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Chapter 1

Introduction

In a maguetically confined toroidal plasma, collisional transport leads to par-
ticle diffusion and heat conduction across magnetic flux surfaces, and current
flow along magnetic field lines. A magnetic flux surface is defined by following
a field line around the torus as it ergodically covers the surface. Figure 1-1
shows a typical flux surface and several loops of the enveloping field line.
Classical transport theory derives transport coefficients based on the ran-
dom walk of particles across field Lines as they undergo coulomb collisions
that shift the center of their gyro-orbits. This theory is valid when the drifts
of particles perpendicular to a flux surface is negligible. For a magnetized

plasma, where the the particle collision frequency is much less than its £y-

rofrequency, the step size of this random walk is the particle gyroradius. For
diffusion perpendicular to the magnetic flux surfaces ;ixe classical particle dif-
fusion coeficient will then have the dependence D, ~ vp?, where v is the
particle collision frequency and p is the pariicle gyroradius.

In the neoclassical transport theory[1}{2] the drift orbits of particles across
magnetic surfaces are considered in the diffusion process. If the plasma is rel-
atively collisionless, such that the mean free path for 90° scattering is on the
order of the plasma major radius, or larger, then a particle’s guiding center can
drift significantly from its original flux surface before undergoing a coilision.
The increase in magnetic field towards the major axis of a toroidelly confined
plasma can then trap many particles in what is in effect a magnetic mirror.
These particles will then describe danana orbits as they bounce between turn-

¥
ing points with a frequency ws 2> v. Particles that are untrapped have a pitch
angle small enough to allow them poloidally traverse the plasma. Figure 1-2
ilustrates a poloidal cross section of several possible particle orbits. The two
well-trapped orbits are for particles whose velociiies parallel to the magnetic
field are of the same magnitude, but oppositely directed.

For both trapped and untrapped particles the effective step size for diffu-

sion is the distance a particle drifts perpeadicular to a flux surface during an



orbit. For trapped particles this distance is the width of its banana orbit. For
an untrapped particle it is the distance it fraverses across Bux surfaces as it
moves from the outside to the inside of the torus. In both cases this distance
is greater than a gyroradius.

The effective collision frequency for trapped particles is the frequency for
scattering to an untrapped orbit, given by vesr = (B/AB) [2], where AB
is the field variation along the banana orbit. When vess < wy the trapped
particle can complete their banana orbits. The dominant cotribution to the
diffusion will then come from the trapped particles since their guiding centers
make the largest radiat excursions. The overall effect of the drift orbits is to
enhance perpendicular diffusion over the predictions of classical theory.

The collisionless regime is also calied the banana regime, after the shape of
the trapped particle orbits. H the effective collision frequency is comparable
to ihe bounce frequency ws, then the plasma is in the plateau regime, which
is & trausition between the banana regime and the collisional Pfirsch-Schliter
regime. In the Pfirsch-Schiiiter regime we have v > w.

Neoclassical transport theory predicts the existence of bootstrap current|3i{d]
in collisionless plastnas with a significant population of trapped particles. This

unidirectional current flows along field lines, and is generated by the balane-

ing of ion-electron friction forces with the viscous forces between trapped and
untrapped like particles. The current is driven by gradients in the plasma
pressure and temperature. The other components of the parallel current are
the Pfirsch-Schliiter current and any ohmically driven currents. The Pfirsch-
Schliiter current is the the current necessary to ensure charge neutrality in the
presence of diamagnetic currents.

An Onsager matrix{5} relates the current parallel to the field lines and
the particle and heat fluxes perpendicular to the magnetic surfaces to the

thermodynamic forces that drive them.

I Ly L2 Lia -Vip
QL | = | Lan Laz Lz —-V.T
I L3y bz Las Ey

The quantities I'; and Q; are the perpendicular particle and heat fux, and i
is the parallel current density. The driving forces are the perpendicular pres-
sure and temperature gradients, V,p and VT, and the parallel electric field,
£y. The diagonal matrix elements are just the diffusion and heat conduction
coeflicients and the electrical conductivity. The off diagonal elements of this

Onsager matrix are interrelated by various symmetries(5].



Past experiments have usually been inconclusive as to the existence of the
bootstrap current. Measurements taken on Proto-Cleo{] in the ea:ly 1970’
failed to find the diffusion driven bootstrap current as predicted for stellara-
tors. Experiments on the L-1 and Uragen stellarators[7]{8] found parallel
currents differing from the neoclassical theory and postulated this disparity
was due to effects of rf heating[7] or radial electric fields[8]. Results from
the ISX-B tokamak experiment[9] report that the bootstrap current can be at
most 25% of the predicted value. More recent experiments on Proto-Cleo at
Wisconsin{10] found that the measured neoclassical current agreed well with
theory, except for in & small region near the magnetic axis. Unfortunately the
Wisconsin Proto-Cleo experiment used axisymmetric theory for a nonaxisym-
metric device (stellarstor}, and included the theoretical effects of a toroidal
rotation of plasma with no proof that such a rotation existed. A nonaxisym-
metric theory, with no toroidal rotation of the plasma, would have predicted
much lower values of the parallel current. Recent results from TFTR[11] in-
dicate the existence of non-ohmically driven current, though the mechanism
that generates this current has yet {0 be determined.

Previous work by M.C. Zarnstorff[12}{13]{14] has identified the existence

of bootstrap current in the Wisconsin Levitated Octupole. Both the total
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parallel current and the jon contribution to Jij were separately measured. The
total j; was found to adhere to predicted values on some flux surfaces and
have significant variation from theory on other surfaces. The jon portion of
7y was in good agreement with theory in the commeon fux region, but not
measured in the private flux region.

The discovery of bootstrap current in the Octupole naturaily leads to the
question of why previous experiments were unsuccessful in their endeavors to
identify this current. The original iotivation for this thesis was to address that
question, by investigating the effects on bootstrap current caused by ohmic
currents, plasma fluctuations, and rf fields. Qhmic currents, while naturally
present in tokamaks, can be introduced in the Octupole, independent of the
ususal operating procedure, and can be adjusted to be of the same order of
magnitude as the expectet; diamagnetic and parallel currents. The interaction,
if any, of bootstrap current and chmic current can thus be determined without
the problem of a large ohmic current masking the neoclassical current. RF
fields can be driven in the Qctupole plasma with little or no plasma heating.
Any anomalous effects on the parallel currents, due to the existence of the tf

fields, can then be determined. Fluctuation level differences, in the private

and common flux regions (described in chapter 2}, allow the effect of the



Huctuations on parallel currents to be discerned.

This thesis reports results differing from previous observationsi12}, in that
Bitle agreement is found between the experimentally messured total paral-
tel current and the theoretically expected current. This dichotomy, between
theory and experiment, might possibly be explained by documented magnetic
ﬁelci errors in both the toroidal and poloidal fields of the Octupole. These
feld errors would lead to the irapping of particles by local maxima of the field
perturbation{2], which would resuit in parallel currents differing from those
predicted for an axisymmettic plasma. Since the exact nature of field errors
in the Octupole are unknown, ne other mention of this line of inquiry will be
made.

This thesis consisis of four parts: Chapter 2 describes the experimental
apparatus and the plasma diagnostics used in these studies. Chapter 3 delves
into the general theory of neoclassical currents {excluding field errors) and how
it is applied to the Octupole. Chapter 4 explains the experimental results of
this investigaiion. Chapter 5 gives a briel discussion of the conclusions that

can be inferred from ihe data.

magnetic axis i —— major axis

| magnetic
field line

.

ig. 1-1. A toroidal flux surface defined by the magnetic
field line that ergodically covers it. On a magnetic surface
where the safety factor, g=rB, /RBp , is a rational

numkter, the field line will close upon itself.
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Fig. 1-2 Guiding center orbits of trapped and untrapped
particles, projected on a plane of constant toroidal

angle, in an axisymmetric system.

Chapter 2

Experimental Apparatus

This chapier describes the experimental apparatus, plasma diagnostics and
diagnostic methods used for this work. Most of the experiments were done
using the Wisconsin Levitated Octupole. As of Febuary 1985 the Levitated
Octupole program was ph:a.sed out to enable experimentation on reversed field
pinch plasmas. Some investigations were done on the Wisconsin Tokapole II,

however it was found to be inadequate for this work.
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2.1 The Wisconsin Levitated Octupole

The Wisconsin Levitated Qctupole, shown in Fig. 2-1, is a large axisymmetric
toroidal plasma device. Some of the Octupole parameters are listed in Table 2-
i.

The poloidal cross section is roughly square, with noses (Fig. 2-2) project-
ing in horizontally at the midcylinder. Within the Octupole are four current
carrying aluminum rings. The magnetic flelds are admitted through insu-
lated poleidal and toroidal gaps in the aluminum vacuum vessel. The poloidal
field is created with an iron core transformer threaded through the Octupole,
which inductively drives toroidal current in the walls and iniernal rings. Cur-
rent can flow toroidally in the wall, across the poloidal gap, through the use of
continuity windings that bridge the gap and circle around the outside of the
transformer. The toroidal field is created by driving poloidal current in the
vacuum vessel, with a half-sine period slightly less than that of the poioidal
field.

