The Dynamics of Interacting Nonlinearities Governing Long
Wavelength Driftwave Turbulence

by

DAVID E. NEWMAN

A thesis submitted in partal fulfiBment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY
(PHYSICS)

at the
UNIVERSITY OF WISCONSIN-MADISON
1893






The Dynarics of Interacting Nonlinearities Governing Long
Wavelength Drft Wave Turbulence

David E. Newman
Under the supervision of Associate Professor Paal W. Terry

at the University of Wisconsin - Madison

Abstract
Because of the ubiquitous nature of turbulence and the vast array of different systems
which have tarbulent solutions, the stady of turbulence is an area of active research. Much
present day understanding of turbulence is rooted in the well established properties of
homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for
approximate analytic solutions. This work examines a group of turbulent systems with
marked differences from Navier-Stokes turbulence, and attempts to quantify some of their
properties. This group of systems represents a variety of drift wave flactuations believed
to be of fundamental importance in laboratory fusion devices. From extensive simulation
of simple local fluid models of long wavelength drift wave mrbulence in tokamaks, a
reasonably complete pictare of the basic properties of spectral transfer and saturation has
emerged. These studies indicate that many conventional notions concerning directions of
cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of
saturation are not valid for moderate to long wavelengths (kps < 1). In particular, spectral
energy transfer at long wavelengths is dominated by the ExB nonlinearity, which carries
energy to short scale (even in 2-D) in a manner that is highly nonlocal and anisotropic. In
marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is

efficiently passed between modes separated by the entire spectrum range in a correlation

i
time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity.
While the standard dual cascade applies in this sebrange, it is found that finite spectrum
size can produce cascades that are reverse directed (ie., epergy io high k) and are
norconservative in enstrophy and energy similarity ranges (but conservative overall). In
regions where both nonlinearities are important, cross-coupling between the nonlinearities
gives rise to farge nonlinear frequency shifts as well as changes in the spectral dynarnics.
This profoundly affects the dynamics of saturation by modifying the growth rate and
nonlinear transfer rates. These modifications can produce a nonstationary saturated state
with large amplitude, long period relaxation oscillations in the energy, spectrum shape, and

transport rates.
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Chapter 1

Introduction

1.1 General

The study of turbulence is primarily the study of the dynamics of the nonlinearities
governing the turbulence. This area of study has a long and distingnished history spanning
over one hundred years of experimentation, analysis and modeling. Despite successes
based on the scaling anatysis begun with Reynolds and continued by Kolmogerov! and
others: on analytic closures, physical modeling, computation, and detailed observaton,
there is stifl much in turbulence that reraains a mystery. Studying the dynamics of multiple
turbulent nonlinearities, their interplay with each other and with sources and sinks in their
domain, vields a wide variety of fascinating results. Some results and methods of
approaching problems are found to be inexplicably general in their applicability while other
acceptad properties of turbulent systems are found to be limited in their validity.

As a starting place in investigating surbulence it is valuable 1o use as simpfe a systern
as possible in order to fully undesstand the dynamics without additional complications. One
step in this simplification is the use of 2 dimensional models. The validity of such models
tends to be much greater than one might expect in a 3 dimensional world. Many situations
exist which can cause the reduction of a system from 3-D to 2-D2. In neutral fluids, rotation
causes a separation of 2 and 3 I dynamics for imbedded turbulence with the costect spatial
dimensions and energy. This allows much of the large scale ocean and atmospheric
dynamics to be well modeled by 2-D» quasi-geostropic models3. Stratification can also cause
a division of the two types of dynamics with all turbulent fluctuations having a characteristic
scale length (le) greater than the stratification scale (lg) being governed by 2-D dynamics

within the plane of stratification. Similarly, most surface physics is explicitly 2-D and as

2
such is governed by 2-D dynamics. The introduction of & magnetic field makes the
dynamics of charged particles along the field intrinsicaily different from the dynamics
perpendicular to the field. This often aliows the perpendicular dynamics 1o be treated as 2-D
with Little loss of precision. The ressarch described here is primarily focused on plasma
turbulence whose 2 dimensional nature is due to the magnetic field which is perpendicular 10
the plane of the dynamics. Nevertheless much of the insight gained from these studies
should be applicable 1o other (pon-plasma) systems.

In addition to serving as a paradigm for a variety of turbulent systems, the models
described here strongly suggest the existence of a class of interesting dynamics in rearry
systems that may often be overlooked. This class of dynamics comes from the direct
interaction between multiple nonlinearities. A common feature of turbulent systems is the
existence of muliiple nonlinearities of differing order. The ordering could be based on
amplitude, as in a quadratic nonlinearity vs. a cubic nonlineatity, or on scales, as in the
nonlineasity having three derivatives vs. one having four derivatives, etc. In general the
system is simplified by ignoring the subdominant nonlinearity. While this may be valid in
some cases, and is usually a reasonable first step, it may also be ignoring impontant
dynamics in the cross-coupling. These cross-coupling dynamics may not be as
subdominant as the dynamics of the neglected nonlinearity and as such may be imporiant to
the overall system dypamics.

One of the most cherished concepts in turbulence reéearch is the inertial range. This
is a region in k-space where the nonlinear term {v-Vv for Navier-stokes turbulence) is
much larger then any linear terms (szv for Navier-stokes). Using the existence of such a
region the cascade dynamics can be studied both analyticalty and computationally?., Mach
of the analytic work also assumes that the sousces and sinks of energy (ie., the stirring and
viscous dafnping} are separated by an inestial range of infinite exteni. While these concepts

are useful for the purpose of getting results, they can sometimes be misleading. In general
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if an inertial range exists it is limited in extent and has sources and sinks arranged in a
fashion that is less than optimal from the perspective of a theorist. In any physically realistic
model the energy will go from the source to the sink irrespective of the preferred dynamics
of the nonlinearity governing the cascade. For example a system can be constructed with
the characteristic that the nonlinearity prefers to transfer enezgy to high k from low k. This
sysiern can also be arranged so the source is at high k and the sink is at low k. If the system
is physically realistic a steep gradient in energy will be set up from source to sink with much
more energy in the high k driven modes than in the low k damped modes. The system will,
however, still saturate by transferring the energy down the gradient to the sink. The
saturation level is Hikely to be higher then in the opposite case with driving at low k,
damping at high k and a preferred nonlinear transfer direction being to high k.

In many systems, including most turbulent plasma models, in addition w the
relatively small region (in k space) in which the model is valid, the sources and sinks are
distributed. This leads to a small or non-existent roe inertial range, adding another level of
complexity in the path of understanding the dynamics of the system.

1.2 Fusion/Plasma

In the pussuit of fusion as a viable source of energy a number of hurdles must be
crossed. One of the most serious of these is the problem of confinement of energy. In
order for a self-sustaining nuclear fusion reaction to occar the triple product of density (n},
temperature {T), and energy confinement time (), nT%, must be sufficienty large3. This
means the density must get large énough, the temperature must get high enough, and the
energy confinement time must be long enough for an acceptable value of the triple product.
Preventing the extension of the confinement time are a number of processes which can be
roughly broken down by scale size. At the smallest size scale is classical molecular (or
atoraic) diffusion. Classical diffusion is a very slow process even at the densities and

temperature in the atmosphere. In a typical fusion device such processes would not have a
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great effect on the confinement time. At the large scale end of the spectrum are global
disruptions. These are usually catastrophic magnetic events which essentially dump ail or
most of the energy onto the containment shell in a very short amount of time. At the time of
a disruption T goes 10 near zero implying no confinement and complete suppression of any
fusion reactions. As n and T get larger the stored energy increases and these major
disruptions become increasingly serious due to the potential for damage to the shell.
Fortunately, regimes of operation have been found in which these disruptions do not seem
10 oceur, thus, removing the problem. This leaves the intermediate scales as the source of
the anomalous transport which degrades the confinementS. This transport probably does
not have the same source everywhere in the device. At some radial locations the transport
maybe due to electrostatic fluctsations while at other places it may be due to inleracting
magnetic istands?. Which of the processes is the limiting one is not yet clear and it may be
that they all work in concert. Nevertheless it does seem clear that fluctuation driven
turbulent transport is important in the system and must be understood.

Large scale (ong wavelength) turbulence is an area of intense current research from
both the experimental and theoretical perspectives. This research has been particularly
focused on the core fluctuations as these fluctuations are thought to be responsibie for the
ransport of energy from the hot core to the outer regions of the plasma. One of the models
considered as a viable candidate for the core fluctuations is the dissipative trapped ion
convective cell turbulence MTICC) model, In the late 707s this model was considered and
rejected when the catastrophic Bohm-like transpost that had been predicted was not realized
when successful operation of the Princeton Large Torus in the 4 kev range was achieved.
More recent theoretical work? suggests that this mode should not give catastrophic transport
and is therefore a valid candidate for core fluctuations. Much recent experimental work
including beam emission spectroscopyi¥ and correlation reflectometryl! give aa indication

that long wavelength fluctuations do exist in the core and may be imporiant to transport.
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In addition to being useful as a possible candidate to explain core fluctuations, the
DTICC model is useful as a starting paradigm for drift wave turbulence. Within drift wave
tarbulence models two of the most prevalent nonlinearities, and therefore two of the most
important, are the Ex® and polarization drift nonlinearities. Because DTICC turbulence is
easily represented by a 2-D one-field fluid model (Kadomtsev-Pogutse!2), it rea(iiiy allows
the expioration of the dynamics of the ExB nonlinearity. With straightforward extension the
polarization drift nonlinearity (like that in the Hasagawa-Mima equation3) can be added.
This extends the model to be generic enough in its nonlinear behavior so as to cover most
drift Qave rarbulence. As an example, the Terry-Horton equationl4 has both the ExB and
the polarization drift nonlinearities in a one-field model for trapped electron and universal
modes. These models easily allow the investigation of the different aspects of these
nonlinearities and their interactions. Furthermore they may provide insight into the behavior

of turbulent nonlinearities in general.
1.3 Summary of Resulis

This work consists of a series of studies concentrating on understanding the
dynpamics of two of the nonlinearities which govern drift wave turbulence. With a
progression of models gach nonlinearity is investigated individually then they are combined
to allow the study of interacting nonlinearities. Finally the models are extended to two fields
1o aliow the interplay between the nonlineasities o feed back on the system. This allow the
cross-coupling to have a direct effect on the lincar growth and transport. The four models
are each really just an extension of the previous ones. The first is a one-field Dissipative
Trapped Ion Convective Ceil (DTICC) model with just the ExB nonlinearity. Next is a
model used to study the polarization drift nonlinearisy (or the Navier-Stokes nonlinearity).

This model is the one-field Hasagawa - Mima {(H-M) model. The model combining the two

6
nonlinearities is the Dissipative Trapped Electron mode (DTEM1) model. This is then
extended to a two-field Dissipative Trapped Electron mode (DTEMZ2) model to allow the
self-consistent feedback. In all of these models a variety of diagnostics are used in a range
of different simulations to probe the dynamics of the systems. The diagnostics used include .
tirne histories of total energy, flux, and enstrophy, tiree histories of individual mode energy
enstrophy, and flux as well as frequency and k spectrum evolutions. A diagnostic was
developad to track the nonlinear transfer of energy and enstrophy between modes (or bands
of modes). This has proved to be invaluable in deciphering the dynamics over the fuil range
of k space. In the different models a sequence of types of simulations are performed. Some
simulations are ren with no driving or damping to allow the nonlinearities to relax the
systemn, thereby simulating pure inertial range transfer. Other cases have driven/damped
systems run to saturation in which some set of modes are undriven and undamped and
which therefore comprise an inertial range. In another set of cases the driven/damped system
is allowed to reach saturation at which time a localized energy pulse is inserted. The pulse is
allowed to relax and the relaxation is followed to discern the dynamics involved. Finaily;
scans of parameter space are performed in order to investigate any anomalous behavior. A
summary of the main results follows.

The basis for the Kolmogorov spectrum is the assumption that inertial ranges are
dominated by a local self-similar transfer or cascade. Using a combination of the
Kolmegorov spectrum and equilibrium statistical mechanics it is possible to infer the
preferred direction of ﬂov;r for a given nonlinearity. The dynamics of most turbulent systems
are govemed by nonlinearities which are themselves isotropic so in the absence of
anisotropic driving, damping or geometry the turbulence is also expected to be isotropic.
The DTICC model is used to study the dynamics of an anisotropic nonstandard nonlinearity.
1t is found that this nonlinearity transfers energy nonlocally from low Ky to high ky. This

leads to a saturated spectrum much flatter in the ky direction than that predicted by
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Kolmogorov theory. This should noi be surprising as the lack of a local transfer induced
similarity range preciudes the use of Kokneogeorov theory.

Going hand in hand with the concept of local transfer in an inertial range is the idea
of conservative cascades. The nonlinearity of the DTICC model {ExXB nenlinearity), V
{31/9¥) % 2.V n , has only one guadratic invariant {energy) and conseguently has only 2
direct cascade. The H-M model is used to study the dynamics of the polarization drift
nonlinearity (V¢ xz-V V2¢) which has 2 quadratic invariants, energy and enstrophy.
These 2 mvariznts give rise to the same dual eascade that is famitiar from 2-Ir Navier-Stokes
terbulence. In this cascade energy cascades conservatively to Jow k and enstrophy cascades
conservatively to high k. The early work of Kraichnan (1964) on these cascades used the
infinite extent of the cascade to show that energy is the only quantity cascaded in the low k
region and enstrophy is the only guantity cascaded in the high k region. Tt is found here that
if the spectrum is not infinite in extent there is some “improper” transfer. In the energy
t.ransferr iﬁ.r_xgs some enstrophy is transferred and in the enstrophy transfer range some
energy is transferred. The amount of “kmproper” transfer depends on both the extent of the
inertial range and the position, within that range, of the souzce of free energy (the injection
range). It is quite possible to arrange a situation in which more energy or enstrophy flows
in the improper direction then in the proper direction. This is important to keep in mind
when inferring dynarnical properties from the conservation laws of the system.

Nonlinearities are by definition not additive, vet it is assumed that if 2 nonlinearities
have different regions of dominaance in k space, in the region dominated by one nonlinearity
the other nonlinearity can be ignored. The DTEM! model is used to investigate the effects
of two nonlinearities interacting in one systern. It is found that at the extremes in which one
dominates the other by more then an order of magnitude, it is justifisble to drop the sub-
dominant nonlinearity. However in the often large region where the relative strength of the

nonlinearities are within an order of magnitude of each other, new dynamics occur which
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are not explainable by a linear super-position of the 2 nonlinearities. The “cross-coupling”
dynarnics are qualitatively different and include both a change in the transfer dynamics and a
nonlinear frequency shift. These cross-coupling dynarics occus dominantly in the
“crossover” tegion in which the two nonlingarities are of comparable magnitude. The
frequency shift can be as large as a few times @* and is found fo be proportional to ky. The
shift observed from simulation gualitatively agrees with the shift predicted by c:}osuré
theory. Such shifts could help explain frequencies observed in computation which seem
anomalously shifted away from the frequency expected from linear dispersion relations.
The influence of the crossover region creates 5 effective regimes: 1) at the low k extreme,
transfer dynamics are governed solely by the ExB nonlinearity; 2) at k values batween the
crossover region and the region of ExB dominarce both the ExB and the cross-coupling
dynamics are important; 3) in the crossover region, the characteristic dynamics are
dominated by the imteraction of the two nonlinearities, these dynamics are largely
independent of the ExB and polarization drift dynamics; 4) in the region above the crossover
region but below the polarization drift dominated region, both the cross-coupling and the
polarization drift dynamics are important; and 5) at the highest k values the polarization drift
dynamics dominate. Before ignoring a subdominant nonlinearity it may be fmportant to
assure oneself that the nonlinearity of interest is sufficiently dominant so as to dominate the
cross-coupling dynamics as well as the subdominznt nonlinearity.

In order to self-consistently include the feedback effect of the frequency shift on
Linear growth and transport fluxes, it is necessary to extend the modet beyond a one-field
model 1o a two-field model. The DTEM2 model is used to study these interaction
feedbacks. The most striking result from the two-field studies is the lack of a stationary
saturated state. As with most driven/damped turbulent systems this system does reach a
saturated state dependent on the various parameters, These parameters include growth,

damping and the ratio of ExB to polarization drift nonlinearity strength but, for fully
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developed turbulence, do not include initial conditions. In this system the saturated state is
found to be nop-stationary, instead exhibiting oscillations (cycles) with amplitude of order
50% and osciflation period on the order of 10 Te (eddy turnover times). During these cycles
most of the relevant quantities also undergo large fluctuations. These include transfer rates
and flux as well as frequency and k spectra. These cycles may be understood in terms ofa
simple heuristic relaxation oscillation model. It is suggestive of an intriguing possibility that
this type of escillation may i fact exist in experiment , but may effectively be “washed out”
by averaging over a few cycles in the measurement process. Since these models are all
Iocal, it is also possible that spatial measuriental averaging could wash out the fluctuations.
If they do exist, it might suggest that transport is a much moze locally intermittent event then
generally believed.

The organization of the thesis is as follows: chapter 2 contains work on the
Dissipative Trapped Ton Convective Cell turbulence model. This work focuses on the novel
features of the ExB nonlinearity. Chapter 3 contains analytical and computational results
dealing with the effect of finite spectrum size on the polarization drift nonlinearity. This is
presented in the context of a Hasagawa - Mima type model whichis nearly isomorphic to the
Navier - Stokes equation. Chapter 4 deals with the one - field Dissipative Trapped Electron
mods turbulence model. This model is used to investigate the interaction between the two
nonlinearities (ExB and polarization drift). In chapter 5 the dissipative trapped electron
mode model is extended to two fields in order to explore the feedback of the nonlinear
cross-coupling, Brief conclusions are presented in chapter 6 followed by Appendix A,
which contains some information on the numserics and a commented listing of the main part
of the two-field codes. Finally, in Appendix B some calculations are presented on extending
Kolmogorov anatysis 1o nonlocal (non self-similar) transfer. It should be noted that each of
these chaptess is fairly self contained with introductions which elaborate on the brief

exposition of concepts given in this inwoduction.
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Chapter 2
Dynamics of the £ x B Noniinearity

2.1 Imtroduction

The possibility that turbulence driven by unstable trapped ion modes plays a role in
core fluctuations and transport in tokamaks has generally been discounted throughout the
past decade. At ore time however, trapped ion modes were thought io represent a
potentially serious confinement problem for auxiliary heated (multi-kilovolt) plasmasl.
Indeed, catastrophic Bohm-like transport was predicted. This prediction was premised on a

presumed inverse cascade of energy from the already long wavelengths of the unstable

finctuations, and the fact that fluctoation levels would be large, given the long radial.

correlation length of the turbulence. The successful operation of the Princeton Large Torus
device at ion temperatures in excess of 4 Kev without catastrophic confinement problems
was generalty taken as an indication that trapped ion mode activity was somehow absent
from hot auxﬂigry heated tokamak discharges. Excepting some early efforis to explain this
seeming lack of trapped ion mode turbulence? and some work on low collisionality fon
temperature gradient driven turbulence?, trapped ion turbulence has generally been ignored.
Recent work on trapped ion mode turbulence based on approximate analytic solution
of renormalized Kadomtsev-Pogutse fluid eguations? contends that these fluctuations can
not be discounted as an important component of core turbulence and may in fact comprise
the low frequency large amplitude extreme of experimental spectra. Contrary to the
predictions of Bohm-kike transportl, this work asserts that trapped ion convective cell
turbulence drives iransport which is not excessively large, but is comparable in magnitude to

the transport produced by trapped electron turbulence. This contention is supported by two

i2
facts. The first is that the turbulent radial flow associated with trapped ion convective cell
surbulence is small, offsetting the large fluctuation level in the guadratic moments which
determine the transport fluxes. The second is the prediction that spectral energy transfer is
not characterized by an inverse cascade, but rather is directed to short wavelengths. The
latter precludes catastrophic condensation of energy at the largest scales of the system.

There is mounting experimental evidence that fluctuations with large radial
correlation length are present in the core of tokamak plasmas. Observed spectra from
scattering diagnostics have long exhibited an increase of spectral energy toward the smallest
resolved wavenumbers, typically with ro turnover evident over the range of wavenumbers
for which measurement is possible. Recently, new fluctuation diagnostics with the
capability of providing spatially resclved local measurements of core turbulence have been
developed. Both beamn emission spectroscopy? and correlation reflectometry® find evidence
{the former in TFTR, and the latter in JET) for fluctuations inside t/a of 0.7 with radial
correlation lengths of several centimeters. In both cases, the frequency of the fluctuations is
very low or nearly zero, once the rotation induced Doppler shifis are subtracted. Intriguing
Einks with global confinement are evident. While it has not been possible to associate these
fluctuations with any given model, trapped ion convective cell turbulence is clearly a
candidate.

This chapter describes a numerical study of dissipative trapped ion convective cell
turbulence. Motivated by the issue of the energy transfer direction in wavenumber space for
trapped ion turbulence, key facets of the spectral energy transfer process are examined. In
order to isclate basic physical processes and enable comparison with analytic theory, a
simple 2-D single field mode] is utilized. This mode! is based on the fluid resporses for
trapped ions and electrons first used by Kadomisev and Poguise. The link between
electrons and ions provided by quasineutrality enables a single field description. Rapid

trapped particie hounce motion, restricting the development of parallel dynamics, provides



13
the rationale for & two dimensional freatment. The model incorporates the ExXB nonlinearity,
the dominant nonlinear transfer mechanism for long wavelength fluid plasma turbulence.
Consequently, the turbulent transfer properties of dissipative trapped ion convective ceil
tarbulence, as described by the model, apply to a broader class of long wavelength
fluctuations, including those resulting from trapped electron modes.

In addition to determining the direction of energy transfer in wavenumber space, an
investigation of other properties relating to the spectral transfer process is described in
detail. This includes the degree to which transfer in wavenumber space is local, as mplicit
in Kolmogorov-type similarity arguments which envision an energy transfer through all
scales at precisely the same rate, or nonlocal, and therefore at variance with the standard
view of cascades. The degree of isotropy or anisotropy in the energy transfer process and
in the spectrum itself is also investigated. Finally, the direction of energy transfer is
examined in relation to the guadratic invariants of the nonlinearity and the equilibrinm
spectrum. The latter ties in with statistical mechanics caleulations frequently used to infer
the direction of cascades’-8. Clearly, these properties impact the spectrum, the turbulence
level, and the magnitade of spatial transpert. At a more fundamental level, they affect the
basic characterization of turbulence and turbulent cascades.

Speciral transfer and its characterization in terms of cascades has long been & central
part of the conceptaalization: of turbulence. In Navier-Stokes furbulence, for example, it is
well established that the energy transfer can be represented by a self-simiiar cascade
process. In three dimensions, this process conservatively transfers energy o small scales.
In two dimensions, the invariance of an additional guantity, enstrophy, or mean square
vorticity, precludes the self-similar ‘transfer of energy to small scale. It is possible to
conserve both quantities, however, if enstrophy is transferred to small scale and energy to
large scale. By analogy with 2-D Navier-Stokes turbulence, it might be inferred

(mistakenty, as will become apparent) that dissipative trapped ion convective cell turbulence
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undergoes an inverse energy cascade (cascade to long wavelength). However, it is the
simultaneous invariance of energy and enstrophy which directly underlies the dual cascade
of 2.1 Navier-Stokes turbulence and not the number of dimensions (except through the
number of invariants).

Tt is often possible to infer the direction of spectzal transfer from closure equations.
These describe the average transfer consistent with the siatistical ansatz invoked to obtain the
closuss. The statistical hypotheses upon which closures are predicated are, in general, very
difficult 1o validate and are known to be violated by fluctuations which are spatially
intermittent. Eurthermore, a number of other approximations and simplifications typically
enter into analytical results obtained from closure equations. In particular, the closure s
most often applied to one-point equations. While one-point analyses simplify the
determination of a saturation level, they neglect the incoherent transfer process required for
energy conservation. For these reasons, other methods for inferring the spectral transfer
have been developed.

The most widely used method is based on equilibrium statistical mechanics”-8. This
method is appealing for its direct use of the dynamical invariants in obtaining equifibrinm
spectra of the invariant quantities. Its weakness Hes in the somewhat tenuous connection
between equilibrium guantities and the properties of turbulence, which generally are far
from equilibrium. At the minimum, the use of an equilibrium spectrum to infer a spectral
wransfer direction reguires a knowledge of the steady state spectrum set up under forcing and
dissipation, and the assumption that nonlinear transfer ir: the steady state is in the direction
which would tend to drive the spectrum towards its equilibrium configuration. An’
additional weakness arises from the possibility that additonal invariants exist which
constrain the transfer but are not among those known and included in the calcalation of the
equilibrium spectrum, thereby compromising the equilibrium prediction. Not withstanding

these difficulties, equilibriam statistical mechanics correctly predicts the direction of speciral
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transfer in 2-D and 3-D Navier-Stokes turbulence”8, and has been used in many other types
of turbulence®-19.
In the present work, nonlinear transfer in the numerical simulation of the

Kadomtsev-Pogutse fluid model is directly measared in distinct regions of wavenumber

space. In order to eliminate the transfer imposed by any particular wavenumber space

distribution of sources and sinks in favor of the conservative transfer produced by the
nenlinearity, transfer is determined for undriver/undamped turbulence starting from a finite
amplitude initial state with & given speczrum. These results establish the direction of inertial
transfer of energy in a steady state whose spectrum is similar to the spectrum chosen as an
initial condition. The imitial spectram relaxes under the inertial transfer, producing time-
asymptotically an equilibrium spectrum which can be compared with the spectrum predicted
by equilibriu.r.n statistical mechanics on the basis of the known dynamical invar_iants. These
studies therefore provide a test of the validity of the methodélogy of equilibrium statistical
mechanics for predicting spectral transfer directions, as well as a check on the predictions of
the closure theory?.

The concept of a wavenumber cascade is nsually thought of as a local process
whereby energy is passed between scales which are adjacent in wavenumber space. The
renormalized Kadomtsev-Pogutse equation provides for both local and nonlocat transfer of

internal energy Hfii]? in wavenumber space. According to the renormalized equation,

19 I
ot

- Wil + Tx = O, 2.1)

[

the evelution of energy in the mode k is governed, apart from linear driving and damping
(Yx), by & transfer rate Ty with local and nonlocal components. Specifically, the transfer

rate, as given from a standard statistical closure, is
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Tic = g,mkfz]ﬁk’iz[AN‘L(k,k')+A(k,k’)] + 2 IpPiigRA ), 2.2)
p—!—q:

where

AnL(kK") = const (kxk'z)? LY o (ky'2 ~ ky?),
Alkk) = const (kxk'z)2 L ky'?,

are coupling coefficients, and reflection symmetry in ky has been assumed for convenience
in this discussion. Aside from the ExB geomeirical factor (kxk'z)? and the nonlinear
response time L_kl’k' (to be defined in the next section), these coefficients are governed by
the factors (]a:y'2 - kyz) and ky'2. The factor in Any. indicates transfer which is regligible
for k comparable to k', but large for disparate values, i.e., ransfer which is nonlocal. Also,
the sign of Ang. Is such that energy is depleted from the mode k when ky'2 > kyz, and
deposited into that moae when ky'z < kyz‘ This clearly implies transfer to large
wavenumber. By contrast, the factor in A is positive definite, indicating transfer which is
always out of (rather than into) the mode k, and independent of the relative positions of k
and k' in wavenumber space. (Note that for this term, nonlocal transfer is not precluded.)
The strong interaction and direct energy exchange between modes of widely
disparate wavenumbers suggested by Ay is 2 fundamental departure from the cascade
dynamics implicit in steady state spectra formulated according to the similarity concepts of
Kolmogorov. I nonlocal transfer dominates, it is possible that the steady state wavenumber
spectrum in an inertial range will strongly deviate from a self-similar spectrum. It is difficult
to deiermine precisely the relative magnitudes of local and nonlocal transfer from
renormalized equations without knowing the spectrum. Moreover, nontocal transfer may be
offset by the term A, which is not restricted to purely local triads. In the simulations,

nonlocal and local transfer rates are directly measured throughout the relaxation.
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The dominant nonlinearity governing mode coupling at long wavelengths is the ExB
nonlinearity. This nonlinearity is znisotropic with respect to the two cross-feld directions.
The anisotropy carmies aver to the closure equations, where highly anisotropic transfer,
particularly nonlocal, is evident. In contrast, the equilibrium spectrum, derived from a
single isotropic invariant {energy) is isotropic in the two cross-field directions. This
seeming contradiction is examined in detail from the simulation results in order to determine
the degree of anisotropy in the spectrum, and local and nonlocal transfer rates.

The results of this chapter are now summarized. Inertial energy transfer by trapped
ton convective cell mrbilence has been examined numerically for a 2-D Kadomisev-Fogutse
fluid model. Numerical solution of the equations was accomplished with a spectral code
containing up to 41x41 modes. The specirum evolution and transfer rate time histories of
spectra initially peaked at low wavenumber were observed with two distinct regimes of
evolution in evidence. In the first, there is a strong transfer of energy to high wavenumber
occurring over several eddy mrover times and resulting in the relaxation of the spectrum to
a configuration with noticeable peaking at high ky {y is ihe cross-field direction
perpendicular to the inhomogeneity in density). Nonlocal transfer in ky plays an important
role in the relaxation process and is responsible for the peaking in ky. Enstrophy increases
throughowut this regime. TIn the secord regime the spectrum further relaxes to an
approximately equipareitioned state under the action of sloshing in wavenurnber space. The
final spectrum is roughly consistent with the predictions of equilibrium statistical mechanics
based on a single invariant corresponding to the internal energy. A slight peaking in ky is
apparent in this time-asymptotic spectrum. The peaking represents a minor deviation from
the predicted equilibrium spectrurm, but one which strengthens, rather than weakens, the
equilibrium statistical mechanics prediction that energy transfer is to small scale. For an

indtial spectram which is flat, net transfer to smali scale in the ky direction is again evident,
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but is weaker than that of the peaked spectrum case. This transfer is highly nonlocal,
producing a spectrum which is slightly peaked in ky and similar to the spectrum of the
sloshing regime when reached from a peaked initial condition. The fiat initial spectrum case
is important because stationary turbulence driven at long wavelengths, damped at short
wavelengths, and having an inertial range in intermediate scales, results in a stationary
spectrum which is only weakly peaked at low k.

Nonlocal transfer in ky derives from the direct coupling of modes which are widely
separated in wavenumber space. For initial spectra with indices o less that 3, where Inf2 =
ky~®, the nonlocal transfer in ky dominates local transfer, thus invalidating Kolmogorov
similarity range arguments for inertial range transfer. For o > 3, the coupling between
disparate scales is strongly reduced by the large amplitude disparity and transfer is
dominantly Jocal antil the spectram has relaxed to & ~ 3. The local and nonlocal rates are
comparable in the ky direction. This represents a pronounced anisotropy in the spectral
transfer of energy. Because the local transfer tends to be isotropic, anisotropies in the
spectrum are less pronounced.

The remainder of this chapter is organized as follows. The basic model, its
properties and the basic computational procedure are presented in Sec. I In Sec. TT1, the
equilibrium spectrum and similarity-range stationary spectrumm are derived and the prediction
for spectral transfer direction is formulated. The simulation results are detailed in Sec. IV,

and conclusions are given in Sec. V.

2.2 Basic Equations and Computational Procedure

In order to study nonlinear processes in detail, a simple model is used. This model,
based on Kadomtsev-Poguise equations, treats dissipative trapped ion convective cell

turbulence as a turbulent fiuid described by a single scalar related to both the fluctuating
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density and the flow stream function (electrostatic potential). This model therefore allows
contact with the considerable body of knowledge existing for Navier-Stokes turbulence and
similar fluid plasma models such as the Hasegawa-Mima equationl] and its dissipative
analogs!2. At the same time, the model is sufficiently complete to capture many cssential

elements of trapped ion rbulence. The model equation is given by

R 9%  Vpod 4L4D  oi
ot L Z

== 3 Y B —xz-Vi = 0, (2.3)
By effe g2 3y

where fi = £1/2nt/n, is the normalized trapped ion density, Vp = e12(cTy/eB)Ly ! is the
effective diamagnetic drift velocity for trapped ions, D = Vp2/4verr e is an inverse diffusivity
describing the destabilization of tapped ion modes by electron collisions, Vefr,i s the
effective collision frequency of ion-ion collisions, Vegrj = Vi/€, € = /R is the inverse aspect
ratio parameterizing the fraction of trapped particles, and Ly is the density gradient scale
tength. This equation incorporates the dynamics of both trapped electrons and trapped lons
with quasineutrality providing the link between thelr densities. The torbulent fluid flow is
the ExB flow. This flow couples to the density fluctuations through the ExB advection of
the mean density gradient.

The electron dynamics incorporates adiabatic (passing) and noradiabatic (trapped)
electrons. As a result of the very low frequency of the fluctuations, the trapped electrons are
collisional, Le., trapped electrons experience multiple collisions over a fluctuation period.
Conseguently, electron dynamics are governed by collisional scattering as opposed 1o
nonlinear advection. This results in a linear relation between the fluctuation source (given
by the ExB advection of the average density) and the trapped eleciron density. Trapped
electrons are therefore laminar, with a density which is proportional to the potential and 90°

out of phase due to the collisions. Electren collisions access the density gradient free energy
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throagh an inverse damping process and thus provide the basic instability which feeds the
turbulence.

The combination of electron and ion densities into a single field using the laminar
eleciron response constitutes an “i3” approximation (fie ~ i8¢, where & = 41.,D/el2 is the
nonadiabatic electron response). It is worth noting that because electron inertia is negligible,
the nonadiabatic electron response, or function §, has no explicit dependence on the
frequency. Thus, the need to approximate the nonadiabatic response by evaluating an
explicit frequency dependence at @, or a linear frequency does not arise. Explicit frequency
dependence in other types of drift-wave fluctuations {collisionless trapped electron modes,
universal modes, etc.) represents a serious shoricoming of the i8 approximation, but one
which does not occur in the present case.

The ion response is hydrodynamic and consists of ExB advection, the polarization
drift, and ion-ion collisions. The latter affects the fluctuations at very long wavelengths
providing a low k cutoff for the instability. The lorg wavelengths of the ﬂuc{uaﬁons restrict
the extent to which the polarization drift plays any role in the dynamics. As a consequence,
the fluctuations are essentially nondispersive in the energy containing scales fed by the
instability. Similarly, the polarization drift nonlinearity (noV-vp() where vp{1) = By'!
(cleyzxve-Vvg and vg = ~Voxz), familiar from the Hasegawa-Mima eguation, is small
compared to the ExB nonlinearity (vg'V fi; ). The ExB ponlinearity is nonzero only
through the nonadiabatic electron response and produces dissipative coupling which breaks
enstrophy conservation!2. The ExB nonlincarity dominates at long wavelengths where kp
< & (p is the ion gyro-radius at the electron temperature). The present study is concerned
with the long wavelength limit, so only the ExB nonlinearity is retained in the model.
Because energy transfer is toward small sceles in regions deminated by the ExB
nonlinearity (a principat conclusion of this chapter), energy eventually reaches regions

where the polarization drift nonlinearity becomes important and other effects occur, such as
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coupling to smaller wavelength rapped electron modes. Future work will address the
dynamics at shorter wavelengths where the two nonlinearities participate in the transfer
ProCess.

As indicated previously, the Kadomtsev-Pogutse equation, Eq. (2.3), accorately
represents many essential elements of trapped ion turbulence. These include the cosrect
electron dissipation-induced linear growth rase of the driving instability. The linear
frequency is also correctly represented as nendispersive, in the direciion of the eleciron
diamagnetic drift, and offset from the diamagnetic frequency by the rapped particle fraction.
Energy transfer is appropriately governed by the ExB nonlinearity. This model does not
account for parallel dynamics (and hence radial mode structure) or coupling to short
wavelength fluctuations.

The computational method employed is spectral. Thus the time evolution of Fourier

modes (coupled by the convolution sum of the EXB nonlinearity} is solved according to

_ V) . _ 4il D , -
—_— = Dkyznk - 1—22ky fiy — Vesfefik — :;ifz_g(RXk 2)ky' T kK - 2.4)

A trancation of Fourier space limits the spatial resolution of the solution. Time advancing is
accomplished using a Gear-type solver with an explicit Jacobian. The code is purely
spectral, treating Eq. (2.4) as it is written, as opposed to psende-spectral, which vses fast
Fourier transforms to caloulate the convolution term in real space where the fields are a
simple product. The use of a spectral method limits the fresolution relative to that possible
with a pseudo-spectral code; however, subtle issues involving dealiasing are thus avoided.
In particular, pseudo-spectral methods require dealiasing, a process which distorts the
Fourier modes in the shorter wavelength part of the spectrum. The portion of the spectrum

which is usabie is affected by anisoiropies in the nonlinear coupling, and has subtleties

- 22
which depend on whether the spectrom represents second order moments such as energy.
or kigher order moments!3, In the present work, the energy and enstrophy frangfer rates are
computed. These quantities are cafculated from triplet comelations. The effect of dealiasing
on third order correlations with anisotropic coupling is not well documented and for the
purpose of developing such diagnostics, the spectral environment provides easier
implementation and more reliable interpretation.  The rcs-ults presented here are obtained
using a maximum of 41x41 modes. For the stdy of spectrum relaxation and energy
twransfer in turbulence which is undriven/undamped, this resolution is adequate, as verified
by changing the number of modes.

A key feature of the computations reported in this chapter is the calculation of the
energy and enstrophy transfer rates Ty and Uy in wavenumber space. Energy and
enstrophy are defined as Zifixl and Exk?ffixl2. Thus, rates of energy and enstrophy

transfer from a given mode k are obtained by multiplying the last term of Eq. (2.4) by fix*

and k2fi* giving respectively

Ty = Dy, g(kxk'-z)ky‘ﬁk-ﬁk_k-ﬁk* , (2.5)
el

and

Uk = 4—11;52—0—@ z{kxk'-z}k2ky'ﬁknﬁkuk-ﬁg* , (2.6)
£

These guantities are evaluated at each step of the computation yielding instantancous rates of
transfer between the mode k and all other coupled modes in the spectrum. Ty positive
represents a net flow of energy inio the mode k; Tk negative represeals net outflow.
Because energy is conserved by the nonlinear transfer, the energy flow inic or cut of a
mode must be equal to the flow out of or into all remaining modes. Enstrophy, on the other

hand, is not conserved. If energy is transferred conservatively to short wavelength, as
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occurs in 3-0 Navier-Stokes turbulence, it foltows from simple dimensional argaments that
enstrophy will be generated. If energy flows to long wavelength, the converse will hold.
Consequently, the evolution of total enstrophy, obtained from the time history of Zg Uy,
provides an additional indicator of energy transfer direction and is the principal enstrophy
diagnostic utlized.

The closure representation of the energy transfer rate [Eq. (2.2)] follows from Ea.

(2.5) by a straight forward iteration on each of the density fluctuation factors. Consistent

with guasi-Gaussian statistics, the iterated density factors, or driven fluctuations, are
directly excited by a single triplet interaction, with the remaining triplets acting 1o nonlinearly

decorrelate the interaction. The directly acting iriplet is the one yielding closure, e.g.,

- 4D o, N o= =
Lk By = — g;‘;z (k'<k-z) (ky + ky') fig Ag

where Ly is the nonfinearly broadened propagator, consisting of linear growth, damping,

diamagnetic rotation, and the nonlinear decorrelation. Carrying out this procedure yields
D 2 1 1 1 - o -
T = :’;ﬂ,—z—) 3z ky ') L i I
D2 . . - - =

+ —I"ﬁ.‘z—) k'xk-z)? (ky? — ky?) LY o el
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where L_kl.k',k—-k‘ =i (@ + O + O — % — Yk — Tk + Ady + AWgy + Awg) is the

tripiet interaction correlation time, Y = Dkyz “Voff e 15 the linear growth rate, and Ay =

[(ALyD)%e] T (k'xk-z)2 ky'? L7 a2 is the nonlinear decorrelation rate.
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The first term of Eq. {2.7) comes from the iteration of fix.y and describes advection
of density by the tarbulent flow. The third term arises from the iteration of ﬁk*‘ and
incorporates the incoherent transfer process negiecied in one-point closures!4. The second
term is obtained by iterating on fig, the fluctation representing the turbulent flow [Ty o
ikyfiy]. Consequently, this term provides for the self-consistent back reaction of the
density fluctuations on the turbulent flow. In closures of Vlasov-Poisson systems, this term
represents the renormalization of the shielding cloud and is freguently neglected because it
requires the solation of a nonlinear Poisson eguation. In fluid treatments it has a similar
meaning through the correspondence between fow and potential which underlies ExB
motion. Likewise, it is often neglected in order to avoid a nenlinear eigenvalue problem.
The nonlocal transfer produced by this term can be thought of as the interaction between
large scale flow (shielding potential) and smaller scale density fluctuations. As noted in the
introduction, the nonlocal wransfer is unequivocally toward smal scale.

In order to reduce the data required to establish the direction of energy transfer and
examine other properties of the transfer process, the transfer into or from bands in
wavenumber space is measured by summing Egs. (2.5) and (2.6) over selected k valves.
‘The bands are chosen to represent shices in kx and ky in order to be semsitive to any
anisotropies in the wavenumber space transfer. With the band structure, it is possible to
track local energy flow in k-space through adjacent bands. Nonlocal transfer is also easily
cbserved. The definition of local verses nonlocal transfer is somewhat difficult to quantify.
Typically, nontocal transfer is used to signify exchange of energy with modes in the discrete
specttum whick are displaced by more thar two or three wavenumbers, i.e., an interaction
with modes which are not nearest neighbors. However, with sech a definition, observed
nonlocal transfer could stilt be compatible with self-similar transfer, provided it admitted a
similarity range with a number of these nonlocal steps. In order to identify energy flow

which is incompatible with & similarity range, nonlocal transfer will be defined as energy
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exchange in interactions spanning more than half {cr occasionally one third) of the inertial
range. Local transfer witl be the difference of the total transfer and the nenlocal transfer,

ie., the flow to modes which are not removed by approximately half of the k-space extent.

