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Abstract

Understanding plasma turbulence has always been a key component of plasma physics re-

search. Plasma microturbulence at the scale of the ion gyroradius and smaller is considered to

be the primary cause of loss of confinement in tokamaks. Thus, understanding microturbulence

and its saturation mechanism is very critical for nuclear fusion.

Over the last decade, a new saturation mechanism of microturbulence has been discovered,

namely saturation by damped modes. Damped modes are stable roots of the plasma dispersion

relation. We look at various aspects of this saturation mechanism in a variety of fluid as well as

kinetic turbulence models. Energy diagnostics are defined and implemented for each model in

order to study damped modes. These models describe vastly different fusion plasmas, but all of

them show saturation by damped modes. Damped modes dissipate energy at almost the same

rate as the energy injection rate of the unstable modes. The peak of this dissipation lies within

the low wavenumber range where the instability also peaks, distinguishing it from the traditional

viscous dissipation mechanism at large wavenumbers. Damped modes are typically found to

be important in saturation when their damping rate is not much stronger than the instability

growth rate. A simple criterion is defined to identify parameter regimes in which damped modes

are important for saturation. It is also shown that quasilinear flux estimates may be unreliable

when damped modes are active in saturation.

The regulation of ion temperature gradient driven (ITG) turbulence by zonal flows is a very

important phenomenon in plasma fusion. Until now it has been explained using the zonal flow-

drift wave shearing paradigm: zonal flow shearing enhances energy transfer from large scale

drift waves to smaller, dissipative scales. However, we show that the zonal flows help transfer

a majority of the energy injected by the unstable modes to the damped modes, leading to

saturation. In order to show this, several new energy transfer diagnostics are developed, both in

a simple fluid model as well as in a fully comprehensive, gyrokinetic model. Although the transfer

to damped modes simultaneously excites smaller scales, a significant fraction of the injected

energy is dissipated by damped modes in the large-scale, unstable region. This transfer occurs

via three-wave interactions that include a zonal flow, an unstable mode and a damped mode.
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These interactions dominate due to their coupling coefficients, a strong zonal flow amplitude and

frequency matching. Frequency matching analysis shows that the nonlinear frequency sum of

such a triplet interaction is the smallest, leading to the largest correlation time and enhanced

energy transfer.

Gyrokinetic models have a slew of damped modes that is analyzed using proper orthogonal

decomposition (POD) modes and linear eigenmodes. A metric is devised to identify which of

these modes are well-resolved. The damping rate turns out to be a useful organizing property of

these modes. Spectra of energy and amplitude attenuation rates of damped modes are calculated,

showing regions of equipartition and power law behavior. It is found that energy is transferred to

damped modes simultaneously, in a parallel manner, over a large range of scales in phase space.

This can lead to a simplified and deeper understanding of how energy is partitioned among the

damped modes in gyrokinetics.
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Chapter 1

Introduction

1.1 Turbulence

Turbulence is often regarded as the most important unsolved problem of classical physics, most

notably by the renowned physicist Richard Feynman [1]. We have a sense of turbulence from

our day to day experiences. Right from the motion of water flowing out of a faucet with high

speed, up to the choppy rides experienced on airplanes, these are all examples of turbulence. We

associate turbulence with chaotic, seemingly random motion in fluids and gases. It is associated

with patterns of flow changing rapidly, compared to human space and time scales.

Humans have been trying to comprehend turbulence for at least five hundred years. In a

famous sketch, Leonardo da Vinci portrayed the motion of water flowing across obstacles and

falling down in a pool. His sketches, shown in Fig. 1.1, bring out the essence of turbulence.

The flow is random and chaotic, containing structures of disparate scales. It is very difficult to

predict what the flow at a particular point would be at a particular time in future.

It is impossible to give an exact mathematical definition for the term turbulence. However,

we can attribute the following characteristics to it [2],

• randomness and irreversibility

• excitation of fluctuations over a broad range of scales
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Figure 1.1: Sketches of turbulence by Leonardo da Vinci. Taken from the webpage :-
http://www.cora.nwra.com/~werne/eos/images/eddy-davinci.jpg
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• exchange of energy between fluctuations excited over the range of scales.

The randomness and irreversibility is related to the chaotic nature of turbulence. Even infinites-

imal changes in initial conditions lead to drastic changes in the flow profile as time goes on. The

large range of scales excited in turbulence gives rise to self similarity. Large eddies drive smaller

eddies, which drive even smaller eddies, and so on, producing a self-similar cascade. Moreover,

these eddies of different scales are constantly exchanging energy amongst themselves, leading to

a very complex behavior.

The mathematical discussion of turbulence almost always starts with the Navier-Stokes equa-

tion for an incompressible flow [3], which is,

∂v

∂t
+ v · ∇v = −∇p

ρ
+ ν∇2

v. (1.1)

It is an equation that describes the time evolution of the velocity field v of a fluid in terms of the

density ρ, pressure p and the kinematic viscosity ν. The Reynolds number is closely associated

with this equation and is defined as Re ≡ vL/ν, where v is the velocity at system length scale L.

Re is basically the ratio of the nonlinear term in the Navier-Stokes equation to the viscous term,

defined for velocity fluctuations at the system scale. When this number is large (practically when

& 106) the flow is turbulent.

Fully analytical treatment of turbulent flow is thought to be impossible. However, one of the

major goals of turbulence research, either analytical or numerical, has always been to identify

simple conceptual principles which can guide our thinking about turbulence. Probably the most

famous, unifying, and simplifying principle in turbulence is Kolmogorov’s 5/3rd law [4], [5], shown

in Fig. 1.2, which plots the energy spectrum as a function of wavenumber. This law applies to

high Reynolds number, three-dimensional, hydrodynamic turbulence. The turbulence is driven

by stirring at a large scale k0. The energy injected is transferred from the large eddy to smaller

eddies by a local interaction in wavenumber space, i.e., large eddies break into smaller eddies

which are not vastly different in scale from the original eddy. This process is self-similar over a

range of scales, known as the inertial range. Ultimately the energy reaches the Kolmogorov scale,
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kD. Beyond this scale, viscosity overcomes the self similar energy transfer process and converts

it into heat. The energy spectrum was predicted to fall off as −5/3rd power of wavenumber by

Kolmogorov [6], and this has been verified to great precision in experiment [7]. Thus, in 3D,

Energy input here

E(k)

kk
0

k
D

Energy dissipation

Forward cascade

Inertial range

Figure 1.2: Cartoon of spectrum in three dimensional hydrodynamic turbulence. Energy is
injected at large scale k0 and dissipated beyond the Kolmogorov scale kD. It cascades in the
forward direction in the inertial range.

homogeneous, hydrodynamic turbulence, energy which is injected by stirring is conservatively

transferred through the inertial range and eventually converted into heat in the dissipation

range. That is how the system achieves saturation - a steady level of energy - by balancing the

energy injection with energy dissipation bridged by a large inertial range. Most of this thesis

involves work about how saturation can occur in plasma turbulence and how it can differ from

the saturation just described for hydrodynamic turbulence. We restrict ourselves to plasma

microturbulence which is the turbulence most relevant for fusion devices.

1.2 Plasma microturbulence and nuclear fusion

A large amount of research in plasma turbulence has been motivated by nuclear fusion. Nuclear

fusion is the process that powers our Sun and all the other stars in the universe. Harnessing
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the power of nuclear fusion for the peaceful purpose of meeting mankind’s energy needs has

always been the holy grail of fusion research [8]. It is increasingly becoming clear that the world

is facing an energy crisis with the depleting fossil fuels and the damage done by such fuels to

the environment in terms of pollution and global warming. There is mounting evidence that

man-made global warming is real [9]. Also, at present, oil, natural gas, and coal are the primary

sources of energy all around the world. Although estimates vary, more or less it is clear that oil

supplies will last another 50 years, natural gas for 60 years, and coal for another 150 years [9].

In order to maintain the pace of progress and the standard of living of the last three centuries,

we have to find a clean, sustainable alternative to fossil fuels [10].

There are several alternative sources of energy; namely, solar, wind, geothermal, nuclear

fission and nuclear fusion. Solar and wind power are very promising but it is not proven that

they can provide the baseload power that is required round the clock. Nuclear fission depends

on heavy radioactive elements which are limited and which also raise concerns of public safety

and nuclear proliferation. Under such circumstances, nuclear fusion is a very attractive option

for energy production. Fusion has two major advantages [11]. Firstly, the primary fuel used

in fusion is Deuterium, which is abundantly available in ocean water, so much so that it is

practically limitless. Secondly, fusion does not generate polluting byproducts which harm the

environment or cause global warming. It does produce radioactive elements but they represent

short lived isotopes at much lower concentrations than the radioactive byproducts of nuclear

fission. Fusion also does not depend on the weather, unlike solar and wind power.

Fusion research began in the 1950’s with the goal of producing net energy out of fusion

reactions and ultimately developing power plants. It was realized early on that very high tem-

peratures (several hundred million ◦C) would be required in order to fuse two repelling, positively

charged nuclei [12]. Lawson derived the criterion determining fusion yield as a function of the

triple product of temperature, density and confinement time. The challenge of fusion always

has been to achieve a high enough triple product to get net energy gain. There are two major

approaches taken to do this - inertial confinement fusion and magnetic confinement fusion. In

inertial confinement fusion, intense beams of lasers or particles implode a spherical fuel pellet
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producing high temperatures and the inertia of the reacting fuel is expected to keep it confined

for a long enough time with a high enough density so that the Lawson criterion for fusion gain

is satisfied. The second approach is magnetic confinement fusion. In this approach the plasma is

heated by driving a current through it and then by injecting radiation or particles. The plasma

is enclosed in some kind of a magnetic bottle, which is expected to keep it confined for a long

enough time at high enough density to achieve fusion.

In either of these approaches, the triple product has continuously improved with time, indicat-

ing the progress fusion research has made over all these decades as seen in Fig. 1.3. However, in

neither of them has the Lawson criterion been met until now. Two big facilities, the National Ig-

nition Facility (NIF) in USA and the International Thermonuclear Experimental Reactor (ITER)

in France, have the possibility of breaking this barrier. The NIF has taken the inertial confine-

ment approach while ITER has taken the magnetic confinement approach. In this thesis we deal

with plasma turbulence which is relevant to the magnetic confinement approach.

Figure 1.3: The fusion triple product in tokamaks has improved at a rate faster than Moore’s
law for transistors in a microprocessor chip or the rate of energy increase in particle accelerators.
Taken from Ref. [13].

Plasma physics and plasma turbulence have become extremely important in understanding
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and controlling magnetically confined plasmas. Since the start of fusion research in the 1950’s,

a large variety of magnetic configurations were tried to confine plasmas. All of these earlier

configurations showed violent large scale instabilities that would cool down the plasma abruptly.

These were macro scale magnetohydrodynamic (MHD) instabilities. The most preferred magnetic

configuration for confinement is called a tokamak. The first tokamak was built in USSR in 1958,

and called the T1 tokamak [14]. Tokamaks have a strong toroidal magnetic field generated by

coils around the donut shaped vessel. In addition, a transformer is used to generate a strong

electric field in the toroidal direction, driving a plasma current. This current produces a weaker

poloidal magnetic field which, when superimposed with the external toroidal field, gives a helical

field around the torus. New heating schemes, like the neutral beam injection, were also devised

to reach higher temperatures. Several new theoretical concepts were developed to understand the

macro-instabilities in the framework of MHD. The introduction of divertors lead to the discovery

of the H-mode [8]. With the help of all these measures, tokamaks were able to mitigate the violent

instabilities that had plagued earlier devices and obtain record levels of plasma temperature.

However, tokamaks were still not able to reach break-even where they could produce more

energy than what was put in. An anomalous mechanism of heat transport was thought to be

responsible for this. Classically, we can consider transport as a diffusion process. The particles

suffer collisions with a characteristic collision time τc. A collision allows the particle to step

across the magnetic field line with a step length equal to its Larmor radius, ρ. This gives a

diffusion coefficient of D ∼ ρ2/τc. This gives a confinement time of τ ∼ (a/ρ)2τc, where a is the

plasma radius [15]. This estimate works for plasmas which are cold such that collisional effects

dominate. However as confinement in tokamaks improved and plasmas became less collisional,

this estimate turned out to be considerably inadequate compared to experimentally measured

confinement. Neoclassical theory was developed to explain this transport. Neoclassical theory

still relies on Coulomb collisions for transport but takes into account effects of complicated

geometry on particle trajectories and drifts leading, in some cases, to enhanced transport [16].

Toroidal geometry can lead to particle trapping, giving rise to trapped orbits with a larger step

size, leading to larger diffusion rates.
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As tokamaks became even hotter and more collisionless due to external heating, the neo-

classical transport estimates also fell short of experimental observations [17]. Such high levels

of transport are often called “anomalous transport in tokamaks”. It is widely believed that this

transport is caused by turbulent fluctuations in the plasma [17]. If these fluctuations are totally

random, we do not expect them to cause net transport. However, there are collective modes

in the plasma which can correlate two fluctuations (electrostatic potential and temperature, for

example) and, depending on the phase relationship between the two, cause transport of particles

and heat. Several such collective modes of the plasma have been discovered, and it is believed

that we now should be able to explain the anomalous transport using these modes. These col-

lective modes are called “drift waves” because their phase velocity is typically the diamagnetic

drift velocity, which is in turn driven by equilibrium gradients in the plasma [18]. As a simple

example we can consider fluctuations in the electrostatic potential (δφ) and plasma tempera-

ture (δT ). This is shown schematically in Fig. 1.4. The x and y axis represent the radial and

poloidal directions in a tokamak slab with a temperature gradient pointing in the −x direction.

A collective mode of electrostatic potential and temperature fluctuations is shown traveling in

the y direction, with a phase difference of 90◦ between the two. The potential fluctuations gives

rise to electric field fluctuations (δE) as shown in the figure. Combined with the equilibrium

magnetic field B0, this will give rise to E×B advection of the background temperature profile.

If the two fluctuations had been in phase, then this E×B advection would have led to the drift

wave simply propagating in the +y direction. However, in the case shown, we can see that this

advection will bring hotter plasma into regions of high temperature and colder plasma into low

temperature regions, thus reinforcing the fluctuations and giving rise to an instability.

Ultimately some nonlinear effect will saturate the growth of these fields. In the saturated

state, the heat flux transported out of the tokamak, Q, will be proportional to the correlation of

temperature and potential fluctuations, Q ∼ 〈δTδvE×B〉. This heat flux has a direct bearing on

the confinement time and is responsible for the loss of confinement. Thus, the performance of

a fusion device is directly related to these small scale fluctuations and their correlations. With

this knowledge, it becomes extremely important to understand the saturation mechanism of
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Figure 1.4: A cartoon showing the physical mechanism of instability in drift waves.

such fluctuations and maybe come up with schemes to reduce the heat loss due to them. Such

fluctuations are collectively referred to as plasma microturbulence because the scale of these is

very small, of the order of the ion or even the electron gyroradius. This thesis deals with such

turbulent fluctuations and the mechanism by which they saturate at a steady level. A key goal

of research in this field is to be able to accurately model this microturbulence in a real world

plasma and to be able to predict the transport and confinement properties of such a plasma [19].

Obviously, this will be a big boost to ITER, as we would be able to predict how ITER will behave

and tell us what steps we will need to take in order to ensure that it accomplishes its mission!

1.3 Damped modes in plasma microturbulence

As explained above, the saturation mechanism of plasma microturbulence directly determines the

transport and hence the confinement of plasma. We have seen in Sec. 1.1 that 3D hydrodynamic

turbulence saturates by viscous dissipation beyond the Kolmogorov scale. What is the situation

in plasmas? In MHD turbulence it is thought that a similar process occurs wherein viscosity

and resistivity at small scales dissipate the kinetic and magnetic energy into heat [20]. Very

little attention has been paid to this question in microturbulence as most of the focus has been

on calculating the heat flux and transport, whichever way the turbulence saturates. Implicitly

it has been assumed that a similar mechanism of small scale dissipation should be at work in

microturbulence as well. However, there are significant qualitative differences between plasma
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microturbulence and hydrodynamic turbulence. Firstly, there is no large, intermediate, inertial

range observed in microturbulence. Indeed, poorly resolved simulations, with hardly a decade of

scales resolved, show well converged saturation levels and transport rates that do not change as

the resolution is increased. Secondly, unlike hydrodynamic and MHD turbulence in homogeneous

media, which are driven by external stirring, microturbulence in tokamaks is typically driven by

instabilities which arise in fusion devices because the plasma is never in a stable equilibrium.

There are always gradients in a confined system and they drive such instabilities.

Plasma instabilities are expressed as roots of the linear dispersion relation. The plasma

dispersion relation expresses the linear frequency as a function of wavenumber and the most

unstable mode is only one of the several possible roots it admits! In homogeneous fluid models,

the number of roots at a given wavenumber is equal to the number of independent fields in the

model. The different roots can be thought of as different manifolds spanning the wavenumber

space (see Fig. 1.2 in Ref. [21]). The unstable manifold is the one which contains the most

unstable mode. The other manifolds are subdominant manifolds and for all the models discussed

in this thesis, most of the subdominant manifolds will be damped, i.e., they have a negative

imaginary part of the frequency. We will interchangeably use the words “damped” and “stable”

to describe modes with a negative growth rate in this thesis.

The damped modes are usually ignored in any analysis since, naively, one expects them to

damp away exponentially with time. However, recently it has been found that such damped

modes are important energy sinks in the saturation of many types of instability-driven plasma

turbulence [22–28]. They are found to be important in both fluid models [22–24; 28] as well

as kinetic models [25–27]. Several features of the damped modes are striking. Nonlinearity,

in the form of three-wave coupling, drives all damped modes available to the system [23]. In

two-field fluid models, the dispersion relation is quadratic. There is one damped mode and one

unstable mode, both of which are functions of wavenumber from large to small scales [29]. In

gyrokinetics there are in principle an infinite number of damped modes spanning the directions

of inhomogeneity in phase space. Under numerical discretization the number becomes finite but

very large [O(104) for typical resolutions] [27]. In fluid models the mode damping is because of
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a different phase relationship between the fluctuating quantities than required for an instability.

For example, in Fig. 1.4, if the phase difference between density and temperature fluctuations is

changed by 180◦, then the mode will become damped. In kinetic models, the damping mechanism

arises from either velocity space resonances (Landau damping) or particle-particle collisions.

Whether the number of damped modes is one or many, certain aspects of the saturation are

qualitatively the same. Damped modes damp energy at all wavenumbers available, not just at

large wavenumbers (small scales). In fact, in many models their damping peaks at the same

low wavenumbers where instability exists, typically in the large scale range where the turbulent

spectrum peaks [26]. Also, damped modes dissipate energy at a rate that is comparable to the

rate of energy injection by the instability. All this previous work and the present thesis show

that damped modes play a dominant role in the saturation of plasma microturbulence.

This thesis investigates several aspects of saturation by damped modes in plasma microtur-

bulence. We begin in Chap. 2 with a survey of nine different two-field fluid models of turbulence.

These models describe a wide range of plasmas in fusion devices. The goal is to demonstrate

that saturation by damped modes is a ubiquitous phenomenon and also to identify some unifying

principles of such a saturation mechanism. We numerically solve these models, decompose the

solutions into the unstable and damped eigenmodes, and define energy diagnostics for analysis

of saturation. In all the models we are able to find parameter regimes in which damped modes

play a significant role in saturation by damping away majority of the energy injected by linear

instability. An analytical criterion based on model parameters is derived which correctly pre-

dicts these regimes. We find the striking result that damped modes are mostly excited when the

gradient drive is strong. We also look at the effect of damped modes on quasilinear heat flux

calculations and show that the quasilinear estimates might not be reliable when damped modes

saturate the turbulence. In Chap. 3 we look at the specific example of zonal flow regulated ion

temperature gradient driven (ITG) turbulence, again using a two-field fluid model. A well known

and very important phenomenon in plasma microturbulence is the regulation of ITG turbulence

by self-generated zonal flows. This phenomenon has long been attributed to the shearing effect

of zonal flows on drift wave eddies, breaking them into smaller eddies and increasing coupling to
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dissipative scales. In this chapter it is shown that zonal flow assisted energy transfer to stable

modes, which has been ignored till now, is actually a key effect in this turbulence. Nonlinear

energy transfer diagnostics are heavily used to show this, also providing a base for the more

comprehensive diagnostics utilized in Chap. 4. We find that three-wave interactions that include

a zonal flow, an unstable mode and a stable mode are much stronger than other interactions.

These interactions dominate because of their coupling coefficients, the zonal flow amplitude and

frequency matching.

In Chap. 4 we look at regulation of ITG turbulence by zonal flows using a much more com-

prehensive, state-of-the-art gyrokinetic model. This model adds a whole new level of complexity

in the analysis of this problem by introducing thousands of damped modes, but also yields new

and richer insights into it. Proper orthogonal decomposition (POD) modes are utilized to an-

alyze the damped mode spectrum. After defining gyrokinetic nonlinear transfer functions we

are able to calculate how much energy is dissipated by damped modes within the region of low,

unstable wavenumbers. It is seen that a large fraction of the injected energy is dissipated by such

modes, thus establishing the importance of zonal flow assisted energy transfer to stable modes

in regulation of ITG turbulence. We also look at the concept of frequency matching in more

detail. In Chap. 5 we analyze energy partitioning among damped modes in gyrokinetics. We

look at some of the effects of hyper-diffusivity and higher kx connected modes on the damped

mode energetics. As stated earlier, a key goal of turbulence research is to identify key conceptual

principles that can guide our thinking about the problem. With this in mind, we calculate the

energy dissipation and amplitude attenuation rate spectra for POD and linear modes. They seem

to show favorable scaling behavior. Calculations also show that energy is transferred in parallel

to all the damped modes simultaneously in gyrokinetics. It is hoped that these developments will

lead to a simplified picture of damped modes in plasma microturbulence. Finally, we conclude

in Chap. 6 with a summary and directions for future research.
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Chapter 2

Damped modes in two-field fluid models

Fluid models of plasma turbulence treat the plasma as a fluid. Fluid equations can be derived

from a more fundamental kinetic description [30]. A typical example of such fluid equations is a

two field model for ion/electron temperature gradient (ITG/ETG) driven turbulence [31]. These

equations look as follows

∂p

∂t
+ (1 + η)

∂φ

∂y
+ χ∇4

⊥p = −{φ, p}, (2.1)

(1−∇2
⊥)
∂φ

∂t
+
∂φ

∂y
− ε

∂p

∂y
− ν(∇2

⊥)φ = {φ,∇2
⊥φ}. (2.2)

These equations describe the time evolution of two fluid fields - the ion pressure p and the

electrostatic potential φ. The system they describe is in two dimensional slab geometry. The

gradient in this two dimensional x−y plane is represented by ∇⊥. The radial direction is taken as

x and the poloidal direction as y. There is a gradient in the equilibrium density and temperature

in the radial (x) direction. There is also an equilibrium magnetic field B0 in the z direction,

perpendicular to the x − y plane. Symbols ν and χ are coefficients of collisional dissipation, η

is the ratio of density to temperature gradient scale length and ε is the ratio of density gradient

scale length to magnetic field variation scale length. The curly brackets represent the Poisson

bracket, {f, g} ≡ ẑ · (∇f ×∇g). The spatial coordinates are normalized to ρ where ρ represents

electron gyro radius in ETG and ion sound gyro radius in ITG. Time is normalized to Lref/uref

where Lref is the density gradient scale length and uref is electron thermal speed, vTe, for ETG
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and ion sound speed, cs, for ITG.

These equations are derived from a three field fluid model of ITG [32]. They are derived in a

sheared slab geometry from the ion continuity equation, parallel ion dynamics and pressure evo-

lution equation. The perpendicular velocity is taken to be the E×B velocity and ion diamagnetic

drift velocity to zeroth order, and the polarization drift velocity in first order. Quasineutrality

and adiabatic electron response are assumed (ñi = ñe = eΦ/Te). If we restrict ourselves to

fluctuations with kz = k|| = 0 then we get the reduced two field model above.

2.1 Model equations

There are several other two-field fluid models of plasma turbulence that can be found in the

literature. Nine such models have been identified and analyzed. These models represent a wide

range of physical mechanisms for instability, turbulent mode coupling and parameter regimes.

They were all devised in order to explain a certain aspect of physics in plasma confinement

devices such as tokamaks. As such, they range in their applicability from hot to cold temper-

atures, from trapped to untapped particles, from electrostatic to electromagnetic physics, from

core to edge plasmas and so on. The models describe trapped electron mode turbulence, lo-

cal Hasegawa-Wakatani turbulence, two-dimensional turbulence driven by the Rayleigh-Taylor

instability, local electrostatic resistive g-mode turbulence, ion temperature gradient turbulence,

microtearing mode turbulence, a variant of microtearing turbulence with temperature fluctua-

tions, a thermally driven edge drift wave, and an edge drift wave driven by ionization and charge

exchange processes. Each of these models will be described in detail later. However, all these

models can be expressed in the following form,

∂F1

∂t
+ Z11F1 + Z12F2 = N1, (2.3)

∂F2

∂t
+ Z21F1 + Z22F2 = N2. (2.4)
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Equations (2.3-2.4) are expressed in Fourier space, with all the quantities a function of wavenum-

ber k. In this chapter, we use k to denote the Fourier wavenumber, it should be clear from context

whether it denotes the vector or its scalar magnitude. F1 and F2 are the time dependent coeffi-

cients of the two fields in a Fourier decomposition of the two fields in x and y assuming periodic

boundary conditions on the slab. In Fourier representation the linear operators just become

matrices whose elements are represented by Z11, Z12, Z21 and Z22. The nonlinear terms become

a convolution sum over the Fourier wavenumber which are represented by N1 and N2. With the

exception of the thermal microtearing model, their general form is as follows,

N1 =
∑

k′

[A1(k, k
′)F2(k

′)F1(k − k′) +B1(k, k
′)F2(k

′)F2(k − k′)], (2.5)

N2 =
∑

k′

[A2(k, k
′)F2(k

′)F2(k − k′) +B2(k, k
′)F2(k

′)F1(k − k′)]. (2.6)

HereA1,2(k, k
′) and B1,2(k, k

′) are the nonlinear, three-wave coupling coefficients between wavenum-

bers k, k′ and k − k′.