The poloidal flux plot is essentially that of an octopole field, as shown in
Fig. 2-2. There are three field nulls strung vertically along the mideylinder.

Most of the flux either encircles a single ring, and is called private flux, or is

Tabie 2-1

Octupole Parameters

Major radius

Minor cross section

Hoop minor radius

Hoop major radius: inner
outer

Vacuum volume

Poloidal field half-sine period

Poloidal field capacitor bank

Maximum energy pulse

Maximum core flux

Maximum hoop current: inner

outer
Maximum toroidal wall current
Maximum B, at hoop: inner

outer

14m
112mx1.2m
8.89 cm
10m
1.8m
8.6 m®
43 msec
048 F
0.6 MJ
0.72 Wb
0.46 MA
0.25 MA
1.40 MA
13.7 kG

6.6 kG

12
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common fux and encircles all four rings. A small amount of flux is common
to only two rings. The private and common flux regions are separated by a
flux surface designated as the separatrix.

The poloidal flux surfaces in the Octupole are designated in units from
 gero to ten, where the surface ¢ = 0 is in the ring and the surface % =10
is in the wall. A unit of flux is therefore equal to Yo of the total poloidal
flux in the Octupole. During the pulse the position of these flux surfaces
shift as the poloidal magnetic field soaks into the rings and walls. The stable
plasma region, i.e. good curvature region, is inside the separatrix at ., =
5.7, designated in Fig. 2-2 by a dashed eurve. Between the separatrix and
Yo = 8.1 the plasma is average minimum B stable. Qutside of this crifical
flux surface the plasma is MHD unstable. The dot-dash curve in Fig. 2-21is
Yerir- The psi values given above are for a time at the peak of the poloidal
field, about 20 msecs into the field pulse.

The rings are supported by prods that can be quickly retracted from the
flux region, then reinserted to catch the rings as they begin to fall. This allows
the rings to levitate during the experiment, so that they are isolated from the
vessel walls, and keeps the prods from cutting across flux surfaces.

The base vacuuin of the Oetupole is about 10°® torr. This vacuum is

14

achieved with two turbo pumps, six titanium getters, and a cryogenic panel.
The cryogenic panel can be valved off from the main tank so that the gases it
pumps are not dumped back into the toroid when the panel is heated.
Diagnostic probes can access the plasma through quarter inch probe potts.
The ports are spaced 90 degrees apart toroidally and sbout 15 to 30 degrees
apart in the poloidal direction. The poloidal direction has 270 degrees of probe

port access, the wall near the cenfral axis being excluded.

2.2 Plasma Generation

Plasma is created with the intermediae Marshall gun [15], and injected into
the Octupole. The gun’s 60 uF capacitor bank was charged to 14 kV, the
gas plenum filled to 50 psig with H;, and the valve-to-gun timing was 400
usec. The poloidal and toroidal fields were triggered to peak concurrently, to
minimize time dependence of the field line pitch. Plasma was injected near
the peak of the field pulse to avoid having any current driven by the induced
electric fields.

The intermediate gun provided plasma consistent with the assumptions

of neoclassical theory, i.e., the ion gyroradius (~ .5 cm) is small compared
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Table 2-2
Typical Plasma Parameters
@ 400usec
ne ~ 8 % 10" cm™3
T, ~ T ~ 20V
B8~ 2%
T3 ~ 1 msec, beta decay on separatrix
i < Scm on separatrix
B, ~ 860G on separatrix

B, ~ 200G on separatrix

to typical gradient scale lengths (> 1.0 ¢m), and the collision frequency (<
2 x 10° sec™!) is small compared to the gyrofrequency (~ 3 x 10° sec™l).
Plasma 3 was high enough to give measurable plasma current signals without
undue distortion of the flux surfaces, yet the density was low enough for the
plasma to exist in the banana regime (A ~ 2.0 meters). Typical plasma

parameters are listed in Table 2-2.

16
2.3 Driving Ohmic Currents

Ohmic currents were driven in the Octupole plasma by discharging a small
capacitor bank, of about 480uF, across the poloidal gap, at the peak of the
main fields. The secondary poloidal field this creates is on the order of 3-5%
of the main field, at a frequency of 300Hz. The polarity of this secondary
field is determined by the choice of the capacitor bank used. Figure 2-3 shows
the circuit used to drive the ohmic currents. The Qctupole is represented by
its time dependent resistance and inductance, R, and L,. The choice of the
“positive” or “negative” ohmic current bank deterinines the secondary field
polarity with respect to the main poloidal field.

The currents that were driven are on the order of 0.5-1.0 A/cm?, which
is about the same magnitude as the diamagnetic and parallel currents in a

typical plasma without ohmic current.
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2.4 General Plasma Diagnostics

2.4.1 Plasma Density - n

The plasma electron density is measured with a 70 GHz microwave interfer-
ometer. The microwave beam travels a vertical path through the Octupole’s
midcylinder. The interferometer actually measures [ n.dl, but to within a few
percent this directly gives the separatrix density, since the flux surfaces along
the beam path are dominated by the separatrix region of flux space (Fig 2-2).

Langmuir floating double probes are used to measure the density profile,
These probes consist of .04 inch diameter platinum spheres about 2-3 mil-
limeters apart. The typical bias between the spheres was about 100 V. The

measured ion saturation current should vary as
I, ~ n,-\/f

where T is the greater of T, or T}. For our experiments we have found that
T. ~ T}, therefore T, is used to unfold the density profile. The proportionality
constant is determined by setting the density on the separatrix equal to the

density given by the interferometer.

18

2.4.2 Electron Temperature

The temperature of the electrons is determined using an admiitance probe
technique developed by J.C. Sprott {16]. A third platinum tip is added to a
floating double probe, in order to measure plasma sheath impedance, R,. This
third tip, identical to the other two tips, is connected to a 400 kHz capacitive

bridge circuit. The electron temperature (in €V) is then given by
T, = elR,.

If the areas of the probe tip measurning sheath impedance and the tip collecting
jons are not identical, then the above expression is modified by the ratio of
the areas.

From the capacitive bridge, the admittance signal is demodulated using
the active full-wave rectiﬁ::r shown in Fig. 2-4. The digitally recorded signal is
then compared to a calibration curve to give the value R,. The ion saturation

current and sheath impedance together give T, vs time at the probe tip.

2.4.3 Ion Temperature

The ion temperature in a typical Octupole plasma, has been measured in

past experiments[17] with electrostatic gridded energy analyzers. It has been
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found, for the types of plasmas created in this experiment, that T, = T;.
This is a reasonable approximation since, for plasma of interest, the thermal
equilibration time is 7°/7 < 500psec, while the temperature decays on a 1.0-1.5

msec time scale.

2.5 Plasma Current Diagnostics

2.5.1 General Method

The total plasma current density in the Octupole was measured using a multi-
coil magnetic probe, hereafter referred to as a B probe, with two parallel coils
displaced by about lcm along the probe. The probe was generally used with
the coils disptaced perpendicular to a flux surface. The signal from the first
coil and the difference signal from the two coils can be integrated to give
measurements of the magnetic field and its gradient perpendicular to the flux
surface. The integrated signals are then digitized and recorded to magnetic
disk. The difference between the vacuum magnetic field measurements and
measurements of a shot with plasma then gives the magnetic field (£8) and
field gradient {§V B), where the § denotes a change in a quantity due to the

plasma currents. The subtraction of the vacuum pulse from the plasma shot

28

is done by comp.uter‘ As shown in the nexi section, these signals can then be
used to determine the plasma current density.

The integrators are turned on abouti 300usec after the Marshall gun fires
to avoid noise due to the gun firing. At this time the plasma in the Octupole is
axisymmetric. Since the 8,8 and 8,V B {where 3; denotes the time derivative)
are small at this time these gated integraiors have been made very sensitive
so that small changes in the magnetic field can be measured.

On a given field pulse the B probe is aligned to measure either the toroidal
or poloidal field, thus allowing calculation of either the poloidal or toroidal
current, respectively. In order to construct the parallel and perpendicular
components of :i-it is necessary to use currents calculated {from two shots with
different probe orientations. This is done by first matching plasmas that have
similar characteristics, bo:h in magnitude and time decay. The characterisiics
chosen for the matching were electron beta 3., and A.., the mean free path for
electron on electron collisions. In principle these two characteristics determine
the magnitude of 68 and the collisionality regime of the plasma, respectively.
The current densities, j, and j;, from matched pairs of shots are then used to

construct j: and 7.

In order to avoid the problems inherent with finding matched pairs of shot,
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measurements were taken using a probe with a second set of coils orthogonal
to0, and wound concentric with the first set. Capacitive coupling between con-
centric coils produced unreasonable results. Although it is probably possible

to electrostatically shield the coils from each other the attempt was not made.

2.5.2 Calculation of Currents

For an axisymmetric toroidal system the components of ,uj.z V x B give the

poloidal and torcidal current densities
- . o By
b= BB+ (B R, (2)
and
F‘}'z = -8y B, + W; - “EP)Bpa (2‘2)

where &, = % - Vx is the poloidal field curvature, ¥ is the unit vector in the
poloidal direction, and % is the unit vector normal to the flux surface.