2.3 Equilibriurn and Similarity Range Spectra

In this section, the prediction that trapped ion turbulence produces a transfer of
energy to short wavelength? is reviewed. This prediction is based on a comparison of the
equilibrium speciram calculated from statistical mechanics, and the stationary épactrum
describing the distribution of energy ir a driven saturated state. The equilibrium spectrum
is derived using the statistical probability distribution funetion for 2 canonical ensemble
consistent with the known invariants of the nonlinearity. In applying these statistical tools,
it is assumed that turbulent transfer in the steady state is in the direction in wavenumber
space which would tend to drive the spectrum to the equilibrium configuration if the driving
and damping were turned off. The testing of this assumption is one of the objectives of the
present study. Clearly, application of this method requires knowledge of the stationary
spectrum established by the turbulenily moderated balance of driving and damping. In this
chapter, the simplest statienafy spectram, consistent with a Kolmogorov-type similarity
range, wiil be adopted as a benchmark. Because the validity of a similarity range spectrum
is cast into doubt by the resuits of the next section, the issue of the appropriate stationary
spectrum and its oe in the prediction of transfer direction will be revisited at that dme.

In the absence of driving and damping, a single nontrivial quadratic invariant is
admitted by the Kadomisev-Poguise equation. This invariant is the internal energy,

fd2x i2, whose conservation follows from the fact that

it
V—xzViidx = 0. 2.8)
5
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A second integral, id%x Jn¥/dy , is also conserved by the nonlinearity. However, by
symmetry, this integrad is identically zero for all time, and therefore imposes no constraint
on the cascade dynamics. Enstrophy, an invariant of the 2-D Navier-Stokes and Hasegawa-
Mima equations, is not conserved by the ExB nonlinearity. The nonconservation of
enstrophy arises from the nonadiabatic electrons!2.

With energy as the only nonzero quadratic invariant, the canonical probability

distribution of equilibrium states is

k

P = ex;{— %2 iﬁkizjl , (2.9}

where B is an effective inverse temperature. The spectrurm is given by the expectation value

of the energy in a mode k; yielding

.{ lﬁkjiz P dfiky---Qfiky... 80k,

|2 = 2.1
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Equation (2.10) predicts an equipartition of the energy,

i = L @11)
B

corresponding to a flat spectrum in the 2-D wavenumber space. In addition to equipartition,
the equilibriuem spectrum is isctropic, a feature which follows from the fact that the lone
nonzero quadratic invariant has no explicit anisotropy.

As stated previously, a similarity range statiomary spectrum is calculated for

comparison with the equilibrium spectrum. Assuming that unstable modes are confined wa
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localized region of wavenumber space where ® < i, the balance of nonlinear transfer of
energy @iZ at each scale in the spectrom with the net energy input rate requires that €=
1313, where £ is the fixed energy input rate and isotropy has been assumed, ie., dfox =
J/dy o>k Solving for fix? and expressing in terms of an isctropic integral distribution for a

single wavenumber k | JE(X) dk = i ], the spectrum is

B = g23x3, (2;..12)

If the spectrum is anisotropic {3/dx # 3/3y), the balance of energy input rate with spectral
transfer requires that & = ky?k,fiy?. Writing the spectrum as an integral distribution in two

wavenumbers [jB(kx,ky) dkzdky = 52 | yiclds

Elkxky) = €43 50k, 703, 2.13)

Note that the second spectraum is consisient with the first and mduées toit whenky =ky. It
has an additional l;ower of k-1 because it is a distribution of energy in a two-dimensional
wavenumber space. In contrast to the equilibrium spectrum, both similarity range spectra
are peaked at long wavelength. The anisotropy in ky and ky of Eq. (2.13) arises directiy
from the anisotropy of the ExB nonlinearity. These spectra follow for an inertial cascade,
regardless of its direction in wavenumber space. Assuming that the nonlinear interactions of
the inertial range attemnpt to drive the system toward equilibrium, transfer will be in such a
direction as o establish the equilibrium spectrum, E ~ §-1 On this basis, transfer is
predicted to be icwé.rd short wavelength. If a similarity range does not exist, bat the
stationary spectrum: of driven turbulence remains peaked at the long wavelength, the wansfer
is again predicied to be toward short wavelength.

The transfer of energy to short wavelength is a consequence of the existe;;ce of a

single quadratic invariant. By contrast, the 2-D Navier-Stokes and Hasegawa-Mima
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equations have two invardants and thus a canonical probability distribution function which
depends on the two integrals. The equilibrium specira calculated from this distribution
function have enstrophy weighted toward short wavelengths and energy weighted toward
long wavelengths. Conseguently, enstrophy in these systems is predicted to fiow to short

wavelengths and energy to long wavelengths.

2.4 Computational Results

The results reported in this sectior come pracipally from numerical experiments in
which turbulence is initialized with finite amplitude in a variety of spectral distributions and
allowed to evolve with no forcing or dissipation. Initial spectra range from k! to k5,
bracketing the similarity range stationary values of ky=5/3 ky=7/3, Evolution is tracked for
as many as 100 eddy turnover times. In all cases, the initial spectra relax to an identical
time-asymptotic configuration. The instantaneous flow duging the spectrum evolution is
measured to indicate the flow which would occur in a driven/damped stationary situation
having a spectrum like the instantaneous specttum during relaxation. The time history of
energy is calculated thronghout the runs as a check on the numerics. Energy is found to be
conserved to better than one part in 108 for tens of eddy turnover times. The ronlinear
transfer diagnostics have glso been benchmarked against hand calculations for a small k
space In order to verify their accuracy.

The time-asymptotic spectrum is found to be flat, in very good agreement with the
predicted equilibrium spectrum. This agreement is remarkable given that the nonlinearity
which drives the relaxation and the measured wavenumber space flow are anisotropic; yet
the final spectrum is isotropic and in good agreement with a prediction which takes no
account of the anisotropy in the nondinearity, Figures 2.1-2.3 show a sequence of spectra,

starting with an initial spectrum given by E(k) = k%, an intermediate configuration which
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occurs a few mean fuctuation time scales after the initial 6me, and an equipartitioned time-
asymptotic spectrum corresponding to a fully relaxed state achieved tens of eddy turnover
times after the initial ime.

The spectra in Figs. 2.2 and 2.3 represent two distiact regimes of norlinear transfer.
The first is a flow regime characterized by robust transfer to high ky and ky. The ky transfer
is strongly nonlocal and is responsible for the peak and valley at high and intermediate ky
values, respectively, which is evident in Fig. 2.2. The flow regime terminates 5 - 10 eddy
turnover tires afier the beginning of nenlinear transfer when all energy in the low k modes
abave the eguilibrium value has been transferred to high k, thus depleting the low k
spectrum peak. There is a noticeable peak at high ky in the spectram at the end of the flow
regime. This is due o the relatvely greater efficiency of the nonlocal ky transfer, compared

to the local transfer of the ky flow.
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“ Fig. 2.1. Spectrum of
uadriven/mndamped turbulence at
the initial time. The initial phases
are random and the initial
spectrum fali-off index is ¢ =-4.

Fig. 2.2 Spectrum of undniven/undamped
turbulence toward the end of the flow
regime and just prior to the beginning of
the sloshing regime. Approximately 5 -
10 correlation times have elapsed from
the initial time.
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Fip. 2.3 Spectrum of undriven/undamped turbulence
in the sloshing regime. The spectrum has been
averaged over several correlation times. This
spectrum i$ in the fime-asymptotc (relaxed)
configuration. (The central peak is the mode kx = ky
= (. Because this mode does rot couple to any other
mode, it retains its initiat energy.)
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Becaose the specirum at the end of the flow regime is anisotropic and not quite at the
equilibrium configuration, a second regime ensues, characterized by sloshing of energy in
wavenumber space. The sloshing regime exhibits rapid transfer of energy between modes
but with Hittle net transfer. The spectrum is guickly isotropized and flatiened by the
sloshing. The time-asymptotic spectrum is nearly fiat with a slight peak at high ky The
sloshing interaction incorporates a wide range of time scales, from an eddy turnover ime to
hundreds of eddy turmover times. The sloshing motion roughly produces the
equipartitioned spectrum predicted by equilibrium statistical mechanics. However, this
regime is probably not relevant io the transfer occurring in & driven stationary state. Insofar
as the nonlinear transfer of the steady state is concemed, it is essentially an artifact of the
finite (sruncated) k-space coupled with the efficient nontocal transfer, and the fact that there
is o dissipation at short wavelengths to absorb the energy nonlinearly transferred from long
wavelengths.

While the two regimes of nonlinear transfer have a noticeable effect on the spectrum,
their properties are most clearly seen in the energy transfer and enstrophy production
diagnostics. Figure 2.4 shows the net energy transfer from bands of constant ky and kz in
both the long and short wavelength parts of the spectram. The flow regime is clearly
apparent as the period over which there is a continuous outflow from low k, as evidenced
by the negative value of Tx for the long wavelength bands, and an inflow to high k, as seen
in the positive value of Ty for the short wavelength bands. After v = 2.5, the sloshing
regime is reached and the transfer is oscillatory with no net sign apparent. Figure 2.5
indicates that the enstrophy production rate is positive throughout the flow regime and
saturates at the transition to the sloshing regime. Positive enstrophy production resalts from
the conservative transfer of energy from long to short wavelength, with the net increase of
enstrophy proportional to the ratio ¥max? Kmin2- The observed positive enastrophy

production rate thus corrobosates the results of the energy flow diagnostic. Note that the
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negative ensirophy production rate occurring iransiently at the onset of sloshing coincides

with the first wave of back-transfer.
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Fig. 2.4 Net energy transfer rates for long and short wavelength
bands of constant ky and kx . Energy is seen to flow out of the long
wavelength bands {Tk negative) and into the short waveleagth bands
(Tk positive), Distinct flow and sloshing regimes are identifiable.
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Fig. 2.5 Time evolution of the enstrophy. Enstrophy producton is clearly
evident in the flow regime, coinciding with erergy transfer to long wavelength.
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Nonlocal transfer and its magnitude relative to local transfer is now examined.
Figure 2.6 shows the time evolution of local and nonlocal transfer rates from a long
wavelength ky = constant band. By symmetry, transfer measured from a ky band is
dominantly the transfer in the ky direction. From Fig. 2.6, the transfer in the flow regime is
almost entirely nontocal with a small local component. The injtial spectrum in this case is
12 ~ k-4, Given the definition of nonlocal used in this stedy, this figure indicates that
energy is efficiently passing directly from the low ky modes to modes which are more than
one half of the wavenumber space removed. Stated in terms of the wavenumber triangies
for the nonlinear interaction of k, k', and k—X', triangles which are highly elongated are
strongly favored over equilateral triangles in carrying the energy to high ky. By contrast,
Fig. 2.7 indicates that the transfer from a long wavelength band with kx = constant is
divided roughly equally between local ﬁnd nonlocal components. There is therefore a
pronounced anisotropy in the energy transfer process during the flow regime.

"The anis‘otropy in transfer is also evident in the evolation of isodensity contours
throughout the relaxation. Figures 2.8 - 2.10 show isodensity contours at the ipitial time, in
the flow regime, and in the sloshing regime when the spectrum has reached equilibrium in
an average sense. As expected, the imitial isodensity contour plot has just one or two
structures, consistent with a spectrum peak at low k. As the spectrom evolves through the
flow regime (excitation in the high ky modes is growing rapidly) the anisotropy in the
transfer manifests itself in an anisotropy in the isodensity contours. Small scale structures
appear in the ky direction while few appear in the kx direction. This can be easily
misinterpreted as stretching in the ky direction, but it should be remembered that the system
is evolving by energy transfer from large scale to small scale structures. Hence, it is not
stretching, but rather a break-up of the structure in the ky direction which is occurring. In
the sloshing regime, the contours relax to an approximately isotropic configuration,

consistent with the isotropic equipartitioned equilibrium spectrura.
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Fig. 2.6 Local and nonlocal transfer rates in the ky direction.
Transfer is clearly dominated by the nonlocal process, which here is
defined as transfer between coupled modes separated by more
than half of the wavenurnber space.
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Fig. 2.7 Local and nonlocal transfer rates in the kx direction.
The pasity of Jocal and nonlocal transfer rates in the kx direction and the

disparity of locat and nonlocal transfer rates in the ky direction indicates 2

clear anisoiropy in the transfer process.
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Fig. 2.8 Contours of constant density at the initial time in the relaxation of
undriven/undamped turbulence. The peak atlow k in the spectrum (Fig. 2.1) is evident in Fig. 2.9 Contours of constant density in the flow regime. Smail motion has
the large scale structure of the contour plot. been excited through the nonlinear transfer process with anisotropy due to the effectiveness

of nonfocal transfer in the ky direction.
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Fig. 2.10 Contours of constant density in the sioshing regime (see Fig. 2.3). Sloshing
has isotropized the contours.
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Transfer during the sloshing regime tends w be dominantly nonlocal in both the kx
and ky directions. This is understandable because the mechanism which keeps the transfer
local in ky is suppressed in the sloshing regime. This mechanism is ge:;efally responsible
for the locality of transfer in most systems, and stems from the amplitude dependence of the
transfer coupled with the fact that ‘the amplitude distribation generally falls off with higher k.
If the spectrum decays as i ~ ok, then the transfer coupling between modes k and k' >
k goes as T ~ ng2m? ~ no¥k—20¢k’~k)~2% [using the closure representation, Eq. (2.2)] .
Clearly, for ¢ > 0, transfer to neighboring modes k' Z k is strongly favored over iransfer to
distant modes (&' >> ). However, when the spectrum becomes pearly flat and x=0(asin
the case at the end of the flow regime), all modes have equal amplitede and the ratio of
nonlocal to local transfer must increase.

This notion suggests that the strong nonlocal transfer in ky exhibited in Fig. 2.6
should be suppressed if the initial spectrum is made sufficiently steep. Indecd, when the
initial spectrum slope exceeds k=3, nonlocal transfer is suppressed. In this case, transfer is
locail, producing a slow relaxation of the spectram. Once the spectrum has relaxed to the
k2 slope, nonlocal transfer quickly begins and relaxation proceeds to the equilibrium
spectruin at a much increased rate.

The dominance of nonlocal transfer over local transfer as evidenced in Fig. 2.6 is
strongly incompatible with the notion of a self-similar cascade which underlies the
Kolmogorov-type spectrum [Eqgs. (2.12) and (2.13)]. A similarity range cannot exist, at
least in the ky direction, as energy is transferred out of a mode and across the entire
spectrum range in one cosrelation dme. Indeed, the spectram of steady state turbulence with
driven modes at extremely low k, an intermediate inertial range over most of the spectrum,
and a hypérviscosity ai the highest wavenumbers, bears no resemblance to the similarity
range stationary spectrum of Eq. (2.13). Figure 2.11 reveals the stationary spectram o be

nearly flat with slight peaking at low k and strong quenching of the amplitudes in the
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dissipation range. While the inertial range is of limited extent in this spectrum
(approximately 1 decade}, the flatness is a robust feature independent of the strength of
driving and the saturated tarbulence level Moreover, theoretical work based on the solution
of & two-point equation likewise indicates that a flattening of the spectrum o¢curs as a result
of the nonlocal transfer of the ExB nonlinearityl3. Because the similarity range statonary
spectrum differs so markedly from the nomerical spectram of stationary driven/damped
turbulence, it is important to determine the direction of energy transfer in sitnations with
spectra like that of Fig. 2.11. The transfer associated with the spectrum of Fig. 2.11 is
found to be directed o large k, as would be expected from the configuration of sources and
sinks. Moreover, the transfer from an initially flat spectrum in the undriven undamped case
is also toward high k, producing a transfer rate history similar to that of Fig. 2.4, but with
reduced magnitude. In this situation, nonlocal twansfer procesds in both directions whereas
local transfer is directed to high ky. Conseguently, the spectrum rdevelops a slight peak in
ky, and a sloshing regime ensues.

It is valid to ask whether the anisotropy in the transfer and the dominanily nonlocal
transfer in the ky direction are artifacts of the size of the k space. While it is not possible to
say definitively that it is not an artifact, all evidence suggests that it is real. The
wavenumber space has been varied from 13 x 13 modes to 41 x 41 modes with the nonlocal
and anisotropic features becoming more pronounced in the case of a larger k space, rather
than the contrary. Furthesmore, both the noalocality and anisotropy are corroborated by the

structure of the cne-point closure equations and, to a lesser degree, the ponlinearity itseif.

-3
Fig. 2.118pectrum of turbulence driven at long
wavelength and damped by a hyperviscosity at short
wavelength with an inertial range in the intermediate
modes. The spectrum is only slightly peaked in the
inertial range, a result which differs markedly from the
similarity range stationary spectrum [Eq. (2.9)]. The
flatness of the specirum is a resuit of the nonlocal
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2.5 Conclusions

A pumerical study of dissipative trapped ion convective cell turbulence has been
described. This study is based on the spectral solation of the Kadomtsev-Pogutse equation.
The primary focus has been on basic physics issaes associated with the transfer dynarcics of

the domirant norlinearity for long wavelength fluid plasma turbulence, the ExB

nonlinearity. The principal results concern the equilibrium spectrum and its relation to .

statistical mechanics predictions, the direction of energy transfer in k space, and the
nonlocality and anisotropy of the transfer process.

Finite amplitude turbulence evolving in the absence of driving and damping has been
found to undergo a relaxation in which spectra initially peaked at low k evolve to a flat,
equipartitioned and isotropic spectrum. The time-asymptotic spectrum is in good agreement
with the predictions of equilibrium statistical mechanics and validates the assertion
underlying the statistical mechanics calculation that the sole invariant constraining the
dynamics of speciral transfer is the energy. The observed time-asymptotic spectrura also
vatidates the statistical mechanics prediction that for a driven steady state with a spectrum
peaked at low k, spectral energy flow will proceed from long to short wavelengths. The
agreement with statistical mechanics is remarkable in that the analysis takes no account of a
pronounced anisotropy in the nonlinearity and noniinear transfer rate.

The transfer of energy occurring during the relaxation from a spectrum peaked at
long wavelength to the equilibrium is measured o be in the direction of high k. Energy
transfer occurs throughout the relaxation phase, with net time average transfer becoming
zero when the equilibrium configuration is reached. A monotonically increasing enstrophy
coincides with the phase of spectrum relaxation and net energy transfer to short wavelength.

Enstrophy production is zero thereafter. With respect 1o its invariant properties and gross
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energy flow chamacteristics, it is clear that dissipative trapped ion convective cell turbulence
is closer to 3-D Navier-Stokes tfurbulence than to its 2-D counterpart or Hasegawa-Mima
drift wave wmrbulence. On the other hand, long wavelength drift wave terbulence (e.g.,
trapped electron mode turbulence) is closely related to the present model2.

On closer inspection, details of the energy transfer are found 1o deviate dramatically
from the seH-similar cascade which represents the conventional wisdom for Navier-Stokes
turbulence and inertial ranges in general. In particular, a robust and efficient nonlocal
energy transfer process is observed which is capable of carrying energy from 2 low k mode
to the other extreme of the spectrum in a correlation time. In the ky direction this process
dominates local cascading except when the spectrum is sefficiently steep. Transfer in the kx
direction is divided equaily between local and nonlocal components, implying & strong
anisotropy in the transfer process. Nonlocal transfer violates the self-similarity hypothesis
of Kolmogorov. Indeed, the inertial range spectrum in a driven/damped siwady state is
found o differ markedly from the Kolmogorov prediction.

The existence of a direct transfer of energy transfer corroborates a key assertion of
Ref. 4 and confirms the real possibility that dissipative convective cell turbulence plays a
significant role in core fluctuation activity in hot tokamak discharges. Cleasly, further work
is needed, particularly in studying the fransfer at smaller scales where the polarization drift
nontinearity becomes important and coupling to other short wavelength fluctuations
becomes possible. The effect of the nonlocality of transfer on spectra, spatial ransport, and

other descriptive measures of turbulence also represents an issue requiring additonal work.
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Chapter 3

Improper Spectral flow from Polarization Drift Nonlinearity

3.1 Imtroduction

Spectral transfer of energy and other dynamical invariants, such as the enstrophy, or
mean squared vorticity!-3 has long been considered an important aspect of turbulence. In
particular, the nature and direction of spectral energy transfer has direct bearing on the way
in which instability-driven turbulence is saterated, on the magnitude ard shape of the
spectrum, and ultimately on the nature of spatial transport produced by the turbulence.

" A number of recent studies underscore the importance of spectral transfer. For
example, it has recently been shown from closure theory? and direct measurement of
spectral transfer rates in numerically integrated model equations!, that dissipative trapped
jon convective cell turbulence transfers energy from the long wavelengths of the driving
instability to shorter wavelengths. This reselt bas invalidated prior dogma which held that
dissipative trapped ion convective cells would transfer energy to longer wavelengths,
producing extremely farge cell sizes and catastrophic transport. In related stedies of broad
band dissipative trapped electron mode turbulence?-3, it has been found that the spectral
transfer evinces two distinct subranges at long and short wavelength extremes, separated by
a highty complex intermediate subrange. In the long wavelength subrange, energy is
transferred to small scales in a process that is distinctly anisotropic and nonlecal in
wavenumber space. Significant production of enstrophy accompanies the transfer to shorier
wavelength. In the short wavelength subrange, nonlinear transfer very nearly conserves

enstrophy. The constrains of two conserved quadratic quantities (energy and enstrophy)
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gives rise 10 an isotropic, local-in-wavenumber space dual cascade with some enesgy
flowing back toward the long wavelength subrange and enstrophy flowing toward shorter
scales. These spectral transfer properties produce a distinctive energy spectrum shape
Elkx.ky), with & flat elliptical plateau in the long wavelength subrange and a fall-off beyond
in the short wavelength subrange?.

The dual cascade observed in the short wavelength sabrange of dissipative trapped
electron mode turbulence is a manifestation of a transfer process first identified irr two-
dimensionat (2-D) Navier-Stokes turbulence (and, by simple extension, quasi-geostrophic
turbulence). Under a dual cascade, it is envisaged that from the scale at which energy and
enstrophy are externally injected into a systerm, the enstrophy is conservatively cascaded to
smaller scales through an enstrophy similarity range (i.¢., transfer proceeds through every
scale at the same rate), and energy is conservatively cascaded in the ‘inverse’ direction 10
larger scales through an energy similarity range. The existence of two non-overlapping

similarity ranges, one for each of the two conserved quadratic quantities, is posited in order

to satisfy the invariance of both the energy and the enstrophy>6. The duval similarity range

stationary spectrum, with a k-3/3 slope in the energy similarity range and a k3 slope in the
enstrophy similarity range, follows directly from the dual cascade hypothesis and simple
dimensional arguments and has been observed in 2-D neutral fleid flows?.

The dual cascade of 2-D Navier-Stokes turbulence has come (o be a compelling
paradigm for drift wave turbulence, a natural consequence of the near isomerphism of the
Hasegawa-MimaB® eguation with the quasi-geostrophic equation. The dual cascade is
frequently invoked in a variety of drift wave models in order to infer the characier and
magnitude of fluctuations at the largest scales of a system, or to explain excitation at scales
large compared to those of the driving instability. As such, the dual cascade is a key
element of turbulence driven by electron temperature (Tye) modes®. More generally, it is

assumed that the dual cascade is an element of spectral transfer for any system possessing
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muliiple quadratic invariants. Thus it figures prominently in the transfer dynamics of
magnetohydrodynamic (MHD} nerbulencel0, As an example, specific properties of the dual
cascade of three dimensional MHD have recently been invoked in order to predict ion
heating rates in reversed field pinch discharges1l. It is worth remarking that the dual
cascade applies to spectral irapsfer in an inertial range. An inertial range may of may not
exist in plasma torbulence, due to the non-localized nature of plasma driving sources and
sinks. Nevertheless, inertial range transfer is a powerful and revealing characterization of
the behavior of nonlinearities that are themselves conservative, and therefore would support
an inertial range in the absence of dissipation.

“The conventional view of the dual cascade process is based on analysis of spectral
energy and enstrophy flow in 2-D Navier-Stokes turbulence for an infinite spectrum
encompassing wavenumbers from zero to infinity. For a spectrum with a single falloff rate
of k-3 over its entire range (0—oo), Kraichnan proved that there is a wavenumber
independent flow of enstrophy to high k, and no flow of energy. Such flow defines an
enstrophy similarity range. Likewise, for a spectrum with a single falloff rate of 373,
there is a wavenumber independent flow of energy to low k, and no flow of enstrophy,
defining an energy similarity range. In the k3 spectrum, enstrophy is effectively injected at
k=0 and removed at k=oo, though no injection scale is specified in the analysis. In the k™
5/3 spectrum, energy is effectively injected at k=oo and removed at k=0. Both spectra are
singular in the sense that there is no physically distinguishable scale that is not either zero or
infinity, 1.¢., the injection scale and the minimura and maximum wavenumber cutoffs are all
either zero or infinity. Because these singular specira are tequired for the proof, true
similarity ranges can siricily be said to occur only in these rather extreme and amorphous
spectra.

Tn fact, the standard stationary inertial range spectrurmn ir 2-D turbulence is not one of

the singular spectra analyzed by Kraichnan, but is forced or stirred at a finite scale kg 1. Bt
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also has maximum and minimum wavenumbers kmax and kmin corresponding to the
smallest and largest inertial scales, typically set by dissipation and geomeiry. For drift wave
turbulence, the spectrum is likely to be restricted to a very narrow range, perhaps
encompassing no more than a single decade. For such finite spectra, it is crucial to account
for the enstrophy carried in the energy flow and visa versa. Thus, a sel{-similar inverse
cascade of energy from kinj 10 Kyjn results in the destructior of 2 portion of the enstrophy
carried with the energy flow. Enstrophy is destroyed becanse it is proportional 1o the square
of a spatial derivative (curl) of the flow, which necessarily becomes flatter as energy flows
to large scale, This loss can be accommodated in an enstrophy conserving system only if
enstrophy is created in some other part of the spectrum. The correct amount of enstrophy
can be created if there is a self-similar cascade in the reverse direction (from Xin; to Kmax) of
an appropriate fraction of the energy. Under this scenario, self-similar cascades of energy
proceed in both directions, with accompanying nonconservative flows of enstrophy. The
portion of energy flowing self-similarly in the reverse direction (to high k) is determined by
the constraint of enstrophy conservation. Specifically, the enstrophy generated in the self-
similar flow of emergy to high k must equal the enstrophy destroyed in the self-similar flow
of energy to low k. The ahove description applies to self-similar energy flow and the
enstrophy castied with it. By symmetry, and in order to recover the results of Kraichnan’s
proof in the appropriate Emits, there must also be a self-similar cascade of enstrophy, and it
must proceed in both directions so as to yield zero net energy production from the
accompanying nonconservative energy flows. This picture represents the simplest way to
satisfy energy and enstrophy conservation, to reduce to Kraichnan’s results in the
appropriate limits, and to account for the changes that occur in one guantity when the other
quantity is transferred between different scales.

In the present chapter, spectral flows in numerical realizations of Hasegawa-Mima

turbalence in a finite spectrum are measured and found te conform to this picture as
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formulated under simple dimensional analysis. The numerical results are obtained from
spectral solution of the basic equation, with flow measurements achieved through direct
evaluation of the triplet nonlinearity {of the power spectrum evolution eguation). The
numerical results indicate that significant nonconservative flows of enstrophy occur in both
directions, and are consistent with enstrophy carried in self-similar energy flows proceeding
in both directions. The reverse energy flow (self-similar energy flow to high k) generates
sufficient enstrophy to compensate for the loss of enstrophy resulting from the proper
energy flow (self-similar inverse cascade of energy to low k). Likewise, nonconservative
fiows of energy, consistent with self-similar flows of enstrophy in both directions are
observed. The reverse enstrophy flow {to low k) destroys sofficient energy o compensate
for the generation of energy by the proper enstrophy flow (1o high k). For infinite spectra
Kmin — 0, Kgax — ©°), the dimensional analysis indicates that the reverse flows of energy
and enstrophy vanish, while the nonconservative flows occur only in a narrow band near
Kipj. Outside this band, the flows are self-gimilar and proceed according to the standard dual

cascade hypothesis.

3.2 Dimensional Analysis

Three constraints govern the flow of energy and enstrophy in a finite spectrum Kmin
<Xinj < kpax - The flow configuration must acconnt for changes in enstrophy (energy) due
to the transfer of energy (enstrophy), energy and ensirophy must be conserved, and the
flow configuration must reduce o Kraichnan's results in the proper singufar spectrum
limits. These constraints are most easily accommodated by dividing the flow of each
invariant quantity (energy and enstrophy) into two components, a component that is
transferred self-similarly (from which the correct self-similar transfer is recovered in the

singular spectrum lmits) and a locally (in wavenumber space) non-conserved component
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representing the energy or enstrophy carried by the self-similar flow of the other quantity.
At the iniection scale, all inputted energy and enstrophy must be partitioned into either of

these components, so that

By =E.+Exn, (3.1
Qo=+

where B is the injected energy, Eg is the amount of injected energy carried in self-similar
energy flows, and Ey is the amount of injected energy in the non-conserving energy flows
representing the energy carried by the self-similar enstrophy flows. Similar definitions
apply 1o the inputted enstrophy . Because enstrophy is mean sqﬁared vorticity, the
Fourier enstrophy Q(k) (defined as the enstrophy of a Fourier mode of wavenumber k) of
any flow with Fourier energy E(k) is given by Q(k) = k2 E(K). Thus the partition Eq = Eg +
Ex, with Ex being the portion of injected energy carried by the self-similar enstrophy

cascade, implies that
12
En = kigj {. (3.2)
Likewise, we have
\ .
Qp = kinj Be. (3.3)

Consider now the self-similar energy flow. Let B be the energy carried in a proper
energy conserving cascade from K 0 kmin. A quantity of enstrophy Epkinjz is carried in
this cascade at the scale kinj"l, but dwindles to Epkminz as the energy reaches kpip, 2
conseguence of the smoother gradients associated with the large scale kmin'l. Obvioasly,

the proper cascade of energy Ep betwesn kipj and kmin produces a net loss of enstrophy of
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magnitude Ep(kmjz « kmin?). This loss is the end result of the nonconservative enstrophy
flow associated with the proper energy cascade. To assure overall conservation of
enstrophy, enstrophy equal to the amount Jost must be generated somewhere in the
spectram. This can occur if a portion of energy E; cascades conservatively in the reverse
sense from king £ kmax. The steeper gradients associated with a flow of energy Er at a scale
Kpmax! results in a net production of enstrophy of magnitude Er(kax? — kinj2). Equating
the net loss of enstrophy resulting from the proper cascade of energy with the net production

of enstrophy resulting from the reverse cascade, the energies Ep and Erare

(1-13

— M@f)_ _ (3.4)
Ep {kmax? — Xmin?) (1 -R%’
(kini2 = kpin?) (I2—-R?)
= = E. . (3.5)
B Be (kmaxz - kminz) (1 - Rz)

where the total amount of conservatively cascaded energy Ec = Er + Ep is split into proper
and reverse components, I = Kigj/kmax apd R = kmin/kmax. From these expressions it is
obvious that as kp,x — o with kiy; remaining finite, Ep — Ec and E; — 0, vielding a
unidirectional self-similar flow to low k, consistent with the dual cascade hypothesis for kinj
finite.

These arguments can be repeated for the conservative spactral flow of enstrophy. I
€}y, is the portion of enstrophy undergoing a proper self-similar cascade from kinj to kpax.
energy carried in this flow decreases from its vatue Qpking ™ at the scale kinj to Qpkax? at
Kmax, i-8., 2 net amount of energy Qp(k;nj‘z ~ kmax~Z) is lost in the conservative enstrophy
transfer. Conseguently, there must be a portion of enstrophy £2; reverse-cascaded to kpin,
which produces a net increase of energy Qelkmin2 - }ignj‘z). Equating the net loss and gain
of energy in order to maintain energy conservation, the quantities of enstrophy cascaded in

the proper and reverse directions are
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(kmin'? — kini 2} _ o (Z-RY) 1

= , 3.
= e (kmin? = kmax™) ‘a-ry) P G-
(kini 2 — kmax™®) (1-1%) g2
= = S, 3.7
&= (kmin2 ~ kmax2) (1-R)H P G-

whsre-ﬂc =0 + € is the total amount of enstrophy conservatively cascaded. Again, kmin
—3 0 with kyy; remaining finite implies that Q> 0and Qp — Q.

In the above discussions, the fraction of total injected energy that gets carried by the
conservative enstrophy cascade Ey, is not specified relative to the fraction of energy going
into the conservative energy cascade Ee. A reasonable hypothesis for this partition, based

loosely on similarity and statistical homogeneity arguments, follows from
Q.= Eckij. (3.8)

Note that for an infinite spectrum (kmax = °°, kmin = 0) the ansatz of Eq. (3.8) applies
solely to the proper cascades, ie., spectral flows proceeding in opposite directions away
from kinj; otherwise it applies to flows moving in both directions. Equation (3.8) fixes the
ratio of conservative to nonconservative flow since the nonconservative energy flow is
governed by the conservative enstrophy flow, By = Qckinj‘z . Thus we have Eq = Ec.
From these considerations, it is apparent that the nonconserved flows in either similarity
range are significant. Even for the infinite spectrumn (kpax = 9, kpin = 0, with kigj finite),
where the self-similar or conserved flows are entirely proper, the nonconserved flows
reraain, and they proceed in the reverse sense. The enstrophy in the nonconserved
enstrophy flow decreases like k2 as it cascades toward kpuy = oo, Similarly, the energy in
the nonconserved energy flow decreases like kZ as it cascades toward kmin = 0.

Consequently the nonconserved flow is effectively confined to a region around kinj.
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Outside this region, flow is largely self-similar and proper, consistent with the dual cascade
hypothesis.  Clearly, for finite spectra of limited extent, departures from the dual cascade
picture are significant, arising from both the large nonconserved flows, as well as the
reverse seH-similar flows. The fact that reverse seif-similar flows can be large is illustrated
in Figs. 3.1 and 3.2, which plot the conserved énergy and enstrophy flows [Eqs. (3.4) ~
(3.7)] as a function of the injection scale, I = knj/kmax for R = kmin/kmax = 0.1.



1.2

081
2 06l
04+

02+

-
-
-yt

-

ot
0

02

04 1 06 08

Fig. 3.1 The magnitude of the normalized self-similar energy

flows in the proper and reverse directions as a function of I = kinj/kmax.
Normalization is with respect to the total energy carried in self-similar flows.

——am ---a/a
P < r c

Fig. 3.2 The magnitude of the normalized self-similar enstrophy flows

in the proper and reverse directions as 2 function of { = kinjkmax.

Normalization is with respect to the total enstrophy carried in self-similar flows.
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In the limit R0, I-0 (R/I—0), the spectrum is infinite and all of the conservatively
cascaded energy and enstrophy flow in the proper directions. Away form this limit
significant fractions of the injected energy and enrstrophy can flow in the reverse directions.
Tn particular, for I > 2-12 (1 + RD)12, the reverse energy flow exceeds the proper energy
flow. Thus, when kipj is somewhat more than half the distance from kmin to kmax, both
enstrophy and energy flow primarily to high k, a result strikingly at variance with the

standard dual cascade picture.

3.3 Numerical Analysis

In order to determine the extent to which spectral flow conforms to the heuristic
description of the previous section, the Hasegawa-Mima equation is sotved pumerically and
spectral flow is measured for several spectrum configurations. The Hasegawa-Mima

equation,

%(1-%} N vnai$ + pIC V2 VYV 2% = 0, (3.9)
¥

describes collective drift wave fluctnations supported by fluid fons and adiabatic electrons
linked through quasineutrality. Here, Q} is the electrostatic potential, Vp = (€Tg/eB)Lg ) is |
the diamagnetic drift velocity representing ExB advection of the background density
gradient, ps = (T, o/mi2(eB/micy~! is the ion gyroradius evaluated at the electron
temperatuare, and Cg = (T, o/m)/2 is the ion sound speed. Besides the diamagnetic drift, ion
motion is governed by the polarization drift, which produces both the linear dispersion and
the noalinearity. Physically, the polarization drift nondinearity represents ExB advection of
the ExB flow vorticity and corresponds to the nontinearity of 2-D Navier-Stokes turbulence.

The assumption of adiabatic electrons (ne = %_) climinates linear instability, particle
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transport, and the enstrophy invariance-breaking ExB nonlinearity??. As is well known,
the Hasegawa-Mima equation conserves both the energy E = [[ [$2 + [V ] dxdy and the
enstrophy € = J{ VO + [V20)2 ] dxdy, and produces a condensation of energy 2t long
wavelengths®. The latter is a manifestation that some energy undergoes an inverse cascade.

The Hasegawa-Mima equation is solved spectrally by numerically integrating the
coupled ordinary differential equations for the time evolution of the amplitudes of the spatial
Fourier series representation of @) The wavenumber space is truncated to a finite number of
modes with 41x41 representing the largest spectral domain. Finite differencing in time is
accomplished with a gear method. Spectral flow of energy is measured by determining the

rate of spectral energy transfer

Tk = —pCsRe g, kxk'z (ki — k12 S . (3.10

The quantity Tx represents the rate at which energy is deposited into or removed from the
mode k by the nonlinear transfer. For T < 0, energy is transferred from the mode to other
parts of the wavenumber spectrum, while for Ty > 0, energy is deposited into the mode
from other parts of the spectrum. Typically Ty is summed over the medes In a band in
wavenumber space, thus giving a measure of the transfer rate into or out of the band. By
examining the transfer rate for all bands, it is uswally possible to track the flow of energy
through the spectrum. Enstrophy flow is determined by measuring the rate of enstrophy

transfer,

Uy = pdCsRe % kxk'z k2(k; ~ k172 Bk byt 3.11)

Again, a band structure is wtilized and the wansfer into or out of ali bands is observed.
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Spectral transfer is examined under two spectrum configurations. In one, an inital
spectrum of randomty phased finite amplitude fluctuations is allowed to relax 1 a quasi-
equilibrium: configuration, a state characterized by ne net transfer in the time averaged sense.
A large potential amplitude pulse is then applied at kinj and the subsequent prompt transfer
of energy and enstrophy is tracked throughout the spectrum. In a second configuration,
transfer is monitored under conditions more akin to a driven/damped steady state. Here, the
system is coherently forced at kigj with dissipative sinks st ki and kpax . After a steady
state is established, a large pulse is again applied at Kiyj, and the subsequent prompt transfer
is observed. In both configarations, the prompt flow from the perturbative pulse is large
compared to any pre-existing flows. This ensures observation of the transfer characteristics
of the nonlinearity, independent of the spatial arrangement or the relative strengths of the
sources and sinks. This is necessary because in the steady state, the arrangement and
strengths of the sources and sinks can dominate the flow patiern. Both spectrum
configurations yield flow patterns that are essentially the same.

The behavior evident in the computational flow patterns is generally more
complicated than the transfer of the simple picture developed in the previous section. Figure
3.3 shows the rate of energy transfer from a range of ky = constant bands spanning
wavenumber space. The transfer rate (vertical axis) is effectively an average obtained by
semming discrete values of the instanianeous transfer rate over a period covering several
nonlinear interaction times. The error bars denote the standard deviatiop from the mean
value plotted. A large negative spike occurs at k = kipj, indicating transfer ost of the band
with the large amplitude pulse. Positive values on either side of kinj indicate that energy is
wansferred both toward kmin and Emax. The transfer is predominantly toward kpin: the
steady tise in going to kmin is produced both by condensation and by the reverse flow of
enstrophy 1 kmin. The flow of enesgy to high k diminishes as k increases, consistent with

the destruction of energy carried in the proper cascade of enstrophy. The rate of decrease is
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roughly consistent with the k-2 scaling of the dimensional analysis. The run was terminated

before there was any condensation of enstrophy or encrgy at Kmax. 02 +———— e s S T Y R S
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Fig. 3.2 Energy transfer rate for bands with ky = constant in numerical solutions of
Hasegawa-Mima turbulence. Transfer is from a large perturbative pulse (at kinj = 7)
applied to a quasi-equilibrium s
The error bars represent the standard deviation of the energy transfer rate abont its
mean value.
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The flow patteen for enstrophy is displayed in Fig. 3.4. Again ensirophy is seen 0
flow from Kip; in both directions. Here. however, more enstrophy flows toward high k
than to low k. Condensation of enstrophy at kmip is clear evidence of a reverse enstrophy
cascade but masks the nonconservative enstrophy flow associated with the proper energy
cascade. The flow of enstrophy to high k is roughly constant, within error bars, over the
enstrophy similarity range. It is worth noting that a self-similar (stcady state) cascade would
produce zero net transfer into or out of any band. Here the flow is the transient response to
the perturbative pulse and represents the propagation of the balk of enstrophy in the pulse to
high k, before condensation at kpax.

1t is likely that differences between the results of Figs. 3.3 and 3.4 and the simple
relations derived in the previous section stem both from limdtations in the numerical work
and the extreme simplicity of the dimensional analysis. In particular, the spectrum
configuration is often arranged with kiy; ;tzs the geometric mean of kmax and kpin. Among
other things, this choice makes the fractional proper cascaded energies and enstrophies
comparable (BB = Qp/(k). Moreover, there is some evidence that this scale represents a
natural break point for dual cascades in relaxing spectra with no forcing or perturbative
pulse. Under such circumstances, kinj is typically closer t0 kmia than it is 10 kyax.
Consequently, there is considerable energy condensation at ki before the transfer to high
k reaches kmax. Because condensation produces spectrum changes that then affect transfer,
it becomes difficult to track the upward transfer all the way to kpax once condensation has
begun at Kmin. A second limitation results from the analysis of transfer inio or out of bands
of constant ky or ky. This band structuse permits the examination of anisotropies of the
wansfer rate. However, for the Hasegawa-Mima equation, the transfer is found 1o be
isotwopic, in which case the constant ky or ky band structure has the unwanted effect of
potentially distorting measurement of transfer. For example, self-similar transfer of energy

within a kx = constant band {from large ky to small ky) can decrease the enstrophy of the
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band, independent of the transfer occurring between bands. Finally, the observed flow
patterns are affected by random fluctuations of the nonlinear interaction. Even though the
flow patterns are time averaged, some randoin component remains after averaging,

Each of the above difficulties suggests improvements for future computational work.
However, there is considerable agreement between the simple model and the resnits of this
imperfect computational anatysis. Certainly, the measured flow patterns are considerably
altered from those envisioned in the standard dual cascade hypothesis. Energy and
enstrophy are transferred away from kipj in both directions. Moreover, there is evidence
that the flow in a given direction away from kiy; is not completely self-similar. Also, runs
with inertial ranges varied by over a factor of 3 indicate that the flow patterns tend toward
the standard dual cascade configuration as the spectral range increases, i.e., the magnitude

of the reverse (conservative) flows decreases relative to that of the proper flows.
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3.4 Conclusions and Discussion

The notion that energy and enstrophy respectively undergo self-similar cascades to
tong and short wavelengths in turbulence conserving these quantities has been shown to be
appropriate only for infinite spectra Kmin—0, kmax~>0) away from the injection scale.
Because enstrophy {energy) is carried in wavenumber space by a self-similar energy flow
(enstrophy flow) and increases or decreases depending on the direction of the flow, injected
energy and enstrophy must flow from the injection scale in both directions. The energy lost
in the proper self-similar cascade of enstrophy te high k is then compensated by the energy
gained in a reverse self-similar cascade of enstrophy to low k. A similar statement applies to
enstroplty lost and gained from proper and reverse energy cascades to low ard high k
respectively. These constraints have been incorporated into simple scaling expressions from
which the magnitude of proper, reverse, and the non self-similar flows are obtained. The
standard dual cascade results are recovered from these expressions in the limit kpin—0 and
kmax—>cc. These expressions therefore yield the dominant flow pattern of the infinite
speciTum, a result often inferred from statistical mechanics arguments.