As an example, we can express the fields in the ITG model as a Fourier decomposition,

p =
∑

k pke
ikr and φ =

∑

k φke
ikr. Substituting these expressions into equations (2.1-2.2), we

get,

∂pk
∂t

+ iky(1 + η)φk + χk4pk = −1

2

∑

k′

(k′ × ẑ · k)[φk′pk−k′ − φk−k′pk′ ], (2.7)

[1 + k2]
∂φk
∂t

+ ikyφk − ikyǫpk + νk2φk = −1

2

∑

k′

(k′ × ẑ · k)[(k − k′)2 − k′2]φk′φk−k′. (2.8)

Comparing equations (2.3-2.4) with equations (2.7-2.8) respectively, we can identify F1 with

pk and F2 with φk respectively. Similarly, the linear coupling coefficients become Z11 = χk4,

Z12 = iky(1 + η), Z21 = −ikyε/(1 + k2) and Z22 = (iky + νk2)/(1 + k2). The nonlinear coupling

coefficients become A1 = −(k′× ẑ ·k), B1(k, k
′) = B2(k, k

′) = 0 and A2 = −(k′× ẑ·k)[(k−k′)2−

k′2]/[2(1 + k2)]. One should note that the nonlinear term is symmetric under the interchange

of k′ with k − k′. This symmetrization has been applied to obtain the form of nonlinearities in

Eqs. (2.7-2.8).
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The details of all the nine models surveyed, including their equations are described later on.

Right now let us assume that iω1,2 are the eigenvalues of the linear coupling coefficient matrix

Z and R1,2 are the eigenvectors, i.e.,






Z11 Z12

Z21 Z22











R1,2

1




 = iω1,2






R1,2

1




 . (2.9)

The eigenvalues are nothing but the eigenfrequencies of this problem. If the imaginary part of ω

is positive then it is an unstable mode otherwise it is a stable mode. For the two field models that

we consider, one always gets an eigenfrequency which is unstable for some range of wavenumbers

and this branch of eigenvalues is called the unstable mode. The other branch of eigenvalues is

always damped and is called the stable branch. We will interchangeably use the terms “stable

mode” and “damped mode”. We choose to label the unstable root as ω1 and the stable root as

ω2. The dispersion relation (eigenvalue equation) is ω2+ iω(Z11+Z22)+ (Z12Z21−Z11Z22) = 0.

This relation can be easily solved to obtain the growth/damping rates of the two modes,

γ1,2 =− Re(Z11 + Z22)

2
± 1

2
[(Z11 − Z22)

2 + 4Z12Z21]
1/2 (2.10)

=− br
2

± ρ1/2

2
cos

[
φ

2

]

, (2.11)

where,

br = Re(Z11 + Z22), ρ = |4Z12Z21 + (Z11 − Z22)
2|, (2.12)

φ = tan−1

[

Im
[
4Z12Z21 + (Z11 − Z22)

2
]

Re[4Z12Z21 + (Z11 − Z22)2]

]

. (2.13)

The eigenvectors are

R1,2(k) =
iω1,2(k)− Z22

Z21
, (2.14)

where ωj = ωjr + iγj and j = 1, 2. The expression for γj is given in Eq. 2.10 and the real part
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of frequency, ωjr, is given by,

ω1,2r =
Im(Z11 + Z22)

2
± ρ1/2

2
sin
[φ

2

]

. (2.15)

We can express the two fields F1,2 as a linear combination of the eigenvectors,






F1

F2




 = β1






R1

1




+ β2






R2

1




 , (2.16)

where β1 and β2 are the amplitudes of the unstable and stable modes respectively. This lin-

ear combination can be substituted into Eqs. (2.3-2.4) and can be inverted to obtain the time

evolution equations of the eigenmode amplitudes β1,2.

∂β1(k)

∂t
+ iω1(k)β1(k) =

∑

k′

[

C1(k, k
′)β1(k

′)β1(k
′′) + C2(k, k

′)β1(k
′)β2(k

′′)

+C3(k, k
′)β1(k

′′)β2(k
′) + C4(k, k

′)β2(k
′)β2(k

′′)
]

, (2.17)

∂β2(k)

∂t
+ iω2(k)β2(k) =

∑

k′

[

D1(k, k
′)β1(k

′)β1(k
′′) +D2(k, k

′)β1(k
′)β2(k

′′)

+D3(k, k
′)β1(k

′′)β2(k
′) +D4(k, k

′)β2(k
′)β2(k

′′)
]

, (2.18)

where,

C1 = C3 = (A1R
′′
1 +B1 −R2A2 −R2B2R

′′
1)/(R1 −R2), (2.19)

C2 = C4 = (A1R
′′
2 +B1 −R2A2 −R2B2R

′′
2)/(R1 −R2), (2.20)

D1 = D3 = (−A1R
′′
1 −B1 +R1A2 +R1B2R

′′
1)/(R1 −R2), (2.21)

D2 = D4 = (−A1R
′′
2 −B1 +R1A2 +R1B2R

′′
2)/(R1 −R2). (2.22)

Here it is understood that all the C’s, D’s, A’s and B’s are functions of wavenumbers k and k′.

The symbols R1,2 ≡ R1,2(k) and R′′
1,2 ≡ R1,2(k − k′).
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2.2 Threshold criterion for stable mode excitation - Pt

In a simplified sense, ignoring the Fourier wavenumber dependencies, Eqs. (2.17-2.18) can be

written in the following way [23],

ẋ1 = γ1x1 + C1x
2
1 + C2x1x2 + · · · , (2.23)

ẋ2 = −γ2x2 +D1x
2
1 + · · · . (2.24)

Here x1 is likened to β1 and x2 is like β2. Similarly C1 in Eq. 2.23 is like C1(k, k
′) in Eq. 2.17 and

C2 in Eq. 2.23 can be thought of as the combination C2 +C3 in Eq. 2.17. D1 in Eq. 2.24 is like

D1 in Eq. 2.18, and γ1 and −γ2 are the growth and damping rates respectively. In Ref. [23] it

is shown that excitation of stable modes to an amplitude comparable to that of unstable modes

depends on the criterion,

Pt ≡
D1C2

C2
1

1

(2− γ2/γ1)
. (2.25)

If Pt is of the order or larger than unity then stable modes are excited and play an important role

in saturation. It is derived by taking a ratio of the third term in Eq. (2.23) to its second term at

a time when the first term is balanced by the second term. Pt is proportional to the product of

nonlinear coupling coefficients D1 and C2, which control the nonlinear energy transfer from the

unstable mode to the damped mode. It is natural that the role of damped modes in saturation is

directly proportional to these two coupling coefficients. It is inversely proportional to C2
1 because

the larger this coefficient is, the more efficient it is for energy to nonlinearly cascade along the

unstable branch to high-k dissipative modes, instead of cascading to the damped modes. It is also

important that |γ2| not be much larger than |γ1| because if this is the case, then the nonlinear

energy transfer to damped modes will not be able to overcome their strong linear damping. This

is expressed by the (2− γ2/γ1) factor in the denominator of Pt. All the quantities in Pt depend

upon wavenumbers k and k − k′, hence it is evaluated for a range of wavenumbers and should

only be used as an order of magnitude estimate.

Because the coupling coefficients C1, C2, C3, and D1 are formed from similar linear combi-
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nations of Aj and Bj, frequently D1(C2 + C3)/C
2
1 ≈ 1. When true, Pt is most sensitive to the

growth rate ratio γ2/γ1. If |γ2| ≫ |γ1| then Pt ≪ 1. This implies that if the damped eigenmode

is heavily damped then its amplitude in saturation is very small. If |γ2| ∼ |γ1|, the growth

rates are optimal for strong excitation, and γ2 is a significant energy sink for saturation. From

the properties of quadratic dispersion relations, a necessary and sufficient condition for modes

with growth rates with opposite signs is |br| < ρ1/2| cos(φ/2)|. When |br| ≪ ρ1/2| cos(φ/2)|

growth and damping rates are comparable. All models, except drift thermal turbulence and

ionization driven turbulence, have br > 0. With instability for (−br + ρ1/2| cos(φ/2)|)/2 > 0,

it is always possible for the system to be sufficiently close to threshold of instability so that

|γ2| = (br + ρ1/2| cos(φ/2)|)/2 ≫ (−br + ρ1/2| cos(φ/2)|)/2 = γ1. This means that sufficiently

near threshold of instability, damped eigenmode effects are weak for two-field systems. For three-

field systems it is possible to have conjugate paired eigenmodes with a third neutral mode, such

that growth and damping rates are matched near threshold [24].

There can be some situations in which D1(C2 + C3)/C
2
1 can be vastly different from unity.

The factors C1, C2, C3 and D1 have almost identical expressions except for variation in the

eigenvectors R1 and R2. This combination can be different from unity only when R1 or R2 as-

sumes values that are greatly different from unity, in combination with either Aj or Bj vanishing.

Furthermore, this combination is averaged over k′, smoothing the wavenumber dependencies of

R1 and R2, leaving the parametric dependencies to govern when these quantities are large or

small. For the sake of discussion assume that the coefficients Aj and Bj, if not zero identically,

are all the same order of magnitude. There are four cases, two each for A-type and B-type

nonlinearities. A-type nonlinearities arise from E × B advection of field F1 and vorticity. For

A-type nonlinearities, D1(C2+C3)/C
2
1 goes like (A1R2−A2R2)(A1R1−A2R1)/(A1R1−A2R2)

2.

This is akin to a reduced mass R1R2/(R1 − R2)
2, which yields D1(C2 + C3)/C

2
1 ≪ 1 whenever

R1/R2 is much greater than or much less than unity. B-type nonlinearities arise from parallel

advection along magnetic field lines that are bent by magnetic fluctuations. For B-type nonlin-

earities, D1(C2+C3)/C
2
1 reduces crudely to (B1−B2R

2
1)/(B1−B2R1R2), which too can be much

larger or much smaller than unity for exceptional values of Rj . The four cases are summarized
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as follows: Case 1) Bj = 0, R2 ≫ R1; Case 2) Bj = 0, R1 ≫ R2; Case 3) Aj = 0, R1 ≫ 1,

R1 ≫ R2; Case 4) Aj = 0, R1R2 ≫ 1, R2 ≫ R1. In the next few sections we will discuss the

models individually and describe which, if any, of these situations arise in them.

To verify the predictions of Pt, we look at the energy in saturation. The energy can be

defined as proportional to
∑

k |F1(k)|2+K(k)|F2(k)|2, where K is a real function of wavenumber

and model parameters. This K is chosen such that the energy is conserved by the nonlinearities.

Eigenmode decomposition (Eq. 2.16) gives energy proportional to
∑

k{(|R1|2+K)|β1|2+(|R2|2+

K)|β2|2+[2Re(R∗
1R2〈β∗1β2〉+2KRe〈β∗1β2〉]}. The first term is the energy in the unstable modes,

the second term is the energy in damped modes and the last term is a mixed term containing both

damped and growing mode amplitudes. The mixed term arises from non-orthogonal eigenmodes

and can be large and either positive or negative. In analyzing the models we compare the

saturation energies of damped and growing modes, and the energy injection and damping rates

from the growing and stable modes to evaluate the relative importance of damped modes.

Next we look at each model individually including its dispersion relation, Pt parameter and

the excitation of damped modes. Then we study the energetics in more detail along with damped

mode effects on quasilinear heat fluxes.

2.3 Survey of 2 field fluid models

2.3.1 Trapped electron mode turbulence (TEM)

TEM turbulence is a core fluctuation in tokamaks requiring that the collisional detrapping rate

be less than the bounce frequency. The equations are,

∂n

∂t
+ ν(n− φ) + νD(1 + αηe)

∂φ

∂y
= ∇φ× ẑ · ∇n, (2.26)

∂

∂t
(1−∇2 − ǫ1/2)φ− ǫ1/2ν(n− φ) + νD[1− ǫ1/2(1 + αηe)]

∂φ

∂y
= −∇φ× ẑ · ∇∇2φ. (2.27)

Upon Fourier transformation, this two-field reduction of TEM turbulence [22] has F1 = nk =

ǫ−1/2ntr + φk, where ntr is the density of trapped electrons, F2 is the electrostatic potential
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φk, and ǫ is the inverse aspect ratio of the flux surface of interest. The nonlinearities are

electrostatic with A1 = −k
′ × ẑ · k arising from E × B advection of the density and A2 =

−(k′× ẑ·k)[(k−k′)2−k′2]/2(1+k2−ǫ1/2) arising from advection of the vorticity (k is normalized

to the ion sound gyroradius ρs). The linear coupling coefficients are Z11 = ν, Z12 = −ν+ikyvDα̂,

Z21 = −ǫ1/2ν/(1 + k2 − ǫ1/2), and Z22 = [ǫ1/2ν + ikyvD(1 − ǫ1/2α̂)]/(1 + k2 − ǫ1/2), where ν

is the detrapping rate, vD is the diamagnetic frequency, and α̂ is a parameter of order unity

proportional to the electron density gradient drive. The eigenfrequencies are given by

ω =
kyvD(1− α̂ǫ1/2)− iν(1 + k2)

2(1 + k2 − ǫ1/2)
±
{[

kyvD(1− α̂ǫ1/2)− iν(1 + k2)
]2

4
[
1 + k2 − ǫ1/2

]2 +
ikyvDν

(1 + k2 − ǫ1/2)

}1/2

.

(2.28)

The growth rates are comparable and of opposite sign if ρ1/2| cos(φ/2)| ≫ br, which translates to

kyvD ≫ ν. This defines the weakly collisional regime, sometimes referred to as “collisionless”. In

this limit ImZ12 ≈ ImZ22 ≫ ReZ11, ReZ12, ReZ21, and ReZ22. On the other hand, if ν ≫ kyvD

(dissipative regime), the damped mode has a damping rate proportional to ν, while the growth

rate of the unstable mode is much smaller (proportional to k2yv
2
D/ν). In this case, no imaginary

part of Zij is larger than a real part. As a result, (2 − γ2/γ1)
−1 is of order unity in the weakly

collisional case, and much smaller than unity in the dissipative case.

It remains to determine the ratio of coupling coefficients, D1(C2+C3)/C
2
1 , in the two limits. In

the weakly collisional limit the eigenvector components go as R1 ∼ O(1), R2 ∼ O(kyvD/ν) ≫ 1.

With R2 ≫ R1, the ratio of nonlinear coupling coefficients in Pt can assume values that are

greater than unity. For turbulence whose spectrum is contained within a long wavelength range

A2 ≪ A1. Furthermore, weak dispersion (k2 ≪ 1) leads to a situation in which D1/C1 ∼ O(1),

and (C2 + C3)/C1 ∼ O(k2yv
2
D/ν

2). Thus, Pt is larger than unity, and the damped eigenmode is

expected to saturate the linear instability. For a spectrum contained within a short wavelength

range where A2 ≈ A1, A2R2 dominates C1, C2, and C3, while the lowest order term of R1

governs D1. The result is (C2+C3)/C1 ∼ O(1), D1/C1 ∼ O(ν/kyvD). Now Pt < 1, and damped

eigenmodes play a weaker role in saturation.

In the dissipative limit the eigenvector coefficients are R1 ∼ O(1), R2 ∼ O(1), leading to
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(C2 + C3)/C1 ∼ ν/kyvD ≫ 1 and D1/C1 ∼ 1 in the long wavelength limit. The nonlinear

transfer to the damped eigenmode is strong, but the damping rate is so large that (2−γ2/γ1)−1 ∼

k2yv
2
D/ν

2, making Pt small in spite of the strong coupling. The damped eigenmode is therefore

expected to have a small amplitude in saturation relative to the growing eigenmode. In the short

wavelength range, the nonlinear coupling is weaker.

Numerical evaluation of Pt in the weakly collisional limit and in an intermediate wavenumber

range gives values of Pt that are slightly below unity. Specifically, Pt = 0.39 and 0.38, for

(kx, ky)=(0.5,0.6) and (0.2,-0.5) respectively. Here we have averaged Pt over k′ as for all other

models in this chapter. For longer wavelengths, Pt is larger. Energy evolution in the weakly

collisional regime for intermediate wavenumbers has been shown in Fig. 2 of Ref. [22], and the

figure confirms that the damped eigenmode reaches a level in saturation that is similar to that of

the growing mode. In contrast, numerical evaluation of Pt in the dissipative limit yields values

of 0.0058 and 0.048 for (kx, ky)=(0.4,0.6) and (0.2,0.5) respectively. In this case the damped

eigenmode energy is five orders of magnitude lower than the energy of the growing eigenmode.

More germane to the question of saturation is the rate of energy dissipation by the damped

eigenmode compared to energy injection rate by the instability. These two rates are estimated as

∑

k γ1(k)(|R1|2 +K)|β1|2 and |∑k γ2(k)(|R2|2 +K)|β2|2| respectively, where K = 1+ k2 − ǫ1/2.

We show a direct comparison between these two rates in Fig. 2.1(a), which plots the ratio of

these two energy rates versus ν/vD. It is seen that these two rates are comparable over the

weakly collisional regime. As collisions begin to dominate, the rate of energy dissipated by the

damped eigenmode becomes smaller relative to the energy injection rate. The same data are

plotted as a function of −γ2/γ1 in Fig. 2.1(b). Here we find the striking result that the energy

rates remain in balance even as −γ2/γ1 increases to values of more than 100. This indicates that

even when the damped eigenmode amplitude drops off as |γ2| increases well above γ1, the drop

off is offset by the increasing damping rate, keeping the dissipation rate in balance with energy

injection rate. The damped mode not only achieves a significant level in the weakly collisional

case, but it provides the primary energy sink for saturation.
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Figure 2.1: Ratio of energy dissipation by damped modes to energy injection by unstable modes
in TEM. (a) as a function of ν/νD and (b) as a function of −γ2/γ1, calculated at the most
unstable wavenumber.
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2.3.2 Local Hasegawa-Wakatani turbulence

The Hasegawa-Wakatani (HW) model applies when the detrapping collision rate exceeds the

bounce frequency [33]. Like the 2 field ITG, its equations are also derived from the momentum

and density continuity equation of ions. However, due to the high collisionality, the electron

fluid is assumed to be isothermal. This closes the equations by relating the current density to

ion density and electrostatic potential via quasineutrality and force balance of electric field with

electron pressure gradient and collisional resistive force. The larger collisionality relative to TEM

makes this model relevant towards the edge of hot tokamaks, or in colder plasmas [34]. This

model has been widely studied [33–35], but damped eigenmodes have not been considered. The

fluctuation fields are the passing electron density (n) for F1 and electrostatic potential (φ) for

F2. Like the TEM model, the nonlinearities are electrostatic density advection in the density

equation and advection of vorticity in the vorticity equation. The equations are

∂n

∂t
+ vD

∂φ

∂y
+
k2zV

2
e

νe
(n− φ)−D∇2

⊥n = ∇φ× ẑ · ∇n, (2.29)

∂

∂t
∇2

⊥φ+
k2zV

2
e

νe
(n− φ) + νin∇2

⊥φ− µii∇4
⊥φ = ∇φ× ẑ · ∇∇2φ. (2.30)

After Fourier transforming, the linear coupling coefficients are Z11 = k2zV
2
e /νe + Dk2, Z12 =

−k2zV 2
e /νe + ikyvD, Z21 = −k2zV 2

e /νek
2, and Z22 = k2zV

2
e /νek

2 + νin + µiik
2, where Ve is the

electron thermal velocity, νe is the electron collision rate, D is a collisional diffusivity of electron

density, k2 = k2x+k
2
y here and in the rest of the chapter, vD is the ion diamagnetic drift velocity in

normalized units, i.e., (−1/n0)(dn0/dx), νin is an ion neutral drag, and µii is an ion-ion viscosity.

In the three dimensional model kz is a Fourier wavenumber, but in two dimensions we treat it

as an input parameter. This will apply in all the models of this chapter where kz appears. This

model also has A type nonlinearities with A1 = −k
′×ẑ·k and A2 = −(k′×ẑ·k)[(k−k′)2−k′2]/2k2.
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Writing k2zV
2
e /νe = Ω||, the eigenfrequencies are

ω =− i

2

[

Ω||

(

1 +
1

k2

)

+Dk2 + νin + µiik
2
]

± i

2

{
[

Ω||

(

1− 1

k2

)

+Dk2 − νin − µiik
2
]2

+ (4Ω||/k
2)(Ω|| − ikyvD)

}1/2

. (2.31)

This dispersion leads to a nearly conjugate pair of eigenmodes if kyvD ≫ Ω||, Dk
2, νin, and µii,

ω1,2 = ±i(1− i)√
2

(kyvDΩ||

k2

)1/2
+ O(Ω||). (2.32)

The condition Ω|| ≪ kyvD can be rewritten using Eq. (2.32) to replace kyvD by ω2k2/Ω||, yielding

k2zV
2
e /νeω ≪ k ≈ 1. The factor on the left of the inequality is known as the adiabatic parameter,

and the inequality defines the hydrodynamic regime of HW. We find that the hydrodynamic

regime has growing and damped eigenmodes with −γ2 ∼ γ1. The conjugate pairing makes R1

and R2 comparable, leading to comparable coupling coefficients Cj and D1. The parameter

Pt is therefore expected to be order unity, and the damped eigenmode is predicted to reach a

significant level. Numerical evaluation of Pt yields values of 7.9 and 0.2 for (kx, ky)=(0.3,1.1)

and (-0.1,0.2) respectively. In this regime ImZ12 ≫ ReZ11, ReZ12, ReZ21, ReZ22.

The limit kyνD . Ω|| is known as the adiabatic limit. Here ImZ12 is smaller than ReZ11,

ReZ12, ReZ21, ReZ22. When |Dk2 − νin − µiik
2| is either much larger or much smaller than

|1− 1/k2|Ω|| both eigenmodes are damped. Otherwise there is an unstable mode whose growth

rate is much smaller than the damping rate. Numerical evaluation of Pt yields values of 0.04 and

0.03 for (kx, ky)=(0.1,-0.6) and (-0.3,0.5) respectively.

Numerical simulation shows that the damped mode energy is comparable to the growing

mode energy in the hydrodynamic regime and much smaller in the adiabatic regime, consistent

with the calculated values of Pt in the two regimes. Dissipation rates behave in a like fashion

as seen in Fig. 2.2. The damped eigenmode decay rate is nearly as large as the growing mode

growth rate in the hydrodynamic regime and becomes much smaller as k2zV
2
e /νeω becomes large.

In the local approximation, ∇|| → ikz = constant, the HW and TEM models are very similar.
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Figure 2.2: As the adiabaticity parameter is made smaller the damped modes play an increasingly
important role in saturation as evidenced by the increasing of fraction of energy injected being
dissipated by them.

Both models have terms in both equations proportional to the difference of density and potential.

The constant of proportionality is the adiabatic parameter (multiplied by ω) in HW and ν/kyvD

in TEM. In both systems, when the constant of proportionality is large, n and φ must be nearly

equal to maintain a balance with any other term in the equations. With n ≈ φ the dynamics is

reducible to a single field and dominated by a single eigenmode. When the parameter is small,

n and φ are independent and two eigenmodes are present at finite amplitude. Both constants of

proportionality directly relate to the linear coupling rule and Pt. It is well known that adiabatic

and hydrodynamic regimes are different. It is seen here that a crucial aspect of this difference is

damped eigenmode dissipation, which saturates the turbulence in the hydrodynamic regime.

2.3.3 Drift thermal turbulence

This system models fluctuations in the tokamak scrape-off layer driven by atomic physics [36].

The fields F1 and F2 are electron temperature (T ) and electrostatic potential (φ) respectively.
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The two-field equations are

∂T

∂t
− γTT +

2

3
αχ∇2

‖(φ− αT )− χ⊥∇2T − χ‖∇2
‖T + v∗T

∂φ

∂y
= ∇φ× ẑ · ∇T, (2.33)

∂

∂t
∇2φ+ χ∇2

‖(φ− αT ) = ∇φ× ẑ · ∇∇2φ. (2.34)

The nonlinearities are advection of temperature and vorticity, making them electrostatic A-type

nonlinearities. After Fourier transforming, the linear coupling coefficients are Z11 = −γT +

(2/3)α2χk2z + χ⊥k
2 + χ‖k

2
z , Z12 = −(2/3)αχk2z + ikyv∗T , Z21 = −χαk2z/k2 and Z22 = χk2z/k

2,

where χ is the electron parallel resistive diffusivity, χ⊥ and χ‖ are perpendicular and parallel

thermal conductivities, α = 1.71 is a constant, γT represents the effect of radiative cooling, and

v∗T is a diamagnetic velocity associated with temperature advection [36]. This model also has A

type nonlinearities with A1 = −k
′ × ẑ · k and A2 = −(k′ × ẑ · k)[(k − k′)2 − k′2]/2k2. Radiative

cooling makes a negative contribution to ReZ11, allowing instability from negative dissipation.

This model can also have instability through the diamagnetic frequency kyv∗T , which appears in

ImZ12. If kyv∗T is large, ImZ12 is larger than the other components of Zij .

