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THE EQUILIBRIUM AND STABILITY OF THE HﬁLT{PGLE

Michael Wallace Phillips

Under the supervision of Professer Reith R. Symon

The equiiibriﬁm and iinear ballosning mode stébilicy of a plasma
in an axisymmetric closed field line device such as the mulitipole is
investigated. Two models of the plasza are vsed, a kinetic model and
an Ideal HD wmodel, and the results are compared. WNumerfcal
calcvlations are made of the equilibrium and of bailooning mode
stability criteria in the Wisconsin Levitated Octupole device.

The ballooning stability is analyzed using a high toroidal node
nuﬁber expansion of the linearized ideal “HD equations. The most
uﬁstabie mode has infinite torcidal mode number, a, even symmetry and
is localized on a flux surface. The eritical beta, Bc’ for the onset
of this mode Is calculated. For § > B, there 1s a critical mode
number, n.. Only sodes with n > n, are uastable., The full mode
structure of the instability is calculated.

A general set of kinetie equations governing low frequency,

w <90., modes in a closed field line geometty are derived for two
classes of modes: lower frequency modes with w << Wpy Cwy,, where
@, 1is the bounce frequeacy, and {nterzsdiate frequency wodes with

Wy <Cw ({w, . The equations inciude finite ion Larmor radius

.effects, trapped and untrapped particle effects and drift particle

TesSOonances.
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‘I‘.;:e l.ower .fr.eqﬁency equations are used to investigate the effect
._of. -zrallel particle dynamics ou the bailooning mode. In the
.hydrsi}':amic 1imit m*[m + 0, mD]m *0,py” 0, the equations are
coatized ro form the Kruskal-Oberman energy principle. A
Fruskazi-Cherzan analysis of the ballooning mode shows a modest
increase im the eritical beta over that calculated from MHD. Also,
the odd zode 1s the most unstable mode.

“ne effact of finite iom Larmor radius on the bhallooning wode is
investigated using the intermediate freguency equations. These
-equations are expanded in high m to obtain a single partial
differestial equation for high n modes. Finite lon Larmor radius has
a large stabilizing effect on the ballooning mode due to the

conversion of the mode inte a drift type oscillation with Re(w) -'m;.
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CHAPTER 1

Introduction

~ . In prdposéd.magnefic confinement fﬁsion.reactorzdésigns a
tﬁeraonuclear plasma is contained by a strong magnetic fleld. Fora
given magnetic field one would generzlly like to confine as much
plasma pressure as possible. One very significant reasen Is that
.1arge magnets cost a good deal of money and it pays to use then as
efficiently as possible. & measure of the efficieacy of a confined
_plasma is the ratio of plasma pressure to magnetic pressure or beta,
‘8 = uppfH, where p is the plasma pressure and B is the magnetic
field strength. Another {mportant reason for wanting beta as large as
pussible fs that it cuts the energy loss due to syachroton radiation.
Synchroton radiation will be one of the major energy loss mechanisas
in a maganetically confined thermonuclear plasma. In 2 high bera
plasma the plasma displaces the magnetlc field decreasing the field.
streagth inside the core of the plasma and thereby decreasing the
synchroton radiation -loss of the particles.

. A major obstacle in attaiaing high beta is the ballooning
_iﬁstability. The ballooning instability is a pressure driven
instability which is ﬁredicted to occur above a certaln threshold in
beta. The beta Iimit thé tallooning mode imposes on a plasma davice
‘ig a severs threat to the econocalc viability of the magnetlcally

confined fusion reactor concept. Because of this the balloenlng mode

2

~and the question of the beta 1imit it sets oo a devide has been under

fntensé investigation both ‘theoretically and experizmentally.

in this thesis the ballooning mode stability of axisfmmetflc
closed Field lime systems such as multipoles is investigated
theoretically. First the ligear stability -of the ballooaing wmode isﬁ.
studied using fdeal magnetohydroedynamic {MHD} ‘theory. Then a theofy'
of low-frequency drift type instabilities is a notuniform

collisionless plasma is developed for the wultipole field

configuration.  “This theory includes -trapped and untrapped patticle

-

effects, finite Larmor radius effects and drift and bounce particle
resonances.  The result is-& set of three coupled partial differential

equations governing low frequency modes i{n the plasma. These

‘equations are used to study the effect of finite Larmor radius and

parallel particle dynamics on the ballooning mode. " Part of this
thesis is 2 specific applicaticn of this theory to the calculaticn of
the ballooning mode beta limit of the Wisconsia Levitated Octnpoié
experiment. However, the theory and cowputer codes developedﬂto sﬁuéy
this problem are general and can be appllied to any multipole
configuration.

Some encouraging-:esulfs ha#é come out of the experimentéi
research of high beta plasmas. They seex to tndicate that the béﬁa

l{zit predicted by MED theory is overly pessimistic., The general

strategy of these expériments hasg been to push the plasme beta as high

as possible and seé what happens. What {8 significant is that sp far

nothlag has happened.  In the 19%~% experiment peak beta values of



._ é;iﬂzzhaﬁé been ;ehievéd through neutral beam heating of thé
ﬁlasma[i]. This 1s close to beta limi:'pfeéicféd by MHD theﬁry.for )
_Eﬁié dé#ide;.:No'evideéce'of 2 beta limit caused by.a.béllooning or

* other type of 1Qstébiii;y was observed. In the UCLA dodecapole

. 'eiperiment; a suitipole device, betas in the bridge of 8% have been

'_“mﬂasuréd for iarge ngoradids plasmas[Z].' The MID beta limit of this

device has been predicted to be 7X[3]. The eguilibrium appeared
stable with a decay time In excess of 400 Alfvdn times. Tdeal MED
" activity uéuélly pccurs on a . time scale less then the Alfvén time. In
the Wisconsis Levitated Octupole{s] betas up to 351 for large Larmor
.radius highly collisonal plasmas have been observed with decay times
on the order of 1000 Alfdes times. This is B times larger than
:preaicted'by"ideél MHD theory[3]. Betas of 8% have been measured fof
less collisjonal small Larmor radiss plasmwas.  These conditions
':_.cdnfbrm'mbréitd the ideal single Fluid plasma model yet the beta is
still 2 times'iarger then that predicted by MHD. These plasias were
alss obéerved to have equilibrive properties similar to those
predicted by ideal MHD theory. . These experiments indicate the heed

" for a mofe compléte analysis of the ballooning mode.
- 'A. The Intetehange Instability
‘The bailconing mode is closely related to the MHD interchange -

{astability. This instability is characterized by a long constant

- fiex perturbation along the magnétic field.  The term "interchange”

comes from a simple energy principle analysis{f] found in most

elementary plasma physics textbooks. - Im the energy principle analysis

twe thin adjaceat flux tubes in the plésma are interchanged and the
éﬁange in the stored enérgy, &W, in the plasma is caicu}ated. 1f 8%
is negative the systes is unstable. If &W is positive the system is
stable. It is found that W can be nade negative for this type of
pérturbation only 1f 58 V" < 0, where §p is the change in the plasma

pressure and §V’ is the change in volume asscciated with the flux tube

‘interchange. This means a necessary condition for stability of the.

" interchange mude in a ‘magnetic field withoutr shear is p’V"" > U, where

the prime denctes the derivative with respect to the flux surface

label w.

In a closed field line system V° = é %;,where the integral is
around an entire field Iine. If the flux surféces are labeled by ¥,
increaéing outwards from the plasma; mnear the edge of the plasma

P’ € 0 and V'’ must be negative for the stabilization of the
interchange mode. This is refered to as the negative V' conditien:

This led to the concept of minicoum-average B stabillzaticn of the

plasza. The inverse of the integral for V™ 1s in effect an average of

‘the magnetiec field. When V’ decreases cutuafd'tﬂe magnetic field

average'v‘—l increases. Tn d minimum-sverage B device the plasma is

confined by an effective magnetic well. The guantity V°° Is related

tg the inverse curvature of g flald 1ine, 4 ='%‘V%, by the relation -

v e g (.
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) wheré ) - ;%§$;I . Fro@ this expféésion'iur V".it'can be seen tﬁat
regions along a field line where the pressure gradient and magnetie
field gradient ave in opposite directions contribute tfo nmaking the
iategral V°° megative. These regions are stabilizing and are cailed
good curvature reglons. Regicns where the pressure gradient and
magnetic field gradiemt aré in the sawe direction make s positive
.contribution to the integral ¥, These regions are destabilizing and
are czlled bad curvature regions. .
. The wultipole Is a minimum-average B device. The pressgre peaks ;
on the separatriz and decreases inwards toward the rings aad outwards
toward the walls. Inside the separatrix, in the common flux reglom,
field lines have godd cutvature all the way around. Outside the
éeparatrix field llaes have regions of beth good and dad curvature.
Starting at the sepgratrix Vv’ decreases outward. Since the pressure
gradient is in the same direction as that af ¥’ these flux surfaces
are interchange stable. However, & point is reached vhere v’ equals
zeto. This flux surface is called the critical flux surface. At this
point the interchange wode is marginally stable. Assuning the
pressure continues to decrezse outward the remaining flux surfaces

outside the critical flux surface are interchangz unstable.

8. Early MHD Ballooning Mode Work

The intérchaﬁge wode i; just:bne'uay of perturbing tﬁe piasma.“
Altﬁoﬁgh the interchange node 1s stable inSide'the'tritical-fiﬁx
surface, the élaéma tén'still'Se anstabdle to othet typeé of
perturbations. A general form.for Ehe change in stored energy, SW,
due to a small displacéaent, %, of a perfectly conductiné piasmé wéé
first derived by Beransteln éf él.{?]. This is the magnefohydro&ynaﬁié
5: MED energy principlé, .

1

&W wéf ar {_3'21 Sl x B e devpeedy (1.25

O

Frp@etR] .

" where Bi =¥ x (¥ x Bg) is the perturbed magietic fiéid, pop =¥ x ¥

is the egquilibriun current density and & 1s the volume element. . The
contributicn of the various tervms in the MHD energy integral to the -

stability of a system 1s more apparent when Eg. (1.2) 1s written in

the form,
sv-lfa (LW [1 b - Dre o
z pg oH TEOL B T TR T
PR R i'i%_ﬁo f Eeh - RevpeE]

where §1' = B’%ﬂ it the parallel cosponent éf EI and ﬁll = §1 - ﬁll is

the perpendicular cowmponent of By . The eduilibrium equation



g ,
K <ty = ¥p 525 used to arrive at the above eipressi;ciﬁ' for 6. This
} forh.of W 1s ‘due fo Cfeeﬁe'ah& Johmson[B]. The first term répré;ents
the change in enérgy due to the field line beﬁding ia the
perpénﬂiéul%r airection. Tﬁis téfm is Tesponsitle for the shea}.
:Alfvén wave. The secoﬁ& tera is the potentiél energy of the
:ﬁagﬁetﬁacouétic wave. The thiré ters s the source of sound waves in
the piaswmas ‘The fourfh term can be negative and causes the kink
.'.iﬁstéﬁility. Tn closed field line systems B =0 so this term is
 ﬁ6t ?:eseaf. In-a ;loéed field line system the only terwm that can be
aegative is fhe last term talled the interchange or bzllooning rerm.
.?cr & constant perturbation in flux It can be seen.éirectly from
: Eﬁ..(1.3§.£hat W can be tade negative if p'V’’ is ﬁegative. For
. .wf1leld lipes that are stable to interchanse type perturbations an
-iﬁstabilitf.can still.occﬁf if tﬁerE'are'bad cufvaﬁure regiogs along a
“fte1d 1iné; .ﬁeﬁding the field lines causes a positive céatribution to
.'ég buf.if.fhe pertufbatioﬁ is 1oca1izaé in thé bad curvature region
. and p’ is.iatge'enough 5% can $till be made negative. This is the
'ballodning instability, so called because the flux tube.ﬁerturba:idn
" ballaows ouf ‘in the bad curvature regiod $omething 1ike the bulge on
:.aﬁ'ola'idﬁer fube. _
“In ﬁﬁe §apér-by'BernsgeiA.et.ai;[TI the Hﬁﬁ energy priﬁciple wag

aoolied to the probles of a shearless axisivmmetric plasma. Tt was
3Pt P

. found that s code with infiaite toruldal mode nuaber, n + =, was the

abst upstable mode. This 1s because the shorter the perpendicular

-:éavéiéngth'bf the mode; the less the fleld lines are bent in the

‘gtability was estimated to be B < #2

8

ﬁoroi&al direction. An eigenmode equation.fo¥'the mcét.unstable aode
was derived and from tﬁis 3 slightly wore general form of the
interchange stabllity criterion was found. Ohkawa and Rerst[%] 1oé§e§"'
gpécifically at the MAD stability of the multipole configuration. As
2 rrial functiom to the emergy principle they censtructed what they
ealled the Tworst mode™, oneé in which the perturbaticn was large in
the bad curvature region and small inm the good curvature region. . This
is esseatially the shape of the ballooning wode perturbation. They

=1so derived z beta 1imit for this perturdatiom. The'condition:for

LaLB

» where L 1Is the density
¢

-1 . vp/p, Ly is the wagnetic scale length,

scale length, 1,
iE’l = ¥8/B, and L_ is the connection length along the fleld line
between the geood and bad carvature regions. This formula gives 2
pretiy good back of the envalope estimate of The ballooning mode heta'.
iimit. the eigennode equatiom governing infinite toroidal mode nuaber
modes was again looked at by Johnson, Kulstud and Weimer{10] who found
.thst for marginal stadility an incompressible mode is the most
unstable mode in closed Tield line geométries. Thelr eguation has:
‘gince been solved numerically to determine the heta limit im multipole -

geometries[3,5}.

. €. Review of Kinetic ¥Work
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Early kiﬁetic work.on iow freguency electfomagnetic instabilities
inciude the Krus?al*ébe:mah or collisionless energy principle derived
by Eruskal and Obermaniil] aﬁd Rosenbluth and Rostoker{i2]. - This
' energy principle is similar in maﬁy respects to the MHD energ§
principle but with ideal adfadatic terms replaced with kinetics terms”
that include the effect of collisionless adiabatic compression of the
" plasma and the Fermi acceleration of the particles that occurs when
the magnetic field lines are perturbad. This energy principle is
carudied 1a Chapter 5 of this thesis.

A huge amount of work has been dome with.iiiear inetic theory
‘treatisg plasmas ic simplified geometties. For a geometry with at
lesst 2 ignorable coctdinates, a generalized frazework has been
developed by Lewis and Symon[13] for analyzing collisionless Vlasov
plasmas. Using the éumerical procedure they developed the linear
Qtability of these geometries can be treated to almost any degree of
- accuracy needed. Héwever, most plasma experiménts have oanly 1 or sno
ignorable coordinate. So far explicit solutions for these geonetries
tﬁat can im any sense be called exact have not been developed.

Many Important results have been discovered vsing simplified

geometTies. Ome result is particular should be mentioned because of

impiications 1t has concerning the finite larmor tadius stablilization
of the balleoning mode. Rosenbluth, Rrall and Rostoker[14] showed
that finite Larmor radius éffac:s can considerably influence the
interchange ot fiste 1nstability in slab and eylindrical geometries-

The Instability they considered is similar to the MHD interchange

is

S10

ifstablidty discussed above with the differernce that the forde of the

Cmagnetic £ie1d graéient.is replaced by a gravitational forcé?'&g. “The

dispersion relation for this stébility'from a hydromagnetic analysis

w2 ~ g2
P

gradient is opposite to the direction of the gTEVitafional'fieid.the

Py
=

= 0 vhere p’ is the pressure gradiemt. If the.pressure

growth rate of the fluts:instébility is given by'Y = [wg

Rosenbluth et z1. showed when the lowest order finite larker radius

affeets are included in the znzivsis the dispersion relation becomes

Wl —wa” - 3 %; =0 where & = - X j%.%r is the diamagnetic drift
q

freguency. Here k 1s the wave number of the mode 208 T is the ion
remperature. From this dispersion relatiom the sysien is now stable

£ (kpi)(p 1 E_J > gI‘VhETB 2; iz the iom eyclotron frequency and 51 is
P i
the average iom Latmor radius, #i = EEAﬁi-- This eriterion shows
m
. b - §
that the flute instability is stabilized for large énocugh ion Larmor

tadius.

The physical plcture of the flute instability Is that when the

magnetic field is perturbed the grévitational drift of the loms daﬁsés

‘a pile up of spdce charge along the imstability flutes. - This cadses

an electric field and associated with it am ek velocity drift,:
> Ex % . . )
Vg g 0 which reinforces the perturbation. When fidite Larmor
radius effects are includéd the ¥ x % velocify drift of the foas 1&

3 122*5::%.' .
zodified by an extra term vg = [i + E‘pi?i] - This extra term
is not present in the electron Ex B drift due to the disparitj in the

size of the Larmor radius. The new term causes a charge separation

out of phase with the ¢riginal charge separation in such a way as to
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stabilize the mode. This couﬁliﬁg of hydré&agﬁetié perturbagfdns té
-ﬁrift Eyﬁe éscillétioﬁs'also'bas an impSrtant'effect on the Eailooning

ﬁode.' 1

'?ﬁé.ussal'apﬁrdéch'to tﬁé linear kinetié analysis of plasmas in

':compleﬁsgeoéetries ha§ béen to expand in some sort of smgil parameter.
._an low'freQQénéy modes of the type considered here the frequency of

the mode is Tuch less then the cfclatron frequency, . The gquantity
'.wﬁl can be used as an'e%pansian parameter. . For low betas and strong
. magnetic fields'P/Ln and p fLg can also be used as expansion parameters
'in.mcst'sitﬁationsL Reré p ‘1s the Larmor radius of a particle. In
‘the limits oA << 1, P /L, << 1, p /Ly << 1 the patticle motion is
déscribéd bysthe.guiding—center approximation. In a guilding-center
_élasma'low'fréquency modes are characterized by léng wavelengths
.paréliei'tg.tﬁé magnetic £ield and short wavelenétﬁs perpendicular to
.ﬁbe'magﬁetic field. .This is because along field lines particles,
'pértiéuiafiy eléctrons, can move rapldly te pre&ent electric field
:pértﬁrbétions with.shbrt parallel wavelengths. Also, any bending of
. the fiéld.linés.is stabilizfné. Because of thei; gyromotion arcund
f1eld Tines ﬁartiélés zove perpend{ctlaf to field lines on a much
.iangér time scale. in additien, sﬁall perpendizular wavelengths
:minimize tﬁé.stabiiizing contribution die to fiéld line Bending. Tﬁe.
:_perpéﬁdicﬁlafIwavelength is iimited by the size of the Larmor radlus,

éenerailf; ke <1

12

The 1o§'fréquency small.Larmor raéius'shért perpéndiculér
wavelength expansion of the linear Vlasov equation was originally
developed by Rutherford ahd Frieman{15] and Taylor and Hastie[16] for
electrostatic perturbationé fn an inhomogeneous plasma. These
treatments dealt with closed field line systems and specific
applications werve made to the multipole[i?,l&l. In this thesis
expansion techniques similar to that of Rutherford and Frieman arte
employed to treat electromagnetic perturbations as well as
electrostatic perturbations. The problem of electrostatic
oscillations im axisymmetric mirror machines was treated by Hortos,
catlen and Rosenbluthl19] using a different but to lowest order
equivalent technlque. In thelr analfsis the single-particle
gyro—orbits were first daleulated. These were then used to evaluate
the time history integral for the perturbded dtstribution Function due
te electrostatie perturbations in a manner reminiscent of the methed
of iategration cver unperturbed orbits.

One of the first attempts at a general kinetic formalism fsr the
ballooning mode in tokamaks was made by Chu et al.[20}. Their

treatzent is similar to the analyis by Rosenbluth and Sloan{21] of the

.electromagnetic trapped particle Instability but includes inertial

téerss. In a report by Liewer and Liul[22] an instruetive applicatiom

of the drift kinetic equation is made to the ballooning mode problem.

Righ mode nuszber pertubation analysis of the tokamak is hindered by
the ergodic and sheared nature of the magnetic field. This problem

was repedied by the invention of the.bailooning node formalisﬁ{23,25]
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~ which correctly:handles-ghe doubly péfio&ic.natﬁré of.the pefturhatioﬁ
in tekamak geometry¥. A blg demand for the correct kinetic freatment
of ballooning modes sparked a flurry of papers from a number of
sources incorporating the bazllooning mode formalism. -Among these Van
5a2(2%) includes in his analysis collisional effects. Antomsen and
Lanel26] developed 2 set of low freguency kinetic equations and used
them to comstyuct a varlational principle. Frieman et al.[27] include
tn thelr analysis a caleulation of the radial structure of the
ballooning mode ia a tokamak. Other similar kinetilc a2nalyses have
.been done by Connor, Hastie and Taylor[28] and by Tang, Connor and
Hastiel29] who show explicitly that in the hydromagaetic limit the

inetic equations raduce to familiar MHD forms-
BD. The Levitated Octupole

The Levitated Uctupcie has Four internal rings carrying current

in the same direction inmide & eonducting vacuum vessel. A plcture of

the poleidal ¢ross section of the Llevitated Octupole is shown in
Fig. {(1.1). This figure shows the dimensions of the device used for

the calculations presented im this thesis. Alsc showa in Fig. (1.1}

are the contours of poloidal magnetie flux for an MHAD eguilibrium with -

8 = 4,33%7. The length of discharge is short enough that the rings and
walls of the vacuum vessel can be considered to lowest order perfectly
tonducting. The vacuum vessel is medeled as a toroidal vessel with a

recrangular cross section. - In each cormer of the rectangle are

.14

gussets which serve the purpose of lessening the severity of ths bad

“curvaturé behind the Fings. Another feature ate two traperoidal

wedges pointing into the machine, one on the inside of the torus and

ohe om the outside. . These are known as fhe noses. .The main purpose .

served hy the noses is to lowerT the inductance of the machine so that
For & given stored edergy in the capaciter bavks the magnitude of the

magnetic field is larger. -However, this alsc shortens the pulse

length of the discharge. Tt was also thought the noses would have a

stabilizing effect on ballooning modes. At high beta the flux

surfaces are distorted 1o a manner that decreasgs the amount of good

curvature. It was hoped that the noses would help lessen the amount

of distortion. To some extent they de this. However, the neses.also

have the effect of wrapping the flux surfaces'éébun&'the'rings'théreﬁy
¢reating a larger bad curvature reglon. 'The MAD bets 1imit far the
same Levitated Octupele configuration with the noses resoved 15
édtuaily about 2% higher then with the noses ia. 4n estimate'gf the

bata limit of the Levitated Octupole can be found hf using the -
i LnLB

Lc - E
and L, = 70 cm the beta limit is predicted to e about -6%. The actual

Ohkawa-Rerst formuld B8 == - -Taking L, * 3 cmey Ly 15 em.

ideal MHED ballooning mode betz 1imit ‘is 4.33%.

"E. Orpanization of this Thesis
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14 'm;ptér 2 the MED equilibrius of msltipole confignrations is
:t}eatéd. :In gn axisymmetric géometry the problem of finding MHD
'IEQGillbriﬁm.is reduced to solving the Grad-Shafranov equatlon. A
.ﬁumefiéal'ﬁracedure tor solving this equation in multipole geometry ig
‘given. Results of the calculation for the Levitated Octupole geometry
':aré'présehted'énd the effects of beta on the equilibrium are
Hiséussed. Tﬁe equilibrium distribution function for a collisionless
~‘plasua 1s'defived by a small Larwmor radius expansion of the

'équilibfium'VEasbv equation. To lowest order the kinetic equilibrium

- gatisFies the MAD equilibrium equation. Once the MAD equilibrium has

’:beén'calcuiated the lowest order distribution function can be

" gvaluated locally in- the plasma.

Ry srability analysis require first'éﬁ equilibrianm. Eqdilib?ia
fd; thé Tevitated Octupsle were calculated for betas ranéing up to 17%
in increhénié of 1% or léss. . For each case equilibrium guantires were

fmappéd.éuc'in fiux coordinates and stored inm a llbrary oo the computer
for future use n the stability calculations.

. tha?ter 3 deals with the iinear'high wode number MHAD Stébilfty of
'.ﬁﬁitiﬁoies. A §ihg1e:partial differential eguation geverning the
.ﬁalloonidg mode 1s derived by a high toroidal mode number expansionm of
';he MHD énergysprinciple. 'This equation Is sdlved by a perturbation
. expansioﬁ.gsing the inverse toroidal mode number as the smallness
'paratetef.' This reduces the problem te solving twoe ordinaty
_différehiial equations, one determining the structure of the mode

along'field 11nes and the other determlnlng the stricfure of the mode
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perpendicular to the fiéld lines. Numerical.sﬁlution.to ihese
equations for the Levitated Octupole configuration are given.

In Chapter & the kinetic equations for studying low frequency
électromagnetiC'modes in an axisymsetric collisionless plasma with no
toroidal magnetic fileld are derived. The derivation consists of a

$mall frequency © /2 << 1, small Larmer radius, pfl, << 1, pilg << 1

“expansion of the linear Vlasov equation. The perturbed distribution

function due to small electromagnetic and electrostatilc perturbations
is obtained. Moments of the perturbed distribution function are

caleulated and used in the quasi-neutrality coadition and the force

balance equations to obtain a complete set of eguations governing the

modes. Two frequency limits relative to the ion and electrom bounce

frequencies are considered, 2 low frequency limit where

© Ky, Koy, and an intermediate freguency limit where

wy; Cw Lo, . Herewy is the bounce frequency of a particle

defined bytsgl == ¢ 1£E;{ where the integral is taken along a field
*

line between the turning points of the particle.

Chapter 5 deals with the effect of parallel particle dynamics on
the ballooanlng wode. A collisionless variational primcipie is
constructed from the complete set of equatlons governing low frequeﬁcy
modes that were derived in Chapzer 4. In the hydrodynemic liwmit

% .
W 0,£nDﬁ» + 0,p * 0 this variational principle reduces to the

~Kruskal-Oberman energy principle. This energy principle is minimized

in the same manner as the MHD energy principle resultiang in an

integro-differential equation for the wargimally stable balleooning
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zode- ) is eguation contains a staﬁiiiziﬁg kinegié tern that tzkes
inte account the collislonless adizbatic compression of the plasma and
the Ferzmi acceleration of the pérticles. ThE'eqﬁatiou is solved for
the Levitated Octupole Eonfigurétien and c5ﬁpared with the MHD
resulits.

fn Chapter 6 fiaite Larmor radius effscts on the ballooning mode
_are investigated. The set of tﬁree equations for the intermediate
frequency regime w,; <Cw <{{wy, that were derived in Chaptér 4 are
used. ﬁsiﬁg asﬁigh cérdid#l tode number.expanéion ﬁﬁese equations cam
be combined into a single partial differential equation. Ballooaning
mode stabilicy criﬁeéia are found by solving this equation for the
marginally stable mode with the largest temperature. The stability

ceriteria for different plasma beta and Larmor radii are calculated for
the Levitated Dctonle.

A suﬁmary 4f the main results can be fouﬁd.iﬁ Chapﬁer 7. In
addiﬁioﬁ, some suggestions for future work are given.