Large reverse energy flows are predicted when kip; is near kmax . This case is
instractive in reference to Tje turbulence®, where it has been asserted that there is an inverse
cascade of energy to scales given by c/wpe (Where Wpe is the electron plasma frequency)
from the smaller scales of collective excitation at pe (the electron gyroradius). With driving
already at very small scales, it is likely that dissipation occurs at scales only slightly above
Pe. it which case Fig. 3.1 suggests that the dominant energy transfer would be toward short
wavelengths, not the longer c/tpe scales. Because enstrophy also flows to high k, the
dominani non self-similar energy flow would also be toward high k.

This type of consideration clearly demonstrates that the practice of invoking a

standard dual cascade for spectra with an inertial range bounded between himits not widely
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separated in wavenumber space may not be valid. Even if damping is restricted to a region
outside maximum and minimam cutoffs, the location of the scale at which fluctuations are
excited within the region will play a significant role in the direction of energy flow.
Moreover, because sources and sinks may in fact be distributed, with no true inestial range,
determining the k space flow ultimately requires a knowledge of the spectrum. This, in
tarn, requires solution of the appropriate two-point equations, taking account of both the

distributions of sources and sinks and the spectral properties of the nonlinearities.
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Chapter 4
Dynamics of Coupled Nonlinearities

4,1 Introduction

Recent analytical work indicates that trapped ion convective cell turhulence is a
viable candidate for long wavelength fluctuation activity in hot, auxiliary heated core
plasmas!. Beyond its promise as a core fluctuation and transport model, however, trapped
ion convective cell turbulence provides an instructive paradigm for long wavelength
terbulence and the spectral transfer properties that ultimately govern its saturation, spectral
distribution of enersgy, and transporth.2. Its usefulness as 2 paradigm follows in part from
the fact tha: trapped ion convective cell turhulence can be described by a one-field fluid
model, ¢.g., the Kadomtsev-Pogutse equation, thus allowing a succinct and transparent
representation of the nonlinear mode coupling process. More importantly, a generalization
of the Kadomtsev-Pogutse model provides a mode coupling representation with two
nonlinearities, the ExB and polarization drift nonlinearities, and is therefore genenc to drift
wave type fluctuations. For example, the ExB and polarization drift nenlinearities are the
nonlinearities that appear in the one-fluid description (Terry-Horton) of turbulence
associated with dissipative trapped electron and universal modes’.

Chapter 2 presented theoretical and computational analysis of purely trapped ion
conveetive cell turbulence that has focused on the long wavelength regime, where nonlinear
transfer is dominated by the FxB nonlinearity. These studies demonstrated that the transfer
of energy in wavenumber space is directed toward short wavelength. The direct cascade of
energy is possible because the conservative transfer of emergy is not subject to any

additional constraints, i.e., besides the energy, the ExB nonlinearity conserves no other
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nontriviat quadratic quantity. In addition to 2 direct cascade of enesgy, the ExB nonlinearity
produces energy transfer which is anisotropic? and highly norlocal in wavenumber
spacelZ. The occurrence of strong nonlocal transfer is 2 marked departure from the self-
similar cascade dynamics inherent in the scaling arguments of Kolmogorov. The anisotropy
of transfer follows from an absence of symmetry induced by the ky depeadence of the
nonadiabatic electron response in the ExB nonlinearity. The anisotropy manifests itself asa
transfer which is strongly nonlocal in the ky direction (cross-field direction perpendicular to
the density gradient) but characterized by comparable local and nonlocal transfer rates in the
ky (gradient) direction.

The long wavelength regime of trapped ion convective cell mrbulence contrasts
strongly with a more familiar drift wave turbulence paradigm, the Hasegawa-Mima model8.
In the Hasegawa-Mima equation, neglect of nonadiabatic electron dynamics eliminates the
ExB nonlinearity and Jeaves the polarization drift nonlinearity {normally subdominant to the
ExB nonlinearity in the long wavelength limit} as the sole spectral transfer mechanism.
While the neglect of nonadiabatic electron dynamics excludes the possibility of describing
either instability or tzansport, it does produce 2 model which is nearly isomorphic to the
quasi-geostrophic equation. Accordingly, two dynamical invariants are admitted by the
polarization drift nonlinearity, i.e., the energy and the enstrophy, or mean sguared vorticity.
Ia order to satisfy both constrainis, a deal cascade process is required with the energy
undergoing an inverse cascade or wransfer to long wavelength, as in two-dimensional
Navier-Stokes tarbulence. The cascade dynamics of the Hasegawa-Mima equation afe
representative of the conventional view of spectral energy transfer in 2-D plasma tarbulence.
in particular, the notions of the inverse cascade and focal transfer in wavenumber space are
pervasive in hearistic descriptions of saturation and spectral dynamics.

With nonadiabatic electrons, spectral transfer is affected by both the ExB and

polarization drift nonlinearities, and enstrophy conservation, in a strict sense, is broken.
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However, the polarization drift nonlinearity invoives a higher derivative of the fluctating
potential than the ExB nonlinearity. Consequently, the magnitude of the polarization drift
nonlinearity becomes much larger than the magnitude of the ExB nonlinearity at short
wavelengths, while the opposite holds at long wavelengths. It would seem: reasonable,
therefote, to predict the existence of spectral ranges in the short and long wavelength limits
of the spectrum in which the transfer dynamics is dominated by one or the other of the
nonlinearities. This would mean there is a spectral range at long wavelengths where energy
is transferred to smaller scales and in which the total enstrophy within the range evolves on
the timescale of the nonfinear interaction. There would also be a range at short wavelengths
where energy is transferred to larger scales and enstrophy is approximately conserved on the
timescale of nonlinear interactions. One of the primary aims of this chapter is the testing of
this hypothesis and the characterization of spectral transfer properties in both the
intermediate range where the two nonlinearities play an active role and over the larger
spectrum as a whole, Such a study is of direct relevance to rapped ion and ¢lectron
turbulence because the direct transfer of energy generated at long wavelengths ( <ty 3 will
inevitably carry energy 1o a spectrum region where the polarization drift nonlinearity is
smportant, i.e. the dissipative trapped electron mode (DTEM) regime Where tye >0 -

It is also of considerable interest to examine the interplay of the two disparate
transfer processes in terms of the locality and anisotropy of spectral transfer. In particular,
as mentioned above, the BExB nonlinearity, acting alone, is known to produce transfer that is
both nontocal and anisotropicl-2, On the other hand, the polarization drift nonlinearity is
isotropic in form, and by anatogy with the two-dimensional Navier-Stokes equation, should
transfer energy Jocally in wavenumber space?, consistent with the notion of a Kolmogorov-

type similarity range and cascade.
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In this chapter, broad-band nonlinear transfer dynamics is examined for dissipative
trapped electron mode furbulence (DTEM), including both the ExB and pelarization drift
nonlinearities. This work is an outgrowth of a previous study which considered only the
ExB nondinearity2, and is based on numerical solution of 2 model equation utilizing direct
measurement of local and nonlocal speciral transfer rates. The computational work is
accomplished with a spectral code containing up to 41x41 modes. The simulatons examine
two general situations: 1) the relaxation of the spectral energy distribution from an initial
finite amplitude configuration in the absence of driving and damping; or 2) the evolution and
samration of the spectrumn starting from infinitesimal amplitudes driven by unstzble modes at
low wavenumber and damped modes at high wavenumber. The first situation permits
measurerment of the nonlinear transfer rate independent of any particular wavenumber space
configusation of sources and sinks, consistent with a chosen general spectrurn shape. This
situation also enables comparison of the stationary spectrum achieved by relaxation from an
initial state with the predictions of eguilibritm statistical mechanics. The second situation
addresses the transfer characteristic of the most likely arrangement of sources and sinks. In
this case, the net energy transfer in a saturated state (assuming one occurs) is not in
question, since it will necessarily proceed from source to sink. Rather, these smadies will
determine the spectrum shape and examine nonlinear ransfer in subranges of wavenumber
space, focusing on the issues of direction, locality, and isotropy.

A striking visualization of the epergy transfer in the saturated state may be produced
by sebiecting the saturated spectrum to a large, localized (in wavenumber space)
perturbation and observing the subsequent relaxation of the spectrum to its original
stationary configuration. Using this technique it is possible to determine the direction,
locality, and isotropy of sransfer is various subranges of the spectrum. This techmique is the
spectral analog of persurbative transport studies using modulated gas feed, heat pulse

propagation, etc. to infer the locality, direction, and magnitude of spatial transport. As
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such, it represents a reasonably accessible means of examining spectral transfer and
cascades in experiment. Tests of this technique in simulated torbulence are reporied herein.

The principal results of this chapter are now summarized. Iiis found that the
polarization drift nonlinearity, acting alone, produces transfer that is both isotropic and
iocal. Both properties follow directly from symmetries of the nonlinearity that are not
present in the pure KadomLsév-Pogutse model. With both nonlinearities acting
simultaneously, subranges exist in which the transfer is vicually indistinguishable frora the
iransfer of the deminant nondinearity, if acting alone. Erstrophy generation is shown to be
an effective indicator of the dominance of one nonlinearity over the other in these cases. If
the maximum and mininum wavenumbers restrict the spectrum to a range where the EXB
nonlinearity dominates throughout, enstrophy production is significant and increases on a
timescale of a few eddy turnover times. Energy is transferred to high k in an anisotropic
and nonlocal process characteristic of cases in which the polarizadon drift nonlinearity is
entirely absent. If the spectrum is fixed to a range in which the polarization drift
nonlinearity dominates throughout, enstrophy production is weak, with an e-folding time
much larger than the eddy turnover time. Here a dual cascade is evident and transfer is
isorropic and local. A third subrange exists and is accessed by detennini;ig the maximum
and minirmum waverurebers so that both nonlinearities are roughly comparable over most of
the spectrum (i.e., neither dominates). In this subrange, enstrophy production is moderate.
Spectral transfer tends to be isotropic but retains a strong nonlocal component. In this
situation, the local transfer develops an anisoiropy which offsets the anisotropy of the
nonlocal fiow. When undriven, vndamped turbulence evolves from an initial spectrum
peaked at low k, the specirum relaxes to a time-asymptotic state that remains peaked at long
wavelength but has two subranges with distinct spectral falloff rates. The subranges
separate at the point where the two nonlinearities are equal, with 2 slightly steeper slope in

the high k range than in the low k range. Energy flow is toward higher k in the low k
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subrange, with the converse true in the high k subrange. Present limits on k-space
resolution make it difficult to extend this subrange to sufficiently large and small
wavenumber 1o allow each nonlinearity to dominate at the extreres of the spectrum. Ttis
anticipated that a larger subrange would accenivale, in each of its exiremes, both the
spectrum falloff disparity, and the differences in energy transfer directiorn.

For turbulence driven by unstable modes at long wavelength and damped by a
hyperviscous damping at small waveleagth, there is a noticeable difference in the
wavenumber spectra which oecor when either of the nonlinearities is acting alone and the
spectram which occurs in the subrange where when both nonlinearities are present and
comparable. Whereas the spectrum of the ExB nonlinearity tends to be flat?, it falls off
toward high k with both nonlinearities. These is a discernible change in the faliofl rate at the
wavenumber where the two nonlinearities are equal, with a flatter falloff in the Jonger
wavelength part of the spectrum. Distinct differences in the transfer rate are observed. In
interpreting the transfer diagnostics, it appears that transfer is more sensitive to the cross-
coupling of the nonlinearities than is the spectrum. Consequently, transfer behavior in
either subrange with the unmodified signature of the dominant nonlinearity is more difficult
10 discern in the relatively small wavenumber space of the present simulations.
Nevertheless, the following statements represent the qualitative behavior of the transfer with
both nonlinearities in the sicady state. In the ExB subrange, transfer is nonlocal. Above a
critical wavenumber {related to the wavenumber where the two nonlinearities are equal),
noniocal transfer becomes weak relative to the total transfer. Thus, there is a polarization
subrange with local transfer. A dual cascade is evident in this region of k space and
accounts for the change in spectral index in crossing from one subrange to the other.

A novel and potentially important aspect of the interplay between the two
nonlinearities is evident in the frequency spectra of individual modes. In the regime where

both nonkinearities are comparable, a large shift of the frequency spectrum peak is observed.
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For shorter wavelength modes, the shift is to higher freguency and can be many times the
diamagnetic frequency. If either nondinearity is absert, or contribuies only weakly 10 the
transfer dynamics, the shift is small. Theoretically, a spectrum shift is found in the
renormalized response furctioni0. This shift arises from the cross-coupling of the
nonlinearities through the driven fluctuations. Since the ExB nonlinearity has one fewer
spatial derivatives than the polarization drift nonlinearity, the cross-coupling term is 90° out
of phase with the eddy damping decrement, and thus enters as a shift in the freguency
spectrum peak (as opposed to 2 broadening). The occurrence of a frequency shift has a
potentiaily significant impact on stability and transportl?, as well as the interpretation of
fluctuation measurements. A derivation of the frequency shift and its effect on nonlinear
stability, and therefore on the spectrum, is explored in Ref. 10. The self-consistent effect of
the shift on mode flactuation Jevels cannot be described by the present computational model,
and _wi]l be addressed in future work.

The chapter is organized as follows. The model and its properties are presented and
discussed in the next section. Section IIE describes the spectral transfer properties. To
facilitate interpretation of the results, a subsection examines the locality and isotropy of
transfer of the polarization drift nonlinearity. In Sec. IV, rneasurementé of the frequency

spectrum are presenied and discussed. The conclusions are given in Sec. V.
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4.2 Basic Model and Properties

In this section the basic model is presented and the dynamical coupling of the two
nonlinearities is anatyzed from the perspective of the mathematical structure of the model.
This analysis examines integral invaants, symmetries in the structure of the nonlinearities,
and the renormalized mode equations.

The model utilized for this study is a trapped particle fiuid equation. This model
couples the laminar dyramics of collisional trapped electrons with hydrodynamic ions
through the quasireutrality condition. The derivation of this equation and 2 discussion of its
details and Hmitations have been presented elsewherel.2.7.10, In previous work, the
polarization drift nonlinearity was neglected by considering only the long wavelengih

extreme of the spectrum?:2, Here, the polarization drift nonlinearity is Included, yielding the

model equation:
?WB_FDQZ_H— + VD + vi ~ LDV —x2V A
a dy? Y
+ pCs ViixzV p2V2a + uV4i= 0, 4.1)

where i is the fluctuating ion density, Vp = (¢Te/eB)Ln ! is the diamagnetic drift velocity, D
= e V2V (143Me/2)Vesr e is a negative diffusivity describing the destabilization of DTEM
modes by electron collisions, € is the trapped electzon fraction, Tie = dinT/dlnn is the electron
temperature gradient parameter, Vi models long wavelength collisional damping, Vegre =
ve/e, |t is the coefficient of the hyper-viscosity introduced to model strong damping at high
k, Ly, is the density gradient scale length, ps = {(cTo/eB)/C; is the ion gyroradius evaluated at
the electron temperature, and Cg = {Te/m{)12 is the ion sound speed. In keeping with the

emphasis of the present chapter on nonlinear transfer effects, the linear polarization drift
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term: responsible for linear dispersion has not been included in Eq. (4.1). This allows
significant savings in computation time. Inclusion of this term introduces straight-forward
modifications of subsequent equations and refatons (for example, the energy and enstrophy
defined below are modified when dispersion is includedl®). However, the basic
mechanisms governing transfer and the concepts describing this process are unaltered.
Indeed, numerical solutions with and without the linear polarization term included were
found to be qualitatively the same for the spectral ranges studied herein.

The first nonlinearity appearing in Eq. (4.1) is the ExB nonlinearity, arising from
vg-V 1 , where vg = —(c/Bo)Véxz is the ExB drift. The second nonlinearity is the
polarization drift nonlinearity, and arises from noV-vp(l), where vp(l) = Byl
(micle)zxve-V¥E is the nonlinear polarization drift. The ExB nonlinearity reguires a
nonadiabatic electron response (provided by the trapped electrons), whereas the polarization
drift nonlinearity derives from the ion polarization drift.

From Eg. {4.1), it is apparent that, by virte of its additional spatial derivative, the
polarization drift nondinearity dominates the ExB nonlinearity at very short wavelengths.
The converse holds at long wavelengths. The nominal crossover point is given by the
wavenumber at which the two nonlinearities are equal. Assuming rough isotropy, so that
V1 = 0/dy, this wavenumber is given by kps =& = Cs/LnVesre = Kops. Because the
nonlinearities are characterized, not by a single spatial scale, but by a triad interaction
consisting of three waves of differing wavelengths, it is more realistic to identify a region,
centered about the crossover wavenumber, in which the two nonlinearities are comparabie,
rather than to speak of a single wavenumber at which the two are equal.

Due to the presence of the ExB nonlinearity, a single quadratic invariant, the energy,

is admitted by Eq. (4.1) in the absence of driving and damping, i.e.,
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l‘lfﬁZ d2x = D o d2x - Vemi J a2 d2x - uf(vlﬁﬂ d2x, 4.2)
25 3y

where E = [ i2 d?x is the energy and the terms on the right hand side represent the
dissipative source (inverse electron damping} and sinks (fom-ion collisions and hyper-
viscosity). Only if the ExB nonlinearity is absent, is there a second invariant, the

ensirophy, defined by Q= _[ |V1i] 2 d2%. From Eq. (4.1), the enstrophy evolution is

given by

il2
%%J‘ Vil 2d2x — D J lV %—n dZx + Veri _[ VAR dex + uj(V3 )2 d2x
¥

= ~Lgb J’Vzﬁ Vv E-}Exz-V f d2x . (4.3)
9y
The term on the right hand side describes the generation or destruction of emstrophy
associated with the conservative transfer of energy by the ExB nonlinearity. As previously
indicated, the ExB nonlinearity in isolation transfers energy to short wavelengths, given a
spectrum which is peaked at long wavelength or flat, and therefore drives robust production
of enstrophy2. This term is present even in spectral ranges where the polarization drift
nonlinearity dominates {(k > ko). Conseguently, enstrophy is not conserved even when the
ExB nonlinearity is weak compared to the polarization drift norlinearity. However, in such
a case, the ExB nonlinearity accounts for proportionately less of the total energy transfer.
Because enstrophy production is tied to energy transfer by the ExB nonlinearity, it can be
expected that the importance of enstrophy production in the cascade dynamics diminishes

fork > ko This fact is also apparent in comparing the enstrophy production rate
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Ty = Ef IVii|2 dlxr LD JV?-ﬁ v %yfixz-v A d2x (4.4)

with the nonlinear interaction rate or eddy turnover rate. For k <k, the eddy turnover rate
is controlled by the dorninant ExB nonlinearity and can be expected to be compasable to the
enstrophy generation rate. For k > k, the eddy turnover rate is controlied by the larger
polarization drift nonlinearity, while the eastrophy generation rate is ted to the weaker ExB
nonlinearity. Consequently, there will be little enstrophy generation on the nonlinear
interaction or nonlinear transfer timescale. This fact suggests a convenient diagnostic of the
strength of the polarization deift nonlinearity in the form of the enstrophy dissipation rate !}Q
normalized to the mean oscillation time of an intermediate scale mode. Results from the
simutations will show ?Q-I to range from 2-3 in the ExB subrange to hundreds in the
polarization subrange.

Energy transfer that is anisotropic and nonlocal in wavenumber space is a robust
feature of the ExB nonlinearity, but at variance with the conventional picture of the cascade
process. On the other hand, the polarization drift nonlineasity is of the same form as the
advective nonlinearity of the vorticity evolution equation of Navier—Stok& tarbulence.
Thesefore, it is reasonable to postulate that the polarization drift nonlinearity produces
transfer which is local and isotropic. It is possible to associate these features with
symmetries in the structure of the nonlinear coﬁp}iag. These symmetries are most
transparent in the Fo_mier represenitation of the nonlinearities. Transforming Eq. (4.1}, the
evolution of mode amplitudes is given by

e
3} — Dk fiy + iVpky fix + VesiTx + Hig + Ne®® + NPoD = 0, (4.5

where
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. i . . - (ExBY _ .
NEXB) = %LHDZ, kxk'z [ky'~ (ky—ky)] By k' = z X e O fikkn
¥ 7

(4.6)

NpFol) = %1353(35% kxk z [{k1 — k1% - ki 2] fig figx'
= Zxkk Ay Brk'. 4.7

From Egs. (4.6) and (4.7), the lack of anisotropy in the ExB nonlinearity is evident in the
appearance of the factor ky' — (ky—ky). whereas the polarization drift nonlinearity is
manifestly isotropic.

Differences between the two nonlinearities regarding the locality of transfer in
wavenumber space can also be deduced from Eqs. (4.6) and (4.7). From Eq. (4.6}, the
ExB coupling is proportional to ky' — (ky—ky") = Zkyky. For a nonlocal triad consisting
of a long wavelength flactuation ky inieracting with short wavelength fluctuations ky' and
ky—ky' (ky << ky', ky~ky"), this factor is proportional to the large wavenumber 2k, For
local triads (ky ~ ky' ~ ky-ky?), Zky'-ky ~ ky, i.e., the factor is proportional to the small
wavenumber. Clearly, the ExB coupling favors nonlocal interaction. Note that this
predilection for nonlocal coupling is not isotropic, but applies solely to the displacement in
the ky direction. By contrast, the comparable coupling factor in the polarization drift
nonlinearity is (k;-kJ Y -k;? ~ k;2 (spectrum symmetries eliminate the coniribution
—2k3k:). Because this factor involves the squares of the wavenumbers k)" and ky—k;',
the large wavenumber k ' cancels and the factor is proporiional to the smail wavenumber
k12 Hence, the polarization drift noniinearity, unlike the ExB nronlinearity, has no special
weighting that favors nonlocal coupling (beyond the universal factors kxk'z and the

spectral energy distribution fiy' fikx). The symmetries in the nonlinear couplings
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responsible for this distinction between the ExB and polarization drift nonlinearities derive
from the nenadiabatic electron response of the ExB nonlinearity (¢ ~ 89fe/dy) and the
adiabatic etectron response of the polarization drift nonlinearity (¢ ~ ). These symmetries
carry directly over to the energy transfer rates and give rise to a nonlocal transfer rate by the
ExB nonlinearity which dramatically exceeds the local transfer rate, while for the
polarization drift nontinearity, local and nonlocal transfer rates tend to be comparable.

The existence of the frequency spectrum shift is also apparent from Bqgs. (4.6) and
(4.7) under iteration of the fixy factor in each expression. In the iteration procedure, fi.' 5

replaced by the formal soluiion of Eq. (4.5) (with k ~» k-k). This sclation is obtained by

ExB
placing N + NGo on the right hand side of Bq. (4.5) and inverting the temporal

operator of the left hand side. Under standard statistical closures, the sum in the Ny terms

- of Bq. (4.5} is restricted to the directly interacting triplet giving

= (Pal) YN

Ak = 280 [Xk K,k Xy, :c',-k'] By B, (4.8)
where Awy! is the inversion of the first four terms of Eq. (4.5). Substitution of Eq. (4.10)
into Bgs. (4.6) and (4.7) gives the coherent nonlinear response from each of the

nonlinearities. Combining, iy evolves according to

- .
ak - Dky?fig + I%Qky fix + Vesrifik + wkik — Pl = 0, (4.9)
where
(POI) {Pol}
Iﬁ—zz [250 + P[50 + 1, SR ] marramct. @10
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Note that X i5 90° out of phase with xEB) Consequentty, if the propagator Awy! is

Pol )
treated as purely real the diagonal terms %(g):?) Xﬁ:ﬁi and x(k’;.) XRSE.?_L produce

coherent damping while the off-diagonal terms X(ES) xk(iml and %(Eil‘) ngB i produce
a phase oscillation. Accordingly, the diagonal terms are related to the spectram linewidth!!
while the off-diagonal tertns contribute to the frequency of the specirum peakll, Physically,
the frequency shift arises from the interaction of a driven flacteation fik-k which is 90° out
of phase with the test and beat waves atk and k. Clearly it is cross-coupling of modes
driven by each of the two nonlineasities that produces the shift, with no shift occurring if
either of the nonlinearities is absent.
Substituting for X&) and ¥ in Eq. (4.10), it is seen that

Im vl = —LgDp3C % (kxk'z)2 ky [2k;2— k1 2] Ingf2/ Re(Aay D, (4.11)
corresponding to an upshift for intermediate modes k 122 {k; 2. The qualitative features of

this predicted shift, specifically its sign and its ky dependence, witl be examined in Sec. IV.

4.3 Spectral Transfer

In this section the speciral flow of energy over the spectrum range is described. The
transfer properties are inferred from the time evolution of the wavenamber spectrum and the
time evolution of the energy and enstrophy iransfer rates from (or to) selected bands in
wavenumber spaceZ. The energy and enstrophy wansfer rates due to the ExB nonlinearity
are given in Ref. 2. With the addition of the polarization drift nonlinearity, the evolution of

the energy and enstrophy of the mode k is described by

30

LA _ by 2 {2 A= 412

I ky2 [l + vesri ik + pkt %= T 4.12)

k212

1OEIE _ e 2002 + vems Kl + 1 = U, @.13)

where

Tk = LoD Im E(kxk‘-z}ky'ﬁk’ﬁk_k'ﬁk*

w pdCsRe 3, kxk™z (ki — k1?2 fig figafix* (4.14)
X

and

U = LoD Im g(kxk'-z)kzky'ﬁyﬁkwk-ﬁk*

- pdCsRe ¥, kxk'z k2(k; — k1 )2 fige figafix? (4.15)
2

are respectively the energy and enstrophy transfer rates from the mode k. Note that
summing Uy over all k yields the enstrophy production rate, Eq. (4.4). Semming Ty and
Uy over a band of wavenumbers (typically with ky = constant or ky = constant) yields the
transfer from the given band. Moreover, by selecting only ceriain k' values in the sums, the
transfer rates can be formulated to identify transfer between coupled triplets with
wavenumbers which span more than a significan: fraction of the spectrum (typically 1/3 to
1/2). This allows a guantitative assessment of the relative magnitudes of local and nonlocal
transfer. Before describing the flow induced by the ExB and pelarization drift nonlinearities
together, it is useful to establish a reference in terms of the flow properties under each of the

nonlinearities in isolation,
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A. Transfer Properties of Fach Nonlinearity in Iselation

Spectral flow by the ExB nonlinearity was described in Ref. 2 and is briefly
surnmarized. In absence of driving and damping, specira initially peaked at fow k relax to
the equipartitioned state predicted by statistical mechanics. The relaxation is accomplished
by a prompt nonlocal flow to the largest ky bands (defined by ky ~ kymax), producing,
within a few eddy turnover times, spectra with peaks at high lkyl. Subsequent sloshing
motion excites the intermediate wavenumbers. The energy transfer rate between aonlocally
displaced ky bands exceeds the transfer between closely neighboring (local) bands by an
order of magnitude. Local and nonlocal transfer rates in the ky direction are comparable. In
both directions, transfer proceeds to high k when the spectrum is initially peaked. When
driven by modes at Iow k and damped by modes at high k with an intermediate inertial
range, the stationary wavenumber spectrum is remarkably flat over the inertial range, falfing
off only at the damped modes. “This dramatic deviation of the spectrum from that predicted
by similarity arguments is another indication of strong noniocai transfer.

When the polarization drift nonlinearity is the sole nonlinear coupling mechanism,
the equilibrium spectrum peaks at low k. Figurs 4.1 shows the equilibrium spectrum (8o

driving or damping) reached from an initial spectrum. with Ingl? ~ k-3 for 41x41 modes.

Fig. 4.1 Equilibrium spectrum of undriven/andamped
turbulence with the only polarization drift nonlinearity.
This spectrum is the relaxed state that has evolved from
an initial spectrum with a fail-off index of a =-4. The
initial spectrum is identical to the initial spectrum
shown in Fig. 1 of Ref. 2.
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Relative t0 the initial spectrum, the equilibrium spectrum is more peaked at lower
wavenumbers and flatter at large wavenumbers, indicating an inverse cascade of energy to
low k, but also some energy transfer to high k. Indeed, the energy transfer rate reveals such
a transfer patiern. From Fig. 4.2, the transfer rate T Is positive at the lowest wavenumbers
and negative somewhat higher, indicating a primary transfer into the lowest wavemunbers
from the higher band. The higher band also engages in a smaller subsidiary transfer to even
higher wavenumbers, as seen in the positive peak just above the negative feature. In the
upper half of the spectrum there is little net transfer above the noise Ievel as defined by the
standard deviation of the scatter in the transfer history.

The transfer to low k is consistent with the dynamical constraints imposed by the
conservation of energy and enstrophy. The smaller forward cascade might appear to be a
violation of these constraints, However, as shown elsewhere!2, some energy must be
sransferred in the forward direction in order to generate sufficient enstrophy to compensate
for the enstrophy destroyed by the inverse energy cascade. The amount of energy
transferred to high k decreases to zero as the largest wavenumber goes to infinity. For the
sather small wavenumber spaces considered here, however, this energy can be appreciable.
This process contributes o the existence of two fall-off rates in the equilibrium specirum, a
featare not anticipated by equilibsiurm statistical mechanics.

As discussed in the previous section, the symmetries of the coupling coefficient of
the polarization drift nonlinearity suggest that nontocal transfer should be no larger than the
jocal transfer. In fact, as evidenced by Fig. 4.3, the local transfer rate from the band with
negative transfer in Fig. 4.2 exceeds the nonlocal transfer rate by a factor of two or three.
Moreover, the iransfer rates in the ky and ky directions are found to be compamble 10 within

a factor of two, so that transfer is isotropic, as anticipated from the form of the nonlinearity.
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B. Transfer Properties with Both Nonlinearities

With both nonlinearities present, the transfer of energy and eastrophy is
characterized by three general principles. These are now presented. 1) Excepting the effects
represented by the other two principles, each nonlinearity transfers energy and enstrophy
throughout the spectrum as it would if acting alone. Because the EXB nonlinearity
dominates at low k {k<ky), the net transfer in the long wavelength subrange is similar to that
produced by the ExB nonlinearity alone, i.¢., the transfer is to high k with 2 strong nonlocal
cormponent in ky. While the EXB dynamics are similar in the high k subrange, the transfer
they produce is small by comparison with that of the polarization drift nonlinearity, which
drives a dual cascade via local, isotropic transfer.

2) With the two nonlinearities acting together, the spectral distribution of energy il
is modified relative to its configuration with a single nonjinearity. Since Tk and Uy depend
on amplitudes fiy, fik.y, and fiy” [Eqgs. (14) and (15)], the transfer is also modified relative
1o its behavior for a single ronlinearity. In each of the subranges, the spectra, both the
eguilibrizm and the driven/damped stationary spectrum, tend to look like the spectra of the
dominant nonlinearity, when acting alone. Consequently, transfer well within each
subrange continues to be characterized by the transfer of the dominant nonlinearity in
isolation. Significant modifications are thus restricted to the crossover region around ky
where the two nonlineasities are comparable.

3) The spectrum shift, Bq. {4.10}, affects the transfer in three ways. a) The
spectrum shift contribules to the three wave phase decosrelation just as a linear frequency
mismatch contributes to the decorrelation. The shift mismatch vy + Vick' — v is findte, due
to the dispersion of the shift, and more pronounced for nonlocal triads than local triads. The

shift-induced phase decorrelation will therefore limit nonlocal transfer. However, this effect
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is a factor only in the crossover region. Outside this region, the shift-induced decorrelation
is small relative to the phase decorrelation caused by the eddy damping of the dominant
nonlinearity. b) In a strong turbulence regime, the frequency shift in the response function
of the driven fluctuation gives rise to a nonresonant contribution [off-diagonal terms in Eq.
(4.10)] to the eddy damping which can, in effect, be comparable to the resonant (dizgonal)
contribution. In such a case, the transfer, or equivalently, the energetics, is directly affected
by the shift. ¢) The frequency shift affects the nonlinear stability {or free energy exiraction)
by modifying Re @ in the eigenmode potential. This effect is most simply displayed in
typical drift wave growth rates, which cortain the factor &, with instability for @ < Ms.
The role of the frequency shift on nonlinear stability, as it pertains to dissipative drift waves,
is explored in Ref. (10). As noted previously, this effect is not present in the present
compuiational mode} but will be examined compuiztionally in the next chaptes.

It should be apparent from the above that the transfer dynamics of the crossover
region is the most difficult to analyze. Figures (4.4) and (4.5) depict the evolution of the
spectrum in the crossover region under non driven, non damped relaxation, with ko slightly
larger than the median k. Figure (4.4) is the spectrum a few eddy turnover times after
commencing the relaxation from a initial k-3 distribution. Significant neniocal transfer to
high k modes is evident in the peaks which have developed at high |ki. This peaking feature
is isotropic in k and contrasts with the peaks that occur at high ky (but not kx) at comparable
times with the ExB nonlinearity alone. The nonlocal transfer s an unmistakable signature
of the ExB nonlinearity, whereas the tendency toward isotropy is a feature of the
polarization drift noalingarity. Isotropization of the high k peaks is accomplished by
wransfer modifications induced by the specirum distribution (principle 2). The final
equilibriom spectrum, Fig. (4.5), is mostly flat with a natrow peak at low k. The peak is

produced by the inverse cascade of the polarization drift nondinearity. It is more nasrow
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than the peak which occurs with the polarization drift nonlinearity alone [Fig. (4.13] because
of the competing transfer to high k produced by the ExB nonlinearity.

Fig. 4.4 Spectrum of undriven/undamped turbulence with
both the ExB and polarization drift nonlinearities (ExB
nonlinearity dominates weakly). This is the spectrum that
occurs several eddy tumover times after the initiation of
evolution.

Fig. 4.3 Final t(tiime asymptotic) spectrum for
undriven/undamped torbulence with both the ExB and
poiarizanon drift nonlinearities (ExB nonlinearity
dominates weakly).

&8
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The flat portion is atiributable to the ExB nonlinearity, which tends to drive the spectrum 10
equipartition. In this regard, it is interssting to note that the spectrum predicted by
equilibrium statistical mechanics is the equipartitioned spectrum, since enstrophy is not
conserved in this case. Statistical mechanics is unable to account for the inverse cascade
because the ExB nonlinearity breaks ensrophy invariance even though significant enstrophy
conserving transfer by the polarization drift nonlinearity occurs.

The degree of nonconservation of enstrophy, or more precisely, the rate of
enstrophy generation, is a measure of the extent of energy transfer to high k by the ExB
nonlinearity. In Fig. (4.6), the enstrophy evolution under not driven, non damped
relaxation is plotted as a function of time for four spectrum configurations. These are the
ExB and polarization subranges, in which k falls at either the extreme low end {polarization
subrange) or high end of the spectrum (EXB subrange); and two Crossover region
configorations, one in which ko is slightly to the right of center and one in which ko falls
slightly to the left of cenier. In the ExB subrange there is significant enstrophy generation,
and the timescale of enstrophy production is a few eddy turnover times. These facts indicate
that the transfer dynamics is dominated by the forward cascade of the ExB nonlinearity. In
contrast, the small net enstrophy increase and long (many eddy tarnover times) genperation
timescale evident in the polarization subrange, indicate that the forward ransfer by the ExB
nonlinearity is of minor overall importance. In the crossover region, the same peneral trend
is evident, with the net enstrophy production and production rate being roughly proportional
to the fraction of k space below ko. Taken 1ogether, these results suggest that in & spectrum
encompassing both subranges, there is significant non-enstraphy conserving forward
transfer from kmin 1o ko and somewhat beyond, but that its magnitude relative to the net

transfer rapidly diminishes well beyond k.
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It is obviously important to examine the transfer dynamics in a samrated spectrum
achieved through the dynamic balance of sources, sinks and transfer. For dissipative
trapped ion convective cells, turbulence is driven at long wavelength (below ko); at longer
wavelengths still, ion-ion collisions provide a sink. The robust forward transfer of the ExB
nonlinearity can be expected to carry energy beyond ko, Al some scale the energy is
dissipated ( high k damping). While the existence of a steady state requires a net transfe
from sources o sinks, the spectral energy discibution allowing saturation, and the extent of
nomocality and anisotropy in the transfer process must stll be determined. In Fig. (4.7),
the stationary spectram is plotted for a configuration in which k, is centrally located between
Ymin and kyax. Unstable modes occur in the Jow k region with a stable band at the lowest
wavenumbers, representing ion-ion cotlisional damping. A broad inertial range extends to
the highest wavenumbers where & hyperviscous damaping provides a high k sink. Figure
(4.7) reveals a spectrum with sharp peaks at the wavenumbers of the driven modes,
surrounded by a plateau-like region of roughly elliptical shape. Beyond the plateau, the
spectrum falls off sharply to the edge. The edge of the plateau corresponds reughly to the
crossover point ko, Comparison with the stationary spectrum of the ExB nonlinearity
alone, which is flat all the way out to the viscously damped modes?, indicates that
significant nonlocal transfer o high k is the dominant process in the plateau region.
Anisotropic transfer is the cauvse of the elliptical shape of the plateau. There is also ransfer
to the collisionally damped modes at low k, produecing a steep drop-off in going below the
driven wavenumbers. This spectrurn indicates that the characteristics of the ExB and
polarization drift nonfincarities effectively dominate in the appropriate ranges of the

spectraim,
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wavelength and damped by a hyperviscosity at short
wavelength with an inertial range in the intermediate
modes. There is also damping at the smallest
wavenumbers, representing the effect of ion-ion
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The transfer that underlies the speetrum in Fig. (4.7) is graphically visualized by
applying an energy impulse at 2 specified wavenumber and observing the subsequent
spectrum evoiution as it relaxes back to its stationary state. To interpret this diagnostic in
cases with both the nonlinearities present, it is helpful o apply it first to the saturated spectra
of each nonlinearity in isolation. Figure (4.8) illustrates the relaxation of the spectrum under
the ExB nonlinearity starting from the stationary spectram with z large impulse (dark biack
in color) localized 10 a rectangular annulus in k space. Shorily after the impulse, prompt
nonlocal transfer carries the energy i all parts of the spectrum. The filamentary structure
indicates anisotropic transfer. In the last frame, the stationary spectrum is re-estzblished at
the original level. (To optimize contrast, the color scale in the first frames is different from
that of later frames.) In contrast, the same experiment with the polarization drift nonlinesarity
produces a slower diffusive-like spreading of energy in k space, with the inverse cascade
restoring the central peak, as shown in Fig. (4.9). When both nonlinearities are combined,
as in Fig. (4.10), an impulse in the ExB sabrange produces prompi nonlocal but isotropic
transfer throughout the spectrum. Subsequent frames show a slower diffusive inverse
cascade which restores the central peak. In Fig. (4.11), the impulse is applied at high k in
the polarization subrange. The spreading of energy is slower and diffusive throughout the
evolution. It is readily apparent that when both nenlinearities are combined, the relaxation
of the impulse (at Jeast initiaily) carries the unmistakable signature of the subrange in which

the impulse originates.

Fig. 4.8 Evolation of the spectrum with driving and damping {under the
ExB noniinearity only) subsequent to a impulse of energy localized w a
rectanguiar annuius in k space. Time goes sequentially from ieft 1o right and
down. The 0,0 mode is at the center bottom of ¢ach snap shot and the scaie is
from dark gray (near center) signifying the most energy through white to black

signifving the least energy.
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Fig. .10 Evolution of the specirum with driving and damping and both
nonlinearides subseguent 1o & impulse of energy focalized to 2 rectangular annuius
at low k in the ExB sabrange. Time goes sequentiaily from left to right and down.

The 0.0 mode is at the center bottom of each snap skot and the scale is from dark
gray (near center; signifying the most energy through white to black signitving

the least energy.




Fig. +4.ii Evolution of the spectrum with driving and damping and both
nonlineariiies subsequent 1o 2 impuise of ¢nergy locaiized to a rectangular annuiug
at high k in the polarization drift subrange. Time goes sequentially from left to
right and down, The 0.0 mode is ai the center boniom of each snap shot and the
scaie 18 from dark gray (near center) signifving the most energy through wni 1o
black signifving the least energy.
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o8
4.4 Frequency Spectrom

The frequency spectrum is generally taken o signify the frequency dependent part of
the power spectrum Sk(w), for k fixed. In terms of the solution of a spectral representation
of the model, i.e., the solution of Eg. (4.5), the frequency spectrum is just the Fourier
transform of the temporal astocorrelation function, obtained from the time history of the

mode k,
Sk} = :é: _[d'c exp{—iwt} {E(ag e+ 1)), (4.16}
[

where { ) is the average over a suitably chosen ensemble.