Simplifying notation with γc ≡ γT − (2/3)α2χk2z − χ⊥k
2 − χ‖k

2
z , the eigenfrequencies are

ω1,2 =
i

2

(

γc −
χk2z
k2

)

± i

2

{(

γc +
χk2z
k2

)2

− 4
χk2zα

k2

(

ikyv∗T − 2

3
αχk2z

)}1/2

. (2.35)

When (4χk2zα/k
2)(ikyv∗T − 2αχk2z/3) inside the radical is smaller than the other term (γc +

χk2z/k
2)2, the growth rate is γ1 ≈ γc and the damping rate is γ2 ≈ −χk2z/k2. This is the

regime of the radiative cooling drive associated with negative ReZ11. While the eigenvectors

have |R1| ≫ |R2|, this doesn’t affect the factor D1(C2 + C3)/C
2
1 , which stays close to unity. If

γc ≫ χk2z/k
2 the growth is stronger than damping, and Pt ∼ 1 is expected. Numerical evaluation

gives Pt = 0.72 and 0.70 for (kx, ky) = (0.6, 0.4) and (-0.2,0.9) respectively, indicating damped

modes are significant. If γc ≪ χk2z/k
2 the damping becomes very strong and we should get

Pt ≪ 1. Numerically, Pt is 0.001 and 0.002 for (kx, ky) = (0.5,−0.1) and (0.0, 0.5).

Large diamagnetic frequency makes (4χk2zα/k
2)(ikyv∗T − 2αχk2z/3) ≫ (γc + χk2z/k

2)2, re-
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Figure 2.3: Ratio of time averaged dissipation rate of damped modes to energy injection rate by
unstable modes, as a function of the diamagnetic velocity v∗T .

sulting in almost equal growth and damping rates γ1,2 ≈ ±(χk2zαkyv∗T /2k
2)1/2, assuming

kyv∗T ≫ αχk2z . With matched growth and damping rates, |R1| ∼ |R2|, leading to Pt = 1.6

and 0.51 for (kx, ky) = (0.6, 0.3) and (−0.1,−0.4) respectively. Energy dissipation and injection

rates are compared in Fig. 2.3. Their ratio is of order unity for a large range of diamagnetic

velocities, which shows that damped modes saturate turbulence over a wide parameter range.

For several points on this plot the damping rate of the damped mode, which is proportional to

|β2|2, is larger than the energy input rate of the instability (proportional to |β1|2). The differ-

ence arises because the nonorthogonality of the eigenmodes produces additional energy change

through terms that are proportional to β1β
∗
2 and its complex conjugate. This change in the

present case slightly enhances the energy injection rate, requiring the larger damping rate. The

eigenmode cross correlation terms are shown explicitly in Eqs. (2.61) and (2.63).

2.3.4 Ionization driven turbulence

Similar to the previous model, ionization driven turbulence describes fluctuations driven by

atomic physics in the scrape-off layer of tokamaks [37]. The two fields of this model are ion

parallel velocity (v‖) for F1 and electrostatic potential (φ) for F2. The nonlinearities are advection
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of parallel flow and a nonlinearity in the F2 equation that combines advection of electron density

and vorticity [38]. These are A-type nonlinearities. The equations are

∂v‖

∂t
+ (γcx − µ∇2

‖)v‖ + v∗v
∂φ

∂y
+ cs∇‖φ = ρscs∇φ× ẑ · ∇v‖, (2.36)

∂

∂t
(1− ρ2s∇2

⊥)φ+ cs∇‖v‖ + v∗φ
∂φ

∂y
−
(

γI +D
∂2

∂y2

)

φ =

− ρ3scs∇φ× ẑ · ∇∇2
⊥φ− LnD∇∂φ

∂y
× ẑ · ∇φ. (2.37)

After Fourier transforming, the linear coupling coefficients are Z11 = γcx + µk2z , Z12 = i(kyv∗v +

kzcs), Z21 = ikzcs/(1+k
2ρ2s), and Z22 = −(γI−Dk2y)/(1+k2ρ2s)+ikyv∗φ/(1+k2ρ2s), where γI and

γcx are the ionization and charge exchange rates, µ is a parallel viscosity, D = 1.71v2∗φηe/χ‖k
2
z ,

ηe is the ratio of electron density gradient scale length (Ln) to temperature gradient scale length,

χ‖ is the parallel thermal conductivity, kz is an average parallel wavenumber, cs is the ion

sound speed, ρs is the ion sound gyroradius, v∗φ is the diamagnetic drift velocity, and v∗v is

the diamagnetic drift velocity for parallel velocity. This model is like the drift thermal model,

and different from the other models, because instability can be driven by its negative values

of dissipation. Here it is ReZ22 that can be negative, representing the destabilizing effect of

ionization. However, the model can also have instability associated with large diamagnetic

terms. This model also has A type nonlinearities with A1 = −ρscs(k′ × ẑ · k) and

A2 =
(k′ × ẑ · k)
(1 + k2ρ2s)

{

iLnDk
′
y −

ρ3scs
2

[(k − k′)2 − k′2]

}

. (2.38)

Defining γc ≡ −γcx − µk2z − (Dk2y/b̂) + (γI/b̂) and b̂ ≡ 1 + k2ρ2s, the eigenfrequencies are

ω1,2 =
i

2

(

γc −
ikyv∗φ

b̂

)

± i

2

{(

γcx + µk2z +
γI −Dk2y − ikyv∗φ

b̂

)2

− 4
kzcs

b̂
(kyv∗v + kzcs)

}1/2

.

(2.39)

The regime of ionization drive occurs when the term (γcx + µk2z + (γI − Dk2y − ikyv∗φ)/b̂)
2 is



30

much larger than the other term inside the radical. This yields a growth rate γ1 ≈ (γI −Dk2y)/b̂

and a damping rate γ2 ≈ −γcx−µk2z . If Dk2y . γI and γI ∼ γcx, the damping is very strong and

Pt(k, k
′) is around 10−5 for all (k, k′) except k′y = 0. This implies that the damped modes do not

play a strong role in saturation and this has been verified in simulations. If γI ∼ γcx ≫ Dk2y, µk
2
z

then the damping and growth rates are comparable. However, in this case |R2| ≫ |R1| and for

A-type nonlinearities this leads to D1(C2 +C3)/C
2
1 ≪ 1. As a result, Pt turns out to be similar

to the case before and damped modes again do not play a role. This case is illustrated in Fig. 2.4

where the energy in damped modes is three orders of magnitude lower than the total energy.

There is one more case when γI ≫ γcx,Dk
2
y , µk

2
z . Here, the growth is very strong compared to

the damping but still |R2| ≫ |R1| leading to Pt values of around 10−5. Thus stable modes do not

affect saturation, as verified in simulations. Comparing to drift thermal turbulence, the other

negative dissipation model, we note that both have regimes where the growing and damped modes

have comparable rates. However, nonlinear coupling is sufficient to excite damped eigenmodes

to a significant level for drift thermal turbulence but not for ionization driven turbulence.
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Figure 2.4: Time trace of energy in ionization driven drift wave turbulence. The energy in
damped modes is three orders of magnitude less than the total energy, which lies almost exactly
on top of the energy in unstable modes.

There is a regime of gradient driven instability occurring when the term [γcx + µk2z + (γI −
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Dk2y − ikyv∗φ)/b̂]
2 is much smaller than the other term inside the radical. Unlike the previous

models, ReZ12 = 0 and Z12Z21 is real and negative for ky and kz positive. This causes both

modes to be damped or growing depending on the sign of γc. A second diamagnetic regime

occurs when kyv∗v is the largest rate. If kz is negative relative to ky, there is is a pair of growing

and damped eigenmodes with comparable rates. The nonlinear coefficient ratio D1(C2+C3)/C
2
1

is also order unity giving Pt values of order unity. Numerical evaluation gives Pt = 0.72 and

0.43 for (kx, ky) = (0.4,−0.4) and (-0.1,0.2) respectively. Numerical solutions confirm that the

damped and growing eigenmode energies are comparable in saturation.

This model is complicated because of its negative dissipation and two diamagnetic frequencies.

In the appropriate strong gradient regime it does have significant damped eigenmode activity, like

the other models. In the regime of negative dissipation instability, damped eigenmode activity

hinges on nonlinear coupling strengths.

2.3.5 Local resistive interchange turbulence

The local resistive interchange instability is driven by pressure gradients and is relevant at the

edge of tokamaks and stellarators. It is a three-field electromagnetic model [39] involving the

poloidal flux, electrostatic potential, and total pressure, but it can be reduced to a two-field

electrostatic model by neglecting the induced electric field. The electrostatic case, which we study

here, has F1 as the pressure (p), F2 as the electrostatic potential (φ), and A-type nonlinearities

arising from advection of pressure and vorticity. The equations are

∂p

∂t
+
∂φ

∂y

dP0

dr
= −∇φ× ẑ · ∇p, (2.40)

∂

∂t
∇2

⊥φ+
∇2

‖φ

η
+ κ

∂p

∂y
= −∇φ× ẑ · ∇∇2φ. (2.41)

After Fourier transforming, the linear coupling coefficients are Z11 = 0, Z12 = ikydP0/dr,

Z21 = −iκky/k2, and Z22 = k2z/ηk
2, where P0 is the equilibrium pressure, dP0/dr is taken

as a parameter, κ is the curvature, and η is the resistivity. This model has A type nonlinearities
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with A1 = k
′ × ẑ · k and A2 = (k′ × ẑ · k)[(k − k′)2 − k′2]/2k2. With Z11 = 0 and Z22 real this

mode does not have negative dissipation. Like ionization driven turbulence it does have ReZ12 =

ReZ21 = 0, but the product Z12Z21 is positive and real. Consequently instability is driven by the

pressure gradient, which when weak gives weak instability with a heavily damped, unimportant

eigenmode, and when strong gives a regime in which the damped mode is important. The latter

corresponds to (ImZ12)(ImZ21) >(ReZ22)
2.
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Figure 2.5: Fraction of damped mode energy in total energy in resistive interchange turbulence,
as a function of −γ2/γ1 calculated at the most unstable wavenumber.

The dispersion relation is ω2 + i(k2z/ηk
2)ω + κ(k2y/k

2)(dP0/dr) = 0 and the roots are

ω1,2 =
−i
2

(

k2z
ηk2

)

± i

2

{(

k2z
ηk2

)2

+ 4
dP0

dr

κk2y
k2

}1/2

. (2.42)

Instability requires that κ(dP0/dr) > 0. When κ(k2y/k
2)(dP0/dr) ≪ k4z/η

2k4 then −γ2 ≫ γ1. In

this case R1 ≫ R2 and with A-type nonlinearities this leads to D1(C2 + C3)/C
2
1 ∼ 1. Because

of this, numerical evaluation of Pt gives values of 0.0003 and 0.001 for the wavenumbers (kx, ky)

= (-0.4,-0.7) and (0.1,-0.8) respectively. In the situation when k4z/η
2k4 ≪ κ(k2y/k

2)(dP0/dr) the
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eigenfrequencies are given by

ω1,2 ≃
−i
2

(

k2z
ηk2

)

± i

2

(

dPo

dr

4k2yκ

k2

)1/2

± i

4

k4z/η
2k4

[(dP0/dr)(4k2yκ/k
2)]1/2

. (2.43)

In this case, −γ2 ∼ γ1 and |R1| ∼ |R2|. This gives Pt values of 2.7 and 0.6 for the wavenumbers

(kx, ky) = (0.4, 0.3) and (−0.3, 0.1) respectively. Thus damped modes are expected to play a

role in saturation of turbulence. Both these cases have been verified in simulations. Fig. 2.5

shows this by plotting the ratio of energy in damped modes to total energy, while in saturation,

as the ratio −γ2/γ1 is increased by decreasing the driving gradient dP0/dr. As predicted by Pt,

damped mode amplitude decreases as the driving gradient is lowered, with the damped mode

unimportant for large values of −γ2/γ1.

2.3.6 Rayleigh-Taylor turbulence

The Rayleigh-Taylor instability is driven by pressure gradients in regions of bad field-line cur-

vature [40]. A two-field model for turbulence driven by this instability was studied in Ref. [41],

where saturation was described in conventional terms by a cascade to small scales, aided by

the shearing of zonal flows. We show here that the damped eigenmode is strongly excited and

provides an energy sink in the wavenumber range of the instability. The model has equations

for plasma density (n) represented by F1 and potential (φ) represented by F2, with A-type

nonlinearities describing advection of density and vorticity. The equations are

∂n

∂t
+ vg

∂n

∂y
+ (vn − vg)

∂φ

∂y
−D∇2n = ∇φ× ẑ · ∇n, (2.44)

∂

∂t
∇2φ+ vg

∂n

∂y
− µ∇4φ = ∇φ× ẑ · ∇∇2φ. (2.45)

After Fourier transforming, the linear coupling coefficients are Z11 = Dk2+ikyvg, Z12 = iky(vn−

vg), Z21 = −ikyvg/k2, and Z22 = µk2, where D is a collisional diffusion coefficient of density,

µ is the viscosity, vg is a normalized gravitational drift arising through curvature, and vn is

the diamagnetic drift. This model also has A type nonlinearities with A1 = −k
′ × ẑ · k and
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A2 = −(k′×ẑ·k)[(k−k′)2−k′2]/2k2. Like the resistive interchange model, this model has positive

dissipation, ReZ12 = ReZ21 = 0, and Z12Z21 real and positive (when vn > vg). Consequently,

turbulence is driven by the gravity and gradient drift terms residing in the imaginary parts of

Zij .

The dispersion relation is ω2+i(Dk2+µk2+ikyvg)ω−µk2(Dk2+ikyvg)+(k2y/k
2)vg(vn−vg) =

0, with roots given by

ω =
kyvg − i(µ +D)k2

2
± i

2

{

[
(D − µ)k2 + ikyvg

]2
+

4vgk
2
y

k2
[vn − vg]

}1/2

. (2.46)

When [(D−µ)k2]2 is larger than k2yv
2
g and 4(k2y/k

2)vg(vn−vg), both eigenmodes are damped with

damping rates γ1 = −µk2 and γ2 = −Dk2. When [(D − µ)k2]2 ≪ |4(k2y/k2)vg(vn − vg) − k2yv
2
g |

there is a pair of unstable and stable eigenmodes that form a conjugate pair in lowest order, with

second order dissipative terms breaking the conjugate symmetry. The eigenfrequencies are

ω1,2 ≈
kyvg
2

∓ vg(D − µ)k2

2
[

4vg(vn − vg)/k2 − v2g

]1/2
±iky

k

{

vg

[

(vn−vg)−vgk2/4
]}1/2

− i

2
(D+µ)k2. (2.47)

With −γ2 ≈ γ1, R1 and R2 are comparable, as are the coupling coefficients D1 and Cj. We

therefore expect that Pt is nearly unity and that the damped eigenmode plays a significant role

in saturation. This is confirmed from numerical evaluation of Pt, which gives values of 0.55

and 0.27 for wavenumbers of (kx, ky) = (0.6,−0.2) and (-0.1,-0.4), respectively. Fig. 2.6 shows

that the damped modes sink most of the energy input by the instability when the ratio −γ2/γ1
is between 1 and 1.5. As in Fig. 2.3, nonorthogonal eigenmodes increase the dissipation rate

beyond that produced by |β1|2, making the damping rate larger than the unstable eigenmode

injection rate for some of the data points. However, unlike Fig. 2.1(b) where the energy rates

remain in balance for a large range of −γ2/γ1, in this case the energy dissipation by damped

modes becomes insignificant as −γ2/γ1 goes over 3.
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Figure 2.6: Ratio of energy dissipation by damped mode to energy injected by unstable modes
in Rayleigh-Taylor turbulence.

2.3.7 Two-field ion temperature gradient turbulence

Ion temperature gradient (ITG) turbulence is driven by an electrostatic instability associated

with the ion pressure gradient [31]. It plays a major role in ion confinement in tokamaks. Damped

eigenmodes in ITG have been examined for a 3-field model and gyrokinetics. Because there is

a two-field ITG model we briefly examine it in connection with the other types of turbulence

studied here. This model is useful for tracking zonal flows. The relationship between zonal flows

and saturation by damped eigenmodes will be described in the next chapter.

The equations for this model are the Eqs. (2.1-2.2). This model has ion pressure (p) for F1

and electrostatic potential (φ) for F2. The nonlinearities are type A, corresponding to advection

of pressure and vorticity. The linear coupling coefficients are Z11 = χk4, Z12 = iky(1 + ηi),

Z21 = −iǫky/(1 + k2) and Z22 = (νk2 + iky)/(1 + k2), where χ is a coefficient of collisional

hyper diffusion of pressure, ηi = d(ln Ti)/d(ln n) is the ratio of ion density (n) gradient scale

length to ion temperature (Ti) gradient scale length, ǫ is the ratio of density gradient scale length

to magnetic field variation scale length, and ν is dissipation of flow active at large scales. The

nonlinear coupling coefficients are A1 = −k
′×ẑ·k and A2 = −(k′×ẑ·k)[(k−k′)2−k′2]/[2(1+k2)].

With ReZ11 and ReZ22 positive the system is unstable through ηi and can be expected to have a
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damped mode damping rate that is comparable to the growth rate, when the instability is above

threshold.
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Figure 2.7: Comparison of energy in damped modes with energy in unstable modes and total
energy for ITG turbulence.

The dispersion relation is ω2(1+k2)+ω[iχk4(1+k2)−ky+iνk2]−iχkyk4−νχk6+ǫk2y(1+ηi) = 0

and the roots are

ω1,2 = − i

2

(

χk4 +
νk2 + iky
1 + k2

)

± i

2

{(

χk4 − νk2 + iky
1 + k2

)2

+
4(1 + ηi)k

2
yǫ

1 + k2

}1/2

. (2.48)

If [χk4− (νk2+ iky)/(1+k
2)]2 ≫ (1+ηi)k

2
yǫ/(1+k

2) then both roots are damped with damping

γ1 ≈ −νk2/(1 + k2) and γ2 ≈ −χk4. If ηi is larger than the other parameters then we get

approximately equal growth and damping rates γ1,2 ≈ ±[(1 + ηi)k
2
yǫ/(1 + k2)]1/2. In this case

the eigenvectors R1 and R2 have nearly equal magnitude and so Pt is expected to be close to

unity. Numerical calculation of Pt gives 0.35 and 0.66 for the wavenumbers (kx, ky) = (0.1, 0.3)

and (−0.5,−0.5) respectively. Fig. 2.7 shows the verification of this prediction where the energy

in damped modes is very close to the total energy.
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2.3.8 Microtearing turbulence with time-dependent thermal force

This model was introduced to provide a minimal two-field description of magnetic turbulence in

magnetically confined plasmas. Although the fluctuations have been labeled microtearing, they

are two dimensional and require the time-dependent thermal force (TDTF) for instability [42].

Without the TDTF the fluctuations are stable and correspond to collisionally damped, counter

propagating kinetic Alfvén waves [43]. The model has electron density (n) for F1 and the parallel

component of the magnetic vector potential (ψ) for F2. The nonlinearites are magnetic, and of

type B. They correspond to the gradient of electron pressure along the perturbed magnetic field

in Ohm’s law (F2 equation) and compression of electron flow along the perturbed field in the

density continuity equation (F1 equation). The equations are

∂n

∂t
+

∂

∂z
∇2ψ − µ∇2n = −∇ψ × ẑ · ∇∇2ψ, (2.49)

∂ψ

∂t
− αα′

ν
iky

∂ψ

∂t

dT0
dx

− ∂n

∂z
− η∇2ψ − (1 + α)ikyψ

dT0
dx

= −∇ψ × ẑ · ∇n. (2.50)

After Fourier transforming, the linear coupling coefficients are Z11 = µk2, Z12 = −ikzk2, Z21 =

−ikz/[1 − i(αα′/νe)kydT0/dx], and Z22 = [ηk2 − iky(1 + α)dT0/dx]/[1 − i(αα′/νe)kydT0/dx],

where µ is a collisional density diffusivity, α and α′ are the order-unity coefficients of the thermal

and time-dependent thermal forces, νe is the electron collision frequency, T0 is the electron

temperature, and η is the resistivity. The electron temperature gradient dT0/dx is taken as a

constant parameter. The B type nonlinear coupling coefficients are B1 = −(k′× ẑ ·k)[(k−k′)2−

k′2]/2 and B2 = (k′ × ẑ · k)/[1 − iky(αα
′/νe)(dT0/dx)]. This model has positive dissipation.

Instability from the TDTF introduces imaginary components of Z12Z21 and Z22 and should

therefore lead to growing and damped modes with comparable rates when the instability is

above threshold.

The dispersion relation is given by ω2(1− ikyαT ) + iω[(µ+ η)k2 − iky(α̂+αTµk
2)]− k2zk

2 −

µk2(ηk2 − ikyα̂) = 0. Here α̂ ≡ (1 + α)(dT0/dx) and αT ≡ (αα′/νe)(dT0/dx). The roots of this
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equation are

ω1,2 = − i

2

[

µk2 +
k2yα̂αT + ηk2 + i(ηk2kyαT − kyα̂)

1 + k2yα
2
T

]

± i

2

{[

µk2 −
k2yα̂αT + ηk2 + i(ηk2kyαT − kyα̂)

1 + k2yα
2
T

]2

− 4k2zk
2

(

1 + ikyαT

1 + k2yα
2
T

)}1/2

. (2.51)

When k2zk
2, k2yα

2
T ≫ µk2, ηk2, kyα̂ then the eigenfrequencies become

ω1,2 ≈ ∓ kzk

(1 + k2yα
2
T )

1/2

[

1 + (1 + k2yα
2
T )

1/2

2

]1/2

∓ ikzk

(1 + k2yα
2
T )

1/2

[

−1 + (1 + k2yα
2
T )

1/2

2

]1/2

.

(2.52)

In this case ImZ12 is larger than the real part of all Z’s and so the growth and damping rates

are almost equal. The eigenvectors R1 and R2 have comparable magnitudes which should lead

to Pt values of close to unity. Numerical evaluation of Pt gives 1.1 and 0.23 for wavenumbers

(kx, ky) = (0.6, 0.2) and (−0.4,−1.0) respectively. We therefore expect damped modes to play a

prominent part in saturation for this case. If k2yα
2
T . µk2, ηk2, kyα̂ there is no instability drive

as both modes are damped.

2.3.9 Thermal microtearing turbulence

Thermal microtearing turbulence is a variant of microtearing turbulence driven by the TDTF

that couples parallel component of magnetic vector potential (ψ) fluctuations to temperature

(T ) fluctuations [44]. The basic equations are

∂T

∂t
− 2

3

κ

n0
∇2

‖(T0 + T ) +
2

3
(1 + α)

T0
no

∇‖∇2ψ = 0, (2.53)

∂ψ

∂t
− T0
n0

∇‖n0 −
(

1 + α+
αα′

νe

∂

∂t

)

∇‖(T0 + T )− η∇2ψ = 0, (2.54)

where ∇‖ = ∂/∂z+∇ψ× ẑ ·∇. This model becomes quite complicated when put in the standard

form of Eqs. (2.3) and (2.4). The electron temperature fluctuation T is F1 while F2 is a linear

combination of temperature and parallel component of magnetic vector potential ψ given by F2 =

ψ̂k ≡ [1−i(αα′/νe)kydT0/dx]ψ−i(αα′/νe)kzT . The linear coefficients are Z11 = (2/3)(κ/n0)k
2
z+
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(2/3)(αα′/νe)k
2
z [Tα + iT ′

κ]/[1 − i(αα′/νe)kydT0/dx], Z12 = (2/3)kz [T
′
κ − iTα], Z21 = −ikz(1 +

α) + i(αα′/νe)kz [ηk
2 − iky(T0/n0)dn0/dx − iky(1 + α)dT0/dx]/[1 − i(αα′/νe)kydT0/dx], and

Z22 = [ηk2 − iky(T0/n0)dn0/dx− iky(1 + α)dT0/dx]/[1 − i(αα′/νe)kydT0/dx], where Tα = (1 +

α)(T0/n0)k
2, T ′

κ = (κ/n0)kydT0/dx, κ is the collisional parallel thermal conductivity, n0 is the

equilibrium density, and the remaining quantities are the same as those of microtearing turbulence

(Sec. 2.3.8). The nonlinearities in this model are very complicated and cannot be written in the

form of Eqs. (2.5-2.6). They are,

N1 =
∑

k′

(k′ × ẑ · k)(2kz − k′z)

[1− ik′y(αα
′/νe)(dT0/dx)]

[−(αα′/νe)k
′
zTk′Tk−k′ + iψ̂k′Tk−k′ ]+

∑

k′

{[

i(k′ × ẑ · k)(ky − k′y)
dT0
dx

+ k′y(ky − k′y)
d2T0
dx2

− (1 + α)Te
3n0

(k′ × ẑ · k)[(k − k′)2 − k′2]

]

× 1

[1− ik′y(αα
′/νe)(dT0/dx)]

1

[1− i(ky − k′y)(αα
′/νe)(dT0/dx)]

×
[(

i
αα′

νe
k′zTk′ + ψ̂k′

)(

i
αα′

νe
(kz − k′z)Tk−k′ + ˆψk−k′

)]}

,

(2.55)

N2 = −(1 + α)
∑

k′

(k′ × ẑ · k)
[1− ik′y(αα

′/νe)(dT0/dx)]
[i(αα′/νe)k

′
zTk′Tk−k′ + ψ̂k′Tk−k′ ]. (2.56)

The TDTF drive appears in every linear coefficient except Z12, making it difficult to infer

eigenmode properties solely from inspection of Zij . The frequency expression is also sufficiently

complicated that little is learned from inspection. The nonlinear coupling coefficients are also

extremely complicated. Numerical evaluation shows that when kz is an appreciable fraction of

ky and (αα′/νe) > (1 + α) there is a pair of growing and damped roots with −γ2 < γ1. The

eigenvector components have similar magnitude so that Pt should be of order unity. The damped

eigenmode is therefore expected to play a significant role in saturation.
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2.4 Energetics of damped modes

Following section 2.2 we choose to define the energy in these two field fluid models as E =

(1/2)
∑

k[|F1(k)|2 +K(k)|F2(k)|2]. The energy evolution equation becomes, from Eqs. (2.3-2.4),

dE

dt
= Re

{
∑

k

[
− Z11|F1|2 − Z12F

∗
1F2 − Z21K(k)− Z22K(k)|F2|2

]
}

+ 2Re

{
∑

k

[
F ∗
1N1 +K(k)N2F

∗
2

]
}

. (2.57)

The coefficient K(k) is always chosen such that the nonlinear energy term,
∑

k Re{
∑

k

[
F ∗
1N1 +

K(k)N2F
∗
2

]
} is zero. This implies that energy is conserved by the nonlinear terms and the

only net sources and sinks of the energy are the linear terms. Hence these terms are called

non-conservative terms (n.c.),

dE

dt

∣
∣
∣
∣
∣
n.c.

