsP,p) fé”(g,g,p) . (A2)

The problem is now seen to be diagonal in k, so we drop the index k
from f(]), ¢(}), U, and F. ' |
Next we expand the perturbed potential 1in eigenfunctions of the

Field operator:
| : ¢(1)(9) = % 00 (@ > | (A.13)
where
F(Q10) 03(@) = Ay(0) Q)
and o

| a0 (@ 0,@ = 80

Then, with the aid of (A.11), we may write (A.12) as



ot

. ] o -ty
é Ap{w) .gnqa_n(Q) = f dpdgjgg,g,g) f ) _

dt" e1w(

__ o (A.14)
Uit p) T o (o) e (@Y

. Multiplying by ¢:(Q) and integrating over g, we have

Aglw) ap = 2

[ dagpep(Q,2.p) o (@) 7S

. -.l. : . . .
1 t' ! 1 . ) 1 \ - !
. L» gt e0(tt1) yiq miwa’ap') 44 (Q) 'l a
which we then write as
Dnn'(w)_gn' =0,

where the dispersion matrix D is given by

Dyt () = Aple) &y f dQdPdpI(Q.P.p) o (Q) & KL
t {A.15)
. ! dt' ei(ﬂ(t"t') U(_OL’,—iw,f”' ’E,) ¢n.(g|) e'i_}s-g_! .

Now we specialize to the case of one_nonfignorab1e coordinate,
Q= Q. If the system is bounded and non-asymptotic, Q will be peri-

odic in t with period T(E,p), where E is the energy of the particle.

Since 4 = o

x 3 will also be periodic with period T, so we can write

q = Bt + §(t) »



where §(t) is a periodic function of t. Similarly, assuming P is

'bounded,_it_must be-periodic with period T. The function_
. iKeq
'U(Q,*'l(l),PgE) ¢n(Q) e1""'g'

is then periodic in t, and we expand it in a Fourier series:

U(Qy-1w:P>p) ¢,(Q) oleed - ‘T}‘“z“z aUfn> ™, (A.16)
T m

where O = %ﬁ~and we have called the expansion coefficient <mjU|n>

for reasons that will become apparent later. Now we may perform the

time integral in (A.15):

ot . , :
j dtl e-lw(t—t ) U(Q”"iw’p|92) ¢n‘(Q') 935.9'

i(mO+e-8)t
1/2

- <mil]n'>e
mo i (mtke8-w)T

Similarly, the function
* .
7(0:P5p) ¢,(Q) '3

is periodic and may be expanded:

*

.and thé dispersion matrix (A.15) may then be written

. i(m-m')Qt
- iv1<n]J|m'><miU|n'>e1(m m')
Dy ) = A 0) 800+ 1 [ dagpep

T mirte - B-w
(A.17)
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We make the canonica1,trqnsfgrmation:of_integration variables

dQdP - dtdH, where H is the Hamiltonian, and perform the resulting

“time integral:

Dy (w) = A, (0) z [ dHdp ’<ﬂlJATE<gng“ = . (A.18)

Now we show that the same result may be obtained by the method
of Lewis and Symon,(l) which involves expanding the perturbed dis-

tribution function in eigenfunctions of the Liouville operator:
f(”(g,g,g,ﬂ,_t) =7 v.(0,9:P5p) e 1wt | (A.19)
where W, is the Liouville eigenfunction:

' Lwr(ggﬂsgsﬂ) = 'iﬂrwr(gaﬂagaﬂ)
| (1)

Here Hye is real since L is anti-Hermitian. Since %ﬁl’ Q} and H
commute with the Liouville operator, we choose W to be an eigen-

function of all these operators:

w.(Q,9,P.p) = QPQ)e~96mE §(p-p,) -

The index r therefore represents the vector k, the constants of the
motion E and P, and any other necessary indices. Thus the sum in
(A.19) is actually a generalized sum, at least part of which is a

continuous integral, but we continue to write it as a sum for con-

venience. The eigenfunctions are normalized so that
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.. [ dgdgdﬂd}lw:.(g,g_,ﬂ,ﬂ) Wr(g_:g_sE_’R) = Grr.i .

Using_(A.lQ), the Viasov equation (A.1) may be written:
. ~iwt
g i (upw) vy (Q:8:P5p) e .

iK' =g-juwt

LT U(QikiwsPsp) 64(Q) e
_k_i K .

Multiplying by w: on both sides and integrating over all phase space,

we have

'i(UY."UJ) YY‘ = [ dgdﬁ"ﬁ:(g,ﬂsﬁr) U(Q,iﬁ,“im,gsﬂr) ¢é1)(0) G(H-E) .