The flux coordinates and velecity coéréinstes used .in the
éerivatioﬁs tﬁfﬁughout this thesls are suzmarized in Appendix A. The
representation of the perturbed magnetle and electric fields used in
the kinetic analysls plus many useful identities are giﬁen in Appeﬁdix
B. In Appendix C a rable of EBessel functlon sdentities and integral
relat{ons helpful {n the derivaticn of the kinetlc equations can be
found. Moments of the perturbed distribution function used in the
derivation of the complete set of kinetic equatlons for low-frequency

modes are summarized in Appendix D. The monents for two freguency
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resiaég are gifeﬁ: w <f &5 andFHE ((IM. Some-of.thé“data.from :ﬁ;
compuler caiculations of the stability criteria can be found in.
Appendix E. These cases are for the marginally stable mode with thé
largest temperature for a given plasma bera. The computer-codes:uéea
for the equilibrium and stability calculations in this thesls afé'
located on the National MTE computers. Appendix ¥ gives'éétailé-nfr

the availability of these codes and where to find documentation.
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T- Fig. (1.1} The Levitated Gctupolé Configuration

"This'éicture shows the pbioiéél croés section of the Levitated
.'bctupdlé. .The dimensions in this diagram are used for all
1-cé}culation§.présented in this thesis. All dimenstons are in
centizeters. This plot shows conteurs of poloidal magneric flux for
'.ﬁﬁe Levitated Dctupole with B = 4.33%. v = 0-5318, b = 0.5238,

¥ = 0.8265.
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~ CHAPTER 2

Equilidrive

The starting plaée'for aﬂy.linear st;bilify calculaéion is with
equiiibrium.- This 4is 4 description of the steady state magnetic field
éénfiguration and the shape of the plasma. The critical beta for the
ocdurrence of the ballooning mode is sensitive to the shaée of the
_pressure profile and detalls of the magnetic field. Since ome of the
"goals of this thesis is to calculate stability criteria that can be
_cémpared with experimental measurements, the stabiiitﬁ calculation must
be done In "real geometry™, i.e., some reascnable facsimile of the
actual device. This chapter deals with MAD and kinetic equilibrium in
.'.multipoie devices.’

14 the multipole the vacuum'magﬁétic'fieid'vithnﬁt any pldswa
gives a good approximation the magnetic field with plasma. By the
‘vacuum magnetic field we mean the field genmerated by the currents in
:ﬁhz rigi§ conductors. The reason why the plasma does not have a large
effect cn the equilibrium fields is that there are no latge currents ia
the plasma. Since there is no Inductively driven current in the plasma
otily the diamagnetic current due to the pressute gradient is present.
This current is proporticnal to beta which is often small. Omne might
“yonder whether it Is really necessary to caleulate MED equilibriva in a
multipole. There are two reasons for solving the full equilibriuam
equations. The first reason is that the plasza beta Is significant

enough where it should be taken iato account. .Betas up to 33% have
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‘been measured 'expefiﬁentaliy. For a pl..a's.éa beta of 20 the diasagnetic

effects of the plasma can change ‘the stabiiit.y criteria relative to a

vacuum calicuiation by Z0-30%. Another reason is thatr both the

diamagnetic currént_and the relative chasge in ﬁhe.mégnet{c fiéid can
be measured. This means the appiicability of tﬁe model caﬁ be checked
directly.

In section A of this chapter the MHD equilibrium equationé afé
introduced. In an axisymmetric geowmetry the MHD equiliﬁfﬁuﬁ is found
by solving the Grad-Shafranov equation. .Section 3.6231; wiﬁﬂ

collisionless kinetic equilibrius. The equilibrium distributicn

function is derived using a ssall Larzor radius ‘expansiony It turhs

out the coefficients of the lewest order distributicm finctiocn can b
evaluated from an ‘MD equilibriom. 'In section C numericai procedures .
for solving the Grad-Shafranov equation in multipole geouatty are
discussed. Emphasis is can the OCTEC MHD egquilibrium coede. This code
solves for MAD equilibrium in up-dowa symmetric muItiénles with ﬁp to
eight internal rings in an arbitrary polygon shaped vacuum véégel.

Results of the calculation for the Levitated bctupoie geomé:ry are

presented and the effect of beta on the equilibrivm is discussed.

The stability calculations that will be presented.in'future

chapters will be done self-consistently. This means plasza paraﬁatefs

such as beta, the curreats and the pressure used in the stability

calculation are in equilibrium: As a basis on which to do the
stability calculations a series of MHD equilidbria For the Levitated

Octupole configuration were caleculated and stored in @ library on the
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" computer. This 1ibrary comsists of.ec'milihria with beta ranging to 17%

{5 the bridgs region in increments of 1% or less.” For these equilibria

E “the Fleld iimes are mapped out and various equilibrium quantities

heeded for the stability calculations are computed.
AL MFD Equillibrium

- The basic 'magnétéhydrodynami'c equations governing a steady state

plasma are .

% By =Vp L TR ¢ )
R T Yo R o
ey =0, § ' ' e

.‘;hs.a.r:e-'ﬁo- i's..t'he .eq.uilibrf.u.z.m currer.:!; &ens.ity,.ib. is thé equ'llibhm

magn‘é.t{.c field and p is the sczlar plasma pressure. Thése equat fons

: :.a'ssum'e. the 'abse..r:ce of gravitation and a zero £1xid velocity. For an
'axi.sym:nétri;':“cor.:fig\}ra.tion the cylindriéél coordinates t, 9, z can be
.-”us'ed. '.;rh.e magnetiec fi61d can be written in ter:s of the flux functiom

] and the funetion I,

@y
.

By =28k Wy +1 (2.4)
- T ¥
Here I = rBe and ¥ ,_E_I EO- 4% Here the surface iantegral is over the

foroidal stTip between a reference point and the point of intetest.
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The quantit‘ly.\fi is ralated to the poloidal wmagnetic flux, Q:p, by

% =¢P/B and to the 8 component of the magnetle veclor potential by

¥ = T -

From Eq. (2.1} it follows that -ED'vP = 0 implying p is a function
c;nf' .11 only, i.e. p = p{¥). Similarly 450'75’ = 0 and using Eq. (2.2) it
is easy to show TBgg = I(%Y is 2lso a functiom of ¥ only. Using the
representation Eg. {2.4) for EO ia Eq. (2.1) and Eg. (2.2) one finds

the equilibriom must satisfy the equation,

-~ 3% 13y 3% _ .
Woir T ray TaE T Pet -3

= —po2p (y) - 109D

where the prime denotes the derivative with respect to ¥. Eq. _(2.5) is
commonly known as the Grad-Shafranov equation. The functions p(¥) and
I(¢) are arbitrary functions of ¥ . MHD theory does not give a clue to
what the functions p(¥) and I(¥) are and they must be defined using
ocurside considerations. If p{$)} and 12 () are aoything other then a

linear or quadratic functions of ¥ then Eq. {2.3) is a nonlinear

ceguation.

The equilibrium current is given by,
->,

1 - . -~ .
Go x 28 % VIG) + b - (2.6)

where Jig * - 7 () = 1 I1*{¢). ¥For the multipele there is ne
o T
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'tdroiaal m.agnetic'f.ield 5o ";(ﬁa') = 'D..' This ‘means there is no current
parallel to the field lines. The only currént is the diamagnettic’

current from p"('{a) and it 1g in the toroidal directiom.
B. Einetic Equilfbrium

For the kinetic limear stability analysis the equilibrium
distribution functions of the particle species are needed. The
. equilibtium distribution function for a ecollisionless plasma is found

by solving the equilibriom Vlasov equation:
Pogg e d By Ve Bl gg =0, : N

.'.{g‘ﬁex.'e EO :-m.d ;ﬁo .a..ré :the..éq;:ﬂi.'élrium. électric fleld and magnetié fField
'res;pectiveiy and £y is the equilibriue distribution function.
¥g. (2.7) is solved self-consistently with Acpere’s law and Poissoa’s
équation.

In the.abs.enc.e o'f.cc.)llis.ions and for .static"fields the 'r_;hergy of
S the individual pa‘:ticle.s i{s conserved. This means € = _;. o+ % & is a
" constant where EO ==Vq and ¢ is the enmergy per unit mass of a
particle, In additien for axisysmetric configurations the canonical
.m jsentua cojugate ltb' the ignorable coordinate ® is conserved.  This
means Py = mrvg ~ qly -~ i:o) is a2 constant of motion of the particl'e.

"Any functiom, £glc irg ¥, that isa function of € snd pg only, satisfles
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the equilidbrium .V'laso;: e'c.luatio'n.' This meins there are sany solutfons
to Eq. {2.7). SRR

A somewhal simp'lifi.ed case will be.éon;ide.r'e'd her.e.. I't. w':.ill :be

assumed that the equilibrius varies over a scale length much larger

then the Larmor radius of a particle 1l.e. D/tn <<'1 and p /Ly <« 1

where p is the Larmor radii:s, i is the deﬁsi:y scale length a‘ﬁd'LB is
the magnetic field scale length. The tewperature will be assumed to be

constant across the plasma. Using b/Ln and p /LBI as expansioﬁ

parameters an approximate solutlonm to Eq. {2.7) can be found by

perturbation expansion. A derivation for the general case where there

is an egquilibrium electric field and the p'articie'.pre.ssure 1s allowed

to vary aleng fileld lines can be found in the paper by Rotherfard and

‘Frieman[15]. For the particular case where the system 1a’ ax'is.y.r;;:ietric.
~and the pressure 15 scalar along a field 1ine withﬁ no electric field

the equilibriue satisfies the Grad-Shafranov equationf25]. A brief

sumsary for the ‘case of interest Fere where the toroidal magnetic fleld

i zero is included below.

The orthogonal flux coord.ir.lates.é., Xy 9..'-;7111 te uysed im this '
derivation and throughout the paper. The coordinate $ 1s the Flux
function defined fn Eq. (2.4). " The u‘nit'véctor; points pe'rpeudicu'lér
to'a field 1line and 1ies -im.a constant 8 plane: - The coordinate ¥

measures along fleld lines and x 1s parallel to the field line. .The

" coprdinate B -is the toroidal cootdimate. The Jacoblan will be denoted

by 3 and 1s given by 31 = (V¢ x Yx»V8. Refer to Appendix A for'a

"sutmary of ‘the vector identities and differential operators for this



27
'cobrdin';ate'.system. ' .In t'h.is c.oor.di.naée syste'; Y o= V'P;' + vx;( + "ag .
) .Howe've'r,' it is'ofteﬂ convenient to use the velocity coordinates fx, Vi
B 4 here VE B'vg + v% is the perpendficular velocity and tam § = ~ V\P/Ve
. '15.. the gyrophase dngle.
. UIf we assuze pfi, << 1, pily ((I 1 the first ters in E'q... (2.7) is
" mmch 'smaller thea the second tetm. To lowest order then, ¥ )-:-va%
= Bf%fat =0, "This wmeans foo does not depend on the gyrophase angle

so foe = i%(vx 3 ,;:). To first order
agl,
By - " 0. - {2.8)

H o

?-Vf%-l-

- Ix.xtegra'ti'ng.over the coordinste T iﬁ Eq. (2.8) fiom 0 to X gives the
.additional conditisn X'Vf% = 0 which zeans foo $s independent of the
-cnordi'n'at.'e x+ ‘As 3 conseguence of a'xi'sfmm.etery: f% ié also Indapendent
of @ , hence, f% - f‘%(vx 29 ¥ ). Solving 'E'q.' (2.8) for fh gives

. . . K
f’é*--g_cosc&-Vi%s—mvlgcost«é}_. ”(2.9)

vhere ﬁ:”i.s the 'gy.rof.red_ue'ncy, Q = %-

_“The selection of ofe partfcular parricle distribution from the
: ':ar'y possible solutioas té Eq.- (2.7) must be wmade from cutside
‘considerations. it 1is .rea.sonable to assuzmée that -the plasma at cone tize

‘In the past was ¢pliistonal and the distribution function is wmalaly

Maxwellfan with a stople dénsity gradient across the fileld. Ta lowest
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El
. : : 1
_order then we will assume =i+ & vy 5—0--«%9] where £, is the

s 3
" Maxwellian distribution function f = ns(‘%)a”z exp(- ?) . Here e ig

the energy per unit mass of a particle, & = % v§ + % vf_, and the

quantity ng is the particle density on the flux surface ¥ To lowest
order in Larmor radius we then have as our equilibrium distribution
function,

1%% ¢ 1 a“o}

Ty cos § —

. fl o - 2 .
fg= fh+fh =1+ @ 4:(})303? . 25 3

*
Buy meyv
1% (]
=541+(¢—¢0)_H+___}, (2.10)
ng 3y T
* T r anO
vhere v = = = £ % is the diamagnetic drift velogity. Note that
q ng ¥

fg = £y By ) and so Eq. (2.10) satisfies the equilibriums Vlasov

equation exactly for -EO = 0. However, for some values of ¥ and v

Bq. (2-10) for f, is negative and so the reguirement 9 < 1 is still
4]

necessary for this distribution function to make sense physically.

Ope of the properties of Eq. (2.10} for £5 1s that the particle'

specles has a net fluid velocity 1‘;0 :}r fa'; dv = v 8. There is no

a -
equilibrium electric field and '30 = -7 %B where p ‘E aaT with the

sum over all the particle specles. For this form of the current

density the equilibrium satisfles the Crad-Shafranov equatlon with

. (¥} = 0. The equilibrium quantities from the solution of the

Grad-Shafranov equation cau be used to evaluate the coefficients of f4
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45 Eq. (2.10). Hence, knowing the MHD equilibrive the distribution

function to lowest order im Larsor radius canm be determined locally.
C. Wumarical Method and Results

In most éases MED equiiibriﬁm must be éolved numeriéally. Nat
'mény:analytic solutions conform to real situations. - Much work has been
done on the proSlem of numerically solving the MHD eqﬁations in
axisymmetrie geowetry particularly in tokamaks. The tokamak liturature
‘on this topie is }elavant to the problem of.solving for MAD equilibrium
.in multipoles a5 w1l since the two problems have many simularities.

Ia fzct, the multipole equilibrium code, OCTEC, used for the study here
“was adapted from the tokamak equilibrium code TOPEC used to study
equilibrium in the Tokapole device[30].

 Ro-attempt will be made to review the vast amount of liturature

T aeéliﬁg with the solution of the Grad-Shaframov equation. A few papers” -

the author found particularly helpful for certain problems are worth
‘hentioning. For a review of the problem and techniques for nunerically
solving MHD equilidrium Lackner{3]] and Johnson et. 31;[32] are good

- starting places.. Specific iteration techniques are dicused by

._ Chu et.al.[33] and Marder and Weltznerf34]. ‘The paper by Chu et.al.’

- also looks at a wide variety of plasma shapes; The paper by Marder and
- Weitzner gives a three-level iteration scheie whiéh allovs for the
éossibility of more then one solution depending on the initializaticn

" of the problem. Callen and Dory{35] numeriéé}ly investigate the
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~effects of different'pressﬁre and current profiles fncluding high beta

plasmas. . Suzuki{36] discusses the problewm of solving frea~boundary
tokamak equilibriusm. . . . .

_ The nonlinearity of the Grad-Shafranov equation for a general

. pressure profile requires the use of an iteration scheme for finding

the solutions . For low beéta, the simplé Picard {teration scheme can be

uged, .

B T T Y CR o PRI L P CR

_Here n is the number ¢f the nth iteration. For configurations like the’

multipele vwhere the equilibrium is similar to the vacuum field the

iteration procedure can be started off by taking ¥ as the vacuum fleld

Cflux function: - The roroidasl current jga(f,¢u) is then &valuated

resulting in an inhomogedeous equation that cau be solved by

" conventional means for the new valiues of . For the calculatious

. ‘presented here the operator L is ‘inverted using a finite difference

‘scheze. This procedure is then repeated until the difference between

7 50d 3 16 small.

For higher beta’s the Picard itaration converges very slowly.

Then the follewing iteration Schene is used,

w3 2y jcé'(r,@ﬁ)r
mn+2/3 = 10 4og {r’$n+1/3)t.

'. v'n{-l ,WUHIB £ {1 _B»n+2/3 s
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Cihere a is ghéééanyzirial and ‘error ﬁnfil a -gobd comvergence ;ate'is
Cachieved. It 15 not known exactly why for higher béetas the solution
iéonverges ﬁefy”slowij. A high beta equilibrium and a2 vacuum flux plot
jook wvery zuch the same. ‘One possible answer is the existence of
,seQeiQI solutions for ;he-éame'boundary conditions, beta and pressure
..ﬁfbfiié ﬁréstriptidn. Something -1ike -this has been observed
analytically ia a-s:raigﬁt multipole configuration by Spenceri3?] for
-éhe.éasé of 8 = 1 shacrp boundary equilibria. Spencer found sometimes 2
and 3 éeﬁarate solutions for the same Scundary conditions. In most
;asei'tﬁe solutions were very similar to each other.
. ”.Iﬁ order to solve Eq. (2.5), a pressure profile is needed.’ One
: reéui}ement {s-that the pressure g%édieﬁt be Zero on a separalirix.
) :Tﬁis is a nuﬁé:ical réQuirement as well as a3 stablility requirement.
' _Siﬁce.the ;héﬁge fa the flux tube volume near the separatrix is large a
pressute g}adient woﬁl& treate a large currént near'ﬁhe field null.
.f£is.cauée§ tumerical instabilities sinceé small changes in the ciirrest
céﬁééé'iérge:change; in the ‘surrounding fields. It 15 alse known Irom
_résis£i§e.HKﬁ tﬁecry tﬁét'a pressure gfadient across an x~point Is not
::a stable situaticn. For am arbitrary multipole configuration there are
 §.~ 1 h&li poihts'poésiﬁle for w cufrént carryihg'conAuctors. Some of
‘these nulls might be degéneraée“ﬁuf'in géﬁerai the prassure gradient
Tust go to zero on each sepzratrik. The interchange stability
. .€riterioﬁ.§'V"'> 0 zust also be séfi;fied; Since V'’ changes siga at
'.;he critical flux surface p” must change sign also. This means p’ Dust

equal zero 4t the pelnt where V’' equals sero.  This occurs at the
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_criticai flux surface, ﬁc' " Another condition 1s that the pressurez go

‘to zeto at the wall. For the flux surfazces to be interchange stable

between Ve and the wail and still meet this condition, p nmust equal
zero in this entire regicn. For an octupole conflguration with one
null on the midplanme and two symmetric nulls above and below the

widplane a suitable function for the pressure is,

p=0 ' <Y <,

o
]

: v - ¥ _
%0 sin:z{% (r;i"i-':—}vl} V.Y <Py
c

P = Py . ¢Sl<g’ <1752

Ll va
Vg _;_r} ] s

p = py sin?{5 <k <y (2.11)

vhere ?; is the value of the flux at tha vacihum vessel wall, p . is the
flux at the eritical flux surface, ?51'15 the flux at the separatrix,

is the flux at the second separatrixz, and ¢ is the flux at the

"ring. The quantities vl and v2 are parameters vsed to shape the

pressure profile. The peak pressure pp is usually chesen to give a
specific beta. This pressure profile peaks on the separatrices and

goes to zero at the wall and the critical flux surface. 1t has zere

pressure gradient ‘at the wall, at ¥e and at the scparatrices.

The Levitated Octipole has four cepper tings insfde a conducting

“vacuum vessel. TFor the calculation here, the rings and walls are

assumed to be perfectly conductirg. The functlon ¥ is constant on the
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surfaces of these conductors and they serve as the boundsriss for
solving Eq. (2.5}, .The flux function can be divided into two paits ¥

=¥

+*p139' whete ¥ Is the flux function of the vacuum'aagnefic

vac vac

field due tec the currents in the rings and their image currents in the

is the contribution to the flux function of the

walls and ﬁ;p}as
diamagnetic currant of the plasme and its image currents In the rings
and walls.

The vacvum field is calcu.lated by solving the problen consisting
of Eg. {2.5) with the right hand side set equal to zero along with the
boundary conditions that ¥ be constant on the riags and walls such that
the difference (¥, - ¥.) Is =qual to the total amount of flux in the
machine.. . The operator L is finite differznced using 2 5-point
‘difference scheme and the vaiuves of ¢ are solved on a discete 125 x 57
" grid.  The dimensions of the grid were cheosen for convenience since
thetr ratio closely approximates the ratio of the width of the
fevitated Octupole to half its height and also allews enough points to
fepresent the solution in the bridge region between the rings and wall.
‘Wall boundary conditlons can be imposed on up te 20 discrete lige
 segments inside the grid. The placement of the line segments is
_.arbttrary s0 a wide wvariety of polygen shaped vacuum vessels can be
sizulated. The bridge region will be used as a referance point for
wost of these calculations. It is a convenlent place for comparisons

of the theory and expéerimentss The bridge reglon Is defined here as

' _the cheord running from the center of the outside ring radially to the

oitside wall.

3%

The finit‘e 'd.if'ferenc.'e ec.lu.atior;s:. are sél.vec.l.hy the meth.od of
successive line over relaxation. The procedure involves: findtng an - .
estire row of ¥ values exvllicitly holding adjacent rows 'fi.xed.
Successive rows are solved using the latest values of \#.':.This .pi'o:ess.
is carried out across the entire mesh and repéated until ;:Eé so'lur.‘ioﬁ..
converges. In addition a relaxation parameter is uséd to speed
convergence. This procedure is described {n more detail inm
reference[38]. Generally the solution converges to a rélat.i.ve. .error of

less then 10_6 between successive fterations im about 140 sweeﬁs over

‘the entire meshk. ©Onp the MFE Cray 1 cowmputer the vacuum field

caleulation takes less then 1 second of computer tise.

Flux is assumed comserved with the addition of the .piasma 50 the
boﬁﬁdary conditions for solving the inhomogenedus problem is ;héb ?;hs
equal zero on the rings and walls. The problem is a free Boun'&a;ry. B
prodlem because the boundary of the 'élasina ¥os-1s solved as a. pa”rt of
the problem. During each lteration ¥ ., ¥4.4 and *32. ‘are recalcuiétéd 2
and the latest valves are used in evaluating 2pf3v. Féf m.c.>s't..o.f the
calculations here the beta in the bridge tegi'oﬁ on ::.:'ne s.e.par.atfix i!.!
prescribed and the pezk pressure, Pg» is calculsted each itérafidn frﬁﬁ-
the formula py = sbridge(!&%/mo)- . . .

Fig-{2.1) shows the contours of the flux function ¢ for the vacuﬁﬁ
f.iel.d. of the Levitated Octupole cor:-.‘igs.ira.ti'on.. One ;':.art.i.c.ulaf. f..ea'.t\;r.e..
i.s that there are three null points, one lying on tﬁe mi&plane. and two

aore above and bélow the midplane. The Levitated Ocfupole is an

wlaimun average B device. - This 1s ‘illustrated in Fig. {2.2). “BRere 1s
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ipiotted.f' = § %; versus ¥ for ﬁhe’field iines outside .of the
_Separatrii. .Stéble confinement requires that p’V'" > O and from this
:.'plét-ii céh'bé'seén that the siope of V° and p have the same sign
.beﬁueén-ihe'éeparétix an *c' Rear ¥4 the slope of V7 is zerc and the:
‘{atersHadge fode is marginally stable at this point. .OQutside ¥ the
 'c§rve of ¥ égain rises slowly.
'_?iQQ (2;3) shows the flux func£ion Eontours for an equilibrium

With 8 = 10%. ' The boundary conditions for this caleulation were
¥, = 0.0 and ¥, = 1.0. For this equilfbrium b = 0.4922, ¥ = 0.4966
and ﬁé = .7845,  The shaping paraweters were v1 = 1.4 and v2 = 1.0
-: éiving the pressure profile shown in Fig. {2.48). Here the pressure is
'.piofte& as a function of r in the bridge region. - This pressure profile
is plotted:aé a functiom of ¥ in Fig. {2.5). This pressure profile is
.simiiaf'tb that observed experimentally for this 8. The main
diFferance between the vacuum fleld eguilibriuz and higher beta
: ;qvili$riu§ is that the field lines are pushed away from the separatrix
.in the coszon flux regiom and toward the separatrix ia the private flux
regioa.: The'd1aBagnetic current of the plasza in the common flux
.fegioﬁ'iﬁ ta the same direction as the ring current. This causes the
fiux in the common flux regionm to Increase with the addition of plasma.

& diirighetlic current of the plasza in the private flux reglon is in

3

the dirsction opposite that of the ring current. This causes the flux
ia tﬁe'ﬁrivéte-flux reglon to decrease with the addition of plasma.
One céﬁééqdénte of the field lines being displaced by plasma is that

‘neat the ‘separatrix ‘the volume of a flux tude, ¥’, increases. Thils can
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be seen in Fig. (2.6). THere V° is plotted for the vacuum field case
and for the case 8 = ISI. For this plot the coordinate ¥ is normalized

relative to ¥, ~ for each case. The flux tube volume is greater

L
near the separatrix for the B = 151 case. Also, the slope of the curve
is everywhere greater or equal to the slope oT the curve for the wvacuum
fleld case. This is taking in to account the fact that Vo - ws; is
smaller faf g = 15T then for a vacmum. Fig. {2.8) is evidence that the
plasma digs its own well. The minimum average 3 magnetic well gets
deeper as the plasma beta is raised. This has 2 stabilizing effect oun
the ballooning instability., However, in the case of the multipole this
effect is rather small.

Another effect of beta on the equilibrium is to make the critical
flux surface move inwards. As the field lines ocutside the separatrix
are pushed outwards the radius of cutrvature of the field lines in the
good curvature region Increases. This mzkes the point where the
average good curvature Is zero move closer to the separatrix. This
means for a given amount of flux in the machine v - *31 decreases as B

increases. Fig. {2.7) illustrates this effect. Here ¥, - ¥ versus B
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is plotted. This has 2 detrimental effect on the stability of the
plasma because the pressure scale length decreases with increasiag
tetz. The effect is swall but noticeadle.

The next few plots illustrate some of the characteristics of am

equilibrium im the Levitated Octupole. Tig. (2.8} shows the magnitude

of the magnetic field 1lne for the vacuuan field as a function of

. pelative distance along the field Iine for one half of the fieid line.
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-This particular £ield line lies on the Flux surface with % =0.7003
‘which is half way between ¥e and #Sl. Basically the magnetic field is
iika that of a straight multipole with a 1/t dependence superimposed.
In addition there are several local magnetic wells caused by the
" corners of the vacuum vessel. Towever, if the magnetlc fieid were
alleved to soak into the outside walls as is the case in the actual
experizent one would expect these little local magnetic wells to de
smoothed out. With this magnetic field configuration there are
basically three classes of particles: those trapped in the multigpole
magnetic wells, particles trapped im the toroidally induced well and
¢irculating particles. ¥Fig. (2.9} shows a plot of the magnitude of the
magnetic filed as a function of rslative distance along the field line
gnd % for the flux surfaces between ¥ and ¥, . The main thing to note
from this plot is that the magnetic field scale length is quite a bit
Jlarger then the pressure scale leagth. Also the small local magnetie
wells disappedr aear ¥ - Fig. (2.10)} shows the functien ZIrBZRc as a
function of relativs distance alcag the field line for the fieid line
with ¥ = 0.7003 of a vacuum field. Here Rc is the radius of curvaturte
éf a field iine. The function ZirBch iz 2 measure of how good the

curvature is. Integrating aleng a field Iine f & k. =-¥''. This

B R,
plot shows the good and bad curvature regions along a typlcal field
1ine. The ballooning mode is gernerally localized in the bad curvature

- region haviag the smallest aagnitude of the magnetic field. This

occurs in the region between the outside ring and the aose and wall.
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Ia summary, the MHD equilibrium for the Levitéted Gctupﬁlé wag

ealculated using 2 numerical scheme which solves the Grid-Shafranov

equation in this geometry.. The plasma béta affects the eéuilibrﬁm.bf'

increasing the depth of the minimum average B well, This has 2

stabilizing effect on on ballooning fastabilities. However, as beﬁa is -

raised the difference #c - #Si decreases steepening the pressére
gradient. This has a destabilizing effect on ballooning instébiligieé.'
“he lowest order distribution functicn was calculated by a swmall Larmér
radiuvs expansion of the equilibrium Vlasov eguation. This diétribdtion
function can be evaluated locally wusing an MHD eguilibriuvwm.