= −Re
[

Z12〈F2F
∗
1 〉
]

−K(k)Re
[

Z21〈F1F
∗
2 〉
]

− ReZ11|F1|2 −K(k)ReZ22|F2|2. (2.58)

The first two terms on the right hand side are proportional to the correlation between the two

fields. This correlation also governs the transport flux. The second two terms arise from colli-

sional dissipation of F1 and F2. When ReZ11 and ReZ22 are positive these terms damp fluctuation

energy, and instability comes from the cross correlation. For the drift thermal and ionization

drift wave models ReZ11 and ReZ22 could have negative values, in which case instability could

be driven by the last two terms.

To separate the roles of unstable and stable eigenmodes we express the right hand side in

terms of the eigenmode amplitudes using the eigenmode decomposition F1 = R1(k)β1 +R2(k)β2

and F2 = β1 + β2, yielding,

dE

dt

∣
∣
∣
∣
∣
n.c.

= Cu + Cs +Du +Ds. (2.59)

Here

Cu = −
[

Re(Z12R
∗
1) +K(k)Re(Z21R1)

]

|β1|2, (2.60)
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is the cross-correlation term associated with the unstable eigenmode,

Cs = −
[

Re(Z12R
∗
2) +K(k)Re(Z21R2)

]

|β2|2

−Re
[

Z12

(

R∗
1〈β∗1β2〉+R∗

2〈β1β∗2〉
)]

−K(k)Re
[

Z21

(

R1〈β1β∗2〉+R2〈β∗1β2〉
)]

, (2.61)

is the cross-correlation term associated with stable eigenmode excitation,

Du = −
[

Re(Z11)|R1|2 +K(k)Re(Z22)
]

|β1|2, (2.62)

is the collisional dissipation term associated with the unstable eigenmode, and

Ds = −[Re(Z11)|R2|2 +K(k)Re(Z22)]|β2|2 − 2ReZ11Re(R1R
∗
2〈β1β∗2〉)− 2K(k)ReZ22Re〈β1β∗2〉,

(2.63)

is the collisional dissipation term associated with stable eigenmode excitation.

The conventional view of saturation does not account for damped eigenmodes, effectively

assuming that β2 = 0 and making Cs = Ds = 0. For conventional saturation
∑

k Cu = −∑k Du,

with Cu typically large and positive at large scales and Du large and negative at small scales.

Prior work based on selected fluid models [23],[45],[28] has shown that Cs is not zero, but negative

and a significant fraction of Cu. In this case, the transport flux is significantly reduced from

the quasilinear value by the damped eigenmode contribution to the correlation that governs

transport. When Cs is a significant fraction of Cu damped eigenmodes are said to play a role in

saturation. This statement refers to saturation of the linear instability, which is represented by

Cu.

An important point must be made here. It is true that time irreversible dissipation is only

possible by viscous and diffusive terms. However, in this work we are concerned with the removal

of energy from the fluctuation spectrum by damped modes, which occurs in two ways. Through

the heat flux term, damped modes remove energy out of the turbulence and put it back in

the temperature gradient by driving a negative heat flux. This is not irreversible dissipation,
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but it definitely does remove energy injected into the turbulence by the linear instability. This

reduces the energy input rate drastically. In fact, Cs 6= 0 can equally well be described as a

finite-amplitude reduction of the instability growth rate from its linear value associated with Cu.

After subtracting this energy removed by the damped modes, a tiny fraction of the linear energy

input remains. This is then removed by the viscous (irreversible) dissipation. But even the

viscous dissipation terms can be split into unstable and stable mode contributions. In that also

we find the stable mode contribution is significant. However, in this study we are focussing on

the drastic negative heat flux (Cs) driven by the stable modes that almost completely balances

the linear instability driven heat flux. By the term “energy dissipation due to damped modes"

we mean both the above processes in which stable modes take part.

The difference Cu − |Cs|, which sets the reduced growth rate due to the damped eigenmode

at finite amplitude, must still be saturated. This is accomplished by Du + Ds. In gyrokinetic

models for the Cyclone Base Case [46] of ITG turbulence there are a very large number of damped

eigenmodes [27]. Some of these modes have values of |Cs| that are a significant fraction of Cu.

However, their effect is not systematic - there are positive and negative values in roughly equal

measure, such that in a sum over the eigenmode spectrum, the net value of Cs is close to zero.

In this situation the probability distribution of Cs peaks near zero, i.e., it has a near zero mean

value, even though it is broad [25]. The transport flux, which is proportional to the mean value

of Cu+Cs is therefore not very different from the quasilinear flux (which is proportional to Cu). In

the gyrokinetic models Ds is both large and systematic in its effect, so that damped eigenmodes

govern saturation primarily through collisional dissipation.

The situation for two-field fluid models is quite different, as depicted in Figs. 2.8 and 2.9,

which give the values of C and D for Rayleigh-Taylor [K(k) = 1] and ion temperature gradient

turbulence [K(k) = 1 + k2]. In both cases the most significant damped eigenmode effect resides

in the cross correlation. The damped eigenmode also contributes to the collisional dissipation at

a level somewhat weaker than the contribution of the unstable eigenmode.

These results are consistent with a large reduction of the quasilinear flux. The E×B advection

of pressure causes heat flux out of the tokamak. In such fluid models, this is calculated as
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Figure 2.8: Energy dissipation and heat flux in the Rayleigh-Taylor model, breaking them up
into unstable and stable mode contributions of Eq. 2.59. The damped modes most significant
contribution is to drive a negative heat flux Cs, which balances a large portion of the instability
drive, Cu.
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Figure 2.9: Energy dissipation and heat flux in the ITG model, breaking them up into unstable
and stable mode configurations of Eq. 2.59.
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Γ = −∑k kyIm(φ∗kpk). In order to simplify this calculation often a quasilinear approximation

is made. Under this approximation, the stable modes are ignored and hence the pressure is

expressed as pk = R1(k)φk. This gives the quasilinear flux as Γquasilinear = −∑k kyIm(R1)|φk|2.

These two fluxes are compared in Fig. 2.10, which shows the quasilinear and true fluxes for

both the hydrodynamic and adiabatic regimes of Hasegawa-Wakatani turbulence. In the former

there is a considerable reduction, consistent with strong excitation of the damped eigenmode,

as the damped eigenmodes drive a strong inward, negative flux. Three-field fluid models for

ITG and ETG turbulence also have a significant systematic deviation of Cs from zero, and a

correspondingly large reduction of the flux [24].

2.5 Discussion

Nine two-field fluid models for instability-driven plasma turbulence covering different regimes of

physics and parameters have been found to have commonplace regimes where damped eigenmodes

saturate the linear instability. The damped eigenmodes are zeros of the dispersion relation. With

the exception of TEM [22], their role as the energy sink for saturation has not been described. It

is concluded, therefore, that the involvement of damped eigenmodes in saturation is not unique

to a certain type of instability process or parameter regime, but a natural adjunct to instability

in turbulence driven by instability. For two-field fluid reductions, the quadratic dispersion makes

damped eigenmodes more prominent when the instability is well above threshold, and for strong

diamagnetic frequency. When damped eigenmodes play a dominant role in saturation the energy

dissipation rate of the damped eigenmode is comparable to the energy injection rate of linear

instability. The saturation levels of stable and unstable eigenmodes are similar in many cases.

Saturation by damped eigenmodes involves an energy sink in the energy-containing wavenumber

range of the instability. Consequently, damped eigenmodes cannot be ignored in the descriptions

of saturation, the steady state, or transport. This is important because damped eigenmodes are

found to provide the energy sink for saturation in extensively studied systems where they were

not previously identified, such as Rayleigh-Taylor, resistive interchange, and Hasegawa-Wakatani
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turbulence. We note that shear flows have been included as an entity apart from the instability

in representations of some of these systems [41]. However they have not been envisaged as, or

play the role of the primary energy sink. The interesting interaction between shear flows and

damped eigenmodes will be described in the next chapter.

A previously derived threshold parameter for saturation by damped eigenmodes, Pt, is found

to be reliable for all nine models. When this parameter reaches values of a few tenths, damped

eigenmodes become the dominant saturation mechanism. The parameter depends on the ratio of

the damping rate to the growth rate, and indicates that when the damped eigenmode damping

rate is too large, energy flowing to small scales on the unstable wavenumber manifold will instead

saturate the instability according to the conventional picture of saturation. The ratio of coupling

coefficients between wavenumbers on the unstable manifold and modes across the two manifolds

also affects the value of Pt. This coupling ratio is often of order unity, but can be significantly

different in certain cases described here. It is found that the energy dissipation rate of the

damped eigenmode remains similar to the energy injection rate when the ratio of damping to

growth, |γ2/γ1| is not much greater than unity.

For all nine models, the damped eigenmode significantly changes the cross phase between the

two fields from the value associated with the unstable eigenmode. This means that fluctuation

energy is reabsorbed into the equilibrium gradients through the damped eigenmode in an inverse

of the instability process. The transport flux is correspondingly reduced compared to the quasi-

linear flux estimate. This process can be viewed as a finite-amplitude-induced reduction of the

energy injected into the spectrum by the instability, however in this picture, the instability is

no longer linear. The stable eigenmode also contributes to the damping arising from collisional

dissipation terms. In the overall energetics this is a smaller effect than the change in energy

evolution associated with the cross phase.
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Chapter 3

Fluid model study of stable modes in

zonal flow regulated turbulence

In the previous chapter we analyzed a variety of turbulence models, all of which showed saturation

by damped modes in some parameter regime. One of the models studied was the ITG/ETG

model. Now it is a well known fact that zonal flows play an important role in saturation of ITG

turbulence [47]. In this chapter we look at the role played by stable modes in zonal flow regulated

ITG turbulence. This is a topic of significant importance because ITG turbulence is a major

player in tokamak turbulent transport. It is well known that zonal flows play an important role

in regulating the transport caused by this turbulence. In fact, it has been argued that zonal flows

are a critical trigger in the L to H transition of tokamaks that leads to enhanced confinement [48].

First we will give a brief overview of zonal flows and the conventional reasoning explaining

the regulation of turbulence by zonal flows. Then we propose an alternate scenario wherein the

stable modes play an important role in this regulation. In essence, we try to show that zonal

flows provide an efficient coupling of energy from unstable to stable modes. Numerical studies

are performed using a 2D fluid code similar to the one described in the previous chapter. The

results show that indeed zonal flows are responsible for transfer of energy to stable modes, which

causes saturation. The reasons for such a strong coupling are then provided in terms of phase

matching arguments and an examination of the nonlinear coupling coefficients.
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3.1 Zonal flows in ITG

Zonal flows are associated with a toroidally and poloidally symmetric, electrostatic potential

perturbation in a toroidal plasma. In other words, the potential perturbation has toroidal mode

number (m) and poloidal mode number (n) equal to zero, and hence is constant on magnetic flux

surfaces [47]. However, it varies rapidly in the radial direction, giving rise to a radial electric field.

This field produces an E×B flow which is mostly in the poloidal direction in tokamaks. This is

the “flow” in zonal flows. A schematic representation of zonal flows is shown in Fig. 3.1. We can

see a poloidal cross section of a tokamak and the shaded regions represent flux surfaces which

also happen to be equipotential surfaces for zonal flow potential. There is a shear in the radial

direction which produces sheared E × B poloidal flow, the zonal flows. These flows have been

observed in both simulations and experiments [49]. They are characterized by low frequencies

compared to ambient drift wave turbulence. Their wavelength in the radial direction is of the

order of 10ρi, where ρi is the ion gyroradius.

Figure 3.1: Schematic of zonal flows. The shaded regions are equipotential flux surfaces and the
arrows on the right hand side indicate the direction of zonal flows. It is evident that they are
sheared flows. Figure taken from Ref. [47].

Zonal flows arise self consistently in ITG turbulence as seen in simulations and also in experi-

ments [50]. Their excitation by turbulence can be modeled by a modulational instability analysis

of the drift waves of ITG [51]. A simplified derivation of this instability is given in Ref. [52].

The starting point is a Hasegawa-Mima type equation for the electrostatic potential. Then a
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simplified four wave problem is considered, consisting of a pump wave k2, two sidebands k3 and

k4, and the zonal flow itself k1. It is found that the zonal flow is nonlinearly unstable to the

beating of the pump wave with the two sidebands, and the growth rate of the zonal flow is de-

rived. It has been observed that the correct nonadiabatic response of electrons to zonal potential

perturbations has to be taken into account to self consistently generate zonal flows [53]. The

electrons can respond adiabatically to non-zonal perturbations which vary on the flux surface.

However they cannot respond adiabatically to zonal perturbations which are constant on flux

surfaces. In other words, zonal perturbations are not shielded by adiabatic electrons. In this

way they can be thought to have “low inertia” and hence are readily excited by the modulational

instability [47].

When the zonal flows are excited, the level of turbulence is drastically reduced by more

than an order of magnitude as seen in numerical simulations [47], [54]. Indirect evidence from

experiments [55] also indicates that zonal flows are crucial in regulating the turbulence and thus

potentially play an important role in the L-H transition. In a numerical experiment, Fig. 3.2,

the zonal flows are turned off artificially by removing the nonadiabatic response of electrons and

the turbulence is allowed to saturate. Then the zonal flows are turned on by allowing the correct

non-adiabatic response of electrons. It is observed that as the zonal flows rise, the turbulent

energy decreases by an order of magnitude and so does the transport.

The conventional explanation for this phenomenon is the drift wave-zonal flow shearing

paradigm. There are two ways to explain how this works. Firstly zonal flows arise due to

nonlinear energy transfer from drift waves to zonal flows. This implies that zonal flows form a

depository of drift wave energy. However, zonal flows themselves do not cause transport unlike

drift waves. Also the zonal flows are damped by collisions and so serve as a dissipation channel.

As a result, generation of zonal flows naturally leads to regulation of transport. Secondly, zonal

flows, being shear flows, shear apart turbulent eddies. This tearing of turbulent eddies leads to

increased coupling to dissipative scales which leads to the saturation of turbulence. This shearing

effect is observed in simulations, Fig. 3.3 and Ref. [56].
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Figure 3.2: In this numerical experiment, ITG is allowed to saturate by some process in the
absence of zonal flows. Then at t ≈ 40Ln/cs the zonal flows are allowed to evolve and they rise
exponentially (gray curve (a)). The turbulence saturates at a lower level (solid black curve (b))
compared to if the zonal flows hadn’t been allowed to be formed (dotted curve (c)). Taken from
Ref. [54].

Figure 3.3: In this numerical experiment, ITG is allowed to saturate by some process in the
absence of zonal flows in plot (b). We can see radially elongated turbulent eddies in the poloidal
cross section of the simulated tokamak. In plot (a) the zonal flows are allowed to evolve self
consistently in which case we see that the eddies are torn apart and appear with a much smaller
radial extent, thus lowering the transport. Taken from Ref. [57].
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3.2 Zonal flows and stable modes

From the previous section we know that zonal flows are important in saturation of ITG tur-

bulence. However, in the previous chapter we saw that stable modes are the major saturation

mechanism in ITG turbulence. How to reconcile these two seemingly disparate descriptions? A

possible answer can be that zonal flows could enhance energy transfer to stable modes, which

would also lead to saturation of turbulence at a lower level. This is represented in Fig. 3.4.

Unstable branch

         (ky/=0)

          Zonal modes

(ky=0, zero 

frequency modes)                            

Dissipative 

scales

(High k)

Damped branch

         (ky/=0)

Zonal !ows scatter    

energy in kx

Figure 3.4: Two different ways of energy transfer. The rightmost arrow shows enhanced energy
transfer to dissipative scales by zonal flow shearing. The leftmost arrows show how zonal flows
can enhance energy transfer to damped modes.

In Fig. 3.4 the drift waves at low wavenumber are separated into two divisions, unstable

and stable. The zonal flows are represented by zero poloidal wavenumber (ky = 0) and low

frequency. On the other hand,the high wavenumbers are dissipative drift waves. According to

the conventional mechanism, zonal flows enhance energy transfer from the unstable modes to

dissipative modes via shearing, which is represented by the right most arrow in the figure. We

have already seen that unstable modes transfer a lot of energy to stable modes by three wave

interactions. However, it is also possible that zonal flows can enhance energy transfer to stable

modes in addition to enhancing energy transfer to small-scale, dissipative modes. This energy
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can flow directly to stable modes, as shown by the center arrow, or via the zonal flows, as shown

by the two leftmost arrows. This can also result in the regulation of turbulence since the stable

modes are dissipative. In order to study this we first look at a simplified two field fluid model in

this chapter. In the next chapter we look at the same problem using a comprehensive gyrokinetic

model.

3.3 Model equations

A simple 2 field model is used which describes both ITG and ETG [31],

∂pk
∂t

+ iky(1 + η)φk + χk4pk = −1

2

∑

k′

(k′ × ẑ · k)[φk′pk−k′ − φk−k′pk′ ], (3.1)

[δ(ky) + k2]
∂φk
∂t

+ ikyφk − ikyǫpk + νk2φk = −1

2

∑

k′

(k′ × ẑ · k)[(k − k′)2 − k′2]φk′φk−k′. (3.2)

These equations are almost the same as Eqs. (2.1-2.2). Here pk and φk are Fourier amplitudes

of pressure and electrostatic potential, ν and χ are coefficients of collisional dissipation, η is

the ratio of density to temperature gradient scale lengths, and ǫ is the ratio of density gradient

scale length to magnetic field variation scale length. In this chapter also we denote the Fourier

wavenumber with k, and it should be clear from context whether it denotes the wave-vector

or its scalar magnitude. The spatial coordinates are normalized to ρ and time is normalized

to Lref/uref . The symbol ρ represents the electron gyroradius for the electron temperature

gradient (ETG) turbulence case and the ion sound gyroradius for the ion temperature gradient

(ITG) turbulence case. The symbol Lref represents the density gradient scale length and uref is

vTe (electron thermal velocity) for ETG and cs (ion sound speed) for ITG. To set the model for

ETG turbulence, δ = 1 for all ky. For ITG,

δ(ky) =







1 if ky 6= 0

0 if ky = 0.
(3.3)
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Poloidally symmetric ky = 0 fluctuations are referred to as zonal fields. In this model there

are two zonal fields, namely the zonal flow vz(kx) = ikxφky=0 and the zonal pressure pky=0.

There is a zonal flow and pressure for both the ETG and ITG cases. In the ITG case where

δ(ky)|ky=0 = 0, the potential equation can be rewritten as an equation for zonal flow

v̇z + νvz = (−i/2)
∑

k′

k′y[(kx − k′x)
2 − k′2x ]φk′φk−k′ . (3.4)

In the ETG case the equation for vz is

v̇z + νk2x(1 + k2x)
−1vz = (−i/2)

∑

k′

k′yk
2
x(1 + k2x)

−1[(kx − k′x)
2 − k′2x ]φk′φk−k′ . (3.5)

For the energy containing scales kx ≪ 1. Looking at the rhs of Eqs. (3.4-3.5) we see that the

nonlinear coupling to the zonal flow is stronger by a factor k−2
x in the ITG case than in its ETG

counterpart. Since transfer to ky = 0 is already favored when damped eigenmodes are present

[58], the zonal flow is strongly excited. In this model the zonal flow brings down the level of

turbulence and reduces ion-channel transport. This is shown in Fig. 3.5, where the turbulent

energy in the ITG case is almost two orders of magnitude smaller than the ETG case. The

definition of energy is given in Eq. 3.15.

As in the previous chapter, we look at the linear frequencies of this model, which are,

ω1,2 = − i

2

(

χk4 +
νk2 + iky
δ + k2

)

± i

2

{(

χk4 − νk2 + iky
δ + k2

)2

+
4(1 + η)k2yǫ

δ + k2

}1/2

. (3.6)

We consider the regime of weak collisionality χk4, νk2 ≪ ky
√
ηǫ, where 0 < ky < 1. This

is a regime of robust linear instability. In this regime an expansion of the radical shows that

the two eigenfrequencies are nearly complex conjugates, with the deviation proportional to the

collisionalities,

ω1,2 ≈
ky

2(δ + k2)
± iky

[
(1 + η)ǫ

δ + k2

]1/2

− i

2

νk2

(δ + k2)
− i

2
χk4. (3.7)



54

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

1.0e+05

1.0e+06

 0  200  400  600  800  1000

E
n
er

g
y

t(Lref/vref)

ETG case
ITG case

Figure 3.5: Comparison of total energy (as defined in Eq. 3.15) in ITG vs ETG. ITG saturates
at a much lower level than ETG.

As a near conjugate to the unstable eigenmode ω1, the second eigenmode ω2 is damped. More-

over, with |Im ω2| ≈ |Im ω1| the damped eigenmode satisfies the condition for strong excitation,

Eq. (2.25), and dissipates energy at a rate that is comparable to the energy injection rate of the

instability.

For ky = 0 the eigenfrequencies reduce to

ω1 = −iνk2x/(δ + k2x), (3.8)

ω2 = −iχk4x. (3.9)

We observe from Eqs. (3.1) and (3.2) that setting ky = 0 diagonalizes the linear part of the

equations. Hence pressure and potential are the eigenmodes at ky = 0. (Away from ky =

0 the eigenmodes are linear combinations of pressure and potential, given by Eq. 3.10.) For

convenience, we label the frequencies of the ky = 0 flow and pressure as respectively ω1 and ω2,

irrespective of whether (χk4x−νk2x/(δ+k2x)) is positive or negative. This is a labeling convention

for ky = 0, and does not change the results of this chapter in any way. For the ITG case the

zonal flow damping rate is −ν.
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To track the amplitudes of the unstable and damped modes we introduce the eigenmode

decomposition of Eq. 2.16,






pk

φk




=β1(k)






R1(k)

1




+ β2(k)






R2(k)

1




, (3.10)

where [R1(k), 1] and [R2(k), 1] are the eigenvectors of the unstable and stable modes, β1(k) and

β2(k) are the mode amplitudes, and

R1,2 =
−ω1,2(δ + k2) + ky − iνk2

kyǫ
. (3.11)

Evolution equations for the amplitudes β1(k) and β2(k) are found by inverting Eq. (3.10) and

taking the time derivative [23]. This procedure diagonalizes the linear coupling of the evolution

equations, while mixing the nonlinearities.

It is helpful to explicitly break out the ky = 0 component of the evolution from the ky 6= 0

components, writing the evolution equations as two equations for β̇1(k)|ky 6=0 and β̇2(k)|ky 6=0 and

two equations for ṗk|ky=0 and φ̇k|ky=0. The evolution equations are

β̇l + iωlβl =
∑

k′(k′y 6=0,ky)

[Clmnβ
′
mβ

′′
n] +

∑

k′x

{

[ClFnv
′
zβ

′′
n+ClPnp

′
zβ

′′
n]|k′y=0+

[ClmFβ
′
mv

′′
z + ClmPβ

′
mp

′′
Z ]|k′y=ky

}

, (3.12)

v̇z +
νk2x

(δ + k2x)
vz =

∑

k′x

[CFmnβ
′
mβ

′′
n]|ky=0, (3.13)

ṗz + χk4xpz =
∑

k′x

[CPmnβ
′
mβ

′′
n]|ky=0, (3.14)

where l,m, n = 1 or 2 and the Einstein convention is used to imply summation over repeated

indices. A shorthand notation is introduced as follows: β1,2 = β1,2(k)|ky 6=0, β
′
1,2 = β1,2(k

′)|k′y 6=0,

β′′1,2 = β1,2(k − k′)|k′y 6=ky , vz = ikxφk|ky=0, v
′
z = ik′xφk′ |k′y=0, v

′′
z = i(kx − k′x)φk−k′ |k′y=ky , pz =

pk|ky=0, p
′
z = pk′ |k′y=0, and p′′z = pk−k′ |k′y=ky . The coupling coefficients Clmn, ClFn, ClPn, ClmF ,



56

ClmP , CFmn and CPmn are functions of the nonlinear coefficients of Eqs. (3.1) and (3.2) and the

eigenvector components R1 and R2. Their precise forms are given in the Appendix A.

3.3.1 Details of the code used

The code used in the previous chapter had very limited resolution and thus is not suitable for

studying nonlinear energy transfer to high wavenumber modes. Thus a new high resolution

code was developed in order to study the energy transfer processes with this model. All the

simulations were done on a grid of 160×160 points in (kx, ky), with kx,minρ = ky,minρ = 0.04. A

5th−6th order Runge-Kutta scheme is utilized. The linear terms are calculated in Fourier space,

whereas the nonlinear term is calculated in real space with Intel MKL FFT routines implemented

for fast conversion from one space to another space. Thus, it is a pseudo spectral code which

utilizes Orszag’s 2/3rd anti-aliasing scheme. The code conserves energy to machine precision.

The analytically derived linear growth rates are numerically verified with this code.