In this section, frequency specirz are examined for a variety of modes and conditions
with the objective of establishing qualitatively the existence of a frequency shift induced by
the coupling of the ExB and polarization drift nonlinearities. From Eg. (4.9}, it is apparent
that the spectrum will contain a shift, given by Eq. (4.11). However, it should also be
noted that the spectrum is a correlation, and the correlation of fix(t) with fii. " (17 for small
time differences T is not captured by simply substituting into Eq. {(4.16) the solution of Eq.
{4.9), an approximate one-time, one-point equation13. Specifically, Eq. (4.9) represents the
coherent response, but does not capture the incoherent emission associated with small scale,
short time correlation. While the dissipative part of the incoberent emission ultimately
balances the coherent decay in a sieady staie inertial range, and thus provides a link between
the two components (and a way of determining the linewidth14), the reactive component of
the incoherent emission is not related o the reactive part of the coherent response, Im vy, in
any simpie way. Thus, it is simplistic to expect that the frequency spectrum, and the
frequency shift in particular, are totally described by the solution of Eg. (4.11)13, Indeed,

as will be apparent, the frequency spectra are complicated and not readily interpreted as a
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iocalized, single peaked function. Nevertheless it is apparent that a large shift in the mean
frequency of the spectrum occurs, that the shift requires the presence of both nonlinearities,
and that other features of Eq. (4.11) are present.

The frequency specira of both saturated (drives/damped) turbulence and relaxing {no
driving or damping) turbulence have been determined. In general, the spectra of saturated
tarbulence are much broader than the spectra of relaxing turbulence, and the shifts relative to
the Hnewidths are accordingly less pronounced. The spectra of relaxing tarbulence, on the
other hand, are not stationary. Computing the spectra from a time history which covers the
entire relaxation phase, these spectra have a feature associated with the relaxation. Since the
relaxation takes many eddy turnover times, and the timescale of the shift is typically less
than an eddy rnover time, the nonstationarity of the spectrum poses no particular difficulty
in examining the shifts. At most, the nonstationarity is responsthle for intrinsic broadening
of the spectrum, but by an amount that is small relative to the magnitude of the shifts. For
the above reasons, the spectra shown in the figures are for relaxing turbulence.

Figore (4.12) shows the frequency spectra of a mode with small wavenumber for
relaxing turbulence with the ExB nonlinearity only, the polarization drift nonlinearity only,
and both ponlinearities. In the latter case there is a marked shift of the spectrum peak to
higher frequency. In all cases, the peaks are in the electron diamagpetic direction. In Fig.
(4.13), the specira for a mode with large wavenumber are dispiayed. For the cases with
Ex® and polarization drift nonlinearities orly, the spectra are peaked at the small frequency
corresponding 1o the (linear) diamagnetic rotation [third term, Eq. (4.5)]. With the two
nonlinearities combined, the spectrum becomes highly complicated, acquiring a small
reproducibie feature in the ion direction, and a much larger feature at high frequency i the
electron direction. The mean frequency G = {do o Sl is dramatically raised, as is the
width, Am? = jde (@2 - B Sk(w), relative to the cases with a single nonlinearity. For

the combined case of Fig. (4.13), G = 2A0xg. Frém these figures, it is clear that there is a

0
marked frequency shift associated with the coexistence of the two nonlinearities. The
magnitude of the shift, in absolute terms, is larger for the mode with larger wavenumber.
For the shified spectra of Figs. (4.12) and {4.13), @k targe/@k smait = 25, a number of the
same magnitude as the ratic of the wavenumbers. Both of these features are consistent with
the shift described by Eq. (4.13). The same general features are also found in the spectra of
steady state (driven/damped) turbulence computed numerically for the same model.
However, due to the very broad linewidths of the steady state case, these features are less
pronounced.

Given the complexity of the frequency spectrum, especially for high k, a more
quantitative compasison with theory is beyond the scope of the present work. The next
chapter will focus on a theoretical understanding of the complex features and inclusion of
the feedback of spectrum shifts on the mode stability in the simulations. The existence of a
targe frequency shift at the longer wavelengths required for the ExB nonlinearity is

interesting in light of the apparent observation of long wavelength fluctuations with Jarge
phase velocity (vph > @./K) in the Texas Experimental Tokarnak (TEXT)16,
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4.5 Conclusions

The spectral transfer dynamics of drift wave tusbulence over the broad wavenumber
range incorporating both the ExB and polarization drift nonlinearities has been expiored.
This work is based on nemerical solution of the single field dissipative trapped ion
convective cell turbulence modell-Z and describes the spectral transfer resulting from
unstable trapped ion modes at long wavelength. The present computational model is based
on an “i8” approximation with laminar electron dypamics resulting from collisional,
nonadiabatic electrons. Consequently, the present computational model neglecis the
dynamical feedback of finite amplitude nonlinear-indaced frequencies on mode stabitity.

A variety of diagnostics, including wavenumber and frequency spectra, Spectrum
histories, energy and enstrophy transfer rates, and spectrum impuises, are employed to
characierize the transfer. It is found that the ExB and polarization drift nonlinearities
transfer energy (and enstrophy) much as they would ia isolation. Conseguently, there are
two subranges corresponding to spectral regions in which one nonlinearity or the other is
dominant. In the iow k ExB subrange, the net energy transfer is directed 30 higher k with a
very large nonlocal compongnt in the ky direction. These is sigrificant generation of
enstrophy on the timescale of a few eddy tumover times. In the kigh k polarization drift
subrange, transfer is local in k. There is svidence for a dual cascade, and enstrophy
generation is weak, requiring many eddy mrnover gmes for any change in magnitude. The
near conservation of enstrophy on dynamical timescales is consistent with the cbserved
inverse cascade of energy. For saturated turbulence which is driven at low k, damped at
lower k and at high k, with an inertial range providing a bridge between the driven
wavenumbers and the short wavelength damping, the speciram is flat in the ExB subrange
and falls off in the polarization drift subrange. Nonlocal transfer is responsible for the

flamess of the spectrum at low k.
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In the crossover region where the two nonlinearities are comparable there is a rich
cross-coupling. Energy is transferred nonlocally but the transfer tends to be isotropic. A
significant shift in the peak of the frequency spectrum occurs. This shift is directly
attributable o the coepling of the two nonlinearities, as it disappears if either nonlinearity is
set to zero. The shift increases with increasing wavenumber. Both of these effects are
consistent with the theoretical shift based on the cross-coupling of the two nonlinearities in
the renormalized response function. In the present work, model Bmitations have prevented
treamment of the back-reaction of the shift on the mode dynarmics.

The visualization of energy flow by following the spectral relaxation after application
of a locatized impulse energy at a given wavenamber is found to provide a reliable and
graphic indication of emergy flow, indicating accurately its direction, its locality in
wavenurber space and whether transfer is isotropic.

In the next chapter, work on this model will inciude the frequency shift feedback
and its modification of the mode stability structure. In addition, an investigation will be
made of structures which are stable solutions of one nonkinearity and their persistence in the

presence of both nonlinearities.
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Chapter 5
Multiple Field effects

51 Introduction

One of the more interesting and novel features of models with two nonlinearities is
the cross-coupling dynamics of the two nonlinearitiesl.. In the previous chapter, cross-
coupling dynamics was represented analytiocally as a frequency shift because the propagator
was taken 1o be real. In fact the cross-coupling dynamics has two parts: the nonlinear
frequency shift from the cross temms of eguation (4.1() multiplied by the real part of the
inverse propagator Al and a dynamical effect from the cross terms muttiplied by the
imaginary part of the inverse propagator. The dynamical effect changes the transfer
dynamics and therefore changes the saturated (or instantaneous) spectrum. This can then
change the spectrum weighted average k. All of which can, i principle, affect quantities
such as transport. The frequency shift has a more subtle consequence. Through the
propagator it also modifies the transfer dynamics, moreover, there can be an effect on the
mode stability (Hinear stability). This change of mode stability is an outgrowth of the inertia
of the adiabatic electrons which give rise to a frequency change in the form of a (0o — m*)
term: in the dispersion relation. The model used previously, which was a one-field model,
has the linear growth spectrura () fixed. This type of model does not permit the frequency
shifts to impact the linear stability. In order to investigate the ramifications of such a
feedback, a two-feld model for dissipative trapped electron modes 1§ used?. In this model,

two fields are evelved, the potential (¢) and election density (1), with all of the quadratic
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nonlinearities intrinsic to this problem. This model permits the investigation of the dynamics
in both the strongly dissipative regime, where the one-field model is valid, and the
cellisiontess regime. The two main benefits of using a two-field model are the ability to
investigate the interplay between the frequency shifts and the linear growth spectrum, and &
thorough exploration of the transport properties of this type of mode. In the one-field model
the phase relation between n and ¢ is set and therefore, the transport (\B\bc\< (v )=
< V¢ x z n>>) is an artificially constrained guantity. In the two-field model, it is
possible to examine the evolution of the flux under the nonlinear processes that govern the
correlation of a with v and determine how the individual modes or regions of modes
contribute to the net flux. For exaraple, do some regions in k space contribute an inward
fiux while others give an outward flux?

As before, a model with distinct subranges will be investigated ; the long wavelength
extreme of the spectram is dominated by the ExB nonlinearity while at the high k, shorter
wavelength extreme is dominated by the polarization drift nonlinearity. The previous
compuiational and analytic results from the one-fieid model confirm the existence of the-two
extremes, but also point out the importance of the intermediate regime. In this region of k
space, neither the ExB nor the polarization drift nonlinearity dominate completely and the
interplay (cross-coupling) becomes very important. The earlier work with the ene-field
model showed that in the long wavelength subrange there exists a direct, non-local,
anisotropic cascade of energy to high ky In the short wavelength {polarization drift
dominated} subrange, 2 dual cascade analogous to 2-Dimensional Navier-Stokes was found
with an inverse cascade of energy to low k and a direct cascade of enstrophy (mean squared

vorticity) to high k. The cascades due to the polarization drift nonlipearity were largely locat



107

and isotropic in nature, in agreemment with the well known Navier-Siokes dynamics. Inthe
crossover region the dynamics are mixed t-)ut not a superposition of the two extremes: the
net dynamics ends to be a more isotropic, yet a non-local direct cascade of energy to highk
remains in force. In addition to the change in transfer dynarmics, a large frequency shift,
resulting from the imaginary part of the cross-coupling, is found.

Tt is important to keep in mind that many or most physical systems contain multipie
nonfinearities and while it is true that one nonlinearity may dominate the dynamics in a given
region of k space, at some point a region may exist in which roultiple nonlinearities of
comparable importance co-exist . In some systems, DTEM for example, the dynarics at the
extremes, where just one nonlinearity dorminates, conspire to increase the importance of the
crossover region. In the case of DTEM, the ExB nonlinearity tends to transfer energy into
the crossover region from low k while the polarization drift nonlinear inverse cascades
energy into the crossover from high k. These combined cascades increase the total energy
in the crossover region and act to make the crossover dynamics very important for the total
system dynamics.

In this work many of the techniques used in the earlier studies are applied tw
determine if the same dynamics hold in the more complete system. The spectral flow
diagnostic is used to describe the transfer dyramics of the two nonlineasities, ie., whether it
is, local or non-local, direct or inverse, and isotropic or anisotropic. Additionally, the
frequency and k spectra are analyzed temporally, to investigate secular and quasi-periodic
variations. As before, the computational work is done using a spectral code containing up
to 41 by 41 modes. Two general types of simulations are performed: 1) scapning of

collisionality while holding other factors roughly constant; and 2) scanning of the ratio of
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relative strength of nonlinearities while holding the collisionality (v ) fixed. In both cases
some adjustment of damping is mmade in order to investigate the effect of varying saturation
levels. These two classes of simulations perrais the investigation of a variety of phenomena.
In the first case one effectively scans the growth rate and the importance of having two-
fields. In the high v region this permits verification of the results of the one-field model
while sl including a much more realistic growth spectrum. In the second set of
simulations it is possible o study the effect of the cross-coupling terms on growth rates and
spectrum shapes in a self comsistent way. Here the focus is on the average and
instantaneous rates of energy extraction, spectram shape and transfer dynarnics.

The main results in this chai)ter are now summarized. It is found that while the
results from the one-Seld model can be reproduced in the high v regime of the two-field
model, there are additional new phenomena intrinsic to multi-field models. Despite the fact
that in the two-ficld model the nonlinearifies are in different fields (ExB in the density field
and polarization drift nonfinearity in the potential field) the model behaves very much like
the one-field model when v is large. The nonlinearities cascade in the same fashion with the
ExB nonlinearity transferring energy nonjocally to high ky in the region it dominates. Once
again it is in the cross over region that the dynamics are differeni. The sotal (net) transfer in
the cross over region is dominantly a direct cascade to high k. However it is more isotropic
than when the ExB nonlinearity acts alone and it is more non-local than when th.e
polarization drift nonlinearity acts alone. As before, in this subrange, there is marked
evidence of a large change in the frequency dynamics. In addition to this expected
dynamics, a variety of new phenomena are found. The most significant of these is the

nonstationary nature of the saturated quantities. In gereral, in turbuleni sysiems itis
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assurned that once saturation is reached quantities such as mode amplitude, frequency
spectrum, transpor and k spectram are constant when averaged over a few eddy turnover
fimes. This, in some sense, is the definition of a saturated steady state. In the present
system something very different is observed - large-scale global fluctuations. These
flactuations in total energy, enstrophy, and fiux are characterized by both their lasge (-30%)
amplitade and their long period (> 5t,). During the global fluetaations most of the local
(iocal in k space) quantities undergo marked change. The k spectrum fluctuates, the
frequency specirom fluctuates, the transfer rates fluctuate, and the transport fluctuates.
Distinct phases of these fluctuation cycles are identifiable. These phases can be broadly
defined as the preliminary phase (at the bottom of a cycle), growth phase on the up cycle of
the fluctuation. turnover phase (at the peak of a cycle), and the crash phrase (on the
declining side of a cycle). The k space regime in which these fiuctuations are most visibie is
the crossover region where both nonlinearities are comparable. During the cycle the
frequency spectrum for a mode in the center of the crossover range undergoes a
metamorphosis from no shift to upshift to downshift while the energy in those modes
grows, then transfers owt, and finally crashes. Tt must be kept in mind that if time histories
are averaged over many eddy turnover times (>20), these fluctuation can be lost or
overlooked.

The organization of this chapter is as follows: The model and its properties are
presented in section H along with the reduction to the one-field model. Section Il presents
a brief heuristic explanation for the cycling fluctuations. Section IV has the resuits of the

two-field model. Finally, section V preseats conclusions.
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5.2 Basic Model and Properties

In this section the basic model is briefly presented and some of its main properties
discussed. This is done in the context of comparing and contrasiing the present model with
the one-field mode} of the same system. This analysis examines the linear structure, integral
invariants, and the fourier transformed mode eguations.

The model utitized for this study is a set of trapped particie fluid equations. This
mode} couples the dynamics of collisional trapped electrons with hydrodynamic ions
through the quasineutrality condition. The derivation of this equation and a discussion of its
details and limitations have been presented elsewhere. In previous work, the inertiai
response of the electrons was neglected by considering only the most dissipative extreme of
collisionality. Here, the electron nonlirearity apd inertia terms are included, yielding the

model equations:

o8 —
a-Ve-p2vi 2 + ngy"—’ - Ve Vo (romg 52 - Veven + Veved

+ psCs Vo xzV p2V2 ¢ + pvéo= 0, {5.1)
and
%lt‘"‘— + VD(lme)%’ + Vesrfie ~ CopsVOxzViig - Verd= 0, 5.2

where fig = be + ¢ is the fluctuating electron density plus the fluctuating potential, Vp =

(cTefeB)Ly ! is the diamagnetic drift velocity, D = el/2Vp2{1+ame)/Verr,e is a negative
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diffusivity describing the destabilization of DTEM modes by electron collisions, ¢ is the
trapped electron fraction, T = dinT/dinn is the electron temperature gradient parameter, Vi
models long wavelength collisional damping, Vesre = Ve/E, L is the coefficient of the hyper-
viscosity introduced to model sirong damping at high k, Ly, is the density gradient scale
length, pg = (cTe/eB)Cg is the ion gyroradius evaluated at the electron temperature, and Cg
= (Te/m;)!2 is the ion sound speed. The substitution of A for nie + ¢ is for computational
simplicity. The primitive equation for ng has a time derivative of ¢ in addition w the time
derivative of #e, making the use of explicit sobvers impossible. This change in no way alters
the dynamics of the problem and was made at this stage for consistency with the
computational work. In contrast with the previous work (chapter 4), the linear polarization
drift term responsible for linear dispersion has been included in Eq. (5.1). The basic
mechanisms governing transfer and the concepts describing this process are however
unaltered. Indeed, numerical solutions with and without the HEnear polarization term
included were found to be qualitatively the same for spectral ranges studied herein.

The nonlinearity appearing in Eq. {5.2) is the E x B nonlinearity, arising from vg-V
fij, where vi: = —{¢/Bo)V¢xz is the E x B drifi. The nonlinearity which appears in BEq.
(5.1) is the polarization drift nonlinearity, and arises from noV-vp(D, where vp{!) = By
I¢mjc/e)zxve-Vvg is the nonlinear polarization drift. The E X B nonlinearity requires a
nonadiabatic electron response (provided by the wapped electzons), whereas the polarization
drift nonlinearity derives from the ion polarization drift

From Eqs. (5.1} and {5.2), it is again apparent that, by virtue of its additional spatial
derivative, the pol-a:ization drift nonlinearity dominates the ExB nonlinearity at very short
wavelengths. The converse holds at long wavelengths. The nominal crossover point is
given by the wavenamber at which the two nondinearities are equai. This crossover point is

however also dependent on the effective electron collisionality (Veffe). Assuming rough
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isotropy, so that ¥V = d/dy, this wavenumber is given by kpg =~ & = Cy/LnVefee = KopPs-
Because the nonlinearities are characterized, not by a single spatial scale, but by a triad
interaction consisting of three waves of differing wavelengths, it is more realistic to identify
a region, centered about the crossover wavenumber, in which the two noalinearities are
compasabie, rather than to spesk of a single wavenumber at which the two are equal. Itis
within this region that the cross-couplin g‘dynamics are dominant.

Due to the presence of the EXB nonlinearity, 2 single quadratic invariant, the energy,
is admitied by this system in the absence of driving and damping. As previously discussed,
the EXB nonlinearity in isolaton transfers energy to short wavelengths, given a spectrum
which is peaked at long wavelength or flat, and therefore drives robust production of
enstrophy?. This term is present even in spectral ranges where the polarization drift
nonlinearity dominates (k > k). Consequently, enstrophy is not conserved even when the
Ex®B nonlinearity is weak compared to the polarization drift nonlinearity. However, in such
a case, the ExB nonlinearity accounts for proportionately less of the wotal energy transfer.
Because enstrophy production is tied to energy transfer by the EXB nonlinearity, it can be
expected that the importance of enstrophy production in the cascade dynamics diminishes
for k > ky. For k < kg, the eddy turnover rate is controlled by the dominant ExB
nonlinearity and can be expected to be coraparable to the enstrophy generation rate. Fork >
ke the eddy turnover rate is controlled by the larger polarization drift nonlinearity, while the
enstrophy generation rate is tied to the weaker EXB nonlinearity. Consequently, there will
be little enstrophy generation on the nonlinear interactior or nonlinear transfer timescale.

As described in chapter 2, energy transfer that is anisotropic and nonlocal in
wavenumber space is a robust feature of the ExB nonlinearity, but at variance with the
conventional picture of the cascade process. On the other hand, the polarization drift
nonlinearity, investigated in chapter 3, is of the same form as the advective nonlinearity of

the vorticity evolution eguation of Navier-Stokes turbulence. Therefore, as expected, the
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polarization drift nonlinearity produces transfer which is local and isotropic. It is possible to
associate these features with symmetries in the structure of the nonlinear coupliing. These
symmetries are most transpareni in the Fourier representation of the nonlinearities when
simplified to the one-field model {(see chapter 4). The polarization drift nonlinearity in Eq.
£5.6) has the same symmetry structure as in the ope-field case. The transfer dynamics of the
ExB nonlinearity Eq. {5.5) are not as transparent in this reprosentation. This is due to the
cross field nature of the nonlinearity and the transformation made to & from ne and ¢.
Trarisforming Egs. (5.1) and (5.2), the evolution of mode amplitudes is given by

2 . o _
_%k(l— \[;+ kiZpg2) - MEVD(lmne) ky 0k + VD ky &k + Verr (fx — fi) +

pk4og + NPl = 0, (5.3)
% + iVp (1+Home) ky dx + Vemrifik = Vemfifk + NEB) = 0, (5.4)
where

N EB) = %psCs%:kxk‘-z ok fixx = 2& x-(kEf.” O gk (5.5)

NP = o, T Rock'x (e - Ku)? — K2 e Ok

n

(Pol
; X0 b Ok (5.6)

As discussed in chapter 3 and 4 the symmetries in the nonlinear couplings
responsihle for this distinction between the ExB and polarization drift noslinearities derive

from the nonadiabatic electron response of the ExB nonlinearity (¢ ~ 80fie/dy) and the
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adiabatic electron response of the polarization drift nonlinearity (§ ~ f). These symmetries
carry directly over to the energy transfer rates and give dise to a nonlocal transfer rate by the
ExB nonlinearity which dramatically exceeds the local transfer rate, while for the
polarization drift nonkinearity, local and nonlacal fransfer raies tend to be comparable.

The linear dispersion relation for this system is given by:

(- Ver 2k o+ (v-vpky-1p2k2v Ve +iv (1+p2K0) + Veplky B @
-ivpkyv=0 (5.7
with
B = (i+ome)

This relation has relatively complicated higher order structure but to first order the sofutions
are very simple. The real part of the solution whick gives the linear frequency is linear for
jow k and the rolls over at higher k due to the linear polarization drift term (Fig. 5.1). The
imaginary part of the solution gives the linear growth rate and to first ordet, or at low k, the
solution is given by Y=< kyz (Fig. 5.2). These first order linear solutions agree with the
linear dispersion relation for the one-field i model exactly. This is not surprising as the
reduction from the two-field mode! to the one-field model is simply a matier of dropping the
inertial terms in the electron density equation and then solving the 2 equations in a highv

limit.



115

Fig. 5.1 The real part of the dispersion relation.
This gives the frequency spectrum as & function of ky.

0.35
0.3
0.25

0.1

ky

Fig. 5.2 The imaginary part of the dispersion relation.
This gives the growth rate as a function of ky
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5.3 Heuristics of the Cycling

Relaxation oscillations are relatively ubiguitous in pature, existing in systems as
simple as a bow drawn over a violin string to systems as complex as sawteeth in a fusion
device. In most of these cases there is a competition between forces driving the system
away from its preferred state and restoring forces. In addition to these two competing
forces some form of inertia is needed to take the system through and beyond its equilibrivm.
In the case of the viokin string the oscillation Is driven by the difference between the static
and the dynamic coefficients of friction and the inertia of the string. While the cycles in the
two-field model are not as simple as the violin string it is instructive o g0 through a few
scenarios for the mechanism behind the two-field oscillations. First, two simple easily
pictured mechanisms will be outlined; then, a third more realistic mechanism combining the
first two will be outlined. The first scenario is a simple feedback of the frequency shift on
the Hnear growth rate with ovesshoot due to spectrum inertia. In this case, the system starts

from small ampliteds. From closure calculations the frequency shift is found to be amplitude

dependent, (0 == Zky (21()(2 - k’y2 ) lnkyiz} , which suggests that at low amplitude there is
o

little or ne frequency shift which allows the linear growth to proceed. As the modes gain in
amplitude the freguency shift becomes more pronounced. Since the linear growth rte 1s 7
o [ (1 + O ne) -] , when ®> @ (1 +0M) the growth becomss negative and the
mode is siabilized. Therefore at some point in the growth the mode amplitudes become
large encugh 1o stabilize the mode and the growth ends. The mode then loses energy until

the amplitude is smali enough to wrn off the frequency shift which in tamn reactivates the
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growth rate. The spectrum inertia is required 1o force the mode amplitudes to overshoot the
amplitude which would cause a frequency shift giving marginal stability. The system could
then undergo stable oscillations around the marginally stable amplitudes.

The second mechanism is similar to the first except that the freguency shift is
replaced by a change in the dynamics due to the cross-coupling, ie., X(i':f) inmi Im
AeyL. In this case as the system grows from small amplitude the dynamics of the transfer
are dominated by the individual nonlinearities. This is because the cross-coupling dynarnic
shift is also dependent on the amplitude. As the most unstable modes {assumed to be the
middle k modes near the crossover) grow higher than the surrounding modes the cross-
coupling dynamics shift starts to dominate over the standard dynamics. This allows energy
10 be transferred rapidly out of these high amplitude modes to the damped modes at either
end of the k spectrum. As the energy is wansferred out, the mode energy decreases
eventually reaching the level at which the cross-coupling dynamics are less important than
the dynamics of the individual nonlinearities. At that point the mode starts linearly (and
nonlinearly) growing again. Once again the spectrum (or transfer) inertia is relied on to
force an overshoot of the mode amplitudes allowing the cycling to occur.

The final scenario combines the first 2 and appears more realistic for this model.
Again, the system starts from low amplitude, as the amplitudes grow the frequency shift
grows once again having a feedback effect on the growth rate. The shift in transfer
dynamics becomes important at a larger amplitude because it depends on the nonresonant
part of the propagator (Le.. Im A} and is, as such, dependent on the frequency shift. As
the frequency shift becomes large enough to stabilize the mode, the transfer dynamics shift
rapidly moves the energy cut of the crossover modes and into new modes. This forces the

amplitude of the new energy bearing modes o grow rapidly causing them to undergo similar
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shifts in transfer dynamic.s, eventually transferring the energy to dissipative modes. While
the energy is being cascaded to dissipative modes the energy in the linearly mosi unstable
modes falis well below the marginal stability amptlitude due to the combined effects of the
frequency shift induced stabilization and the shifted transfer dynamics. The cycle then
restarts. Many of the elements in this mechanism can be inferred from the diagnostics in the

computational studies, as will be shown in the next section.
5.4 Computational resulis

Tn this section the computational results from the two-field model are described. In
the two-field computations, as with the one-field work, a number of computational
diagnostic toels were used. The nonlinear transfer diagnosiic is based on the energy

evolution for an individual model k. The equations for the energy evolution are:

7o A2

(40 “;1: Vvl b + VeV iy 2=, ®OD 5.8
and

1 Al 2 (€ X B)

S+ VIt -V ity m) =Ty 3.9
with

T, D¢ o Re%{k XK ) (k- KD e np s g 5.10
and

Tk(EXB)=°spsRe%(ka"Z)¢k’ g Ok 511

Here Tk (EXB) 5 defined as the E x B nonlinear transfer rate and Tk (Pol) i< the

polarization drift nonlinear transfer rate. If Ty is negative (positive) that implies nonlinear
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transfer out of (into) the mode k. For simplicity of data storage this information is not kept
for ali modes individually; instead, the flow from (to) bands in the 15{ and ky directions are
determined. The flow is defined as local if the interacting modes are within Imi modes of k
where m is taken to be between 1/3 and 1/2 of the total k spectrum size. Nontocal flow is all
flow not within the region defined by m. In most cases m is chosen to be large in order to
insure that the focal/nonlocal differentiation is equivalent to local in the Kolmogorov inersial
Tange sense.

In addition to the mode energy/enstrophy transfer diagnostic, global energies
(I, 10p P10 10 + 00 %40p) and flux (<nVe>) are tracked. While the giobal
quantities are useful, and in fact first showed the cycling, the local (Jocal heing defined as
consisting of a single mode) quansities are more instructive and are therefore followed in
detail. Mode energy, flux for a given k and frequency spectra for individual modes are ail
analyzed and used in conjunction with the transfer rates to investigate the dynamics within
each field as well as the cross comrelations between fields. Finally, it has been found to be
very useful to animate seguences of 2-Dr k spectra and real space isecontours. These
animation sequences often give an idea as to which dynamics dominate in a given teraporal
region.

With the exceptiop of ruas done for the purpose of testing the code, all of the
computation was done with driving and damping turned on. Typically the linear growth
spectrm was peaked at intermediate k with viscosity (or hyperviscosity) decreasing the
growth rate at higher k. This results in a growth rate (y) that is negative at lowest and

highest wavenumbers and positive at intermediate ky with k, = 0. When the simulations are

started from infinitesimal inital amplitedes, a linear growth regime is observed followed by
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the onset of nonlinear interactions which reduces the net growth rate (linear plus nonlinear)

of the most linearly unstable modes and increases the net growth rate of the less unstable

modes. As is common with turbulent simulations, sateration does not occur 1f the total

growth rate, (Yp = ) is positive, while saturated “steady” states whose saturation
k

amplitude is sensitively dependent on vy exist for negative Y.

In the Hmit of large v (v >> ) the model is reducible to the one-field model.
Consistent with this, the dynamics of the computational simulations of the two-field model
are virtually indistinguishable from the one-field results in the high v limit. In the region of
k space in which the polarization drift nonlinearity dominates the flow is largely local in
nature and exhibits a dual cascade. The spectrum is dominantly peaked at low k so the
energy bearing modes are below the driving or maximally unstable k. There is very litile or
no frequency shift for the modes strongly dominated by the polarization drift nonlinearity;
however,it is on the polarization drift dominated side of the crossover regién that the
frequency shift reaches its maximum. In the region dominated by the EXB nonbinearity the
transfer is predomirately nonlocal and anisctropic, and energy is directly transferred to high
ky modes. The transfer in the k. direction is also direct but more local. In this regime there
is no appreciable frequency shift and the dynamics of the ExB nonlinearity dominate the
system dynamics. The k spectrum in the ExB dorninated region is anisotropic with the peak
at the most unstable modes. This leads to a spectrum platean which is broadened in the ky
direction and is much flatier then the spectrum in the polarization drift nonlinearity
dominated region.

When v = @ the dynamics of the ExB and polarization drift subranges remains

nearly identical to the results from the one-field model; however, new phenomena are
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observad in the cross-over region. This is because the same basic dynamics are now fres to
have repercussions in the two-field mode] that were prohibited in the one-field model. As in
the high k {polarization drift nonlinearity region) and the low k (ExB nonlinearity dominated
region) regimes, the crossover region dispiays dynamics similar to the one-field dynamics;
however unlike the one-field mode! those dynamics are not temporally stationary.
Typically, when a tutbulent system reaches saturation the system is assumed to be stationary
on a time scale of a few eddy tarnover times. This stationarity is best seen by averaging
over a few eddy turnover times after which all the significant quantities such as total energy,
mode energy, enstrophy, frequency spectrum, transfer rates, etc., are constant. In the two-
field model this statiomarity simply does not exist in the regimes for which both
nonlinearities are important. Instead, a long petiod fluctuation (cycling) occurs around the
saturation level. The dynamics of these fluctuations will be discussed next. But first it
shoutd be emphasized that in the proper regime (i.e. high v, g the 18 model (fixed phase,
one-feld model) does a very good job with the nonlinear dynamics of the system. The
specific details that an i8 model can not hardle by its very construction are the feedback
effects due to cross-couping. These effects modify the linear growth rate as well as the
flux. The flux is particularly poorly represented by the i8 model as by construction, id
models fix the cross correlation or phase relation between n and ¢ by 8. This fixes the flux
amplitnde to the saturation amplitude without allowing any variation due tc phase correlation
or decorrelation of the various modes. This correlation is found to vary during cycling
events and is not even constant in the various individual k modes. The effect on the linear
growth rate is more subtle. Since this effect comes from feedback of the frequency shifts
onto the growth, it is difficult to decouple this effect from changes in the transfer dynamics.

Tt is however apparent that there is still a large frequency shift and that shift is nonstatonary
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over a cycling event. It appears that the frequency shifts do cause the most unsiable modes
to become less unsiable, closer to marginally stable, however without more diagnostic

evaluation it is not possible confirm this. This work will be reported at a later date.

In the more moderate region of Vopp (Vv ~ (> () there is a large nonequipartition of

energy between n, and with ¢ >>n,. This causes the ExB nonlinearity to be refatively

weakened compared to the pojarization drift nonlinearity and allows the ExB nonlinearity to
undesgo a shift in dynamics to a more local more isotropic flow. This also tends to weaken
the fluctuations. Therefore, it is the region in parameler space between V>0 and v~ that
is investipated in order to characterize the dynamics of the cycles. This is the region of
maximutn cycling. The cycling is observed for a wide range of parameters and is

characterized by large amptitude fluctuations (> 15% arourd the mean level), see (Fig. 5.3),

with a long peried (1 > &7}, At either extreme in the v o spectrum (v >> (0, 0r v < @)
(v (& eff

vele
the amptlitude of the fluctuations is decreased.

While the cycling is a robust feature of the two-field model, the structure and
characterization of the cycles depends on a number of factors. For an example, the cycling
amplitude can be controlled by varying the relative strength of the nonlinear transfer to the
linear growth rate. This change in amplitude then modifies the characterisic behavior of the
cycles. When the amplitude of the fluctuations is decreased, the period of the cycles (Fig

5.4} is increased. During a cycling event there is typically a burst of flux. This burst of
flux (Fig. 5.5), { ank*) usually leads the characteristic energy fluctuation in the
k

dominant modes. These early dominant modes are usuaily the middle k modes which are
near, or shghtly above the crossover, and are just below the most linearly unstable modes.

At the end of a cycle, in the jow phase, the phase relation between n and ¢ of the low k
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mades goes to 0. This causes the ExB nonlinearity (Fig. 5.6) to cease transfer and the flux
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Fig. 5.3 Duzng a cycling event the total energy is seen to fluctuate by more than 15%.
The period is 5 to 10 "eddy mrnover times" as defined by 2 mode fluctuation time.
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Fig. 5.4 The system with the large amplitude cycles has a longer more regular period.
Note that the scales are different for the 2 sysiems.



it filux from mede ky=4 2 dowa Fom the most uznstable)
s Flut from mode Xy=5 {1 down Foin the most unstabie)

— Total coargy
<« X« - Totl fhux
00154 kil
0.0
=
E
=
E 0005
g
=
=3
g
B 0
]
=
005 L
0.01
e 0 i3 20 30 3s 40
Tane

Fig. 5.5 The flux from. the 2 most active modes "bursts" coincident with the
flucmation. The burst in the most active mode leads the fluctuation by a small phase.
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These occur both < vknk*> {flux) and V 1 x 2.V ¢ (ExB nonlinearity) are maximum when

the phase shift between n and ¢ is n/2, and zero when n and ¢ are in phase. The phase is
then rescrambled on a nonfinezr time scale, i.e., approximately one eddy turnover time. The
flux and nonlinear transfer then resume.

In the course of a cycle the modes that underge the most significant changes are the
middle ky modes early to midway through & cycle and then low in ky propagating to high ky
at the end of a cycle. During such an event the frequency spectrum for the middle to low
middle ky modes undergoes large changes. It is difficult to resolve frequency spectrum
fluctuations on the time scale of a cycling fluctuation because a cycle peried is of order 10
eddy tumover times. This means that each phase of the cycle lasts ~ 3 Tp and even then may
not be stationary. Nevertheless it is possible to extract some useful specira assuming the
existence of two, three, and four distinet phases in the cycle, and using conditional sampling
techniques to exiract spectra. These simply assume that one cycle is Hke another in: terms of
the relationship between the frequency spectra and the phase of a cycle. Combining multiple
partial cycles allows one to create a record of 10s of eddy tarnover times for frequency
analysis. These low middle ky modes show (Fig. 5.7) a frequency downshift early in the
cycle followed by a region of little or no shift, followed by a large upshifi. These shifts
would be consistent with the suggestion that the linear growth is reduced at the top of the
cycle and is then tumed back on at the bottorn. It is worth noting here that by averaging over
a few cycles (~307te) one would miss the nonstationarity of the frequency spectram and
would simply see a broadened frequency spectrum. Unfortenately the explanation of the

cycling is probably not as simple as the mecharism which simply has the frequency shift
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feeding back on the growth rate . This can be seen from the transfer diagnostic and the k
spectrum evolution. The spectram evolves as follows during a cycle see (Figs. 5.8-5.100:

1) The raiddie ky (most unstable) modes increase in amplitude,

2) There is a large burst of mverse ky cascade with a smaller amount of direct

cascade in the ky direction, both due to the polarization drift nonlinearity. This

causes the spectrum (o flanen in the ky direction,

3} A bursi of direct cascade in the kx direction due to the polarization drift

nonlincarity is nearly coincident with the cross-field transfer from the ExB

nonlinearity, This takes most of the energy 1o the high k dissipation rogion and

hrings the cycle fall circle.
In real space these cycles can also be characterized by distinct phases. Suuctures which are
elongated in the x direction appear, grow, and propagaie in the y direction they then rapidly
break apart and start up again (Figs. 5.11-5.13). The eccentricity of these structures (their
*/y dimension) is partially determined by where the crossover from ExB dominated to
polasization drift dominated is located relative to the most unstable mode. If the most
unstable modes are in the ExB nonlinearity dominated region then the structures are

narrower in the y direction due to increased direct, nonlocal transfer to high ky.
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ky

Fig. 5.8 This k spectrum shows the energy dominantly in the
middle ky modes. This spectrum is at the begining of a cycle.
Darkest color is highest value. The 0,0 mode is at the bottom
center.



130

igh kx with some spreading in

Fig. 5.1C This k spectrum is at the end of a cycle, showing the

energy being iransiered out o b
ky also. The scales are the same as for fig 5.9

129

o
wwww ﬁ.ﬂj
. tELD

YRR
A e =
= R
BB =8

Ena
eﬂmmm
EXERE
agogE
eh-tortc
o 8B ]
Mt\@mr
BEEES
e.mm.mk
g el
2RE8g
Bigst
e EE
snm eAVbJ
JEBEE
Efmgs

RS RS
nvm_ Wh ]
“Bria
HESeE




' 132
131

)
#

G :
LILLET T

B O s

FETTITIT TR FrHmyT
TR

IﬁTIML )

TTTYR
N
3

TV ITTT

T TR N FIEF T T TITY)
/\) RS

()

LLESAIEI Vgl dwdagt

¥
1
[
v
|
-
-

& S N

11i

AR KN AES TSN RTAN|

.' S
| PR
“h HERE SN
N - e
1 A ¥

AT IO TTERE]
£
3

¢

jUss
=
3

i

]

it LRy

-b;"’i' K A

Y \ [ e
HI: N Erblebd 103k 3 D ALK ey T e b ALES

A
l@j E ;J 2 @ ........

: B
1T T
Il [EFE!]|KI‘_I'I}N 4LE )] RSN HRME]
CONTOUR FROM -43 TD 17 BY 4 CANTOUR PROM —-40 70 20 BY 4
y

Fit et

EFFEEFTTT

[
B o

Fig. 5.11 Real space isodensity contours early in a cycle. The structures . i . .

are relatively isotropic and homogeneous. Fig. 5.12 Mid way through a cycle there is noticable
elongation in the x direction. The Structures propagate
in the y direction.
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Fig. 5.7 Note the mean frequency up-shift in the peak phase of a cycle. This
would tend to decrease the growth rate relative to the trough phase.
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5.5 Conclusions

Using the same variety of diagnostics as employed for the one-field model,
including transfer rates, wavenumber and freguency spectza, mode, spectrum and flux
histories, the dynamics of a two-field model has been investigated. It is found that the ExB
and polarization drift nonlinearities behave as they would alone in the reglon of k space i
which they dorainate. Both the nonlocal anisotropic direct cascade of the ExB nonlinearity
and the tocal, isotropic, dual cascade of the polarization drift nontinearity are observed. The
two-field model dynamics reduces to the one-field dynamics in the high vesf lmit as
expected. Most significantly, large scale fluctuations (cycling) are found to spontanectsly
accur in cases which include the cross over region in the system. This cycling is observed
on a ~10te time scale with oscillation levels of 15-80% of the base saturation level. The
existence of these fluctuations calls into question the validity of the assemption that saturated
wurbulence is also stationary or steady state. Fluctuations are observed in both the frequency
and k spectrum coincident with the global fluctuations. These observations combined with
the fact that bursting of transfer and flux are aiso coincident with the cvcles suggests a
relaxation type oscillation which is not inconsistent with a heuristic model that was outfined.

Characteristics observable in real space include structures elongated in the x (radial}

direction. These structures propagate peloidaily and break up, then reform on a cycle tme

scale. It is important to note that if an observer is sampling across multiples cycle the cycles
may be washed out giving rise to an apparently broadened spectrum, but missing much of

the important dynamics.

136

References

2

Y.-M. Liang, P.H. Diamond, X.H. Wang, 1.E. Newman, and P.W. Terry, “A
Two-Nonlinearity Mode! of Dissipative Drift Wave Turbulence”, Phys. Fluids B,
submitied.

G.G. Craddock et al, Transport Task Force Meeting Newport RI 1993



137

Chapter 6

Conclusions

Througheut the study of turbulence there are a number of generally accepted
principles upon which much of turbulence theory has been built. These basic precepts
include the idea of a classic inertial range, isotropy of systems without anisotropic driving,
conservative cascades, stationarity of saturated systems and a rough additive principle of
nonlinearities. While these ideas largely work very well in the systems for which they were
developed, the question of their broader use &rises.

Using 2 series of simple models with extensive diagnostics designed for
investigating the nonlinear dynamics, those basic assumptions are investigated in more
complex systems then the “simple” Navier-Stokes system in which they were originaly
developed. The models used have been, in order of increasing complexity as follows. A
one-field mode! for Dissipative Trapped lon Convective Cell (DTICC) turbulence which has
one nondinearity (ExB) and is used to study the dynamics of an anisotropic nonlinearity, A
one-field model for Hasagawa - Mima (H-M) trbulence which also has one nonlinearity
¢polarization drift) and is used to study dual cascade dynamics. A one-fisld modet of
Dissipative Trapped Electron mode (DTEMI) mrbulence with both the ExB and the
polarization drift ronlinearities which lends itself to the investigation of the interplay
between the nonlinearities. And finally a two-field two-nonlinearity model of dissipative
trapped electron model trbulence (DTEM2) is used to investigate feedback of two nponlinear
effects and nonstationarity. In ail of these models the diagnostics used stress the transfer
dynamics ard included time histories of total energy and enstrophy as well as time histories

for individual modes. These are supplemented with direct transfer diagnostics in addition to
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frequency and k specira evalution. With these 1ools it is possible to investigate the detailed
dynamics of the mode evolution and spectral transfer.