Using the procedures discussed in this chapter the MHD éq;iiibfigm
for the Levitated Octupole configuration was calculated for a sequence

of betas ranging up to 172 in increcents of 1T or less.  The field

lines were uapped out in the coordinate § and as a Function of the

relative length along the field lime. Im the multipole mapping out'th;'
fields in terms of the relative length zlong field line is more
convenient then mapplag them out as 2 functioz of x. By rélatiéé
length along field line we mean that for each y the field iine is’
divided an equal nuwber of steps. The step size 1s a function of ¥, 7
This =method of mapping out the field lines represents the fiéldé'well.

and also allows the derivative Lo be numerically evaluated using a

_fairly sizple procedure both along fleld iines and zcross £161d 1ihes.

The cocrdinate ¥ was not used azlong field 1ines because the'reg{éd néar

“the field null is vepreseated with toa few polnts For calcilation

purposes. For each equilibrium catenlated for the Levitated Ocltupole
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equiiib'riurﬁ quahtit'i'e.s. needed for ‘the stability analysis were
'-célcul'ated'ag functions of ¥ and relative léngth along a field line.

" The equilibrium q'ua:nti‘i:ies that -are needed are the magnetlc £fleld
_strengthy the Inverse c.urvaturle, the radial coordinate T plus several

functions of ¥ only such as pre‘ssufe, p" and step size.

Flg. (2.1) Vatuum Plux Centours for Levitated Octupole

‘Contours of the poloidal flux function ¥ . for the Levitated

Octupole fotr a vacuum magnetic fleld. ¥, = 0.0, 1:52 = 0.5522,

Yo ™ 0.5592, ¥, = 0.8483, ¢ = 1.0.

40



&1 o : R o SRS S

VACUUM

rig. (2.2) ¥ vs ¢ for Levitated Octupole Vacuum Field

Plot of V° =-=§ d_;_ versus ¥ for the vacuuw magnetic Fleld in the .
Levitated Octupcle. The range of ¢ 1s from the separattix, .
v = 0.5592, to the critical flux surface, ¥ . = 0.8583. At ¥
% e .

AV Ry = 0.

I (meters)

Fig. (2.1)
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F— fig. (2.3)  Equilibrivs Flux Contours for B = 102
22()'“ Contours of the flux function ¥ for the Levitated Octupole for an
MHD equilibrium with B = 10Z. ¥, = 0.0, %, = 0-&922'¢31 = 0.4966,
— v, = 0.7845, ¥ = 1.0
O . B ! f 1 I 1
: 0.6 0.8 0.9
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I {meters)

Fig. (2.3

Fig. (2.4) Pressure vs r Bridge Region

The eqﬁiiibrium pressure for B =101 versus T in the bridge-regioﬁ S

of the Levitated Octupole. po = 1.786 % 10 ntfo?, vi = L., vz =1.0.
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Fig. (2.5) Pressure vs ¢ for § = 107

The equilibrium pressure profile vs ¥ for an eguilibrium with

8 = 10%. po = 1.784 x- 10% at/of, v1 = 1.4, vz = 1.0,
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Pig. (2.6) V* ws ¢ for Vacuum and B = 15%°

Plot of V' =§ .i‘;'— for the vacuuzm field case and L?:e':B = 151 casze. -
¥’ is plotted relative to ¥ - fsl . For the vacuum case ¥ — ¥

= 0,2961. For the 8 = 15X equilibriom¥ . ~¥ 4 = 0.2834.
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30.0 _ Fig. (2.7) % ~%g Vs B
25.0 — Plof_ of the azount of flux between the separatffx and the critical
. flux surface as a function 8. The pressure gradient steepens as B is

raised.
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Fig. (2.6)
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Fig. (2.8) [B] vs i

The magnitude of the vacuun magnetic field as 4 funetion-of the
relative distance along a field line for the flux surface ¥ = 0.7003.
Plot shows half of the field line startiag ot the inside midplane

moving along the field line to the outside midplane.

Fig. (2.7)



Magnetic Field Stre'ngfh:_

35

Fig. (2.9) |B| for Llevitated Octupole

0.8 -, |
) ‘The magnitude of the vacuum magnetic field plotted as a function
. of the relative distance along the field 1ifie and ¥ for the flux
0.6
surfaces between the separatrix and the eritical flum surface.

- L = 0.5592, ¥ . = 0.B4B3.
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Fig. (2.10) ?B_.}R_ vs &
<

The function ??2'1_{; as a function of the re;ative distance aloag’
the Field line with§ = 0.7003 for the vacuum fileld. The functien

=-4"", " Flot

2/rE2R_ is a measure of how good the curvature is: § 2
< ) B¢ R :
shows half the field line starting at the inside widplane moving dloag

. the field iine to the outside midplane.
g . : : : _
e outside _

midplane
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" CHAPTER 3
"High Mode Number MHD Stability

of Toroidal Multipoles

The ballooning mode is basically a magnetohydrodyranic (MFD)

fdgtabilify. The main structure of the ballooning mode is determined

by the MHD equatioﬁé. MHD theory also gives a prediction of the

critical beta. Since MAD is also the simplest model of a plasma for
which ballooning modes are possible it is the logical starting place
fét our analysis.  This chapter deals with the MHD stabllity of
axisymmetric:élosed fleld line systews.

The linear MHD stability of:a sheariess axisymzetric plasma was
first analyzed by Bernstein et al.[7] who found a mode with infinite
toroidal mode number, n = =, is the most unstable wode. This is
because the shorter the toroidéi wavelength the less the fleld lines
are bent in the toroidal direction. The MED stability of the
multipole was first worked out amalytleally for a straight multipﬁie
by Ohkawa and Rerst{9]. In the limit n+ = the question of stabiliry
cah be reduced to sclving a second order ordinary differential
equation on each field lime. The elgenvalue of this egquation gives a

eritical pressure gradient above which the system is unstable[101.

" This eguation has been solved nuzerically for several configurations
‘modeling experizments{3,5,3%9]. The results generally predict a low

bets limit for the multipole. ¥or the case of the Levitated Octupole
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the infinite n beta 1imit is &.33%. Evperiments in this device have
observed betas up to 35X{4}.

It is well known that low frequency wodes with short wavelangths
are stabilized by fiamite Larmor radius effects. Thus, thé actual beta
31imit may be set by lower n number modes. In this chapter the MHD
stability is anmalyzed for large but not infinite toroidal mode number
i an axisymsetric closed field line system. " previous work on high a
MED stability has been done fn tokamak geometries by Conner, Hastle
and Tavlor[23]. In their study shear plays aa important role in the
high u expansion which makes their analysis not applicable to closed
fie¢ld line systems. ODther analyses contemporary to the work presented
here have been done by Adler and Lee[40] and Dobrott and Moorel4il.

In section A the partial differential eigenvalue equation
govéﬁzing high @ wodes is derived. In section B a method for finding
.appraximate solutions to this equation is developed. The method
jnvolves a perturbation expansicm around the a == solutions. The
ércblem 1 reduced to solving two ordinary differential equations, one
determining the structure of the mode along fieid 1ines and the other
détermin:‘.ug the structure perpendicular to the field lines. Froum the
solution of these equations the full 3-dimensional structure of the
mode is determined. Numerical solutions to these equations for a
Levitated Octupole configuration are gives in section €. The results

_give stability criteria for high m modes at various betas.

4. MHD Large o EZxpansion
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The large o expansion of the linearized MHD equiticns is obtained
by minimizing the energy integral and retaining termé of order o 2.

"'he ort;'hogo'\al flux coordinate system (¥, X, ). The coordinate $ 1s

related to the poleidal magnetic Flux by ¥ = ¥ /2 and 15 in the

directiou perpendicular to a field line in a constant ) plane, x is in

the direction parallel to'a field line and in ¥KS units has dimen51ons
webers/=z, and 8 is the toroida} angle. The Jacobian is given by
-1 ("¢ x Vx 98 . Refer it Appendiz A for a summary of these

coordiﬁates. The MHD 'énergy. integral for a swall d.isplacement 4 is,.'
w2 f & [ -Yeb G
crp@t R, | : Cam

vhere 51 =¥ x (& x 'ﬁo) is the p'ert\;rbed magnetic field, uogo =7 % .§D'
iz the equilibri.\m current depsity and &1 is the volume element,
& = 3 3 X B .

The 8§ dependence of the perturbafiou.g san be represented by a
FPourier saries. For an axisymmetric system it Is sufficient to look
at one Fourier cowmpouent at a time sinee the Fourler compcnenfs are

uncoupled. It is convenient to express Z in the following form,

E? EX@ 3) expl~ 18) , ) _ (3.2.1)

€, = BZ( X) expl- 1) R o aa
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'.55..".1':‘&(#.)()8@(;" wy, T T (3.2

'_dhere X ig the -pertubaéian in units of the flux function ¥, Y is in
units of an angular displacement in the toroidal direction, and Z is
in units of . Carrying out the integration over 8 and exprassing 14

"ip temms of X, ¥, Z the eguation for 8W becomes
Sy - f 11 11 23,
Warv | & &X 5{ W{ 2+ L (55

uop”
+ p°DxZ +i[y+a_x.
’ Ba

v ® %z

' 3 : 132
+ Y+ = it b3 S
Y [ 3¢+DX+TX+JBX i (3.3)

[

"~ whereé the prime denotes the derivative with respect to ¥. The
: _'quantity D is telated to the inversé of fhe radius of curvature, 3?, of

the field lines.

p’ 20

L. 1ag  wOP 3 i 2
P ImTw TSP Tas T Tm il 6w

- where b - vy .
[Two things are imnediately obvious frow this Form of §W. The
-otily ters that can make 8W negative is the term involving D, and the

wmode Yith @ =" s the most uastable simce it minimizes the
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_stabilizing conmtribution die to stretching the field lines in the @

direction by the pertutrbatieca Y.

As the normaitizing condition we choose to hold fixed the

_perpendicular kinetic energy,

sk, - 2] @ e th - (3.5)

**}'d#cb(o:r{;r}?. "nrYz} ,

where &, is the mass density. The main reason for neglecting T im the

kinetic energy is that it makes subsequent analysis difficult. Also
in calculating the stability criteria we are principally interested in

finding the polnt at which the mode is marginally stable. At this

.point w? equals zero and the norwalizing conditionm is not iwmportant.

energy is smaller than 8% . This means that the quantity w?
g

calculated by minimizing the expression »? = §WAK 1s close to the

true MAD frequency of the mode. Minimizing wl = 8w/ 8K, with respect
to ¥ ylelds an expression 1dentical with the 8 component of the

equation of motiocn.

3 L Loop? a2y ' (3.6

113 23y 1
vg m™ 8y - F ax
2 3x  wop ax | bep’ 13
. o2 + 2L
+éuo[Y+3¢+—Bz—X]+3“{Y 5 g X F DX ax}

Furtherzore, it can be shown that the contributieoun of Z to the kinetie '

.



F.or. .1aIIrg'e n?_ a perturbétioﬁ expansion iﬁ ordets of n'2 of : '2 . ! o S . o
Minimizing w¢ = WK “with respect to Z ylelds

£q. (3.6) yields to lowest order

3 s 1 Feew VBT L Lo
. % w0 /B + LA (o - 3“3“{{}] 0. - £3.19)
X 1 uap 1p iz * ? '
Y e - - War avypD s x+ RIA
s T wRs v 0 TRl

3.7 : : '
Integrating with respect to' ) arcund a field line gives

It addition to considering. 1/ ~ 0{&) whers & Is the smallness

r--'.-,:.:zI 5 o ame ¥ ~ . - Mo ' . - .
séTameter low beta will also be assumed so that g8 ~ 0{e). Also 2_5_ . £§2' 4-_#.) F£{¢) - SIX . . (3.11)
_ P

generally with low beta plasmas it is alse the case that the pressure

scale lenogth is smaller than the magnetic scale length. This implies - : o
Here £(¢) is z comstant of integration found by reguiring 3Z/3x to be
_ ¥ pD so that pbfp’ ~ O(e). Substituting Eq. {3.7% for Y inte

single valued on the closed fleid lines.
£g. (3.3} for 8% and revaining terms to (¢ ) gives,

, ICE I LI . O SN EEE (3.123
o g1 1 3% 1 1 2 3,35 HOP 5 . . wl + ¥ frp S
W = % & L et F A Sl SO A (e S 2112 :
L {uo I E iax) ug & & “ex ¥ B %)
L . 3 182y where L7 wf & = znd V' "—'*,r & # . TUsing Eq. {3.11} ia £4.. (3.7}
R A ARSI AN ) S Sl 3 SN 2.8 : : A :
F TYGERUTE e e (3.8 32 _

for ¥ one can verify that the terz iovolving 222y is indesd Ot }.

] Substituting Eg. {3.11} for 33y into Eq. {3.8) gives an expressidn
* Eer £ ¥z UE h s involvirs 5 7 “axmpr « md . )
_ Bere ir was zssumed that the term involving 9Z/3y in the exprassionm for 6 in terms of the perturbarion X,

for T, Eq. (3.7}, is of order £. Substitutinz Eq. {3.7) iante

Zq. (3.5) for 8% gives the high n expression for the perpendicular { 'r 1 1 (35{)2' 1 1 ‘2.‘,.3'(3 oy’ N
SW=w ) b i e e Sl on b e B
¥iznezic energy, Ho STEEC Cax we ™ F tdg-ev S
: 2 wep” + Fp’DRR 4 5{ + T}ﬂ)fz(w)} . : A
-y ! R, ex 2 ¥
8% = [ b ax e g PRSI AN SRR 4 1 I {3.9) :
= L2E P E # :
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" Minimizing w? = Gﬁlaxiswith réspédt to % results in the Buler equation

f:for X,

<o g? 1 3% - 2 MR+ - ¥

-y wop’ S :
¥ é._?_p 56(:\—;4 gz X} + F0DE . ' (3-18)

' this is an incegru—pér:ial differential eigenvalue eéuatiou
:governing high o MHD modes. Either w? or ©® can be specified with ghe
'othéf Solved fof as the eigenvalue. The boundary condition is X=20
oﬁ conducting surfaces. A difficuity atises 1f there is a vacuum
:région:oﬁﬁside the plasma because Eq. {3.14) does not apply to the
.Qécuuﬁ. Ona“remédy'théc has.been suggested 1s to replace the vacuum
" with a zéf§ ?féssure plassa: However, there is still another problem
';a.thé case of the multipole. For calculating stability criteria ve
are interested 1n Tinding the point at which the balleoning mode iz
i margiﬁaliy stzble. . In Chapter 7 the Hﬂﬁ equilibiia of multipoles was
" raleulated with the p%essure gradisnt set equal to zero at the
" Terfiical flux surfiee so that the equilibria would be stable to
: intefchahgé wodes.  This mﬁkes the interchange mode marginally stable.

“For wmarginal srability the interchange mode will always be present.

'68.
Iﬁ the‘ﬁumerical Ealculatioﬁ belbw.this'causes éifficuiﬁies since the
fnterchange mwode tends to dominate the picture. .The interchange mode
does not limit beta since the pressuré is zero out at the critical
fiux surface. TFurtherzore, if one considers slightly growing modes
the ballooniﬁg mode is present but the interchange is not. For these

reasons we will ignore the interchange mode and concentrale our

.atcention on the ballooning mode. This will be done by considering

internal modes only. TFor internal wmodes the boundary conditioun is

X = 0 at the critical flux surfaces.
B. .Approximate Solution

Ip this section a method of finding an approximate.solution éo
Eg. (3;1&) i{s developed. The method Is based om a perturbation
expansion about the a = = solution. There 1s an another method used
by Adler and lLee[40] of solvinmg Eq- (3.14). They adopted the
procedure used by Splesf&2] of expanding the solution ia terms of &

complete set of eigenfunctions along & field line. The equatiou for

the high n stability then becowmes an infinite set of coupled

differential equations. Generally only the lowest order equatiosn is

kept. The method used below is different and is more simllar to 2

straight forward perturbation expansion. TUsing the method preseated

hers it is easier to obtain an explicit solution to the problem

including the ¥ depeczdence of the wmede. *his has not been done in
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"previous'ahﬁlyses for wultipolés. In operator notation Eq. (3.14) can

"be written in the form,

1 ,
Lok + — L)X - 310208

= - uop @2 MK - uop p? =M%, _ _ (3.15)

o R PR B § &
where  LgX 3—{(?_3755_{] H0DE ,

HpX = F E
.Er 3% wop
- — ] ol X
"X 3‘{.‘5‘2 5w 3]
ugp (3X Bep
— e o K]
+ = a2 \a¢ +~i}¥ ]

Treating 17?2 as the perturbking parameter ia Eq. {3.15) the lowest

order equation is

-70”.

Lol - BopgKy = ~wopgd Mg+ (3.18)

. This is the n == MiD équation. It is a Sturm-Lisuville type equation

and is solved usiﬁg pericdic houndary ﬁon&itions. In de%ices.with

up-down symmetry the solutions of Eq. (3.16) have either even or odd

-symmetry with respect to reflection across the midplaﬁe.' Solutions

‘with even symmetty have the boundary condition 8Xf3y = ¢ on fhé

midplane and solutions with odd symmetry have the boundﬁry”cou&ificn
Xy = 0 on the midplane. Either pg Drln% is specified wi&h the other
solved for as an eigenvalue. . _ .

Setring m% = 0 in Eq. {3.16) and solving for py glves ihe
critical pressure gradient at which.the n = * mode Is marginally.
stable. For a field line with average good cufvatﬁre.thé solution

corresponding to the pé with the smallest magnitude and with the same

-slgn as V' = 4 % 4t determines the critical pressure gfﬁdient. "This

is the solution with even symmetry, no nodes, Shich peaks ia the

region having bad curvature and the smallest magnitude of the mégnetfc

. field. 1If the equilibrium pressure gradient is greater then pé'on any

"of the flux surfaces the system is unstable to ballooning wodes. For '

the case m% = {§ in order for the mode to be continuous around a fileld

ine the condition $ DRy = 0 must be satisfled. This means £(¢) = 0 -

and since V& = f(P )N P the marzinally stadble n == mode is-

incompresssible.
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: Andtﬁér'éaf'bf'sol§ihg'Eq{ (3.16) 1s to set By édual to the
géﬁilibfﬁﬁm pressure gradient and solve for'w%. For p’ greater then
O she eritical pressure gradient Im{w,) gives the growth rate of the
II-': = mpds. . Ceaerally the mode with the largest growth rate occurs on
.é flgx curface nearest the fiux suface with the steepest pressure
. “gradisct. This is the point where p* 1is likely to be farthest above
The cr{ticai.pfessure gradient. There are also an infinite number of
o distfe:e'eigenvalues, m%, that are positive. These correspond to
s:.'.:'a‘ble pscillating modes.” If p’ is less then the critical pressure
._g.:a:."ien't. then there are no negative &} sigenvalues.
“The $olation Xy of Eq. (3.16) is defised only up to an arbitrary

I;lti;siicét'ive constant. - We'll write Xy in terms of two functions

L.?' RO(\U){IO(# XY where Up(d X)) 1s 2 solutlon to Eg. {3.16) and alse

s

iy

£::fies a normalizing conditiom which fully determines Uo(ﬁ: ). The
"..-;c:-:.a.lﬁzing' ¢ondition 1s completely -arbitrary as long 1t 1s the same
: __o'i:' all the flux surfaces.  The final solution for X will not oot
"de.;e::f ot it. The equation for Bgqld) is found by going to the next
) .: highest ordet iu.llﬂz. To first order in 1/of Eq. (3.15) gives,

Lg%y + o Ly Ryl = R0 pgP%) — R0 p{PRy(¥)Tg

= = uop phMg%) - wop @iy Rl Ty - uee ¥ — MRy -

(3.17)

Cdrers P] %P = Pg w} =w? —wh . Here p’ ig the equilibrium

"_'p.re‘;sc're gradient, and RQ{\P)'is is ‘the correction in the ¢ directlion
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to the zersth o.r&'er solutien, Xg- For t.:he perturbation expansion to
be valld £t is necessary to choose either pg or m% in Egq.-{3.16) in
such a way that will make p{ and mzl small in Eq. {3.17}. For the
calculations here p{') = {p" + pé)lz is normally chesen, vhere 'pé is t.h.e
¢ritical pressure gradient. Multiplying Eq. (3.17) by B and

integrating over X gives a constraint eguation that determines RO('#),

2§ Toly RoW¥ Vg & - wop] § IRy IR

« = uop 3 § UgHy Ro@ )Y, & — oo g — § Tghy Ry ¢ -
{3.18)
where use was made of the self a;ijoint property of Ly to ‘eliminate
terss invelving X;. Eq. {3.18) 1s a second order ordinary
differential equation in ¥ with either 32 or w? determined as the
eigenvalue. This %s sore apparent when the operators inm Eq. (3.18)

are written out explicitly:

d Bﬂo 2 3!]0 . a%(#-)
E&T{{é -E*-:}—-a—:(—@( "UGEJ&UZ§ {%51‘2 c}x) Md@m..%

R 87 ’ :
d o2 3,°Ug  ¥OP
¢ o Fale e T &



73
. a7, wop’ ; e :
: w2 0 2
+ oo w? § 32 {va‘+“§~"n°} ) Rele) L (39
= @{pop yofy - 92) § F o & tuwole” - pe) § DU & Ry(e),
The boundafy'coﬁditions are that Rﬂ(&) go to zero oa conducting
" surfaces and 2t the plasma-vacuum interface. The procedure for
finding the lowest order solution to Eq. {3.14) has been reduced to
solving two ordipary differential equations: Eg. {3.16) along field
lines and Bq. (3.19) perpendicular te the field lipes.

For cases where the ¥ extent of the mode is expacted to be
“1igited a good approximaztion to the lowest eigenvalue n, of Eq. (3.19)
for a marginally stable mode can be found by WKB analysis. Using the

WEB turning point formula,

R

1, ™ e

¥
2I¢"4—chw

a

Cwolp’ - pp) § IV &

there QG
2 8T,
f ry [@3{“ &

»

" and &a'énd'¢b are the points where p° = g with |p’| > lpgl for
¥, <¥ <¥y. Here Py is the critical pressure gradient. Also from
WX theory the radizl width of the mede is predicted to be

. proportional to 1/ n. -
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c. Numericél Results

We are {ntetested in calculdting the stability criteria of a
multipole;: For this the boundary between stable sodes and unstable .

ones must be determined. To find points ou this boundary Eq. {3.16)

and Eq. (3.19) are solved usidg a sequence of équiiibf{a with

different betas for the marginally stable mode. First the bets ilamit
ﬁust be defermined. This means finding the beta ét which the @ = ®
wode is marginally stﬁble.'.Fof a giveé beta above the éritical beta
there is on1§ one marglnally stable mode with a specifie torcidal aode

suither, nc; the critical toroidal mode number. -For this beta 211

modes with o > n, are ballooning vnstable and all modes with m ¢ 2o

are stable within the 1imitatlons of the-largé a expansion. The :

quantity n, is found by first solving Eq. (3.17) for Ty and m% for

some choice of py. Bere pg = (p* + p M2 was thosen, where p; is the

critical pressure gradient. Then Eq; (3.19} is solved with w2 =0 for

the radial structure and nc,'the eigenvalue. For Eq. (3.19)'the..

boundary conditions were that Ry be zero at the plasma vacuum

interface and also go to zero at the separatrik. Inside the

_separatrix the eritical pressure gradient jumps bj greater then a

factor of ten. From this the mode would Se.expecteﬂ to die cut

rapidly inside the separatrix. For this reason and also for fuserical

expedisncy the mode 13 taken te be zefp at the separatrix.
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We ndﬁ apply.thé high a MHb analysis to the specific case of the
: ;Le.vita:'ed dctupole. The éq’iiili'bri.a' wete caiculated'usi.ng Aﬁ'}ﬂm
_.equi'l‘briuée code. Details. of the equilibfﬁa can ‘be found 1n Chapte.r
20 The tarm 30 DE in the expression for 'LOX will be neglec:ed. This
15 nét a serious omission ‘since this term is D(e ) smaller then the
: .ot‘ae. rerzs io Eq. (3.16) by virtue of P’ >> pD. Iz addition since
. _f. =0 A_or them == marginally stable mode one would expect f to be
.:..lsr..s.a.l.l.for high ‘n modes as well. Taﬁtiﬁg £ =0 also simplifies the
'problem of fiuding ‘the solution to Eq. (3 16).
" The only region where the plasma may be unstable to ballconing
) modes 4s in the’ region betheen the separatrix and the critical flux
sueface <hers bad curvature exists. ?or n =« modes the stability of
'eac"‘ flux surface wust be considered. Fig. (3.1) shows the critical
pressure gradlent’ for m == modes for two casés, the even mode and the
' odd mde,'pldtted with the marginaily stable egquilibrium pressure
'__g:r'adiear_. 'ﬁae.piésma is {nai‘ginally stable when the equilibrium
_pr.e'ssu're .g.ra&ie'nx:' is equal to ‘but‘ ung greater.than the critical
Ipresswe gradient at one ot mote points. In the. Levitated Octupole
..-this securs at 8 = 43370 Eere g is defined 45 the local beta on the
. separatrix’in the bridge region where the bridge region is the chord

2 the Outside ring and outside wall. The even mode is the most

g
”

[

©
L

le bedzuse tHe-..annitude of 'its critical pressure gradient is
gveryihera less than of éq’uai to the magnitude of the critial pressure
cgradisat corresponding to the odd mode. At the separatrix the even

" and '5d4 ‘=modes are degenerate.  There ‘the boundary
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‘conditions X = { and 3%3x = O on the midplane are ‘satisfied

gimultaneously. This pinimizes the effect of the imverse curvature
going to infinity at the field null. Several exacples of the
elgenfunction for the n = « case are shown in Fig. (3.2). The
efgenfunction is greatest in the outside bad curvature regicn as 1s
typical of a ballooning mode. The eigenfunctions on surfaces close to
the eritical flux surface are zmore flute like inm character and becone
constaat at the critical flux surface. Toward the separatrix the
nodes become more strongly balloonlag ia character.

For equilibria with betas greater than the critical beta of 4.33%

unstable n =% modes exist. Fig. (3.3) shows the minizum ©?

versus ¥
for varlous betas. For w? < 0, w is imaginary and the modes are
unstable. Another way of solving the n == eguatien, Eq. {(3.16), is

te set ..n% to some negative value and solve for p{'). This wvalue of pé

gives a critical value of the pressure gradient for n == modes with a

growth rate ¥ =7 -w?. If the equilibrium pressure gradient is

o]

greater than this value of pé then the n = * wode has a growth rate

greater than Yy =+ - mg . If the equilibrium pressure’ gradient is
smaller than pj then the o == mode has a growth rate less than Y. An

example of solving the n = = eguatiom ig this manner is shown im

Fig. (3.4) for an equilibrium with 3 = 6. Here the critical pressure

- gradlents of the marginally stable node, a mode with uobm'.-zz = - 1.0

and a mode with uge mmz = - 2.0 are shown. Im particular Fig. (3.4)

shows that for betas above the critical beta the ballooning =ode is a

‘growing mode but the interchange wede 1s mnot.
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Above the critical beta the;e exists a criticél foroidal mode
'ﬁumber, 0. Modes with n > n, are unstable and modes with a { n_ are
gtable. The quantity a, was found by solving Eq. (3.17) and
Eq. (3.19) in the levitated Cctupole configuration. The results are
shows in Fig. (3.3) where B versus 1/n_ is plotted. Note there is an
alaost linear relationship between B and 1lfo,. For betas greater than
the critical beta the marginally stable modes are no longer lecalized
in the ¥ direction but take up the whole regiom between the separatrix
.and the critical flux surface. The full reconstructed X,
eigenfunction for 8 = 5.0T is shown in Fig. (3.6). Fig. (3.6) shows
half of the X, eigenfunction plotted versus ¢ and the relative length
aloog a field line starting at the inside midplane and moving along a
‘Field line to the outside midplane. X4 peaks around the outside
bridge tegion where the curvature is the most unfavorable near the
‘Flux surface with the steepest pressure gradfent. TIm Fig. (3.7) are
plotted the projection of several Xy eigenfunctioas with various
toroidal mode numbers into a constant X surface. As n becomes larger
the radial extent of the mode becomes narrower until at n == the
radial part of the eigenfunction is a delta function located at the
Fiux surface with the largest growth rate. The width of the

marginally stable mode is propertional te 8 ~B

o » ¥here B is the

critical beta. It was mentioned earlier that the quantitiy B - Bc is
proportional to 1/m_. This iaplies kﬁ ~ /ig where A¢ and Ay ave the
wavelengths of the mode in the ¥ and 9 directions respectively. This

means kg ~ k% where ky and ¥z are the wave nucbers of the mode in the
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¥ and 8 directiom. TFor a small incresse in'B over the eritical & the’

modes initially spread out rapldly is the #'diretfion but for further
increases in B the mode does not change much. ©
In summary, the MED energy integral was expanded in péwers of

»~2. From this Eq. {3.14) governing high n sodes in an axisyametric.

closed fileld 1ine system was derived. A straight forward perturbation o

expansion using a't as thé'émallnéss pavametat provides zn approximate
solution to Eg. (3.;&). Thié expansion ié valié tf equilibriﬁﬁ:'
quantities vary slowly_euough.in the ¢—&iréction ovér the region of
interest. The lowest order equation giveé thé stricture o%‘fhé modes
along the field lines. The first order equation and the condition’
that the solution be continucus around field lines provide an equaticn
which determines the toroidal woede aumber and 1ts structure in the

Y -direction.