At the poloidal angle where measurements for this experiment were taken

% - R = land $ - &, = — | Rp }= —Kp. The current density equations then
simplify to
- B
uip = 8B + (23)
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and
i = —0p B, — 5, By (2.4)

From equation 2.4 we can see that the field curvature can be calculated from

& vacoum field shot, where j; = 0, to obtain
8, B,
wy= -2,
td

2.5.3 Field Coils

The coils used $o measure the magnetic fields where wound on a machined
G10 coil form shown in Fig. 2-5. Bach coi! was wound with about 110 turns
of #42 copper magnet wire, and had a cross section of 2.5mm % 5.0mm. The
separation between the co}il centers was lem. The coils were electrostatically
shielded with 13 pm-thick aluminum foil. The coils are electrically insulated

from the plasma by inserting them in a 1/4 inch O.D. pyrex tube.

2.5.4 Active Integrators

The circuitry for the front end amplifiers {0 the active integrators is shown in
Fig. 2-6. The differential and single-ended inputs are used to measure V,;B

and B respectively.
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The schematic for the gated and non-gated integrators is shown in Fig. 2-7. tic dependent information on scale factors, sampling rates, etc.
The non-gated integrator was used to obtain the background magnetic fields
and field gradients. The gated integrator was used to discern the magnetic
fields created by the plasma currents.

Both the field coils and the active integrators were developed by M.C.

Zarnstorfl and are described in more detail in his thesis[12].

2.5.5 Data Aquisition

At each orientation of the magnetic probe two vacuum field shots were taken
to form a baseline to subtract from subsequent shots with plasma. The in-
tegrators are usually stable enough that baseline drift over the time of the
experiment is insignificant.

Each set of integrators, as shown in Fig. 2-7, is calibrated with respect to
the lowest gain of the gated integrator. The calibration is stored with each *
data shot. The overall difference in the gains of the two sets of integrators is
taken into account when caleulating the currents as described in section 2.5.2.

The signals from all diagnostics are sent to Lecroy model 8210 A-D con-
verters and sampled at a rate of 100kHz(25kHz for the nongated magnetic

probe). The digitized signals are stored on magnetic disk along with diagnos-
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Chapter 3

Theory of Neoclassical Currents

The kinetic theory of plasma transport in tokamaks was initiated in 1968 by
Galeev and Sagdeev{l]. They demonstrated that the banana orbits of trapped
particles were responsible for an enhancement of the calculated diffusion coef-
ficient and thermal conduLtivity in a plasma with a small collision frequency.
The existence of the intermediate plateau regime was _a.Isp shown.

In 1971 the existence of the bootstrap current was predicied independently
by Galeev{3] and by Bickerton, Connor, and Taylor[4]. The latter authors pre-
dicted that the bootsirap could provide the confining poloidal magnetic field

in a steady-state tokamak without the need of driving ohmic currents. In 1976

Hinton and Hazeltine{2] summarized the kinetic theory of plasma transpert in
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a review of the theory to that date. At this poini the theory only dealt with
large aspect ratio configurations with circalar and elliptical flux surfaces. In
1981 the moment equation approach of Hirshman and Sigmar[§] allowed the
calculations of neoclassical transport and currents for axisymmetric geommetries
with arbitrary cross section.

Throughout these years there has evolved an extensive body of literature
dealing with neoclassical transport and related effects. All the authors of
theorectical papers referenced in this thesis hav-e made contributions to the
theory that could easily expand my references by an order of magnitude. Many
other authors have also made immense contributions to the theory, too many
to mention in this thesis. A more complete list of references can be found in
the review papers by Hinton and Hazeltine(2] and by Hirshman and Sigmar(5].

The theory presented in this chapter was chiefly derived from review papers
written by Hinton and Hazeltine|2] and by Hirshman and Sigmar[5]. It is
presented here, in condensed form, since it is necessary fo understand the
theory in order to apply it to the Octupole. All the theory presented in this
thesis is readily found in the existing literature, and the application to the

Octupole was developed by M.C. Zarnstorfi{12].

34
3.1 Structure of the Equilibrium Currents
The total current in a magnetized plasma can be writien as
i=i +J'u3;- (3.1)

To first order in the Larmor radius expansion the diamagnetic current is given
by

T ﬁ X Vp
L= B? H (3-2}

and the parallel current is defined by

s n]
=14

Il =

Uu|‘

Using flux coordinates, for an axisymmetric torus, the magnetic field equa-

tions can be written as

g = ﬁp‘?‘ﬁg
B, = Vi x V¢
B = F($)V¢

where ¢ is the poloidal flux, ¢ is the toroidal angle, the poloidal angle is
defined by ¥ = ¥ x ¢ and F{¢) = RB,. The magnitude of the diamagnetic

current can be simplified to
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. B
ju=Rp EE‘ (3:3)

where the prime denotes y. Eq. 3.2 is true for an axisymmetric toroidal
system with closed magnetic flux surfaces, since the plasma pressure will then
be a flux surface constant.

The poloidal component of Eq. 3.1 can be solved for j to yield

. Fy
= ?—-FKB (34)
where
I' ﬁp Je
K= = =
B: B,

is proportional te the poloidal current. The equilibrium continuity equation

gives
V-i=0:Us/Bs) = 0,

from which follows the observation that K = K(%) is constant on a flux
surface.

The first term on the right side of Eq. 3.4 is the parallel current necessary
to cancel charge accumulation due to the diamagnetic current. The second
term is a divergence-free current (note V .KB = 0) that is determined by the

equilibrium moment balance along B.
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K we multiply Eq. 3.4 by |B| and average over a flux surface we get

(-B) ¢ -
KW= et (3.5)

where the flux surface average is defined by

§ Adly/B

{4) = $dl,/B .

Combining Egs. 3.4 and 3.5 we have

re, 5y (6)
0@ T @)

iy =
The first term in Eq. 3.6 is the Pfirsch-Schliiter current

. Fp B?
Jrs = Fp(l - (B"'))'

Note that {7ps) = 0, and that jps reverses sign at the point along a field line

where B? = (B?).
'

The second term in Eq. 3.6 contains the neoclassical current and ohmically

driven current. The ohmic current can be expressed as

(EB),
C By

where o is the neoclassical plasma conductivity.

The bootstrap current

{i-B)

B C

Js =
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is 2 current driven by pressure and temperature gradients in the plasma. Itisa
divergence-free current and, volike jps, it is unidirectional on any flux surface
where B # 0. In the next seciion it will be shown that the boolstrap current is
generated by the viscous force between trapped and circulating particles (Fig
3-2), and that the bootstrap current is small in the collisional regime, and
dominaies jps in the banana regime. A theoretical caleculetion of both the
bootsirap current and the neoclassical plasma conductivity will be presented

below.
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3.2 Detailed Calculation of the Currents

3.2.1 General Method

The detailed calculation of the neoclassical current requires that we solve for
the fiuid flows @, to obtain the parallel current density Jp = enfug — uyy).
Starting with the plasma fluid equations, from which we can obtain parallel
moment balance equations relating the parallel viscous and frictional forces.
The parallel frictional forces can be shown to be related to the parallel fluid
velocity u and heat flux gy through the friction coefficients. The parallel
viscous forces are related to the poloidal flows - ﬁp/B,, and §- ﬁp/Bp through
the viscosity coefficients. At this point the fluid velocity for each species
can be found in terms of viscosity and friction coefficients and basic plasma
)

parameters.

The second part of the problem is to find expressions for the viscosity and
friction coefficients. The friction coefficients are found to be independent of the
collisionality regime of the plasma. Starting with the drift-kinetic equation,
the viscosity coefficients can be approximated for the various collisionality

regimes, and these expressions are then smoothed to form expressions valid

over all regimes. Fig. 3-1 shows a flow diagram outlining the steps in the
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derivation.

3.2.2 Fluid Equations

The distribution function, fo(¥, ¥,1), of particles of species a, with charge e.,

and mass ., satisfies the Fokker-Planck equation,

-~ Of
6;: + 7V + (ea/ma}E+F % B)- ‘5{‘ = Calfa) (3.7)

where F and B are, respectively, the macroscopic electric and magnetic fields,

and C, is the Fokker-Planck collision operator:

C,; = X Cab1
b

2:‘reie2 o fa( )3fb(‘-’q)
Cap = — m,bmAava./. [mb avﬁ
_ H() 8fal¥) =
m, Ouvg ]U o7 - )

(X = 273 (2% bap — TaTa)s

where the summation is over all particle species b, and a sum over the repeated

Cartesian indices {a, 3} is implied.
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The velocity moments of the Fokker-Planck equation give the plasma finid
equations. For convenience, the species subseript will be omitted in the follow-
ing equations. The expressions for particle and epergy conservation, obtained

from the |»|® and v? moments, respectively, may be written as

on )
Fl + V. (nd)=19, (3.8)
%(32” J+v-G=Q+a (F+ ), (3.9)

where Eq. 3.8 is valid for small . The expressions for the conservation of
momentum and of energy flux, obtained from the ¥ and v*¥ moments, respec-

tively, are written as

-%mnﬁ'-{-V-P-en(ﬁ-}-ﬁ'x B) =F, (3.10)
H

d = 3e = e = e s = =

EQ‘}-V'R—%EP—;E'P—;;QXBzG. (311}

The conservation of energy flux is analogous to the conservation of momentum
{ i.e., particle flux }. The change in the heat flux in a fluid volume element,
of particle species a, is due to forces on the fluids caused by the macroscopic
fields, collisions with other particle species, and the amount of energy flux
that leaves or enters the fluid element. For these fluid equations the following

quantities are defined:
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density : n= fdsb'fa
particle fluz :  nil= [ &S,
stress lensor : P= fd"’vmﬁ"f,
energy fluz : Q= fd"’v(mvz/2)fr'f,
energy weighted siress fensor: R = fd3v(m,,2/2);§'f,
friction force : F= [davmi'C{f),
collisional energy exchange : Q= f Po(m/2)(F — A2C(f),

collisional change in energy fluz : G= fdav(mv2/2)\'r'0(f),

scalar pressure : p=nal =Tr{P}/3,

where Tr denotes the trace.