(A.20)

The problem is again seen to be diagonal in k (remember r includes K)

50 we drop the index k. Using the expansion (A.13}, (A.20) becomes
- ‘_*‘ »
T(Ur'w) Yy = %I J dg_dﬂwr(g_s_P_:Er) U(Q_a"lws“p_sp_r) ¢ni(g) 6“‘i"'E).C‘l:nl
or
v =1 fza L, (A.21)
o h! ..ur_w_. L L
- where we have defined o - '

<r[Ufn> = ' K, -1 iK-q
n> = dgdg_dp_dgwr(g_sg_sgsﬁ) U(QHE,-W,EJP_) ¢n(9) e —

- [ dadpr(0.R.p,) UG -wsPop) ,(Q) S(HE) - (A.22)
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The field equation (A.12) becomes
D) (@ = T [ I@Bp) TAGPp) SOHE) ¥,
oo 0 r’ T o _ -

| Mu]tip]ying_by ¢z(g), integrating over Q, and uSing (A.20), we have o

=3 <n|J|r><r|Uin'> e '. -.:-.'(A'23)

A -
() & o 1{(1,~w) n'

n n

where we have defined

<njJfr> = f dQdPe, (Q) T(Q.Psp,) W, (QsPsp,) S(H-E) .

We may write (A.23) as

where

N j<n|7|rs<rlUin's
D ; (o) . (A.24)

_nn.(w)_% ln(w) S ¢

nn
It is shown in Ref. (1) that the Liouville eigenfunction for the one
non-ignorable coordinate case may be written in the form

- 1 e~15i9(r)e1mﬂr g

Wy 1172

Here -we have converted to our notation; m is an integer and 7 is a
parameter representing time along an unperturbed trajectory. Substi-

 tuting this expression into (A.22), and converting JdeP to Jdet,
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-we obtain
. . ' .
C<riUjn> = ;%7§-f dt e"1mT_¢n(Q).U(Q,-1w,P,Er) exralr)
_ o !

so that <r|U[n> is exactly the Fourier coefficient appearing in.
(A.16). A similar result is easily obtained relating the two defini-
tions of <n|J|r> . It is also shown in Ref. (1) that for the one

non-ignorable coordinate case,

ur=m9+m~§,

where m is an integer indexing the functions of the Liouville opera-
tor. Thus taking ) as ) [ dHdp,., we have exactly the result {A.18),
demonstrating thatrintegration over unperturbed orbits and expansion
in Liouville eigenfunctions lead to equivalent representations of
“the dispersion matrix. Of course, we knew that a priori, since both
methods solve the same problem; the benefit of showing it explicitly
is the insight it affords into how each method works.
For systems with more than one hon-ignorable coordinate, the

.Liouvil1e eigenfunctions will in general be discontinous every-
Where.(1) Thus the integrals represented by the inner products in
.(A.24) must be taken as Lebesque integrals, and even so their exis-
tence is questionable. In terms of the integration over unperturbed
orbits, the problem may be stated as follows: can each coordinate

- Q of the system be represented as a function of time in the follow-

ing form: -
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) = E'ak:e" L s

‘where the coefficients 3y and the frequencies Wi depend on the ini~

- tial conditions for the orbit. Such a function has been called

(]8)_who=showed.that such a . series. possess-

"almost periodic" by Bohr,
es many of the properties of a Fourier series. If it_has“a:finite
‘number of terms, it is called "guasi-periodic.”
| “The expression of the motion of a particle in a series of the

"form (A.25) is one of the most important techniques of celestial
_mechanics,(lg).and a method for developing such series for an arbi-
“trary Hamiltonian system has been presented by Hhittaker.20 The
question then is whether or not the series converges, and this is a
well-known and still unsolved problem in celestial mechanics. The

“difficulty is that the coefficients a, in (A.25) turn out to have

terms which are linear combinations of the frequencies such as

in their denominators, where the n's are integers. Even if the mk's

are rationa11y_indepenQent,,sets_of.nfs can be found which make

(A.26) arbitrarily small. The larger the order of the term in
(A.25), the larger and more numerous will be the integers_in the
combination (A.26), and so the smaller the denominator can be. But

~also {hopefully), the numerators of these terms will become smaller

with increasing order. The convergence of the series then depends



- ~ed as merely formal resu1ts,sthough to quote Giacaglia:
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- on how fast the numerators decrease with the increasing order of
:_ahproximation as more numerous and larger integers enter the combi-
nations (A.26). This is_the famous problem of the "small denomina-
“tors.” . | R