#igh o MED does not predict a higher beta limit thau-ipfiqite'n
MHD. The n == zode is still the most unstable.mode. Scme additional -
factor limiting n such as finite Larmor zadlus has to-be_infr&dgced to
get a change 1n the critical beta. This will be the subject &atter of

the next chapters.

One way of roughly estimating what thé efféctsbf finite Larmor
radius is to assume the MED mode excites drift type waves in the sace
zanner as the Fflute mode excites drift type waves. ' Similar to the
anzlysis of the flute mode discussed in the titeoduction the’

2 .2

dispersicn relation changes from w Spp towle —uwy)= m%MD‘ where -

. R .
m%ﬂn is the MAD frequency of the mode and w ; is the ion diamagaetic
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e drift frequency, w:‘- = »‘:—T pp

it is ‘easy to see that the mode is stablized 1f m’? > lm%ﬁn It can

. Solving this quadratic equatlon for w

__.'b'e sﬂoﬁ that to lowest ordér' the minimum MHD freéueny m%ﬂm has 2 1/a

.del';.endence. ﬁis is appare.n.t in Bq. (3.19} vhere if pé is chosen

. eqﬁal to p” the Iéx;gest rerm involving w? appears in the form

.nz (w%. w2}, To lowest o.tder ‘then “’%{HD = ~y2(1 - nTc] where for a

' éiveé 'be.ta Y is the growth rate of the nost unstable mode

Y -m a.nd.uc is the critical wode number for marginally

s't';afil.i;y. Multiplying the stability condition by the mass density Fig. (3.1) MED Criticsl Pressure Cradient vs ¥

_gives,
s Plot of the ‘equilibrium pressure gradient and the MHD critical
nzp(:_:—}z Sa’m;f.z.{l - HTC} * o . " pressure gradient for the even and odd modes for 8 = §.337. The even
. ) | mode is marginally stable. "’sep = 0.5318, ¥ pir ™ 0.8245.

._u\"\e:i'e 5y -"/-_?— 1 ana i‘n i€ the density scale length. For marginal

my 8y

_' ‘stability the largest value of pilan occurs at @ = = n_ . This gives

c

N W

o a eritical wvalue of p 1/an,

. 2
(Ctye 2% 1
triy ¢ 77 n—"c ?

For p i/.ﬂ":.:. b3 (oi/an)c.all modes are stable . For'piern < (Di/an)c
“uhstable aodes exist. For p4/L, = 0.2 in the bridge region of the
Levitated Gotupole the beta limit predicted by this stability

- cfite’riou' is 8%,
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Fig. {3.2) X Eigenfunctions for MHD o = = Modes

{ The % eigenfunctions plotted 'rel.ative to the dista.n.c'é along a
. field 1ine for ¥ = 0.8011, ¥ = 0.7626, % = 0.6840. The eigenfunction
18 a delta function in the variable ¥. N.P;ar ‘the eritical fiux su;rface-
the efgenfunction is flute like. Closer to the se.paratrix.'there is

more baliooning in the bad curvature region.
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Lo Fig. {3.3) uﬂpﬂdz vs ¥ for n == Balleoning Mode.

Plot of uop w2 vs ¥ for B = 4.0%, 5.0, 6.0%, 7.0%, 8.0%. Above
_ o

B, = 4.33% the mode 1s unstable. w? {is proportional te B - Bee -
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Fig. (3.3)

1.0
3
. .N. “.d -
. 3
_E i
Q.
_O
A 0
-3.0}p - B:=8.0%

‘g

: Fig. (3.4) Criricai ¥’ for Various Growth Rates

"~ "This is a plot of the critical pressure gradients'of the iﬁargi'naliy

stable node, a mode with uee n;aiz = — 1.0, and 2 mode with -

uDDiﬂz = - 2.0. These modes all have o = @ and the equilibr;luu ‘beta 1s

6X.
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Fig. (3.4)
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Pig- (3.5) Critical§ vs 1fn Stability Criteria

Plot of the critical beta v¢ the inverse of the torpidal modée
aumber of the marginally stzble mode,gllnc. For a given 8§ modes with

a > n, are unstable and modes wiéh:n < n, are stable.
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Fig. {3.6) Xo Eigénfunction for 8 = 3Z

The Xo eigenfunction of the marginally stable mode for 8 = 5.0%.

“The eigenfunttion peaks in the bad curvature region near the flux

:surface with the’ .steepe'st pressure gradieat. @ = 621, *sep - (,5275,

¥.pqp = 0.8198.
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FPig. {3.7) Radial Mode Structure of X Eigenfunction -

Projection of several marginally stable Xo eigenfunctions on the
constant X plane for 8 = &4.5%, n =2525; 8 = 5.0%, n = 621; B = 5.5%,

#n = 378. The radial width of a wode 1s proportional te llf_n: .
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Fig. (3.7)
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-CHAPTER &
" The Low-Frequency Kinétit.iquations

for Multipoles

.To.fiﬁd.out ﬁbb'particle.effeéts'sucﬁ as finite.Lg;mor radius and
trapped particles affect the ballooning mode one must use a kinetic
;.treat:ent. ;n this chapter a systeﬁ of kinetic equations for studying
zldw.freéﬁéﬁéf electromagnetic modes in ap axisymmetric collisionless

plésﬂ# ts developed. The treatment presented here is applicable to
575£e:§ with closed magneffc field lines but otherwisé the equilibrium
can be dssused arbitra;y. A;'in the MHD analysis presented in Chapter
3 the §¥:hogonél'f1ux coordinate system (§, X, 8) 1s used with the
_symﬁol 3 used to dénote'the Jacoﬁian. 5_1 = (Tp x Vx Ve, A suﬁmary
.of this coordinate system can be found in Appendix A.

The ballooning mode is a low frequency electromagnetic mode

.:_allowingceﬁa, where @ is the gyrofrequency, to be used as an expansion

-}para:eter. The instabillty is characterized by long parallel wave-

; .length and short perpendicular uavelengths, i.e., ¥ypy~ 1 and
kapi (( ) where k is the wave number and Py is the fon Tarwmor radius.
“in Chapter "3 ff was shown k* Y& in the limit of large toroidal mode

.'.number; u, while kg ~ .. ﬁenée g Pk is assumed. The equilibrium
45 dssuced to vary on a scale much larger than the Larmor radius;
Qllnzk( I.IQ/Lé X<l where L and Ly are the density and magnetic

scale lengths.
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The kinetic analysis of electrostaﬁic oscillations for c¢losed

field line systems such as multipoles was first formulated by

Rutherford and Frieman[15] and Taylor and Rastie[16,18]. The
derivation presented in this chapter is an extension of their work to
electromagnetic modes. The derivation of the kinetic equations
applicable to low frequency modes consists of a small frequency,

wf << 1, small Larmor radius, o/l << 1, pflg <C I, expansion of the
linear Vlasov egquation to obtain the perturbed distribution function
due to small electromagnetic perturbations. Moments of ;he

distribution funetion are caleulated and used in the quasi-neutrality

condition and force balance equations to obtain a complete set of

equations governing the modes. Two frequency rtegiemes are considered:

a low frequency regime, v <Cu,, {Cw,, and an internediate regime

. dtd K . Solutlons to these two sets of equations will be the

subject matter of Chapter 5 and Chapter 6. Simllar analyses for
tokamaks have been developed]25-29].

The field perturbations are doubly periodic in the x and 8
directions. Since the equilibrium magnetic field is sheariess and
peints enly ia the X direétion the two periodicity conditions are
separate. This makes the ballooning wmode representationf23,241 used
in tokamaks uunnecessary and the perturbations can be simply Fourler
analyzed in the & direction. From now on perturbations will

implicitly be understoed to depend can 8, t by,

£, = fiﬁi,x,':r) expliut - 1B) .



96

_where n is the toroidal wode numbeT.
The small Larmor radius expans‘lon of the equilibrium Vlasov
_éq’ﬁation js discussed in Chapter 2. To first order the equili'brium

distribution functionf ] is found to be,

30 )

I m ¥
fogfﬁ{l-ra.w(‘;-w)-r_fv?e}, (5.1
* .'.Iram s o
where v = — = .~ .—— 1s the dlamagnetic drift velocity, f_'is the

q o 3¢ =

Maxwellian distribution function and md) is the particle depsity oa the
flux surface ¥ . The temperature, T, is asssuwed to be constamt
.t'h.roughout the device but it can be different for different particle
species. This equilibrius distributiocn function is defined locally oz

Im

’ the flux surface g with -L_%- T evaluated on $¢ . However the kinetie

eduations to be derived will be assuned to apply globally.
&, Small Larmor Radius Expansion
The collisioﬁless 1tnear Vlasov equation Is,
a

+ Ve +—:.§x ‘ﬁg-vvfl - —%{ﬁ + Y= BBV £y . (4D

where £ 1Is the';ef’;ur‘oe& distridution function, B 1s the equilibrivm
.uag-zet:lc fleld, B1 and %1 are the perturbed electrie and magnstic

fields and £y is the equilibrium distridution functiod. For
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pe'rformi.ng a small Larmor rad.iu's exp'ansioﬁ ‘on tﬁe Viasov equatios it
L R PO TR | RERE |
helps to use the velocity coordinates € _xf vi +3 ‘21.' ¥ and L

» tan} {- :? where € is the energy per unlt mass, B is the magnetic

" moment per unit mass and § 1s the ‘gyrophase angle.’ ?.roperties' of

these coordinates are summarized in Appendix A.

Define the operator & by,
o : — s LAt
=t o . d.l £y - I
Bfp = WVE 4o vcosT f) 4o s (a'e“ u}
with LB e - % VRt %

‘_%"1 =& x v +uz [o+ G¥ X% -;r.(:r.v);}

E g TP 4 X (TR

dt i
. Lo - a .- .3“" ‘
where 2 ===sin?t ¥ +coz 0 , ¢ -aT,
and v;-vna oy % (uV'B+V§X'Vx)/D .

Here t’D is the particle guiding center drift. The spatial derivative

is taken holding €, # and § fixed and the derivatives with tespect ‘to

€ and p are taken holding X fixed. In terms of & the collisionless

Vlasov eguation can be written,:

1 1 : I .
- ¢4 - - Y 5.3
irvl cos £ ) _h do o (53

imfl + I:fl' e T
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where F1 = qﬁ:l + = ‘5 } ‘:Iith the .ass'umpt.ions.w'fﬂ <« 1, p/L <1,

__pf'LB << 1 and pki - 1 the first and second terms in Eq. (2.3) are

s:nall'compa’red with t‘he third and fourth tems. .To® lowest order,

1 ., 2 2ol :
o ' 1»;171 cos § fo1 —.;11 ?vfo . . (&.8)
S 1 o a ' | ang
: w‘x.n.are e ;ﬂ‘vv.fo - £ 3 YL <os 4 E‘lB{I + - \‘}79) “nE T} .

il

. Solving Eq. (4.8) for 1§ yields,

. q r - 1
= 2 = ¥ - =
8 | T{inma[x 4] \Pu = %
+ b exp(ia sin ) N . “ B ' 6.5)
il - : . - : . +
where az T3 and h is a constant of integration, h = w{x,p &), yet

‘to be determined. .To FiTrst order in Eq. (&.3)

.. ﬂ,,f% + E:fel + 0 exp(da sin C)é.c_[ fll exp{- 1z si= C)]

1'1' s . . . . L
R L UL S _ SRR (A8
whet ~'1"‘“»V.f = £ 3]1g + ""]{H;G—i:) 12w
vhere N -:--r1 vig n T {1,&% glx& DEW

+ 2 v’} - [Bg (1 SR - Eyy N L
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Moltiplying Eq. (4.6) by exp(~ ia sin&), integrating over ¢ from O to
2 .and requiring fll to be single valued in% annihilatss the term

involving on f"l1 and gives an equation for h along the fleld line.

W -wpdh - ﬁ&-n ' : L (4.7)

= {w —.w:*}{[- i _E Elg + i% -;-331,130(33 + ¥ %leJl'(a)} \

) n nlyl 1* o
where _unz;va-?ﬁi_z,vz_n_vp V3+v§¢ (x?}x] .
s . * v*n aT
" Rere w” is the diamagnetic drift frequencyu = <" T% « The

“quantity @y is the curvature and VB drift frequency and Jo and J1 ate

Bessel Fonctions of the first kKind.  See Appendix C for useful Bessel

function fdentities used in the derivations of this chapter. . The .

* B
local ¢ dependence occurs in the term w ~w ) pultiplying the right
hand side of Eq. (4.7).

| | .
@-e® 9y W1+ @ —@b)%% Su .

This local ¥ dependence, which from now on will be assumed implieitly,
is only importaﬁt when we wse the continuity equation later on to
caleulate the 8 component of the velocity moment of £,. As mentioned

previousiy the resulting set of egquations governing the modes will be’

‘assuczed to apply globally to the system.
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" Before going any "fu'rther. it is best t; 1n£roduce ‘the’
re'ﬁ.resentatiom of the perturbed fields that will be used for the
rezetndet of the paper. The gauge condition for the perturbed fields
. is chosen so that ;& = 8. The remaining components of the vector

potential are written in terms of the quantities % and ¥ defined by,

This representation is adopted because in the limit o, ¢ in the
kinetic equations the notation will be simflar to the traditioral
notation encounterad in much of the earlfer multipole stability
1{terature. The representation Is exact, no expansions are used.
Thus, any other vepresentation cam be obtained by the gauge
transfermation % = A + AA where A is an arbitrary gauge pruvid-ed that
i 1s single valued om & flux surface, i.e., :—tf h 33 ~0. In

ferms of X and Y the perturbed field components are,

1 3%

311’ N 38 ay ’

B =- %1+

X

T
B}B "i-ﬁ*‘gé—x“v

@
-
H

‘E:';”-rs_—w_.BY‘,

adl
=5
<]

J1o1

where 4 15 the electric potential. . See Appendix B for additional

field relations.

For systems with clesed field lines Eg. (&.7) has an exact
solution. There are two types of solutions depending om whether the
particles are trapped or untrapped iz the.magnetic wells. In additien
the solution will depend on the sign of . . The sign of Y .will e ¢
denoted by a superscript, wt and n". For mirror trapped particles ‘the
boundary conditions are h+(9.1) = K (21) and ‘n+(£z) = h (12) where &1
and %7 are the turning peints of the particles This -satisfies the
requirement that the two solutions be the same vhen v 2. . For
untrapped or circulating particlies the boundary conditions ate
(L) = wtlz) and b{E1) = B (22} where here 23 is an arbitrdry
starting peint on a fisld line and £2 = £1 + L where L 1s the length
of the field line.  For untrapped particles the 'two solutions -are
separately continuous around a4 field 1ine. TDenote the right hand side

of Eq. (4.7) as T so that h satisfies,

3

., (4.8}

* - *
- g -
@ ~wpu ¥ i%vxl X*VH

5|

where - -a™le ~"%x: Tv 1 EFIOR
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- v —B(‘I+- ]Jx(a)} .

“fhe esact solution to the differential equatioﬁ for h cam be
. found by a straightforvard application of the method of variation of
{:aramé'ters'u's.ing the boundary conditions previously prescribed. The
solotion for trapped particles is,

expltiQ(2 22} & 1ty ey

TS P ashatatal ol

sin{Q(f1 ,k2)} cos{Q{t1 2 ")}

expriquz AL} !.z .r*(r'.’)' ey s g ¢
*_mfz TRy costeneb s G

(w0 ——.mD)

P ST
- uh Qi ta) = are .
:._-’ ere Q1 ,22) ,{11 “‘““I‘;;T_
_ For untrapped particles the solutioen is,

R
(L) 1! d,,.r(z)exp{t'm“”’)’iqm"'”}

Py | Sin{% Q1 22 )
N 1 J_.I. r (!. exp{¥ iQ("’:!') + — Q(LI ,12 )}
el Y .
' b sl ot )

(4.10)

“Sgagularities appear Im i (2) when the sin function in the denominator

is £6T0.  This vecurs 'when'.Q = 0, which corresponds to a drift
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resonance; and when Q = 3§ where -'p is an.integér which corresfionds to
bounce harmonic resonances.

To obtain a complete set of equations the velocity woments of fli“

_ are needed, .Substituting Eq. (4.9) into Eq. {4.5) gives an expression

“for . However, velocity moments of this expression for Eci are

+*
difficult to calculate. The integration of W over velocity can be’
made more tractable by finding approximate expressions for v, Two
limits will be considered, a low frequency limit where w < w, where
U;l -1 I -ii-{ and a higher frequency limit wherew >>w,. However in
%
taking these 1limits effects due to bounce particle resonances arte

last.
B. Llow Frequency Limit, v <Luy

For the low frequency expansion of h it is convenient to write h

in the fors, .

R .E. Sy +w , - (4.11)
vhere h" satisfies,

@ ~on T3 1 1v¥§'vh'i

@ .
= -w*f[s - _513 Iy - v = B(Y +_)J1{a) T {5.12)

e
o)

;21—— fv 1 x*9(22) n(a} .

NEM
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The last term will be meglected since it is of order D/tﬁ. ‘To lowest
" order iawhy taking wp~ @ in Eq. (4.12) one finds 1 vai It =0
“The mex: order expansion together with the boundary conditions vields

+
2 consistency condition which determines BE .

e 2 2 : : L (a3

vhere T =

'.l"z.xe integfal her:';z is .ta‘eceu over the eﬁtire fiéld 1ine fér
-un”:r#._—;ped psrticies and over the particle ozbit along a field line for
particles that are airror trapped. It is useful to write dowm
'éxpressioas of W' summed over 11{‘ since this sum appeats in the

velocity iutegraticn.

i w - W D
i(}t! +2'-6 )”'——'—“*‘@‘“D—)' ?"‘?X)]J(a)

- gr.{y-rg_:}}n(a) 5 (4.14)
- (gt - T) =0 . ' (4.15)
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C.  Higher Frequefu:’y Linit, W 3 By

For freguencies much larger then a typical ‘bouniee frequencv _.

Eq. (4.8) cap be expanded directly to obtain expressions for hB" + hn

and b - W0. To lowest order im wyfw,

N

. o
(tﬁ‘"+‘r£)=:——"-2~{[¢“—°iﬂsu(a}
. <
- ¥y f).n(ai)} S ¢ 413

(o - W) =120 §vx§x-‘?{

o

I n(a)] . (8a7)
wp T .

' ey '
Eq. (4.17) for }ﬁ }ﬂ i1s of order - s:nailer then Eq‘ {6.167 -

far B + W . Since wpfe <€ 1 anduph << 1 velocity moment’é that

depend omn W - 1 will be neglected for this frequency range.’
D. Cowplete Set of'Equations.

Three equatiofzs plus the gauge conditicn are needed to form a
complete set of equations governing the modes. For low frequency -
modes of the type considered here the guasi-neutality conditicn

provides one of the equations.

nli = nle.‘_. e S . . . - (&'18)
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whare ni 15 ‘the pertﬁtbed density, tiy «f By £y - ‘The revaining two
eqhatidns wi'll. be obtainéd from the Force balance e'qﬁaﬁion and

Asgete’s law. To construct thése equations the zéroth and first

"“..n.a.oﬁx.ents' of the 1inear Vliasow equation, Eg. (&.12), are seeded. These

are respectively, .

| _;;EI fv £ +'v--U & f.l.] -0, ' L (4.19)
e A lal@vve)anlal #eWa] S[ef dvrl
=qh [ & fg;‘qu ER - TARE I €4.20)

Summing the first moment over electron and iom .sgieci.es vields the

'_'_on'r:ce balance equation,

ey -
o Vs e x
Etgif':,e““}*'_{ii.j] i @ Boxw
+loxhxh .
.Uﬂ -
- w!.".e'.re: ’\qu Evy fi » ?E 'mf d3v"€'v.f1 ,'. . .'(&.21)

; ‘?x . "uu*jl - I‘I! B £] -
= - . R A -

: Here Y1 is used to denote the First velocity moment of f; and will be
" refered to as the perturbed velocity mozent. The perturbed velo.city
“moment 1s related to the perturbed flwid velecity, Wn, by the telation

3 . o = n'l‘:g +% where % is the eq‘uilibfiutu fluid velocity. . The
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synbol B} 1s used t6 denote the second velocity moment of f; and will

‘be tefered to as the perturbed pressure momeént. It is related to the

‘perturbed pressure tensor, i} , by the relation fy =
1 - oG - 0 . Ampere’s law was used to write the expressioﬁ for
" in terms of $1 in Eq. (%4.21). The ¥ and B components of the force

- ‘balance equatlion provide the remaining two equations to coaplete our

set of eguations. The x component of the force balance equation turns
out simply to be an identity.

The perturbed velocity moments nj, % and Bt are sumaarized in

‘Appendix D. They are calculated using Eq; (4.5} for £°1 and Bq. (4.14)

and Eq. {46.15) in Eq. (4.11) for h For the low frequency regime and
Eq. (6.16) and BEg. (4.17) for h for the higher frequency regime.
Two sets of eguations will be considersd for twe frequesey
regimés; é low frequency regime where w << wi oy, and an
internediate fegime where wy; <K w <Ly, vherewy, and Wy, are,

respectively, the ion and electron bounce freguency. In both cases

the electron Larmor tadius will be considered small and neglecte&

‘while finite ion Larmor radius effects will be retained.

1. Low frequency equations

For low frequencies w <¢ Wy <K wy, the appropriate forms for h .
for both the fons and electrons are Eq. (‘5...1[1} and Eq. (4.15). Using

Eq. (D.8) for the perturbed density for the iens and the electroms ‘in

‘Eq. {8.18) gives the quasi-neutrality conditién.
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1 o C o o
o+ 1} = E_X{1l -~ -6
G+ =5x( m;) o)
-1 e ' . :
= = = &,
+miz,eTI Fvi Jola)E, (4.22)
where
z - 2 @ _ X . T S A% )
RTINS (¢ mD;)Jo(a) v gﬁY+aT)J1(a> ,
T
and [] =~?;-, =5,
i i

The function GO introduced in Eq. (4.20) and the fuactions Gl and G2
* which will be introduced below include finite ion Larmor radlus

effects. These functions are defined by, effects.

Gy I exp(- a-zr) Io(agr) .

L2
-
3l

exp(~ &) (1)) - 1)1

= expl- &) [T - &) + & I(&E T,

2]
[
I

£,

where ap ¥ kP = . In the lmit ayp+ O then Gy = G; = G, = 1.
The first term appearing in the force balance eguatiom,
Eg¢. {4.21) is due to the rate of increase of momentus per unit volume.

$ince fon and electron fluid velocities are comparable the rate of

{facrease of momentum is mainly due to the more massive icns and the

109

electron compeonent will be 'negl.ected. Ta evaluate this term
expressions for the components 6f the don perturbed velacity "cﬁo.'n.le.nt o

are needed.. The $ - component can be evdluated directly using fa; '

“however, the 8 —component of the pertuthed velocity moment, v.19;' ca‘nn'o.t.

be calculated from fol (the result is zero}. One can either go to
higher order and calculate fll or use the perturbed density:and the
other components of the perturbed velocity moment in the con’tiaui:y. .
equatiou, Bq. (4.19) to solve for vig. Elther way the result to -
lowest -order is the same. The perturbed velocity moments used im the

force balance equation are,

; * X
Vi, =10 o ~w )ﬁc1
- i%{ dv fm v _.Jl(a)é K . . (5'_23').

=i m (w --m‘k}l;iB Gy

il Rt e (it

+ lﬂ? x.[(l -'u_;i}n + ngi{;ﬁa‘ Q—%Si EY %'g_f_‘;.s Es> s
ﬂa-—m{u—m*)g‘m; | |
_r %j By v ;.v{ﬁ (;) 1, ) -(4'.2:;)

=~ m -w*)EYGl
i3
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23

&l w
|8

+ T 1...m§._f1/3 d: .B‘-v
. m;( ;—)07—‘—1_“3“1’ { -

.+"lai (1 -‘%]ﬁ +'csll¥_ga. +%(Y+§)as 2y} .

'sih..et"e' highér c.:rde.:r f.in.ﬁte' Larmor radivs terms were neglacted in the
' _:e'q.ua.ti.o.ﬂ. for vig « By higher order finite Larmor radius terms we mean
terms that include functifons of the form exp(~ a.zr) Ip(a?r) where Ip is
: the modified Bessel functions of the first kind of order p where p is
an iz.:'teger greater them 2 or inm general, terms that involve integrals
:_ over .v'éloc'ity 'space where the integrand contains the product

.Jo (a}JP'(a) where p is an integer greater then 2. The functions Z are
'_d.e'f'.i.ne{i in Appendix D, Eqs. (D.6) and contain finite Larmor radius
. _...éffects. In the iimit aT'.""G,'mDﬁd +'0, then 2 1,

. _The second term of the force balas’:cé équation, Eq. (4.21) is the
_dh.rerge'nc'e of the momentum flow. To-evaluate this ters the componeats
of ‘the 'to'té'l.petturbeﬂ pressure momeht tensor (the sum of the electron
.'auc.} .iou ..perturbe&'pres.s.uré' i:eusdrs'}' éfe needad. The components of the
.totai ﬁeiturbed'pressure moment tensor are dominated by the diagonal

" elements Pug o B . Pap summarized below.
. ¥ X 88

Py " Py Py

p) u. @ . o L B
T P+ (1= 23026, + 6 - 260
. Dy oy
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q 3 =1 - . oy
+ . - g £ J —_J ., 4.2
1):,em'1"f v i, 9 [l =2 Jla)l (4.25)
Bx = Pagx * Pexy
=-_P 3t +i";+{i-—'i°;]col
I+ w} 0}
: 9 - =
F 1I,em"i'”f Fvf 2 Bla)E . (4.26)
Pag * Pygg + Peag
:—_l_.E_x[-r +Ei+{1-m—*]ci]
REE o o
. ar oa N - _ _ .
+ e — % . .
i};emrf Fve — @ (4.27)

Here p" = 3pfA3¢y.~
The twe components of the divergence of the perturbed pr.essur:e

moment tensor needed here are,

@By =~ 12 Pgg C (4.78)

. ' s eBp
(Fendy = 1B 2Py = (Plyy = Pigy) —

o s o
+ (Piy, ~ Pigg) s:_:+ rB;;( X)L
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where D= -

i+

e
ik
Blw

The.last two terms in the ¥ component are small and will be neglected.
The sywbol D is the same as 1n Eq. (3.4) and has the same meaning as
" 4u the MAD analysis.