3.4 Energy dynamics

The energy expression for this model is

E =
∑

k

[(δ + k2)|φk|2 + |pk|2]. (3.15)

The rate of change of the total energy can be expressed as

dE

dt
= Qu +Qs +Qus +D +Dzonal, (3.16)

where Qu is the rate of change of energy due to unstable modes, Qs is the rate of energy

removal by stable modes, and Qus is the rate of change of energy due to cross terms of unstable

and stable modes. The sum of these terms is related to the turbulent heat transport flux by

Qu +Qs +Qus = −(1 + η + ǫ)Q, where Q = −∑k kyIm(φ∗kpk) is the heat flux. D is the high-

wavenumber dissipation for nonzonal modes, and Dzonal is the linear energy damping rate of the
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zonal modes. These terms can be derived by substituting Eqs. (3.1-3.2) in the time derivative

of Eq. 3.15. They are given in the Appendix A. These quantities are plotted in Fig. 3.6 for the

ETG case. We see that Qu is large and positive. It is balanced by a large and negative Qs, which

shows saturation by stable modes. Qus is small (not visible in the plot) and negative, and helps

balance Qu. It should be noted that while Qus equally derives from stable and unstable modes,

it vanishes in any calculation that ignores the stable modes. The role of viscous dissipation D

is considerably smaller than the dissipation Qs of stable modes, and dissipation by the zonal

modes is negligible. The ETG turbulence in Fig. 3.6 has not actually saturated at the end of the

simulation run. While the addition of artificial damping at low k does lead to saturation, the

behavior seen in Fig. 3.6 (Qu ∼ |Qs| ≫ |Qus|,D) remains unchanged. The damped modes are
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Figure 3.6: Time trace of the terms in Eq. 3.16; Qu, Qs, Qus, D and Dzonal; in ETG turbulence.

most active in the range of instability. This is seen in the wave number spectrum of heat flux

and dissipation. Both Qus and Qs can be considered as damped mode contributions. It can be

seen that the damped modes dissipate energy, Qs+Qus (Fig. 3.7(b)), at exactly the same place,

at low wavenumbers, where unstable modes inject energy Qu (Fig. 3.7(a)). The dissipation D

(Fig. 3.8) is negligible and peaks at high k.

A numerical experiment shows how zonal flows reduce the level of turbulence. A simulation

is started in the ETG case. It is allowed to reach a saturated state. At time 400 the equations
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Figure 3.7: Time averaged kx-ky spectrum of the terms in Eq. 3.16 for ETG turbulence. (a)
plots the spectrum of energy injection rate by unstable modes, Qu, while (b) plots the spectrum
of energy dissipation by damped modes, Qs + Qus. Only positive ky values are plotted as the
spectrum is symmetric in k.
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Figure 3.8: Time averaged kx-ky spectrum of the dissipation, D (Eq. 3.16), in ETG turbulence.

are switched to the ITG case by changing the parameter δ. In a crude sense, this mimics a

transition from a low confinement regime to a high confinement regime induced by turbulence-

driven sheared flows [31], [59]. The turbulence level is reduced after t = 400. What causes this

change in energy? The rate of change of energy, dE/dt, becomes sharply negative after t = 400.

We see from Eq. 3.16 that dE/dt has a net drive from Qu + Qs + Qus and net dissipation

D + Dzonal. Fig. 3.9 shows that as zonal flows are turned on, the viscous dissipation D shows

only a slight transient increase and then a decrease. The zonal dissipation Dzonal remains small.

However, the sum Qu+Qs+Qus decreases drastically in magnitude. The sum Qu+Qs+Qus is

the difference between energy injected by the instability and dissipated by damped modes. This

residual must be dissipated by the only other sink, namely, viscous dissipation. Consequently

viscous dissipation does not increase (the way it would if there were enhanced energy transfer

to small scale) but it decreases to match the reduced residual energy input Qu +Qs +Qus. The

reduced input makes dE/dt negative and brings the energy down. It is also observed that the
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level of zonal flows increases. However, the fraction of instability energy deposited into the zonal

flow remains very small, and is removed by zonal flow damping, as shown in Fig. 3.10. Fig. 3.10

shows that most of the instability energy is damped by the stable modes in ITG also, with the

zonal modes dissipating only a small fraction of it.
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Figure 3.9: Time trace of dE/dt terms in Eq. 3.16. At t = 400 the zonal flows are turned on and
we see that the high-k dissipation, D, doesn’t show any significant increase, rather the heat flux
related term, Qu +Qs +Qus, shows a marked decrease.

3.5 Nonlinear energy transfer diagnostics

To validate the hypothesis that zonal flows enhance energy transfer to stable modes, we analyze

the nonlinear energy transfer within the system. Decomposing the pressure and potential fields

into the linear eigenmode amplitudes, the energy dependence on the four fields of Eqs. (3.12) -

(3.14) is given by

E =
∑

ky 6=0

[

(1 + k2 + |R1|2)|β1|2+(1 + k2 + |R2|2)|β2|2 + 2(1 + k2)Re〈β∗1β2〉+ 2Re〈R∗
1β

∗
1R2β2〉

]

+
∑

ky=0

[

|pk|2 + (δ + k2)|φk|2
]

.

(3.17)
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Figure 3.10: Time trace of the terms in Eq. 3.16; Qu, Qs, Qus, D and Dzonal; in ITG turbulence.

The energy in the unstable modes corresponds to
∑

ky 6=0(1 + k2 + |R1|2)|β1|2. Eqs. (3.12-3.14)

can be recast as energy equations by multiplying by β∗l , v
∗
z , and p∗z, respectively and adding the

complex conjugate equations. Energy transfer channels available to the system are associated

with various coupling coefficients. Turbulent energy enters the system through |β1|2 at low k,

and energy transfer channels lead from this source to the sinks, the largest of which is |β2|2 at

low k. |β1|2 and |β2|2 at high k are also sinks, but energy must cascade through a progression of

wavenumbers to reach large k. Energy passes directly from β1 to β2, without any intermediate

zonal fields, through terms with coefficients C112, C121, C122, C211, C212, and C221. Energy

cascades to large k within a single eigenmode through the terms with C111 and C222. The terms

with C1F2, C12F , C2F1, C21F , CF12, and CF21 govern the passage of energy from β1 to β2 through

the intermediary of the zonal flow. The terms with C1P2, C12P , C2P1, C21P , CP12, and CP21

govern the passage of energy from β1 to β2 through the zonal pressure. The relative strengths

of these channels are governed by the magnitudes of coupling coefficients and by the triplet

correlations of the energy equations, as detailed in Sec. 3.7.

Taking a derivative and substituting from Eq. (3.12), the rate of change of energy of the
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unstable modes is

∂

∂t

[
∑

ky 6=0

(1 + k2 + |R1|2)|β1|2
]

=
∑

ky 6=0

2(1 + k2 + |R1|2)γ1|β1|2 +N111 +N112+

N121 +N122 +N1P1 +N1P2 +N11P +N12P +N1F1 +N1F2 +N11F +N12F . (3.18)

The term γ1|β1|2 is the linear instability energy input rate, where γ1 is the growth rate of the

unstable mode. The terms labelled by N represent the three-wave coupling terms. Their forms

are given in the Appendix A. The term N111 signifies coupling between the unstable mode

β1(k) with two other unstable modes at k′ and k′′. The terms N112 and N121 represent coupling

of the unstable mode with another unstable and one stable mode. The term N122 represents

coupling of the unstable mode with two stable modes. The remaining terms, N11P , N1P1, N12P ,

N1P2, N1F1, N11F , N1F2 and N12F are couplings of the unstable mode with a zonal field (zonal

pressure or zonal flow) and a second mode, either unstable or stable. These last eight terms can

be grouped together as coupling of the unstable mode with a zonal field and either a stable or

unstable mode. The four groups of coupling terms just described are plotted in Fig. 3.11, which

shows both the ETG and ITG cases. The curve labelled γ1|β1|2 is the linear energy injection rate

(
∑

ky 6=0 2(1 + k2 + |R1|2)γ1|β1|2). It is balanced by the nonlinear energy transfer terms. In the

ETG case, all four groups of nonlinear terms play approximately equal roles in saturating the

linear instability. In the ITG case the group involving couplings with a zonal field is the most

important term for saturation of the instability. This indicates that zonal fields play a prominent

role in saturating turbulence in the case of ITG. The zonal fields include both zonal pressure and

zonal flow, so it is important to ask what role each field individually plays in saturation. Also,

in the couplings with a zonal field, only one mode of the triad is a zonal field, the other mode

being either a stable or an unstable nonzonal mode. Hence it is also important to ask about

the proportion of energy transferred to the zonal field compared to the energy transferred to the

nonzonal mode.

To answer these questions we separate the group involving one zonal field into four subgroups.

They are couplings with: 1) zonal pressure and an unstable mode (N11P+N1P1), 2) zonal pressure
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Figure 3.11: The rate of change of the unstable mode energy,
∑

ky 6=0(1 + k2 + |R1|2)d|β1|2/dt,
divided into the various coupling terms of Eq. 3.18, plotted as a function of time. (a) is for ETG
case and (b) is for ITG case. The legend is the same for both plots.
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Figure 3.12: The zonal field couplings of the unstable mode energy (terms with either a P or F
in their subscripts in Eq. 3.18) in ITG case separated into zonal pressure couplings and zonal
flow couplings.

and a stable mode (N12P +N1P2), 3) zonal flow and an unstable mode (N11F +N1F1) and 4) zonal

flow and a stable mode (N1F2 +N12F ). These terms are plotted in Fig. 3.12. This figure is for

the ITG case, where the zonal field coupling terms are the most important. Two sets of nonlinear

terms dominate. The first is the coupling between the unstable mode at k, a zonal flow and a

second unstable mode (N11F +N1F1). This term is positive, which means that energy is flowing

into unstable modes from this term. Since this energy transfer is summed over all nonzonal

wavenumbers, the net transfer of energy between the unstable mode at k and the unstable mode

at either k′ or k′′ should cancel out. Consequently, the energy transfer N11F + N1F1 is coming

entirely from the zonal flow. For comparison with other transfer rates, we note that N11F +N1F1

has a value of approximately 1900 at time t = 400. The second dominant set of nonlinear terms

represents coupling with a zonal flow and a stable mode (N12F +N1F2). This set of terms has

a value of -3100 at t = 400, making it larger than N11F +N1F1 and negative. This means that

this energy is going out of the unstable modes. Some portion of this energy transfer goes into

zonal flows. This portion is necessarily larger than N11F + N1F1 because, as we will see later,

the zonal flow receives net energy from the unstable mode. The energy transfer N11F + N1F1
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thus recirculates within the unstable mode, through the intermediary of the zonal flow (similar

to Ref. [60]). The remainder of the energy transfer, N12F +N1F2, from the unstable mode goes

into stable modes.

These transfers are depicted schematically in Fig. 3.13(a). The transfer N11F + N1F1 is

represented by an arrow flowing into the unstable modes from the zonal flow. The portion of

N12F + N1F2 that goes into zonal flows is represented by N1→F . The portion that flows into

the stable modes is represented by N1→2. N1→F and N1→2 are taken as positive quantities.

Therefore the portions N1→F +N1→2 add up to −N12F −N1F2. It is not possible to determine

N1→F and N1→2 separately from this information alone. To estimate them we need to look at

the energy dynamics of the zonal flow. The energy equations for the zonal fields are (for ITG

case)
∑

ky=0

∂

∂t
(|pk|2) = −

∑

ky=0

2χk4|pk|2 +NP11 +NP12 +NP21 +NP22, (3.19)

∑

ky=0

∂

∂t
(k2x|φk|2) = −

∑

ky=0

2νk2x|φk|2 +NF11 +NF12 +NF21 +NF22. (3.20)

The terms containing χ and ν represent linear damping of the zonal pressure and flow respectively.

The terms labelled N are again the various nonlinear couplings of the zonal fields, which couple

only with nonzonal wavenumbers. Following the usual notation, NP (F )1(2)1(2) represents coupling

of the zonal pressure (flow) with an unstable (stable) mode at k′ and an unstable (stable) mode

at k − k′. These terms, which are given in the Appendix A, are plotted in Fig. 3.14.

The dynamics of the zonal pressure shows that it receives energy from unstable modes through

NP11 and saturates by transferring the energy to stable modes through NP22. The linear damping

of zonal pressure plays a small role in its energetics. However, the zonal flow dynamics show a

strikingly different balance. The zonal flow receives energy equally from unstable modes through

NF11 and stable modes through NF12 +NF21 and NF22, with saturation provided by its linear

damping. This is schematically shown in Fig. 3.13(b). All the nonlinear terms NF11, NF12+NF21

and NF22 are shown to be supplying energy to the zonal flow, with only linear damping providing

saturation. The energy transfer to zonal flows is also seen to be much smaller then the transfer
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Figure 3.13: A schematic showing the nonlinear energy transfer routes for the unstable mode (a)
and the zonal flow (b).
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to zonal pressure. The y axis scale of Fig. 3.14(b) can be compared to that of Fig. 3.12. We see

that the net transfer into the zonal flow from unstable mode (NF11) is approximately only 2,

compared to a value of 1900 for energy transfer from zonal flow to unstable mode (N1F1+N11F )

at t = 400.
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Figure 3.14: The rate of change of energy terms for (a) the zonal pressure (terms in Eq. 3.19)
and (b) the zonal flow (terms in Eq. 3.20), for the ITG case.

Looking at Fig. 3.13, we can say that NF11 = N1→F − (N1F1 + N11F ). Since NF11 ≪

(N1F1+N11F ) from the above comparison, we can conclude that N1→F only exceeds N1F1+N11F

by a quantity of order unity, which is just 0.1% ofN1F1+N11F (which is of order 1000). Given that
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−(N12F +N1F2) = N1→F +N1→2 and that N1→F is within 0.1% of N1F1+N11F , we can further

say that N1→2 ≈ −(N12F +N1F2 +N1F1 +N11F ) within a percent. This is shown in Fig. 3.15.

This figure shows that N111, N112 +N121, N122, and N11P +N1P1 +N12P +N1P2 are small, and

that N1F1 + N11F + N1F2 + N12F , which is equal to N1F1 + N11F − |N1F2 + N12F | ≈ −N1→2,

is the only significant net energy transfer term for the unstable mode energetics with a value of

-1250 at t = 400. Recall that N1→2 was defined as the energy transferred from the unstable to

stable mode via three wave couplings that have a zonal flow as the third term in the interaction

triplet. Thus, the net energy transfer dynamics in the equation for |β1|2 is dominated by transfer

to the damped eigenmode, with zonal flows acting as a mediator, or a catalyst, of energy transfer

from the unstable to stable mode.
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Figure 3.15: The rate of change of energy of the unstable mode in ITG, explicitly showing
calculation of the energy transfer from the unstable to stable mode via zonal flows (N1→2),
compared with the other terms in Eq. 3.18.

Another way to show that energy transfer to stable modes via zonal flow is the dominant

saturation mechanism is as follows. In a three wave interaction, energy is conserved. Following

Eq. (20) of Ref. [61], we get,

Ts[k|p, q] + Ts[p|q, k] + Ts[q|k, p] = 0. (3.21)
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Here, Ts[k|p, q] is the rate of change of energy of Fourier mode k due to the triad interaction with

two other Fourier modes p and q. Obviously, some part of this energy transfer goes to mode p

and the other goes to q. It can be interpreted that Ts[p|q, k] is the energy transfer to mode p

and Ts[q|k, p] is the transfer to mode q. We have tried to apply a similar idea. However, it is

more complicated in our case because in addition to Fourier modes, there is also the eigenmode

decomposition, which is not orthogonal. Consider all the triads of an unstable mode, a stable

mode and a zonal flow. We want to calculate energy transfer from unstable to stable modes, via

the zonal flow. These triads obey an energy conservation law:

N1F2 +N12F +N2F1 +N21F +NF12 +NF21 +Nm12F = 0. (3.22)

All the terms are defined except Nm12F , which arises because of the nonorthogonality of eigen-

modes,

Nm12F =
∑

k

∑

k′y=0

4Re[(1 + k2 +R1R
∗
2)(C2F2β1(k)vz(−k′)β2(−k′′))+ (3.23)

(1 + k′′2 +R′′
1R

′′∗
2 )(C1F1β1(k)vz(−k′)β2(−k′′))]. (3.24)

These terms are plotted in Fig. 3.16. N1F2+N12F is large, negative and represents energy flowing

out of the unstable modes. NF12+NF21 is tiny and represents the fraction of energy transferred

to zonal flows. The term Nm12F represents energy transfer to mixed terms. In this simulation

it is tiny and negative. N2F1 + N21F is large, positive and represents energy transferred to

stable modes. The fact that this term balances the energy flowing out of the unstable mode

(N1F2 +N12F ), shows that energy transfer to stable modes via zonal flows is the most dominant

nonlinear energy transfer channel of the unstable mode.

We have looked at the energy dynamics of the stable modes, and they show a similar and

consistent result. The stable modes are also seen to couple primarily with the unstable modes,

with the zonal flows acting as a mediator.

The energy transfer rates just described, including the small rates NF11 and equivalent differ-
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Figure 3.16: We see that all nonlinear energy transfer terms in Eq. 3.22 add up to zero if we
include the nonorthogonal cross terms also. This helps in unambiguously identifying the transfer
of energy to stable modes via zonal flows (N2F1+N21F ) as the dominant saturation mechanism.

ences of large rates like N1→F −(N1F1+N11F ), are well outside the putative error bars associated

with numerical effects that break energy conservation. Observing energy dynamics with growth

and damping terms turned off establishes that the rate of non-conservation of energy due to nu-

merical effects is of order of 10−7% of the zonal flow damping. Since zonal flow damping orders

the smallest energy transfer processes tracked in this chapter, numerical error does not effect any

of the energy transfer rates described above.

We turn now to the question of how zonal flows and stable modes are initially excited. In

the linear stage, both zonal flows and stable modes are damped and their amplitudes decrease.

At the beginning of the nonlinear stage, both of these are excited by parametric excitation, i.e.,

by the beating of two unstable modes at different wavenumbers [45]. This stage corresponds

to the large overshoot of fluctuation level typically observed in simulations [62], [63]. Once the

zonal flow and stable modes reach a finite amplitude, the stable branch is maintained at a finite

amplitude by nonlinearly coupling with both the unstable modes and zonal flows. At the same

time, the zonal flow is pumped by both the unstable and stable modes. This stage corresponds

to the saturated phase of the simulations. Both stages are shown in Fig. 3.17. In this figure
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Figure 3.17: The nonlinear growth rate of the stable modes derived from the different nonlinear
couplings of the stable mode which are similar to Eq. (3.18). The second panel is a continuation
of the first panel with the y axis magnified and x axis shrunk.

the rate of change of energy of the stable mode is divided by the energy of the stable mode,

giving a nonlinear growth rate. Just as before, the growth rate is classified into the different

coupling terms. For example, γ11 is defined as N211/(
∑

ky 6=0(1 + k2 + |R2|2)|β2|2), where N211

is the coupling of the stable mode with 2 unstable modes. N211 is defined like N111 except that

the unstable mode at k is replaced by a stable mode. Similarly, γ(12+21) represents coupling with

one unstable and one stable mode (i.e., (N212 + N221)/(
∑

ky 6=0(1 + k2 + |R2|2)|β2|2)), and γ22

represents coupling with two stable modes. γZP (F ) represents coupling with zonal pressure(flow).

From t = 0 up to t = 100Ln/cs, the stable mode is seen to be excited by coupling with two

unstable modes. After t = 100Ln/cs, the coupling with one zonal flow and one unstable mode is

seen to dominate. The peak growth rate occurs at t = 12Ln/cs. If we look at the energy of the

stable mode, it initially decays because it is linearly damped, but then increases due to nonlinear

coupling. It’s steepest growth occurs at t = 12Ln/cs, corresponding to the peak nonlinear growth

rate in Fig. 3.17.
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3.6 Energy transfer to stable modes within the unstable wavenum-

ber range

The above analysis showing that instability energy is transferred dominantly to the damped mode

does not characterize or quantify concomitant energy transfer in wavenumber space. As shown

in Fig. 3.10, the ratio of viscous dissipation, which is active at high wavenumber, to dissipation

by stable modes summed over the entire wavenumber range, is smaller than 10%. Most of this

wavenumber range is unstable because the high k wavenumber range with γ1 < 0 is limited for

simulation configurations consistent with earlier work [31]. Hence we have looked at how the

energy transfer out of a low k wavenumber range compares to the rate of dissipation within that

range. The energy spectrum peaks around kxρs = 0.0, kyρs = 0.04, which is greatly shifted from

the peak of the linear growth rate around kxρs = 0.0, kyρs = 2.0. The simulation box extends

up to |kxρs| = |kyρs| = 3.16. We calculate the energy transfer within a smaller box, |k|2 < 2.0,

|k′|2 < 2.0, |k′′|2 < 2.0. This box is less than a quarter of the total simulation box and lies within

the wavenumber instability range. The nonlinear energy transfer within this box is shown in

Fig. 3.18.
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Figure 3.18: Comparison of nonlinear transfer within unstable range with transfer outside it.
N1→2k2<2 is transfer via zonal flows to stable modes which lie within |k|2 < 2, Nk2>2 is transfer
to any mode outside of the range |k|2 < 2.
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This figure plots 4 quantities which are defined as,

γ1β
2
1 ≡

∑

|k|2<2

2γ1Re[(1 + k2 + |R1|2)|β1|2], (3.25)

N1→2k2<2 ≡
[
N1F1 +N1F2 +N11F +N12F

]
∣
∣
∣
∣
|k|2,|k′|2,|k′′|2<2

, (3.26)

Nk2<2 ≡
[ 2∑

i,j=1

N1ij +

2∑

i=1

(N1Pi +N1iP )

]
∣
∣
∣
∣
∣
|k|2,|k′|2,|k′′|2<2

, (3.27)

Nk2>2 ≡
[ 2∑

i,j=1

N1ij +

2∑

i=1

(N1Pi +N1iP +N1F i +N1iF )

]∣
∣
∣
∣
|k|2<2,max[|k′|2,|k′′|2]>2

. (3.28)

γ1β
2
1 is the linear energy input rate summed over modes with |k|2 < 2. This is balanced by the

nonlinear transfer. The dominant term is N1→2k2<2. This term represents coupling with stable

modes and zonal flow. It is calculated only for modes |k′|2 < 2 and |k′′|2 < 2. Hence it represents

transfer to stable modes only within the box. Nk2<2 is sum of all the other coupling terms that

do not include a zonal flow, but still lie within the box. Nk2>2 is the sum of all nonlinear coupling

terms such that |k′|2 > 2 and/or |k′′|2 > 2. As such it represents energy transferred out of the

box. It is very small (less than 20%) compared to the energy transferred to stable modes within

the box (N1→2k2<2). So even well within the unstable wavenumber range, we get strong coupling

of unstable modes with stable mode and zonal flows. This proves that energy is transferred to

stable modes which are in the unstable wavenumber range. We expect that the ratio of energy

transferred to high k relative to energy dissipated by damped modes at low k can vary from

model to model, with the present simulations yielding very low values. However, the general

result that ITG saturation and transport in numerical models is essentially independent of the

wavenumber resolution much beyond the instability range indicates that energy dissipation by

damped modes in the instability range is significant in all cases.

To further probe this result we have used bispectral analysis to look at energy transfer

between selected wavenumbers, similar to the study done in Ref. [61]. This is shown in Fig. 3.19

which plots the nonlinear transfer function for eigenmodes at different wavenumbers. The exact
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Figure 3.19: The spectrum of nonlinear transfer function for modes at different wavenumbers.
See text for more detailed discussion.
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quantity plotted in Figs. 3.19(a), (b) and (d) is

N1k(k
′) =ARe

[

C1mnβ
∗
1β

′
mβ

′′
n|k′y 6=0,ky + C1Pnβ

∗
1p

′
zβ

′′
n|k′y=0+

C1mPβ
∗
1β

′
mp

′′
z |k′y=ky + C1Fnβ

∗
1v

′
zβ

′′
n|k′y=0 + C1mFβ

∗
1β

′
mv

′′
z |k′y=ky

]

, (3.29)

averaged over the saturated state. The terms in the equation are explained in Appendix A. Ef-

fectively, it is the sum of nonlinear energy transfer out of/into the unstable mode at wavenumber

k via coupling with modes k′ and k−k′. The quantity shown in Fig. 3.19(c) is the same except for

wherever subscript 1 appears in Eq. 3.29, it is replaced by 2, i.e., the energy transfer out of/into

the stable mode at wavenumber k. In Fig. 3.19 different k’s are chosen and the nonlinear energy

transfer spectrum over k′ is plotted. Fig. 3.19(a) is for the unstable mode at k = (0, 0.2). It

shows a strong coupling with a zonal flow k′ = (−0.08, 0) and as a result, strong energy transfer

to k− k′ = (0.08, 0.2). In Fig. 3.19(b), we look at the unstable mode at k = (0.08, 0.2). Again it

shows strong coupling with the zonal flow at k′ = (−0.08, 0) to give energy to k−k′ = (0.16, 0.2).

It should be noted that the sign of energy transfer to mode (0, 0.2) is still negative, indicating

the unstable mode at (0.08, 0.2) gives some energy back to the (0, 0.2) mode. Taking a look

at the nonlinear transfer of the stable mode at k = (0.08, 0.2) in Fig. 3.19(c), we see that it

receives energy from mode (0, 0.2). This is most of the energy seen in Fig. 3.19(a) going from

the unstable mode at (0, 0.2) to mode (0.08, 0.2). Thus the transfer to higher wavenumber is

actually transfer to stable modes at higher wavenumber. Fig. 3.19(d) shows nonlinear transfer

for a high wavenumber (0.4, 0.2) that is still in the unstable range. The magnitude of nonlinear

transfer has reduced by more than a factor 10 compared to Fig. 3.19(a). This is because at every

step of energy transfer to higher wavenumber, significant energy is lost to the stable modes.

3.7 Phase matching, coupling coefficients and amplitudes

Now we examine why energy transferred from unstable to stable modes through triads involving

a zonal flow as a mediator is the preferred energy transfer channel. Consider the dominant
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transfer rate N1F2 +N12F . From the Appendix A,

N12F =
∑

ky 6=0

2(1 + k2 + |R1|2)Re
[(

1

R1 −R2

)(

−i
2

)
∑

k′y=ky

ky

[

R′
2 +

R2(k
′′2 − k′2)

(1 + k2)

]

〈β∗1β′2v′′z 〉
]

(3.30)

where N1F2 has the same form with superscripts ′′ and ′ interchanged. Like all transfer rates,

N12F is governed by a triplet correlation of mode amplitudes and a coupling coefficient. The

coupling coefficient is ky[R
′
2+R2(k

′′2−k′2)/(1+k2)]. The angle brackets of the triplet correlation

〈β∗1β′2v′′z 〉 indicate that N12F is part of an equation that was averaged by multiplication with a

complex conjugate. The triplet correlation has amplitude and phase information, and the latter

in particular contributes critically to the magnitude of N12F . We show that correlations like

〈β∗1β′2v′′z 〉 and 〈β∗1β′2p′′z〉, in which one member is a zonal field and the other members are a stable

and unstable mode, have the smallest frequency sum, and hence the longest interaction time

of all possible energy transfer triplets. We then show that transfer rates involving a zonal flow

(N12F ) are larger than transfer rates involving a zonal pressure (N12P ) by virtue of the relative

magnitudes of amplitudes and coupling coefficients.