.5"' wh1ttaker's method of obtaining such series depends on construct-
ing additiona] constants of the motion (which he calls "adelphic
integrals") in series form. The question of convergence of (A.25)
may also be considered in terms of the convergence of this series,
br in other words, the question of whether there exist in general
ceftain constants of the motion other than the energy. 'Poincare(Z])
'Thas shown that if such integrals exist, they cannot be analytic in
their dependence on the initial conditions. Thus the series (A.25)
" cannot converge uniformly in time on one hand, and on the -other hand,
for all values of the initial conditions within certain Timits.
Whittaker's adelphic integral series, however, do not depend analyti-
cally on the initial conditions; in fact, they change in form when-
ever the ratio of two parameters in the initial conditions changes
from rational to irrational or vice-versa. Whittaker felt strongly
that the adélphic integrals did exist in general, but was able to
“shown this only in special cases. Thus the series are widely regard-
(22). “eartier
results by Poincare were considered in a wmuch too general form and
thought to prevent the slightest chance of integrability of dynamical

systems. The only thing one can conjecture is that non-integrable
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' systems are dense, say in the space of a?] Ham31t0n1an functions.

| do statement is however ava11ab1e on the dens1ty of integrable sys-
.'tems If they are at !east as dense as the rational numbers on any
iesegment we m1ght still say there are quite a few integrable systems."
- And to quote Brouwer .(19) "These comments serve to emphasize that
”:the prob1em of the small denominators is a basic feature of all of
celestial mechan1cs. Its mathemat1ca1 pnature is still imcompletely
.understood 3 | |

w One resu?t which is available for Hamiltonians with two degrees

of freedom (under certain mild restrictions) is a theorem due to
"'Kéimégd%bv and Aﬁneid (26) which asserts that in a-heighborhood of

| an 1ntegrab1e system the quasi-periodic solutions have positive
.measure, and in a sense are a majority. (27) However, this theorem
does not extend to more than two degrees of freedom.

| .IOhe might wonder why we need be concerned with Tong-time be-
'haVior of.the expahsion, since in plasma physics we are concerned
only with short-time behavior. The answer is that we use a time
integral (as in going from (A.16) to (A.17)) to do part of the inte-
gration over phase space. Thus if our expression for the particle
motion is inaccurate for large t, the integral will be inaccurate on
some regions of phase space. Another difficulty is that if the
series (A.23) does not converge uniformly in time, the series in the
dispersion matrix elements corresponding to the sum over w in (A.17)

will not converge.
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':” 1f, however, the Hamiltonian for a prob}em js ”ciose enough”
to.an integrable Hamiltonian (as it will certainly Be if infegrab1e
systems are dense), we nay apply the methods of this section to the
integrable Hamiltonian, obtaining convergent series_resuits. These
we expect will be "close" to the actual behavior of the plasma.sysu
tem, since we do not expect that a slight change in the Hami1tpnian
will make a large change in the properties of the pTasma,._This in-
deed is a fundamental assumption of any analysis, since any Hami1~
tonian we write down can be only an approximation to the trué
Hamiltonian.

To summarize: if we can find an integrable Hamiltonian which
approximates the actual Hamiltonian for the problem, we can express
the particle trajectories as quasi-periodic functions of time and
apply the method of this Appendix to the stability analysis. The
-practicality of this approach, of course, depends on how many terms
_of the series (A.25) must be retained, and this must be determined

for each case individually.
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APPENDIX B
Some Besse1 Fupction Fprmu1§e
_.In.this Appendix are co]lected.some.derivations of results uéed
ear]?ér. First we wish tg derive the expansions of the divergence

and curl of the vector potential in terms of cylindrical harmonics

that were used in Chapter II.

We evaluate the divergence first. From (2.14) we have

3A 1(28+kzz)

z _ .
dz 3 z 1kz Tnok Jﬂ(knﬂr) e.
,n,kz

1t remains to evaluate

‘It is easiest to transform to polar coordinates using

X = rcosd  , y =.rsind .

Then
51 5y ATHA s L1 A
0+ 8= Geoso B - Lsine 35y A+ (sino B coso ) B
-6 19
1 ~i0 8 .+ 1e 3 4t .1 163 -, 1€ "8 a-
¢ wh czy o e wh re wh
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- Using (2.14) we then expand A" and Af in cylindrical harmonics and

get:
-6+ i0,- .
¢ .A f ¢ A-.f.n é K [Qnﬁk‘dﬁ+l(lnzr) ¥ Bnﬁk_dﬁ+](kn£r)
D i(20+k,z)
* qn%k JR~1(Rnlr) B BnSLk - 1(A rle 7
19 -ip,+ 0~y _ 1 ' | 3 .| | ' -
7oy (€A teth) =7 % k{angk*ng (9541 (pgr) + 3g 1 ()]
i(£6+kzz)
+ Bgitng [9pe1Pngl) = Jgq (ertld e
and
-i0 9 + 18 9 - .
e §§~A -~ e 5§'A =i ) {o 2k[(2+1) £+1( r) (2~ I)J ](Anﬂ )]

. Rf, ,k.