Using Eq. (4.24) and Eq- (4.28) the 8 ~component of the force

balance equation, Eq. (4.21), can be written,

wop”

+ 3 o+ 2+ {1- 6]
g =

. h‘i b)i

—5{uem_f Set 7 %31(,;)3 . ' (4.30)

Substituting Eg. (5.24), Bq. (4.27) and Eq. {4.28) into the

% component of Eq. {4.21) give an explicit expression for $ ~component

-of the force balance equation:
E} 1 3% ] 3%
{ - &
s (el * o [m2(y + }] 3 vopT 4 o

2, X B e o
= - Fupmong e -u )l F AW ;-g,-r—if Bvfyv N3
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wip’ L
@{H_Tﬁ +__+{1— 2) 26, + 6; = 26}
®3 By
”r{ ium_j B F {Jﬂ(a) --._.n(an =}
. wop’ w o
NFD H1 - J_<2c2+c1 -3%) Sy

®3

:mfl unm—f davf ‘}ix(aj4vf[50(a)-i-31(a)l}5

It i{s often desirable to combine the $ and @ components of the

force balance equation.

" g duen o Vi)~ F g vemp o i

~ 3 uorgmgs @ ‘”1);2‘32'51““5““”;-5:—1:’ Ev v Jia) 2

. o :
+§n____l - x{r +m_i+[1 -m;}{cl -5 (26346 = 36y}

-—éDiE 1o m.—%f'dav fm%{vz (a)+v2 [—Jz(a}—Jo(a)]}
Le

a HDP,. . .m . o
-3 e {1 *:&J(ZGZ - 260}

EH]
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+s— guo qu d3vf vi {Ju(a)~—.n(a)}} 2 (4.32)

zéheslast two terss aré of higﬂer'ordér in finite Larmor r;dius and
wiil.ﬁe neglected. Eq..(3;32) can be used to raplace eifther the %
éaﬁponénﬁ of the force balance equation of the B component of the
force balance equation. .
. The quasineutrality con&ition, Eq. {4.32), the 8 component of the
: force balance equatiou, Eq. (5 30}, and either ¥ component of the
'foéce balance equation, Bq. (4.31), or the combined equation,
: .éé.'(ﬁ;éz),'coﬁprisé the'cénpléfe sat of integro-differential
-_equafions.fdr the study of low freguency modes, 0 {Luy, Kwy,, in
ftﬂé.muitipblé. The equations include £inire fon Larmor radias,

electron and iothrift resonance and heat flow along field lines.
2. TIntermediate ffeduency'eéuations

'_Féf tﬁe.iutermediate frequency'régime Wy Kw Loy, &ifferent
forﬁé fb?'h éfé'ﬁeédea.fot each péf:icie species. The appropriata
" forms for h for the electroms are £q. (4.16) and Eq. (4.17). ¥For the
Zi-ions Eqe (4 14} and Eq. (4. 15) are used for h.
-Using Eq. (D.8) for the electron perturbed density -and Eq. (D.23)
g .f;r'fhe fon perturbed dénsify in Eq. (4.19) gives as the

quasi-neutrality condition,

where

Here the

effects.
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. *®
® P 1 = ok
{o + 223 [t+1 {1 - =i
®3
- P Loy (1-_% LS
px().+'(_m_;) {1 )(Y 31»]21
1 elr 3 i B
4023-51.?.I Fv i 2, . }
)
- o - ) . X _1 B ax%
oo wpy T3 7ig{Tsy -

functions Z, Egs. (D.21), include finite lon Larmor radius

In the limit a% * @, wpfe + O them Z+ 1.

The ¢ and @ components of the iou perturbed velocity moment for

‘@ D> uy are,

* .
_.a'_' n 1 L b o 2;
iy imTE:‘“—{l B'_}{(T+N* P Ha

-dAx+ghlzt | (4.38)
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P——' X}ZL . * o * QX.
- - p - J—
[ 1 {1 u_]{(e +;“; X )21 2(Y+W)zz]
(4.35) _
_ 'P' w “me e 1 =
e X (T +w_‘1) wtw_gj’ a%fm_il-e. (4.38)

The cowponents of the perturbed pressure moment tensor for the

4ntersediate frequency regize are,

Bep = Pugy * Ty

*'-

-_P s+ 2 -2y
P2 (- + S o em -
i
- z".(.i»r.“) (2% —'22.)
3y

3

1+

@y 1
Pxx —?m+qu
N
«_P - X @+"';P - A%
: l-t-'t[1 un( ?X]m (Y"'a*

. . m ’
P LR o L I -
- — X ( uf TTif vi %3,

Pos = Pyga t Pap

14 x(r+3;)-r_e%?_{a3vfm.;_vise

- Substituting Eq. {(4.35), Eq. (4. 38) {nto the B-component of £q. (6 21}
gives an explicit expression of the 8 -component of the force balance

equation,

1 3,237 A% ' r
ETSQ{T?)"{] éBz[‘z+W)+5u0m14n ~Vig
ey : . o by
- _— - — 7 o~ Y + —
3 —— (1 m][(@+m;?x]x ¢ 35 21
{4.36)
wop” o L _ :
— + + 22 £ ez .
+:§1+TX(‘1’ m*) Juaf 1fdv 591 Fe {4.39)
i
Gsing Eq. (4.34), Eq. {4.36), Eq. (4.37) and Eq. (4.38) ia Eq. (4.21)
gives an expression for the ¥ component of the forke balance equation
in the iptermediate frequency regilme,
(4.37) 3%y . B g ax : %,
e | FBELY b i} - T4+
('?'BT b m [32( ,k}] 9"9?( “,]
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i

Moo ot L e *)uuf’— Pz - oA+ D)
hat d

°{ J -

Bop , o By W :
+3 {1+t{1-;_][{¢ +;§?x)(225 a)
-z[!+§: an - 2] Y ()
vep’ x( +¥} ,,.5_3‘_{1_,0____! fv £, _wi

T+71 £}
oy

'_.Gheréshiéher-ﬁrder finite Larmor radius terass were dropped. Combining

& and ¢ components of the force balance equation gives,

3L 3 2 :2 3y 1 80P 3 2 3y
x {W Wﬁ{?ax} TF R T
Y ' . uop’
._ - 5—q,-(ﬂnmfn ‘;“’119) - 5«?—110&{» ‘E‘vliﬂ
“pnx( + *]+=}uun-_-—f d3vf _vi
..+5uommfnni;z%;( ][[Q +”_?_x]zx—2(y+§:)zz}

@y
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ud pD [ u‘)[{g . o 2( .éx
-s (1 m_i?x]n— Y+W]ﬁ]
uop @} .
3 _ ¢t w p’ _
4-5.3_‘17{1 {n .w_][(& +w_i?x](zzs )
-2y +;;]tzzs - 2zz)]'} . R s . (4.81)

The last term of Eq. {4.41) is of highér order in the ion Larmor
radiuvs and will be neglected.
For the intermédiate frequenc§ regiée éﬁi e < wy, the

complete set of equations governing electromagnetic modes are

. (4.33), the quasi-peutrality conéitioﬁ; £q. (5.39), the
8 —component of the force balance equation; and Eq. (4.40) the
¥ —component of the force balance eguation. The cowndbined & and ¥
components of the force balance equation, Eq. (4.41) can be
substituted for either the & or ¥ cquations. These equations include

finite ion Larmor radius, ion and electronm drift resonances and

‘electron heat flow along field lines.

In summary, the small Larmor radius eipénsioh of the

“collisionless Vlasov aquation was generalized to include

alectromagnetic perturbations as well as electrostatic perturbatlons.
The perturbed distribution function was used together with the

quasi-neutrality conditlon, the force balance esquation and Ampere’s

" law to construct two sets of three coupled, partial,
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_in.tegfoﬂdifferehtia"l. e'q.uat.ions go\}erniﬁg Tow fr'e.quer.ac'y, long parallel
“wave length modes.. Two fregquency reglmes were considered: a low
frequency regime where w << wyy << .mbe and an interﬁeéiaﬁe regime
where @y LLw Wy For the low frequency regime the wmode 1s
;:oasidered slow enough that the majority of both the fons and the
electrons execute many orbits zloang the field line while for the
intermediate frequency regine the pode is assumed just slow enough
~ that only the electrons are sble to complete many parallel particle
orbits. The frequency regime v D> @y, was pot considered since inm
wost devices this conflicts with the oréering a << Qi' Properties and
solutions to the fwe sets of ecuaticns will be discussed iz the next
two chapters. Chapter 5 will deal with the set of low frequency
_equations. We will see that in the iimit of small ion Larmer radius
“the low frequency egquations can be combined to give the
Xruskal-Oberman energy principlef1l,12]. Receatly, i;t was also
recognized that the low frequency equations in the limit of small real
frequency prédict the possibility of an unstable electromagnetic
trapped particle mode{43]. Chapter § will deal with the set of
equations for the intermediate frequeacy regime. In the limit
‘wpke » 0, w*fa + 0, py + 0, these equations are related to the MHD

equations. - ST . e e e e _

321
CHAPTER §

The Co!lision1e§s Energy Pi’inéipie

In the coilisionless kinetic .equations .der.ivec.i in Cha;;t.er.:& the
'x.lnetxc effects can be rcughly dlvxded intn three categories, -
perpendicular kipetic efEects, parallel kinetlc effects and drift
resonance effects. By perpendlcuiar ‘kinetic effects we mean those
effects due to v which include finite Lamor radius effects. By
parallel particle effects we mean those due to particle dynamics along
fleld lines including bouace ‘resonance effects- The drift resonance
involives both v and vy and 50 it is put in its own hybrid categoty."
This chapter deals with the effect of parallel particle dynamms on
the ballooning mode. Fini:e Larmor radius effects are considered in
Chapter 6. Resonance effects will not be considered here.,

Parallel particle dynamics are only important if t'ne fresuem:y of.
the mode under consideration is comparable to or less then the bounce
frequency. 1In this chapter the low frequency equations are used
w Ly, Ko, In these equations bounce ‘rescnance effects ‘are
reglected. In this frequency regime both the 1ons and the elecr_rons
are adiabatfe. The guiding-center description of particie dynamics is

.

1
valid. This means the magnetic moment, wo- 5 and the longitudinal

iovariant, J ﬂ-§ <14 1v£§ , are conser\}edfﬁﬁ}. in r.he hydrom agnetic

limit wherse wD)'w << 1 the particles can be consideted stuck on a field

1ine during the time scalé of the mode. The particles ean interact

with the wave via Fersl acceleration. .C’Ha.nges'i'n the volume of 7 flux
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tube will caise the plasma to underge collisionless adiabatic’ where
gémpréssions - e R S . . § ~a® VAR SR 3
S . _ _ _ ;._wﬂi_g-%i__i.vgg;(nﬁ), (5.2)
~In seétion A of this chapter a low frequency collisionless ' ‘ S 4 n
Gariatioﬁa.l.princi.ple is constructed from the complete set of . ) T
- ‘o e
- X ¢ o=, T= .
equat‘lons for the 1ow frequency regime that were derived in Chapter 4. and ‘r1 Ty

In section B the hydrodynamic limit of this variational principle,

@ ﬁ» he 0 leu > 0, °1 + 0 is taken, resulting in the Kruskal-Oberman The 8 ~component of the force balance equatien, 'gq_ (4 .30, becodes in

euergy principle{ll 12] This energy principle is minimized in the the 1imit gr * 0,

. .8Iame féshiéﬁ'.aS' the MHD énefgy pr'inc'iple resulting in an

: ..i.ni.:eéra.—é.if.f'e.rentia'l. équat.i.on for the margisally stable mode. ‘In 1 3,23 _ Y v X 5 5 L E “ :
o . gﬁ'(—g'gf) 3 ¥ 31,) womdd - Vi
" gection C this equation is sdlved for the Levitated Octupole
c&jmfiguraticm and compared with the MHD results. + Fp0p X - 512;01!1 %I 'd3v"fm % “i . ; (5.3)
S . . -
- A.. Low Frequency ‘Collisionless Varfational Prirciple o : vhere “.:IB' 2 2 om - m;) %Y . ST R (5.4)

For purposes of simplifying the algebra we will assume founding out the cet of equations the §~component of the force balance

e e . . o
a?’r kﬁo + 0 in Eq. (4.22), Eq ( 30) and Eq. {4.31), the equations equation is, in the limit agr +0,

governing 1ow frequency wodes. Eouever Lerms éepending on w® will be

retained. ‘As will be seen 1n the next chapter the most important . o :?. {5_1213? g% _3;_'{:'132{‘{.'4_ ;Vx]} -z uﬂp (v . _K]
finite Larwor radius terns have been kept. Ia the limit a% + 0, Go : i
: B C; = G:z = 1, and t‘ne quasmeutralitv condition Pq. {6 .22), reduces .~ ) o . e ] uummim(m - “‘i);rgr {uup b43
: ;»_"ci,l e ) N
'.-'°[i+'1}=ii Ly dﬁvfms',' o (5.1) : ) ' SR
Lot mgeT =" BRI . -5::{1’21195,%; P n_;{v]z( %"i = B .(5.5)
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Maltiplying Eq; (5. 1) by E—u013eb , Eq. (5.3} by é.Y*, Eq. (5.5) by
1

z X* integrating each over volume and sur"ing, the following

variatiocnal principle is formed,

] & Y Juﬂmmiﬁi.(w "'m {?*Bz- ;“2}

=% | & & ém{ Kjﬁ + pgp’DEE

el $1 vnl R b2
(5.8}

Using the velocity coordinates E,'d and T (See Appéndix'A) the last

term of Eq. (5.5} cas be rewritten,
. . e R T EI R P
:jaﬁga?ui};e?fdvfm[ep = X _z,vgg_[prﬁ_)]-
t *’ 1/8&3'1@2
-ffdytbcéuci}z‘amif(l— } n—:?“{i”f )
"i("f) it _;_)D+us__324 +(Y+a¢]aB §1
G'B S 2 :
<x{{1— )D+us_74 +(‘I+.-c3 z} {5.7)

whete

xk =¥Iis [, & N LI {5.8.1)
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_3_m T3 =2fft [ EAT fs _(5.5.2)
3 e
w
15 s L
o (30 3 - e e r_-w_—@y R K
i
w

The £ functions are the same as thé.functions defined in Appéndi; o,
£qs. (D.6), im the limit ag= %l_:.+ 0 and contain the e.ff.'e:ct.s .dq.e te
drift resonance. The right hand side of Eq. {5.6) 1s the same as the
variational principle of Rosenbluth and Sloan{21] used to study the

finite beta stabilization of the collisionless trapped particle

Anstability. The left hand side of Eq- {5.6) incliudes the

perpendicular kinetic enezrgy of the lons and the 1owest order fin;te

Larmor radius effects on the tx %k drift of the 1ons.

We should note here that obtalning the Full expression for the
perpendicular kinetic energy without expanding to higher or&er 1n ‘the
perturbed distribution function, f1, was dependent on the ch01ce of

using the force balance equations to compiete the set of equations.

1f instead Ampere’s Law had been used, only the term ‘proportismal to

® would be present. _Tha advantage of using the force balance
eqguations in the preééﬁt formulation 1s that the moSt.impo:EantT
effects of pik¢ are obtained without going to higher oréer in f1.

1t has been pointed out By Antonsen, Lane and Ramos[33] that in
tﬁe Timit w ™ » 0, whrg> O the last terd. in Eo. {5.6) can drive an

’ o ..
electromagnetic trapped particle zode if @ /dnn> is negative. ‘In &
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'.c.bnf.igurati.o'n. .th:'at. iis"s.'téble to MHD 'mddes---(w.*mn £ 0) this term might
ﬁaﬁe .a des'tabiliziné Il;ifl'uence. "One would generally expect that u*
-aﬁd '@D> would have opposite signs In a system with s large fraction
‘ “of “the par.ticl'es Erépped in 4 bad curvature region. However the
' e“v.a.luat::io'n of t!;ié ‘integration over pitch angle ‘in the last term of
£q. {5.6) is sufficlently difficult and semsitive to the structure of
'..'..'ch'e :mag'neti'c. Ffeld that the sign of m*ldoD> is probably very

coﬁfiéufafibn dependent.’
" B.. Xruskal-Oberian Stability of the Multipole®

In the 'hydr.om'agnetic 1imit Q*ﬁu -0, iﬂp}‘d + 0 and for egual fon

"and 'e]..e..ctro'n t'ernpératu're',''1'1 - .Te.’ the electrostatic terns {those

tefas 'pro'po'ffional to $) and tﬁe electromaghetic terms iu Bq. (5.6)
..cc.;\.r';:ple.t.ely uhﬁ'éﬁt&ié. "Hence, terms preporticnal to'd can be dropped.

'_-.'ﬁ.lis' weans the most unstable mode s one where 1+k = 0. In this

. _n.ni.t. 'Eq:.' (5.6) can be written in the form,

...“2 ‘SKj_ wﬁ“}(o s . R e - (5.9)
 vhere K:L .=_-I dqa .Q( . uom.ml 17? xzz-
Cand o ew =.t'fdxdtb5§ fax]2+pr>x2

. . pi..
+.¥.-§.{§xz]2 fBz [Y.+_x+_32... x}2
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15 B & 2
+_Z-WPB! i1 ~aB & °’

vop”
with J-faz;,___{(1-“3x° “_?pn s oA}

o ] 1
dat 8
and L 71 - aB
Rere §K, 1is the perpendicular kinetic emergy of the fluid and BM o is
the potentfal energy due to the perturbations X and Y. Eq. {5.9)
constitutes an energy principle. If GWKO can be wmade negative for any
choice of ¥ and Y thea the systewm is unstable. Eq. (5.9) is sometimes

referred to as the Xruskal-Oberman energy principle or the

.collistonless energy principle. It was first published in a wore

general form for an anisotroplec plasma by Kruskal and Oberman[li]. It

was also .publishet'i'slig'htly later h}I*' Rosenbluth aad Rostoker[12] for

an {sotropic plasma. .'i'he notation J and K is from the latter paper
here.writter\ in X and ‘I.representétion. “As can be scen inm Bgq. {5.9)
G'RKD is similar to the MAD energy principle except the 1deal adiabatic
term is replaéed with a kinetie term. The 'kin.é.t.ic ters includes
effects due to the collisionless adfiabatic compression of the plasma

and the Ferml acceleration of the particles. "It has been said

“elsevhere that the Xruskal-Oberman emergy principle includes "heat

flow along field lines™. This is scnewhat misleading since the word
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Meat” generally brings to.mind'éollisigns and in the Kruskal-Oberman
".model the plasma is purely tollisionless. .

. Some applications of the Kruskal-Oberman energy ﬁrinciple have
‘been made to the problem of tokamazk stability. In the tokamzk only
the trapped particles contribute to the integral in the kinetic ter:
_of Eg. {5.9). TUsing the Schwartz inmequality Conner and Bastie[45}
approximated the kinetic term and devived a eriterion for the
localized iaterchange mode. The new criterion predicted greater
stability than the Mercier criterion. 7. H. Rutherford et. al.[46]
used z large aspect ratio model for the tokamak where the integrals
aver the pitch angle variable inm the kinetic term could be solved
‘apalytically. They predicted an Increase in the beta limit for

. ballooning modes but 1t was very slight. Thelr main conclusion was
rhat the Kruskal-Oberman energy principle has little affect on the
critical beta of the ballooning mode In tckamaks. However, in a
wultipole one would expect the Xruskal-Oberman energy principle to
have a greater effect oo the cricical betz thzo in a tokamak. 1Tn a
tokamak only the trapped particles contribute to the kinetle tersm.
This is only & small percentage of the total number of particles. In
the multipole all the particles contribute to the kinetic term.

The Kruskal-Oberman energy principle can be mfnimized in the sazme
@aznner as the MHD energy principle. As 1o MHD the o = = wodes are the
most unstable stahle zodes. Taking the Iimit n+ @ and airiziziog

_ Eq.{5.9) with respect to Y yields,
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B ory o 3% WOPR s 1 o3 1 '
0= 2. 174 .24 + L pB & — » {5.10
sttt el @y 60
This is the same as the 8 -component of the force balance equation in
the linir i/a=+ O, Py 0 anduw = 0. -For the multipole the last ierm.
will be snall compared to the other terms. This is because the
density scale length is much smaller then the magnetic fléld scale

length implying p” >> .pD - To lowest order Eq-(s-IO) is.tﬁeﬂ;

sy MOP'X B L '
Y+W+_§Z"_=0' R £5.11)

Using this expression im Eg. {5.9) to eliminate Y in éwka results in

S =t [ AL b (3N s pnR

o F 2 ¥ 3y
15 . UBm:m' & Jz a KR : .
+Tpsju TT-—ai'iT(l-"E?‘) XD} | {50
where Iy= 7“1"%1;?.“5“ -EZE} X;D . (5.13)

Minimizidg Eq. (5.12) with réspect to X givés a single

integro-differantial equation for X,

[t
ar

1 e
?FB_TX) ~ uop’ILX

A
»
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1/3 'd: 5 'u e
e - 14
npssnf & _J0-3, (5.14)
: ] ] o,
.15 1/3- 3
TPDPDIQ r“ GBK{ B) (5.15}

rere df 1s the line element alomg a £leld line and J is given fa
:itq; (5413). Bq. {5.14) orf Eq. {5.15) is solved on each flux surface
“for Ehe'elgenvalue p’. The quantity p° glves the critical pressure
..ﬁraﬁieﬁt at which the mode is marginally stable. ‘If the equilibriun
-j?ressure gfédient is greater then p” om any of the flux surfaces the
_systea 1% unstable:to ballooning rodes.

._Thé.first rwo terms In Eq. (5.18) are the same.as the i = ; MHD
.eguét{on."The last term is the kinetic adiabatic term and veplaces

“the 1deal fluid adiabatie term {n the MHD equation (the term

o pfoﬁoftioﬁal to Y in Eg. (3.1).) The new term is In general

_siabilizihg. Note, that if X has -odd symuetry with respect to the
midplane L.e., X(t) = = X(L - 1) vhere L is the length of the field
line, the'integral over a is iéro. "Hence ;he kinetic term does not
'.helb stabilize odd modés. . As far as odd modes are concerned
Eq.'(S.ii) 4¢ the sase as fﬁe }mD'eggatidn. This makes for the

interesting possibility that the most unstable ballooning mode might

" e éﬁ_odﬁ mode instead of an even noode.

€. Nunérical Procedure and Results
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Ed. (5.15) was solved using a.computéf prdgraﬁ that calculates
the perturbation expansion to a specified order. The kinetic term
involving the integral over a is taken to be the perturbing term.
This is because except near 2 fleld null it is generally true that
$° >> pD meaning the kinetic term is much smaller then the second term
in Eq. (5.15). Let’s rewrite Eq. (5.15) in the form,

usp” _...X+ X , {5.1%)

‘(?"’“ ar.}

/B &
0 /1 -aB K

15

T(1-23 .

where - X =

wopd f

The opefator L is'of order € . ' We seek a pefturbative solution to

Eq. {5.16) of the form,

-1

==0

)

e®
x“ ’ n=0

p;'s P

Substituting these expressions into Bq: {5.13) and conmparing power§ of

€ gives the following ssquence of equations,

axm) .
- ¥ Py

-ﬁ uapjgxm*’ +I.Xm_.1 .

ol

w| o

Xa

(5.17)

To lowest order Eq. (5.17) is the ‘same as the Inflnlte A 16D equatioh.

_If Eq. {5.17) {s nmultiplied by % and integrated over df an eguation
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for the coefficient p‘ is ob'ained in térms of lower order
coefficlents pj and Xj.

gy S Do
L RS -5 SR I - S
U B 5 jD . (5.18)
® [ o g% a

After tge.iowést §;der term, X, df.Eq{ {5.16).has bzen found the
#igher order terss can be solved by the reduction of order technique.
.Substituting the expression thx} = um(x)xbfx) into Bg. {5.16) and

: then multiplying by X3 and integrating twice gives a formula for

u &),

B R Yl e 0

.- {5.18) and Eg. {5.1%} fogethér constitute an iterative procedure
for calculating the coefficients of the pertufbatioﬁ_series. The
" integral over a occurring in the opevator L is evaluated directly.

The integrand in the expresslons for J and K have integréble
Cgingularities ;here 8(e) = 1fa at the end points. For the particular
‘case B(RY = & + By cas? (L) an analytic expression for K can be written

fn terms of elliptic lategrals. The functions J and K can then be

‘gxpected to behave like elliptic functions. Both J and K have a
‘singularity whenever -the 1izits of Integratfom arve such that d5féL = 0O

. "at the endpoints. This is due to the iafinite period of particles
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having a pitch angle such that g‘ =0 at a local maximum in the |
magnetic field. Both e and K,have a ponzeéro value whena = Ifsmiu‘

where B, is one of the ainima of the magnétic fieid..'fhis'is'aueAto'

the fixed frequéency of particles sexecuting small oscillations at the

_ bottom of the magnetic well. The ratio 3/% is finite but has

discontinuities at points where @ = 1/B . .
?or the case of the Levitated Octupo1e the results of the

stahilizy calculation for even modes are shows is ?ig. (5. 1} Ploﬁté&

- in Fig. {5.1) is the critical pressure gradient of ‘the even mode for

¥ruskal-Obermaz stability, the critical pressure gradient of the even

mode for MHD stability and the equilibriuvm pressure gradient.' The

beta of the equilibrium was chosen to be self consistent with the
stability calculation.. For marginal stability this zeans the eritical

pressure gradient must equal the critical pressuze gradient at least

at one point and must be less then the'fritical'presshre.gtadientﬁ

everywhere else. As expected the Bruskal-ObeTuan eritical §feésure

‘gradizat is always greater then the HHD ecritlcal prééSUfe'érédient.

At the critical fiux surface the two cases are degenerate. - The '

critical beta for the o = = even mode for Kruskai~bberﬁan.étébilitj is

4.70% compared to 4.33% for the MAD case. This represenﬁs a relative
inerease of 9% in the beta limit. For the calculation presented here

the perturbation series was raken'to Sth order. . The $th order

correction to p’ was only about 2% of the sum of the first four terms..



C _'_Kmskal-—G‘Derman case appears to diverge.

. '..-way bet-‘een t‘ne critical ‘lux surface and the sepa'atri,\.
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. E:.ccept neer tim separateix,. the assu'nption that the kinetic ters
-._:‘ls Small 1s justified. ‘Tear the separatrix the eritical P’ for the
This' 15 due to the Infinite
: _inverse radius of curvature of the field 1ines near the null. In the
' HHD case the mode minimizes the effect ‘of the 1nfim’.te inverse radius
.of curvature hy going to zeto at the null. In the Kruskal-Oberman
case the curvature is averaged by the pa‘rallel Darticle motion so even
"though the’ perturbation goes to zero at t‘rse null the effect of the
infinite inverse radius of curvature 13 srill felt.

However, this is

just an anomaly of the Kruskalwcfberman equation. WNear the null the

. assuaption that s:/"[.\n and pki gre small breaks dow-u and the equatioss

are fio longer valid. This is of no great consequence to us. Since
'::he equilibrium pressure gradxent goes to zero at the separatrix the
] _1mmeaiate :egion aroun& :‘he separatrix is not an 'Important
consideration for the ballooaing ‘mode v..hich is centered arocund the
._peak pressure gradient region.