The basis for the Kolmogorov spectrum is the assumption that inertial ranges are
dominated by a local self-similar transfer or cascade. Using the Kolmogorov spectrum and
equilibrivm statistical mechanics it is possible to infer the preferred direction of flow for 2
given nontinearity. The dynamics of most turbulent systems are governed by nonlinearitdes
which are themselves isotropic so that in the absence of anisotropic driving, damping or
geometry the turbulence is also expected 1 be isotropic. The FICC medet is used to stedy
the dynamics of an anisotropic, nonstandard nonlinearity, It is found that this nonlineasity
transfers energy nonlocally from low ky to high ky. This leads to a saturated spectrum much
flatter in the ky direction than that predicted by Kolmogorov theory. This should rot be
surprising as the lack of a local transfer induced similarity range precludes the use of
Kolmogorov theory.

Going hand in hand with the concept of local transfer in an inertial range is the idea
of conservative cascades. The H-M model is used to study the dynamics of the polarizatien
drift nonlinearity ( V ¢ x 2.V \7’24)) which has two quadratic invariants, energy and
enstrophy. These two invariants give rise to the same dual cascade that is familiar from 2-D
Navier-Stokes turbulence. In this cascade energy is transferred conservatively to low k and
enstrophy is transferred conservatively to high k. The conventional description of the dual
cascade was formulated by Kraichnan who used a spectram of infinite extent to show that
energy alone is cascaded in the low k region and enstrophy aione is cascaded in the high k
region. It is found here that if the spectrum is not infinite in extent there is some “improper”
transfer. That is, in the energy transfer range some enstrophy is transferred and in the
enstrophy transfer range some energy is transferred. The amount of “improper” transfer
depends on hoth the extent of the inertial range and the position within that range of the

source of free energy (the injection range). It is guite possible 1o arrange a situation in
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which more energy or enstrophy flows in the improper direction then in the proper
direction. This is important to keep in mind when analyzing system dynamics from the
conservative cascade point of view.

Nonlinearities by definition cannot be linearly superimposed as if they were
independent, yet it is assumed that if two nonlisearities have different regions of dominance
in k space, in the region dominated by one nonlinearity the other nonlinearity can be
ignored. The DTEM] model was used to investigate the effects of two nonlinearities
interacting in one system. It was found thai at the extremes in which one dominates the
other by more then an order of magnitude it is justifizble to drop the sub-dominant
nonlinearity. However, in the ofien large region where the nonlineariiies relative swength
are within an order of magnitude of each other, new dynamics occur which are not
explainable by a linear supes-position of the twe nonfineasities. The “cross-coupling”
dynamics are qualitatively different and include both a change in the transfer dynamics and a
nonlinear frequency shift. The frequency shift can be as large as a few umes @ and is
found to be proportional to ky. The shift observed from simulation qualitatively agrees with
the shift predicted by closure theory. Such shifts could help explain experimentally
observed frequencies which seem anomalously shifted away from the frequency expecied
from linear dispersion relations. The influence of the crossaver region creates five effective
regimes: 1} at the low k exireme transfer dynamics are governed solely by the ExB
nenlinearity; 2} at k values between the crossover region and the region of ExB dominance
both the E x B and the cross-coupling dynamics are important; 3) in the crossover regiosn,
the characteristic dynamics are dominated by the interaction of the two nonlinearities and
these dynamics are largely independent of the dynamics of the ExB and polarization drift
nonlinearities when actog alone; 4) in the region above the crossover region but below the
polarization drift dominated region, both the interacton of the nonlinearities and the

polatization érift dynamics are imponant; and 5) at the highest k vatues the polarization éiift
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dynamics dominate. Before ignoring a subdominant nonlinecarity it may be Important to
assure oneself that the nonlinearity of interest is sufficiently dominant se as to dominate both
the cross-coupling dynamics as well as the subdominant nonlinearity.

In order to self consistently include the feedback effect of the frequency shift on the
Bnear growth and particle flux, it is necessary 1o extend the model beyond a one-field model
to a two-field model. The DTEM2 model is used to study these interaction feedbacks. The
most striking resalt from the two-field studies is the lack of a stationary saterated staie. As
with most driven damped turbulent systems, this system does reach a satarated state
dependent on the various parameters. These parameters include growth, damping 2nd the
ratio of ExB to polasization drift nonlinearity strength but, in the cass of fully developed
turbulence, do not include initiat conditions. In this system the saterated state is found to be
non-stationary, exhibiting oscillations (cycles) with amplitade of order 50% and oscillation
period on the order of 10 eddy turmover times. During these cycles most of the relevant
quantities also undergo large fluctnations. These include flux and transfer rates as well as
frequency and k spectra. These cycles may be understood in terms of a simple heuristic
relaxation oscillation model, It is possible that this type of oscillation may in fact exisi in
experiment, but is effectively “washed out” by diagnostics that average over a few cycies.
Since these models are all local, it is alse possible that spatial averaging could wash out the
fluctuations. If they do exist it might suggest that transport is a much more locally
intermittent event then generally believed.

In conclusion, an outgrowth of this thesis is that there are three areas in which
general turbulence lore may net be valid. There do exist nonlinearities for which transfer is
rot local in k space (ExB nonlinearity) in disagreement with Kolmogorov scaling. Itisnot
always justified to discard subdominant nonlinearities becawvse of the fundamentally new
dynamics that can arise from cross-coupling of multiple nonlinearities. And finally.

saturated states are not always stationary and can infact exhibit complex cycling with
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ramifications for many observable quantities. It is important when dealing with turbulent
nonlingarities to be cognizant of these large variety of dynamical behaviors that can be
displayed. One should not get complacent in the process of extrapolating from a welt

known system to an unknown one.
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APPENDIX A

Computational Model descriptions

The computationat results in this thesis are really a compilation of resuits from four
codes of two different types. The first code was a one-field speciral code with one
nonlinearity (ExB). This code used an IMSL routines (DB2QBF) to do the time stepping.
‘When the second nonlinearity was added the code was changed to 2 more poriable solver of
the same type called LSODE by Alan C. Hindmarsh at LLNL. At that time the Jacobian of
the syster was explicitly entered and the flow diagnostics where added. The next code was
a psendo-spectral version of the one-field two nonlinearity code. This code was made in
order to increase the k space sizes which were practical o run (as pseudo-spectral is more
efficient) as well as to serve as a check oa the validity of the spectral results. Finally, the
two-figld two nonlinearity code, as a spectral code. Spectral codes were used because their
accaracy is himited only by the specified precision and the number of modes in the
truncation. They work by Fourier transforming (in space) the PDE and truncating the
Fourier representation at sume value of k. This process is cxact for most PDE’s, if k is
taken to go to infinity, which is clearly not possible. However, in most systems there is
some physical mechanism which realistically cuts off the k. This can be as simple as
kinematic viscosity {or hyperviscosity) or it could be some complicated mechanism by
which the model of interest loses validity at high k and must couple to new modes which
may be parameterized as a damping or driving at high k. We have typically used both
methods combined into one by including viscosity or hyperviscosity as a high k cutoff to
simulate either real viscosity or an energy sink inio coupling with some new higher k mode.

The main drawback of purs spectral codes is that nonlinearities become a convolution ink
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space, i.e. 2 kxk'z [(k2 — k0% - k17?] 0 brx . for each mode.
=

Clearly, doing k2 computations is much Jess efficient than doing ky In ks Therefore, the
pseudo-spectral method was developed. Pseudo-spectral codes have exactly the same
accuracy as spectral codes, as long as the k space they are operating in is 50% larger. The
idea behind pseudo spectral codes is that new Fast Fousier Transform methods are efficient
enough to made it advantageous to move back and forth between real space and k space with
the products (nonlinear terms) being evaluated in real space and the time-advancing (as well
as the linear terms) being computed in k space. The computational requirements for the
spectral codes versus psendo speciral codes goes as n? versus n In n where n is the total
number of modes simulated. This difference approaches a very significant level rather
rapidly. Unfortanately, since we are interested in the flow m k space which intrinsically
requires calculation of the convolution, we are generally unable to benefit from pseuco
spectral codes except as 2 check of the spectzal method.

The systems explored here are extremely stiff systems. This means physically that
there are many different time scales simultaneously important in the problem.
Mathematically this implies that the Jacobiar is sparse. Computationally this means that
most simpler time (integrating) methods such as Runga-Kutta do not work well Even
simple predictor-corrector routines had trouble converging hence, the method used was one
specifically written for stff systems. The method employed is the Gear method in the
LSODE solver package. This package is an adaptive time stepping predictor-corrector
implementation of the Gear solver and is available to the public from retlib. With this
routine one is able to obtain results with a fixed time step while allowing the selver 1o nse a
variable time step. This is important for some post processing such as frequency analysis.

Typically we iry to choose a time step that gave approximately 10 points per eddy turnover
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time outputted which normally gives approximately 10 computational tme sieps per
outputted fime step.

The code itself is poriable enough to run on any machine with ANSE compatible
FORTRAN 77 or FORTRAN 90 and has been run on everything from a Macintosh I 10 a
Cray C-90. Most of the computation was parformed on 2 DEC station 5000-240, a Cray-2,
a Cray-YMP, and a Cray C-90 with some work done on & DEC station 3000-400 AXP (an
alpha box). The largest speciral simulations (51x51) were performed on the C-90 and ook
up to ten days of CPU time. Most of the FORTRAN post processing such as the frequency
spectrz analysis routines are run on the DEC station 5000. The final post processing (the
imaging) is performed mainty on Apple Macintosh computers. The time plots are made with
Katidagraph, the 3-D plots are made with Wingz, and the movies are made with NCSA

Image. The real space contour plots are created on the DEC station using NCAR graphics.

Below is a listing of the spectral code for the 2 field runs:

main program spec 2disnonlinfull jume & 1993 22:03:03
This version of the code is for the full two field version of
the dissipative trapped electron modes. To use it the full set
LSODE subroutines need to be conmpiled with this main code.
In this version the BxB nonlinearity is in the DEN eguation
and the pol. drift nonlinearity is in the PSI equation.
11Te change the maximum size of the kspace lomax and kymax mst
{1be changed in every parameter statment in which it appears.
set array Gimensions and take care of converting
from the array name to kx, ky name. declare all

aooooaNaononn

parameter (kxmax=10, kymax=10, koanl =2*Ioguax+l, kyml=2*kymax+1,
+ lomZ=lommeax+ 1, kyn@=kymax+1, nn=4* {loal *kymax+ loomax) .
+ kfxnax:}ocnax~l,kfyﬁax lymax-1)
¢ *** parameter statement for specout stu‘“************************
c This defines which modes have their full temporal history outputed
parameter {isav=l, induxl=loml-1, indyvl= -cy'xl 1, indxZ=kxml-~2,
+ indy2=kyml, indx3=loml, indyd=kymli-2,
+ 11‘;::1?4 kyml-2, indyd=kyml-2, indxI=koanan L+loanax/ 2,
: +kymant/2, indxb=iomd , indyb=kyml, indx7=loand ,
+ J:dy ,’:}{‘y;".‘zz ionan, irdxS=loam? - oma, indy S=lgym2 .
+ indx9=loarz+l, indyO=lomi+l, indxl0=kxa2+2, indyl0=ym2+2,
+ indxliskeanz2+2, indvll=lkm?2, indxl2=tm2, indyl2=kyml+2,
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i 3=bomrax+ dvkamax/ 2, indy13skymE, indxl4=kxm2,
=kymax+ L+lymase/ 2, indxl S=loonax: I+iomant/ 2, indy 1 S=lyml2+2,

1 Gl +2, indy 1 f=kymexs rkymax/2, indx17=loanax/2,
indyl7=kymax+ i+rkymes/ 2, indxiS=kmax+1, indv 18=kgymax+3,
indxd 9=ioxrast+ 1, indyle=kymar+4, indx20=koamax+1, indy2 O=kymax+5,
indx2l=lomax+ 1, indy2l=kymax+6, IndQ2=zkxmax+1, indy22=kymax+7,
indx23=lcanax+l, indy23=kymax+8, ind24=jomax+ 1, indy24=kymax+9,
indx2S=ioamax+ 1, indy2 3=kymax+10, indx26=lomax+1, indy26=kymax+11,
indw2Tziomaxt 1, indv2T=kymax+12, indx28=lomax+l, indy28=kymax+13,
N2 9=Yomax+ 1, indy29=kymax+14, indx3 O=lomax+1, indy30=kymax+15,
ind=3i=lomantl, indy l=kymax+16, ind=32=lomax+1, indy3z2=lgmax+l’,
indw33=lomnax+1, indy33=lgymaxc+18, indx3d=lomantl, indy34=-kymax+19,
indx3S=lomaxt 1, indy3b=kymax+20, indy36=kymax+1, indx3é=lommax+3,
indy3T=kymax+1, indx37=komax+4, indy38=lymax+l, Indx38=Jomax+5,
indy39=kymas+1, indx39=kxmax+§ , indy4O=kymanx+1, indxd0=lomax+7,
indyél:kymax+1,indx4l=kxmax+8,indyéZ:kymax+l,indxéZ:kxmax+9,
indydi=kymax+1, indwd3=loamex+10, indy4d=kymax+l, indxdd=lomax+1l,
indyéS:kymax+1,indx45=kxmax+12,indyéG:kyan+l,indx46:kxmax+l3,
indyd7=kymax+1, indxd7=lomax+14, indy48=kymax+1, indxd 8=loanax+15,
indy 4 9=loynas+ 1, indxd 9=jounax+16, indy30=lymax+1, indx50=koamax+17,
indySl=kymax+1, indx51=lomax+18, indy52=kymax+1, indx52=oamax+13,
indyS3=kymax+1, indx53=lomax+20}

O T T T T T N S A A

c ‘The complex variable declarations

complex psi{kmt, kyml), den{jowel, kymly, £lowpx (kfxmax) ,

£lowpy (kfymax) ,
flowpxl(kfxmax),flowpxn(kfxmax),flowpyl(kfymax},flowpyn(kfymax}.
flowexl(kfxmax),flowexn(kfxmax},floweyl(kfymax},floweyn{kfymax}.
flowex (kfxmax), flowey (kfvmax) , enflowx (kfxamax}, enflowy (kfymax),
ennf lwy (kfymax) , enifiwy (kfymax} , ennflwx (kfxmax} , enl £wx (kfxmax},
eneflows (kfxmax) , eneflowy (kfymax} , exmeflwy (kfymax) ,

enleflwy (kfymax) , ermef Iwx (kfxmax} , enleflwx (kfxmax)

complex specl(30000), spec2 (30000}, spec3 (30000}, specd {30000},
+spe55(30000},specS(BOODO),spec7(30000),spec8(30000),specQ(BDDDD),
+8pacl0(30060), specli {30000, specl2 (30000), specl3(30000),

+spactd (3G000), specls (30000), specl6 (30000}, specl7(3006060),
+specl8(30000),spec19(30000),spe520(30000),speczl(BODDO),

+5pac22 (30000), spec23 (30000), spac24 (30000}, spec25(30000),
+spe026(30000),spec27(30000},spec28(30090),spec29(39000),
+8pec31(30000), spec32 (30000}, spac33 (30000}, spec34 {30000},
+spec35(30000),spec36(30000),spec37(30000),spec38(30000),
+spec39(30000),spec30(30000),specéG(SOOOG),specél{BOOOO),
+spec42(30000),spec43{30000J,spec44{30000),spec45(30000),

+5pecdt (30060), specd7 {30000) , specdB(30000), specd9(30000),

+5pach (30000) , spec51 (30000}, spec52 (30000) , spec53 (300060}

R

o The real variable declaraticns

real kmorm, kynorm, ekkold (loml, kymt ), Le, 1p, Tecut, lemid, Ipout,
+ ipmid, ratio2, edenold{Joani, kyml), nue, emass, dfirst, rhos

o] The 3 common block declarations

common, /parms/
» vi,gamal, gamazZ, epsi, ie, 1p, kxg, kyg, lomorm, kynorm, kxs, kys,

onon

+
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Tt , WrS, &, at, tol, ek, gamk, flux, ncl, ratio, psil, d, dmid, dout, loc,
init, flreal, flima, ekkold, emkold, £lexold, flowex, flowey  gamal,
flowex]l, flowexn, floweyl, flowayn, lpmid, lpout, lemid, leout, phase,
£ipxold, £flowpx, flowgy, flowesxl, fiowpa, flowpyl, edenold, mue,
amp, £lowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, enass,
emnflwy, enlflwy, ennf twx, enlflwx, eneflowx, enefliowy, dfirst, rhes,
ermeflwy, enleflwy, enneflwx, enleflwx, pulhgs, kopul, kypul,
ratioZ, kbreak

common farrays/

pai,den

common /arrdim/

nt,ntstep, pesu

integer to{15),ti(15}),timer{i5)
dimension the plot variables and then open all the
devices used for output or input including unit 1 which
is the cray unit for the screen

real time{10000),ploti(210000),plot2(10000),plot3 (10000}
call link({"unitl={terminal}//*®)
open(4, file="nonindat ', status='unknown’}
open (10, £ile='nonoutdat ', status="'unknown' ,raclz=5090}
open(?,file:‘nondat',status:’unknown',recl:SOOO}
open(S,file:‘nonpsidat',status:'unknown‘,recl=5008}
open{9, file='nonrrordat ', status="unknown')
open(1l, file='nonspecp', status='unknown ', recl=15000)
open {75, file="nonspecn’, statuss ‘unkmown ', recl=15000)
open{12, file="nenflowe', status='unknown',reci=10000)
open {13, file='noniflowe’,statuss'unknown', recl=10000)
openi{ld, file="'nongspkek', status='unknown')
open{lS,file:‘nonflowp‘,status:'unknownﬁ,recl:lDOOO)
open(l6,file=‘noniflowp',status:’unknown',recl:lOGOO)

open(lT,file:'nonensdat’,status:'unknown’,recl:SOOO)
open (18, file="'nommdat ', status=‘unknown', recl=5000)
open(lQ,file:'nondendat',status:'unknown’,recl:SOOD)

open {21, file='specoutl’, status="unknown')
open{22, file="'specout2’, status=‘unknown' )
openi{23,file='specoutd’, status=unknown')
open (24, file="specoutd ', status="unknown' )
open (25, file="specout’’, status="unknown'}
open (26, file="'specout *, status='unknown’ }
open{27, file='specout’ ', stabus= ‘unknown* )
open (28, file='spaecout8’, status= unknown’}
open (29, file='spacout ', status="unknown';
open (3¢, file='specoutll’, status=unknown ')
open (31, file="'specoutll’, status="unknown")
open{32, file=’specoutl2’, statuss='unknown')
open (33, file='spacoutil’, status='unknown'}
open (34, filez'specoutld’, status="unknown' )
cpen (35, file="specoutls’, status="unknown’ )
open (36, file='spacoutls’, stakbus='unknown’ |
open{37, file='specoutl’’, status="unknown "}
open (38, file='specoutls’, status="unknown'}
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open(39,file:’specoutlg’,status:'unknown’)
open (40, £iles 'specout2l’, status="unknown” }
open{4l, file="spacout2l’, status= "umknown’ )
open{42, file='specout2’, status="unimown "}
open (43, file='specout23’, statuss="uwmown’
apen{44, file="'specout24’, status="'unknown')
open {45, file='specout2’’, status="unknown ')
open {46, file="specout26’, status="unknown')
open(47, file="'specout2?’, status="unknown '}
open (48, £ile='specout23’, status='unknown')
open (49, file='specout2s’, status='unknown')
open(50, file='specout30’, statuss= unknown')
open (51, file='specout3l', status="unknows:')
cpen{52, file='specout32', status="unknown')
open{53, file="'specout33 ', status="'unrknown')
open (54, files ' specout34’, status='urknown '}
open (55, file='spacout3s’, status= "unknown' }
open (56, £iles'specout36’, status="unknown'}
open({57, file=’gpecout37’, status='unknown' }
open (58, file='specout38’, statuss= "unkacwn®
open (59, file="'specout3’, status="unknown "}
open {50, file="'specout40', status= "unknown '}
open{61, file='specout4l’, status='wmknown')
open (62, file='specoutd? ', status= " unknown ')
open (63, file="'specout43 ', status="unknown')
open{G4, file='specoutdd’, status="'unknown')
open (63, file='gpecoutd3’, status= ‘unknown' )
open {66, file=’specoutdf’ , status='unknown'}
open {67, file="'gspecoutd7 ', status="'unknown'}
open (68, file="'specoutd8’ , status="unknown'}
open (69, file="'specout4?d’, status="unknown ')
open {70, file='specout 30, status=unknown’ )
open(71i, file='specout5l’, status="wmknown’ }
open{72, file='specout 32, status="unknown')
open (73, file="'specout53 ', status=‘unknown')
open {74, file="'gamaout ', status="unknown ', recl=5000)}

open (20, files'restaxt')

close(20)

initialize

ierr=izchgtim(to)

The subroutine initial sets up and initializes the
and reads in the values of the setable parameters

call initial
This is the begining of the main locp in which the

occurs. Afrer the actual time stepping roubine is
timead) the varicus dianstic and printing routines
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various arravs

timesteping
calied (in
are called.

They are cailed at varying intervals. The intervals are

determinad by the varizbles mwrt and nwrs.

¢ time step

<

do 20 i=i,ntstep
ncl=1i
mid=ntstep/2
fin=ntstep

solve ode‘s doing the actual time step integrations
call timead

either save or don't depending on the value of isav
the psi and den arrays at each (or some} tLime step
if(isav .ne. l)then
call writdat
slgeif{{isav .eg. 1) .and.({ncl .eqg. O}.ox.
(mod{ncl, 10*nwrt) .eg. 0)3ithen
call writdat
endif
call writinit
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¢ write the output complex timeseries for a selection of k space modes

specl (i) =psi(indxl, indyl}

spec2 (i}=psi{ind2, indy2)

spec3 (i}=psi {indx3, indy3)

specd (1t=psi{indx4, indyd)

spech (i} =psi (indx5, indyS)

spech (i) =psi (indx6, indy6)

spec? (i)=psi (indx7, indy7)

specB{i)=psi (indx8, indy8)

specd{i)=psi (indx9, indv?)

specl{i)=psi{indxi0, indyi(}
specll(i)=psi{indxll, indvll}
specl2 (i) =psi(indx12, indyl2}
speci3 {i)=psi{indx13, indyl3}
specis (1) =psil{indx14, incdyld)}
speclis{i)=psi (indx15, indy1S)
speclt (i) =psi{indxls, indyl6}
specl7 (iY=psi {(indx17, indv17)
specl8{i)=psi{indxl8, indy18)
specl? (i} =psi(indxi%, indy1l?)
spec20 (1} =psi{indx20, indy20)
spec2l{il=psi (ind21, indy21)
spec22{il=psi (Indx22, indy22)
spec23{i)=psi (indx23, indy23)
spec24 (i)=psi {indx24, indy24)
spec25 (1) =psl{indx25, indy23)}
spec2b (1) =psi {ind26, indy26)
spec27 (1) =psi(indx27, indy27)
spec28{i)=psi (indx28, i
spec2f{il=psi (indx2?
spec0{i)=psi (inda30, indy30}
spec3l{il=psi{ind=31, indy31:}
specl32(i)=psi{indx32, indy32)
spec3d (i) =psi{inda33, indv33;
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spec3d (ii=psl (indxd4, indy34}
spec36 (i)=psi{indx36, indy36)}
spec37 (i)=psi(indx37, indv37}
spec38 (i) =psi{indx38, indy38}
spec3S(i)=psi{indx3%9, indy3%}
spec3sS (1) =pst (indx3%, indy35)
specdl (1) =psi{indxd0, indvdl}
specdl (1)=psi{indx4l, indvdl}
specs2 (i)=psi{indxd2, indy42)}
specé3{i)=psi{indx43, inds43}
specdd (1)=psi{indx44, indv4s}
spectds (i) =psi{indx45, inds45}
specsdb (1) =psi{indx46, indv46}
specd? (1) =psi {indxd7, indvr4 T}
specdB{i)=psi{indx48, indy48}
specd9 (i) =psi{indx49, indy4%}
spec50 (i) =psi{indxS0, indy50}
spec5l {i)=psi{indx51, indy51}
spec52 (1) =psi {indx52, indy52}
spech3 (1) =psi{indx53, indy53)

nl=i

etal=d
ruel=nue
epsilizepsi

Gt l=dt
ntstepl=ntstep

call spwrite(speci,spec?, spec3, specd, specs, spach,
spec?, spect, spec?, specll, specll, specll, specll,

specld, specls, specl6, specl?, specl8, specly, spec2(,
spec2l, speci?, spec23, spec24, specs, spec2b, specl’,
spec28, spec2?, spec3(, specll, spec3?, specl3, spac3d,
spec3’, specls, spec3’?, speclt, spec3?, specdl, specdl,
specé?, specdl, specds, specds, specdt, specd’, spacds,

spec4d, spec50, specSl, specs2, spech3, nl, etal, nuel, epsil,

dtl, ntatepl)

get energy's and mean sg flux, growth rates

call energy

every nwrt steps write to the plot
various spectum output arrays

if (modinel, mert) .eg. ) then

write to print diagnostics arrays

time{i}=t
plot2{il=ek

write to spectum ocutput arrays

call writeit

arravs and to
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20

c
c 100
[

[
c 200
c

(s ey IS

call writesp
endif

call writear
call kflowe
call kflowp

continue

finish up
ierr=izchgtim(ti)
1E(ti (13} .le. 0} goto 100
do 200 i=1,13
timer (iy=ti{i)-to(i)}
overlap=real {timer {1} }/real (timer(13})}

write{6,*) (timer(i},i=1,13)
write{6, *) "overiap=",overlap
write{10,*) (timer{i},i=1,13}
write (10, ¥} *overlap=s", overlap

call final

call plot(time,plotl,plor2,plot3)
write{6, *) "program terminated normally*
stop .
end

write the a selection of flux and psi**2 and den**2 arrays every
owrs timesteps
call the flow diagnestic routines and write the results every
nwrs timesteps
write(6,*) ("i=", i)

if((nel .eg. 1) .or. {(mod(ncl,nwrs).eq.0}}then

call writksp

call storear

call writflwe

call writflwp
endif

c****'k**********ir****i.'******‘k‘k*****>‘.‘*i************‘k***********

I

This subroutine saves the mode histories for
it aiso calculates the total growth rates for scme modes

a

subroutrine spwrite(specl, spec?, specl, specd, spech, spech,
spec?, spec8, spec?, specld, specll, specl2, specll,

specli, specls, specls, specl’, specl8, specl?, spec2C,
spec?l, spec22, spec2l, speck4, specl’, speclb, speci’,
speczi, s0ec2%, specil, specll, specl3Z, spec3l, specid,
spec3s, spec36, spec3’, spec3 8, spacl’y, specdl, specdl,
specd?, specdl, specdd, specds, spaecdb, specd’, specds,
specd?, specS0, specSl, specss, specsS3, n, eta, e, epsi,

dt ., ntstep)

selected modes
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parameter { komax=18, kymax=10, lomi=2*lomax+1, kymi=2*kymax+1,
+ loanZ=iommast 1, kil sRkymiax+ b, nn=4r ool * ymanc Joanact
kfxmax=ksanax-1, kfymax=kymax-1}

+

complex specl(30000),spec2 (30600}, spec3 (30000}, specd (30000},
+ spech (30000), spect (30000) , spac7 (30000) , spec8 {30000},
+ 5pec9{3000C), specil(30000), specll{30000) ., speci2 (300007,
+ specl3{30000), specld (30000}, speciS {30000}, specl6 (33000},
+ specl’?(30000),1c,
+spectf (30000) , speclS (30000, spec20({30000) , spec2i (300007},
+spec22 (30000), spec23 (30000), spec24 (300600) , spec25 {30000},
+8pec26 (30000) , spec2 7 (30000), spac28 (30000) , spec28 {30000},
+8pec3l (30000), spec32 (30000}, spac33 (30000) , spec34 (30000},
+502035 {30000) , spec36 (30000}, spec37 (30000) , spec38{30000},
+50pec39 (30000}, spec30(20000) , specd({30000), specdl (30000),
+spacd (30000), specd3 (30000}, 8pecd4 (30000) , specd5 {30000},
+specdf (30000), specd?(30000) , specd8 (30000}, specd$ (30000},
+spec50 (30000), spec51 (30000}, spec52 (30000}, spec53 (30000}

real a,b,gama{30000,30)

I=11
write{(21,*)speci(i)
write{22,*}spec2 (i)
write (23, *)spec3 (i)
write(24,*tspecd (i)
write (25, *)spec5 (i)
write(26,*}spect (i)
write(27,*}specT (1)
write{28,*)speci(i)
write{29,*}spec?{i)
write{30,*)specli{i}
write {31, *)specll(i)
write{32,*)specl2 (i}
write{33, *)specl3(i}
write{34,*)specld{i}
write{35, *)specl5(i}
write{36,*)speclé (i}
write(37,*)speci7 (1}
write (38, *)speci8{i}
write(39,*)specidii)
write (40, *)spec20{1}
write (&1, *)specli{i}
write{42, *)spec22{i)
write(43,*}spec23{i)
write (44, *lspac24{i)
write (45, *)spec25{i)
write (46, *}spac26(i)
write {47, *)speciT (i}
write {48, *}spec28 (i)
write (42, *}specl2® (i)
write (80, *)spec30{i}
write {8, *spec3l (i}
write{52, *}spaeciZ (i}
write{53, *}spec33{i)
write{54, *ispeci4 (i)
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write(55, *)spec3s (i)
write (56, *) spec3b (i)
write(57,*lspec37 (i)
wrikte (58, *}spec3B8{i)
write{59, *}spec39 (i)
write (60, *)specdd (i)
write (61, *}specdi(i}
write(62,*)specd2{i}
write(63, *)specd3 {1}
write{64,*)spacdd (i)
write{65,*)specd5{i}
write!{66,*)specdb{i)
write{67,*)specs’ (1)
write!(68,*)specéB (i)
write {69, *)specdsii)
write (70, *)spec50{i)
write({71, *ispecSl{i}
write (72, *)spac52 (1)
write (73, *}spec33 (i)

if{n.eqg.ntsteplthen
ic={0.,1.}
a=sart {epsi) fmue
bea*eta
kyB=kym2 + kymax./ 2
ky9=kym2+1
ky10=kym2+2
ky18=kym2+2
kyl9=kym2+3
ky20=lkym2+4
oy 2l=kym2+5
Yv22=kyr2+6
ky23=kym2+7
ky24=kymZ+8
ky25=kym2+9
2 6=kym2+10
ky27=kym2+11
do 100 i=1,ntsten-2
gama (i, l}=real({{-a*(spec5(i)-2.*spec5{i+1i}
+specS(i+2))/dt**Z)—{h*kyS*ic*(specﬁ(i+2)wspec5(i))
F2.*dr) ) /specS (i1}
gama (1, 2)=real{ | {-a* (spec?{i}-2.*specd {i+1}
+spec9{i+2))/dt**Z)—(b*kyQ*iC*(spec9(i+2)—spec9(i}}
J2.*de) ) fepecd (i+1})
gama (i, 3)=real(((-a* (specl0{i)-2.*specll{i+l)
+spec10{i+2)}/ﬁt**2}-(b*kle*ic*(spech(i+2)-spec10(i))
/2.%36)) /speclCii+l))
gama (i, 4}=real {((-a*(speclB{i)-2.*specl8(i+1}
+spec18(i+2})/dt**z)-(b*kle*ic*(speclB(i+2)vspECIS(i))
/2.*%dL) ) /speclB{i+i})
gamai{i,S)=real{{{-a*{specid(il-2.*specld{is+1}
+5pecl9{it2) ) /anT*2) - (brkyl97ic* (specl? (1+2) ~specld (i)}
/2. *de) Y/ specl9(i+1)}
gama (1, 6)=real {{{-a* (spec20{i)-2.*spec2( (i+1)
+3pec20(1+2) ) /at**2) - (b*ky20*ic* (specl0{i+2) -spec2C{i)}
/2.%at) ) /epec20 (1+1))
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gama (i, 7)=real {{{-a* (spec2l{i)-2.*spec2i (i+l)
+spec2l{it?) ) /at**2) - (b*ky21l*ic* {spec2l{i+2)-spec2i(i)}
/2.*%dt) i /specZl (i+1))

gama (i, 8=real ({{-a* {3pec22{i}-2.*3pecll{i+1}
+8pec22 (1+2)) /de**2) - (b*ky22*ic* (3pecl2 (1+2) -specll (1))
F2.%A0) ) Fepec22{i+1))

gamz (i, 9)=real ({{-a* {spec23{i}-2.*spec23{i+l)
+8pec23 (i+2}) ) /de**2) - (b*ky23*ic* (spec23 (i+2) -spec23 (1))
f2.*An) ) fapec?3 (i1}

gama (1, 10 =real { {{-a* (spec24 {1} -2. *spec24 {i+1)
+specd (1+2) ) /An**2) - (brky24*ic* (spec24 (i+2) -spec24 {(i})
/2.%88) ) fopec24 (1+1) )

gama (1L, 1l =xeal{{(-a* (spac25{1)-2.*spec25(i+1)
+spac23{i+2) ) /AE**2) ~{b¥ky25*1c* (spec25(1+2) ~spec25 (i} )
/2.*dr)) fspec25{i+l))

gama{i,12)=real{{{-a* |spec26(i}-2. *spec26{i+l)
+3pec26{i+2) }/aL**2 )~ (b*ky26*ic* (spec26({i+2) ~spec26 (i)}
/2.%80) ) /spec26{i+l))

gama (i, 13)=real{{{-a*{spec27(i)-2. *spaec27{i+1)}
+8pac2? (1+2) ) /3t>**2) - (brky27*ic* (spec27 (i+2) -spec27{(1})
f2.%73e) ) fepec2T (1+1))
continue
do 110 i=1,ntstep-2

write{74,*) {gama(i,j).,j=1,13)
continue

endif

return
end

c*************‘k**************'k***9!*ﬁ*i*********i**************
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subroutine initial

parameter (omax=10, kymax=10, loml =2*loaax+1, kyml=2*kymax+1,
YexmniZ-Yomnase+ b, kel =lgrmasct 5, im=4 ¥ (Joand *lymaset loarax ),
kfxmax=kxanax~1, kfymax=kymax-1)

complex psi(loanl, kvml), den{kanl, kyml) , £lowpx (kfxmax) ,

fiowpy (kfymax) ,

flowpxl (kfxmax}, £lowpsm {kfxamax) , flowpyl (kfymax) , Llowpyn (kfymax) ,
flowex] (kfxmax} , flowesar{kfxmax), floweyl (kfvmax} , £loweyn {kfymax},
flowex (kfxmax}, flowey (kfymax) , enflowd (kixmax) , enflowy (kfymax) ,
ennflwy (kfymax} , enlfiwy {kfymax) , ennflwx (kfxmax} , enl£lwx {(kfxmax] ,
eneflowx (kfxmax) , eneflowy (kfvmax) , enneflwy (kEymax) ,

enleflwy (kfymax) , ermef Iwx (kixnax) , enlef Twx (kfxmax)

real kxmorm, kynorm,ekkoldikal, kyml}, le, 1p, leout, lemid, Ipout,
1pmid, ratio?, edenold(kanl, kyml), nue, emass, dfirst, rhos

COMROn /Darms/
vl,gamal,gama2, epsi, 1e, 1p, kxg, kyyg, lomaorm, kynorm, kxs, kys,

nwrt, nwrs, £, dt, tol, ek, gamk, £1lux,ncl, ratic, psil, 4, dmid, douk, loc,
init, flreal, flima, ekkold, emkold, flexold, flowex, flowey, gamal,
flowexl, flowaxm, flowseyl, floweyn, lomid, lpout, lemid, lecut, phase,
flpxold, £lowpx, £flowpy, flowpxl, £lowpxn, flowpyl, edenold, nue,

amp, flowpyn, en, gamen, a4, et, akold, enold, enflowx, enflowy, emass,

154

+ ennflwy, enlfliwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, rhes,

+ enneflwy, enleflwy, enneflw, enleflwx
common farrays/

+ psi,den
common /arrdim/

+ nt,ntstep, pasu

character*24¢ Zdate
external fdate

el set quantities

t=0.
ekold=0.
enold=0.

write {10, *)fdatel{}

C read in parameters

call readit

c initial perturbation

calil pert

¢ write initial perturbation

call energy

write(1l0,*) *ncl ¢ ek en ed et flux phase gawk gamen”

write{6,*) " ncl t ek en ed et flux phase gamk gamen"

write(1l,*) "ekk(0,0) ekk{0,1) ekk(2} ekk(3}) ekik(4) ekk(1,D}

+ ekk{2) ekk{3) ekk{4) ekk{3,3)"
write(i2,300) (m,m=1,kfxmax}, (m, =1, kiymax)
write(13,400) (m,m=1,kfxmax}, (m,m=1, kfymax}
write(15,301) (mm=1, kixmax}, {m m=1, kbymax)
write(16,401) (m,m=1,kfxmax}, {(m,m=1, kfymax}

call writdat
call writeit
call writear
call writksp
call storear

c
300 format (3 (' flowerx',12,2x),3{* flowery ', 1i2,2x)}
400 format (3(' floweix',12,2x},3{ floweiy',12,2x)}
301 format (3(' flowprx',1i2,2x),3{ 'flowpry',12,2x)}
401 format (3 ('enflwpx',12,2x}), 3 ('enflowpy', 12,2x)}
500 format (a8, 3x, aB}

return
end

c‘k*****9!1\'**********'k'k'k***é*ir*i*‘k"k*******‘k********k**********

subroutine readit

parameter {konax=10, kymax=10, loanl=2*lomax+1, kyml=2*kymax+1,
+ JomZ2=kmax+l, kym2=kymax+1, nm=4* {koanl *loymasclommax) ,
+ kfxmax=lkoanax-1, kfymax=kymax-1)

compiex psi{lkand, kymi), den(kanl, kyml}, flowpx (kfxmax}),
+ flowpoy {(kiyvmax),

+ Flowpxl (kfxmax) , £lowpxn (kfxmax) , flowpyl (kfymax) , fLowpyn (kfymax) ,
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Flowexl (kfxmax) , Tlowexm (kfxmax) , floweyl (kfyman}  floweyn {(xfymax},
Flowex (kfxmax) , flowey (kfymax} , enflowsx (kfxmax) , enflowy (kfymax),
ernflwy (kfvmax), enlflwy (kfvmax) , ernflwx {kixmax}, enlilwx{kfxnax},
eneflowx {kfxmax) , eneflowy (kfymax} , ennef lwy (kfymax) ,

enleflwy (kfymax) , ennef bwx (kixmax) , enlef Iwx (kfxmax)

real lomorm, kynorm, ekkold{ksmi, kymi}, le, ip, lecut, lemid, lpout,
Ipmid, ratio2, edencld{koml, kymd) ,rue, emass, dfirst, rhos

COMENOTl /Parms/

vl,gamal, gama?, epsi, le, 1p, kxg, kvg, komorm, kynorm, kxs, ky's,

nwrt, mwrs, t, a8, tol, ek, gamk, flux, ncl, ratic, psif, d, duid, dout, loc,
init, £lreal, flima, ekkold, emkold, flexold, flowex, flowey, gamal,
flowexl, flowexn, flowevl, floweyn, Ipmid, lpout, lemid, lecut, phase,
£lpxold, flowox, flowpy, flowpxl, flowpxn, flowpyl, edenold, nue,

amp, £lowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
ennflwy, enlflwy, ennflwx, enlflwx, eneflowx, eneflowy,dfirst, rhos,
enneflwy, enlefiwy, ermeflwx, enleflvwx, pulhgt, kxpul, kypul,

raticz, kbreak

common Jarrays/

psi,den

common /arrdim/

nt  ntstep, pesu

set defaults

choose whether vou want to enter the data parameters
or use the cnes in the code

integer ichoice

write {(6,*) "type 2 for your file indat to¢ enter the data,"
write {6,*) "type 1 if you want to enter the data, type o "
write {6,*) "if you want to use the values in the code®
read {5,*} ichoice

if {ichoice .eg. Olthen
imput from within code the various data parameters

data &t/0.01/,ntstep/100/, nwxt/ 10/, nwrs/100/, tol/0. 001/
data v1/1./,gamal/1./,.gama2/1./,epsi/ . 001/, kxg/1l/, kyg/1l/
data amp/2./,kxs/1/ . kys/1/,ratio/1l./,4/1./,dout /0. 7/, o/l /
data initc/2/,psi0/.02/,fireal/. 1/, flina/ 1/, loc/1/

data mid/0./,gamal/l./, kmomm/l. /, kynorm/1./, 1e/1./

data leout/1./,lemid/1./, lpout/1./, peddrsL./, Ip/l./

data pulhgt/16./, kopul/d/ kypul/4/, kbreak/4/, ratic2/2./
data emass/1./,dfirst/0./, rhos/ .01/

elseif (ichoice .eg. 1)then
or interactively input the various data parameters

write {6,*) 'Yenter the values comma delimited”

write {6,*) vdt,ntstep,nwrt,nwrs,tol, kxnorm, kynorn, loc”
read {5,*; dt,ntstep,nwri,nwrs,tol,koomorm, kynorm, 1oc
write (6,*%) "vi,gamal,gama2,gamal,epsi,d,dout, kxg, kyg®
read (5,%) vi,gamal,gama?,gamal,epsi,d,dout, kxg, kg

write (6,*) “le,lemid, lecut,ip, Ipmid, lpout®

read (5,*) le,lemid, leout, lp, lpmid, lpout

write (6,*} ‘ampimult of tol to get atcl),dmid,kxs, kys,
ratio(init slope),nue,emass,dfirst™

read (5,%*) amp,dmid,ixs,kvs,ratio,nue, emass, dfirst
write (6,*) "init,psit,flreal, flima”

read (5,*) init,psi0, fireal,flima

write {(6,*} vpulhgt,iopul,kypul,kbreak, ratio?, rhos”
read (3,*} pulhgt,loqoul, kvpul, kxbreak, ratio2, rhos

else

or from input file (device 4)

read {4,*)dt,ncstep,nwrt, nwrs, tol, omorm, kynorm, 1oc
read {4,*)vl,gamal,gana2,gama3, epsi,d, dout,log, kyg
read {4,*)le,lemid, lecut, ip, Ipmid, Lpout

read {¢&,*)amp,dmid, kxs, kys, ratic,nue, emass, dfirst
read (4,*)init,psiQ, flreal, flima

read (4,*)pulhgt,kxpul, kypul, kbreak, ratio2, rhos

endif
namelist input

namelist /runp/ do,ntstep,nwr:,wrs, tol,kmorm, kynorm, loc
namelist /physp/ vl,gamal,gamaZ2,gama3,epsi,d, dout, kxg, kvg
namelist /physp2/ le, lemid, leout, Ip, lpmid, lpout

namelist /intilp/ amp,dwid, kxs,kys,ratic,nue, emass,dfirst
namelist /pertin/ init,psil, flreal, flima

namelist /pulse/ pulhgt,kxpal, kypul, kbreak, ratio2, thos

write(6, ) '=size by ysize ¢ koant, * by ', kymi
write (6, runp)

write (6,phvsp)

write (6,physp2)

wrige (6, intilp)

write (6,pertin)

write (§,pulse)

write {10,*)'xsize by ysize *,loal,' by ', kymd
write (180, unp)

write {10,phvsp)

write (10,physp2)

write (10, intilp}

write (10,pertin)

write (10,pulse)

refurm
end
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subroutine endit(ifail,cout! .