3.7.1 Triplet phase

The correlation 〈β∗1β′2v′′z 〉 is governed by an evolution equation that is derived from Eqs. (3.12)-

(3.13). Starting from d〈β∗1β′2v′′z 〉/dt = 〈β̇∗1β′2v′′z 〉 + 〈β∗1 β̇′2v′′z 〉 + 〈β∗1β′2v̇′′z 〉 we substitute for β̇∗1 , β̇
′
2

and v̇′′z from Eqs. (3.12)-(3.13) (transposed to the appropriate wavenumber). The result is

{

d

dt
+ i
[

ω′′
F + ω′

2 − ω∗
1

]
}

〈β∗1v′′zβ′2〉 = G, (3.31)

where ω′′
F = ω1|k′y=ky = −iν (for the ITG case). The nonlinearity G is constructed by multiplying

the right hand side of the complex conjugate of Eq. 3.12 written for β̇∗1 by β′2v
′′
z and adding to

similar constructs from the right hand sides of Eqs. 3.12, 3.13 for β̇′2 and v̇′′z respectively. As

such, each term of G is proportional to quartic correlations. Note that Eq. 3.31 is part of the

standard correlation hierarchy in turbulence in which the evolution equation of any correlation
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is governed by a nonlinearity comprised of correlations of the next higher order. The equation

cannot be solved analytically to reveal its amplitude and phase dependence without some sort of

closure. The simulation results, which will be detailed shortly, are well described by closures such

as eddy damped quasi normal Markovian (EDQNM) [64]. In EDQNM, part of G is proportional

to 〈β∗1β′2v′′z 〉 and renormalizes the complex triplet frequency to ω̂′′
F + ω̂′

2 − ω̂∗
1 = ω′′

F + ω′
2 − ω∗

1 +

∆ω′′
F +∆ω′

2 −∆ω∗
1 , where ∆ωj (j = 1, 2, or F ) is a nonlinear (amplitude-dependent) complex

frequency. In the rest of G, which we label Ĝ, the quartic correlations are expressed as products

of two quadratic correlations. Applying this, Eq. 3.31 can be formally integrated to yield

〈β∗1β′2v′′z 〉 = exp
{

− i[ω̂′′
F + ω̂′

2 − ω̂∗
1]t
}∫ t

exp
{

i[ω̂′′
F + ω̂′

2 − ω̂∗
1]t

′
}

Ĝdt′. (3.32)

In the steady state, Ĝ varies on a slower time scale than [ω̂′′
F + ω̂′

2 − ω̂∗
1]

−1, yielding

〈β∗1β′2v′′z 〉 =
Ĝ

i[ω̂′′
F + ω̂′

2 − ω̂∗
1]
. (3.33)

In this form the frequency mismatch [ω̂′′
F + ω̂′

2 − ω̂∗
1] is clearly the inverse lifetime of the triplet

correlation and Ĝ is the component of the correlation that carries the dependencies on coupling

coefficients and amplitudes in the form of products of quadratic correlations. For a given Ĝ,

when the lifetime is longer, the correlation and N1F2 are larger.

We therefore examine the value of ω̂′′
F + ω̂′

2 − ω̂∗
1, starting first with the linear component

ω′′
F + ω′

2 − ω∗
1 . In this triad k − k′ is a zonal wavenumber, i.e., k′y = ky. Both k and k′ are

nonzonal wavenumbers so that δ = 1 in ω∗
1 and ω′

2. Also, since most of the energy is concentrated

in wavenumbers smaller than unity, we can assume that k2 ≤ ν, χ≪ 1, and (δ+ k2) = 1+O(ν).

Then, ω′′
F = −iν, ω′

2 = ky/2 − iky[(1 + η)ǫ]1/2 + O(ν), ω∗
1 = ky/2− iky[(1 + η)ǫ]1/2 + O(ν), and

ω′′
F + ω′

2 − ω∗
1 = O(ν). If we consider 〈β∗1β′2p′′z〉 we also have ω′′

P + ω′
2 − ω∗

1 = O(ν). However, it

is easily verified that any other combination of a zonal frequency and two nonzonal frequencies,

or of three nonzonal frequencies yields a frequency mismatch that is order unity instead of order

ν ≪ 1. Note too that if the zonal flow damping rate is order unity, the frequency mismatch

also becomes order unity instead of small. Large ν removes the efficiency of energy transfer by
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Figure 3.20: The frequency sum using linear frequencies, | − ω∗
i (k) + ωj(k

′) + ωl(k − k′)| for
k = (−0.08, 0.2), plotted as a function of k′x and k′y. In (a) i = 1, j = 1, l = 1, in (b) i = 1,
j = 2, l = 1, and in (c) i = 1, j = 2, l = 2.

shortening the interaction time, therefore requiring larger amplitudes to match the instability

energy input rate. This mechanism by which zonal flow damping affects turbulence level is a

very different effect than the idea that large ν kills the zonal flow and its capacity to suppress

turbulence via shear. More work is needed to find out how effective each mechanism is in

controlling the level of turbulence.

These analytical predictions can be verified by looking at the frequency mismatch of exact

roots of the dispersion relation calculated by the simulation. The wavenumber k is arbitrarily

selected as (−0.08, 0.2). Then a scan is done over k′ to see for which triads (k, k′, k − k′) the

frequency mismatch is minimum. In doing this, several combinations of stable and unstable

modes are tested. A triad involves a zonal mode whenever k′y is either 0.0 or 0.2. First, we

look at | − ω∗
1 + ω′

1 + ω′′
1 |. This is a triad involving three unstable modes. If k′y = 0.0 then ω′

1

is taken as −iν, which is the zonal flow damping. If k′y = 0.2 then ω′′
1 is taken as −iν. This

is because of Eq. (3.8) which shows that the unstable mode maps to the zonal flow. The scan

over k′ is shown in Fig. 3.20(a). It shows a minimum value in the regions near k′y values of 0.0

and 0.2. The exact minimum value is 0.139 at k′ = (1.0, 0.0), which is a zonal flow. Next, we

consider | − ω∗
1 + ω′

2 + ω′′
1 |. This involves sum of two unstable modes and one stable mode. For

k′y = 0, ω′
2 = −iχk′4, following Eq. (3.9). For k′y = ky, ω

′′
1 = −iν. The scan over k′ is shown in
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Fig. 3.20(b). Again the minimum lies near k′y = 0.2 which represents coupling to a zonal flow.

The exact minimum value of the frequency mismatch is 0.0016 at k′ = (0.04, 0.24). This is not

a zonal mode coupling but close to it. The frequency mismatch for the mode k′ = (0.0, 0.2) is

0.01. We can also combine two stable modes and one unstable mode, |−ω∗
1 +ω

′
2+ω

′′
2 |. If k′y = 0

then ω′
2 = −iχk′4. If k′y = ky then ω′′

2 = −iχk′′4. This shows minimum frequency mismatch for

a range of k′y going from 0.0 to 0.2, as displayed in Fig. 3.20(c). The minimum value is 0.0007

at k′ = (−0.2, 0.0) and k′ = (0.12, 0.20). These observations show that the frequency mismatch

is minimum for triads involving a zonal field or modes close to a zonal wavenumber.

The linear frequency mismatch is only part of the correlation time of triplet correlations,

except in weak turbulence situations where the nonlinear frequencies are negligible. We now

consider the frequency mismatch with the nonlinear frequencies ∆ωj. The nonlinear frequencies

can be calculated from the closure (see for example Ref. [22]), but we opt here to extract them

directly from simulation data as done in Ref. [65]. For each eigenmode for each wavenumber,

the frequency spectrum is calculated. A Lorentzian can be fitted to this frequency spectrum.

The position of the peak of the Lorentzian gives the real part of ω̂ = ω +∆ω whereas its width

gives the imaginary part. The sign of the imaginary part is chosen depending on whether it is an

unstable or stable mode. In this way the nonlinearly broadened frequencies are calculated and

used instead of the linear frequencies for calculation of frequency matching.

We again consider the three cases done for the linear eigenfrequencies. For |−ω∗
1 +ω

′
1+ω

′′
1 −

∆ω∗
1+∆ω′

1+∆ω′′
1 | a similar scan is done in k′ with k again chosen as (−0.08, 0.2). The frequency

sum is plotted against k′y for k′x = 0 in Fig. 3.21(a). The minimum value is 0.083 at k′y = 0.12.

However, this is not a triad with a zonal mode. For | − ω∗
1 + ω′

2 + ω′′
1 −∆ω∗

1 +∆ω′
2 +∆ω′′

1 | the

result is similar to the linear phase calculation. As shown in Fig. 3.21(b), the minimum frequency

mismatch occurs again at k′y = 0.2, and its value is 0.029. This is a coupling with a zonal mode

(at k − k′) and a stable mode (at k′), and it’s phase mismatch is less than half of the minimum

mismatch for |−ω∗
1 +ω

′
1+ω

′′
1 −∆ω∗

1 +∆ω′
1+∆ω′′

1 |. This shows that the mismatch is smaller for

triads that involve one zonal mode, one unstable and one stable mode, compared to one zonal

mode and two unstable modes. For | − ω∗
1 + ω′

2 + ω′′
2 −∆ω∗

1 +∆ω′
2 +∆ω′′

2 | the result is shown
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in Fig. 3.21(c). Using only linear phases, this quantity showed minimum mismatch for triads

involving zonal modes as well as a range of non-zonal triads between k′y = 0.0 and k′y = 0.2. But

using the nonlinear phases, we see minimum mismatch only for triads involving zonal modes,

i.e., at k′y = 0.0 where the mismatch is 0.003 and at k′y = 0.2 where the mismatch is 0.03.
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Figure 3.21: The frequency sum using the nonlinear frequencies, |−ω∗
i (k)+ωj(k

′)+ωl(k−k
′)−

∆ω∗
i (k) +∆ωj(k

′)+∆ωl(k−k
′)| for k = (−0.08, 0.2), k′x = 0 plotted as a function of k′y. In (a)

i = 1, j = 1, l = 1, in (b) i = 1, j = 2, l = 1, and in (c) i = 1, j = 2, l = 2.

These results show that the frequency mismatch is minimum for triads involving an unstable

mode, a stable mode and a zonal mode. Such triads are the dominant nonlinear coupling terms,

leading to saturation. Moreover, as stated before, the minimum value of the frequency mismatch

scales with ν, the zonal flow damping. This is because the flow damping rate (times i) is the zonal

mode frequency in the linear frequency mismatch. This is displayed in Table 3.1, which shows

that the frequency mismatch of a triad containing an unstable mode, a stable mode and a zonal

flow scales with the zonal flow damping rate. However, we can also consider zonal mode triads

in which the pressure damping is used for the zonal mode frequency. The pressure damping is

χk4 so the triads would become | − ω∗
1 + ω′

2 − iχk4|. The same cancellation occurs as explained

above and a zonal pressure triad frequency sum can be approximated as χk4. Since χ is of

the order of ν and k < 1, the zonal pressure triads would also show a very small value of the

frequency sum just like the zonal flow triads, indicating minimum frequency mismatch. As a

result, low frequency mismatch does not explain why zonal flow triads are more important than
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zonal pressure triads.

Table 3.1: Linear frequency sum for k = (−0.08, 0.2) and k′ = (0.0, 0.2) as zonal flow damping,
ν, is varied

ν | − ω∗
1(k) + ω2(k

′) + ω1(k − k′)|
0.01 0.0104

0.02 0.0203

0.05 0.0503

3.7.2 Coupling coefficients

We examine now the coupling coefficients in the triplet nonlinear terms of the energy equations.

We have already identified the coupling coefficient in N12F , prior to discussing in detail its phase.

We consider other triplet terms in the evolution equations for the energies (1 + k2 + |R1|2)|β1|2,

(1+k2+ |R2|2)|β2|2, |pk|2, and (δ+k2)|φk|2. The coupling coefficient in each triplet term is equal

to the product of either 1 + k2 + |Ri|2 (for non-zonal modes) or unity (for zonal modes) and a

corresponding coupling coefficient from the eigenmode evolution equations, Eqs. (3.12) - (3.14).

Each coupling coefficient in Eq. (3.12) contains a factor 1/(R1 − R2). For long wavelengths

(k2 ≪ 1), (R1 − R2) ≈ −2i[(1 + η)/ǫ]1/2, is independent of k. Also, for long wavelengths, the

eigenvector magnitudes |R1|, |R2| lie within the range of 6 to 7 and they vary weakly with k.

Thus the factors (1 + k2 + |Ri|2) are roughly constant. The remaining part of the coupling

coefficients is strongly dependent on k, and the power of k indicates magnitude, with smaller

powers representing stronger coupling. In analyzing the power, we do not distinguish between k

and k′, but treat both as comparably smaller than unity. The following wavenumber dependence

is found for the coupling coefficients in the evolution equations of the unstable and stable modes,

(Eq. 3.12):

Clmn(or Nlmn) ∼ k2,

ClFn(or NlFn) ∼ ClmF (or NlmF ) ∼ k, (3.34)

ClPn(or NlPn) ∼ ClmP (or NlmP ) ∼ k2,
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where l,m, n = 1 or 2. The strongest coupling coefficients are with the zonal flows (∼ k). But

this holds for both the ETG and ITG cases. The coupling coefficients in the evolution equation

of the zonal pressure, (Eq. 3.14), are,

CPmn(or NPmn) ∼ k2. (3.35)

The coupling coefficients in the evolution equation of the zonal flow, (Eq. 3.13), are,

CFmn(or NFmn) ∼
k5

δ + k2
. (3.36)

This shows that the coupling coefficients for the zonal flows are stronger for the ITG case (∼ k3)

compared to the ETG case (∼ k5). This is part of the reason why zonal flows are excited to a

higher level in the ITG case. However, as explained above (Eq. 3.34) the unstable mode coupling

with zonal flows is stronger than its coupling with other modes for both ETG and ITG cases.

Hence this alone cannot explain the difference between the two cases. Consequently, we must

consider relative amplitude information, which also contributes to the magnitude of the nonlinear

transfer.

3.7.3 Amplitude of zonal modes

The strength of a triad also depends on the amplitudes of the three fields in it. We compare

the zonal pressure and zonal flow amplitudes in the ETG and ITG cases. The energy level of

the zonal flow and zonal pressure averaged over the saturated state are provided in Table. 3.2.

The level of zonal pressure is more than zonal flow in both cases. In the ETG case the zonal

flow is smaller than zonal pressure by a factor of 15. However, in the ITG case the zonal flow is

only 3 times smaller than the zonal pressure. This is possibly due to the fact that the nonlinear

coupling coefficients of the zonal flow field are stronger in ITG case compared to ETG case.

The three main points of this section can be summarized as follows. 1) Triplet frequency

matching favors triads that include a zonal mode, an unstable mode and a stable mode, in both

ETG and ITG. 2) Coupling coefficients in the unstable mode energy evolution equation favor
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Table 3.2: Zonal flow and zonal pressure energy levels for ITG and ETG

ETG ITG

〈p2Z〉 1.17 × 104 5.75 × 102

〈v2Z〉 5.60 × 101 6.10 × 101

zonal flow triads over zonal pressure triads, in both ETG and ITG. 3) Amplitude favors zonal

pressure triads over zonal flow triads in ETG but gives relatively equal weight-age to both in ITG.

These three facts combined together explain why in ITG the saturation happens with a triad

involving the unstable mode, a zonal flow and a stable mode, as shown explicitly in section 3.6.

3.8 Discussion

The interaction of zonal flows with ITG turbulence involves damped modes, making the process

different from prior descriptions. We showed that zonal flows mediate energy transfer from the

unstable mode to a damped mode in the large-scale wavenumber range of the instability. Direct

energy transfer to damped modes without zonal-flow mediation is less efficient, and when zonal

flows are artificially removed, it requires higher amplitudes to match the energy injection rate of

the instability.

After an initial transient phase in which zonal flows and the damped mode are each driven

by beating wavenumbers of the unstable mode, the dominant energy transfer is through a 3-wave

interaction between the unstable mode, the zonal flow, and the stable mode. Of the net energy

transferred from the unstable mode, almost all (more than 99%) ends up in the stable mode,

where it is dissipated. The very small amount of energy that ends up in the zonal flow (less than

1%) is balanced by the small zonal flow damping. The triplet interaction of an unstable mode, a

zonal flow and a stable mode forms the dominant energy transfer channel through a combination

of three factors. Its three-wave nonlinear frequency mismatch is minimum, leading to the largest

nonlinear interaction time. It has the largest coupling coefficient. This triplet is also enhanced

in ITG relative to ETG by a larger zonal flow amplitude and a smaller zonal pressure amplitude.

This process deviates from the standard picture of zonal flow effects in ITG turbulence in
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several ways. Saturation is achieved at low k through the damped mode, which has not been

considered in the standard picture. With the damped mode the amount of energy dissipated

at high k is not large, nor is the amount of energy transferred to high k. Consequently zonal

flow shear, frequently invoked to explain the effect of zonal flows on turbulence, while an active

process, is not a significant player in the saturation or energy transfer physics in the simulations

described here. The ratio of energy transferred to high k relative to energy dissipated at low k

may vary with other models. Zonal-flow drive in the steady state is dominated by the triad of

the unstable mode, the zonal flow and the damped mode. Descriptions of zonal flow excitation

that do not include damped modes miss the dominant saturation process.

There is considerable evidence that the processes described here for a reduced fluid model

also operate in gyrokinetic models of ITG turbulence. The primary difference is that instead

of a single damped mode, there are many damped modes [27]. However, it remains true that

saturation is caused by damped modes in the same wavenumber range as the instability, that

nonlinear transfer to these modes dominates transfer to high k, and that zonal flows participate

in the three-wave interactions that take instability energy to the damped modes [66]. The

interaction of zonal flows and damped modes in gyrokinetics will be described in detail in the

next chapter. One unexpected result from gyrokinetics is that the strongest damped mode

excited is a tearing parity mode that makes the magnetic field stochastic and causes magnetic-

fluctuation induced electron thermal transport [66], [67]. This mode is excited by the same triad

coupling of an unstable mode, a zonal flow, and a stable mode as described in this paper. Hence

while mediating a reduction of ion channel transport by lowering the fluctuation level, the zonal

flow mediates an enhancement of electron channel transport. This is not an optimal situation

for confinement. However, the role of zonal flows in mediating energy transfer to damped modes

raises the intriguing possibility that it may be possible to externally manipulate the dominant

energy transfer through fluctuations other than zonal flows and thereby control to which type

of damped mode most of the energy flows. This could then be used to select for a desirable or

optimal set of transport properties.
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Chapter 4

Subdominant modes in gyrokinetic

simulations of zonal flow regulated

turbulence

We saw in the previous chapter how zonal flows play the role of an energy transfer catalyst in

ITG turbulence. That work was done using a simplified fluid model with a somewhat arbitrary

factor of “δ” introduced to mimic the zonal flow instability. Over the last decade, plasma micro-

turbulence is increasingly being simulated by gyrokinetic codes. Gyrokinetic models are more

comprehensive than the fluid models and are considered state-of-the-art. They are also more

complicated than fluid models. Performing an analysis similar to the previous chapter for a

gyrokinetic model presents its own difficulties and challenges but puts it on a stronger footing.

It also gives new insight into the interaction of zonal flows and subdominant modes. The present

chapter deals with such a study. First we introduce gyrokinetics in Sec. 4.1, followed by a discus-

sion of mode decomposition in gyrokinetics in Sec. 4.2. The energy diagnostics are explained in

Sec. 4.3 followed by results of nonlinear energy transfer calculations in Sec. 4.4 which show that

the strongest nonlinear interactions involve a zonal flow. In Sec. 4.5 we show that a significant

proportion of the energy involved in such interactions is dissipated by stable modes within the
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range of small, unstable wavenumbers. In Sec. 4.6 we attempt to make a connection between

this new mechanism of zonal flow enhanced energy transfer to stable modes and the conventional

mechanism of enhanced energy transfer to dissipative wavenumbers due to zonal flow shear. We

then also talk about the frequency matching in gyrokinetics in Sec. 4.7 followed by discussion in

Sec. 4.8.

4.1 Gyrokinetics

In all the models studied until now, the plasma has been described as a fluid with certain proper-

ties such as flow, density, temperature, etc. These models have been very useful for understanding

the underlying physics and obtaining a qualitative picture of the turbulence. These models as-

sume a local thermal equilibrium with a local Maxwellian distribution function. However, a real

plasma is very complicated and may not necessarily be in local thermal equilibrium. Fusion

plasmas are very hot, their collisionality is very small, and their distribution function can be

significantly different from a Maxwellian. Hence, a fluid approach is not rigorously valid and a

kinetic approach is required, in which the plasma is described by a single particle distribution

function fj(x,v, t) [68], [69]. Here fj is the distribution function of plasma species j at a position

x moving with velocity v. fj is normalized to Nj, the total number of particles of species j,

i.e.,
∫
fj(x,v, t)dxdv = Nj. It is thought that such a description is sufficient to describe all the

important properties of a fusion plasma required for its quantitative prediction.

However, solving for the full distribution function of a plasma in a fusion device is still very

difficult even for the largest supercomputers available today. Hence further simplifications are

required. Gyrokinetics is one such simplification and it is well suited for studying microturbulent

fluctuations in a fusion plasma [70]. In gyrokinetics, use is made of the strong external magnetic

field typically present in fusion devices. This field makes the particles circle in a gyro-motion at

a fast gyro-frequency. Thus we can assume that,

k⊥ρi ∼ O(1), (4.1)
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ρ∗ ≡
ρi
L

≪ 1. (4.2)

Here, k⊥ is the typical wavenumber of microturbulent fluctuations perpendicular to the equilib-

rium magnetic field and ρi is the ion gyroradius. The ion gyroradius is considered very small

compared to some macroscopic length scale like the gradient length scales, L, and their ratio is

defined as the smallness parameter ρ∗. Some other orderings are also utilized in deriving the

gyrokinetic equation. For example,
k‖

k⊥
∼ O(ρ∗), (4.3)

which signifies that fluctuations have small extent in the perpendicular direction compared to

parallel direction (w.r.t. equilibrium magnetic field). Also the frequency of fluctuations (ω) is

much smaller then the fast gyromotion frequency of ions (Ωi),

ω

Ωi
∼ O(ρ∗). (4.4)

The quantities related to gyromotion, like ρi and Ωi, are calculated taking the particle velocity as

their thermal velocity, vT,j =
√

2T0,j/mj . These approximations are shown pictorially in Fig. 4.1.

In addition, the fluctuating quantities are considered small compared to the background,

eδφ

T0,j
∼ δB

B0
∼ O(ρ∗), (4.5)

where, δφ is the perturbed electrostatic potential, T0,j is the background temperature of species

j, e is the proton charge, δB is the magnetic field fluctuation, and B0 is the strong background

magnetic field.

The gyrokinetic equation, which averages over the particle gyromotion to remove one degree

of freedom, is derived from the Vlasov-Maxwell system of equations. Simple derivations can be

found in Refs. [71] and [72]. The Vlasov equation is,

[
∂

∂t
+ v · ∂

∂x
+

qj
mj

[E(x, t) + v ×B(x, t)] · ∂
∂v

]

fj(x,v, t) = 0. (4.6)
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Figure 4.1: Gyro ordering. The parallel scale length, l‖ ∼ (1/k‖), is much larger than the
perpendicular length scale, l⊥ ∼ (1/k⊥), which is comparable to the ion gyro-radius, ρi. Also,
the frequency of gyromotion, Ωi, is much faster than the frequency of microturbulent fluctuations,
ω. Taken from Ref. [71].

.

The well known Maxwell equations are

∇ · E = 4π
∑

j

qj

∫

dvfj, (4.7)

∇ ·B = 0, (4.8)

c∇×E = −∂B
∂t
, (4.9)

c∇×B = 4π
∑

j

qj

∫

dvvfj +
∂E

∂t
. (4.10)

Here, E(x, t) is the electric field, qj is charge of species j, B(x, t) is the magnetic field and c

is the speed of light. These equations are in cgs units. In gyrokinetics the spatial dimension is

defined by the guiding center coordinates. The guiding center coordinate (Xj) is the center of
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the gyro motion and it is related to the spatial coordinate x by

x = Xj −
v × ẑ

Ωj
, (4.11)

where ẑ is a unit vector pointing along the equilibrium magnetic field and Ωj is the Larmor

frequency of species j. This can be viewed just as a species dependent coordinate transformation

from (x,v) → (Xj ,v).

The gyrokinetic equation is derived by first transforming the Vlasov-Maxwell equations into

guiding center coordinates. Then the various quantities are expanded in a perturbation expansion

using the small parameters defined in Eqs. 4.2-4.5. Keeping only first order quantities, an

averaging is performed over the gyroangle of motion because it is assumed that the gyromotion

happens on a timescale much faster than the dynamics we are interested in (Eq. 4.4). The

gyro averaging simplifies the equations because it reduces the dimensionality of velocity space

from 3 to 2, as the third velocity coordinate is averaged out. In the gyrokinetic model that we

use, this reduced velocity space is described by the velocity parallel to the equilibrium magnetic

field, v‖, and the magnetic moment, µ = mv2⊥/(2B0), where m is the mass of particle, v⊥ is

the magnitude of velocity perpendicular to equilibrium magnetic field which has magnitude B0.