Another quantity which we define here is the heat flux

= [ Eo(m/2)F - 8P - D,

which is just the energy flux measured in the reference frame of the plasma.
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3.2.3 Small Gyroradius Ordering

The scale length for gradients in thermodynamic quantities, such as the plasma

pressure, is given by
= |Ving|™
the thermal speed is
vy = (27 /m P/,
and the particle transit frequency is given by
w = v/l
The particle gyroradius {Larmor radius) is given by
p=v, /0= mv,feh.

Terms in the fluid equations will be ordered with the assumption of a small

gyroradius such that
We further assuine that the diffusion time scale is such that

Binp/0t = O(6w), {3.12)
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so that the macroscopic plasma parameters are in equilibrium compared te
the time scales of other processes. We also assume that B x B drift velocities

are small compared to the thermal speed,
¢E/(Bus) = 0(3),

so that we can rule out rapid fluid motions associated with the MHD ordering,

where cE/{Buvy) = O1).

3.2.4 Consequences of the Ordering

It can be shown[2] that that assumption of small gyroradii results in a distri-

bution function that is approximately Maxwellian
f = fae+ Oé),

where
Fre = no(x/*vz) P exp[~(v/v: V).

The following terms, which are identically zero when f = f,,, must be of first

order
{nd,Q,F.G,(P - Ip),[R — (3pT/2m)]} = O(é), (3.13)

where I is the unit dyadic. Conservation of energy in collisions requires

Z(Qﬂ'i'ﬁa'an):{}y

from which we see that Q = O{§?), since both both F. and &, are assumed
to be O{§). Using Eq. 3.13 we see that to lowest order the heat flux can be

approximated by
3=1Q~ (5/2)pa)(1 + O(5)).

Because of the assumed diffusion time scale in Egq. 3.12, the electric field, in a

plasma without ohmic currents, must be primarily electrostatic
(c/Buo:)E + V&) = 0(6%),

where ® is the electrostatic potential.

By identifying the zero order terms in Eqs. 3.10 and 3.11 we find

)
[Vp + enVE = 0(8),

==}

[+2]}

- IVPT + epV&] = O(5).

Together these two equations imply that

mh

VT = 0(8),

(=3

« Vinexp(-e®/T)] = O($). (3.14)
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The quasi-neutrality condition ¥, e.,n, = 8, combined with Eq. 3.14, then

yields
B.Vp = 0(8),
B-Vn =0(%),
B.V® = 0(5).

So to lowest order the density, temperature, and electrostatic potential are

constant on a flux surface
ne = ()1 + O[],
T. = Ta{¥)[1 + O(8)},

E = -V&(y)[1 + O(8)].

3.2.5 Particle and Heat Flux
The perpendicular particle and energy flux can be obtained from Eqs. 3.10
and 3.11, respectively, giving the exact formulae

aiy = (mQ) 5 x [V - P — F — enE + §(mni)),

G. =0t x V-R~G - (e/m)E- (P + (3/2)p]) + 84},
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where 7 = B/B. Notice that to find the fows through O(§™) is is only neces-
sary to evaluate the expressions in the brackets above throngh O{§"-1).

To lowest order the equilibrium perpendicular flows are
ni, = (mQ)"4 x (V5 + erVa),
Qi = 07 x [(5/2m)VFT ~ (5¢/2m)Ep]
d. = (5/2)(m®)~'p4 x VT.
These flows obviously remain in 2 magnetic surface since
i, -Vy=§, -V =1,
In equilibrium, the lowest order terms of Eqgs. 3.8 and 3.9 give

Vri=V-Q=V-g=0.
¥

which can be combined with the formulas for the perpendicular flows, and

‘integrated to find the parallel particle and heat flux

F I ’
nuy = n'u,,(gb)B +~(n_ﬂ(P + end ),

5F
a = go{¥} B + Py 4

where u3(9) and gs{s) are undetermined constants of integration.

The total first order flows for any species can be written as
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- B "
afl = nuyB + —(p + end")Rg, (3.15}
mil
" 5B N
§ = gsB + ;=T R¢, (3.16)
2mQ

from which we can see that the constants of integration give the poloidal flows

T, = us(¥)B,, (3.17)

G = q2(4)B,. o (3.18)

3.2.6 Parallel Moment Balance

In equilibrium the parallel components of the fluid Eqs. 3.10 and 3.11 can be

flux surface averaged to obtain
(B-V.n)=(B-(F+enE)), (3.19)
(B-V.R) - (3¢/2m)p(B-E) - (e/m)}(B-E-P) =(B.G),

where © = P — pl is the viscosity tensor. We can define two new guantities,
the heat flux friction force

H = (m/T)G — (5/2)F = _me(g — 2H)C(f)dT

and the heat viscosity tensor

48

® = (m/T)R - (5/2)P = — f dsvm(g — 2y S

2

where 22 = v?/oX. The heat viscosity tensor is traceless to lowest order in §

and can equivalently be expressed as
5 Ty 2
© = — [ dom(3 - 22)FF - (+¥/3)1)f
2
The second moment balance equation can then be rewrtien as
(B-v.@)=(B-H), (3.20)
where we have neglected terms of O(5%) and have used

(B-E-P)=~p(B-E)+0(6)

3.2.7 The Hictio?-Flow Relations

The particle distribution function can be expanded in powers of §
fo = fan 'kfnl + -

where fag = far, the Maxwellian distribution function. When evaluating the
friction forces, only the £ = 1 spherical harmonic of the first order distribution

function will contribute, since the collision operator is spherically symmetric in
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velocity space. This £ = 1 harmonic, denoted by fal ., can be further expanded

in terms of generalized Laguerre polynomials, Lg-alz)(:ri), of order 3/2

ﬂ) = E:: [Ziangalz)(zi)]fao (3'21)
Ur Yo
- [GG_Z@_%)‘!« ] foo. (3.22)
'U;. 5 2 Pa

Here z, = v/vr and

20755 + 1)

3, r 32 1)
i ] S

ncﬁ.aj ==
The first two coefficients in the expansion are identified as

Ugp = Uay

%

5p.

ﬁ'.al =
where the heat flux is approximated, as in Eq. 3.21 by
Ry

Using the expansion of fii), in the collision operator, linearized about f.0,

the friction forces can be expressed [5] as
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where the friction coefficients Ef‘jb can be writien as

‘AJ-b _ [Z ngmaM1 10— 3]6 + N:;!J 1.

& Tak Tab
i~1,4-1 1,41 .
The matrix elements, M ™" and N7*~? are moments of the collision oper-
ator:

a 15 2
== [ dsUWlL?/z)Caa(;gﬂL?/z)fco,fw), .
Ta

Tab

Ta

N a= f &*oy Ltzmcab(f 2:" Lg‘amfm):
5 v

where 1, is the Braginskii Coulomb collision time[18]

3 m2 vm

Tab = 16\/_ n;,e2

The symmetry of the matrix elements

= ME,
TEo N3 = T2u,, N7

is due to the self-adjeint property 1 9] of the Coulomb collision operator. These
N

relations lead to the symmetry of the friction coefficients
¢ -

The matrix elements are evaluated in reference [5). Tke parallel friction forces

can then be written as {20]
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0 - 2§.. =

F,.B=—F B=[f(f-8)+ E;,g%-] -8B, (3.23)
s — — e 2&: ey

BB = -t - 50+ 55 B, (3.24)
0.0 i 261‘3' T '
HB=-t(3)5, (3.25)

where terms of relative order m, /m; have been eliminated. Higher order terms
in the expansion for the friction forces are not considered here.

The friction coefficients are

MM,
2;1= - 3
Tei
In.m,
£y =y =2t
12 21 ]
2 Tei

i3 n.Mm,
= (5 +VD—,

6, = ‘/in:m.' .

The friction coefficients are independent of the collisionality regime, unlike the

viscosity coefficients soon to be calculated.