called if there is an error in the intergrater
see the integrater documentation for specific meaning

parameter {kxmax=10, kymax=10, oml=2*lomax+]1, kyml=2*kymax+1,
lom2=icanax+1, kym@=kymax+1, m=4* (Joml *kymexckxmax} ,

Exmax=komax- 1, kfymax=kymax-1)
complex psi(loml, kymi), den(loanl, kyml}, flowpx (kfxmax),
flowpy (kfvmax),
flowpxl (kExmax) , flowpxmn (kfxmax) , £lowpyl (kfymax) , £lowpyn (kfymax) ,
flowexl {kfxmax} , £lowesmn (kfxnax) , filoweyl (kfymax}, floweyn (kEvmax}) ,
fiowex (kfxmax) , flowey {kfymax) , enflowx (kfxmax) , enflowy (kfymax;,
ermf lwy (kfymax) , eniflwy (kfymax} , ennflwx (kbamax) , enlflwx (kfxmax),
eneflowx (kfxmax) , eneflowy (kfymax) , epneflwy (kfymax}),
enleflwy (kfymax) , enmef Twx (kfxmax) , enleflwx {kixmax)
real kxnorm, kynorm, ekkold (kxml, kyml), 1e, I1p, leout, lemid, 1pout,
1pmid, ratio2, edenclid
COmmen [/parms/
vl,gamal, gamaz, epsi, 1e, 1p, kxg, kyg, lomorm, kynorm, kxs, kys,
nwrt , nwes, £, dt, tol, ek, gamk, £lux, ncl, ratio, psi0, 4, dmid, deut, loc,
init, flreal, flima, ekkold, emkold, £lexold, flowex, flowey,gama3,
flowex] , flowexn, floweyl, floweyn, lpmid, lpout, lemid, leout, phase,
£lpxold, flowms, fiowpy, flowpxl, flowpnm, flowpyl, edenold, nue,
amp, flowpyn, en, gamen, ed, et, ekeld, enold, enfiowx, enflowy, emass,
ermflwy, enlflwy, ennf b, enlflwx, eneflowx, eneflowy, dfixrst, rhos,
enneflwy, enleflwy, enneflvx, enleflwx
CORmOn /arrays/
psi,den
comnon. /arrdim/
nt ,ntstep, pesu
write(10,*) ifail,cout
write{6,*} ifail,cout

format {1, 'err~r*',2x, 'ifail= ', 16, ' cout{ll= ',i6)
write(§,*) "d~~-- arror termination®

stop
end

C*‘k‘:\‘*********-k***!\'**‘k***‘k'k*k7\'******************************

subroutine writeit

parameter {lomax=10, kymax=10, Joml=2*lomax+1, kyml=2*kymax+1,
JomZ=komanes 1, ym2=kymant+ 1, in= 4 (Joanl * kymax+ ome ) ,
kfxmax=kmax-1, kiymax=kymax-1}

parameter {iscreen=1}

complex psi(kxmi,kyml),denloml, kyml), £lowpx (kfxnax},

flowgy (kfymax},

£lowpxl (kfxmax}, £lowpxn (kfxmax) , £lowpy L {(kfymax} , £lowpyn (kivmas) ,
flowex] (kfxmax), flowexn {kfrxmax) , floweyl (kfymax; , floweyn{kfymax},
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flowex {kfxmax) , flowey { kfymax}, enflowsx (kfxmax} , enflowy (kfymax) ,
ennf lwy {kfymax) , enlflwy (kfvmax) , ennd lwx (kixmax}, enlflwx {(kixmax) ,
enefliowx (kixmax) , eneflowy (kiymax} , enneflwy (kiymax) ,
enlef luy {kfvmax) , anneflwe (kfxmax) , enleflwx (kixmax)
real Yomorm, kynorm, ekkold (keaml, kyml) , le, 1p, lecut, lemid, Ipout,
1pmid, ratio2, edencld{kxml, kyml } , nue, ewass, dfirst, rhos
common /parms/ ’
v1l,gamal,gamaz, epsi, le, 1p, kxg, kyg, kxnorm, kynorm, kxs, kys,
nwrt, awrs, &, dt, tol, ek, gank, £lux, nel, ratio,psid, &, dmid, dout, loc,
init, fireal, flima, ekkold, emkold, flexold, flowex, flowey, gamal,
flowexl, flowem, flowevl, flowayn, Ipmid, Ipout, lemid, lecut, phase,
flpxeld, flowpx, flowpy, flowpxl, flowpxn, flowpyl, edenold, nue,
anp, flowpyn, en, gamen, ed, et, ekold, enold, enflowx, enf lowy, emass,
emnfiwy, enlflwy, ermflwx, enl flwx, eneflowx, eneflowy , dfirst, rhos,
ermeflwy, enleflwy, enmeflwx, enleflwx
common /Aarrays/
psi,den
common /arrdim/
nt,ntstep, pesu
write{l10,200) ncl,t,ek,en, ed, et, flux, phase, gamk, gamen
if(iscreen .ne. 1ljthen
writel6,200) ncl,t,ek,en,ed, et, flux, phase, gamk, gamen
endif

format (1x,16,9(1x,el2.4))
return
end
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subroutine writesp

parameter (lomax=10, kymax=10, ool =2*Jomax+1, kyml=2*kymax+1,

ko2 =koanax+ 1, kymZ=kymax+1, nn=4* (koml * kymesc+komax) ,
kixmax=kamax-1, kiymax=kymax-1}

conmplex psi{kanl, kyml), denUoml, kyml) , £lowpx (kfsmax) ,

flowpy (kfymax},

Flowoxl (kfxmax) , flowpxn (kfxamax) , flowpyl (kfymax) , flowpyn (kfymax},
flowexl (kfxmax), flowesxm (kfxmax) , floweyl (kfymax) , floweyn (kfymax),
flowex (kfxmax) , flowey {kfymax) , enflowx{kfxmax) , enfilowy {kfymax),
enmflwy (kfymax) , enlflwy (kfvrax) , emnfIwx (kxmax) , enl fIwx (kfxmax) ,
eneflowx{kfxmax) , eneflowy (kiyvmax) , enneflwy (Kiyvmax),

enleflwy (kfymax), ennef lwx (kfxmax ) , enteflwx (kixmax}

real lomorm, kynorm, ekkold (Joand, kymi), le, Ip, leout, lemid, lpout,
1pmid, ratio?, edencld {loml, kyml )}, mue, emass, dfirst, rhos

CONmOn  /paxms/

vl,gamal,gama2, epsi, le, Ip, kxg, kyg, komorm, kynorm, kxs, kys,

nwrt, nwrs, t,dt, tol, ek, gamk, £1ux, ncl, ratio, psil, 4, dmid, dout, loc,
init, flreal, flima, ekkold, emkold, flexcid, flowex, flowey, gamas,
flowexl, fiowexn, floweyl, floweyn, lpmid, ipout, lemid, lecut , phase,
fipxald, flowpx, £lowpy, £lowpxl, £lowpsm, flowpyl, edenold, me,

amp, flowpyt, en, gamen, ed, e, ekold, encld, enflowx, enflowy, emass,
amnf 1wy, enl flwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
ermeflwy, enleflwy, enneflwx, enleflwx

common /arrays/

psi, den

common /arrdim/

nt,ntstep, pesu
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real ekk{konl,kymll, eddl(}oml,m)  nphi (loal, kyml)

¢ calculate the ansro- 0 2L el

10
20

+ b

4

200

do 20 =1, kyml
do 10 i=1,kand
wk=ksmorm* [ 1-koan2 )
yk=kynorn* {j-kym2}
ak=sqgri (xk**2+yk**2)
ekicl{i,J)=psili,3)*condglpsi{i, 3}1)*2,
edd(i,3)=den(i, ) *congg(den{i, ) )*2.
nphif{i,j)=aimagiak*dan. ., ;s *conjgipsi{i, 31))*2.
continue
continue
write(ll,*) {ekk{lkw2,i), i=kym2+1l, kyml}, {ekk{i, kym2},
i=lxroZ+1, koanl}, ekk o2+ 2, kym2+2) , ekk (lom2+ 3, kym2+3) ,
ekk (koand, kyml}, (nphi (kxa2, 3) , j=iom2+1, kd ),
(nphi (i, kym2}, i=koan2+1, kxml}
write(75,*) (edd(lomz, ), j=kym2+1, kymi}, (edd (i, kymd),
iloaa+l, loanl) , edd (Joan2+ 2, kym2+2) , edd {loa2+3, kym2+3),
edd (ki , kymt)

format: { 50{(el3.6,1x) }
returm
end

c‘k******irt***************t***********************‘k*********
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subroutine writear

parameter {loman=10, kymax=10, keml=2*lomax+l, kyml=2*kymax+1,
kxm2=lomasl, kym2=lkoymast+ 1, nn=4* {doml Moymasrkomax),
kfxmax=loanax-1, kiymax=kymax-1)

complex psi(kanl, kyml) den (lomnl, kyml} , flowpx (kfxmax),

flowpy (kfymax),

flowpxl (kExmax), £lowpxn (kfxmax) , flowpyl (kfymax) , £lowpyn (kfymax) .
flowexl (kSxmax) , flowexn (kfxmax}, floweyl (kfymax} , £ loweyn {kfymax},
flowex (kfxmnax) , flowev (kfymax}, enflows (kfxmax) , enflowy (kfymax) ,
enmi vy {(kfymas) , enl flwy (kfymax) , ennflwx (kfxmax) , enlfiwx (Kixmax} .
eneflowx (kfxmax) , eneflowy (kfymax) , emneflwy (kfymax) ,

enleflwy (kfymax) , ermeflwx (kixmax) , enleflwx{kfxmax)

real lomorm, kynorm, ekkold{lkoml, kyml}, le, Ip, leout, lemid, lpout,
lpmid, ratio2, edenold (koant, kyml) ,nue, emass, dfirst, rhos

COmEncIl /parms/

vl, gamal,gama2, epsi, le, 1p, kxg, kvg, lomorm, kynorm, kxs, kvs,

wrt, nwrs, £, do, tol, ek, gamk, £1lux, ncl, ratio, psid, d, dmid, dout, log,
init, flreal, flima, ekikold, emkold, £lexold, flowex, flowey, gamal,
flowexl, flowexn, £loweyl, floweyn, Ipmid, lpout, Lemid, lecut, phase,
filpxold, flowpx, £lowpy, flowpxl, £lowpm, £lowpy i, edenold, nue,

amp, £lowpvn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, cmass,
ennflwy, enlflwy, ennflwx, enlflvx, eneflows, eneflowy, dfirst, rhos,
enneflwy, enlefliwy, enneflwx, enlefiw

CONEMOL: /arravs/

psi,den

comon /arrdim/

nt , ntstep, pesu
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real ekk{lml,kvml), eden {koad, kyml)

¢ calculate the energy in each mode

10
20

do 20 d=1,kml
do 10 i=1,kanl

k=kxnorm* {1-joa2 )
vk=kynorm* {j-kym}
ekk(i,3y=psi(i,j)*conigipsi{i,i))*2.+ekkold (1,3}
ekkoid (i, jr=ekk{i, 3}
eden{i, )=den{i,j)*conigi{den(i, )} *2.+edencid{i, 3}
edenold(i,jl=eden(i, )

continue
contine
returmn
end

C***********************t**‘k‘k**9."rxt*********9{9{*************

20

+ +
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subroutine writdat

paramater (lomax=10, kymax=10, kanl=2*lomaerl, yml=2*kymax+1,

Ioxm2 =loanax+ 1, kym2=lymax+1, nn=4* {koank * kymax-+komax)
kfxmax=kxanax-1, kfymax=kymax-1)

complex psilloml, kyml), den(Jowl, koml} , £lowpx {kfxmax},

flowpy (kfymax),

Flowpxl (kfxmax) , flowpm (cfxmax ), flowpyl (kfymax) , £lowpyn (kfymax}),
Flowexl (kfxmax) , £lowexn (kSmax) , floweyl (kfymax) , floweyn (kfymax) .
flowex (kfxmax) , flowey (kfvmax) , enflowx (kfxmax} , enflowy {(kfymax},
ermf lwy {(kfyvmax) , enlflvy (kfymax}, ennflwe {(kfxmax) , enifIwx (kfxmax} ,
eneflowx {kfrxmax) , eneflowy (kiymax) ,enneflwy (kfymax),

enleflwy {kfvmax} , eoneflwx (kfxmax) , enlef lwc {kfxmax)

real komorm, kynorm, ekkold (Joand, kyml) , 1e, 1p, leout, lemid, Ipout,
1pmid, ratio2, edenold (kxaml, kymi) , nue, emass, dfirst, rhos

common, /parms/

vl,gamal,gama2, epsi, Le, 1p, kxg, kyg, kenorm, kynorm, kxs, ky's,
owrt,nwrs, t,dt, tol, ek, gamk, £1ux,ncl, ratio, psil, &, dmid, dout, Log,
init, fireal, flima, ekkold, emkold, £lexold, £lowex, flowey, gamal,
flowexl, flowexn, floweyl, floweyn, 1pmid, lpout, lemid, leout, phase,
£lp=oid, flowpx, flowpy, £lowpxl, flowpsm, flowpyl, edenold, nue,

arp, £ lowpyn, en, gamen, ed, et, ekold, enold, enfliowx, enflowy, emass,
ennflwy, enlflwy, ennflwx, enlilwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enneflvx, enlefiwx

common /arrays/

psi, den

comton /arrdinm/

nt,ntstep, pesu

do 20 j=1,kyml

write{7,*) {psi(i,d},i=1,kouml)
write{l18,*) (den{i, ), i=1,Jounl}

continue
write(7,*}
write{7,*)
write{l8,*)



161
write (18, *)
retursl
end
C**********************-}:****>‘:*****f:'kk**********************
c subroutine writinit
c use main
c open (20, file= restart’'}
c do 20 i=1,kanl
c write(20,*) {psi(i.J), =1, kyml}
¢ 20 continue
ol close(20)
c return
c end
C*******************t******1\‘*‘k'k'k'k*'5.’*1:**********************
subroutine storear
parameter {omax=10, kymax=10, ksl =2*lomax+1, kyml=2*kymax+1,
+ oaw=kommaxsl, kym2=kymax+1, nn=4* (loand *kymaxerkxmax) ,
+ kfsmax=loaax-1, kfymax=Xyma-1}
complex psi(kxml, kyml), den {load, kyml) , £1lowpx (kfxmax),
£lowpy {kfymax) ,
flowpxl (kfxaax) , flowpsxn (kfxmax) , flowpyl (kfymax) , £loweyn (kfymax),
flowexl (kfxmasx) , Elowexn (kfxmax) , floweyl (kfymax) , £loweyn (kfymax),
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flowex (kfxmax) , flowey (kfvmax) , enflowd kixmax) , enflowy (kivmax) ,
ennf lwy (kfymax) , enlflwy (kfvmax) , ennf lwx (kfanax) , enl £1wx (kfxanax) ,
eneflowx (kfmax) , eneflowy {kiymax) , enneflwy (kfymax},
enleflwy {(kfymax} , enneflwx {kixmax) , enleflwx (kfxmax)
real lmorm, kynorm, ekkold{kml, kyml}, Ie, 1p, lecut, lemid, Ipout,
lpmid, ratio2, edenold {dxml, kyml) , nue, emass, dfirst, rhos
cormon /parms/
vl,gamal, gama2, epsi, 1e, 1p, kxg, kyg, kemorm, lymorm, kxs, kys,
mwrt, nwrs, t,de, tol, ek, gamk, £lux, nel, ratio,pail, 4, dmid, douk, loc,
init, flreal, flima, ekkold, emkold, fiexold, £lowes, flowey, gamal,
flowexl, flowexn, floweyl, floweyn, lpmid, lpout, lamdd, lecut , phase,
flpxold, £lowpx, £lowpy, flowpxl, flowmsm, £lowpyl) edencld, nee,
amp, £lowoyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
ennflwy, endflwy, ennflwx, enlflwx, eneflowx, eneflowy, dfivst, rhes,
enneflwy, enlefiwy, enneflwx, enlefivx
comnen farrays/
pai,den
common  /arrdim/
nt,ntstep, pesu
real ﬂx(kxﬁi kwml) , ensk{lol, kywl) , eden oonl, kyml )
de 20 j=1, kyml

do 10 i=1,lomd

xk=lomormn* (1-}omm2)

10
20
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vik=kynormm* {3 -kynd)
Ak * 24y %2

if{nci .le. i0)then
ekk{i,jr=ekkold(i,]}
ensk(i,3)=ekkold(i,j}*ak

eden(i, i)=edencld(i, 3}

else

ekk(i, j)=ekkold{i,j}/real (nwrs)
ensk{i,j)=ekkold(i,j) *ak/real (nwrs}
eden{i,j)=edencld{i, j)/real (nwrs}
endif

ekkeld{i,3)=0.0

edenoldii,j1=0.0

continue
cont inue

¢ write the energies in array form

30

200

Go 30 i=kam2, kol

write(8,*) (ekk{i,q},j=1.kyml)

write(17,*) {ensk{i,3},j=1, kyml)}

write{19,*) (edeni{i,i).3=1,kyml)
continue

write(8,%)
write{§,*)

write{l7,.*)
write(17,%)

write(19,*}
write(1l9,*}

format {1p50=13.5)
regurn
end

c‘k*********f****‘k‘k‘k*‘A"Ic‘k-k**'k'k*******t***‘k*‘k*****************

+ 4

I -

subrouting writksp

parameter { kxmax=10, kymax=10, loanl=2*lomax+1, kyml= 2*kymax+l,
o2 =kanax+ L, kym2= kymax*l,nn_4*(kxml*kymax+kxmax),
kfymax=tomax- 1, kfymax=kymax-1)

complex psi(kxml,kyml),den(kxml,kyml},flowpx(kfxmax),
£lowpy (kfymax) ,

flowpxl (kfxmax}, flowpsm (kfxmax) , £ lowpyl (kiymax} flowpyn (kfymax) ,
flowexl(kfxmax,,;10wexn(kfxmax),Lloweylfkfymax y, floweyn {kfymax) ,
f1owes (kfxmax) , flowey (kfymax) , enflowx (kixmax}, enflowy (kfymax),
enmf lwy (kfymas) , endflwy {kfymax) , ennf bwx {kfxmax)  enl £l Jyx {kfxmax),
eneflowx (kfxmax) , eneflowy (kfymax] , enneflwy (kfymax) ,

enleflwy (kfymax) , enneflwx (kixmax) , enleflwx {kfxmax)

real kxnorm, kynorm, ekkold (kxmi, kyml}, le, 1p, leout, lemid, Ipout,
1pmid,ratioz,edenold(kxml,kynﬂ),nue,emass,dfirst,rhos

commen /parms/
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v1l,gamal,gamaZ, epsi, le, 1p, kxg, kv, oaorm, kynomm, kxs, kv's,

mwrs, mwrs, t, dt, col, ek, gamk, £1wx, nel, ratio, psil, 4, dmid, dout, loc,
init, fireal, flima, ekkold, emkold, £lexold, flowex, flowey, gamal,
flowexl, flowesm, floweyl, floweyn, lpmid, lpout, lemid, leout,phase,
£1lpxold, £lowpx, flowpy, £lowpxl, flowpsa, flowpyl, edenold, nue,
amp, flowpyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
emmflwy, enlflwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
emmeflwy, enlefivy, ennefiwx, enleflwx

COMmOn Jarrays/

psi,den

common /arzdim/

nt,ntstep, pesu

real ekk(kanl, komi)

do 20 d=1,kvml
do 10 i=1,k=xmt

xh=kxnoxm® { i-koun2)
vk=kynorm* {-kymd)

if{ncl .le. 10)then

ekk (1, j}=ekkold(i,j)

else
ekk(i,d)=ekkold(i, ]}/ /real (nwrs)
endif

continue
continue

c write the k**2 vs em, ek and flux in array form

40
30

200

do 30 i=kon2, lomi
do 40 j=lkym2,kyml

xh=komormn® {1-kxm2 )
yh=kynorm* (J-kym2}
ak=3dcr * 24k ¥ 2

write(ld,*} ekk(i, 3} , ak
continue
continue

write{ld, *)
write{l4,*)

format (50(ei2. 4, Ix))

return
end

C*******‘k**‘k************************************#****f*****

subroutine writeer(h, ier)
parametar {kwmax=10, ymax=10, loarl=2*lomax+ 1, kyml=2*lgymax+1,

+ Joazloanax+l, kym2=kymax+ 1, mosd* (el *lomax-iomax) ,
+ kfwmax-lomax-1, kiymax=lgmax-1}

complex psi(kanl, kyml;, denflowl, kyd) , Elowpx {kfxmax},

R T T SR I S S S
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£lowpy (kiymax),
flowpxl(kfxmax),flowpxn(kfxmax),flowpyl(kfymax),flowpyn(kfynex),
flowexl(kfxmax},flowexn(kfxmax},floweyl(kfymax),floweyn{kfyﬂﬁx),
flowex(kfxmax),flowey{kfymax},enflowx(kfxmax),enflowy{kfymax},
ennflwy{kfymax),enlflwy(kfymax},eanflwx(kfxmax),enlflwx(kfxmax),
anefiowx (kfxmax) , eneflowy {(kfvmax} , exmeflwy (kfymax] ,
enleflwy(kfymax),enneflwx(kfxmax),enleflwx(kfxmax)

real kxnorm,kynorm,ekkold(kxml,kyml),le,lp,leout,lemid,lpout.
lpmid, ratioZ, edencldoml, kyml ), mue, emass, dfirst, rhos

common /parmns/
vl,gamal,gamaz,epsi,1e,lp,kxg,kyg,kxnorm,kynorm,kxs,kys,
nwrt,nwrs,t,dﬁ,tol,ek,gamk,flux,ncl,ratio,psio,d,dmid,dout,1oc,
init,flreal,flima,ekkold,emkol&,flexold,flowex,floweyrgamaB.
flowexl,flowexn,floweyl,floweyn,lpmid,lpout,lemid,leout,phase,
flpxold,flowpx,flowpy,flowpxl,flowpxn,flowpyl,edenold,nue,
amp,flowpyn,en,gamen,eddet,ekold,enold4enflowx,enflowy,emass,
ennflwy,enlflwy,ennflwx,enlflwx,eneflowx,eneflowy,dfirst,rhos,
enneflwy,en}eflwy,enneflwx,enleflwx

CONEMON: [/ array s/

psi, den

commen /arrdim/

nt,ntstep, pesu

if {ier .eg. 33) then

write(9,*) 'h=',h, 'ier=',ler, 'tol may be too

low or equaticns too stiff, t=t+h!

write(6,*) 'h=',h, 'iexr=',ier, ‘tol may be too

low or equations toc stiff, t=t+h'

elseif {ier .eqg. 66 .or. ier .eg. 67) then

write(9,*} 'h=',h, 'ier=’',ier, 'h was decreased to

force convergence'

wricze(6,*) 'h=',h, 'ier=',ier,'h was decreased to

force convergence'

else

write{9,*) ‘h=’,h, 'ier=', ier, ‘uninown error’

writel{6,*) 'h=:,h,'ier=',ier, ‘unknown error'

endif

return

end

c***************‘k************************t****************‘k

+

I

subroutine energy

parameter {lomax=10, kymax=10, ol =2*koaax+1, lyml=2%kymas+1,

o2 =komax+1, kym2 =kymax+ 1, nn=4* {koonl * kymax+ioamax] ,
kExmax=iomax-1, kfymax=kymax-1}

complex psi Oomul, kymi) , den (ool kyml) , £lowpx (kfxmax)

£lowpy (kfymax),
flowpxl(kfxmax),flowpxn(kfxmax),f10wpy1(kfymax),flowpyﬁ(kfymax),
Flowex] (kfxmax) , £lowexn {kfxmax) , floweyl (kfymax) , floweyn (kfymax},
£Iowes (kExzax) , flowey (kfvmax) , enflowx {kfxmax} , enflowy (kfymax),
ennflwy (kfymas) , end fiwy (kfymax}, ermflwx (kfxmax) , enlflwx (kixmax),
eneflows (kfxmax) , eneflowy (kivmax) ,emneflwy {kfymax),

enleflwy (kSymax) , enneflwx (kixmax) , enlef lwx {kfsmax)

real lomorm, kynorm, ekkold (kowml, kyml) , le, 1p, leout, lemid, Ipout,
1psid, ratio?, edenold{koant, kyviel) , nue, emass, dfirst, xhos

common /oarns/
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vl,gamal,gamal, epsi, le, Ip, kxg, kvy, kemomn, kynorm, kxs, kys,

Wt , awrs, t,de, tol, ek, gamk, fiux,ncl, ratio, psiQ, 4, dmid, dout, loc
init, flreal, £lima, ekkold, emkold, flexcld, flowes, flowey, gamal,
flowexl, flowexn, £loweyl, floweyn, lpmid, Ipout, lemid, leout, phase,
flpxold, flownx, £lowpy, flowpxl, £lowpsn, flowpyl, edencld, ue,
amp, £lowpyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
ennfiwy, enlflwy, ennflux, enlflwx, eneflowx, eneflowy, dfirst, rhos .
enneflwy, enlefiwy, enneflux, enleflux

COmmon,. /arrays/

psi,den

commmon /arrdim/

nt,ntstep, pasu

real emin,ekin,msfin,esin

integer pesuin

namelist /maginp/ em,ek,msf,es,pesu

¢ initialization

ek=0.
en=0.
ed=0.
et=0.-
es=1.0e-25
flux=0.
phase=0.
nuber=0

calculate energies

il=1

iZ=komnax

F1l=kyr2

32=kyml

do 20 i=311,12
xk=lomorm* (i-koa2)
do 20 3=31,32
vk=kynorm* (J-kym2)
akawkr* 24y k¥ *2
numbersmumber+1.

ek=ek+psi{i, i) *conjgipsi{i,j)1*2
enzen+psi(i, i) *conigipsi(i,j) ) ak*2
ed=aed+den (i, j) *conjglden (i, j})*2
flux=flux-sqrt (ak) *aimag(den{i, j) *conjgipsili, 3} 112
phase=phase+atan{aimag{dent{i, ) ) /real{den{i, i)} )-
atan{aimag(psi{i,3)) /reali{psi{i, 3) )}

continue
if(xk .eq. lomax*lomorm  .and. vk .eq. hvmex*kynormigoto 30
11 =koxra
L2=kxmt
d1=kyma+1
goto 10
cont inue
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et=ek+ed
phase=phase /numier

¢ c¢alculate growth rates

< save

apsi=amaxi { {en+enold) /24, es}
bpsi=amaxl { {ek+ekold} /2, es}

gamens= ( (en-enold) /dt) /apsi
gami={ {ek-ekold) /dt) /psi
0ld energies

ekold=ek
enold=en

returm
end

c***ir*x****************k*:\‘**'k***************t*t"k*****
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subroutine kflowe
parameter(kxmax:lﬂ,kymax:lﬂ,kxm1=2*kxnax+l,kyml:2*kymax+l,
loan2=lomaser 1, kym2 =kymax+l, nn=4* {komml* kymastrkomax ) .
kfxmax=loamax- 1, kfymax=kymax-1)
corplex psi (loml, kyml) , den{kanl, kyml) , flowpx (kfxmax} ,
flowpy (kfymax),

frowpsl (kExwmax) , £ lowpsm (kfxmax) , £lowpyl (kfymax) , £lowpyn {(kfymax),
flowex] (kfxmax} , £ lowexn (kfxmax) , floweyl (kfymax) , floweyn (kfymax},
flowex (kfxmax)} , flowey (kfymax), enflowx (kfxmax} , enflowy (kfymax),
ennf lwy (kfymax) , end £ lwy {kfymax) , ennfiwx (kfzmas) , enlflwx (kfxmax}),
enef Lowx (kfxmax) , enef lowy (kfymax) , enmef lwy {kfymax) ,
enleflwy (kfymax) , emeflwx (kfxmax) , enlef wx {kfxmax)
real lomorm, kynorms, ekkold (Joarl, kvl }, e, 1p, leout, lemid, lpout,
lpmid, ratio?, edenold{kanl, kyml} , nue, emass, dfirst, rhos
COmmOoTl /PArmsS/ :
v1,gamal, gamaz, epsi, le, 1p, kxg, kyg, Jomormn, kynorm, kxs, kys,
mwrt, nwrs, &, dt, tol, ek, gamk, flux,ncl, ratio, psif, d, dmid, dout, loc,
init, fireal, flima, ekkold, emkold, flexold, flowex, flowey, gamal,
flowexl, flowexn, flowevl, £loweyn, lpmid, lpout, lemid, leout, phase,
fipxold, £lowps, flowpy, fiowpxl, flowpxm, £lowpyl, edenold, me,
amp, flowpym, en, gamen, ed, et, ekold, enold, enf lowx, enflowy, emass,
ennfliwy, enlflwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, xhos,
enmeflwy, enieflwy, ennefiwx, enlef lwx
common /arrays/
psi,den
common farrdim/
nt,ntstep, pesu

complex u{kmi,lyml}, ekxflve, ekyilwe, elcdioce, ekxnone,

ekyloce, ekynone, enyeloc, envenon, enveflw, enxeloc, enxenon,

enxeflw,v{kanl, kyml}

il=1

12=keaml
31=1

J2=kyral

do 20 i=il,i2
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do 20 4=31.,77

ks 4 L(i,j)
vi{i,3)=den(i. i}
continue

do 30 m=l, kfxmax
kxl=m
call kflowe?2 (u,v, kxl,elotloce, elomone, éNxelos, EnXenon)

elocf lwe—ekxlocerelomone
enxeflw=enxeloc+enxencn

flowexl (m)=flowexl (m) +ekxloce
enleflwx (m}=enleflwx (m} +enxeloc
flowexn (m} =flowesm: (m) +ekxnone
ennef lwx {m) zennefiwx (I} +&nxenon
flowex {m) =flowex {m)+elxfliwe
eneflowx () =eneflowx (m) +enxeflw

continue
do 40 ml=1, kfymax
ey l=ml
call kflowel(u,v,kyl, ekyloce, ekynone, enyeloc, enyenon)

ekyflwe=akyloce+ekynone
enveflw=enyveloc+renyenon

floweyl (ml)=floweyl (ml)+ekyloce
enleflwy (ml)=enleflwy (nl) +enyeloc
flowsyn (ml)=flowsyn (ml) +ekynone
ennef 1wy {ml)=enneflwy (ml) +enyenon
flowey (ml)=flowey (ml) +ekyiliwe
eneflowy (ml}=eneflowy (ml}+enyeflw

cont inee

return

end

C***************‘k*‘k**1\'1\'************tt"k**‘k‘k‘k**********

subroutine kflowel(u,v,kyl,ekyloce, ekynone, enyelec, enyenon}
parameter(kxmax:lﬂ,kymaleO,kxml:Z*kxmax+l,kyml:Z*kymax+l,

ka2 =lomast 1, ym2=kymax+ 1, nn=4* {Joanl * kymat+loweax)
kfxmax=lomax-1, kfymax=kymax-1}

complex psi(kxml, kyml), den (Joand, kyml}, flowpx (kixmax) .

£lowpy (kfymant) ,

flowpxl (kExmax} , £lowpsm (kfxmast) , £lowpy 1 {kfymax), flowpyn (kfymax} ,

aGaan
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Flowex] (kfxmax}, £flowexn (kfxmax) , floweyl (kfymast) . £ loweyn {kfvmax},

Ll owex {(kfxmax) , Flowey (kfymax) , enflowx (kfxmax) ,enflowy {kfymax) ,

ennflwy (kfymax) , enlflwy (kfvmax) , ennflwx (kixanax) , enlflwx {kfxamax},

eneflowx (kfxmax) , eneflowy (kfymax) , ermeflwy (kfymax) ,

enleflwy (kfymax) , enneflux (kfxmax) , enleflvx (kfxmax)

real lomorm, kynorm, ekkold (koand, kyml) , ie, Ip, leout, lemid, lpout,

lpmid, ratioZ, edencld{kxml, kyml) , nue, emass, dfirst,rhos

CoMmon /paxms/

1, gamal, gamaZ, epsi, le, 1p, kxg, kyg, lomorm, kynorm, kxs, ks,

owre, Iwrs, &, dt, tol, ek, gamk, flux, nel, ratio,psi, &, dmid, dout, loc,

indt, flreal, £lima, ekkold, emkold, flexold, flowex, flowey,gamal,

flowexl, flowenn, floweyi, floweyn, lpmid, lpout, lemiq, leout, phase,

£lp=old, flowpx, flowpy, £lowpxl, £lowmm, flowpyl, edenold, nue,

anp, flowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, enass,

ermf lwy, enlflwy, ermfliwe, enlflwx, eneflowx, eneflowy,dfirst, rhos,

enneflwy, enleflwy, etmeflvx, enleflwx

common /arrays/

psi,den

common /arrdim/

nt , ntstep, pasu

complex u(kcnl, kyml) ,dnyloce, dnynone, ekyloce, ekynone, ic,
enyeloc, enyenon, v{koanl, kymd }

integer kyl
ekyloce={0.,0.)
ekynone=(0.,0.}

eryeloc=(0.,0.}
enyenon=(0.,0.}

ic={0.,1.)
il=1
i2 =kl
J1=1
j2=kyrt
do 20 i=il,i2
kooc=1 - ko2
do 20 j=j1,32
kyy=3-Jom2

aks= {kyy*kynorm) * *2+ (lox* Jomorm} **2
if (iabs{kvy) .le. kyl)then
call yvElowelu, v, kyl, koot kyy, dnyloce, Gynone)
ekyloce=ekyloce-le*d*r . 5¥dnyloce*conjgivii, j1)
ekynone=ekynone-le*d*  S*dmynone*conigivi{i, j}}
enyeloc=enyeloc-le*d* . S*akrdnyloce*conig(vi{i, 31}
enyencn=enyencn- le*d* . S*ak*daynone*conig (v{i, 3))
endif
continue
if (k¢ .eqg. komawx .and. kyy .eq. kymax) goto 30
il=lomm2

i2=kemnl
F1=2
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goto 10
retwm

end

C*****'k******'k****3\'**'k-k**9.'**tttt******‘k**t"k**********
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subroutine kflowe? (u,v, kxl, ekxloce, ekymone, enxeloc, enxencn}
parameter {koamax=10, kymax=10, kxml=2*kxmax+1, yml=2*kymax+1,

Joan2 =kxmax+1, kymZ=kymax+1, nmn=4* { kxml*kymax+komax) ,
kfxmax=loanax~1, kfyvmax=kymax—-1}

complex psi(loml, kymi), den{kanl, iyml) , £lowpx {kfxmax),

flowpy (kfymax},

Flowpl (kfxmax) , £lowpxn (kfxmax} , £lowpyl (kfymsod) , £lowpyn (kfymas) ,
£lowexl (kfxmax) , Flowexn {kfxmax), floweyl (kfymax) , floweyn (kfymax) ,
flowex (kfxmax) , Flowey [kfymax) , enflowx (kfxmax) , enflowy {kfymax) .
ermflwy (kfymax) , enlflwy (kfvmax}, ennflwx (kExmax) , enlfIwx (kixmax),
aneflowx (kfxmax) , eneflowy (kfvmax) ,ermeflwy (kfymax) ,

enlefliwy (kfymax) , enneflwx (kfxmax) , enleflwx {kixmax)

real omorm, kynorm, ekkold (kxml, kyml), le, Ip, leout, lemid, lpout,
1pmid, ratioZ, edenold (Joanl, kyml ), nue, emass, dfirst, rhos

common  /parms/

vl,gamal, gama?, epsi, le, 1p, kxg, kg, lowozm, kynorm, kxs, kys,

mwrt, nwrs, t,de, tol, ek, gank, flux,ncl, ratio,psi0, d, dmid, dout, loc,
init, fireal, flima, ekkold, emkold, flexold, flowex, flowey, gamal,
flowexl, flowesm, floweyl, flowayn, lpmid, Ipout, lemid, leout, phase,
Flpxold, £lowpx, £lowpy, £lowpxl, flowpxn, flowpyl, edenold, nue,

amp, £lowoyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
ennf lwy, enl flwy, ennflwx, enlflwx, eneflowx, enaflowy, dfirst, rhos,
enneflwy, enleflwy, emneflwe, enleflwx

CCOImOn /arrays/

pei, den

cormmon /arrdim/

nt, ntstep,pesu

complex u{kxml, kyml), dnxloce, domone, ekcloce, ekxaone, ic,

70

80

enxeloc, enxenon, v (kxml, kymd)

integer kxl

elxloce=(0.,0.}

ekmones={0.,0.}

enxeloc=(0.,0.}

enxenon={0.,0.)

ic=(0.,1.}

1l=1

12=kxmax

Ji=1

j2=kym2

de 70 i=3il1,i2

ko= -Jomm2
do 70 3=j1.32
kyy=3-1

ak= (kyv*kynorm) **2+ (oo lomorm) ¥ *2

O I o o I TS

+

+

+

170
call xflowe{u, v, kxl, o, kyy  dedoce, dromons)

elcxloce=ekxloce-la*d* . S*dnxloce*conjg{v(i, J+kvmax} )
elxmone=ekxmone-le*é*  S*dmone*conjg{v i, j+kymax) )
enxeloc=enxeloc-le*d*  S*ak*dnxloce*conig (v(1, j+kymax))
enxencn=enxenon-le*d* . S*ak*dnxnene*conig (v (i, j+kymax))

endif

continue

if (ke .eqg. lomax .and. vy .eq. koymax) goto 80
il=lomz

i2=komal

$1=2

goto 60

returmn

end

c*****'k‘k*****'kt********x*******‘k********k************

subroutine yflowe(u, v, kyl, ko, kyy  wyloce, wynone)

parameter (Joamax=10, kymax=10, kxml=2*lcanax+1, kyml=2*kymax+1,

Foanl =komnana+ 1, kym2 slymax+ 1, n= 4 {Joahl * loymasc koaa)
kfxmax=koanax-1 , kfymax=kymnax-1}

complex psi{loanl, kyml), den{loal, kyml) , £lowpx (kfxamax) ,

flowpy (kfymesx) ,

frowpxl (kfxmax} , flowpsmn (kfxmax} , £lowpyl (kfymax)  flowpyn (kfymax) ,
flowexl (kfxmax), £l (kfxmax) , floweyl (kfymax) , floweyn {kfymax) ,
flowex (kfxmnax) , flowel(kivmax) , enflowx (kfxmax} , enflowy (kfymax) ,
et lwy (kfymax),enlf {keEymast) , ermf we (kfxmax) , enl £iwee {kfsmax) ,
eneflowx (kfxmax) , eneflowy {kfymax) , ennef lwy (kfymax) ,

enleflwy (kfymax), emnef lwx{kfxmax) , enlefIwx {kixmax)

real kxnorm,kynorm, ekkold (kxml, kymi), le, 1p, leout, lemid, lpout,
lpmdd, ratio2, edenold (kxanl, kyml) , mue, emass, dfirst, rhos

common /paxrms/

vl,gamal,gamaZ2, epsi, e, 1p, kxg, kyvg, kxnorm, lkgmorm, kxs, kys,

mwrh, nwrs, £,dc, tol, ek, gamk, £lux, ncl, ratio, psil, d, dmid, dout, 1oc,
init, flreal, flima, ekkold, emkold, £lexold, flowex, flowey, gamal,
£flowexl, Flowesm, £loweyl, floweyn, 1Ipmid, 1pout, lemid, leout, phase,
flpxold, flowpx, flowpy, flowpxd, £lowomm, flowpyl, edenold, nue,

amp, £lowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
ennfliwy, enlflwy, ermflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
ermef lwy, enlef wy, enneflwx, enlef vz

common /arrays/

psi,den

cormmon /arrdim/

nt,ntstep,pesu

complex u{kxml, yml), v(loal, kyml} , wy loce, wynone,
wylloce,wylnone
integer kvi

¢ intialization

if (dabs (k) .le. kxl)then

C process



+
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wyloce={0.0,0.0)
wynone={0.0,0.0)

il=1

12= kol +kexx

if (koo .gt. 0O} then
il=koce+l

iZ2=ioanl

end if

Ji=1

j2=kymi+kyy

if(kyy .gb. Q)ithen
Jl=kyy+l

J2=kyml

endif

do 20 i=il,:i2

do 20 j=41,32
krl=1-koan2
kyi=j-lgm2
Tomodskooe- kol
kymod=lyy -yl
Ioan=kxm2+kxmod
Joym=kyTe+kymod

if{{{iabs(kyl} .gt. kyl) .or. (iabs(kyy-kyl} .gt. kyl}).and.
{{iabs (kyl-kyl).le.loc).or. {iabs ((kyy-kyl)~kyl} .le.loc) ) Jthen

c convolute

20

-+

wylloces(u(i, 3)*v{kam, kym) —u {ka, kym) *v{i,3))
wylloce=wylloce*kxnorm*kynorm* (kyl*loo-kx1l*kyyl*. 5
wyloce=wyloce+wylloce

elseif {{{iabs(lyl) .gt. kyl) .or. {iabs(kvy-kyl} .gt. kyl)).and.