This perturbation expansion and gyro-averaging is applied to the Maxwell equations also. In

addition, the perturbation expansion also entails a splitting of the distribution function into

a mean and a fluctuating part, fj = FM,j + δfj , where FM,j is the background equilibrium

distribution function of species j and δfj is the perturbed fluctuation. Upon doing this, we get

the gyrokinetic Vlasov-Maxwell system of equations. The gyrokinetic Vlasov equation is,

∂gj
∂t

= L[gj ] +N [gj ], (4.12)

where gj is related to δfj by,

gj = δfj +
2qj

mjvTj
v‖Ā‖F0j . (4.13)

gj is a function of kx and ky, the field line following spatial coordinate z, parallel velocity v‖,
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magnetic moment µ and time t. The wavenumbers kx and ky are Fourier wavenumbers in the

plane perpendicular to the equilibrium magnetic field where x is the radial direction and y is the

binormal direction. The operator L represents the linear gyrokinetic operator and N represents

the nonlinear gyrokinetic operator. These are specified in the Appendix B. The gyrokinetic

Poisson equation is,

φ =

∑

j n0jπqjB0

∫
J0(λj)gjdv‖dµ

k2⊥λ
2
D +

∑

j

q2j
T0j
n0j(1− Γ0(bj))

. (4.14)

The gyrokinetic Ampere’s law is,

A|| =

∑

j
β
2 qjn0jvTjπB0

∫
dv‖dµv‖J0(λj)gj

k2⊥ +
∑

j

βq2j
mj
n0jπB0

∫
dv‖dµv

2
‖J

2
0 (λj)F0j

. (4.15)

All the symbols in Eqs. 4.12-4.15 along with their normalizations are given in Appendix B. Most

of this notation is borrowed from Refs. [21], [73].

The simulations in this thesis, unless specified otherwise, are for the Cyclone Base Case

(CBC) parameters [46]. CBC defines a set of experimentally relevant parameters. A sample

simulation parameters file is shown in Appendix C, which shows the typical parameters used for

CBC. It has a safety factor q = 1.4, magnetic shear ŝ = 0.8, local inverse aspect ratio r/R = 0.18,

mean ion and electron densities ni = ne = 1 (normalized to some arbitrary nref ), mean ion and

electron temperatures Ti = Te = 1 (normalized to some arbitrary Tref ), inverse temperature

gradient scale length R/LT = 6.9 and inverse density gradient scale length R/Ln = 2.2. The

plasma β is kept zero, giving only electrostatic fluctuations. Artificial hyper-diffusivity is used

in z space and parallel velocity space with coefficients Dz = 8.0 and Dv = 5.0 [74]. Such

high values of hyper-diffusivity help in smoothening out the damped modes (see Sec. 5.3). The

perpendicular box size is (Lx, Ly) = (126ρi, 126ρi) with kx,maxρi = 3.15 and ky,maxρi = 0.75, and

|kx,minρi| = |ky,minρi| = 0.05. The domain of z is [−π, π] radians, domain of v‖ is [−3vT,j , 3vT,j ],

and domain of µ is [0, 8T0,j/Bref ]. The resolution in (kx, ky, z, v‖, µ) is (128, 16, 16, 32, 8). The

electrons are assumed to be adiabatic, so these are single species simulations.
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4.2 Proper orthogonal decomposition

In order to study the damped modes of the fluid models, we decomposed their fields into the linear

eigenmodes R1 and R2 (Eq. 2.14). We have to do something similar for the gyrokinetic model.

The fluid models we studied had only two fields, F1 and F2, at each Fourier wavenumber k⊥.

However, in gyrokinetic models each wavenumber has an infinite dimensional space in z, v‖ and

µ. Even after numerical discretization, tens of thousands of modes remain at each wavenumber.

We use the gyrokinetic code Gene to solve the set of gyrokinetic equations [75], [76]. Gene

is physically comprehensive, well benchmarked, portable, and highly scalable. We run it in

the local flux tube geometry but it can be run in a global geometry also. Gene also has an

eigenvalue solver to calculate the linear eigenvalues and eigenvectors of the gyrokinetic linear

operator. Linear eigenmodes have been studied earlier in the context of damped modes [25], [27].

However, these modes present significant difficulties in analyzing the energy dynamics of damped

modes, hence we do not use them for the energy analysis in this chapter. We will, however, come

back to them in the next chapter. In this chapter we utilize proper orthogonal decomposition

(POD) modes, also known as singular value decomposition (SVD) [77].

POD is a general decomposition that can be applied to any complex m × n matrix, M . It

decomposes the matrix into three parts,

M = UΣV ∗, (4.16)

where U is an m × m unitary matrix, Σ is an m × n diagonal matrix and V ∗ is an n × n

unitary matrix. The diagonal elements of Σ are called the singular values, which are real and

non-negative. The m columns of U are called left eigenvectors while the n columns of V , which

is the conjugate transpose of V ∗, are the right eigenvectors. Being unitary matrices, the left and

right eigenvectors are orthonormal amongst themselves, i.e.,

UU∗ = I,

V V ∗ = I. (4.17)
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The Gene code solves for the gyrokinetic distribution function gk(z, v‖, µ, t) and can output it

at regular time steps t1, t2, . . . , tn. A particular Fourier wavenumber is selected and its three

dimensions (z, v‖, µ), possibly along with the radially connected kx modes (see Sec. 5.2.1), are

spliced together in one dimension. If there is more than one species then their distribution

functions can also be added on to this one dimensional array. However, for simplicity we will

be using only one ion species simulations assuming adiabatic electrons for this thesis, unless

mentioned otherwise. These one dimensional arrays form the columns of matrix M with the

rows designating different time steps. This is shown in Fig. 4.2.

{m
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) . . .
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{
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Figure 4.2: The matrix M is an m× n matrix where m = Nx ×Nz ×Nv‖ × Nµ is the number
of grid points for each ky mode and n is the number of time samples. The dimensions z, v‖, µ,
and connected kx are spliced along the columns of M and U . Time varies along the rows of M ,

U , and V ∗. Generally, n < m and so we only need to consider the first n POD modes from ψ
(1)
k

up to ψ
(n)
k

.

Mathematically, the POD of distribution function can be represented as,

gk(z, v||, µ, t) =

N∑

n=1

ψ
(n)
k

(z, v||, µ)β
(n)
k
π
(n)
k

(t). (4.18)

Here N is the number of POD modes in the system, which is equal to the Nx ×Nz ×Nv‖ ×Nµ,

where Nx is the number of connected kx modes (see Appendix B of Ref. [21] or Sec. 5.2.1 for

an explanation of kx connected modes); Nz, Nv‖ and Nµ are the number of grid points in z,

v‖ and µ dimensions respectively. ψ
(n)
k

(z, v||, µ) is the left eigenvector and it is called as the

POD mode (columns of U in Fig. 4.2). β
(n)
k

are the singular values (entries of diagonal matrix
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Σ in Fig. 4.2), which are real. π
(n)
k

(t) is the right eigenvector and can be thought of as a time

dependent coefficient of linear expansion (rows of V ∗ in Fig. 4.2). Together β
(n)
k

×π
(n)
k

(t) can be

thought as the time dependent amplitude of nth POD mode ψ
(n)
k

. These modes are normalized

such that they are orthonormal. The POD modes satisfy the orthonormality condition,

∫
πB0Ĵ(z)dzdv||dµ

F0
ψ
(m)∗
k

ψ
(n)
k

= δm,n. (4.19)

where Ĵ(z) is a normalized Jacobian of coordinate transformation and δm,n is the Kronecker-

Delta function. The time traces also satisfy an orthonormality relation,

Nt∑

l=1

π
(n)∗
k

(tl)π
(m)
k

(tl) = δm,n, (4.20)

where the sum is over the time steps from 1 up to Nt.

POD modes are labelled in order of decreasing singular value. POD mode structures are

shown in Fig. 5.7 whereas the linear mode structures are shown in Fig. 5.10. The mode structure

of the first POD mode is very similar to the structure of first linear eigenmode, which is the

unstable ITG mode. The second and higher POD modes are the subdominant modes. The

second POD mode shows similarity with the least damped linear eigenmode, as seen in Fig. 3.5

of Ref. [21]. But as we proceed to higher mode number, the similarity between the two starts

decreasing and soon they become completely different (again see Figs. 5.7 and 5.10).

4.3 Energetics

The energy-like quantity, for the simple electrostatic gyrokinetic model we are using, is [26], [78],

E =
∑

k

Re

{∫

dzdv‖dµ
Ĵ(z)πn0T0B0

F0

[

|g|2 + qF0

T0
χ∗g

]}

. (4.21)

The subscript j has been suppressed because this expression is written for a single species plasma,

but it can be straightforwardly generalized to multiple species by just summing it up over all
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the required species. This definition is chosen such that the energy quantity is conserved by the

nonlinear terms of the gyrokinetic equation, similar to the fluid models earlier. We substitute

the POD (Eq. 4.18) into the energy expression and make use of the orthonormality (Eq. 4.19).

We get

E =
∑

k

Re

{

n0T0
∑

n

|β(n)π(n)|2 +
∫

dzdv‖dµĴ(z)πn0B0

∑

m

∑

n

χ(m)∗ψ(n)β(m)β(n)π(m)∗π(n)
}

.

(4.22)

Here χ(m) is the generalized potential derived by the Poisson and Ampere’s equations from the

POD mode ψ(m). For ease of notation we are dropping the subscript k for all these variables. It

is seen that the orthogonality relation applies to the |g|2 part of the energy expression which is

the first term on R.H.S. of Eq. 4.22. We call this term the “kinetic energy”. The orthogonality

relation doesn’t apply to the χ∗g part, the second term in Eq. 4.22, which we choose to call

“electromagnetic energy” (although it should be noted that the simulation is electrostatic, so

only the electrostatic potential contributes to the electromagnetic energy). The orthogonality of

the time traces π can be used to simplify the electromagnetic energy term when we integrate over

time. However, we are interested in the time dynamics of the energy quantity and hence choose

not to do that. Instead, we compare the magnitudes of the orthogonal and nonorthogonal parts.

In Fig. 4.3 we compare the kinetic and electromagnetic energies to find that the electromagnetic

energy is negligible in the Cyclone Base Case, which we will be focussing on in this thesis. On a

time average, the electromagnetic energy is less than 7% of the total energy.

We also look at each POD mode at a particular wavenumber individually and calculate

the percent of electromagnetic energy in them. When Eq. 4.22 is summed over time, then

the orthogonality of the time traces π, Eq. 4.20, gets rid of the non-orthogonal terms in the

electromagnetic energy. In that case, the energy of the nth POD modes becomes E
(n)
k

= E
(n)
KE +

E
(n)
EM . The time averaged kinetic energy, E

(n)
KE, and electromagnetic energy, E

(n)
EM , of the nth
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Figure 4.3: Comparison of kinetic energy with electromagnetic energy in CBC (see Eq. 4.22) at
k = (0, 0.25). We see that the nonorthogonal electromagnetic energy contributes very little to
the total energy.

POD mode are then given by,

E
(n)
KE = n0T0|β(n)|2,

E
(n)
EM = Re

[ ∫

dzdv‖dµĴ(z)πn0B0χ
(n)∗ψ(n)|β(n)|2

]

. (4.23)

In Fig. 4.4 we plot the percentage of the electromagnetic energy in the total energy for first

1000 POD modes at k = (0, 0.25), which is the most energetic wavenumber in the turbulence

spectrum. We see that its contribution is 15% in the first POD mode and then rapidly drops to

less than 5% for the subdominant modes. So we can safely ignore it in Eq. 4.22 and define the

energy of a POD mode as |β(n)π(n)|2; n0 and T0 are dropped as they are just constants.

Now that we have defined the energy of POD modes, we can derive the energy evolution

equation for them. Using the gyrokinetic equation, Eq. 4.12, and the orthogonality properties,
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Figure 4.4: Percentage of electromagnetic energy, E
(n)
EM , in total energy, E

(n)
EM + E

(n)
KE, (see

Eq. 4.23) for first 1000 POD modes at k = (0, 0.25).

Figure 4.5: The linear and nonlinear terms in Eq. 4.24 are averaged over a saturated state. After
making sure they have opposite signs, their absolute value are plotted which almost lie on top
of each other, showing good agreement. The last, 26th, point is a sum over POD modes from 26
to 1000.
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Eq. 4.19, it is straightforward to show that the energy evolution of mth POD mode is

∂

∂t

[
|β(m)π(m)|2

]
= 2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)π(m)∗

[

L[g] +N [g]
]}

. (4.24)

As expected, there are two contributions to the energy evolution, one from the linear operator,

L and another from the nonlinear operator N . In a saturated state of the plasma turbulence,

both these rates are expected to be equal and opposite to each other and cancel out. A time

average of these two terms over a saturated state is calculated for the first 25 POD modes at

k = (0, 0.25). After making sure that both are of opposite sign, their absolute values are taken

and plotted in Fig. 4.5. We see that they balance each other extremely well, as expected. We

further pursue this topic in Sec. 5.2 where we look at the energy balance of higher POD modes

and show how this balance can be violated.

The linear term can be further simplified, as shown in Ref. [21] and in Sec. 5.1 of this thesis,

to be written as,

∂

∂t

[
|β(n)π(n)|2

]
∣
∣
∣
∣
linear

=2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)π(m)∗L[g]

}

=Q(n) + C(n) +R(n). (4.25)

It is to be implicitly understood that this is at a particular wavenumber k. Q(n) is the “en-

ergy injection” term obtained from the gradient drive term of L (see Eq. B.4) and C(n) is the

“dissipative” term obtained from the Cj(fj) term of L. The term R(n) is related to curvature

and gradient drifts and it comes from all the remaining terms in L. When summed over k, it

adds to zero. Hence it does not play a role in the overall dynamics and we ignore it. The time

integral (actually, it’s just a simple sum over time steps) of heat flux and dissipation, 〈Q〉(n) and

〈C〉(n) respectively, are calculated as shown by Eq. 5.4. The term 〈Q〉(n) + 〈C〉(n) is plotted for

k = (0, 0.25), which is the most energetic wavenumber in the turbulent spectrum, from the third

POD mode up to the 1000th mode in Fig. 4.6. We see that they all have negative 〈Q〉(n)+〈C〉(n),

indicating that all these modes are damped. The first two modes are unstable and hence they are
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not plotted. Modes 2 and higher are the “subdominant” modes and most of them are damped.

After experience with different wave numbers and regimes, we can say that more than 99% of

subdominant modes are always damped. The linear rate of change of energy of POD modes is

looked at more detail in Sec. 5.1.

Figure 4.6: The negative of 〈Q〉(n) + 〈C〉(n) for POD modes 3 up to 1000 at k = (0, 0.25).
All these modes are damped. The first two modes are not plotted because they have positive
〈Q〉(n) + 〈C〉(n).

4.4 Nonlinear energy transfer

In this section we look at the nonlinear transfer of energy in gyrokinetics, akin to what was done

in Sec. 3.5. We have defined the energy of gyrokinetic operator in Eq. 4.21. The rate of change

of energy of a Fourier wavenumber k closely follows Eqs. 4.24 and 4.25, and is given by,

dEk

dt
= Qk + Ck +Rk +

dEk

dt

∣
∣
∣
∣
N.L.

, (4.26)

where Qk, Ck and Rk are now for Fourier mode k rather than for the nth POD mode. This

equation is derived in detail in Appendix C of Ref. [21]. The definitions of Qk, Ck, and Rk for
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our simplified electrostatic case are,

Qk = −2Re

{∫

dzdv‖dµJ(z)πn0T0v∗g
∗
kikyχk

}

, (4.27)

Ck = 2Re

{∫

dzdv‖dµJ(z)πn0T0v∗Γ
∗
jCj(fj)

}

, (4.28)

Rk = 2Re

{∫

dzdv‖dµJ(z)
πB0n0T0

F0

(

gk+
qF0

T0
χk

)∗[

− vT,jv‖Γj,z − vd(Kxikx +Kyiky)Γj

]}

.

(4.29)

Qk depends on the temperature gradient and is related to the heat flux which drives the turbu-

lence whereas Ck represents viscous/collisional dissipation. In this work we are using artificial

hyper-diffusivity in Ck. These two terms are the nonconservative terms, in other words, they

are responsible for net energy injection and dissipation from the system. As in Sec. 4.3, Rk is a

linear term depending on the gradient and curvature drifts, but it vanishes in the sum over k,

so overall it is a conservative term and we choose to ignore it. The nonlinear rate of change of

energy is given by,

dEk

dt

∣
∣
∣
∣
N.L.

= 2Re

{∫

dzdv‖dµ
πB0n0T0Ĵ(z)

F0

[

gk +
qF0

T0
χk

]∗

×
[

∑

k′|k′y=0,ky

(k′xky − kxk
′
y)χ(k

′)g(k − k
′)

︸ ︷︷ ︸

zonal coupling

+
∑

k′|k′y 6=0,ky

(k′xky − kxk
′
y)χ(k

′)g(k − k
′)

︸ ︷︷ ︸

nonzonal coupling

]}

. (4.30)

This is a conservative term because it only transfers energy from one wavenumber to another

wavenumber. In other words, when summed over all wavenumbers k, it sums to zero, which can

be checked directly. Zonal wavenumbers have ky = 0. We have split the nonlinear coupling term

into zonal coupling (k′y = 0, ky) and nonzonal coupling (k′y 6= 0, ky). We note that if k′y = ky,

then the third wavenumber in the interaction, k′′ ≡ k− k
′, will be a zonal wavenumber, k′′y = 0.

These two different coupling components are shown in Fig. 4.7. Also, in Gene there is an

option to artificially eliminate zonal flows. This is done by subtracting the flux surface averaged
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electrostatic potential from the fluctuating potential at every time step,

φ(kx, ky = 0) → φ(kx, ky = 0)−
∫

dzφ(kx, ky = 0)Ĵ(z) (4.31)

In our simple model of electrostatic fluctuations φ̄ is the same as χ. Fig. 4.7 shows the nonlinear

Figure 4.7: Coupling with zonal and nonzonal wavenumbers (Eq. 4.30). (a) When zonal flows
are off, we see weak coupling with the zonal modes. (b) When zonal flows are turned on, we see
strong coupling with the zonal modes.

couplings for Fourier wavenumber (0, 0.25). In Fig. 4.7(a), zonal flows are artificially suppressed

by using the technique outlined above. We see that on time average, the coupling with zonal

wavenumbers (-1.3) is small compared to the coupling with non-zonal wavenumbers (-5.1). On

the other hand, in Fig. 4.7(b), the zonal potential is allowed to evolve self-consistently; in that

case the coupling with zonal wavenumbers is very strong (-0.88) compared to non-zonal coupling

(-0.33). We also note that the number of possible combinations of zonal triplets is much smaller

than the number of nonzonal triplet combinations, which makes this result even more striking.

However, strictly speaking, in considering coupling with zonal modes, we are also including
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many modes other than the zonal flow, for example, zonal pressure or density, depending on

which moment of the distribution function gk′ |k′y=0 and gk−k′ |k′y=ky we consider. Also, φ̄ky=0

contains not only zonal flows, which have ky = k|| = 0, but also flows that may vary in the

field aligned direction, i.e. k|| 6= 0. However, since the deletion of zonal flows causes such a

drastic change in the coupling, it suggests that it is actually the zonal flow component of zonal

wavenumbers that is important in the three-wave interactions. This is corroborated in the fluid

model of ITG (Sec. 3.5) where the zonal pressure was not important, unlike the zonal flow.

This analysis has been done for a particular Fourier wavenumber. What about POD modes?

We derived the energy dynamical equation of a POD mode in Eq. 4.24. In Sec. 4.3 we looked

at the nonconservative linear terms in Eq. 4.24. Now we concentrate on the nonlinear term.

Throwing away the linear gyrokinetic operator L in Eq. 4.24, we get the nonlinear rate of change

of energy of the nth POD mode,

∂

∂t

[
|β(n)π(n)|2

]
∣
∣
∣
∣
N.L.

=
∑

k′

T
(n)
k,k′ = 2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(n)∗β(n)π(n)∗×

[ ∑

k′|k′y=0,ky

(k′xky − kxk
′
y)χ(k

′)g(k − k
′)

︸ ︷︷ ︸

zonal coupling

+
∑

k′|k′y 6=0,ky

(k′xky − kxk
′
y)χ(k

′)g(k − k
′)

︸ ︷︷ ︸

nonzonal coupling

]}

. (4.32)

This looks almost like Eq. 4.30, the only difference is that [gk + (qF0/T0)χk] is replaced by

ψ(n)β(n)π(n). That is the general prescription for changing Fourier mode energy expressions into

POD mode energy expressions. The symbol T
(n)
k,k′ is just for notational simplicity and represents

three-wave interaction between the wave numbers k, k′ and k−k
′, similar to the entropy transfer

functions defined in Refs. [61], [79]. Its expression can be read off from the right hand side of

Eq. 4.32. Again the nonlinearity is split into coupling with zonal wavenumbers and nonzonal

wavenumbers. These terms are plotted in Fig. 4.8. We can see strong coupling with zonal flows

for the first POD mode in Fig. 4.8(a). On a time average the coupling with zonal wavenumbers

is −1.92 whereas coupling with nonzonal wavenumbers is −0.58. Fig. 4.8(b) is for all the sub-

dominant modes summed together. For them also zonal flow coupling is much stronger (0.284)

than the nonzonal coupling (-0.0414). It should be pointed out that the number of nonzonal
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three-wave couplings greatly exceeds the number of three-wave combinations for zonal mode

couplings, so each individual zonal wavenumber triplet will be even stronger than an individual

nonzonal triplet. The same exercise was repeated with the zonal flows turned “off” artificially, as

indicated in Eq. 4.31. We observed that in this case the zonal mode coupling becomes roughly

half of the nonzonal coupling, for both the unstable and subdominant POD modes. Thus, for

POD modes also we infer that it is the zonal flow component of zonal wavenumbers which is

responsible for the strong coupling.

Figure 4.8: Coupling of POD modes with zonal and nonzonal wavenumbers (Eq. 4.32). (a) is
for first POD mode at k = (0, 0.25), and (b) is for subdominant POD modes from 2 up to
1000 summed together at the same wavenumber. The zonal flows have been allowed to evolve
self-consistently in these runs.

Next we look at the time-averaged and k′x-summed spectrum of the nonlinear transfer,

∑

k′x
〈T (n)

k,k′〉t, in Fig. 4.9. In Fig. 4.9(a) we see that the first POD mode at k = (0, 0.25) cou-

ples primarily with wavenumber k′y = 0.25. This indicates a zonal coupling because the third

wavenumber in the triplet interaction is ky − k′y = 0.0. The sign of the transfer is negative,

indicating that energy is being nonlinearly transferred out of the unstable POD mode by this

triplet. In Fig. 4.9(b) we see that all the subdominant modes summed together at k = (0, 0.25)
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Figure 4.9: The y-axis plots the time averaged and k′x summed nonlinear transfer spectrum,
∑

k′x
〈T (n)

k,k′〉t, as a function of k′y. First 1000 POD modes are considered. (a) is for n = 1,
k = (0, 0.25); (b) is for sum over n = 2, 3, ..., 1000, k = (0, 0.25); (c) is for n = 1, k = (0.1, 0)
and (d) is for sum over n = 2, 3, ..., 1000, k = (0.1, 0).
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show strong zonal couplings, at k′y = 0, 0.25. For these modes the sign is positive, indicating

that they receive energy nonlinearly by this triplet interaction. These signs are to be expected

since in saturation the unstable mode inputs energy via the linear terms and has to saturate by

nonlinear energy transfer out of it, whereas for the subdominant modes the situation is reversed.

This same exercise is repeated at a zonal wavenumber k = (0.1, 0), which is a wavenumber

with one of the highest zonal flow amplitudes. It is illustrated in Fig. 4.9(c) for the first POD

mode and in Fig. 4.9(d) for the subdominant modes: the zonal wavenumbers receive energy from

all the non-zonal wavenumbers. However, they do not couple with other zonal wavenumbers

because of the form of the coupling coefficient. They receive energy nonlinearly and are linearly

damped. The peak of the energy transfer to the zonal wavenumber is on the order of 0.1

units. Compare that to the peak of the nonlinear transfer out of the unstable POD mode at

k = (0, 0.25) in Fig. 4.9(a), which is on the order of unity. This indicates that out of the energy

coming out of the unstable mode, only a tenth is deposited into the zonal wavenumber. It is

true that the unstable POD at k = (0, 0.25) interacts with many zonal wavenumbers, only one

of which is k = (0.1, 0), and also the zonal wavenumber k = (0.1, 0) receives energy from many

wavenumbers, only one of which is k = (0, 0.25). However, as these are among the most energetic

wavenumbers in the spectrum, we crudely expect one tenth of the energy from the unstable mode

to be transferred to zonal wavenumbers, of which zonal flows are a part. This is shown more

rigorously in the analysis of Sec. 4.5. As the energy is conserved, nine tenths of this energy

should be deposited to the third wavenumber in the three-wave interaction. In this sense, we can

say that the zonal flow acts as a mediator of energy transfer because it is an important member

of the coupling but not the one that actively dissipates energy. What happens to the energy

transferred to the third wavenumber?

4.5 Energy transfer to subdominant modes

In the previous section, we showed that unstable modes strongly couple with zonal flows via three-

wave interactions. In this section, we look at where most of the energy in such an interaction
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ends up. Due to the large number of such three-wave interactions and also the complexity in

performing the POD analysis, it is not possible to analyze each and every interaction in the

simulation, as was done for the fluid model (Ch. 3). Instead, we look at specific representative

triplets and analyze them individually. We select three wavenumbers k, k′ and k
′′ = k− k

′ and

break them down into POD modes. It is straightforward to demonstrate energy conservation in

a triplet by showing

T
(1)
k,k′ + T

(S)
k,k′ + T

(1)
k′,k + T

(S)
k′,k + T

(1)
k−k′,k + T

(S)
k−k′,k = 0. (4.33)

Here S denotes all the subdominant modes summed together. T
(1,S)
k,k′ represents the energy

transfer of the unstable/subdominant mode at k due to interaction with k
′ and k−k

′. T
(1)
k′,k+T

(S)
k′,k

represents the total energy transfer at mode k
′ due to interaction with k and k− k

′. We select

k′y = 0 to make this the energy transfer out of/into zonal modes. Similarly T
(1)
k−k′,k + T

(S)
k−k′,k is

the energy transfer of mode k−k
′. Looking at these terms individually clearly shows the energy

transfer occurring in a triplet.