i(ﬁ8+kzz)
* Bn%k[(g+})dk+1(Anﬂr)+(£"])J£—1(kn2r)]} e

Noting that the ung's occur in terms with Bessel functions of argu-
' 1 : * .
ment knﬁr and the Bnﬁ s in terms with Bessel functions of Angr, we

drop the arguments of the Bessel functions to simplify notation and

write
i -18 9 16 3 a7 2 1.
- 77 Le G h-e 5 Al " L k{unﬁk[Zr(J2+1 210t gt y)]

1y 1 1(26+k22)
* Bngk[éF‘(Jg+1+Jn-1) toor (Jgppmde)) e
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and

19 [.-10,% , 18y~ ML

zaple A reAls gz lopg [ Wpay g )l

L A a i{re+k_ z)

Combining results,
v o+ A = 7 { [—&~(J -d, 1)+ l—-(J +J, 4) F iﬁ&~(d‘ +J) 7]
LB T e neitae M- T 2 M -1 T T2

LRERE 4

A
_ % 1 ng ; .
* Bok oy Bpaqtdg q) *+ op Wgaq9py) + 5 (Jgyq=dg )13

i(R0+k z)
P z

Using the Bessel function identities

L0 + 350

= Jg ()
(B.3)
£ '
3 Jg(x) - Jg(x) = J2+1(x)
it is straightforward to show that:(B.Z) reduces to
_ ﬁ(28+kzz) '
Vot A . E y Brgk *ng g (Angr) e | (B.4)
and combining (B.2) and (B.3) we obtain finally
) i(Q8+kZz)
Ve A= ) DBy Mgt Tk, vgud dp(r) e (B.5)
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Next we calculate the curl. Since in the electromagnetic cal-

culations we have taken %E-= AZ = 0, we need only calculate the

‘z-component with k, = 0:

9A oA + -
o) = L X 9 _ 1 s a3 yA-A
(VA), = 55 = gy = (c080 gy - ¢ ST 30 T3
+ o
T 3y A+A
—(S'H’la'gF’i'—‘COS 5‘5‘) /I
49 8- 40ty 1 -8 18 b, 8613 -
=zgr (e A - e A -5 rag A te yggh)

Using {2.14) and suppressing the arguments of the Bessel functions

as above, we have
T (e - 71 -

-i 1 ] 1 1
E'gzn Cngrng{9g-17941) = Brg Ang(dgartdg )l e

] ~-i0 7 38 Lt ie 13 .-\ _ i 241 =8+ | =1 10,-
—p (e pgg A tel pagh) s - g e A F 5 e A
o 241 g+ 21
= ?’gzn (_F"' ne Sl T Brg dge1 T Ong Yo
g-1 i28
- B ) e
Combining these results we have
: ' 4+1
(v<p), Z Lo rng (001795041~ Brghn (a1 = 5 dngda
2+1 -1 £+1 L8

J

T Bngdear T Y

g1t T Bpgdpard e
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" and using the identities (B.3) it may be shown that this expression
“reduces to | | |

), 1D g g 301

Coin M

Next we wish to establish the two integral identities (3.50)

~and {3.51). First we note that if f(x) is a function which has

derivatives of all orders in a neighborhood of x = 0 and f{0) = 0,

then

[“ax g otx) £ = 50 (8.6)
0 : _ _
which follows directly on expanding f(x) in a Maclaurin series. We
also note that the only non~yanishing Besse1_functions and low-order

derivatives at zero are:

1.
7= 9540

1

J(0) =1, 3(0)

il

3:(0) = 1= a0 .

o

o=

——

<o

—
1

From (B.7) we easily see that

2 ' ' '
B [D0uan0igd) Sgamliin b))

I
jaw]

b=0
3 1 : =
55 Waan{Angh) Jk+m(An'£b)]1b=O =0

for all 2, m. Thus we may use {B.6) to evaluate the integrals in
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. (3.50) and (3.51). We have

R
|
Jo_db 5 6(b) 35 09 AngP) R+m(kn'2b)]

2 [anﬂ gm nzb)dz+m(hﬁzb) * 2*n2J£+m b)Jg+m nteP) =g

. x' _ S
n'L
(6m,~£+1 +.6m,-2-1).f Z 8

m""'Rv .

and

R
fo db T 6(b) 2 [0, (A,D) Jpy (A1 gb)]

Hi

[Anﬁ JE+m(An£b) * anﬁhn 2 2+m(k b) JPlv+m b)

. ' 2
MRS IRV O NYL:) BN PO ULV R )

.....] [} I 1 |2 2
= = AL AL, (S (hpg ¥ An.g)_

4 "ng n'LdTm, -4+ * 5m,-£ 1) 6m,~£

- which establishes {3.50) and (3.51).
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