Fig. (5. 2) shcws the X eigenfunction for both the Krus-cai*(‘)'beman
.and MHD cases.' Recall X is proportional to the Eluid perturbation in
tha ? direction in units of flux. Another way of 1ooking at X is that

' 1: is proportional to t‘Exa . 'l'he eigenfunctian is 2 deita ‘function of

the vanable ¥ 'fhe flux sueface for ?ig'. (5.2) is the surface half el

Both the
MHD and ¥ruskal-Oberzan cases arz similar. The elzenfunction peaks 1n

the bad curvatute r'egior'{ chacteristic of the baliooning wode. For the -
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Kruskal-Oberman case the X eigenfunctie'n 15 p.eaked a little bit more
in the bad curvature region.

For odd modes Eq. {5.14) is the sameé as the MHD equation for’
marginal stability and there is no improvemeat in the critical
pressure gradient from the kinetlé term. The result of the stability
caleulatica for the odd mode for B = 4.70% is shoun 1n Fig. (5.3).
This plot shows the critical pressure gradient for both the even and
0dd modes calculated from the n == MHD analysis and the equilibriem
pressure gradient plotted ws ¥ . Here the odd wmode is unstable since

the equilibrium pressure gradieht is grea'ter' then the critical

pressure gradient of the odd mode on some of the flux surfaces.

‘Hence, for the Levitated Octupole configuration the Kmskai—ﬂbeman

stability analysis says the odd mode is the most unstable mode.

Tn conelusioﬁ, the effact of 'parellei 'perticle dynamics on
ballooning modes was investigated zad showa to produce a small
increase in the beta 1imit of the Levitated Octupole. - The effect is

proportional to beta so if additional effects such as fimite Larmor

" radius effects are included the stabilization due to the parallel

motion of the particles would be proportionally greater. It was also
found at least in the case of the a = * nmode that the odd mode is the

most unstable mode. DOne would expect,’ however, that if the wmode were

suffieiently nonlocdllized as io the case of finite n that the eves

mode would agalin be the most unstable. This Is because the critical

pressute gradient of the eéven mode is less than the eritical pressure

" gradient of the odd mode out near the critical flux surface. . This
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seans for betas somewhat greater then 4.701 the equilibrivm pressure
gradient will be greater then the eritical pressure gradient of the

even mode over more flux surfaces than the critical pressure gradient

of the odd mode.
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Fig. €5.1} Critvical p” vs'¥ for Kruskal-Oberman ‘and !ﬂ{D.Stability

The critical pressure gradient of the even mode for the
Truskal-Oberman stability analysils and the MHD stability anzlysis plus
the equilibrium pressure gradient caleulated using an MHD equiliﬁrium

with B = 4.70%. "sep = 0.52%4, % 5 * 0.8219.
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Fig. (5.1)
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Fig. (5.2} X Eigenfunction for Kruskal Obergan and MHD Stabllity

The X eigenfunction of the even mode represeanting the fluid
perturbation in the ¢ direction in units of flux plotted agalnst the

relative distance along the field line for ¢ = D.6754.
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Fig. (5.3) Critical p’ vs % for 04d Mode Kruskal Oberman Stability

The critical pressure gr.adient of the odd wode for
Kruskal-Oberman stability (which is the same in this case as the MAD
stability) for B - 4.‘761. Also plottea is the critical pressure
gradient o.f the even mode for MHAD stability and the equilibrium

pressure gradient. ¥ sep = 0.52%4, ¥ it ™ 0.8219..
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CHAPTER 6
" Finite Larmor Radius Effects

. .on the Ballooning Mode

The objéctive {s to get an adeguate ‘solutien inﬁluding finite
Larmor radius effects for the problem of the ballooning wode. This
section deals with the high toroldal mode number expansion and
selution of the éomplete set of equations for the interuwediate
frequency regime. These equatlions were derived in Chapter b.and
consist of the quasineutrality condition, Eq. (4.33), the & -component
of the force baiénce equation, Eq. (4.39) and the combined v'aﬁd [}
components of the force balance equation, Eq. (4.41). Tdeally cme
would like to solve this set of equations exactly, without éﬁy
perturbation expansion. 1In principle it is probably feasable to solve
these equations numerida;ly; however, even numerically solviug threas
‘coupled partial integro;differential equations in a not-so-simple
geonetry is quité a horrendous task. With the high n eipansiou, the
three equations can be combiaed to form a single partial differential

equation. :This appreoach has also beéen used for simplifying the

kinetic equations im tokamaks[29]. This partial differential equation

caﬁ.be solved using a wethod similar to that was used to iﬁ-Chapter 3
solve the high n MHD equation. - For the multipole the high n expansion
is actuazlly a very gooé approximation. ~Generally, one rums inte
problems with pi/Ln not belng small (which makes the entire set of

equations suspect) before the high ¢ approximation breaks down.
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The equations for the intermedlate frequéncy reglme,

By v Lhy,, are ased since this most closely models the situation’

iz the octupole when ballooning modes occur. With kinegic
modifications, the real part of the fregquency of the ballooning mode
{s on the order of the lonm diamagnetic drift frequency, @ =~ m: . This
" frequency is somewhat larger thea the typical fon bounce frequency,
although not a great desl larger. For this frequency regime the lons
are fluid-like in behavior. The electrons are adiabatic in the
kipetic sense that there are coustants of motion for each particle
that are conserved. In Chapter % where both jions and electrons were
adiabatic it was found that the ioncrease in the critical beta was

_slight. 1m the ecase of the Levitated Octupole the beta limict
jncreased from 4.3% to.4;71.“ Tﬁis'ieprésents i relative increase im
the critical beta by 2 factoer of 9%¥. For equal fon and eleciron

) Eemperatures, {f there is oaly one adiabatic spécles preseat, ome

'_vould expect the adiabatic terms Lo improve the critical beta by less

.then a factor of 5T. For this reascn and also for numerical

~ expediency the electron adizbatic terms will be neglected in this

chapter.
A. Bigh Toroldal Mode Number Expausion
1gnoting the terms involving integrals aloﬁg the field lines (tﬁe

electron adiabatic terms) Eg. (4.33) for the quasineutrality conditiocn

1s,
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vhere & = e /Ty and T = T /T, - Likewise, ignoring the adiabatic

terms, the 8 -component of the force balance equation is,
3,297 % L e '
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The combining $ and ¥ components of the force balance equation results

in the equatiom,
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7 Eq. (6.1} can be used to eliminate ¢ in Eq. (6.2). For large

: __'toruidal mode nuober an expansion in orders of 1/112 of Eq. (6.23

| 'yields to 1owest order,

S ax e S o _ |
B —az—Sl N (6.4)
o e
R I+ L
where S = o < :
: oo . . SRR w,
+r - o)
T “)m
! 1+ St +m +( J&Gl :
i _“’1

- Here Gy and G contain finite ian L_é..mor radius effects and are

" defined 1o Eqs. (D.7). In deriving Ehis expression for Y 1t was
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“assumed that wpfe << 1 dnd the Z' functions were expanded to first

order in ubﬁo {See Eqs.. {D.22)). ‘The first term on the right hand

side of Eq. (6.4) 15 by far the largest term. The second term is

smaller thén the first by less then a factor of B since gTT > fp_.x.'

Terns of order B2 of greater are néglected. The functions Sp and $)
contain fiaite Tarmor radius effects and have the property that in the

:1imit Py 0, o = 51 =1,

An expréssion for the & -—component ‘of the perturbed velocity.
moment in terms of X is found by substituting Eq. (6.1) for ¢ and

Eq. {6.4) for Y into Eq. (4.35):

Vig = —m(f-ﬁ _mi){n—w‘}'waz— SxX}SoGl s (6.5}

where terms of order BZ or greater were neglected as well as higher

order finite Larmor radius effects. "Using £q. {6.1) for &, Eq. (6.4)

for Y and Eq. (6.5) for vig in Eq. (6.3) gives a'single partial

differential equation for X:

PR | 1 3 3,2 a,x  wor
lamwad ~wavsd y ooy T oY

] - &pp'DHX

- - 5 Hommim(m -m;) F% So Gl
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uop’ )
+ ;; uﬂmmim(m ~u]) a5ty ( —gr_s;X]]
pop” ' wop’
?}‘-—-B:,—uumm 0 o —mi) s:zsocl (;;+_§2._51x] . (6.5

This. is a pariial.differential equation governiag high ®» =modes. It
contains terms o first order inm 1/e2. The bouﬁ&ary condition is
"X = 0 on conducting surfaces. In the limit "i + 0, —+ 0 Eq. (6.6)
15 almost term for term fdentical with the high o MHD equation,

BEq. (3.14). The only difference is Eq. (6.6} iacks the ideal fluid
~adizbatlc term. Thus, ia the fluild limit Eq. (6.6) veduces to a2 high
:n incompressibie hydromagnétic equation.

o it is instructive to examine Eq. (6.6} iocaiiy. Lettiﬁg
;—t -1 % , %—4' - i .-.TBL’X N __:.}* kg and neglecting ;r_ems involving

133 :
- {which are very sma1l) ws can write Eq. (6.6) in the form

Sl
Cw —mi)SoQ - __i.ig__ Pivi*'ﬁ s (6.7)

11 B
ko= + - d = = . ig the Alfven
-i‘mere"‘i g }%’pi_mﬁz{an‘%‘ By ©
" yelocity. The freguency of the mode is mailnly deterwined by the
conbination w e ﬂw;) in the First term. The frequéncy dependence
- appearing elsewhere In the terms Sq and 5 is of higher order in

tarmer radius. Eg. {(6.7) is esse;ﬂ:ially a quadratic equation 1nw if

the freguency the dependence of S and 51 is takem Lo be small.
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Soiving Eq. (6.7} fc& w one finds that for a wmarginally stable of

unstable mode the real part of the frequency is given by Relw) = w;lz.'

" There is also z stiabilizing component proporliocnal to ﬂz&/&. chx;

lg‘ =0, w ==mi/2 and P skg 1 in Eq. (6.7} the terus So(,j mult:[plying

fhe First term and S ‘multiplying the second term are slightly .

' déstabilizing foér msz positive. .In real goometry, wh'ere oy changes

" sign along a fleld line the net effect of these terms is hard to

determine but is smaller then the effect of w® in the first :t'e.m.".
Neglecting the higher order finite Larmor radius effects :(setting
G =0 = 1) and taking K‘ = 0 reduces Eg. £6.7Y to the Familiar
interchange dispersion relation including the lowest order FLE effects
on the fton Ex B drift{1sl.’

There are five scalar parameters. in Eé. {6.6} B, w, 0w, T a'nd.‘r;.'

The ion temperature does nob occur explicitly but is preésent in p, P

angd ar- The ratio of remperatures, T, appears in the pressure and is

usvally Jjust specified. 'Uﬁé of. t\ﬂ.e'fema:.t.ning péfameters can be
designated the eigenvalue in Eq. (6.6). This st1ll léaves thréé .
paraseters in this equation, hence, thre'e.addit‘lonal constraints dre
needed. We are iuterested in calculatlng the ‘beta 1init of a device, ..
s0 we want to find the boundary batween stable plasmas and unstable
ones. Ope way of finding points on ‘this boundaty 1s to solve

Tq. (6.56) with an equilibrium of a specified B and look for the

marginally stable mode with the largest “ion l:empe.ratu.re. This gives

three additional comstralnts and the problem is fully determined.

This {5 the approach that will be follewed here:
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QB.'Appfoximaie_Solufioﬁ

.1'_1:.! thi:s secti;n an aéproximate solution to Eg- (6.65 is
-f.or.mulatéd. 'ﬁé method is similar to that used in Chapter 3 for
“solving the hizh o MED equation. - The met‘.hod involvés. a pertu'rbét ioﬁ
exparisio'n. -'a’boét the m == solutien. The difference 1s here the limit
o= "_-fiil be taken holding a@r = oin].r and'm; fixed. The alternate
'Z...:'me'i':hbc.i. of Spiles[42] who solves the high n equations by expanding in
...te'rmé ‘of a . complete set of eigenfunctions along 2 field line could
. ;Isé be applied here. However, usiﬁg the method presented below, 1t
ie e'a'si'e.r. to obtaln explicit solutions o the problem. Tn operator

notation Eq: (6.8) ‘can be written in the form,
Wx + !ux - Fop DL
& TP -

'_._-,'—-ﬁnto'mfn(eﬁ'--'mz)mx'-.%mi', o T (s.8)

- Cvhere 'm'x='a—(§?1?—‘

L) X2
B0 32 9, 5x MO T I
et sty te 9%
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SRR TT el g0 ax  woP
ME= -_ﬁ{uummim(m —ap) Iwa (GG $1%)}

" ’

WO P T i o yy HEP
+_§24uummfl(w “"_1’ 326 (W"'-—Bz— 5y .

If we treat 1/o® as the perturbing paramete:‘: in Eq. {6.8) the lowest

‘order equation is,

Wh - d0pDSI% = —edR . - (6.9)

Eq. {(6.9) is a Sturi~Licuville type of equa'tion and is solved using

periodic boundary conditions. In a device with up-down symmetry
Ssolutions to Eq. {6.9) have either even or odd symmetry with respéct
to feflection oh the mic}plane.. The quantities a, w, W, T and .'1'1 must
be specifed to determine 359G and S1 . Elther pf or m% can be
specified in Eq. (6.9) with the other solved for as an e'iger.walue.

2

Serring wy to zero and solving for pf, one finds the finite Larmor

radlus equivalent of the eritical pressure gradient, pd .4, If pf

is less then pf crit OO all the flux surfaces, then w% is always

positive and Instability cannot occur for the values of n, w, no and

Ty specified. If pd is greater then pf _.q¢ o0 a0¥ of ‘the Flux

surfaces, m% is negative on those flux surfaces and it is possible for

an instability to occcur for certaia values of =, w, m and Ti‘

The solutisn Yo of Eq. (6.9) 1is defired only up to an arbicr:a'r).f

multiplicatlve constant. Let us write Xp in terms of twe furnctions

Xo - %o @)Wy x) whére Uo(d x) is 2 solutfon to Eg. (6.9) ‘and tn
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éédition.sétisfieé a'noémai{zing.cohditioﬁ which.fuliy-détermines
U (¢ x ). The normalizing condition is completely arbitrary. The
“#inal solutlon for %o ~does mot depend om it. An equation for Ro (%) is
found by going to the next highest order ia 1/o?. To first order im
.Ifn?, Eq. (6.8) becones

LR +;lrm Ro(§)T0 - AopdDSiX - SugpfBS Ro(¥)I%

= 4“"‘0”“‘ - wiM R --ﬁlrm REIL - (6.10)

where ot =p" -~ pf mzi_ = ppmo g (@ —m;) —m% . p" 'is the
‘equilibriva pressure gradient, and Ry () is the ¥ correction to the

. zeroth order solution. For this perturbation expansion to be walid it
~{g mecessary to choose p6 so that both p{ and m"’i are small. .Generally
a value of pd about half way between the critical pressure gradient af
£q. (6.9} and the equilibrium pressure gradient is chosen. Since 1o
33 self-adjoint, multiplying Tg. (6.10) by Tp and integrating over X

eliminates terms iavelving X1 and gives an equation for for Ro (¥ )2
L4 mu m@)m & -vopl § B @G &

=~} f oM Ro 6 )0 & - ;3z§ To%w B () & - (6.11)

The nature of this gguation is more apparent when the individual terms

are written out explicitly using Eqs- (6.8},
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$ Tl RWUIM & = ol e

I aw - wop’
_+Ro{¢:) l-1§ T“r“:“%?('” e si) &)

v uop’ 2 3 20 . uop - o
§ ol t g aw) Sl te anl s
. {6.12.1)

A _
$ Lo RaGhITo & = Ro(¥)§ 5;2%_,501:1 & (6.12.2)

$ mrn REIW0 X

: : : T dRe(v)
-- %@ poronp e -w)) 3P0 B & —pe]

S
+ R [$ vomnale ”‘”i) 51250(?1 (W e S1h)? X

: o 1% woP :
d *
- H ) - .}
. 14 voronu e @) Do L0 {WJ’TF—SW“] axl .
{6.12.3) "
Sinre the notation by now is hopéless anyway let’s at least nake .

it convenlent for the person who has to debug the computer code used

to selve these equations. If we substituting Eqs. (5.12) into

-Eq. (6.11) the latter can be rewrittea in the form,

o o dRW) T
—{Ial -uammw(w ‘“’1)32] __,M___} +lay= 3l @)
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' . . {[uz'o - uommiw @ -m;)}aé +aglRo (e . (6.13)

_.w'he.ré ao,".al,. ‘dgy a;-s,"ab and ag are functions of ¥ defined as followe,

- . ‘l'h.e. Eq.I

e wot < w0 $ s B

ag=¢ 3 T S0l & . (6.14.1)
El 2 - 31) '

a "§ 3% -3*-5;— - G {6.14.2)

=¢ sfsgm W & (6.14.3)

RS ) i ) Im 34

a 3

ay = {4 = 5% 55 i s11m) &)
5,80  uop’ 2 5,2 wop’

(6.1&.6).

. . . am wop’ .
5 a%{ummiw(w ~ep § W 320 (5 + - %) &

: ST . :am'. ugp’
= ug o (W ~m:)§ st fiw—J"—Bz-«Slﬂ)}z &}
. . (6.14.5)

(6.15.6)

(6.11) 13 4 second ordar ordinary differeatial equation for -
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g ).  The boundary conditions are ‘that Ry go to ‘zero on conducting

‘surfaces.

As was stated éar'lie‘r,’ ‘tiro - additional comstraints are needed to.
Jetermine the seliution to Eq. {6.6). To obtain- these constrainis, a
varfational principle is constructed using Eq. {6.13) by nmultiplying

by Rg{y } and integrating over $.

Ro(li')

- f {al -uommiw(w —Ni)azl | )2
+[ lag - a3] G &

- [ {w} -voronpu ~w1nao ¥ a5} B ) & =0 .
{6.15)

This eguation is quadratic inw, i.e., It 1s of the form aw? + ks ¥ ¢ -

"= 0. The requirement that the soluticn be marginally stable means
that the diseriminant, ¥ - &ae, of Eq. {6.15) must be equal to zero. B

' 'fhis condition is satisfied by,

dRo (¥ )
[] vomwagp} 2 [———]2

v+ [ vimaw] ag B &)

dRp (v)

-4 uumia;{ @+ @ [ womng ag BE) &)

dRe (%

cx[-f (“__]z' & +f IanaaI B &

LR Wl rasl BN L (6a8)
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- _ B , o
Using the relations nmd = %Ti— - and wy = - -—e--% Eg. (6.16) gives

an eguation for the ion temperature in terms of uf.

T .
11 _ hlet + w?e2]led ~ el 17
e 1+t = 1cs + ¢3]¢ ? (6-17)
dRa(ﬂ _
Cwhere  e0 = -] 3 { 2 + ] lag - 3] Re) &, (6.18.1)
el = | Wwhag +asl I ¥ (6.18.2)
2= [ womgp ag BU¥) & S (6.18.3)
3= ) omp” ag B ¥, ' (6.18.4)
dRo (¥ ) _ _ '
ch = f uo:nip ay [ __W_)z s © T {B.1BLE)
drg (&}

cs =] uomip ag {Hq a . o " (6.18.8)

The second requiremer;t is that the soiuticn. be a. ma;xi;mvnm, i.ae.
ths matginally stable solution with the largest temperature. 'fo find
the extremunm the derivat_ive of the temperature with respect to n? in
Tq. (6.17) is taken anad set equal to zere. This gives”t‘ne following
polynonial whose roots determine the toroidal mode number

corresponding to the largest tenperature,

PIx ok clx e5 + pPx X ek adx cb

& pe2eelxeed + clxe el ~ HeleMed) ~ elxexed =0
' (6.19)

"from Eq. (6.20) thatw = %m
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where p = 1/t . TFor betas just above the MHD ctiticzal beta the modes

are localized In ¥, the coefficients cb and ¢5 are small atd the 2

corre.spor'xding to the largest temperat{xre is approximatel}

@ = 2 ¢0/cl . By numerically evaluating the coefficients it .'cau be.

shown that there {s at most only oue positive root te Eq. (6.1%) and

this toot is a maximum.

At warginal stability the mode has the real part of the frequency

given by,

T o5+ €3

. o
R e T T
C dro (¥, - CoT
AL L B e O
"'i? m@} )

Jpag(—-32 & -2 [ pag BRI &

In the case whera the mode is highly localized'inf it can be seen a

I where m; is the Jocal diamagnetic -
nT
frequency, ®g = - te

e P .
The lowest order solution to the probiem consists of solving five

simuitanecus equations: Eq. (6.9}, an ordinary differential equation
in ¥ which must be solved on each flux surface and detemxnes the
structure of the mode along the field lines; Eq- (6 13) which is an
ordinary differential equation determining the structure of the mode
perpendicular the field lines; Eq. {6.19) the equation detemtnng the.

toroidal mode number; Eq. {6.17) for the dom temperature and
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'..Eq; .(E..I.ZO).for the Eteﬁuéhcy of .I:'ha'fnode.' Io theory Eg. tﬁ .19) is not
" needed. If the ._remai.n'i'ng equatiocts are satisfied self.—consistently, a
'_ is defenﬁiﬁe& uni'quely.. In practice the equatlons are solved

: ﬁu:;.:'ei-icall.y "i:s'.in.g an itera.ti.oﬁ scheme and Eq. (6.1%) is.a necessary
.'i.nt:.e.t.?ﬁ'edia“te ‘step for the procedure to converge to the desired

solution.
e, Nﬁmetical Resﬁl'ts

_ : _rhe's.c.h.emé -ﬁsed' hE‘ré.iS to. calcﬁlate the maxi:z.mm.temperatur'e of a
ma.rgi'n'al'ly 's.tab‘l'e'mode using an 'eql.x"llibrit.xm'of a speeified beta. The
) ___équilibria were c_alculated' using the MAD equilibrium code descrided In
) .'f;'ha"p.t'ef 2 and eqﬁilibrium quén‘:ities were 'm'apped out in flux
_“t.-;obrdi.nat'es far éubsequent ﬁse.in the stability calculatiom. By
caleulating the stability of a sequence of equilibria with different
".-'be!':'a,'t":ie boundary between ‘stable and unstable regions 1s papped out.
- -"I‘!";e'.evén sode 1s more unstable then the wdd mode when finite
tarsor radius effects are included. With.finite Ion Larmor radius
..'..t}.se'mdde is 'm'or.e spread out In the ¥ éirect.ioa. gver the sextent of
‘the sode the average critical préssure gradient for the evea mode is
.;;l'mcs: always smaller then the critical pressure gradient of the odd
mdd.e...'.:‘l'h'e only exception Gécurs when the adlabarie terms are retalned
".in't.?;e analysls where .in the 1izit of oy * 0 the odd mode might be

Gore unstable then the even mode for ‘certaln préssure profiles. This
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situation 6n1y ocr.;ur's for betas slightly asbove the MAD critical beta.
Only the even mode will be considered here. .

Eq. (6.9), Eq. (6.13), Eq. {619}, Eq. (6.19) and Eq. 6.20) are

“solved by a procedure consisting of two lterations, an inner iteration

nested inside an outer iteratioﬁ. The outél‘ iteration starts with a
guess at the wvalues of Ti’ © and n. With these quantities and the

. ) *
equilibrivm gquantities Wy, Py and n, can be computed and hence, are

kfiown as functions of ¥ and X .Eq. (6.9) is solved on a number of

" equally spaced flux surfaces betwsen the two conducting boundaries or

whatever flux surfaces are designated the boundaries of the mode. The

iowest order pressure gradient; of is ‘¢hosén with the strategy of
}ieaping p! and w% small. Here pf = {pf .pqp F p’)/2 was used where
of crit 1§ the critical pressure gradient found by setting mzo to zero
in £q- {6.9) and solving for pf as the eigenvalue. With this cholce
of pf, Bq. (6.9) is solved for T¢ a0d m%. "The quantities ag, a1, 823,
ay,-a, and ag are calculated on each Flux surface and so are known as
functions of V.

It turns out Uo. "aﬁd' mé ha;i;e oﬁly a relatively .weak' dependence’ on
Tyo @ and n. This is because the finite Larmor radius effects of the
functions 5061 and S1 tend to cancel each othér. In the inner
iteration Bq. {6.13)} and Eq. (6.19), Eq. (6.19) and Eq. (6.20) are

solved self consistently keeping the funetions ag, +ee 2tc., fized.

f‘irst, Eq- {6.13) is solved for Ry ) and the eigenvalue a. The

torofidal mode nuzber, n, 1s then recalculated using Eq. (6.19). With

"this value of a, Eq. {6.19)'1.5 evaluated for Ti’and Eq. (6.20) for wi’
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From these néw Qaiues'of Ti,'m ;nd n- the quantitié§ wg and nﬁ'can be:
.célcuiated and the inmer iteration starts over. The inner itération
C s tested for convergence by comparing the value of o found as the
. eigenvalue of Bq. {6.13) with the n cotresponding to the largest Ty
czlculated from Egq. {6.19). If these two values agree to within a
relative error of 10—& the outer iteration is started over using the
" new values of Ty, 8 and ns The outer ireration Is tested for
. convetgence by comparing two consecutive values of Ti‘ When the two
“values agree to withia a relative error of 10—3, the solution is
.:éssume& to have converged. Uswally 13 inner iterations are peeded and
$ outer iterations are needed to arrive at a solution.

For calculations using the Levitated Octupole configuration the
mode was made to go to zero mear the critfical fiux surfzce and the
separatrix. This is a reasconable approxization since the eritical
flux surface lies close to the outside wall im this device. Actually
the mode was made to go to zero slightly inside the critical flux

.surface because of & recccurring probles with iaterchange modes.
inirially omne would think that interchange modes would be stablized
with the additifon of finite ion Tarmor radius due to m:[ié}. This is
:ﬁot true For the eguilibrium dsed im this caleulation because the
.finite {on Larmor radius czuses the critical flux surface to move
faside the ¥4D critical flux surface. The eritical flux surface is
defined as the poist where the average good curvature is zero.. The
éverage curvature 4rift of the fons Is not changed much with larger pg

{ﬁe:e:&er for egual fom and electrom tesperatiive the average curvature
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drift 1s the same for lons and electrons ) What is changed 1s the
amount - of charge separatiou that is allowed to build up since tﬁe fons
average the perturbatiou over i Larmor radius and ‘g0 see a saaller
perturbation than the electrons.  The ion Laraer radius 15 largest o
where the magnetic field 1s weakest whiéh; in tﬁé.case af the .
octupele, happens to be the good cufvature regioh. %hus, the finife
ion Larmor radius has the effect oleesseniﬁg thé.stabiliiihg
coatribution due to the good curvature. This efféét.ééﬁ ﬁé .
demonstrated by looking at pf erit® the FLR critical pressure
gradient. In Fig. (6 1} are plotted the equllibrium pressure gradient
HHD critical pressure gradient and the FLR ctitical pressure gradient.
Yotice the FLR critical pressure gradient'gces'ﬁO'zero'beforé ;Ee'
equilibrium pressure gradient and the MHD cfiti?éi pressurte gfadiéﬁt“
OUL Near ¥ .pgp- The flux surfaces outside th s.pniﬁt are .
{nterchange unstable. . There is souwe conLIicting experimen;al evidencé
for this effect. The pressure profile Is observed to be much more

sharply pesked on the separatrix for plasmas with large ion Larmor

radius. However, this might also be due to obstructions close to the

separatrix limiting.the plasma.