3.2.8 Viscosity Coefficients

The dependence of the viscous forces on the first order flows d; and §; can now

be deduced[21] for a neoclassical plasma. It can be assumed that, to lowest
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order in the Larmor radius, the viscosity and heat viscosity tensors are linearly
dependent on the spatial gradients of tl:;; first order flows. From Egs. 3.15 and
3.16 it is clear that there are no first order flows across flux surfaces. Therefore
there are no first order parallel viscous forces due to nonuniformities of the
flow fields in the V¢ direction. Hence, the viscous forces must arise from
gradients of the flows that lie within a magnetic flux surface. It is then clear
that rigid body rotations of the plasma about the symmeiry axis will give
rise to no parallel viscous stress, even though adjacent flux surfaces may have
different magnitudes of the toroidal flow. Thus the last terms in Eqs. 3.15 and
3.16 do not contribute to (ﬁ -V -1r) or (ﬁ -V 9). So the paralle] viscous

forces depend on the poloidal flows and have the form ™

(B-V-m)=3{(h" VB );( (,uﬂws + p‘;:";—q}:ﬁ) , (3.26)
(B-V.©,) =3((7-VB)) ij (p::u,gb + p;;%?;f) , (3.27)

where the ,u:-‘f are collisionality dependent viscosity coefficients, and the overall
factor of 3{{f - VB)?) is chosen so that uS? reduces to the classical value in
the collisional limit. The inter-species coupling terms are small, since they
arise from field-particle terms in the linearized collision operator [5], and will

be dropped.
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The standard technique used to calculate the viscosity coefficients is to find
solutions in three asymptotic collisionality regimes and smooth these together
to obtain a general solution. These three regimes are: (1) the collisionless
(banana) regime, where trapped particle effects are dominant and trapped
particles complete many drift orbits before undergoing a detrapping collision.
(2) The intermediate {plateau) regime, where collision and bounce frequencies
are compatable. (3) The collisional {fiuid) regime where collisions dominate

over trapped particle effects.

The Drift Kinetic Equation

These section, detailing the expansion of the DKE in powers of §, closely
follows the corresponding presentation by M.C. Zarnsrtorfi{12]. The viscosity
coefficients for the three collisionality regimes may be found using the ldnetic
Eq. 3.7. If this equation is averaged over the gyroangle [22], and terms of

O(6?) are aeglected we can obtain a steady state DKE for each species {a).

—_ = G - "a a = F
(¥ +¥pa) - Vs + ;%:Vu - GA B = Zb:ccﬁ{fu:fb}'

The distribution function in this equation has been gyrophase averaged, ¥po
is the perpendicular drift velocity, A is the vector potential, and ¢ = Yim.v? +

ea®(} is the total particle energy. The overline notation will be dropped for

convenience.

If the distribution function is expanded in powers of §, we find that the

O(8%) solution is a Maxwellian. The O(&) equation is
- " ‘ o Ey
¥ - Viar+ ¥pa- Vi flg — vueT b o = Cal far, fir) (3.28)
where
Calfary fr) = 3 _[Cus( far, Fso) + Cas{Fas fir)]
b

is the collision operator linearized about a Maxwellian. The first term of the
linearized collision operator is the test particle term and the second is the field

particle term.

The drift velocity is given by [23]
Voo = =9y x V (%)
which combined with the geometric relation
& x Vi = —F($)& + BRS,
and invoking axisymmetry, leads to

¥pa* Vi

~F$)w(-v) (3

(- VB)m,

oy

H

(vﬁ + vz}.

Expand f.; in ferms of Legendre polynomials
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far = faDZ Aa!(‘cbs X,'U}.PI(%);
i

where Py = 1, Pi(z) = «, and Pi(z) = 14(32* — 1). Using the identities

(5 9lzef = —ot T2

and [24]
2R(e) = oot Punle) + g Pios(e),
(-2 Ui o) - Aniel

in Eq. 3.28 will generate an infinite serjes of coupled differential equations

{ I-1)a-VB
CiNAa, A) = vr— [( )2 +ﬁ-V] faoAag-1)

2 B
I+t [ {({+2)R-VB
BT ["’ 2 "B+ V] FanAaita)
o B n.VE 4
- ”E’Ifléufao + Fne Bt Toz} (3530 + "&z) A329)

where
C(Aaty Ant) = Col AatPifa0, An P f0)

We can further expand the v dependence of Ay in terms of Laguerre poly-

nomials of order I + 14,

Ag = 2L S aus(w, )LET ) (22),
7
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where z, = v/v5,, and

[ IﬂL?!/’(zﬁ)ﬂ(vﬂf'ﬂfudﬁ'
§ 2B P (22) Prlvy/v)]? faod¥

ﬂazj(?f’,x) =

The coefficients a.; can in some cases be related to macroscopic plasma pa-

rameters such as

Gt = 3%:”"“’ (3.30)
Aoz = _2_21 ;Pla
Guny = _;_1(911« - exapj Pl = Pia)
where
Plla = f Mo} fard¥,
= fl/zmavif,;di‘,

e||n = -fmcvﬁ-c(lsu}fuldi:3
e.La = - f 1/2mc”iL$[3/2]fnld;’.-

To first order in the gyroradius expansion the viscosity and heat viscosity
i+

tensors have the CGL form{25}
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Tg = (P!{a - pin)(ﬁﬁ e 1/3) (3-31)
@, = (O — @1 )(AR ~ I/3) (3.32)

At this point we introduce approximations which will lead to the caleula-

tion of the viscosity coefficients in the various collisionality regimes.

Collisional Regime

Using Eq. 3.29 for | = 2 we can peglect [ = 3 moments of fa, since they are
of order 7oo/Tes &€ 1 (7up is the thermal bounce time) relative to higher
order terms. Then using the expansions for Aa and A,; {truncated after twa

terms), and Egs. 3.15 and 3.16, we obtain

222 uaaLff’”—%g;—“LQ“’” (7 - VB)Pafuo

= z ch(x:(auztl + aa:l)PLfa.ﬂa fbo)
b
where the field particle terms in the collision operator have been neglected

Taking the z’LE{r’" ¥ p, and ::ZL(IE“)P; moments we get the coupled equations

.
9 a a 5P¢

1
= Y0 T [ AL PG LS Pafoo, o),

§=0 &

A
Tnc?‘l’.& =Y S f S LD P, Cop( 22 L Py fuo, fro) v
Pa =0 3
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The matrix elements are found and equations inverted in reference [5}. The
coeflicients a,;; are related to the viscous forees through Egs. 3.31, 3.32, 3.26
- 1

and 3.27. Then for a hydrogen plasma the viscosity coefficients are

M= Ay (3.33)
.M, 1.446
= gy = S 0,
ce _ MeMe 1y 6.675
Hoa = =7 A,
Tee 2
i n;m; 4, 1.358
By = ’\?i“”‘é““‘”,
i i My, . 2.191
Bz =Hn = __f""\?i_"'i‘”’”;
k13
& Tamg ., 6921
= AL e
#22 Ty 1] 2 ]

where A,y = vra7aq is the mean free path, and terms of order (me/m,-)l/’ have .

been omiited.

Plateau Regime

Various methods{26}[27] have been used to calculate viscosity coefficients in

the intermediate regime. These calculations all assume §p < 1 where

Bn-uu: - Bmin

&g =
8 Brrm.z 'i"Bmin’
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and B, and B, are the magnetic field strength maximum and minimum
for a given flux surface. It will be shown in chapter 4 that this condition on
the magnetic field modulation is not satisfied. Therefore the plateau regime
calculations will not be applied to the Octupole.

In this regime the following conditions are satisfied:

L. _.
o = 5537 51,
VraTs

and

Vra T,
-T_°>I,

where
L} = (B*}/{(=-VB))
is the square of the connection length.
Starting with the first order DKE {Eq. 3.28), and an sppropriste mode](28]

for the linearized collision operator Cof fa1), we can put the solution for f,, in

the form[29]

v

B
fur = P [58,0) gy foo + Fiy- Fia] + B (3.34)

where kg, is the portion of the solution localized in velocity space{30]. Since

the term kg is of order (7.5/7,) € 1 with respect to the first term{28}, we can
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determine S, to this order by expanding it in terms of Laguerre polynomials

giving

Sd(‘d’! ”) = 5 2

Vre

2z, [u‘h - Eq_”“.] < B? >‘/=1

where the expansion has been truncated after two terms. Using this form for
Sa, and substituting Eq. 3.34 into Eq. 3.28 we obtain an equation for ko in
terms of uy, 2nd gg,-

At thie point f., is known for the plateau ‘regime and the CGL form of the
viscosity tensors (Eqs. 3.31 and 3.32) can be evaluated and used in the parallel
moment balance equations { 3.19, 3.20) to obtain the viscosity coefficients for

the plateau regime, valid for an arbitrary flux surface geometry[29]:

as __ RaTR, ‘VG:
= Ton /\achTr(3)a (335)

]

it = 20,22 ey - 29

it = 2002 [r(s) - s1e) - D).

aux

Banana Regime

This regime exists for values of the collisiopality parameter v., < 1. It is
convenient to expand the distribution function and drift kinetic equation in

powers of v.,. Using Eq. 3.28, the lowest order (+%,} equation,
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vyt - v (fif) - F{Kb)f;o%ﬂ;) =10,

where fa = i;” + 1) 4 ..., can be solved to obtain

9 = PO fao + galv,o %), (3.36)

where g, is a coustant of integration.