((iabs{kyl-kyl).gt.loc).or. (iabs{{kyy-kyl)~kyl).gt.loc)) ithen

wyinones (u(i, 3} *v {lom, kym) -u {koa, kym) *v (i, 33}
wy Inone=wy Inone* kynorm* kemorm* {kyi*ioo-lod *kyy ) *. 5
WYRORE=WYNOne+wy 11one

endif

continue
return
end

c********'k*'k'k*******t*****‘k*****‘k********************

subroutine xflowe(u, v, kxl, ko, kyy, wxloce, womone)

parameter {omax=10, kymax=10, kxml=2*lomax+1, kyml=2%kvmax+1,
JoaZ=koanax+ 1, kym2zkymax+1, nn=4* {koanl *kymax+kxmax} .
kfxmax=toamax~1 , kfymax=kymax~1)

complex psi{iownl, kyml), den (o, kyml}, flowpx (kixmax) ,

flowpy (kfymax),

flowmel (kixmax} , £lowpm (kixmax) , flowpy 1 (kivmax) , flowoyn (kfymax}),
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flowexl (kfxmax), flowesm {kfrarax} , £lowevl (kfymax) , floweyn {kfymax) .
flowex (kfymex) , flowey (kfymax), enflowx (kfxmax) , enflowy (kiymax),
ennflwy (kfymax) , enlflwy (kfymax) , et lwx (kfxmax) , enlflwx (kfxaas)
eneflowt {kfxmax) , enef lowy (kfymax) , ennef lwy (kiymax) ,

enleflwy {kfymax) , emnef lwx (kfxmax} , enlellw (kfxmax)

real kemorm, kynorm, ekkold (ko , kyral}, 1, 1p, leout, lemid, Ipout,
lpmid, ratio?, edenold (Joml, kyml} , nue, emass, dfirst, rhos

commen /parms/

vl,gamal, gama2, epsi, le, Ip,oxg, kyg, komorm, kynorm, kxs, kys,

mwrt, nwrs, t,dt, tol, ek, gamk, £lux,ncl, ratio, psil, d, dmid, dout, loc,
init, flreal, flima, ekkold, emkold, flexold, flowex, floway, gama3,
flowexl, flowexn, floweyl, floweyn, lpmid, Ipout, lemid, lecut, phase,
£1pxold, flowpsk, flowpy, flowpxl, lowpxm, flowpyl, edenold, nue,

anmp, flowpyn, en, gamen, ed, et, ekeld, enold, enflowx, enflowy, emass,
emflwy, enlflwy, ennflux, enlflwx, eneflowx, eneflowy, dfirst, rhos,
emmeflwy, enleflwy, emeflwx, enleflwx

common /arrays/

psi,den

common  /arrdim/

nt, ntstep, pesu

complex vkl kymi}, vikonl, kymt) , wxloce, waone,
wxlloce, wxinone
integer Jx1

¢ intialization
¢ process

+

wxloce=(0.0,0.0)
wemone=(0.8,0.0)
ERES
iZ2=}oanl+kook
if {(kxx .gt. 0) then
il=kooo+l
i2=loant
end if
do 20 i=il,i2
do 20 j=kvy+1,kyml
kwl=1-lom2
kyl=3-kym2
Jompd=kooc-kx
Iymodekyy-kyl
Joar=lomZ +loanod
kym=kym2+kymod

if({{iabs(kx1} .gt. kxl1} .or. (iabs{kct-kod) .gb. kxl)).and.
({iabs{lod-kxl}.le. loc} . or. {dlabs({ (loo-kxl)-kxl} . le.loc) )} ) then

¢ comrvolute

+

wxlloce={uli, 3)*v (ko kym) —u (km, kym} *v{i, 1)
wxlloce=wxlloce*kynorm*iomoerm* (kyl*loo-kxl*kyy}*.5
wxloceswxlocerwrlloce

elseif ({{iabs(lxl) .gt. kxl) .or. (iabs{lox-kxl} .gt. kxl}}.and.
{{iabs (kxl-kxl) .gt.loc).or. (iabs{ (oo-kx1)-kxl) .gt.loc) ) ) then
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winones=(u(i, 1) *v (}oan, kym) -u (o, kym) #v (i, 3}
wxinone=wxlnone*kynom*loqorm* (kyl*looc-lkotl*kyy} * .3

WHIOTE = WXTIONSHx inone

endif
continue

return

end

C********'k**:\'********‘k:\‘**'k‘k********************‘K*****
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subrouting writflwe

parameter {kxmax=10, kymax=10, loonl=2*lomax+1, kymi=2*kymax+1,

Yoam2 =hoanasc+ 1, kym2 =Kymaxs+ 1, in=4* {kxml * kymax+koanax) ,
kfxmax=lkamax-1, kfymax=kymax-1)

complex psi{loanl, kvml}, Gen (omd, kyml) , £lowpx {kfxmax) ,

flowpy (kfymax},

Flowpxl (kfxmax) , flowpsm (kfxmax) £ lowpyl (kfymax) , £lowpyn (kfymax) ,
Flowexl (kfxmax) , flowesm (kfxmax} , floweyl (kfymax) , floweyn (kfymax),
Flowex (kfxmax) , flowey (kfvmax) , enflowx (kfxmax) , enfiowy (kfymax),
emmflwy (kfymax) , enl flwy (kfymax} , enmflwx (kfxmax) ,enlflwx (kfxmax) ,
eneflowx {kfxmax) , eneflowy (kfymax) , enneflwy (kfymax},

enleflwy (kfymax), emneflwx (kixmax) , enlef lwx (kExmax}

real kxnorm, kynorm, ekkold {(loal, kyml) , le, 1p, leout, lemid, ipout,
lpmid, ratio?, edenold{lomt, kyml) , nue, emass, dfirst, xhos

COMmOn /parms/

v1,gamal, gama?, epsi, le, 1p, kg, kyy, kemorm, kynorm, ks, ky's,

mwrt, owrs, t, dc, tol, ek, gamk, £lux, ncl, ratic, psild, &, dmdd, dout, loc,
init, flreal, flima, ekkold, emkold, £lexold, flowex, floway, gamal,
flowexl, flowexn, floweyl, £ loweyn, Ipmid, lpout, lemid, leout ,phase,
fipxold, £1owpx, £lowpy, flowpxl, flowpm, flowpyl, edencid, nue,

amp, flowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
ennflwy, enlfluy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst,rhos,
emmeflwy, enleflwy, enneflux, enlef Iwx

common farrays/

psi,den

commen /arrdim/

nt,ntstep, pesu

real flowerx{kfxmax), floweix{kfxmax}, flowery (kfymax],

floweiy (kfymax) , flwerxl {kfxmax) , £lwerxn (kfxmax), flweixl {kfxmax},
flweixn (kfxmax), flweryl (kfymax), L Iweryn (kfvmax} .

fiweivl (kfymax) , flwelyn (kfymax)

do 30 m=1, kfxmax
flowerx (m)=real{flowex{m) ) /real (nwrs)
floweix(m)=real (eneflowx(m} } /real (wrs}
fiwerxl{m)=real (flowexl (m}} /real (nwrs}
£lwerxn {m)=real (flowexn(m} } /real (nwrs})
flweixl{m)=real {enieflwx{m} )/ real (nwrs)
fiweixn (m)=real {enneflwx(m) ) /real {nwrs)

continue

50
+
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do 50 mi=1, kiymax
flowery {mi)=real (flowey (ml))/real (nwrs)
flowely {ml)=real {eneflowy {ml) ) /real (nwrs)
Flweryl {ml)=real{flowavl (ml) ) /real {mms)
flweryn {ml) =real (fIoweyn(ml} } /real (owrs)
flwelyl (ml)=real (emmeflwy (mi}) /real (nwrs)
flweiyn{ml) =real (emneflwy {mi} ) /real (nwrs)

continue

writeli2, *) (flowerx(m) ,m=1, kfxmax) , {£lowery (m) ,m=1, kfymax) .,
(fIwerxl (m),m=1, kmax) , {Elweryl(m) o=, kfymax),
(Flwerxn(m),m=1, kfxmax), (£lwerynim),m=1, kiymax)

write (13, *) {(floweix(m) ,m=1, kfymax), {floweiy (m) ym=1, kiymasd) ,
{flweixl (), m=1, kfxmax), (flweiyl(m) ,m=1, kfymax]),

{flweisxam (m}, m=1, kfxmax}, ({lweiyn(m) , m=1, k{ymax}

do 20 =1, kfxmax
do 20 3i=1,kfymax
flowex{3}={0.,0.}
flowey (31)=(0.,0.}
flowexl{3i)=(0.,0.}
flowexn(i)=(0.,0.}
floweyl{31)={(0.,0.
fioweyn(31}={0.,

eneflowx{ji={(0.,0.)
enleflwx(3}=(0.,0.}
emnefliwx(i)=(0.,0.}

enetlowy (31)= (0., 0.)
enleflwy (J1)=40..,0.)
enneflwy (j11={0.,0.)

continue

format {50 (212.4,1x))
return

end

C**'k****9.'*"k*'k‘k***1:********‘k*'k**********t**‘k‘k***k*****

+ o+

+ b+

+

subroutine kflowp

parameter (lomax=10, kymax=10, kxml=2*icamax+l, kyvml=2*kymasotl,

I =komax+ 1, kym2=kymax+1, nn=4* (Joaal * kymax+koanax ),
kExmax=ioanax- 1, kymaxsiomax-1)

complex psi{loanl, kyil), den (loonl, kyml) , £iowpx (kfxmax) ,

flowpy (kfymax),

flowpxl (kfxmax) , filowprm (kfxmax) , fiowpyl (kfymax), flowoyn (kfymax),
£1owesx] {kfxmax) , £rowaxn (kfxmax) , £loweyl (kfymax) , floweyn (kiymax},
flowex {kfxmax} , flowey (kfvmax) , enf lowx (kfxunax) , enflowy (kfymax),
et lwy (Kfymax) , enlf Lwy (kiymax}, ermnf lwse (kfwrnax) , enk £ 1w (kfxmax) ,
eneflows (kixmax} , eneflowy (kfymax) , enneflwy (kiymax},

enleflwy (kfymax} , ennefiw(kixmax), enleflwx (kixmax)

real komorn, kynorm, ekkold{loml, kyml), le, 1p, leout, lamid, Ipout,
ipmid, ratio2, edencld (founl, kyml) , nue, @mass, dfirst,rhos
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COMmOn /parms/

vl,gamal, gama2, epsi, 1e, Ip, kxg, kvg, loqmorm, kynorm, kxs, kys,

mwrt, wWrs, £, 4k, tol, ek, gamk, £1lux, nel, ratio, psi0, 4, dmid, dout, log,
init, flreal, £lima, ekkold, emkold, flexold, flowex, £lowey, gama3,
fiowexl, Tlowexam, floweyl, floweyn, lpmid, Ipout, lemid, leout ,phase,
£lpxold, flowpsx, flowpy, £lowpxl, £lowpsn, flowpyl, edenold, nue,
arp, flowpyn, en, gamen, ed, et , ekold, encld, enflowx, enflowy, emass,
ermflwy, enlflwy, ennflwx, endflwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enlef lwy, ermeflwx, enlef lwx

common /arravs/

psi,den

commmon  /arrdim/

nt, ntstep, pesu

complex u{koml, kyml), ekxflwp, ey Eiwp, elotlocp, ekxnonp,

ekylocp, ekynonp, eny loc, enynon, eny £ Iw, emxloc, envmon, ersflw

il=1

i2=loanl

31=1

Jz=kyml

de 20 i=311,12
Go 20 9=31,32
u{i,jr=psili,q)
cont:inue

do 30 ml=1, kfymax

kyl=mi
call kflowpliu,kyl,ekyiocp, ekynonp, enyloc, enynon)

ekyf£lwp=eky locp+ekynonp
eny f lw=enyloc+emynon

flowpyl (mi)=flowpyl (ml}+ekylocp
enlflwy {ml}=enlflwy (ml)+enyloc
flowpyn (mi ) =£lowpyn (ml) +ekynonp
ermflwy {ml ) =enmflwy (ml) +emynon
flowpy (mi) =flowpy (ml) +eky fiwp
enflowy (ml}=enflowy (ml)+enyflw

continue
do 40 m=1, kfsmmas
kxL=m
call kflowp2(u, kxi,ekxlocp, eloqmonp, enxlod, enxnon)

ekxf lwp=elodocp+elomon
enxf Tw=enxloc+enxnon

£lowpxl (m) =flowpxl (m) +ekxliocp
enlflwsx{m!=enlflwx{m}+enxicc
flowpxm (m) =£Iowpxan (m) +elomonp
ennf lwx (m) =ermf Iwx (m) +enxnon
flowm (m) =£1owps (m) +elexE Iwp
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enflowx{m)=enflow: (m) +erpeflw

continue

reryrm

end

c**********‘k******t*********‘k‘k‘k***k******************
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subroutine kflewpl{u,kyl,ekvlocp, ekynonp, enyloc, elynon)
parameter {kxmax=10, kymax=10, kaul=2*komax+1 , kyml=2*kymax+1,
Jomn2 skxmax+ 1, kym2=kymax+1, nn=4* (joanl *kymax+kxmax) ,
kfxmax=kxmax-1, kfymaxz=kymax-1)
complex pai (kxml, kymi), den{kxml, kyml) , £lowpx (kfxmax},
flowpy (kfvmax) .,
frowpxl {kfamax) , flowpsm (kExmax}, flowpyl (kfymax) , £lowpyn (fymax) ,
flowesxl (kfxmax) , flowerm (kfxmax ), floweyl (kfymax) , £loweyn (kfymax) .
flowex (kfxmax) , flowey (kfvmax) , enflows (kfxmax) , enflowy (kfymax),
ennf lwy (kfymax) , enlfiwy (kfymax} , ennflwx (kfxmax) , enlflwx {(kfxmax} ,
eneflowx (kfxmax) , eneflowy (kfymax) , enneflwy {(kfymax),
enleflwy (kfymax), ennef lwx (kfxmax) ,enleflwx (kixnax)
real Jomorm, kynorm, ekkold (kxml, kyml), le, Ip, leout, lemid, lpout,
Ipmid, ratio2, edencld{koul, kyml}, nue, emass, Afirst, rhos
common /parms/
vi,gawal,gamaz?, epsi, e, 1b, kxg, kyg, kxnonme, kynorm, kxs, kys,
wrt, owrs, t,de, tol, ek, gank, £lux, nel, ratio, psi, 4, dmid, dout, loc,
init, flreal, flima, ekkold, emkold, flexold, £lowes, flowey, gamal,
flowexl, £lowexn, £lowayl, £loweyn, lpmid, ipout, lemid, lecut, phase,
£lpxold, f£1lowox, fiowpy, flowpxl, flowpsm, fiowpyl, edencld, nue,
amp, £lowpyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
ennfilwy, enlflwy, ennflwx, enlflwx, eneflows, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enneflwx, enleflwx
COMENGN [/ arTay s/
psi, den
comnon /arrdim/
nt, ntstep, pesu
complex u{loml, kyml} , dnylocp, Gwynonp, ekylocp, ekynonp, ic,
enyloc, enynon
integer kvl
elkylocp=(0.,0.}
elkynonp=(0.,0.)
enyloc={0.,0.)
enynen=(0.,0.)
ic={0.,3.}
i1=1
i2=loml
j1i=1
42=kyml
do 20 i=il1,iz
oox=i-Yoan2
de 20 §=31,42
Jeyy =7 ~kym2
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ak= (kyy*kymorm) ** 2+ {loottlomoezm) ¥ %2
if {(iabs{kyyi .le. kvl)then

call vElowpiu,u, kvl ko, kvy, &wlocp, dnynonp)

ekylocp=ekylocp-1lo*d* . S*dnyilocpconig (u(i, 31)
+ /{1l.+ak¥rhos**2}

skynonp=ekynonp- 1p*d* . S*dnynonp*conig(ui{i, 3})
+ /{1.+ak*rhos**2}

enyloc=enyloc-1p*d* . S*alcrdmy locprconjg (uli, 1))
+ /{1.+ak*rhos**2)

envnonsenynon- lp*d* . S*ak*dmymonp*conja (wii, 3))
+ /{1.+ak*rhos**2}

endif
20 continue
if (o .eg. omax .and. kyy .eq. kymax) geto 30
il:kxmz
i2=loml

§1=2
goto 10

naoaoan

30 return

end

c************'k‘k'k****k’rir'k***-k******}tt****‘k‘k**********

subroutine kflowp? (u,kxl, ekxlocp, elomonp, enxloc, ervmon)
parameter (kxmax=10, kymax=10, loanl =2 *lomax+1, kymi=2*kymax+1,
+ Joml=koanaxt 1, kva2=kymax+1, mm=4* (kaal *kymas-+kxanax)
kfzmaxce-kommax-1, kKfymax=loymax-1)
complex psi{loal, kyml), den (koand, kyml} , £lowps (kxmax) ,
flowpy (kfvmax) ,
flowpxl {(kExmax) , Flowpsxn (kfxmax) , £lowpyl (kiymax), flowpyn (kfymax} ,
flowex] {(kfxmax) , flowesm {kfxmax) , £loweyl (kfymax} , floweyn (kfvmax},
Flowex (kfxmax) , flowey (kfymax) , enflowx (kfxmax) , enflowy (kfymax},
ennflwy (kfymax) , enl flwy (kfymax}, ennilwx (kfxmax} , enlflvwx (kixmax}),
eneflowx {kfxmax) , eneflowy (kfymax) , enneflwy (kfymax),
enleflwy (kfvmax) , enneflwx (kfxmax) , enlef lwx (kfxmax}
real lomorm, kynorm, ekkold {koanl, kyml), le, Ip, leout, lemid, Ipout,
1pmid, ratio2, edenold (loanl, kyml) , nue, emass, dfirst, rhos
cormmon /parms/
vi,gamal, gama?, epsi, e, 1p, kg, kyg, lomorm, kynorm, kxs, kys,
mert, owrs, t, dt, tol, ek, gamk, £lux,ncl, ratio, psid, d, dmid, dout, loc,
init, flreal, flima, ekkold, emkold, flaxold, £lowex, flowey, gamal,
flowexl, fiowexn, floweyl, floweyn, Ipmid, Ipout, lemid, lecut, phase,
£lpxold, flowpx, £ lowpy, £lowexl, flowpxa, flowpyl, edenold, me,
amp, f lowpyn, en, gamen, ed, et, kold, enold, enflowx, enflowy, emass,
ermf lwy, enlfiwy, ennflwx, enlilwx, eneflowx, eneflowy, dfirst, rhos,
ermeflwy, enleflwy, enmeflux, enleflwx
common Jarrays/
psi, den

T T2 T I

&

60

70

80

17§

common farsdin/

nt . ntstep, pesu

complex u{kxmi, kymi), dnxlocp, disaonp, ekxlocn, elomonp, ic,
enxloc, envmon

integer kxi
ekxlocp=(0.,0.}
elomonp={0.,0.}

enxloc=(0.,0.)
enxnon=(0.,0.)

ic={0.,1.)

il=1

iZ=loanax

3i=1

3 2=l

do 70 i=1i1,1i2

m:i"m
do 70 j=31,32
kyy=3-1

ak= { kyy*kynorm) **2+ {Jooc* lomorm) **2
if(iabs{kxx) .le. kxl)then
call xflowp{u,u, kxl, kxx, kyy, dnxlocp, dnxnonp)

ekxlocp=ekxlocp-1p*d . S*dnxlocp*conig{u (i, J+kymax) }
/{1l.+ak*rhos**2}

elomonp=elomonp-1p*d* . S*dmenpreonig {(u (i, J+kymax} )
/il +ak*rhos**2}

enxioc=enxloc-1p*d* . S*ak*dnxlocp*conig{u (i, j+kymax))
/{1.+ak*rhiog**2)

enxnon=enxnon-1p*d* . S*ak*dnomonp*conig (u (1, j+kymax) )
/(1. +ak*rhos**2)

endif

continue

if (k¢ .eqg. kmax .and. kyy .eq. kymeax) goto 80
il=

iZ2=Joanl

31=2

goto 60

return

end

c'k**'k************k1‘:*‘k***‘*‘k*******‘k***t***************

subroutine vflowp(u, v, kyl, kot kyv, wylocp, wynonp)

parameter (kamax=10, kymax=10, Joml=2*kmax+1, kyml=2*kymax+1,

ko2 =lomax+ 1, kvm2=kymax+1, m=4* {Joal *kymax+koxmax ) ,
kfxmax-toanax-1, kiymax=lymax-1}

complex psi kel kyml ), den {logul, kymd ), £lowp (kxmax; ,

flowpy (kfymax),

£lowpxl (kfxmax) , £lowpsm {kDanax), £lowpyl {kivmax), flowpyn (kymax) .
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flowexl (kfxmax}, £lowexn (kfxmax) , Lloweyl (kfymax), £loweyn (kfymax],
flowex (kfxmax) , £ lowey (kfymax) , enflowx{kfxmax) , enflowy (kfymax) ,
ermf lwy (kfymax) , enlflwy {(kfymax) , ennflwx {(KExmax) , enlflwx (kfxmax),
eneflowx (kfxmax) , enef lowy (kfymax) , enneflwy {kfymax} ,

enleflwy (kfymax) , ennef lwx (kfxmax} , enlef Iwx (kfxmax)

real lomorm, kynorm, ekkold (koml, kyml}, 1e, 1p, lecut, lemid, Ipout,
Ipmid, ratio?, edenold (loanl, xynl) , nue, emass, dfirst, rhos

common /parms/
vl,gamal,gama2, epsi, 1e, Ip, kxg, kyg, lomorm, kvnorm, kots, ky's,

mert, nwrs, £, dt, tol, ek, gamk, £lux,ncl, ratio, psil, d, dmid, dout, loc,
init, flreal, flima, ekkeold, emkold, £lexold, flowex, £lowey, gamal,
£lowexl , Flowexn, floweyl, floweyn, lpmid, 1pout, lemid, leout, phase,
flpxold, flowps, flowpy, Elowpxl, £lowpxn, flowpyl, edenold, mue,

anp, £lowgyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
et lwy, enlflwy, eonflwx, enlflwx, eneflow, eneflowy, dfirst, rhos,
ennef lwy, enleflwy, enneflwx, enlefiwx

commen, /arrays/

psi,den

common /arrdim/

+ nt,ntstep, pesu

[T T

e

+

corplex u{loal, kymd ), v{loml, kyml} , wylocp, wynonp,
+  wyllocp,wylnonp ’
integer kvl

c intialization
C process

wylocp={(0.90,0.0}
wynonp=1{0.0,0.0

il=1

iZ=loml+loox

if (kxx .gt. () then
il=looet+l

12=kxml.

end if

31=1

j2=kyml+kyy

if{kyy .gt. 0)then
Jl=kyy+l

j2=kymlt

endt £

do 20 i=il,:2

do 20 j=ji1,32
kxl=i-Yoan2
kyl=]-kym2
Yomod=koo-kxl
kymod=iyy -ky
komaskxm2 + koqnod
Joym=kym2 + kymod

akl=lod ¥ * 2+ kyl**2
ak=loaod* * 2+kymod* * 2

or

if{{(isbs(kyl) .gt. kvl} .or. {iabs{kyy-kyl} .gt. kyl})}.and.

+
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{{igbs{kyi-kyl) . le.lac) .or. (iabs{ (kyy-kyl)-kvl) .le.loc) ) )then

o convelute

20

wyllocp={u{i,j}*v{lom, kym} *akl-u{lom, kym) *v{1,3}*
ak) * kwnorm® Kynorm

wyllocp=wyllocp* kxnormt kynomm* (kyl*loo-locl*kyy} *. 5
wy locp=wy locp+wy 1 Locp

elseif (({iabsi{kyl) .gt. kvi) .or. (iabsi{kyy-kvl) .gt. kyl}).and.
{{iabs (kyvi-kvl}.gt.loc) .oz, (iabs({ {(kyy-kyl)-kyl).gt_loc)})then
wylnonp= (i, 3} *v (3o, kym) *akl-u ko, kym) *v (1,1 *
ak) *lomorm* kynoxm
wy lnonp=wy lnonp*lomorm* kynorm* {(kyL*looc-kxl*kvy) *. 5
WyNGID=WyTIOND+wy 1nonp
endif

cont inue
return

end

C**‘k*'9(*'k‘k'k‘k‘k***irt*****'k***‘k*'k**********************ﬁt

+ b

B Ik T T T T T S S A Ay

+

subroutine xflowpiu,v, kxl, kxx, kyy  wxlocp, wxnonp)

parameter (kxmax=10, kymax=10, oml=2*Jomax+1, kyml=2*kymax+1,
lom2=komax+1, kym2=kymax+1, m=4* (ool *kymax+lomax) ,
kfxanax=loanas-1, kfymax=kymax-1}

complex psi(kanl, kyml), den (ol kyml) , £lowpx (kExmax) ,

£lowrsy {kfymax),

flowox] (kfxmax) , flowpsm (kixmax) , £lowpyl {kfymax) , £lowpyn (kfymax) ,
flowexl (kfxmax) , flowesm (kfxmax) , floweyl (kfvmax) , £lowsyn (kfymax) ,
£lowex (kfxmax}, flowey (kfymax) , enflowx (kfxmax) , enflowy (kiymax) .,
ermf Iwy {kEvmax) , enl L lwy (kfyoasx) , ennflive (karax) , enlflwee (kfxma) ,
eneflowx (kfxmax) , eneflowy {kfymax) , enneflwy (kfymax)},

enleflwy (kfvmax) , enneflwx {kfxmax) , enleflwx (kixnax}

real lomorm, kynorm, ekkold{kxml, kyml}, le, 1p, lecut, lemid, lpout,
lpmid, ratio2, edenold{kanl, kyml) , ue, emass, dfirst, xhos

COMmOn /parms/

vl,gamal,gamaZ, epsi, le, 1p, kxg, kyy, koomormm, kynorm, kxs, kys,

mwrt, nwrs, £, dt, tol, ek, gamk, flux,ncl, ratio, psil, 4, dmid, dout, 1o,
init, fireal, flima, ekkold, emkold, £lexold, flowex, flowey, gamal,
flowexl, flowexn, floweyl, flowayn, Ipmid, Ipout, lemid, Ieout, phase,
£lpxold, £lowpx, £lowpy, £lowpxl, £lowpxn, flowpyl, edenold, nue,

amp, flowmm, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
ennflwy, eniflwy, ermfiwx, entflwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enneflwx, enleflwx

common /arrays/

psi,den

comnon /arrdim/

nt,ntstep, pésu

complex uikxml, kyml), v ool lomd ) wriocn, womonn,
wxllocp, wvxlnonp
integer loxl
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¢ intialization

+ flowpy (kfymax},
¢ Drocess + flowpxl (kfxmex) , Fiovwpmmn (kixmax) , {1lowpyl (kfymax) , Lioweyn (kymast) ,
+ Flowesd (kfxmax) , flowexn {kixmax) , floweyl (kfvmax) , floweyn (kiymax),
wxlocp={0.0,0.0} + flowex (kfxmax) , flowey (kfymas) , enflows {kixmax) , enflowy (kfymax),
waonp=(0.0,6.0} + ermflwy (kfymax) , enlf lwy (kfymax) , ennflwx (kExmax}, enlflwx (kfxrax) ,
ii=1 + eneflowx{kfxmax) ,eneflowy (kfymax}, ennef lwy (kivmax),
i2=loml oo + enleflwy [kfymax) , ennef lwx (kfxmax) , enleflwx (kixmax)
if (oot .gt. 0} then real lomorm, kvnorm, ekkold (keanl, kyml) | le, 1p, 1eout, lemid, Ipout,
iizkoote ]l + Ilpmid, ratioZ, edenold{lomi, kynd}, nue, emass, dfirst, rhes
i2=loml common /parms/
end if + v1,gamal, gamaZ2, epsi. le, Ip, kxg, kyg, ksmorm, kynorm, kxs, kys,
do 20 i=311,i2 + pwrt,nwrs, t,dt, tol, ek, gamk, flux, nel, ratio, psi0, d, dmid, doul, 1o,
do 20 d=kyy+l, lyml + init,flreal, flima,ekkold, emkold, fiexold, flowex, flowey, gamal,
koil=i-Yoan2 + flowexl, flowexn, floweyl, floweyn, Ipmid, lpout, lemid, leout, phase,
kyl=j-lym2 + flpxold, fiowpx, flowpy, £lowpxl, flowpm, flowpyl, edenold, nue,
kxmod=looi-kexl + anp, flowpyn, en, ganen, ed, et, ekold, enold, enflowx, enflowy, emass,
lymod=kKyy-kyl + emmflwy, enlflwy, ennflwe, enlfiwx, eneflowx, eneflowy, dfirst, rhos,
Jomn=koomz + kxmod + ermeflwy, enlefiwy, anneflwx, enlef lwx
kym=lym2-+kymod common /ArTaYS/
+ psi,den
akl=kul**2+kyl**2 comuon /arrdim/
ak=lomod* *2+kymod**2 + nt,ntstep,pesu
real flowprx (kfmax), £lowpix (kfxnax), flowpxy {kfymax},
if({{izbs{kxl} .gt. kxl1) .or. (iabs{loot-kxl)} .gt. kx1)}.and. + Flowpiy (kfymax) , fiwprxl (kfxmax) , £iwprm (kixmax) , Flwpix]) (kfxmax},
+ {{iabs{lotl-lol}.le.loc}).or. (iabs{ {loox-kxl}~kx1).1le.loch ) Jthen ‘ + flwpim(kfmnax),flwpxyl(kfymax),flwpxyn{kfmnax),
+ Flwpiyl{kfymax), Liwplyn (kfymax)
¢ convolute
do 30 m=1,kiamax
wxllocp={(u(i, 3} *v ko, kym) *akl-u (Joan, kym} *v (1,31 * flowprx(m) =real (flowpxim} } /real (nwrs)
+ ak} *lomorm* igmorm flowpix(m)=real (enflowx(m) ) /real (nwrs)
wxllocp=wxllocp*komorm* kynom* (kyl*loo-kxl*kyy} *.5 . flwprxl(m)=real (flowpxl(m}}/real (nwrs)
wxlocp=wxlocp+wxllocp T flwprmim) =real (flowpamim) } /real (nwrs)
flwpixl {m)=real (enlflwx{m))/real (nwrs}
elseif ({{iabs(lodl) .gt. ki) .or. (iabs(koc-lod) .gt. kxd)).and. flwpixn (m) =real (ennfiwx(m) ) /real (nwrs}
+  ({{iabs{kl-kxl).gt.loc).or. {iabs { (kxx-kx1)-kx1) .gt.loc) ) }then 30 continue
wxinonp= (u{i, 3} *v (lom, kym) *akl-u ke, kym) *v (i, §}¥
+ ak)} *lomorm* kynorm do 50 ml=l, kEymas
wxinonp=wxinonp* komorm* kynorm* (kyi*loot-lod *kyy}* . 5 flowpry (ml)=real {flowpy (ml) } /real (nwrs)
WHTNOND=WRTIOTID+wWK lnonp flowpiy (mi}=real (enflowy (ml)) /real (nwrs}
flwpryl (mi)=real {(flowpylind))/real {nwrs)
endif : flwpryn{ml) =real (flowpyn(ml) ) /real {(nwrs)
20 contime flwpiyl{ml}=real {enlflwy (mi}} /real (nwrs)
flwpiyn(ml)=real (emnfliwy {ml}}/real (owrs)
return 50 continue
end write(15, *} (flowprxim} , m=1, kixmnax) , {flowpry (m) m=1, kfymax),

+  {(flwprxlim),m=1, kfxmax) , {flwpzyl (m) =1, kfymax},
+  {(flwprm (m) , m=l, kfxanax) , (£lwpryn(m} =l kEymax)
write{16,*) {flowpixim) ,m=1, kfymax}, (£lowply (m} ,m=l, kfvman),
CEREEE AR AR AR RN R AR FE IR AR IR R TR A AR AH LA TFRETXCREE +  (flwpixl(m),m=1,xfxmax), (Eiwpiviim}, m=1, kfymax),
subroutine writflwp +  (flwpixn(m),m=1, kfxmax), {£iwpiys (m), m=1, kfymax}
parameter {(jomax=19, kymax=16, purl =2 *loqax+1, kyml=2*kymao+1,
+ ka2=lognascti, kym2=kymax+ 1, nm=4* (Joanl ¥ kymaxelommax)
+ kfwmax=loamax-1, kiymax=kvmax-1) do 20 =1, kixmax
carplex psi{kooml, kgml), den(kand, kymi), £lowpx (kfxmax), do 20 jl=1, kfymax
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flowpx(3)={0.,0.) ¢ perturb psi
flowpy (j1}=(0.,0.) al=0,
flowpxl{i}=1{0.,0.) a2=0.
flowpxn{ii={0.,0.) 11=1
flowpyl(jL1)=10.,0.) i2=}oan2
flowpyn (1)=1(0.,0.) Jl=kym2
J2=kyml
enflowx{i)=(0.,0.) iflag=-10
enlflwx{j)}=(0.,0.} c for flat initial profile
ennflwx{i)={(0.,0.) if {init .eg. 1l)then
enflowy (§1)={0.,0.) 10 do 20 i=i1,3i2
enlflwy (i1)=(0.,0.) xk=kxnoxm* {i-lomm2)
ermflwy (31)=(0.,0.} do 20 j=ji,iz
vkakynorm* { §-kym2}
20 continue ak=sqgrt (kX *24yk**2)
if ((iabs{i-loan2) .eq. 3 .and. iabs(j-kym2) .le. 3} .or.
200 format (50(el2.4, Ix}) {iabs(j-kym2) .eg. 3 .and. iabs{i-la2) .le. 3))then
return psi(i,j}=cmplx(1000.*£flreal, 1000.*£1lima)
den(i,jl=cmplx(1000.*flreal, 1000.*£1lima)
end elge
pei (i, j)=cmplx (Flreal, fiima)
Gen (i, j)=cwplx(flreal, flima)
endif
CFFRERRFERRXA IR AR T RE I AR R A IR RKIAK KRR AR AR R KRR R IR 1f (i .eg. ka2 .and. 3 .eg. kym2) goto 20
subroutine pert psi{2*lom2-1i, 2*kym2-j)=conig(psi{i,j}}
parameter (lomax=10, kymax=10, loanl=2*logaax+ 1, kyml=2*kymax+1, den {2*lon2-1, 2 kyn2-j) =conjg {den(i, 3} }
+ Jound =keanax+ 1, kym2=kymax+1, nn=4* (knl *kymace+ koanax) , 20 contimme
+ kfxamax=loaax-1, xEymax=kymax-1} if(xk Leg. lomax*lomorm .and. vk .eqg. kymax*kynorm)goto 30
complex psi{loamd, kyml), den{loanl, kymd) , £lowpx {kfxmax), il=kean2+1
+ £lowpy (kfvmax), i2=kanl
+ flowpxl (kfxmax}, flowpxn (kfxmax) , £lowpyl {(kfymax) , flowpyn (kfymax), Gl=ioym2+1
+ flowex] (kfxmax) , flowexn (kfxmax) , flowey {kfymax) , floweyn (kfymax) , gota 10
+ flowex (kfxmax) , flowey (kfymax)  enflowx (kfxmax}  enflowy {kfymax}, c for regular peaked initial profile
+ ennflwy (kfymax), enlfliwy (kfymax) , ennflwx {kfxmax) , enif Iwx (kfxmax) , elseif{init .eg. 2} then
+ eneflowx (kfxmax) , enefliowy {kfymax), ermefliwy {kfymax), 11 do 21 i=i1,i2
+ enleflwy (kfymax}, enneflwx{kixmax) , enleflwx{kixmax) xk=ko@morm* {1i-kxm2}
real lomorm, kynorm, ekkold(loanl, kyml), 1e, 1p, leout, lemid, 1pout, do 21 j=j1,32
+ Ipmid, ratio?, edenold{loanl, kyml) , nue, emass, dfirst, rhos vkzkynorm®* {j-kym2)
CONEOR /parns/ akssgrt (xk**2+vk**2}
+ vi,gamal,gama2, epsi, le, 1p, kxg, kg, kmorm, kynorm, kxs, ky's, al=al+psid
+ mwrt,nwrs, t,dt, tol, ek, gamk, £lux,ncl, ratio, psil, d, dwmid, dout, loc, psi(i,j)=ratio*amplx(al,.al)
+ init, flreal, flima, ekkold, emkold, flexold, flowex, flowey, gamal, den{i,j)=ratio*cmpixial,al)
+ flowexl, flowesm, floweyl, floweyn, lpmid, Ipout, lamid, leout  phasze, if (1 .eqg. 2 Land. 3 .eg. kym2) goto 21
+ Llpxold, flowps, Llowpy, Llowpxd, flowpsm, flowpyl, edenold, nue, psi{2*kxm2-1, 2*%kym2—7 ) =conig{psi(i, )}
+ amp, £lowpyn, en, gamen, ed, et , ekold, encld, enflowx, enflowy, emass, den{2*loa2-i, 2*kym2~7 } =conjg{den(i,j))
+ emnflwy, enlflwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos, 21 continue
+ enneflwy, enleflwy, enneflwx, enleflwx, pulhat, Jopul, kypul, if(xk .eg. lomax*kxnorm .and. vk .eqg. kymax*kynorm)goto 30
+ ratioZ,kbreak 11=kxm2+1
common /arrays/ i2=koand
+ psi,den Fl=kym2+1
common /arrdim/ goto 11
+ nt,ntstep,pesu
¢ for peaked initial profile with random phases
external ranl elseif(init .eg. 2lthen
¢ initializaticn cfpp$ cncall

12z do 22 i=11,1i2
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c for
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*k—kanores {1-koand )
do 22 3=3i,3i2
yik=kynorm* (§-kym2)
akzsqrt (330 * 24y k**2)
al=psid/ (1. +ak¥*ratio)
aZ=al*2.*s5in(2.*3.141592654*ranl {iflag))
al=sqgrtilabs(2.*al**2-a2%%2))
ad=psil/(1.+ak**ratic)
aS=ad*2,*sin(2.*3.1415%2654*ranl {iflag))
ab=sqrt (abs(2.*ad**2-a5%*2))

psif{i,j)=1.*crplx{a3, a2}
den(i,jl=1.*amplx{at,as}
if {1 .eq. kxmZ .and. J .eg. kym2) goto 22
pei(2* a2 -1, 2%kym2 -3 ) =conig (psi{i, }))
den{2*kwm2-1, 2*kym2-3 ) =conijg (den{i,j))
continue
if{xk .eg. lomax*kmorm  .and. vk .eg. kymax*kymorm)gotc 30
il=lom2+1
12=}oanl
Jl=kym2+1
goto 12

restart from file initspec
elseif (init .eg. 4)then
open {20, file="initspec', status="unknown'}

do 44 i=1,kanl
read{20,*) (psi{i, 3}, 3=1,kymi}

readi20,*) (denii, 3}, 5=1, kyml}

continue

¢ for restart from file initspec with pulse of height pulhgt and

c in position kypul and kpul (the pulse is a band)

45

46

elseif (init .eqg. Sithen
open {20, file='initspec', status="'unknown'}

do 45 i=1,kcanl
read(20,*} (psi(i, 4.7
read (20, *) {den({i, 3}, 3]
continue

do 46 i=1,load
46 9=1,kyml

if({iabs(i-lom2) .eqg. kepul .and. ilabs{j-kym2) .le. kypul) .or.
(iabs{i-kym2)} .eqg. kypul .and. iabs{i-lom2) .le. logul)lthen

psi{i,3)=psi(i,])*pulhgt

den(i,it=den(i, j}*pulhgt

else

psi{i,ji=psi{i,jI*1

den(i,ji=den(i,ji*1

endi £

cont inue

¢  for peaked initial profile with random phases with 2 slopes
elseif {init .eg. 6)then

cfpp$ cncall

52

62

30

C*******i****************'k*‘k*********************ts}t*
function ranl{idum)
dimension r{97;}
parameter (ml=259200, 2a1=714]1, ici=54773,xml=3_8580247e-6}
parameter (m2=134456,31a2=8121,ic2=28411, m2=7.4373773e-6}
parameter (m3=243000,3ia3=4561,1c3=51349}

bl={real (kbreak) ) **(raticz-ratio}
do 62 i=il,i2

xk=komorm* (1L -kxm2)
do 62 j=il,32

vk=kynomm* (J-kym2 }

ak=sort {(xK**2+yk**2)

1f{{igbs{i-lom2) .le. kbreak) .and.