The mode was chosen to go to zero at the Sepafatrix. The reason
ig that in the private flux zagicn the field 1fres have totslly good

curvature. Inside the separatrix the criticsl pressure gradiznt jﬁmps

by a factor of ten. Thus, the ¢ extent of the mode would be expattad

to dle off rapidiy imside the sépératrii.'
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The stability eriterion For the Levitated Gctupole is shown 4n
'fig'. (6.2). In this calculation the ions were assumed to be protons.
Tnstead of plotting B s T,, the marginally stable mode with the’
'-l;ar'ge's'z.: iof te':npe'rature,. it is better to plot B ws'py, where

1Ty : .
Py = _}_ﬁl_ , because B vs Py {5 independent of the magaltude of the

m

eq.ui.libfiu:z pagnetic field. 1In Fig. (6.2} 8 and p; are defined

Ny 1océliy on the separatrix In the bridge region. ' The bridge reglon

'_--hére {s dafined as the teglon between the outsidé ring and the outer
._ual.l'...' 'i'his point 1s chosen for eazse in comparison with experimental
...r.e.s'u.l.t;. 'rhis ﬁ.lot shows that even for a moderate average ion Larwor
'f:a'ﬁi.ds"'the'ré fs a substantial increase in the critical beta above the

’~THD result of 4.31. Plotting B vs p; depends on the shape of the
e"qu.ili't}'riu..n pfessﬁre profile. 'The plet of B vs p,;/L,, Fig. {6.3), is
.mﬁepeﬁ&ent of the deta.ile& shape of the pressuve prefile. The

) .quant.itj; Ly 1s the. d;ex.ns.ity scale length ‘defined here as the dlstance

" ‘between the SEpafétr{x and a point halfway down the pressure profile
1n the bridge tegion.’

':.:\'su:rmary' .of “the 'pe'f.:.i'ne;:'t fé'éuits ‘of ‘the .stab.il.ii:y Fins for the
‘.Le'v'i'.tated Octupole can be found 1n.Appen'dix E. For the calculations
- -_'pre:se.'n'téd hera, the ‘equilibria were self~congistent for values of beta

" ramglng betveen 5T and 177. For batas of 18% to 20%, the MHD
. 'équ.iii'b'r.i.tm'f.ér 8 = 177 was used and the préssire was scalad
éﬁp.fc.:pr.i'at'el'j-: This detinfzion was azain chosen for easy comparison

,._éitﬁ'exjﬁééimentai results. For the pressure profile used in this
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caleulation Ly 1z 1.4 cms for a B of 14X and 'slightly'.wider'fo.r )
smaller betas.

The Xg eigenfunctions for the marginally stable mode with the

- largest jon temperature for betas of 5.5%, 5.0% and 10.0% are shown in

Figs. (6.4), (6.5) and (6.6), Tespectively.’ The quantity X is
proportional to tElg. The term E1g is.the largest component of the

electric field for this mode. Typical of the balleconing mede the %o

‘eigenfunction is peaked ia the outside bad curvature regien in the -

area of the steepest pressure gradienmt. This sequence of figures

shows that as p; is raised the ¥ extent of the mode initaily spreads

out rapidly and then doesn’t change much.

A given 8 and p; uniquely define the ion deasity, m 4. This’
gives ahother way of plotting the stability criteria. Fig. (6.7} is a

plot of the ion density vs 8. For a given beta the balleooning node

" sets a density 1imit on the machine that does not depends on the

strength of the magnetic field or the temperature of the plasma. Ia
'.che Levitated Octupole as beta gets latger the critical density levels -
off at slightly less then 1(]13 pa‘rticles/cms . Below 4.3% there 1s no
¢ritical density imposed by the ballcooning rmode. .

By far the largest finite Larmor radius effect stabilizing the .
plasma 13 due to w;. _Thié 1s the same effect that stabilizes the
interchange mode in the analysis of Rosgé_nbluth, Xrall and

Rostoker[14]. ‘A good way to 1llustrate this is to calculate the

*

stablility criteria keeplng teras that 'depend on @, but lett{ﬂg'pi + 0

i the remaining terms. ~The resuit of such a calculation 13 shown in
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Fig. (6.8). The remaining.FLR terﬁ; have the net effeét of
destabilizing the plasma but enly by 2 swall amount.

In summary, using a high n expansion a method was formulated for
séiving the ballooning mode problem including finite Larmor radius
effects in multipoles. The largest stabilizing effect Is due to the
difference in the E = B drift of the ions and the electrous, the same
effect that stabilizes interchange modes. This has a dramatic effect

on stabilizing the ballooning mode and imcreasing the beta limit.
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Fig. (6.1) MHAD and FLR Critical Pressuré'C;édiegf

p - vs ¥ For B =6 2L for the'équilibrium presssufé gré&ie;t, ﬁﬂé
critical pressure gradient and FLR eritical pressare gfadiént. The
FLR critical pressure gradient was calculated using'quantitiés of the
marginally stable mode with the maxizum preésuré'gréﬁient; ng g o= 433,
Ty = 24.5 eV, and ; = 4,65« 10° sec—l. This plot shows the FLR term
81 has a sligﬁt destabilizing effect and *cri; moves Inward meaﬁiﬁg
the eguilibrium is interchange unstable at the.edgé.':

« 0.812838, ¥ = (0.521315.

'crit. sap
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?ig. (6.2) Stabllity Criteria for the Levitated Octupole, 8 vs py-

Stability Criteria for the Levitated Octupole plotted as B vs pyg
T
where Py = ;i,ﬁl‘. Both B and py are evaluated on the separatrix In
171
the bridge region. The plot shows that even a small {ncrease In the -

jon Larmor radfius can substantially increase the beta limit of the

octupole.
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Pig. (6.3} Stabllity Criteria for the Levitated Octupole, B ws gy/L,

Stability criteria for the Levitated Octépdie plottea ;gzé.ys =
p y/L, where 8, py and 1, are evaluated on the saéafatrix injthe '
bridge reglon. The density scale iength'is defined here.as the
distance from the separatrix to a point half.uéy éown the pressure
profile on the unstable side. This plot is reiativeiy'ﬁnvatiént'to

changes in the shape of the pressure proflle.- For compdting theory

_with experiment this plot should be used.
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Fig. (6.6) X Eigenfunction for 8 = 4.5 %

STABLE

| BBrldge Separatrix (%)

o. Io The X eigenfurction for the m'ar'.'gin'ally stable mode with the
0.08 . largest ion temperature far B = 4.5 %. a= 3428,
0.06 oo = 3.0x 1023 e, Py 5.4 x 167 m, plotted vs § ‘and relative .

’ “length along field 1ine. Typical of a ballooning mode, X peaks in -
0'04 o L S . SR o . the bad curvature reglom near the flux surface with the steepest
0.02 | o : . _ : L pressure gradient. Wgoo, = 0.330687 ,¢.;yp = 0.823312.
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“Fig. (6.3)
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Fig. (6.5) D Eigenfunction for B = 5.0

The %o eigenfuﬁction Eo.r':. the margi'nai';ty:‘st:;ble 1.node ‘with the
largest-ion tenperature For 8 - 'S.IOIIIf. ) _.n - 942, - 1;&::( 1022 e,

o Lo

|4

Py w2 107% m; plotted vs ¥ and"relative length along field
1ines. As thé toroidal mode nu::ber'&ec.reases the ‘mode has a longer ¥
wavelengths é'sep = 91527545

#orge = 0-819758.

Tig. (6.4)
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¥rig. (6.6) X 'Eigenfunctio'n for 8 = 10.0 X

The X eigeafunction _fér ‘the 'margi.hally ‘stable mode with the
largest lon -cérﬁéer'a’ture for B = 10.0 % n = 716,

: 56 . S _ -
‘o= 145 x 10 i3, py = 2.9x 10 5 m, plotted versus ¥ and relative

length along field lines. ¥ gop = 0-496626 9 opgp = 0-784459.
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Fig. (6.7) Stability Criteria for the Levirated Octupole, mj'i ¥s B

Stability Céiferia for the I.F.-.vita'ted Dctu.p.ol.e' plotted. as myy vs.
£ . The quantity =0; is the ;;eak fon density ':a'nd £ is thé beta
defined locally on the separatrix in the 'bridg.e region.  This .p]..o.t
shows above 8 = 4.33 T for a given & there is _a'criticai.density

above which the octupole 1s ballsoulng wode unstable.
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Fié. (6.8 Finite Laruot Radids'szec:s on the Stability Criteriﬁ

Stabiiitf eriteria for the Levitated bétupole calculated keeping

terms that deéend on w; butsletting.bi + 0 in the remaining terums

. compared to the stability criteria plotted tn Fig. (6.2) vhere all

terms were kept. This plot shows the main stabllizing effect is due

Ediﬂ; with théxremaining FLR terms having ‘a swall destabilizing

‘effect.
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CHAPTER 7

Conclusions

A. Suzmary of Results

Let'# summarize the béliooﬁiﬁg.modé and.bet% limif céléulafion
for the Levitated Octuéole. In Chapter 2 a éroéedure for calculating
MHD equilibrium in multipoles.wés discuésed...A cSmther code using.
this procedure was developed tb.calculate the MHD equiiibrium of a
wide variety of multipoie configﬁfations. For tﬁe Levitated Derupole -
configuration it was found that there are twe mals effects of high -
beta. As the bheta Increases the.plaﬁma.pushes flux out from.the
center of the plaswa fhereby increasing the minisun éverage'B.veli.'
This has a stabilizing effect on the baliooning.insﬁability. However,
another opposing effect oeccurs. As beta is increased the &istance,

measured in flux, between the separatrix and the critical flux surface

shortens. This steepens the'p}essure gradient anrd has a deétébilizing

effect on the ballooning instability. The et result of these -two

effects is that high beta has a small'destaﬁilizing.effeét'cn the

critical bets calculatéd from ideal MAD.-

The 1deal MHD stability was idvéstigatéﬁ'in:Chaptef 3. The most

unstable mode is the one with the smallest waveiength in the toroidal

directien. This is the mode where the limit of the torsidal mode

number geoes to iafinity, o+ @, This mode is the most unstable

because it minimizes the St'.abi'liz.ing ‘Contribution thét.wo'u.lc! result if
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:the'fielé Iiges'were'ﬁeﬁt in.the toroidal direction. For m + * and
.:mafgiﬁal stability the mode 1s i;compressible. In the limit o » =
; :mo&es are localized to a fiux surface. The radial extent of the mode
| iz 3 delta function of the variable ¥. The most unstable mode
generally occurs near the flux surface with the steepest pressure
.gradieﬁt.-'The most unstable mode is the even wmode because it bends

thé fiéid'iﬁne iu.the.v éirectidﬁ the least. The critical beta for
'tﬁé ﬁ > » sode iﬁ fhe Leﬁitateé Oc¢tupole 13 8 . = 4.337 where 8_ 1s the
._local béta on the separatrix in the bridge regioun.

Also in Chapter 3 modes vith high but not infinite toroidal mode
numser were considered. For an equilihrium beta greater than B there
 _exists a critical mode number, LI Modes with toroidal mode number
:greater chan nc are umstable and modes with n less than a, are stable.
-The radial extent of a high but not infinite 7 mode 1s no longer
Jlocalized to a flux surface.” For the case of the marginally stable

ode the radial extent of the mode spreads rapidly with increasing
.beta and eventually t%e mode covers the entire regionm between the
..separatrix and the critical flux surface.
. ‘An atcampt was made iz Chapter 3 to approximate the efEect of
finite Larmor radius on the ballooning mode. It was assumed MHD modes
Tget convarted {ﬁto drift type waves in a manner similar to flute
moées- .fHe baliooﬁiﬁé modé.was.found o Se stablized if mzz > - m”%HD
'Uhere »I is the d{aragnetic drift frequency and »qu is the MHD
‘kequLﬂky.of the node. From'this condition one can solve for the

.'maréinéllf.#tablé'bo&é with the largest value of oy/rl . For a given
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beta the critical value of pilrL 1s found to be { i,c =
where ¥ is the growth rate of the most unstable MHD mede,
¥2 = - m%mn wins For this value of Di/an the marginally stahlé moée
has 2 = % T For pi/Ln = (0.2 in the Levitated Octupole where Py is
measured on the separatix in the bridge and L 1s the density scale
length of the plasma in the bridge the beta limit is predicted to be
abour 8%.
Two different kinetic effects oo the balloOning méde ware

considered. In Chapter 5 we looked at the Kruskal;eberman stability'

" of the nultipole. 'The Kruskal-Oberman energy principle includes the

effects of the parallel motion of the particles aleng field lines.
This energy prineiple always predicts greater stability than the MHD
energy principle. The Eruskal-Uberman energy principle is similar to

the MHD energy principle except the i&ea} fluid adiabatic term iIn the

‘MHD energy principle is replaced with a kinetic term. The nmew kinetic

term 1s stabilizing and Includes effects due to cellis anless

adiabatic compression of the plaswa and the Ferml acceleration of cﬁe

particles. In the Rruskal-Cbermzn analysis the an+ = wode 1s still

the most unstable mode. The.cri:ical beta.of the Levitated Octupole
for the even mode 1ndrease§ mddestlysto 4.70%7. This represents a
relative increase of 9T in the beta limit. The kinetic terms in the
Kruskal-Obermzan energy principle ave proportional to beta so if the
beta limit is increased by some other ==ans the Increase in the beta
1imit due to the Xruskal-Cherman term is proportionally greater. For

8 = 4,702 the odd mode 1s slightly unstable. The kinetic terws in the
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: K}stal-bbetman équétions heip stablize only éven'modes. _Rencg, for
Rruskal-Oberman szabilitj the cdd mode is the most unstéﬁie aede in
fhe Levitated Octupole..

Another kinetic effect, finité jon Larmor radius, was considered
1n.CHapter 6. In this analysis the effects of the parailel particle
'_-dynamics vere neglected.. The derivatiom of the high o equaticns

governing low fraquency zodés followed along lines similar to that of
the high o MHD equations. The largest finite Larmor radlis effect is
...dde to the presence of w: in the equations. This term appears from a
- diserepancy between the % x & drift of the fons and electrons. This
..éiscrepancy is due to the difference in size of the fon and electron
Larwor radius. The effect of Q; on the MHD mode 1s similat to the
; Einite Larwor radius stabilization of the flute mode[I4] but here aa
~glectromagnetic drift type mode is excited i{nstead qf an electrostatic
drify type mode. The increase in the beta limit'due to€»; is large.
fn the Levitated Octupole for an p /L, of 0.20 in the bridge repion
the betaz limit increases to aboiit’ 10%. ) .
A given 8 and py uniquely define an iom densi£y. This means for

S a given beta the ballooning mode sets a density 1lizit om fhé ﬁachine-

This density iimit depends Suly on B and £y and not specificall; on

. zhe magnetic field strength or the teamperaturé of the plasma. .In the

-~ Levitated Octupole as the beta gets latge the critical density levels

Coff at sbour 3.0 x 1083 particles/cm3.
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Afiother &ffaect of finite Larmor radins 1s Lo move the critical

flux surface In closer to the sepafatrix.. This means that a plasma

with large fon Larmor radius has a naffoﬁer,.moré sharply peaked,

‘pressure profile then a plasma with-smail Laraor radius.
3. Final Commehfs:

In.thiS'tﬁesis kinetic.eff;cts'gu'the.lineaf.stabiiit? af th§ 
ballooning mode were considered. Houever,'thé kinetic equﬁtion;.that
were derived for this study are fairly genefal and can be used to
study other low freguency-modes as well. For célculéting'tﬁe'
stability criteria only one type of unstible mode was conéiaefeé, the

ballooning wode. -One should keep in miﬁd; other types of modes might

- possibly occur before the beta 1limit, that was caleulatad hetre, is
" reached. Because of the complexity of the low frequency kinetie

equations there Is the poténtial for other types of “unstadble modes.

There are many different guestions .cencerning baliconing wodes

that would be interesting to Stﬁdy.if time pefmittéd. Drift and

bounce resonances were nol considered in the calculations here. The

spectrum of bounce frequencies in the muitipole fs fairly droad so one
- would expect o find some resonant effects. Another thiag that was
"' not -done here but might be iﬁteresting is to consider a fultispecies

plasma. Fusion Treactors are expected to have at least a small anount

6f some heavier iok species: ‘A qué§tion that should be addressed is
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".éﬁ;thef a §£nbrity.spéc1es with a I;rgé.iarﬁof radius can
tsighificanﬁly stabiiiiéstﬁe hélléoning mode.

_,\1Z“Ihe ﬁuitipﬁie config@ration has ‘been suggésted és-a possible
advanced'fuél'fusion.feéctor. ‘Ote interesting application of the
: éompuﬁér codes developéd for studying the Levitated Octupole would be

: to'optimizé.the.mdltipole design to achieve a higher beta Iinit. Tt

is not inconceivable that ideal 4D critical betas of up te 10% in the

.':'btidge fegion'could'be'échiévéd for the octupole configuration.

'::FOQ sfudying the:bailooﬂing mode the kinetic eguations were
eipaﬁded is.ﬁigh n. For-the ballooning mode the high n approxisation
. is ushaiif pretty'goéd; In fhe dase of the Levitated Octupole one
-runs.ihtﬁ proﬁlems of the-qﬁangity pi/La not being s=all before the
-hiéh n”apﬁrdximatioﬁ becones questionable.. This leaves the topic low
'ﬁ}.10W'fréquencj.modes iﬁ.the.multipoie unaddressed. Whether or not
.:iov'ﬁ ﬁoﬁés are iwporkant needs further study.

““in the analysis presented here the plasma is cﬁngidered to'be:
'Eollisioﬂiéss.'_A coliisibnless'theofy has relevance fo fusion reactor
.plasﬁéss: The pia§ma ina fusioﬁ:reactof will be hot encugh to be
uithinhthéiEdllisibnléss régime.. However, most experizental plasmas
ZQr;:tS some degféé ¢6111s16nal.” Analyses idcluding the effect of a
”sﬁali collision fféqdency'havé bveen done elsesheref25,26]. -As far as
_ the haildoniﬁé mbaefis'céncerned collisions only have &n appraciadle

Ceffect dhes the collision Frequency -becomes greater than or-comparahle
"%d.the HHD'g;auth rate. - ‘Many experirental plasmas have a fairly large

“eollision frequency particularly at high beta. A theory is needed to
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treat these sirvatfons. Alsc in the analysis présented here the

Larmor radius 1z considered small and the quantity pi/Ln'is used as

expansion parameter. Situations occur frequently in plaswa devices

‘such as mirrors and multipoles whére p /L  1s not small. In the

ﬁultipole p /Ly can ot be considered small sear the Field null and

 for latge betas. Fortunate for our analysis p /L is-smallest In the

bridge reglon where the ballooning mode is localized. For the’

Levitated Octupcle values of p /L, up to' 0.5 are calculated for the -
stability ‘eriterion. This is admittedly stretching things a bit.
.Hoéever, for ‘lack af a better theory the calculation was extended iato

‘the high beta reglon so that the experimentalist would have something

to compare thelr data with. Since the beta limit of high beta plasma
devices 1is impértant a theory ‘appliicable to high pian is needed.

What really happens when -2 ballooning mode occurs i{s not known.
The.bailodning mode has yet to manifest ltself experiwentally. In
tﬁis study ouly the lisear stability of the ballooning node was
considered. LimeaT stability‘th&ory is an extremely valuadble tool for
finding out' the tfpes‘of'waves ané Instabllities that can occur in a
ﬁlasma. ‘Linear staﬁility theory is aisoc fairly good at predicting the :

point where a mode becomes unstable. Howevar, Ilinear stability theory

often falls to predict the long ternm évoultion of an unstable wode.

For this the nonlinear stability of the wmode wust be calculated. - A

nonlinear kinetié theory of balléoning modes could answer many of the

questions concérhing what happens when a ballooning mode occurs.
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‘APPENDIX A

Coordinates
Spatial Coordinates

The right handed coordinate system used thraughout this papef
coasists of the terms ¥, X, and 8. The term & is the angle in the
toroidal direction. The term ¥ is related to the poloidal magnetic
. flux by ¢ = 2x *P and 1s perpendicular te a field line in a constant

plane. The term ¥ measures along fleld lines.

Volume element dV = F & dx 49, where F is the Jacoﬁiau.

2 E]
%5‘;“(532) = = ug % . . (a.1)
'.Liue element:
a? = ?fla‘f &+l a2+ 2 @ . (A.2)

bivergence:

N
L
as
jc:.

&

-t}

(4.3

Gradlent:
af » 1 3£~ 18f 3
Ve rBE§.¢ + 5 5 +.;.T;8 .
Curl:
b 33 3. 3
v = )v*m{g.{me}—ﬁ{amx}] .
5y 3¢ 1 ?
@ x Ay =Bl o) - 5l -
L IRV T |
AR VIS f e I~ ) I
"lLaplacian:
2, 173 36y 3.1 3y . § 3%
V=2 5332_}+~—(§~]+Fm]
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(a.4)

(A.53.1)

(a.5.2)

{4.5.3)

(4.6}

(8.7.1)
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() = 1 12
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. Cee
TR Byt A g
.Diver:.geﬁce- of ‘2 Tensor:
e 13 13,1, 3,19
. _..(‘7 )y 35{&3 PW] + Eii{”syxﬁ] +?_3_8_[P3“) (4.8.1)
T 3. i t‘é : or
YR 3adEs T B TN TRl By v
my .. 103 - 13,1 B '
G P)x -3-?{:(51:3 wa] +§§7(§Pxx) "'”Eﬁ“ex) (A.8.2)
" r 9 ) 1 r 9 1 @r
By 3 5"55{??] * By ‘35@‘[43) 88 3E 5y
T 131, 4,13 L .
V- f..gﬁ.&{SrB Pug) +§.H(ﬁﬁyxe} +?§§.[PEB) (4.8.3)
Y pg, BE 47, L%
A ¢ Byp 8% 38 x
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Velocity Coord inates:

Relow is a surmary of the velocity coordinates used in this fwaper.'

) Y= VX + v*q; + vgh . (A.9)

{w»v &) coordinates:

Y = %X "'_"1;‘ _— . . (4.10)
wherevIEvim,vi»v%-i-vi,m=-sinC’¢+cosCB S
v
and tanCE-i .
. v

Integration over velocity:

3 b 4 - - .
J@ve=][g ®fydn [ydyvE - o (A.11)
where the sun is over the sige of ¥ -

{€ 3 &) coordinates:

vhen gyvroaveraging the lirear Vlasov eauation the coordinates €,

¥, L dre useful, where § has been defined previously and,

" {A.12)

|
»ha
4
(1
o
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maf ol
wl s

- : : (A1)

Integration over velocity:

£/B R

3 o
[ @&ve=1], &f,&l, & ' (A.14)
1/e 0 o To T .

. b | - €/
";%Zfa & [, * J.u

B B
¥ e

"For an eqﬁ'.i.librium with £ =0, 3%t = 0 where X Is the vector

potential, § =V x %, the following time derivatives holdl’

&
—_— 0 .
dt {A.15)
L AL 5 jﬁ vie (;-V); : (A. 16)
dt B BoA e -
g .o~ - . e i e me A al
-"‘g"i“"(l" v;)-i-uvx {p-.(p-?)x -z (VX -
. n . .A . ‘. - a"m
where p xcos ¥ +s5inl B = o
3L
and v’D = vB =x x (u¥s + »i M.
o M. . : :
T R e B O S R (V5 1)
dat vy ) R

. The following monents of ?_t and

for deriving

H
F- 4

the equation for fi.

x q

}0 —&?&’0 »

& L8 v - e e
E”Ei =3 pelx x vpl-wv pr {2t K
a-d,' RS

Jg Pz & =-wvyp

o

o cos § a»{dtxﬁ .
ﬁ" _. . du T 'VL'Q
In sin ¢ d—dC*-—-B
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with respect To § are useful |

(a8
(5.38;2;.
(a.18.3)
'(_A;ls,a)
(a.28.5)

a18.E)
:(:A.].S.T)

Felxo¥
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: -.-1 > £ _ - ;' SRR o (4.18.9) . : : : -~ APPENDIX B
= sinc.(gg o} &« -0, o _ : :

Perturbed Field Répr'esehtat fon

E "2-1’—,{:' sin{ cos { (f_t - ﬂ} dC =0 ’._” (A.18.10) -ﬁelow are. somé useful ideatit.ie's' of the pért;urbed field
. o S Tepresentation used in the derivation of some of the equations in ‘the
e 3 oaE dc - : text. The compcme.nts of the perturbed vector potential are written fon
_ ';Io sin? T (?i'{ -0) =0 ., | | (A.1B,11)

terms of the quantities X arid Y where X = rAy and Y= 1 “A-.pf"f.’ « -The
X ~—conponent of the vector pote'ntia'i is retained here for coﬁ:ﬁletene'ss
L b_ut in the text the gauge condition is choosen so that %( = 0. The

£ a ,ﬁ) coordinatest

(#, X, 8) coordinate system ig used. Compoments of the perturbed

wagnetie and electric field:

‘It 1s useful when integrating over pitch angle to use the

c.c;ord'inat.e'u ingtead of ,. where @’ Iis' defined by, h . : . = b 8_5 L - . L

b : ) ) . Bly FE 3% + 1 = Ax N . . ) (B.1.1)
=¥ {A.19 = - 1+ 25
e 'E‘ . ( ) o .le iY 3ﬂf) . . . ) (3.1.2)
TR ma'fﬁéﬂl+ggﬁyﬁ)j S (8.1.3)
Integratlon over velocity: a X ¥ : o
T LRy | s e . Biy = - < gé" TR S e (B.1.8)
o oo de — . A.20)
f d_%f .73);'{3 % Iy Iy BT ( 1a.¢ . .

; o . . . ) o glx " 5 5 - i AX . . . | - {B,1.5)
Elg =128 -12% . : R (8.1.6)

Conponénts of the perturbed current density written In terms of the

" perturbed magnetic field; B1, using Ampere’s law:
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o H e e CEp n 5BZ[Y+E“} (8.2.1)

' - 103 ) 3 '

CEVEREL PP S (8.2.2)
1 9¢2 3 ' ”
-1 [ a_.a_qJ(an a0 +

. rp3 1 33X
wo g = g{rx{g;rg 5-{] (8.2.3)

_Components of the perturbded force density:

- 3 '
wo' = B +uo’h x Body» rB {1 ﬁ‘{’é?? ax] (8.3.1)

» 1 20aR(x+ 0] -wer(+ 3 s gl b

thll-‘

1 3%

% B o+ pay = — .
o x B +wo x Bodm - wop {éﬁax

+a 1A}, (8.3.2)

o
L

o x B +uod: x So)g- 31; {é ;x—(%—m (8.3.3)

- a 332\Y+§¥ -%[éa_(ss 1a0)} -

APPENDIX €
‘Beésel Function

Identities and Integral Relations

. 1 : 4 : .
Jp(a) - __MIOdE exp(ipf =~ 1a cos L)
o iP . L
where p is$ an integer. .
exp(* 1a sint) = } (-1)P Jp('a) & i
p—so
-JoCa) +2 . I(a) cos(x)
g1 P
coa Zipzzo Ippep(a) sial(2p+13]

1

—{ & cos{%) exp(-ia sin %)
% 0

' JP{a) for p even
- { 0 for p odd

— [ & sin{pg} exp{-1a sin 7}
> ‘4
'{ 0 for p evén :
-1 Jp(a) for p odd -

‘ﬁ'fott cos?l expi{-ia sia L} ;Jl(a) .

‘ %foﬂ: sin’{ cos § exp(=ia sing) =0
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(c.1)

e

ey

e

- €.»

L LE.B)



: ;Tfoct cos?t 'gxp(da sin )y =0 .

A
- |
s
_2:
5

foav e R b exl- :'2,?;_) s Tex(-Iw) (Zer)

' whers p 1s an integet.

.'fodv v2 Jo{vb) J1{vb) exp{-—.g]

(D s el 19 [wlIW) - n(E )
.I:dv v J%(v‘b.) é’xé(—.i‘f_]
2 (D el I () [1- 1)

+ I n( hz);'

27

-

IIO ?v > ..le(vb) exp(—. 12“;.)