The next order (v'3)) equation,
aE -
o VG - ”ue—i,—.—ﬁfao = Cu(f. fi ) (337}

can be used to find constraints on g., by integrating over a beunce orbit for
both the trapped and circulating particles. For circulating particles we use

the annihilation operator (B/v;|> on Egq. 3.37 to obtain
~7(B-E) foo = <—B"C=(f“f’, i ) : (3.38)
Ta “ e

which has a solution of the form{31]

o = TG )

a

fal)

2
VTa

where A = p/E is the pitch -angle, and

. ov 2\'h e N
W) == B*) f; (1 = ¥BY%Y’

§2
where o = wy/lvyl. For circulating particle the pitch angle is in the range

0 < A< X, where A, = B}_. Note that for a uniform magnetic field Wy — vy

For trapped particles we can integrate Eq. 3.37 over a closed banana orbit

to obtain
dl,
f?;loa(gcvgb) =0

which implies go = 0. For circulating particles we use the form for g, in

Eq. 3.36 and taking the v"Lglz moments for § = 0,1 yields

h
o= THEL Lo - 220

v‘?‘c f <

@

where

3 Bk Ad)
=38, TEESYI)
¥

is the fraction of circulating particles. In reference [5] the expression for g, is

substituted into Eq. 3.37 and using Eq. 3.38 they obtain

1/2
i VA = Gt 17 - AEG =L (B, 1)

fc Bz ol Gas 51
where H (A, ~ A} is the Heaviside step function. Taking v L%’ moments of this
equation gives relations between ts,, g4, and the viscous forces which can be

solved to obtain viscosity coeflicients for the banana regime as follows:
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L = Li? V2 -In(1+ v2) +1] {3.39)

,,_neme i1 4 5 3
Hiz = chc [ ‘/5‘}'21“(1"'\/5) 2}

= fl)39 25 13
Hiz = :fc3[4\/_ ln(1+\/_)+ ]
= LR/ a1 4 vE)

ii_n'm‘ 2fe1, 4 5

i 2_f,l 39

where fi = 1 — f. is the fraction of trapped particles and terms of order

{m./m,)"# have been dropped.

Smoothing the Viscosity Coefficients

At this point the viscosity coeficients derived above are only valid in the ap-
propriate collisionality regime. It is necessary to derive smoothed coefficients
valid for arbitrary collisionality. Since some of the coefficients change sign from

one regime to anether, it is convenient to define a positive definite coefficient

matrix[5] given by

A = pit (3.40)
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5 a
Kfz =Kz = f‘;g + “27-"':11

a . 25
K3 = #32 + 5u33 4+ r“n

Using this matrix reference [5] describes a smoothed form for the coefficients
with

KaPSKGPKﬁB
[EaPs . Knr [Ka? + E’iajB]

Kg(vna) = (3.41)

where K73, KgF, and KiP are the coefficients evaluated in the Pfirsch-
Schiiiter, plateau, and banana regimes respectively. It is shown[5} that this
smoothed form for the coeficients is good in the banana and Phirsch-Schlfiter
regimes but may give poor results in the plateay regime., With this caveat in

mind, the above method of smoothing coeflicients will be used, as opposed to

more accurate formalisms that are tedious to apply.

3.2.8 Calculation of the Currents _

Inserting the equations for particle and heat fux {3.15 and 3.16), and the
friction-flow and viscosity-flow relations {(Eqs. 3.23-3.27), into the paralle]l mo-
ment balance equations (3.19 and 3.20), we obtain a set of coupled equations

that can be solved to find the fows uge 2nd gg, in terms of the friction and



viscosity coeflicients:
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Inverting these equations we can get a direct expression for the paralle]

current
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. _Fp FBy ¢ 7 T. s Tz
n= B (B;)? ;(1 - La) — fLsz - ?Laz} + Ore

(5.5)
(B%)
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B.(3.42)

where p = p.+p:, T = T, +7T; and the f},‘j are normalized transport coefficients.

These transport coefficients are related to elements of the Onsager matrix and

are given by

"31 = ﬁ;:([% + ﬁgz} + ﬁ§2(1§2 - ﬁiz)
(B%: + )05 + B52) — (152 — 852

Top = B35 + B5,) + A%.(8, — Bf,)
(25 + 50)(05: + %) — (B2 — 5.0

Fi % Hiali
A I A . E—
27 T (B, + S, ~ (BL)?
I3; + B3
{5y + 05,002 + A52) — (052 — 81202

Tne = (ne)z

a{(avE)?

(3.43)

where fi;; = p"j—(w)-, and terms of order (m,/m;)'” have been neglected.

3.3 Application to the Octupole

Calculated positions of the Octupole flux surfaces are generated by the pro-

gram SOAXK{32][33]). This program includes the time dependent perturbations

of the flux surfaces due {o the finite conductivity of the boundary conduc-

tors. From the results of this code the flux surfaces can be traced, to allow
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the caleulation of the flux surface averages needed to determine the parallel
current.

The typical magnetic field modulation and circulating particle fraction, &5
and f. respectively, are shown in Figs. 3-3 and 3-4. The field modulation
is large enough that the plateau regime approximations are inappropriate,
especially in the common flux region where 3 > 5.7. We can see that the
fraction of circulating particle is less than half the total, and that in the
common flux region nearly all (>90%) of the particles are trapped. Since the

plateau regime is absent, Eq. 3.41 is replaced with

KaPsKar
K(vra) = re0amy
FAVT [ K‘-jps + Ki;‘s]

(3.44)
for the purpose of smoothing the viscosity cocfficients between the collisional
and banana regimes. This approximation will be accurate enough for the
purpose of comparing Octupole currents with theory.

Figs. 3-5 through 3-7 demonstrate the calculated dependence of the elec-
tron viscosity coefficients on A.., for a flux surface inside the separatrix. These
coefficients have a similar dependence on }.. in the common flux region. Us-
ing the smoothed viscosity coefficients, Fig. 3-8 shows the dependence of the

coefficient 1 ~ L3; on Aee. As seen in Figs. 3-9 and 3-10 this coefficient has a

weak dependence on B, and #.
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In Fig. 3-11 the relative magnitudes of the coefficients 1 -—fa-., Egg, and E%z
are shown. Since the typical plasma has %' -3 %'.5 ~ 4 { see sec. 4.1 }, we will
find that the parallel current is predominately driven by pressure gradients.
For comparison of non-chmic Octupole plasmas with theory, only the terms
in Eq. 3.42 that are proportional to the pressure .gra.djent will be used.

The calculated dependence of the neoclassical conductivety oy on the
electron mean free path is shown in Fig. 3-12 in units of ne?n,/m,.. On
this scale the Spitzer conductivity has a value of 2. As the viscous stress

between trapped and circulating particles increases, the magnitude of onc

rapidly decreases from the Spitzer value to its banana regime limit.



Fig. 3-1. Theory Flow Chart
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TOR

Fig. 3-2. Bootstrap current is generated by the viscous
force between trapped and untrapped particles. When
poloidal viscosity is high the plasma generates the

paraliel bootstrap current to insure the poloidal current

is nearly zero.
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Fig. 3-3. The calculated flux-surface dependence of
the magnetic field medulation, for By= 370 G on the
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Fig. 3-4. The calculated flux-surface dependence of
the circulating particle fraction for Bt= 370 G on the

separairix.
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Fig. 3-6. This figure illustrates the dependence of uiez
on ?\ee for the collisional regime, banana regime, and
for the smoothed coefficient (Egs. 3.33, 3.39, and 3.44
respectively). This is calculated for the flux surface

¢=4.5 with Bp=1240 G and B,=380 G.
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on Ay, for the collisional regime, banana regime, and
for the smoothed coefficient (Eqs. 3.33, 3.39, and 3. 44
respectively). This is calculated for the flux surface

p=4.5 with Bp= 1240 G and Bt=380 G.
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Fig. 3-10. Dependence of calculated value of (1—]..31) on

¢, for Bt=370 G on the separatrix and Aoe™ 1.0 m.
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Chapter 4

Experimental Results

This chapter will discuss the experimental results germaine to this investiga-
tion. We will start with a description of the general plasma parameters for
typical plasmas created in this experiment. These parameters will be valid
for plasmas with and without ohmic currents, since the chmic currents caused
negligible plasma heating. The next opic will be current density measure-
ments at the flux surfaces ¥ = 4.5, 5.0, and 6.0, for plasmas with ne ohmic
current. The parallel current density and the pressure gradient associated with
the diamagnetic current will be discussed and compared with theory. Next we
will look at plasmas with ohmic currents on the flux surface ¥ = 4.5 and see

how the ohmic current scales with the toroidal electric field.

&1
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Also discussed in this chapter is the axisymmetry of the Octupole plasmas.
When the data in this section was taken it was never intended that it would
be used as part of this invesiigation. It was originally intended to be a short
investigation into how field errors in the Octupole might be affecting local
measurements of density and temperature. It was later realized that either
the field errors or the anomalous Jocal plasma parameters might be affecting
the current density measurements and therefore this data was resurrected. It
should be realized, when reading this section, that the data is incomplete in
terms of relating field errors to measurements of current density.

The last topic discussed in this chapter will be the main differences be-
tween the results shown in this thesis and the results presented by M.C.

Zarnstorff[12]{13){14].