{iabs(j-kym2) .le. kbreak))then

al=psil/ {1.+ak**ratio)
a2=al*2.*s5in{2.*3.141592654%ranl (iflag) )
aldz=ggri{abs{2.*al**2-a2**2})

pal (1,3} =1 *cmplix(ald, a2)
denfi,j)=1.*cplx{al, a2)

else

ad=pl*psid/{1.+ak**ratio2)
aS=ad*2.*sin{2.*3.141592654*ranl {iflag)}
ab=sart {abs{2.*ad**2-a%**2})
psif{i,J)=1.*cplx{ab,as)
den{i,j)=1.*cmplx{ak,al)

endif

if {i .eq. a2 .and. j .eqg. kymd) goto 62

psi (2% kxm2 -1, 2% kyn2-9 Y =conjgl{pei (i, 3))
den(2*kun2-1, 2*kym2-j ) =conjgiden{i, )}

cont inue
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ifi{xk .eg. kxnaxtkxnorm .and. vk .eq. kymax*kynorm)goto 30

il=kxm2+1
iZ=}oml
Ji=kym2+1
goto 52
endif

return
end

ta 1ff 70/

if (idmrm ib.0.or.iff.eqg.0} then

iff=]1
ixi=mod{ici~idum, ml}
ixi=mod{ial*ixl+icl,ml}
iwZ-mod{ixl, m2}
ixi=mod{ial*ixl+icl,mi}
ix3=mod {ixl, m3)
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do 11 j=1,97
isl=mod (ial*ixi+icl, md}
ixZ=mod{ia2*ixZ+ic2, m2}
r{i)=(fleat {ix1l)+float (ix2}*rm2) *rml
contine
idum=1
endif
ixl=mod (ial*ixli+icl, ml}
ix2=mod (1a2*ix2+ic2, m2)
ix3=mod (ia3*ix3+ic3, m3)
F=l+{97*ix3}/m3
if(j.gt.97.0r.3.1t. 1)pause
ranlz=xr(3)
r{j={float (ixl}+float {ix2) *rm2) *xml
return
end

c***‘k*‘k*'9rt*******'k********'k'k********Q*i**‘k***********
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subroutine psilin(dnl,u,v,low, kyy)

parameter {loanax=10, kymax=10, kel =2*komax+1, kymls=2*kymax+l,

o2 =lomax+1, kym2=kymaxs+ 1, in=4* (Joand *kymax+komax] ,
kExmay=lomax—1, kfymax=kymax-1)

complex psi{koaul, kyml}, den (Joaul, kyml}, flowpx (kfxmax) ,

flowpy {kfymax) ,

Flowpxl (kfxmax) , £ Lowpxn (kfxmax} , £lowoyl (kfymax} , flowpyn (kfymax),
flowexl {kSxmax) , £ lowexn (kanax) , flowey] (kfymax} , floweyn {kfymax} ,
flowex (kfxmax) , £lowey (kfymax) , enflows{kixmax}, enflowy (kfymax),
ermf lwy (kfymax) , enlflwy (kfymax} , ennflwx (kfxmax), enlfiwx{kfxmax},
eneflowx (kfxmax} , eneflowy (kfymax) , enneflwy (kfymax) ,

enleflwy (kfymax) , enneflwx{kixmax) , enleflws {kixmax)

real lomorm, kymorm, ekkold{keml, kymd ), ie, Ip, leout, lemid, Ipout,
lpmid, ratio2, edenold (kxml, kyml) ,nue, emass, dfirst,rhos

cormon /parms/

v1,gamal,gama?, epsi, le, Ip, kg, kvg, Jomorm, kynorm, kxs, kys,
ot , owrs, t, dt, tol, ek, gamk, flux, ncl, ratio, psiQ, &, dmid, dout, Loc,
init,fireal, flima, ekkeold, emkold, fiexold, flowex, flowey, gama3,
flowexl, flowexn, Flowevl, floweyn, lpmid, lpout, lemid, leout, phase,
£1pxold, flowpx, £lowpy, flowpxl, £lowmam, £lowpyl, edenold, nue,

ap, £lowpyn, en, gamen, ed, et , ekold, enold, enflowx, enflowy, emass,
ennflwy, enlfliwy, ennflwx, enl flwx, eneflowx, eneflowy, dfirst, rhos,
emnefiwy, enleflwy, enneflwx, enleflwx

common Jarrays/

psi,den

common /arrdim/

nt,ntstep, pesu

commplex u, ic,dnl, v

¢ initialization

ic=(0.,1.)

sck=komormmF kex

yk=kynorm*kyy

if (iabs(kyv) .le. kyg .and. iabsi{lcod) .le. kxg) then

¢ construct linear portion

gl=gamal
di=dfirst*nue

cC
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dnl=-1.%ic*vk*vli*u + dl*sgrt{epsi)*v-gl*a
dnl=dnl+ic*vi*sgrt {(epsi) *d*vk*y - nue*sgrt{epsii*u

elseif(iabs (iyv) .gt. kys .or. labs{low} .gt. kxslthen

¢ construct iinear portion

gl-gamal

dl=dout *nue

dnl=-1.%ic*vk*vi*u - gleu* {yk**2+xke*2}**2+dl*sgrt {epsi) *v
dnl=dnl+ic*vi*sgrt {epsi) *d*vk*u- nue*sqgrt {epsi)*u

else

¢ construct linear portion

gl=gama2

dl=dmid*nue

dnl=-1.%ic*vk*vitn - glru* (yk**2+xk**2) **2+dl*aqrt {epsi}¥v
dni=dnl+ic*viraqrt (epsi) *d*yvk*u- nue*sgre (epsi)*u

endif

return
end

c***‘k*****Y***********i*******‘k**************
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subroutine fpsi (ks ky,u, v, psikp)

parameter {Jomax=10, kymax=10, loanl=2*loanax+1, kyml=2*kymax+1,

Yomm2 =komax+1, kyme=kymax+1, mn=4* {Joant *kymax+k=max) ,
kfxmar=kxmax-1, kfymax=kymax-1)

conplex psi(koad, kyml) , den {(doank, kymd ), £lowpx (kfxmax) ,

flowpy (kEymax) ,

flowpxd {kfxanax) , flowpxn {kfxmax}, flowpyl (kfymax}, flowpyn {kfymax} ,
Flowexl {kfxmax), flowexn (kfxmax}, floweyl (kfymax) , floweyn (kfymax},
flowex {kfxmax) , flowey (kfymax}, enflowx (kfxmax) , enflowy (kfymax),
ennf lwy (kfymax) , sniflwy (kfymax) , ennflwx (kfxmeaot) , enlfIwx (kfxmax} ,
enef lowx {kfxmax) , eneflowy {kfymax) , enneflwy (kiymax),

enleflwy (kfymax}, enmeflwx {(kfxmax) , enleflw {kixmax)

real kmorm, kynorm, ekkold{ksanl, kymi), 12, 1p, leout, lemid, 1pout,
lpmid, ratie2, edenold (kxml, kyml) , ee, emass, dfirst, rhos

common /parms/

vl,gamal,gama?, epsi, le, 1p, kg, kya, ko, kynorm, kxs, kys,

nwrt, nwrs, t,dE, tol, ek, gamk, flux,ncl, ratio, psi0, 4, dndd, dout, loc,
init, flreal, flima, ekkold, emkold, flexold, flowex; flowey, gamasl,
flowexl, flowexm, floweyl, floweyn, lpmid, Ipout, lemid, leout, phase,
flpxold, flowpx, £lowpy, £lowox), £lowpxn, flowpyl, edenold, nue,

arrp, £lowpyn, en, gamen, ed, et , ekold, enold, enflows, enflowy, emass,
ennflwy, enlflwy, ennflwx, enlflwx, enefliowx, eneflowy, dfirst, rhos,
ermel 1wy, enleflwy, enneflwx, enlaflwx

common /arrays/

psi,den

common /arrdim/

nt, ntsiep, paesu

corplex u{ksml, kyml}, vikoul, kymi}, psikp, dn, dnl, pin, din,
anl,dn2, ic

ic=(0.,1.)

x*k=lomorm* kot

vik=kynormn*ky

calculate dn/dx=psikp atb kx, ky

pin=u{lrkom?, ky+kym2 )
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Airsw (oo kom?, ky+kvm? )
aklzl.+ {XK**2+yx**2)*rhos**2

call psilin(dnl, pin,din, k=, ky}
call convz{u,u, k%, ky,dn2)
pslkp=dni-1p*d* . 5*dn2
psikp=psikp/ ((1.~sgrt{epsi}) *akl)

return
end

c*i’*‘k*****‘k*‘k'k‘A"i‘*‘k‘k‘k'k*****t******************
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subroutine fden(kx, ky,u,v,dni)

parameter (komax=10, kymax=10, ool =2*kxmaxc+1, kyml=2*kymax+1,

o2 =loaaax+ 1, kym2=kymax+ 1, nn=4* {loanl * kymax+ioamax} ,
kfrmax=tomax-1, kfymax=lgmax-1}

complex psiiloml, kyml), den(kxanl, kyrel) , £lowps (kfxmax) ,

£lowryy {kEymax) ,

flowoxl (kfxaax) , flowoym (kfxmax) , £lowpyl (kfymax) , £lowpyn (kfymax) ,
flowexl (kfxmax), flowerm (kfxmax) , floweyl (kfymax) , floweyn (kfymax},
flowex (kfxmax) , £lowey (kiyvmax) , enflowx {kfxmax) , enflowy (kfyvmax),
enm £ iwy (kfymax} , enlflwy (kfymax) , ennf Iwx {(kfxmax) , enlflwx (kfxmax) ,
eneflowx {(kfxmax) , eneflowy {kfyvmax), enneflwy (kymax},

enleflwy (kfymax), emneflwx{kfxmax), enleflwx (kfxnax}

real kmorm, kynorm, ekkold{kxml, kvml), e, 1p, lecut, lemid, ipout,
ipmid, ratic?, edenold (kxml, kyml) , nue, emass, dfirst, rhos

COMmOn: /parms/

vl,gamal,gama2, epsi, le, 1p, kxg, kvyg, lomorm, kynierm, kxs, ky's,

owrt, nwrs, &, dt, tol, ek, gamk, flux, ncl, ratio,psil, d, dmid, dout, loc,
init, flreal, flima, ekkold, emkold, £lexold, flowesx, flowey, gamas,
flowex]l, flowexm, floweyl, flowevn, lpmid, Ipout, lemid, leout, phase,
£lpold, fiowpx, £lowpy, £lowpxl, flowmm, flowpyl, edenold, nue,

aro, £lowpyn, en, gamen, ed, et , ekold, enold, enflowx, enflowy, emass,
ennflwy, enlflwy, emnflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enmef Iwx, enleflwx

common farrays/

psi,den

comnon /arrdin/

nt,ntstep, pesu

complex u{load,kyml), v (koonl, kymi), pin, din, psikp, dnl, dnl, ic

¢ initialization

ic={0.,1.}

ykskynorm*ky

iz { ks loa?, lr+lem )
din=v {jowlom?, ky+kym2)

c construct linear portion

dl=d
Ani={-1.*ic*vk*Qi*v1l*pin + nue*pin - nue*din)/emass

call comviu, v, k<, ky,dni)
dnl=dnl-le*d* . 5*cnl

C*‘k*‘k‘k
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c init

19¢

return
aend
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subroutine fcnl(neg,x.y.vyprime)
parameter (kemax=10, kymax=10, koanl=2*kxmnax+1, kyml=2*kgymax+1,
kxri2zlomnax+ 1, kym2=kymax+1, on=4* {Jomd *kymax+lomax) ,
kfxmax=kxmax-1, kfymax=kymax-~1}
complex psi{loanl, kgyml), den{koand, kyml) , £lowpx (kfsmax) ,
£lowpy (kfymax),
flowpxl (kfxmax) , flowpsxn (kfxmax) , flowpyl {kfymax) , £lowpyn (kfymax) ,
flowex] {(kfxmax) , flowexn {kfxmax) , flowayl (kfymax) , floweyn (kfymax},
flowex (kfxmax) , flowey (kfymax) , enflowx {kfxmax) , enflowy (kfymax) ,
ennf 1wy (kEymax) , eniflwy (cfymas) , ennf lwx (kfxmax) , enl £lwx (kfxmax}
eneflowx (kfxmax), eneflowy (kfvmax) , emmeflwy (kiymax),
anleflwy {kfymax) , enneflwx (kfxmax) , enleflwx (kixmax}
real kmorm, kynomm, ekkold (loml, kyml), Le, 1p, leout, lamid, lpout,
1pmid, ratio?, edenold{}oml, kyml} , nue, emass, dfirst, rhos
Common /parms/
v1l,gamal,gama?, epsi, le, 1p, kog, kg, ketnorm, kynorm, ks, kys,
owrt, nwrs, t,dt, tol, ek, gamk, £lux, ncl, ratio, psi0, d, dmid, dout, loc,
init, flreal, flima, ekkold, emkolid, £1exold, flowex, flowey, gama3l,
flowexl, flowexn, £loweyl, £ loweyn, lpmid, 1pout, lemid, leout, phase,
Flpxold, flowpx, £lowpy, £lowpxl, £lowpsn, £lowpyl, edenold, nue,
arp, Flowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
ermf lwy, enl fiwy, enmflwx, enlflwx, enaflowsx, eneflowy, dfirst, rhos,
emneflwy, enleflwy, enneflwx, enleflwx
common /arrays/
Dsi,den
common /arrdim/
nt., ntatep, pesu
real v (nn},yprime{nn}
complex psikp,nkp,u{lkad, kyml) , denkp, v{loml, kyml),
pin,din

ialization
kount=0
kount I =koml * kymax+koanax
kountd=2* {koanl *ymax+koanax)
kountGl=3* (kxml * koymax-+keomax )

¢ convert ¥y to psi,den

call invert (v,u,v}

C get vyprime

10

¢ get

il1=2

12=komnax

31=1

S2=kom2

do 20 i=3i1,1i2

ke -loan?
do 20 3=31,32
dk=7-1

kount=kount+1
dn/de=fpsi
pin=u(ik+kxm2, jkekyn2)
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din=v{ik+loa2, Jk+kem )

call fpsilik, ik, u,v,psikp)

call fden(ik,ik,u.,v,denkp)

vprime (kount)=real (psikp)

vprime (kount+kountl) =aimag {(psikp)
yprime (kount+kountd) =real {denkp)
yorime {kount+kountdl) =aimag {denkp)

continue
if (ik .eg. lomax .and. jk .eqg. kymax) goto 30
11 s=kxm2
1Z2=kounl
31=2
goto 10

return
end

C************ft*******k)\'**"k**'k**‘k**********tt*********
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subroutine fom2{neq,x,y, ml,m,pd, nrpd)
parameter (loamax=10, kymax=10, kxml=2*kcanax+1, kyml=2*kymax+1,
Yoxprid s kexmacer 1, Ky =kgymaset 1, nn=4% ol * loymasc+ kommas)
kfmare=koanax-1, kfymax=kymax-1}
complex psi(kxnd, kyml), den(loal, kyml) , £lowps {kfxmax},
£lowpy (kfymax),
flowpx) (kfxmax) , flowpxn (kfxmas) , £lowpyl (kfymax) , flowpyn (kfymax) .
Flowexl (kfxmax) , £lowexn (kfxmasx) , £loweyl {kfymax) , £loweyn (kfymax) ,
flowex (kfxnax) , flowey (kfymax) , enflowx (kfxmax) , enflowy {kfymax},
ennflwy (kfymax) , enlflwy (kfymax) , ennfiwe{kfxmax) , énd £Iws (kfxmax}) ,
eneflowx {(kfxmax) , eneficwy {kfymax) , enneflwy (kfymax},
enleflwy (kfymax), emnef lwx {kfxmax) , enlef lwx (kfxmax)
real lomeorm, kynorm, ekkold (loanl, kyml}, le, Ip, lecut, lemid, 1pout,
lpmid, ratio?, edenold (kanl, kyml)  nue, enass, dfirst, rhos
commnon /parms/
vi,gamal,gama?, epsi, le, 1o, kxg, kyg ., keqorm, kynorm, kxs, kys,
nwrt, mwrs, t, at, tol, ek, gank, flux,ncl, ratio, psit, d, dmid, dout, loc,
init, flreal, £lima, ekkold, enkold, flexeld, flowex, flowey, gamal,
flowex]l, flowexn, floweyl, flowayn, lpmid, Ipout, lemid, leout, phase,
£lpxold, flowpx, flowpy, £lowpxl, flowpsm, flowpyl, edenold, nue,
amp, £1lowpyn, en, gamen, ed, et, ekold, encid, enflowx, enfiowy, emass,
emnflwy, enlfiwy, ennfiwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
ermellwy, enleflwy, ennefliwxe, enlefiwx
COmmOn /arrays/
psi den
common /arrdim/
nt  ntstep, pesu

integer mm
real x,v(nmn},pdinrpd,mn}, g
complex u{loml, kyml),viloant, kymi)

¢ the jacobian
c initialization

kount=0
kountms=koanl * kgymass kommax

kountd=2* (ool *kymay+iomax)
kount dm=3* koot *kyraax+ioamax)
Iount=0

lountm=loanl *kymas+loanax
Lountd=2* (loanl *kymesi+ kounax )
Tountdm=3* (Jooul *kymax+loanax)
ab=1./{1.-sgrti{epsi)}

call invertiv,u,v)

< Dprocess

55

25

mi=1
m2=kxmax
ni=1
n2=k

do 60 m=mi,m2
o= {m-Yoan2 ) *lomorm
do 50 n=nl,n2
ky=(n-1) *}ynorm
kount =0
lount=lount+l
do 30 i=il,i2
koxl= (L -koan2 ) *Rxaorm
do 20 j=j1,32
kyl={(j-1}*kynorm
kount=kount+1
Ioarr=m
kyarr=n+kymax
kxlarr=1
kylarr=j+kymnax
oxarr=kxarr-kxlarr
kyvarr=kyarr-kylarx
abl=ab/ (1.+{lox*2+ky**2 ) *rhog**2) -
if {iabs(ky) .le. kyg .and. iabs(kx) .le. kxg)then
g=gamal
di=dfirst*nue
elseif (iabstky) .gt. kys .or. iabs(kx) .gt. kxs)then
g:gamaB*(ky**2+kx**2)**2
dl=dout*nue

else
gugama* (ky *r2+kork v 22
dl=dmid*nue

endif

akl=lotl**2+kr1**2
aks (koe-kx1} ** 2+ (Jor-kyl) **2

if{{m .eg. 1) .and. (n .eqg. j)lthen
pd (lount, kount )= (-1, *g- nue*sgrt {epsi)) *abl

pd{lount, kount+kountm) = (1. *vi*ky-sgrt (epsi) *dl*ky) *abl
pd{lount, kount+kountd) = {sqrt {epsi) *nue) *abl

192
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pd{ lount, kount+kountdm) =0.

pd{lount+lountd, kount)={~1.*v1*ky+scrt {epsi} *Al*ky) *abl
d (lount < lountd, kount+kountm) = (-1.*g- mus*sqgrt (epsi)) *abl
pd{lount+lountd, kount+kountd) =0.

pd{lount+lountd, kount+kountdm) = (sgrt {epsi) *nue) *abl

pd {(lount+Llountm, kount )= 1. *nue
pd{lount+lountm, kount+kountm) =1, *vi*d*ky /emass
pd{lount+lountm, kount+kountd} =-1. *nue/emass

pd lount +lountm, kount+kountdm) =0.

pd{lount+lountdm, kownt ) =~1 . *v1*d*ky/emass
pdi{lount+lountds, kount+kountm) = 1. *nue
pd{lount+lountdn, kount+kountd) =0.

od (Iount+lountdm, kount+kountdm) =-1. *nua/emass

else

if{(loowrr .le. 0 .or. (kooarr .gh. loool) .or.
{kyvarr .le. 00 .or. {kvyarr .gt. kyml))then

pd{lount, kount } =0.

pd{lount, kount+kountm)=0.
pd{lownt, kount+kountd)=0.
pd{lount, kount+kountdm}=0.

pd {lount+lountm, kount }=0.

pd { lount+lountm, kount+kountm) =0,
pd {1ount+lounom, kount+kountd} =0.
pd ( Lount+ Lountm, kount+kountdm) =0.

pd({lount+lountd, kount } =0.

pd{lount+lountd, kount+kountm) =0.
pd(lount+lountd, kount+kountd} =0.
pd {lount+lountd, kount+kountdm}=0.

pd (Lount+]lountdm, kount ) =0.

A lount+1ountdm, kount +kountm) =0.
pd ( lount-+ lountdm, kount +kountd) =0.
pd {lount+lountdm, kount +kountdm) =0.
else

pd{lount, kount}=|{

+1p*ar . 5% (ol ky-kyl*ked) *real (u{looary, kyyarr) )

*{akl-ak))*abl
od{ lount, kount+kountm) = {

+1p*d* . 5% (ko *ky-ky 1¥kex) *aimag (u (kewarr, kyvarr) )

*{akl-ak))*abl
pd{lount, kount+kountd) =C.
pd (lount, kount+kountdm} =0.
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pd ( Lount+lountm, kount ) =
+1p*d* . 5% (ol *ky-ky 1 *kex) *atmag (u (Joxary, kyyarr) )
*{aki-ak))*abl
pd{lount+lountm, kount+kountm) =(
+ipFd* 5% (locd *ky-kwl*ix) *real (u{lowary, kyyarr))
*{akl-ak))*abl
pd (lount+lountm, kount+kountd)=0.
pa (lount+lountm, kount+kourntdm) =0.

pd(lount+lountd,kount)=(wl.*le*d*.s*(kxl*kyfkyl*kx)
*real (v{looars, kyvarr} ) *3.}

pd (Lount+lountd, kount+kountm) = (-1 . *1le*d* ., 5* (ki *ky-ky 1*kx}
*aimag (v (Jooary, kyvarr}}*2.)

pA{lount+lountd, kount+kountd) = {~1.*1e*d*.5* (kxl*ky-kvl*kx}
*real (u{kowarr, kyyvarr} ) *2.)

pd (lount+lountd, kount +kountdm) = { 1. *1e*d* . 5* (locl *ky-Joyl*koc)
*aimag (u (koosary, kyvarr} ) *2.)

pd{lount+lountdm, kount ) =(-1. *Le*xd*.5* (ol *ky-kyl*kon)
*aimag (vikexary, kyyarr) 1*2.}

pd{lount+lountdm, kount+kountm) = {-1, *le*d*, 5% kol *ky-kyl*kx}
*real (v{koars, kyyvarr) ) *2.)

pd (lount+lountdr, kount+kountd) = {-1. *le*d* . 5* {kotl*ky-ky1*kx)
*aimag (u(koockarr, kyyarr) ) *2. )

P& Lount+ lountdm, kount+kountdm) = {(-1. *1e*d* . 5* {Jocl*ky —ky 1 *kot}
*real (u{koars, kyyarr) ) *2. }

endif
endif

continue

continue

if ({kxlarr .eqg. loml) .and. (kylarr .eg. kyml)lgoto 35
13wk

iZ2=kanl

31=2

goto 25

if {(kxarr .eq. kad) .and. (kyarr .eg. kymli)lgoto 79
il=1
i 2=komax
ji=1
continue
continue
ml=lom2
M2 =koanl
nl=2
goto 55

return
end
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C***t**********xttt**********t******k*******tt***********

subroutine timead

parametar {lomax=10, kymax=10, kxml=2*komax+1, yml=2*kymax+1,
+ kme=lomat L, ymd=kymax+1, nn=4* { ool * ymas+keanax) ,
kfxmax=kanax-1, kfymax=kymax-1)
complex psi(loml, kymi) , den (kxml, kyml}, flowps {kfsxmax),
£lowpy {kiymax) ,
Flowoxl | kfxmax) , £lowpsm (kfxmax) , flowpy 1 (kfymas) , £lowpyn (kfyvmant} .
flowexl (kfxmax) , £lowexn (kfxrax), floweyl (kfyvmax) , floweyn (kfymax) .,
filowex {kfxmax) , £ lowey (kiymax} , enflowx (kfxmax} , enflowy (kfymax},
e flwy (kfvmax) , enlflwy (kfymax) , enndlwx (kixanax) , end £iwx (kExmax)
eneflows {(kSxanax) , enef lowy (kiymax) , enneflwy (kfymax) ,
enleflwy (kfymax), enneflwx (kfxmax) , enleflwx (kixmax)
real lomori, kynorm, ekkold (loml, kyml) , 1e, 1p, leout, lemid, lpout,
lpmid, ratio2, edenold (kxmi, kyml)  nue, emass, dfirst, rhos
Common /parms/
v1,gamal,gama2, epsi, le, 1p, kg, kvg, lomorm, kynorm, kxs, kys,
nwrt , mwrs, t,dt, tol, ek, gamk, £lux,ncl, ratio,psil, d, dmid, dout, loc,
init, flreal, f1ima, ekkold, emkold, £lexold, flowex, £lowey, gamal,
flowexl, flowexn, f loweyl, floweyn, lpmid, Ipout, lemid, leout ,phase,
flpxold, fiowpx, flowpy, £lowpxl, £lowpxm, £lowpyl, edenold, nue,
am, £lowpyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
emflwy, enlflwy, ennf Iwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
enmefliwy, enleflwy, enneflwx, enleflwx
common, /arrays/
+ psi,den

common /arrdim/
+ nt,ntstep,pesu

real yvimn),tf, rwork{22+9*nn+nn**2}

integer iwork(20+mm}, liw,lrw

external fonl, fon2

e

R

¢ intislization

liw=1m+20
Trw=22+%*m+nn* *2
if{t .eq. 0.0)then
itask=1

istate=1

iopt=0

mf=21

itol=1
tola=tol*amp
endif

h=dt /100

tf=t+dt

‘¢ convert psi to vy

call convert{psi,den,y)

c timestep

call isode(feml,nn,v, b, tf,itol, tol, tola, itask, istate, iopt, rwork,
+ 1lrw, iwork, 1iw, fcn2, mE)

¢ check for problems

if(istate .le. 0} call endit(istate,xwork{ll)}
writeld, 60)iwork{11l}, iwork{12), Iwork {13}
write{d,*) 'istate = ',istate
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c convert v back to psi

<
60
+

call invert (v,.psi,den)

format{/12h no. steps =,id4, 1ih no. f-s5 =, i4,
11h no. j-s =,i4)

return

end

C****‘k****9-'********************iit*t’:**************

+ o+

L S A S S S T S S N T

+

+

subroutine conviu,v, ko, kyy,w)

parameter {(kxmax=10, kymax=10, oani =2 *lomax+1, kyml=2*kymax+1,
JomZ=lomax+ 1, kym2 =kymax+1, nn=4* (loanl *kymast+loaax} ,
kfrmaxzioanax-1, kfymax=lymax-1}

complex psi(doand, igml), den ffoml, kyml) , £lowpx (kfxmax),

flowpsy {kfymax),

flowpxl (kfxmax}, flowpxn (kfxmax) , flowpyl (kfymax), £lowoyn (kfymax) ,
flowexl {kfxmax} , flowexn (kExmax) , floweyl (kfvimax) , floweyn {kfymax),
flowex (kfxmax) , floway (kfyvmax} , enflowx {kfxmax) , enflowy (kfyvmax) ,
ennflwy {kfymax) , enlflwy (kfymax) , ennf lwx (kfxmax) , enl £ lwx (kixmax),
eneflowx{kfxmax) , eneflowy (kfymax)  emnefiwy {kiymax),

enleflwy (kfyvmax) , enneflwx (kfxmax) , enlef lwx {kfxmax)

real kxnorm, kvnorm, ekkold (domd  kyml) | e, 1p, leout, lamid, lpout,
lpmdd, ratioZ, edenold{koanl, kyml ) nue, emass, dfirst, rhos

Common /parms/

vi,gamal,gama2, epsi, le, 1p, kxg, kyqg, kxnorm, kynorm, kxs, kys,

et s, U, db, tol, ek, gank, flux, nol, ratio, psild, 4, diad, dout, loc,
init, flreal, £limz, ekkold, emkold, flexold, £flowex, flowey, gamal,
flowexl, flowesxm, floweyl, £loweyn, Ipmid, lpout, lemid, lecut, phase,
£lpxold, flowpx, £lowny, flowpxl, £lowpsm, £lowpyl, edenold, nue,

amp, £lowpyn, en, garen, ed, et, ekold, enold, enflowx, enflowy, emass,
ennflwy, enlflwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enneflwx, enleflwx

common /farrays/

psi,den

common: /arrdim/

nt, ntstep, pesu

complesx 1 (koanl, kyml), v{koal, kyml) , w, wl

¢ intializetion
C process

w=(0.0,0.0)
il=1
iZ2=kommli+lom
if {lox .gt. 0) then
il=kxoee T
iZ2=komnl
end if
do 20 i=1l1,i2
do 20 j=lov+l, kyml
Yoed =1~k
kyl=3-kym2
lomod=koo-kxl
kymod=kyy-kyl
Yomm=koa2 +ioanod
Joym=ty 2+ kymod
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¢ convelute

20

wl=({u{i, 3)*v(lom, kym) -u (o, kym *v (1,3} )
wl=wi*lynormt omormr nerm® [yl ricoriodd ¥ gyl ¥ .5
W],

continue

return
end

C‘k*****'k*'k******'k**‘k‘k**')-'*‘k****#k**i***"k*********"k**

+ o+

E

+

+

subroutine conv2{u, v, kxx, kvy, w}

parameter {lomax=10, kymax=10, koanl=2*kxmax+1, kymi=2*kymax+1,
om2=koamax+ 1, kym2=kymax+1, nn=4* {loanl *kymeas+kanax } ,
kfxmax=iomas-1, kfymax=lomax-1}

complex psi{loml, kyml), den (kxml, kyml), £Iowpx {kfxmax) ,

flowpy (kfvmax}, .

flowpxl {kfanax) , Elowpsm (kfxmax) , Tlowpyl (kfymax} , £lowpymn (kfymes) ,
flowexl (kfanax), flowesm (kixmax) , £loweyl (kfymax), floweyn (kfymax),
flowex (kfxmax}, flowey (kfymax) , enflowx (kfxmax) , enflowy (kfymax) ,
ennflwy (kKiymax) , enlflwy {(kfvmax) , ennf Lwx (kfxmax) , enlilwx (kfxmax) ,
eneflows {(kixmax}, eneflowy {kfymax) , enneflwy (kiymax) ,

enleflwy (kfyvmax) , emmef lwx (kfxmax) , enleflux (kixmax)

real lomorm, kynorm, ekkold (koanl, kymt}, le, 1p, lecut, lemid, Ipout,
Ipmid, ratio?, edenold (Jomi, kyml) , nue, emass, dfirst, rhos

cammon /parms/

vi,gamal,gama2, epsi, le, 1p, Xxxg, kvg, kxnorm, kynorm, kxs, ky's,

mwrt . nwrs, t,dt, tol, ek, gamk, £lux, ncl, ratio, psif, &, dnid, dout, loc,
init, flreal, flima, ekkold, emkold, £lesmwld, flowes, flowey, gamas,
flowesl, flowexn, £loweyl, floweyn, lpmid, lpout, lemid, lecut, phase,
£lpxold, fiowpx, £lowpy, £lowpxl, £lowpxn, flowpyl, edenold, nue,

amp, flowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
ennflwy, enlflwy, ennf lwx, enl £ lwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enneflwx, enlef lwx

conmon Jarrays/

psi,den

common /arrdim/

nt,ntstep, pesu

complex uikoml, kyml}, v (kanl, kyml}, w,wl

¢ intialization
¢ process

w={0.0,0.0)
il=1
12=loanl+iox
if (oo .gt. 0} then
il=kooe+l
1Z=kxml
end if
do 20 1=11,3i2
do 20 j=kyy+1, kymi
xl=1-loan2
oyl -kym2
lomod=looc-kxnl
oymod=lon kL
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Joxme Yoo + koanod
kym=kyn2+ kymod

akl=lock * ¥ 2+ky1**2
ak=}oanod* * 2+igymod* * 2

c convolute

+

20

wl=(uli, ) *v (o, kym} *aki-u (kxm, kym} *v{i,3)*
ak) *kxnorm* Xynorm
wl=wl*kxmorm* kynorm* (kyl* ookl *kyy 1 *.5
W=w+wl

contirmie

returm
and

c****'K*******‘k***t****‘k**9.‘*i’*******************‘K****

T

P

subroutine invert (y,u,v)

parameter {Jomax=10, kymax=10, oanl=2*joatae 1, kymi=2*kymax+1,

Foan2 =ksmasoe+ 1, kym2 =kymase+ 1, nn=4 * {loant * kymas+ kxmax}
kfxmax=loaax-1, kfymax=kymax-1}

complex psi(lomi,kyml) , den (oaut, kyml) , Elowpx (kfxmax) ,

flowpy (kfymax) ,

flowpxl (kExmax} , £ lowpsa (kfxmax) , £lowpyl (kfymax), Flowpyn {kfymaxl,
flowexl {kfxmax) , £ lowexn (kfxmax} , floweyl {kfymasx) , floweyn (kfymax},
flowex (kfxmax) , flowey (kfymax) , enflowx (kfxmax), enflowy (kfymax) ,
ennflwy (kfymax) , enlflwy {(kfymax) , ennf lwx {(kfxmax) , enlflwx {kixmasx} ,
eneflows (kfxmax) , eneflowy (kfymax) , ennefiwy {kfymax) ,

enleflwy (kfymax) , enneflwx (kfxmax} , enlef lwx (kfxmax)

real kxnorm, kynorm, ekkold {koml, kymt}, 1e, Ip, leout, lemid, lpout,
1pmid, ratio2, edencldiloml, kymi}, nue, emass, dfirst, rhos

common /parns/ '

vl,gamal,gama2, epsi, le, 1p, kg, kyg, Jomorm, kynorm, kxs, ky's,

mwrt, nwrs, t, dt, tol, ek, gamk, £iux, ncl, ratic, psil, &, dmid, dout, Toc,
init, flreal, flima, eklkold, emkold, flexold, £ilowex, flowey, gamal,
flowexl, £lowexn, floweyl, flowsyn, lpmid, lpout, lemid, leout, phase,
fipxold, £lowpx, Slowpy, £lowpxl, flowma, flowoyd, edencld, nue,

arp, £lowpyn, en, gamen, ed, et, ekold, encld, enflowx, enflowy, emass,
ermflwy, enlflwy, ennflwx, enlilwx, eneflowx, eneflowy, dfirst, rhos,
ennefiwy, enleflwy, enneflwx, enlefiwx

cormon /arrays/

psi,den

common: /arrdim/

nt,ntstep, pesu

complex ul{leand, kymi), ul, v{loml, kymd) V2

real y{mm)

¢ initialization

kount=0

koumtm=komd, * kymas+komax
kountd=2* { koanl *kymax+loomax)
kountdm=23* {kanl * kyTasekoamax)

C  Process

il=1
i2=kxmax
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Gi=1
j2=kym2
do 20 i=il,i2

kxarr=1i
do 20 j=31,42
kyarr=kymax+3j
kount=kount+1
ul=crplx (v {(kount ),y (kount+kountm} }
u(kxaxrr, kvarr) =ul
vZ=cmplx {y {kount+kountd) , v (kount+kountdm} }
v(kxarr, kyarr)=v2

ix=koaul-i+1
Ix=kym2-j+1
u{ix, jx}=conjgiul)
v {(ix,jx)=conjg{va}
continue
if {kxarr .eqg. loml .and. kyarr .eq. kvmi)goto 30
il=koo2
iZ=loant
jl=2
goto 10

return
end

c*****************************************‘k****i***

A R T T Tk TREEE R N M S U S

+

+

subrcutine convert (v, v,y

parameter {kxmax=10, kymax:=10, ool =2 *lomnax+1, kyml=2*kymax+1,
Jom2akxmax+ 1, kynZ2=kymax+1, nn=4* {kwml *kymax+kxmax) ,
kfxmax=lommax-1, kfymax=lkymax-1}

complex psi{leml, kymi), dan Goml, kymi) , Flowpx (kfxanax),

£lowpy (kfymax),

£lowpxl (kfxmax}, flowpsm (kfxmax) , flowpyl (kfymax) , flowpyn (kfymax),
£lowex] (kixmax}, flowesm (kfxmax) , £loweyl (kfymax) , floweyn (kfymax} ,
flowex (kfxmax), flowey (kfvmax), enflows (kfxmax}, enflowy (kfymax),
ennflwy (kfvmax} , enlflwy (kfymax) , ennflwx (kfxmax} , enlflwx {kfxmax} ,
eneflowx (kfxmax) , eneflowy (kfymax ), ennef lwy (kfymax) ,

enleflwy (kivmax) , ennef Twe (kfwmax) , enlef 1w (kfanax)

real lkmorm, kynorm, ekiold (keaad, kyml), le, 1p, leout, lemid, ipout,
lpmid, ratioZ2, edencold tkxml, kyml}, e, emass, dfirst, rhos

cormonR /parns,/

vl,gamal,gamaZ, epsi, le, 1p, kxg, kyg, lomorm, kynorm, kxs, kys,

mwrt, nwes, t,do, tol, ek, gamk, £lux, ncl, ratio, psid, d, dmid, dout, loc,
init, flreal, £lima, ekkold, emkold, flexold, flowex, £lowey, gamal,
flowexl, flowexn, fioweyl, floweyn, lpmid, Ipout, lemid, leout, phase,
flpxold, £lowpx, flowoy, flowexd , £lowpxn, flowpyl, edencld, nue,

amp, flowoyn, en, gamen, d, et, ekold, enold, enflowx, enflowy, emass,
ennflwy, enlfliwy, ennflwx, enlflwx, eneflowx, eneflowy, dfirst, rhos,
enneflwy, enleflwy, enneflwx, enleflwx

COmCIl /arrays/

psi,den

common /arrdim/

nt,ntstep, pesu

complex ul{kxml, kymi},ul, viloml, kyml),v2

10

20

30

206

real vi{nn}

initialization

kount=0

Kountm=koanl *losmax+komax
kountd=2* { kxanl * kymax-+koanax)
kountdm=3"* {loanl *kymas+loamax)

process

1i=1

iZ=kxmax

3i=1

j2=kym2 .

do 20 1=i1,i2

ktarr=i
do 20 j=3ji,32
kyarr=kymax+3
kount=kount+1
v (kount }=real {u(lkxarr, kyarr})
v {(kount+kountm) =aimag {u (kxarr, kyarr) )
vy (kount+kountd) =real (vikxarr, kyarr))
v (kount+kountdn) =aimag {v (kxarr, kyarr) )

continue
if(kxarr .eq. loml .and. kyarr .eq. kymi} goto 30
11 =kxm2
iZ=}xd
31=2
goto 10

return
end

C********'x'k*********************‘k**********************

¥+

R

R R

subroutine final

parameter (loamax=10, kymax=10, loml=2*kxmax+1, kymi=2*kymax+1,

lom2 =kxmax+ 1, kyvm2=kymax+1, nn=4%* {kand *kymax+kanax} .

kfxmax=loanax -1, kfymax=lymax-1)

complex psi(kal,kyml}), den(loand, kyml) , £lowpx (kExmax) ,

flowpy (kSymax},

£lowpxl (kfxmax) , filowprm (kfxmax) , flowpyl (kfymax} , flowpyn (kfymax) ,
flowexd (kixmax) , flowexn (kfxmax ), floweyl (kfymax} , floweyn (kfymax),
flowex {(kfxmax) , flowey (kfvimax) , enflows (kfxmax) , enflowy (kfymax) ,
ennflwy (kfymax), enlflvwy (kfvmax) , ennf lwx (kfxmax} , enl e (kfxmax) ,
eneflowx {kfxmax} , eneflowy (kfymax} , ermef lwy {kfymax) ,

enlefliwy {kfymax) , enneflwx (kfxmax} ,enlef 1w (kixmasx}

real kxnorm, Kynorm, ekxold{kanl, kyml), le, ip, lecut, lemid, Ipout,
lpmid, ratioZ, edenold(keanl, kymt ), m:ze, erass, dfirst, rhos

Common /parms/

vl,gamal, gamaz, epsi, le, 1p, kg, kyvg, lomorm, lgymorm, kxs, ky's,

mwrt, Iwrs, £, dt, tol, ek, gamk, flux, ncl, ratio, psif, &, dmid, dout, loc,
init, fireal, fiima, ekkold, emkold, flexold, fiowex, flowey, gamal,
flowexl, flowexn, £lowayl, £loweyn, lpmid, Ipout, lemid, lecut , phase,
flpxold, flowpx, £lowpy, flowpxl, {lowpxn, £lowpyl, edencld, nue,

amp, £lowpyn, en, gamen, ed, et, ekold, enold, enflowx, enflowy, emass,
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+ emnflwy, enlflwy, ennlivx, enlflwx, enefliows, eneflowy, dfirst, rhos,
+ emnefivy, enleflwy, ermeflw, enlel i
COMICn /arrays/
+ psi,den
comnon /arrdimn/
+ nt,ntstep,pesu
write(s, 100}
write (10,100}
100 format (4x, ' das ende’}

retum
end

CEEXRHKAK KA KK T LT AT RAXA S IR A AR I X FF LT AT I A bk Ik k

subroutine plot (Lime,plotl,plot2,plot3)

parameter {}ommax=10, kymax=10, koml=2*kxmax+1, kyml=2*kymax+1,

a2 =kxmax+1, kym2=kymasst+ L, nn=4* (Joml *kymaseioaax) ,
kfxanax=kxmax-1, kfymax=kymax-1}

complex psi(kxml,kyml),den{looul, kyml}, £lowpx (kfxmax) ,

flowpy (kfymax) ,

flowprl {kfxmax) , flowpsm (kfxmax) , £lowpyl (kfymax) , flowpyn (kfymax),
flowexl (kfxmax} , flowexa {(kfxmax) , £loweyl (kfymax} , floweyn (kfymax),
flowex (kfxmax}, flowey (kfymax) , enflowx (kixmax) , enflowy (kfymax),
ennflwy (kfymax) , enlflwy {kfvmax} , emnflwx (kfxmax), enlflwx (kfxmax),
enef lowx (kfxmax) , eneflowy (kfvmax)  ennef lwy (kiymax) ,

enleflwy (kfymax) , enneflwx (kfxmax} , enlef Iwx {kfxmax)

real ¥omozm, kynorm, ekkold(kani, kyml) , le, ip, leout, lemid, lpout,
lpmid, ratio2, edenclid (kowel, loyml}, nue, emass, dfirst, rhos

common  /parms/

vi,gamal,gama?2, epsi, le, 1p, kg, kyy, ketnorm, kynorm, ks, kys,

mwrk , wrs, ©, v, tol, ek, gamk, £lux, ncl, rat io, peil, d, dndd, dout, loc,
init, flreal, flima, ekkold, emkold, flexold, flowex, flowey, gamal,
flowexl, flowexn, flowayl, floweyn, lpmid, ipout, Temid, lecut,phase,
filpxold, flowpx, flowpy, flowpxl, flowesm, flowpyl, edencld, nue,

anp, £lowpyn, en, gamen, ad, et , ekold, encld, enflowx, enf lowy, emass,
ennflwy, enlflwy, ennflwx, enl flux, enefiowx, eneflowy, dfirst, rhos,
emmef lwy, enleflwy, enneflwx, enleflwx

COommon /Arrays/

psi,den

cormmon /arrdim/

nt,ntstep,pesu

real time(4000),ploti{4000;,plet2(4000),

+ plot3 {4000}, ploty (4000, 3)

+ o+
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+

+

do 30 i=1,ntstep
ploty (i, 1)=plotl{i}
ploty {i,2)=plot2 (i}
ploty(i,3)=plo3 (i}

30 continue
¢ replacing the old vax plotting progam with mwmfecc's quikdraw routines
o4 call cpngks
c call ezmwry (Lims, ploty, 4000, 3, 4000,
c + 'energy vs time$’}