L 2 (5 el

) (u(l ) - ul

Y. - sin?g ‘exp{-ia _515 £y = Jo(a) - -i— Ji{a)

fod'.‘ cos2C sin ¢ exp(-la sin L) = = -2 J2(a)

_fad'. cos T sin?f exp{-la sin Q) =0 .

T )]

. 4 sin®z eﬁ(—ia sta Ty = -} fa) - 3] .
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c.7y
(C.8)

(c.s)

{c.1)

(C.11}

AC.12)

(¢.13)

(C.14)

(C.lS)

'I'l;dv & Jo(vb) J1vbY exp{~ m_zvzf.,]

-2 (;).2 b expl - 7:‘ ) {nn(;b?-) (1- I

SwE -2 IV

foav ¥ B(vd) exp(- 523;—}

<4 (37 R enl- I) [3m(E ) - m(Iw)]
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KPPENDIX D 0 - . ' R ® )h‘ - 'iw'r X'Vh‘
¥oments of the Perturbed Distribut fon :
ments of the Perturbe :.Lstrlbu ion I-j.n.nctiou - (m - ) {(@ - X)Jg(a) - w B(Y ¥ 7531(3)
. T o : . - i SR B
Below is a list of the velocity moments of the perturbed distrile- _ v v'L?- S X 98 Jl(a)} (0.4}

T3 i . D -
o function, £ The last term ig of order p /LB and w’ill 'be neglected In integrating

£ = % £ {_'_¢"+ % %+ b explia sii;%).} o ©.1 " over velocity the expression for h* will be submed over +vx. : Té
. . lowest order in m/mb the expression for h' 1is,
‘where h is a solution to,
%(b'+ +0'7) = —'”—‘-‘»"i_ <(¢ - f—'i X)Jg(a)

u....-cu}

(o - mn)h - iv x-vn © ' o 0.2

- {w _2xal vy 37RO - wi By + 32)31(3)} _ Lo T+ 51(3’) L5
.with a'; = o . where 'h' hae been suzmed over the sign of vy and

ar ° : : .
Two fregquency regimes.vill be considerea, @ << u';b and @ >> @, with the . : ) f;(iA BY dy*

XY
appropriate approximation of h adopted for each Tegime. Here @, is <h> =

b 83 dx
r s B 3K e o vl
defined as w F tfx - vhere Y3 and ¥ are the end points of a _ o X
: R < R § : o : : -
‘particie trapped In one of the magnetic wells. _ First some preliminary definitioms. Define the functions ‘=

‘as follows:

Low Freguency Regime, w << L‘ub
»

1no'znw'2f2-v'f:ds /o g Julaldala’)

7 o < >

2

1 -2 Do {Bi6.0)
o e o . - I} )
For frequencies much less then a typical bounce frequency it is : . . R .
. . : . 3 T Jafa) Igla")
useful to write h in the form, . ' % B0 ;;31 = 2/2 7 f: g Ve ¢ f& L, > L
. L SR (D.5.1)
. : . o w
* : .
- {u~o0)=Jga) + 0 . o (0.3
_ . o . o o : : : ER | T eB" B
_where h' is a solution te, i : . . : gl 32 = 2’,“ ¥ .r” de /e m' <wp> * ;
. . . 1-= w0 (D46.2)
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Vil -re‘sbﬁance. Let's also define the following finite Larmor radius terms:t.

.‘B." .. o JII(IIa)

SR
W
[=]

Jn(a‘)
IR 2ia [ aefos, — 5, _ '
- L0 ey (0.6.3) . o E‘/ii&,ﬂ._
’ w . A m J\e *
. ) . -1 3 ) 2"= '_2_ 2 -
B, G2y, | | e =g f v 0@ = e D Tolap - 0.7.0)
N SR Ja(a') ) i
L= 2\/{1? I: de JS_ € flll <w_> F (D-G-A) G = j d3v f Va. 10(3)31(3)
. ] i - D : no T
[} : . .
= exp (-a2) {Io(a@'— 11D, 7D
1—§nu<>”“§. 25 . |
. B |
J;(a)";’n(a')”*” : _ ' G iR ader 32 To2(a) _
= 2/_ r de ve o> z R . . ) )
' EL = a2 2 _ 2 2 2 (D.7.2)
1- 5 (5.6.5) _ exp { a,l,) {Ig(a,r) 1 a:] +ag Il(a’l‘)} .
}_g_ no.('_f_)z g = 275 o j" de /- 3 f Jg(a).!g(a') L . Zeroth moment of fy:
- _lll g <w_> .
1 - .
[+]
“ (D.6.6) mp=faE L (0.9
l%uo(—)zan 37 = o ’ ,uo%{.¢+m§_(&_w)£co}
- L .
- L ' © Jela)y Iy (at)y TR : ; Cox
.24'2_!f:dsfe-£fm_ cm})} . ) _ .__{_%(1_%)[&3 f__JQ_E;:)_;<[¢_.m_IJO(a)
1-= B - DL2Y) I ' - 1= —

]

.. The prime over 4 terfs Indfcates it should be evaluated at x', i.e.,

: v‘bi B{Y + :—1’).]’1(3)>

__¢ w t @ 1
(2 o)

w

<m>

Gy L, S (o),

- (1__)jrf31dci23<13?_30.

In the 1imit o ~ 0, w. fu + 0, By = & = Bz = B3 = By, = &5 = &g = 7 L '
* Yp : v, .
T _+%X{(1~D—E)D+GBE‘%§']31 +%(Y'+g%)u332>'
=1L In thelinie o e, zg=z1-32=za=zq=zsz 2, = 37 = 0.

The Z functions ccm:'»iq finite Larsor fadius effeécts and the drift
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" First moments of £Y

viy = f &% £ v, = - fadv 8 vasing (0.9)
&
=i ng(w - )““ Gy - i H-(1 - ~~') I ddv f —252%55%
D
i -
&

4::@ < W '——]Jo(a) = v* B(Y + = Jl(a)>

fl /8 da

*
* ¥ n T w .
. i'ﬁg(t..‘» m)tB G1+in(;;;(1—u) 1~ oB aB

. -;{ 9—33* x{(i-w)wus—"-glzu

15 X
+—§(Y+wﬁ)us 35) .

. o + = L .
To calculate le an expression for h' ~ h' 1s nesded. Summing
Eq. {D.4) over positive and negative vx gives an equéticm for

Y

IRy

(- o) % @ er) - 1 v, R X A
= (- w) {[4, - up %1:0(;3) ~wine -g%)}l{a)}. (D.10)

The term le appears’ in the.conti_nuity.equatidn and in the ¥ component
‘of Aspere's law {after dividing by B and taking the derivative with

1
‘respect teo X) in the form i%-)zf——a). This term can be calculated

directly from Eq. {D.10) by ma :mlv*lng it by Jp(2) ard integrating

" over velocity.

v, = fa% 6 v, _=-;~f a3v i ivxl LN EY %—(h’ - u')

205
(—‘1) = .-an(lﬂ-m ) { 93#(:0 +x{n—(co+cz)

+ ng-‘cz} (L %}Gl}

. .
oW JIp{a) o
_+J%(l—;}fdavf *—&;%;(w—gn)

1 -

: o :
@r ‘.“’n %]Jg-(a) - v{ B(Y '+_ %%)31(39
m .}%(m—m}{s‘—cg +x[n—(cu+c;2)
N %}cl} |
L e _Ei).;jf’d_@#<_nl‘g§-g§
il dg A-aB\ 27T
+~§x{(1 ;Sg)n+u33§§,izi %%—{Y+§—§)QBE3> |
':+5~n0.'1'.%(1. ,(/5—&(5*3— [(1—-—)34-;;3—%%'1:
x'<}:;¢ 2+ 12 x1a1 - —-—)D +op MR 8,
;?1—2.(‘1 +:%§)u3.'57> L (IIJ."ll.} -

o . . St
where use was made of Eq. (D.5) fer ' - B

The term Vig Gan not be calcu’lated directly from f'; unless higher

. order terms are kept. Altﬁough the procedure for firiding the next

higher order expar'sio‘: in p IL of f; is straight forward it involves

considerably more alge‘ora. An easier way of findi..g Vig is to use the
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..conti_r.mit?y.v .equation plus-the e.x.pressm.ns f.or the other velocity moments . . vig ; ng w(ﬂ_ + 2 B X)[l 1 ..-_ 161
above.

. t ) oy
N T LB = BN g
amyo V-:i.z o + - ngw . X G -ngle ~a )n 1
3t

. o 1 B a - LW 3 qb .
‘ Solving -for vig renexbering (w — w ) = {wfl 4% (4 - ¥pd] - w } we get, )
e R - s aB Cpgp'y oo, 15 ax, N
v = E i3 13 iy + 31 - Byp s ap 2B 3, + S5 (T + 5008 B5)b .
Vig =3 uml =g aw(JrE\u") 1 3){( B } 8 2 B . ¥ .
o (0.13)°
r ' . y ) ’ o : . ) ’ :
*a "mﬂ{_ 7}& - 2*11;' x-Q- 3’"*)% X GD'} i This last expression for vy, is also what ome obtains if a higher
] w
order expansion of fi is used to calculate Vigs 25 verified by the
e : .
+ = ng(m - @ ) F av(}x G]) + £ o o 'E X6 . author.
T10 /B i Second manénﬁs of f;:
2= F o a
* 93 {no(l )s—rnf A g B _ | |
R P_=nfaliel 2 (0:14)
Sxx X _ .

%%ﬁ 3+———x[(1 --—)D+aB —fﬂ}'l By

/l‘\'

X * X
fngq[-«#«l-m-a—(m*w)gcgl

+£(Y+—g%)u335>}-§ng(w—w){—?Go

8 . : .
. q .‘51 3 T 2 I (a)
N R L = : o zy (1 m)fdvfm\r.x-—-wa—{t‘n>
. _+'K[D E(GD- iy (;2) + 2‘%% 32] + {Y + %}Gl} . . - 1 =
BREEE L S T R . . I %
T o, /g do B y x <[¢ - w, =]1Jg{a) - v = B(Y + ——).}'1(a)>
";‘nDTE(I‘ f ,—————Bi(l—“—z)a+usl‘~§§} Dn e 3
o 3 ¢ : 15 - 5 ) . . . . ) - no-'r {‘ Si _ ..‘,':"Etx = (1 N _tﬂ )EI’X GO}
'X<-Z§—31+—§X[(lw%)ﬁ+uﬁyﬁ5§]3é . - R T T e
Lol L : lfB : _ 3 gb
R . — ZagT(L - 2 B-/i_-—s"<—*5—3
+ 22 (Y-I-_g—i)u?)z-;) S (D.12) 2061 - 5 [T da e a1 1

L . 15 o
: pp S )9+ BJJ% B, + % (Y+ X')u.B3> .
heglecting higher order finlte Larmor rachus ter—:s {1ike Gl - Cz) that B 1%¢ Y 7

. are 's=all for any Larmor radxus ..q (D 12) can be sznpli‘“ied ta,
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=m f d3v-fg _v; = m f EEM fg v2 ;oszq (D.15) . (Y + X’)uB(Z a; - as)
oy s x . . | . .
= ogg ¢ tw - (v~ w?) S : .. An expression for 'PWX can be calculated frow Eq. (D.10) iIn the
. 2 ) same manner vy .was calculated. - Multiplying Eq..(D.10} by w.Ji{a) and
+m%<1-%)ja3vfm§*w-‘m—‘;*lm—; : X _ _ -
i 1 - D integrating over velocity yields,
w
L ) P . .2' -. , . m* gi
) 2 . = - - 3 ’
([¢ - wp —-}Ja(a) -wy S(Y 22 31(a)> . rB° x V(;%%) B npT p a,r (1 = b {T [+

X[g(ZGz +26y -~ Gg) + 1%% (2G7 + 61 - 6o}l

267 + 25 ¢1}

Coedas wpty ooy }
nUT{ 3 m*Px 1 w*)PXGI

E

: * ' : : a
: 1/ da B 3 gd )
-fnq'f(l—'g}é‘omaﬂ -‘g:f"gg ‘ . ) . . . . _1 N —
g --m-%f adv f v Ji1{a) (v ~w) H{h* $h*) , .
. . : m b 2
+£§—X[(I—%}D+'«B£§§-]3k+—{Y+——-}aBE> A .17

Hote that aI maltiplies the ot‘her finite Latmor rachus terms making

0 .3 20 2' . t'his tern higher order im finite Larwor radius then the other terms
=mfd3vf1v§}==mfdv£1v¢smc (D.16) .
' ] ) that have been calculated. Im’ the limit p =~ O P'PX goes to zeroc and -
* X ) ) : ’ .
* [gg {“‘# +ow % SR U (262 + 6 - ZGO)} 4s smaller then the other moments of £y even for finite Larmot radius. -
Y m* R 2‘ (@) - %-Tl (2) _ Hence, P&x is generally ignored and was included ?:e‘re mainly for
+ 1-= ¥ f v ——Se— - .
T ¢ w ? I m i <up” eompleteness.
T : o : : o _
To calculate the terms Px-a and Pwa_a higher order expansion of £i
<{¢ - oy —]Jo(a} - VA 3(Y + “""}51(&)> needs to be calculated. Since these moments would then be of order

- o/1._ they will be reglected.
. gt _mp 1 - 23R'x (26, + 6 ~ 264) n
=agT -7 - =y X (- 70y 2+ G - 2Gg

T W w
. - _ _
- ®) jlls'da 3 al3%ne oozl
T e AR ) &7 1 3

- a

+ 22 x1a - —)o + aB —-{’;"](235 ZEy
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" Righ ‘Frequency Regime, uw >> u':b

" For frequen;:ies'mﬁ'ch 'iar"g'er then a typicai b‘oﬁnce frei;uency

L :.Eé_ {D.2) can be expanded in powers of'whlm directly to obtain

.expressiéns for h+ 1 and ut - b needed to find the high frequeney .

moments of fl.' To lowest 'order in o ]m"

—(ho + ho) = {[¢ ~ 1w —]Jo(a)
- v_._-E— B{Y + -:%)Jl(a)} . ) (D.18)
TR b oy v
cogthe - hE) = i--— Ev | x-v[—__m— gJo(a)] - (D.20)
o “p D

..Eq. (D 20) for hg 1"0 is of order ib';D %mall'er.then' Eﬁ. {D,18) for

. 'h° + bg - Since © /m << 1 andw fm << 1 moments that depend on 'n‘J h;
such as le and P*X will be neglected compared to the other moments
_of fl. | L . .

: First scme prelmmary defm1tions t'le.f.ine. t't.xe fu.nctions Z ag -

" follows:

'___'nB 20 ,_I d3v f ..Ig.,,_,(_a.)_ o

1 D {0.21.0)
T
. A z = ! da.v'f i X:% Jg(a)J} (a) . -
a i ma mn . (D.21.1)
. 3 _oB J21.
’ w

| e
Zng(H? 7, = [ adv g ¥ Nitla) _
= R (D.21.2)

. - o B

: - i
o R G & 2 Jo~ta) -,
nom23 !dem‘_rx uy
_1*7»—
o JaJ(a)
20 (£>22n=fd3vfm )z(% ._n(_)ﬂ_:}n_
R
. 1.2
hOEZS*IdSVf VEM_)_
= . = “p
' ' oo

bng <—->2 2g' = f &v g nmm

W
1o
-]

" {D.21.3)

C(0.21.8)

(p.21.5})

{D.Zl.-é)

Tn the limit p + 0, Zg = Z; = Zp = Z3 = 24 = %5 = Zg = L.

~ In the limit p > =, Zg = 2 gy =k

3= Zy =L = Ig

= 0, For small

uD/m the following expansions for Zg, Zi and Zp are sometimes usefull -

’ *
Zg = GQ - .ED_(GG + Gg

2y = G —.%g,[]} %’(2(;2 + 2

+ 208 26, + 61 - 6]

) + 2B

61 - Gp}

{b.22.0)

(D.22.1}

3

. . .
. ¥
Zy = Gy —-E%.{n %(3(;1 +7Gg) + Egd} (261 + Go)1 .. (D.22.3)

. - [}
-Zeroth moment of fy:

3} ='1_10{—%¢;—‘-'2X+ (1
) @

- AT + x)Zﬂ} .

——)1(3—+—R X)Zg
. (]

{(p.23)
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F.irs.t.moments of f1: . .. ' R | ' : .-PGB. = neT "{;.%L‘i.’_mﬂx_,_ a —.—){(—q—+-—2x)z: .
o Do e ey . @ '
Vig ¥ -1 N_T %;% 1 - %) {(g-fé + i,,%’}()h - 2(y'+%%)22i.} ) o : L | .. (1}...2.7;;) .
2T ‘31)221} _ o (9.24). . _ ' ' L =.n0'r {- L) ..-..‘ﬂ*f;.'x.{ |

Solving for vig rom the conulnuxty equat1un gives, + Q@ - E‘)[(%i N 2}§fX)(225 ~Zg) - Y+ %%3(2361; Zi)}-
w o . o .

Vlﬂ

I O 2 Ll @p - e SR : '
nmn{ T T * T+ (1- )[(ﬁ+m XZo . - : . (D.28)

T+ i?b]} rnn lIa --)[(«“~?+-P- 07

2T + a—;pzz}}

*
{(Sg i Tx) {1 -Gy + % {Gg - Gi}Y

ok

* . R
a-2a +g-§)c=} B - (2.25)

'-rn—(l -—-) —{(L“'ERX)Gx -2(Y+ E)Gz} -

where for the last expression for Vig small Im was assuued and the
expansions (D.22) where used for Zp, 21 and Zy ~and higher order finite

tarmor radius terms (such as 26y — Gs — Gz2) were neglected.
Second moments of f::
A 1 ) ’
P = mT {—ﬂ --‘E*Rx-l- 193 ——)[{9-+—2‘013
XX o wP?

T
LY

- +§—$)z.} . T o (0.26)
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- APPENDIX E
Equilibrivm and Stability Results

"for the Le§itated Octdpole

:.. 'I"h.e. folioiing '&;té are t'h:e'-. results of the equillbriua and
;tabilit}f calculaticns for the 'Le.vit.ated 6Ctup01e- For the stability .
._”éélc.\.;lat'io.ﬁ the eduilibrium ;Iere'.sel.f consistent exceﬁt for 8 = 182,
I--19Z and 201 v.}':ére.-the 8 = 17T equilidrium was used and the pressure
scaled u.1.:v. The mode described is the marginally stable mode with the
maximim .'te'mi)e.rature. For a glven beta if the temperature 1s less then
“value 1isted then .un.s'ta!;le modes caﬁ exist in the plasma. For this

calculation the ion species was assumed to be protons.

'B - 5.012 _ :

: peak pressure = "8.76037 * 103 ot /o?
. -B bridge-separatrix = 0.863584 tesla
.'Ln'bridge region = 1.475 x 1077 peter
toroidal mode number = 941.867
temperature = 2,00019 eV
 margiral frequency = 8.25084 x 107 secl
' peak single particle density = 1.36680 x 1022 #/m3

ion Larmor radius = 2.17761 x 1674 qeters

B =601 o _

[ peak pregsure = 1.05535 x I0* at/u?
-.B bridge—-separatrix = 9.665879 tesla
L, bridge region = 1.469°x 1072 meter
torpidal mode number = 452.8%94

.'femperature = 24.4561 eV

marginal frequency = 4.64651 x 105 sec™!

peak single particle density = 1.34668 x 102} #/2?

ionm Larmor radius = 7.59951 x 10-& meters

8 =7.02 _
peak pressure = ].Z3610'x 10% nf/z2

B bridge-separatrix = 0.666189 tesla
L, bridge region = 1.463 x 1072 meter
toroidal mode number = 339.870
temperature = 77.0162 ev .

. marginal frequency = 1.03501 x 105 sec_l_ :
. peak single particle density = 5.00872x 1029 #/od
"ion Larmor radius = 1.34597 % 1073 meters

£ =8.01%

peak pressure = 1. &1?96 x 100 nt/mz
B bridge-—separatriz = 0.667432 tesla
L, bridge reglon = 1.456 x 1072 peter
toroidal mode number = 287.814

 tenperature =~ 156.004 eV

marginal frequency = 1.67669 = 10F sec™?
peak single particle density = 2.83650 x 1020 #ia3
lon Larmor radius = 1.91206 x 1073 meters

8 =9.01

peak pressute = 1.60066 x 10% at/o?

B bridge-separattix = 0.668572 tesla

L, bridge region = 1.448 x 1072 seter

roroldal wode number = 256.231

temperature = 256.176 eV

warginal frequency = 2.33115 x 105 sec -1

peak single particle density = 31.94991 x 1020 #/z?

- ion Larcor radfus =~ 2.44603 x 10 =3 weters:

215
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8 = 10.0 %
_ peak pressure = 1. 78357 x 10"’ nt fol

. B bridge-separatriz = 0.669522 tesla

L bridge regiom = 1.441 x 10 "2 ceter

roroidal mede number = 236.193
temperature = 37Z. 541 eV

marginal frequency = 2.97807 % 108 st

peak single particle density = 1.49367 % 1020 #/m

ion Larmor radius = 2.94592 x 107 -3 seters

B = 11.0 Z _
peak pressure = 1.96658 x 10" at/w?
B bridge-separatrix = 0.670316 tesla
"L, bridge regiom = 1.433 = 1072 meter
torofdal mode number = 220.672
temperature = 501.772 eV
marginal frequency = 3.59828 x 106 sec™l
-peak single particle density = 1.22310 x 1020 #/58

‘ion Larmor radius = 3.41440 x 1073 seters

g = 12.01

peak pressure = 2.14885 x 10% arfud

B bridge-separatrix = 0.670861 tesla
L, bridge teglom = 1.425 x 1072 merer
toroidal mode number = 208.814
temperature = 541.123 eV

" garginal frequency * 4.19346 x 105 sec!

peak single particle demsity = 1.04597 x Hel

"{on Larmor radius = 3.83637 x 1673 peters

8 = 13.0 2

peak pressure 7.33022 % 10% nt/a?
3 bridge-separatriz = 0.671192 tesla .-
.."Ln bridge region = 1.416 X 1072 meter-

toroidal mode dumber = 202.731
temperature = 780.347 eV

marginal frequency = 4.77373 x 108 see!

 peak single particle density = 9.31891 x° 1019 #7238

fon Larmor radius = 4.25243 x 1077 meters

B ='14.0 X
peak pressure = 2.51003 x 10% at/od
B bridge-separatrix = 0.671267 tesld

‘L, bridge reglon = 1.408 x 1072 deter

torpidal mode number = 195.576

temperature = $27.015 eV

marginal frequeacy = 5.30780 x 10° sec™l

peak single particle deosity = 8.44983 x 1089 #/u®

iom Larmor radius = 4.53435 % 10°7 meters

B = 15.0%

peak pressure = Z.58809 x 10" nt}'\ﬁz

B bridge-separatrix = 0.671114 tesla
L, bridge region = 1.399 x 1072 meter
toroldal mode number = 189.790 -
temperature = 1.07958 = 10? ev

marginal frequency = 5.84110 % 108 sec‘]‘

peak single particle demsity = 7.77039 x 1019 #/ad
ion latmor tadius = 5.00233 x 1673 weters

B = 15,03% )

peak pressure = 2.86336 = 10% nt!ﬁzz .

B bridge-separattrix = 0.670712 tesla
L, bridge region = 1.3%1x 10°7 meter

toroidal mode number = 188.839

tempetrature = 1.22440 x 103 ev
warginal frequency = 6.37643 x 105 s&c -1
peak single particle density = 7 29932 = IOI'3 #/m

Sy
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) o . 219
“iof Larmor radius = 5.33049 x 107 geters

C . : B bridge-separatrix = 0.671757 tesla

. B..* —— s | S . : o . . | K © 1, bridge region = 1.383 x 1072 peter
.peak'p'reséuré o 3,0523% x 104 nt/@ _ ) . toroidal mode number = 173,934
B bridge-separatrix = 0.671757 tesla S . - temperature = 2.02604 x 10} eV :
I, bridge region = 1.383 x 1077 meter . * - i ' | wmarginal frequency = 8.71032 x 10° sec™!
" foroldal mode number = 184.737 ) ' -+ peak single particle density = 3.33123 x ‘10}% #/u®
 pemperatute = 1.38717 x 103 ev S fon Larmor radius = 6.84625 x 107> meters
1

“darginal frequency = 6.89988 x 108 sec”
.peak single particle density = 6.86686 x 1019 #/o?
fon Larmor radius = 5.66492 x 1073 meters

B =180% o o
peak pressure = 3.23189 x 10* at/&?
B bridge-separatrix = 0.871757 tesla
i'n bridge region = 1.383 x 1072 weter

" toroildal mode wumber = 180.654

" temperature = 1.58814 % 103 ev _
marginal frequency = 7.49170 x 105 secl

peak single particle. density = 6.35070 = 1633 #/2°
y lon Larmor radius = 6.06141 x 1072 meters

g =190% - o
. 'peak pressure = 3.51184 % 10% ot/n?
B bridge~separatrix = 0.671757 tesla .
L, bridge regiom = 1.383 x 1072 peter
~toroldal mode pumber = 177.092
. temperature = 1.80170 % 103 ev k “
marginal freéu'ehcy = 8.09777 x 105 sec™! o
" peak single particle dénsity = 5.90896 = 10%9 /o

fon Larmor radlus = 6.45609 x 1073 meters

8 2001 _
-pesk pressure = 3.59099 x 104 mfe?
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‘APPENDIX F

Multipolé Equilibrium and Stability Codes

a1 computer codes used for the caleulations presented in this

thesis reside on the Naticnal MFE computer system. The codes are

.optimized to tun on the Cray-1 computer. These codes are avallable

Gpou request from the auther, user number 1455. See the file named

MITLTINFO in user 1855 PILEM area for additional idformation and

status of the codes availabdble. The following codes were used for the

calculations presented in this thesis:

OCTEC

 STARN

An MAD equiiibrium code that solves the Grad-Shafranov

.equation, Eq. (2.5}, 1a toroidal geometry. OCTEC uses the

pressure profile given im Eg. {2.11). This code allows the

user to define up to 20 conductisg line segments and 10

rings to medel a wide range of wultipole devices. OCTEC

generates the file EQINST necessary for all the stability
codes Iisted here. This file contains a map of equilibriuvm
quantities as 2z function of ¥ and relative length along

field iines.

The first of two codes used to calculate high n MHD nodes.
STABN soives Eq. {3.16) along field lines over a specified

purher of flux surfaces and generates all the coefficients

STABNR

STABKO

STACK

STACKR

221

_necessary to solve Eq. (3.16) for the ¥ wvariation of the -

mode .

The second of two codas used to calculate high 2 MHD modes.

STABNR tzkes the coefficients genérated by STABX and sclves
Eq. (3.16) for the ¥ variaticn of the mode. t alsc

reconstructs and plots Xo}

Solves the Kruskal-Oberman stability problem in miltipole
geometry. This code solves Eq. (3.16) for critical

pressure gradient and the wode structure of the n * = mode.

This is the first of two codes ﬁsed £o cglcﬁlate tﬁe.fifite
Larmor radius stabiii;atisn of the Bélloéning wode. It tw
iterated with the code STACRKR. Given w, n and pyg fhis code
solves the n + = equation, Eq. {6.%) along field lihes aﬁd
calculates the quantities ag, ai, -.L , a5 for subséquent

use Iim the radial code STACKR.

" The second of two codes used to calcualte the finite Larmor

radius effects on the ﬁaiooning sode. STACKR solves Tthe

radial part of the finite Larmor radius probleﬁ. This code

_solves eguations Eq..(6.13); Eq. (6.17), Eq.'{6.19) and

By. (6.20). This code iz iterated with STACK until a

“self-consistent solutlon is reached.
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