4.1 General Plasma Parameters

The measurement of typical plasma parameters and plasma currents was done
in the lower outer bridge region (Fig. 4-1} of the Octupole at a toroidal angle
of 45° - 55° from the primary core. In this region the radial distance from

the ring to the wall is 11 cm and the separatrix is 5 cm from the ring. In Fig.
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4.2 the density profile in ihe bridge {measured by langmuir probe) is shown
to be apptoximately gaussian, and peaks on the separatrix early in iime. As
the profile evolves the density peak moves in towards the ring and the density
in the private flux initially increases while the common flux density decreases.
It has been speculated that the inward motion of the density profile is caused
by enhanced tranport[i?} in the common flux region. In Fig. 4-3 we see that
the peak in pressure also moves in towards the ring with time, but unlike the
density, the pressure decreases everywhere. From the temperature profile, in
Fig. 4-4, we see that the electron temperature initially peaks near the internal
ring, but by 1.5 msec after plasma injection the temperature profile is relatively
fiat. From the radial profile of A, in Fig. 4-5 it is seen that initially the
plasma is refatively collisionless { A, = 80 cm, see Fig. 3-6 ) and that by 1.5
msec after plasma injection the plasma near the separatrix is collisional with
A < 30 em < L. In Fig. 4-6 a comparison is made between the magnitudes
of the inverse pressure and iemperature gradient scale lengths. We see that
in general the temperature gradient terms in Eq. 3.38 will be negligible, and
are subsequently ignored when comparing the measured parallel currents with
theory.

in order to asceriain the reliability of magnetic probe measurements, we
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can compare pressure gradienis calculated from pressure profiles tzken with a
Langmuir probe, and pressure gradients caleulated from diamagnetic current
measuremenis made with the magnetic probes. In Fig. 4-7 we have a mea-
surement of the pressure gradient at ¢ = 4.5 that compares results from both
3 magnetic probe and a Langmuir probe. Figs. 4-11 and 4-14 make similar
comparisons for the flux surfaces 5.0 and 6.0. On the flux surfaces 4.5 and 5.0
these two diagnostics are in agreement, which lends confidence to the results
of the current density measurements discussed below and indicates that the
diamagnetic currents in the Octupole are as expected from Eq. 3.2. It should
be noted that ¥ = 6.0 is near the separatrix, where from Fig. 4.3 we see that
the pressure measurements have large error bars. Therefore, pressure gradient
measurements made with the i.a.ngmuir probe at ¢ = 6.0 are less reliable than

'
measurements at the fux surfaces 4.5 and 5.0.

4.2 Current Density Measurements

4.2.1 Normal Plasmas (Ne Ohmic Currents)

The flux surface ¥ = 4.5 is in the private 8ux region, about 2 e¢m in from

the separatrix in the lower outer bridge. The parallel current at ¥ = 4.5
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{Fig. 4-8) is unusualin that the current magnitude, as measured by magnetic
probe, initially increases at a time when the pressure gradient is decreasing
(Fig. 4-7). The only other quaniity that is increasing at this time is the
density, as previously mentioned. Fig. 4-9 shows how the measured parallel
current {normalized to the pressure gradient) varies with A, as the plasma
deca):r.s: during a single shot. The dashed line is the theoretical prediction
from Eq. 3.42. We see that the parallel currenti has a sign opposite from the
predictions and a magnitude that is too large.

The Aux surface 1 = 5.0 is also in the private flux region, about 1.2 em
from the separatrix. At ¢ = 5.0 the parallel current in Fig. 4-10 decreases
monotonically with time, as expected from the pressure gradient time .decay
in Fig. 4-11. However, the magnitude of the parallel current is clearly larger
at ¥ = 5.0 than at ¥ = 4.5 for times before 3 msec. This is contrary to what is
expected from Eq. 3.42 since A.. is neatly the same on each surface {Fig. 4-5)
and the pressure gradient at ¢ = 4.5isin general greater than that at ¢ = 5.0.
Specifically, if we look at time ¢ = 1.0 msec, we have jylg=se = 2ijlv=1s and
ply=so = %P'|¢=4.5- Fig. 4-12 demonsirates the same disparity between the
measured and calculated jj at ¥ = 5.0 as was seen at P = 4.5.

The flux surface ¥ = 6.0 is in the common flux region (0.4 cm from the
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separatrix), where the pressure gradient reverses sign from its value in the
private flux region. From Eq. 3.42 we ‘would also expect the parallel current
to reverse sign. In Fig. 4-13 we see that 7 is in the same direction as it isin the
private flux and has about the same magnitude as jj at 4 = 5.0. The pressure
gradient in Fig 4-14 has indeed reversed sign from its value in the private flux
region and has a magnitude about the same as the ¢ = 4.5 pressure gradient.
Comparing the measured ratio of j/p’ to the theoretical curve in Fig. 415
we see that the parallel current has the correct sign in the banana regime but
has a magnitude that is much too large. In the collisional regime the direction
of the current is opposite from the expected Pirsch-Schliter current.

On all these flux surfaces the theory predicts that the parallel current
will reverse sign as the plasma collisionality increases. For these plasmas

b

this means that the parallel current must initially decay away faster than the
pressure gradients driving it. Since the reverse case is true, there seems to be
more parallel current being driven than can be accounted for by considering

the perpendicular pressure gradients alone.
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4.2.2 Plasma with Ohmic Currents

Plasmas were created with the addition of toroidal obmic currents of the same
order of magritude as the usual paraliel and perpendicular currents. Fig. 4-18
shows two cases where the ohmic currents were driven in opposite directions.
In each case the magnitude of the driving electric field was the same. In order
to determine if the ohmic currents had any effect on the usual parallel current
these two cases were averaged and compared with a case where there was
no ohmic current in Fig. 4-17. We see that when the effects of the ohmic
currents are averaged out the result is the usual paraliel current. This result
is consistent with the idea that the ohmic current and the non-chmic parallel
current linearly superpose.

By separating the ohmic current from the non-chmic parzllel current, it is
shown in Fig. 4-18 that the ohmic current depends linearly on the toroidal
electric feld, as is expected from Eg. 3.42. For X.. = 20 cm the local plasma
conductivity should be about half the Spitzer value, which gives predicted
Johmic 2bout three times the measured value. Previous measurements{34}[35]
of the Bux surface averaged conductivity in the Octupole have found values

consistent with the neoclassical theory in the collisional regime and at inter-

mediaie cellisionality.
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It should be pointed out that ali these current measurements are local, and

may be subject to the local effects of asymmetry discussed in the next section.

4.3 Axisymmeiry of the Plasma

The assumption of an axisymmetric plasma, in the theory of neoclsssical cur-
rents, gives us the flux surface constant K(3¥) x j,. I this assumption is
unwarranted, then the measured plasma currenis will be dependent on the
toroidal angle and the extent of the deviation from axisymmetry.

An investigation into the profile of the Octupole plasmas has shown that
they are not axisymmetric. Magnetic field errors have been traced to fields
leaking through the poloidal gap{37] dne to an inappropriate distribution of
the primary field windings on the iron core. The distribution of poloidal wall
current, creating the toroidal field, was also found to be non-axisymmetric.
The current driven in the vacuum vessel walls, in order to create the toroidal
magnetic field, was found to create a small time dependent poloidal magnetic
field also. This nonaxisymmetry of the toroidal field was probably caused by
an uneven disiribution of wall current, due to unmatched contact resistances

of the electrical connections to the vacuum vessel.
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Fig. 4-19 shows how the §B, generated by the plasma currents at ¢ = 7.0
varies as B, is increased. The relationship seems random, except for a2 narrow
range of foroidal field values where the signal peaks. Fig. 4-20 demonstrates
how the gradient in the plasma generated § B, varies during a scan of B;. Agaiﬁ
we see a random behavior with a sharp peak that coincides with the peak in
§B,. To lowest order j, &« V{§B,} (Eq. 2.4) and will contain components both
perpendicular and parallel to the magnetic field. A similar random sealing of
jy with By in the common flux region was seen by M.C. Zarnstorfi[12].

One effect of the field error on the plasma was the existence of a flux
tube with anomalously low plasma temperature. As the ratio of B, to B,
is increased from zero, and the pitch of the field lines increase, this tube of
flux can be placed at successive Langmuir probes, distributed in either the
poloidal or torcidal direction. Fig. 4-21 demonstrates how the ion saturation
current to one of these probes undergoes a large reduction in magnitude at
the same toroidal field strength that the magnetic signals in Figs. 4-18 and
4.19 have their peak. At the ratio B,./F, where this flux tube is in the lower
outer bridge at the toroidal angle ¢ = 45° the j,q.. signal at ¢ = 55° seems
normal. Fig. 4-22 shows a radial profile of the ratio of the saturation currents

at ¢ = 45° and ¢ = 55° in the lower outer bridge. Throughout the profile
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the probes were moved together, therefore if the plasma was axisymmetric the
ratio of the signals should remain constant. We see that outside the separatrix
there is as much as a Sd% decrease in the magnitude of the signal at ¢ = 45°.
Inside the separatrix there are indications of an asymmetry of a lesser extent.
This toroidal asymmetry in the jon saturation current indicates that there are
probably pressure gradients along a flux surface, near the region of this flux
tube with cooler plasma.

For different toroidal and poloidal probe positions the onset of this dip
in the current to a Langmuir probe occurs at different values of B,. These
differences in the onset of the dip are consistent with results expected if cool
plasma localized to a flux tube existed. This dip in the saturation current
occurs primarily in the common flux region. This cooler flux tube of plasma
was mapped back to the poloidal gap midplane, where it is supposed that field
errors caused plasma scrap-off as field lines grazed the vacuum vessel, which
in turn introduced cold particles from the wall.

Attempts were made to eliminate the errors in the poloidal field by re-
arranging the distribution of the primary windings of the core. These at-
tempis were only marginally successful. No attempts were made to correct

the toroidal field errors since gaining access to the electrical connections at
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the vacuum vessel was extremely difficult, and would have resulted in several

weeks of work where the Octupole would be nonoperational.

4.4 Comparison to Past Octupole Experiments

When the disparity between the results of this thesis and the resuits pre-
sented by Zarnstorfl were first discovered much work went into resolving the
unfortunate conflict. Reaching a consensus was hamper;:d by the fact that
the discrepancy was discovered about one year after the shutdown of the Oc-
tupole program. The reasons for this disparity were finally pinpointed and are
discussed below.

First there was a difference in data analysis techniques. Initially we used
the same data analysis programs, but as our experiments evolved in different
directions so did the data analysis methods. The experiments required two
sets of integrators with different relative gains. The difference in gain (a factor
of 4.7) could be taken into account during the process of the final data analyses
or when archiving the data (i.e., recording the scale factor), Initially the first
process was used, but at some point, unknown to me, Zarnsiorfl switched to

the latter method. Application of my analysis programs to Zarnstorff’s data

a2

gave results similar to what I have presented in this thesis. The pertinent
data records needed to insure proper analysis of Zarnstorff’s data no longer
existed.

The other major difference was in the measurement of §V B when the mag-
netic probe was aligned with the torcidal direction, thus effectively measuring
the poloidal current. Zarnstorfl’s signals were about half of what I measured
for the flux surface ¥ = 4.5, It is this flux surface where Zarnstoff found that
the collisionality dependence of the parallel current was neoclassical. The dif-
ference in the measured §V B is consistent in data I’ve taken during a period
of over a year, and not easily accounted for as a one-time mistake. This signal
is not raw data since the difference between the signals of the two coils in the
probe is calculated and then integrated before it is recorded. The individual

!
coil signals are not recorded.

The nature of either of these differences was to cause a discrepancy in the
caleulation of the poloidal current (the toroidal current was essentially the
same in each experiment} which lead to a difference in the parallel current
with little difference in the diamagnetic current.

Although these differences have been pinpointed, the question of who made

a mistake, if anyone did at all, has not been rescived, therefore the reader



should consider these results with this caveat in mind.

93

4——— To Major Axis

L uoB

internal
Rings

N
/

—— LGB

Toreidal Gap

Fig. 4-1. Poloidal cross section of the Wisconsin

Levitated Octupole.

Key: UOB — upper cuter bridge
ON — ocuter nose

LOB — iower outer bridge

G4



95

—
(=]

li%llllll I]I]ill]li[ill[l_l

0.5 msec ]

©0
.

e a4

..3)

LI it o

@
E Y

Density ( 10%¢
o
!

2;. 1/ 1
r S
1 y
0 1 1
0 2 4 @T 6 8 ,{,T 10
sep crit
Distance from Ring {cm)

Fig. 4-2. Profile of the electron density in the lower

outer bridge for B, =370 G on the separatrix.

96

TTTI;liIIITllTiGIIi[Iilit[T

0.5 msec
1.0 msec —
1.5 msec
- 2.0 msec _

~
A
|

[
<

i0 |~

Pressure( 101%V-cm ™)
w

Distance from Ring (cm)

Fig. 4-3. Profile of the total plasma pressure in the

lower outer bridge for B: =370 G on the separatrix.



37

W
o

l]il[llil llillilliillllii

0.5msec

8]
LA

1.0msec

N
o

oo
<

U IS L A I

Etectron Temperature {eV)
w v

sep

Distance {from Ring {cm)

Fig. 4-4. Profile of the ejectron temperature in the

lower outer bridge for B, =370 G on the separatrix.

98

E T 1 10 : 1 T T T 71 H T ] H T H T T 1 F T o
103? 0.5 msec _
. VN T 1.0 msec
L \ 3
r P —*='=-'~-- 1.5 msec 7
= L N - 2.0 msec ]
2 Yo
g 10 — 3 \ -
— F \ ]
® * :
r'é) \A\' ]
10' a 3
8
10 AV BN RV BT I
0 2 4 kpr 6 8 \PT 10
' sep crit
Distance from Ring (cm)

Fig. 4-5. Prefile of the electron mean free path in the

lower outer bridge for B, =370 G on the separatrix.



99

S0y T T T T F ]
—_~ 25( E
'E 0L .
[ L 3
E- 1 1
‘3'-5'05 B
—‘ 4
D—7.SE" -]

Y S RS BRI RPN NI S

711:t;-x.‘ruallnlsllgu-xix

||||t1'

bodacdaed

. ! ! . | . }
0 2 4« ¥ 6 8 10
‘{SED chtit
Distance from Ring (cm)

Fig. 4-6. Lower outer bridge profiles of the inverse

gradient scale lengths that drive the parallel currents.

B,=370 G on the separatrix.

100

——eeeeeee ]2t probe

......... magnetic 4
probe )

Fig. 4-7. Time decay of the pressure gradient measured
with a magnetic probe and an ion saturation current

precbhe. ¢=4.5, Bp=1240 G, and B,=380 G.



101

Time {msec)
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Fig. 4-12. Collisionality dependence of the ratio of the
parailel current and the pressure gradient at {=5.0,
for Bp‘—*- 1170 G and B, =380 G.
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Fig. 4-13. Time dependence of the parallel current at

$=6.0, for Bp=9'70 G and Bt=360 Q.
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Fig. 4-16. Time dependence of the paraliel current
with the addition of ohmic current directed in both
the positive and negative toroidal directions.

$=5.0, for Bpﬂli'.?O G and Bt=380 G.
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Fig. 4-17. Time dependence of the parallel current
where one curve is a plasma without ochmic current
and the other curve is the average of the two curves

in Fig. 4-16. ¢=5.0C, for Bp= 1170 G and By=380C G.
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Fig. 4-18. The measured ohmic current is compared
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Fig. 4-19. Signal on a magnetic probe as B, is scanned.

$=7.0, t=0.5 msec after plasma injection.
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Fig. 4-20. Difference signal from parallel magnetic probes

as Bt is scanned. ¢=7.0, t=0.5 msec.
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Fig. 4-21. The ion saturation current, to a Langmuir
double tipped probe, exhibits a sharp dip as the toroidal

magnetic field is increased.
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Fig. 4-22. Radial profile of the ratio of ion saturation
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Chapter 5

Conclusions

The measured parallel current density in the Octupole does not fit the theory
for neoclassical currents in an axisymmetric torus. In some cases the paralle]
current is too large or flows in the wrong direction. The parallel current should
t

approach zero with the pressure gradient, which it does not do. In all these
measurernents the perpendicular current density has the expected magnitude
and time decay, which lends a degree of confidence to the methods used to
measure the currents.

There are strong indications that either field errors or anomalous gradients

in the pressure on a flux surface are affecting the current flow in the common

fiux region. The anomalous values of magnetic field and ion saturation cur-

i16
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rent, measured as 1_3', was scanned, indicate that for the common flux region
the axisymmetric theory may be invalid. It is not clear if the lesser asymme-
tries in the private flux region might affect the currents there also. Certainly
the assumption, that quantities such as pressure and temperature are constant
on an axsymmetric flux surface, cannot be true. Theoretical predictions{36]
indicate that nonaxisymmetry leads to a lessened neoclassical current, so per-
haps pressure gradients along a flux surface are a more important effect in the
Octupole. Since specific details of the field errors are unknown, no atiempts
have been made to amend the theory to account for the field errors.

Details of the diffusion process in the Octupole, for the range of plasma
parameters used in this experiment, are not well known. There is evidence
that transpott in the common flux region may be enhanced over the transport
in the regions of private flux{17]. The inward movement of the pressure profile
has been linked to the difference in transport between these two regions. In
some cases the transport in the commen flux region can be explained by in-
voking vortex diffusion processes [17] while diffusion in the private flux scaled
classically. Since existence of the parallel bootstrap current is intimately re-
lated to the diffusion process, through the neoclassical iransport theory, it

may not be unreasonable to expect a divergence of the parallel current from

P L - e e
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the predicted neoclassical values in a plasma that doesn’t exhibit neoclassical
diffusion.

Other investigations{12] have concluded that the parallel current in the
private flux regions fits the predicted bootstrap values. The disparity, between
those results and the conclusions reached in this investigation, is rooted in
differences in analysis and daia taking techniques. Since the Octupole program
was phased out {0 facilitate ongoing reversed field pinch experiments we were
unable to repeat the Octupole bootstrap experiments and resolve the disparity.

One point that can definitely be made is that magnetic field errors can
be insidious in their ability to confound experiments dependent on error free
axisymmetric fields. With this lesson in mind much effort has gone into the
elimination of field errors from the new Madison Symmetric Torus, which is a
reversed field pinch devic; and sensitive to field errors.

In all, comparison of the experimental data with the neoclassical theory
is inconclusive. At this point it is not possible to determine if the viscous
forces generate bootstrap current in the Octupole or if other processes might

be generating currenis that mask the bootstrap current.
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