We start by looking at k = (0, 0.25), k
′ = (0.1, 0) and k − k

′ = (−0.1, 0.25). Its energy

transfer terms are shown in block 1 of Fig. 4.10(a). We see that the unstable mode at k gives out

roughly 119 units of energy summed over time, i.e., T
(1)
k,k′ = −119. Negative numbers indicate

energy flowing out of that mode, as shown by the arrows in the diagram, and positive numbers

indicate energy flowing in. By energy conservation, this has to be distributed amongst the other

modes of block 1. Some of this goes into the unstable mode at (−0.1, 0.25), T
(1)
k−k′,k = 66. Some

amount of energy goes into the zonal mode, T
(1)
k′,k+T

(S)
k′,k = 8. As was speculated in the discussion

of Fig. 4.9(c,d) this is roughly a tenth of the energy input by the instability at k = (0, 0.25).

We see that half of the energy ends up in the subdominant modes. The subdominant modes at

k take 21 units of energy, i.e., T
(S)
k,k′ = 21, while the subdominant modes at k − k

′ take up 24

units, i.e., T
(S)
k−k′,k = 24. Of the 21 units supplied to subdominant modes at k, 15 goes to the

second POD mode at k which is unstable and 6 units go to the stable subdominant modes. Thus

k injects 119 − 6 = 113 units of energy into the triplet. Out of this 21% (24 units) is damped
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Figure 4.10: Nonlinear energy transfer for a large sample of triplets. See the text for a detailed
discussion.
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by subdominant modes at k − k
′ because all of them are stable. This analysis is continued in

blocks 2, 3, 4 and 5 of Fig. 4.10(a). In block 2, we take k = (−0.1, 0.25), k
′ = (0.1, 0) and

k − k
′ = (−0.2, 0.25). The wavenumber k injects 121 units of energy (119+2). Out of this 24

units (20%) goes into the subdominant modes at k−k
′ and 102 units (84%) goes to the unstable

mode. So in this block 20% of energy injected at k is transferred to subdominant modes at

k−k
′. In blocks 2, 3, 4, and 5 all the subdominant modes at nonzonal wavenumbers are damped

and hence all energy transferred to them will be dissipated. The reader can verify that the

percentages of energy transferred to subdominant modes, and thus dissipated, in blocks 3, 4

and 5 are 26%, 15% and 26% respectively. However, the energy deposited in the unstable mode

will not be dissipated and instead will have to be transferred to some other wavenumber until it

reaches a dissipative mode. Putting the above percentages together, we see that at the end of

block 5, 29% energy remains in the unstable modes and 71% has ended up in stable subdominant

modes, all of which will be dissipated.

This calculation was repeated for another set of triplets shown in Fig. 4.10(b). We start with

the wavenumber k = (0, 0.2) and the zonal wavenumber as k
′ = (0.05, 0). Just as above, the

percentage of energy injected at k transferred to the subdominant modes at k− k
′ is calculated

and comes out to be 12%, 11%, 14%, 21% and 19% in blocks 1, 2, 3, 4 and 5 respectively. Putting

these percentages together, by the end of the chain at k − k
′ = (−0.25, 0.2), the subdominant

modes have accounted for 57% of the original energy injected. All the subdominant modes in

Fig. 4.10(b) are stable which means that all this 57% of energy will be dissipated. Fig. 4.10(c)

shows one more case of such a “cascade” of energy. In block 1 we see 104% of energy transferred to

subdominant modes and in block 2, 37% is transferred. These numbers show lot more variability

then those seen in the two cases above. In this case, low values of hyper-diffusivity coefficients

have been used in the simulations, namely, Dz = 0.25 and Dv = 0.2. In the first two cases

we used, Dz = 8.0 and Dv = 5.0. It is not clear why the hyper-diffusivity affects this energy

transfer drastically, whereas the heat fluxes change by just a factor of 1.3, which lies within the

standard deviation of the heat flux calculations, for these two different hyper-diffusivities. We

take a closer look at this problem in Sec. 5.2.
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In every triplet the energy is transferred from a lower magnitude kx mode to a higher kx

mode. For example, in Fig. 4.10(a) it is from kx = 0 to kx = −0.1 in block 1, from kx = −0.1

to kx = −0.2 in block 2 and so on. This is a forward “cascade” of energy. This indicates

that the zonal flow transfers energy from low radial wavenumber to high radial wavenumber,

consistent with the shearing mechanism. Is the forward-cascade efficient enough to reach the

“conventionally dissipative” high wavenumbers? To answer this question, we looked at the ratio

of energy transfer within the range of instability (ROI) to energy transfer outside of this range.

The region of instability for the simulation parameters is shown in Fig. 4.11. This region has

been calculated using the linear instability analysis. At ky = 0.25 the instability region seems to

be bounded at kx = 0.2. Then looking at Fig. 4.10(a) we see that the first two blocks lie within

this region. Thus in the ROI about 37% of energy is dissipated by the subdominant modes. For

ky = 0.2 the boundary of ROI should be located around kx = 0.15, which would indicate that

the first three blocks of Fig. 4.10(b) lie in this region. Putting together their percentages, we get

33% of energy going into the subdominant modes within the ROI. Moreover, even outside of the

ROI most of the energy continues to be dissipated by the subdominant modes, even though the

dominant mode becomes stable.

kx

ky

0.1 0.50.40.30.2

0.5

0.4

0.3

0.2

0.1

0.6

0.7

0.6

ROI

Figure 4.11: The black dots demarcate the boundary of linear instability region in kx-ky space
for the standard CBC simulations carried out in this thesis.
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One more interesting observation is that the nonlinear instability is drastically different from

linear instability [22], [80]. In the nonlinear state, we get unstable POD modes up to kx = 0.45

at ky = 0.25, even though linear analysis (Fig. 4.11) would indicate stability at that point.

Thus, from the nonlinear stability point of view, the unstable range extends up to |kx| = 0.45

beyond which the stable range starts. This is the wavenumber beyond which there are no more

unstable POD modes (at ky = 0.25). Traditionally, the stable range has been assumed to be

the “dissipative range”. We calculate the ratio of the energy transfer to wavenumbers within the

unstable range to the transfer to wavenumbers in stable range for the first POD mode at k, i.e.,

∑

k′ T
(1)
k,k′. This is done for nine wavenumbers between −0.05 ≤ kx ≤ 0.05 and 0.2 ≤ ky ≤ 0.3.

Energy transfer is considered to be within the unstable range if the sum over k
′ is restricted to

include only k
′ values with |k′x|, |k′y |, |kx − k′x|, |ky − k′y| < 0.5. Excluding these values from the

sum gives the transfer to stable range. The ratio of transfer within unstable range to transfer

to stable range is calculated for different combinations of the nine k wavenumbers and plotted

in Fig. 4.12. The different points are for the different combinations. We see that this ratio is

converging to around four which indicates that for all the energy transferred to “traditionally

dissipative”, high-k, stable wavenumbers, there is four times as much energy transferred to the

unstable range. So even if the transfer is in the forward direction, subdominant modes at low

wavenumber damp a large fraction of energy before it reaches the conventional dissipation region.

The picture that emerges is that the instability injects energy at the scales of the ion gyrora-

dius. It strongly couples with the zonal flows, but they are not responsible for the dissipation by

themselves. They help in transferring this energy to the third wavenumber in a triplet interaction

where a significant fraction of it goes into the subdominant modes that dissipate this energy.

The remaining energy is cascaded to higher radial wavenumbers, but the attrition by damped

subdominant modes at each stage of this transfer is enough to sink a large fraction of this energy

at lower, unstable wavenumbers. This is a new effect compared to shearing mechanism of zonal

flows that leads to energy transfer to stable, larger wavenumbers which have been thought to be

the only source of dissipation till now. It shows that coupling to subdominant modes cannot be
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Figure 4.12: Ratio of energy transfer within unstable range to transfer outside of unstable range.
On the x-axis we plot the number of combinations taken randomly. For example, a value of 3 on
the x-axis indicates that three wave numbers were randomly selected out of the nine and their
average was taken. At each such combination 10 ensembles are taken, giving 10 points at each
x-axis value.

ignored even in the gyrokinetic models of zonal flow regulated ITG turbulence.

4.6 Shearing and zonal flows

The explanation provided in Sec. 3.6 and Sec. 4.4-4.5 indicates that zonal flows catalyze energy

transfer to the subdominant modes, and a significant proportion of it to scales which are unstable.

As explained in Secs. 3.7 and 4.7, a key reason for this is related to the frequency matching

between zonal flows and subdominant modes, and to the amplitude of zonal flows. It apparently

doesn’t have anything to do with the shearing effect of zonal flows. However, the zonal flow-

drift wave shearing paradigm states that the shearing by zonal flows causes energy transfer from

drift waves to large, dissipative wavenumbers and this causes regulation of turbulence [47]. This

shearing effect is presumably occurring in our simulations as part of the “forward cascade” of

energy in kx seen in Fig. 4.10. There are some indications in experiments also that this might be

taking place [55]. In addition several authors have observed that whenever the shearing rate is

above a certain threshold related to the linear growth rate, the turbulence is regulated [81], [82].
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So what is regulating the turbulence: the shearing rate of zonal flows or the zonal flow

amplitude and its associated frequency matching, leading to enhanced transfer to damped modes?

It is difficult to ascertain whether either of these effects is unrelated to turbulence regulation.

This is because the zonal flow amplitudes and shearing rates are closely related. To test this

out, we run a scan of the ion temperature gradient around the CBC parameters. We look at the

zonal flow (ZF) amplitude and shearing rates in Table 4.1. They show the same trend, either

increasing or decreasing together. Although this scan has not been verified by resolution studies,

the trend is sharp and clear. Thus, it is very difficult to separate the two different effects.

Table 4.1: Temperature gradient scale length (LT i) scan and comparison of maximum linear
growth rates (γ), heat flux (Q), zonal flow amplitude (φZF), and shearing rate (〈ωE〉)

Lref/LT i γ(vT i/Ln) Q(W/m3) φZF 〈ωE〉(vT i/Ln)

5.0 0.03 0.049 5 0.07

6.0 0.08 970 10 0.128

6.5 0.1 6630 13 0.257

Furthermore, we look at the behavior of these two quantities during different times in a

simulation in Fig. 4.13. In (a) we see that the heat flux continuously increases from t = 440

to t = 455 during which time the shearing rate is below the average value in (b). Then from

t = 455 to t = 470 the heat flux continuously decreases in (a) and this corresponds to an

above average shearing rate in (b). This is similar to the predator-prey oscillations of zonal

flow and drift waves [83], [84], indicating that the shearing rate has some correlation with the

regulation of heat flux. In (c) and (d) we compare the zonal flow amplitudes at two different

zonal wavenumbers; k = (0.05, 0.0) in (c) and k = (0.1, 0.0) in (d). We observe that from

t = 440 to t = 455 the amplitude at lower kx is higher than the amplitude at higher kx. Then

in the later time window when the shearing rate picks up, the amplitude at higher kx gets a

boost up whereas the amplitude at lower kx decreases further. In fact, during this time window,

k = (0.05, 0) has its lowest amplitude whereas k = (0.1, 0) is at its peak. Thus, the increase

in shearing rate is correlated with the increase of zonal flow amplitude at higher kx. This is

not surprising, because the shearing rate is nothing but ωE ∝ ∑

k
k2xφk. Thus the higher kx
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Figure 4.13: Time traces of (a) Heat flux, (b) zonal flow shearing rate, (c) ZF amplitude at
k = (0.05, 0.0) and (d) ZF amplitude at k = (0.1, 0.0). The red line is at t = 455, before which
time the heat flux is increasing and after which the heat flux is decreasing. The blue line is at a
shearing rate of 1.2 units which is the long time averaged shearing rate of the simulation.
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modes have a higher contribution to the shearing rate. This effect is also seen in Ref. [56]. This

argument doesn’t differentiate between which mechanism is more important but it shows that

the shearing mechanism is not uniquely required to explain the regulation of turbulence, as the

zonal flow amplitude can also explain it.

4.7 Frequency matching

In Sec. 3.7 we saw the striking property that triplet interactions whose frequency sum is the

smallest are the most dominant nonlinear transfer interactions. That was shown using the fluid

model of ITG turbulence. We repeat the same calculation with gyrokinetics, although not in

its full complexity. First, we calculate the nonlinear frequencies using the time traces of POD

modes. The auto correlation of the time traces for the nth POD mode at k is defined as

S
(n)
k

(τ) ≡ 1

T

∫ T

0
dt|β(n)

k
|2π(n)

k
(t)π

(n)
k

(t− τ), (4.34)

where β and π are the familiar singular values and time dependent amplitudes, and T is the

window of time sampling. Then the frequency spectrum of the nth POD mode is given by,

Ŝ
(n)
k

(ω) ≡
∫ T

0
dτS

(n)
k

(τ)eiωτ . (4.35)

The power spectrum is just P (ω) ≡ |Ŝ(n)
k

(ω)|2, an example of which is plotted in Fig. 4.14. A

Lorentzian function of the form L(ω) = a0/[(ω−ω0)
2 + γ20 ] is also fitted to the power spectrum.

The fitting parameters are the amplitude, a0, the position of peak ω0, which gives us the real

part of the nonlinear frequency, and the half width at half maximum γ0, which gives us the

imaginary part of nonlinear frequency, thus giving ω̂
(n)
k

≡ ω0 + iγ0 [65]. The sign of γ0 is chosen

as positive for the first POD mode and negative for subdominant modes. A useful relationship

in carrying out this analysis is: Ŝ
(n)
−k

(ω) = Ŝk(−ω)∗.

We look at some of the representative triplets in the simulation. We select k = (0, 0.2),

k′x = 0.1, and scan over k′y. The nonlinear frequencies for all the wavenumbers are determined
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Figure 4.14: The power spectrum for the 5th POD mode at k = (0.1, 0.2). Also shown is the
Lorentzian fit in blue.

Figure 4.15: Sum of frequency scanned over k′y i.e. |ω̂(l)
−k

+ ω̂
(m)
k′ + ω̂

(n)
k−k′ |. The wavenumber

k = (0, 0.2) and k′x = 0.1. The combinations of l, m, and n are indicated by the color. The
average over 5 POD modes is also plotted.
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by fitting a Lorentzian function to the power spectrum, as discussed above. This calculation is

done for the first few high amplitude POD modes at all the wavenumbers. The frequency sum

|ω̂(l)
−k

+ ω̂
(m)
k′ + ω̂

(n)
k−k′| is plotted in Fig. 4.15. The indices l, m and n represent the POD mode

number. Five modes are selected, 1st, 3rd, 5th, 10th, and 20th for plotting. Firstly, we see the

minimum frequency sum is at k′y = 0, 0.1, 0.2. k′y = 0 is a zonal triplet and so is k′y = 0.2 since

ky−k′y = 0. k′y = 0.1 is very close to a zonal triplet. This shows that triplets with a zonal (or close

to zonal) wavenumber have the least frequency sum. As we move away from the zonal triplets,

the frequency sum increases (similar to what was seen in Fig. 3.21). Secondly, at k′y = 0 and

k′y = 0.2 the triplets with subdominant modes, i.e., m,n = 3, 5, 10 or 20, show lower frequency

sum than unstable mode triplets withm,n = 1. Thus, it is a triplet involving an unstable mode, a

zonal mode and a subdominant mode which has the minimum frequency sum. This corroborates

the result of the fluid model study which also found that the frequency sum is minimized for the

same combination of modes. As discussed in Sec. 3.7 and Ref. [64], the there wave interaction is

inversely proportional to this frequency sum 〈π(l)−k
π
(m)
k′ π

(n)
k−k′〉 ∝ 1/[|ω̂(l)

−k
+ ω̂

(m)
k′ + ω̂

(n)
k−k′|]. Hence,

this combination of modes has the largest correlation time leading to the maximum energy

transfer. The reason for dominance of zonal flows should be due to their large amplitude in ITG

turbulence, as was the case in the fluid model.

4.8 Discussion

This chapter has dealt with zonal flows in gyrokinetic ITG turbulence. We saw that POD mode

decomposition is an extremely useful tool for studying the subdominant modes in gyrokinetics.

We were able to decompose the kinetic energy term into orthogonal POD mode contributions

and derive their energy dynamical equations. In the next chapter we shall see that POD modes

are not optimal for studying the fine scale modes in the turbulence. However, the first few

POD modes capture most of the dynamics and energy in the system and in this sense they

are very efficient [85]. An inherent drawback of POD is that it fundamentally depends on the

nonlinear simulation data. Thus, POD modes change for different simulation runs and different
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time samplings.

Overall the results are very similar to the fluid model study. We see that both, Fourier

modes and POD modes, show strong three-wave interactions with zonal flows. Zonal flows act

as a catalyst of energy transfer from unstable to subdominant POD modes, but themselves

dissipate very little energy. This transfer is so efficient that a significant fraction (>30% if we

look at linear instability or >50% if we look at nonlinear instability) of the energy injected by

the instability is dissipated by damped subdominant modes in the unstable range before reaching

the stable wavenumbers. Although these percentages depend on various simulation parameters,

they show that zonal flow assisted saturation by damped modes is important in ITG. Even

beyond the unstable range, a significant fraction of energy continues to be dissipated by the

subdominant modes. These results are important because gyrokinetics is more comprehensive

compared to the simple fluid model. While the fluid model mocked up zonal flows by the crude δ

parameter, gyrokinetics takes into account the actual nonadiabatic response of electrons to zonal

perturbations.

Frequency matching again emerges as one of the most important indicators of dominant

three-wave interactions. Triads of an unstable mode, zonal mode and a subdominant mode

show minimum frequency mismatch. This principle merits further study as it can prove very

handy in dealing with turbulent interactions, especially in gyrokinetics where there are a slew of

modes [86]. It can also provide a link with experiments via bispectral analysis [87].

The shearing mechanism of the zonal flow-drift wave shearing paradigm does not seem to

be the most important saturation mechanism, compared to the energy transfer to subdominant

modes. Nevertheless, it does seem to be active in the energy transfer process and seems intri-

cately linked to the zonal flow amplitude itself. It should be interesting to further tease out the

differences between these two mechanisms.

The energy transfer processes in the subdominant mode space seem to be very rich and merit

further study. Hence, that is the topic of the next chapter.
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Chapter 5

Energy partitioning between damped

modes in gyrokinetic turbulence

The previous chapter looked at the dissipation by stable subdominant modes in zonal flow reg-

ulated turbulence. It is challenging to analyze the tens of thousands of modes involved in gy-

rokinetic turbulence. In hydrodynamic turbulence, Kolmogorov’s 5/3rd law provides an elegant

way of understanding the complexity of turbulence. It expresses the way energy is distributed

between Fourier wavenumbers that span a range of scales in the periodic, spatial dimensions.

Similarly, in gyrokinetics we have a slew of damped modes that span a range of scales in the

non-periodic phase space dimensions (z, v‖, µ). Is there any quantity or idea that can organize

the damped modes in gyrokinetics? In this chapter we calculate the spectra of energy dissipation

and amplitude attenuation rates of the damped modes. The aim is to find some regular scaling

behavior in these spectra that can provide an organizing principle for the multitude of damped

modes. Recently there has been a lot of interest in studying the fine scale structure of modes

in gyrokinetics and their intimate connection to dissipation [88], [89]. The damped modes also

develop fine scale structure as their damping rate increases, and hence we take a look at their

mode structure. In hydrodynamics, the energy transfer is local in k-space, i.e., eddies of some

scale exchange energy with eddies of a similar scale. Similarly, in this chapter we also take a

look at how energy is exchanged between stable modes with different scales.
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5.1 Various dissipation rates of POD modes

One of the most relevant physical quantities related to subdominant modes is their energy dis-

sipation rate. It is their defining property, and determines their role in saturation, hence it is

very important. Eq. 4.24 defines the rate of change of energy of POD modes. It contains both

the linear (L) and nonlinear terms (N ). In Ch. 4 we focused on the nonlinear term, which is a

conservative term. For the global energetics we are interested in the linear term that injects or

dissipates energy globally. From Eq. 4.25, for the mth POD mode, it is simply given by,

∂

∂t
|β(m)π(m)|2

∣
∣
∣
∣
linear

= 2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)π(m)∗L[g]

}

. (5.1)

The linear gyrokinetic operator is made up of three terms, L = Q+ C +R (see Eq. B.4), where

Q is the gradient drive and C is the dissipative term, either collisional or hyper-diffusive [90].

Operator R contains the curvature drift, ∇B drift, parallel velocity gradient and finite β terms.

The R term adds up to zero when a sum over the wavenumbers is performed, although it is not

zero at individual wavenumbers. However, even though we consider individual wavenumbers, we

choose to ignore the R term because it does not affect the net energy balance and thus, can be

considered as a conservative term. This way we define the nonconservative terms as the heat

flux (Q(m)) and dissipation (C(m)) of the mth POD mode (as well as a term R(m) which we do

not consider),

Q(m) = 2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)π(m)∗Q[g]

}

, (5.2)

C(m) = 2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)π(m)∗C[g]

}

. (5.3)

We can also do a time average of these quantities over the simulation time. For example, this

reduces the heat flux to,

〈Q〉(m) ≡
∑

t

Q(m) =
∑

t

2Re

{
∑

n

∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)π(m)∗π(n)Q[ψ(n)β(n)]

}

= 2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(m)∗β(m)2Q[ψ(m)]

}

, (5.4)
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where 〈Q〉(m) is the time averaged heat flux,
∑

t
denotes a sum over the time steps of the simulation

and we have used Eq. 4.18 and 4.20. Similarly 〈C〉(m) can be defined as the time averaged

dissipation. The advantage of this definition is that to calculate these quantities we only need

the POD mode structure ψ(m) and singular value β(m). Thus we do not need to run a nonlinear

simulation again in order to calculate π(m). These terms are plotted in Fig. 5.1(a) and (b). We

see that both 〈Q〉 and 〈C〉 are very large for the first POD mode and rapidly drop close to zero

for higher POD modes. 〈Q〉 has a large and positive value for the first POD mode and then it

oscillates around zero for the higher modes. 〈C〉, being the dissipation, is always negative, shows

a very large value for the first mode and then rapidly decays close to zero. Overall, for the higher

modes, 〈C〉 dominates 〈Q〉 because they all have a negative value for 〈Q〉+ 〈C〉. Fig. 5.1(c) plots

the absolute value of 〈Q〉 + 〈C〉 for POD modes 3 up to 1000, and is the same plot as Fig. 4.6.

〈Q〉 + 〈C〉 is positive for the first couple of modes for which 〈Q〉 is larger than 〈C〉 but then it

stays negative. We see a smooth exponential behavior for a large range of intermediate POD

modes.

Next we define the amplitude attenuation rate (AAR), G, so named because it contains one

factor of amplitude (∼ β) less than the energy (∼ β2). For the mth POD mode, it is the

nonconservative rate of change of energy divided by the singular value,

G(m) ≡ 〈Q〉(m) + 〈C〉(m)

β(m)
. (5.5)

It is plotted in Fig. 5.1(d). We also plot G(m)/β(m) in Fig. 5.1(e). This can be thought of as

a normalized dissipation rate because it does not contain any factor of the singular value β.

It shows a linear behavior from the third up to 1000th mode. As the mode number increases,

modes develop a fine scale structure in phase space, leading to increased viscous dissipation,

which depends on quadratic and quartic powers of gradients in phase space [74]. This quantity

can be useful for describing such fine scale structure in gyrokinetic turbulence, but it does not

take into account the amplitude information.
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Figure 5.1: (a) plots |〈Q〉(m)| for first 1000 POD modes on a log scale. Since 〈Q〉(m) fluctuates
between positive and negative values, its sign is indicated by the different markers. (b) shows
−〈C〉(m) for first 1000 POD modes; (c), (d) and (e) plot |〈Q〉(m) + 〈C〉(m)|, G(m) and G(m)/β(m)

respectively for POD modes 3 up to 1000. All these POD modes are calculated for k = (0, 0.25),
however other wave numbers also show similar behavior.
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5.2 Amplitude attenuation rate equipartition (AARE)

Several attempts were made in order to understand the partitioning of energy among the subdom-

inant modes in gyrokinetics. This section examines some of the previous efforts in this regard,

which showed that the amplitude attenuation rate is equipartitioned between the damped modes.

However, before that we look at an important aspect of mode analysis in gyrokinetic simulations,

namely kx connected modes.

5.2.1 Effect of kx connections

In local simulations, the domain of simulation is a flux tube [91], [92]. In all the analysis done

till now, we have used only one (kx, ky) Fourier mode for POD decompositions. However, in

flux-tube simulations, due to the periodicity in field aligned coordinates, all physical functions

have to satisfy the following relation: |f(kx, ky, z = π)| = |f(kx + 2πŝky, ky, z = −π)| (see

Appendix B of Ref. [21], [53]). Practically, this extends the simulation domain along the field

line by connecting additional z = [−π, π] blocks at higher kx for a given ky. Typically, one uses

five kx connected modes to get a domain of z = [−5π, 5π]. These connected kx modes can be

spliced together to form the columns of the M matrix for POD as shown in Fig. 4.2. However,

when this is implemented, the balance between the linear and nonlinear energy terms for the

higher POD modes is disrupted, as shown in Fig. 5.2(b). We see that without connections, in

Fig. 5.2(a), which is similar to Fig. 4.5, the linear and nonlinear rates of change of energy for

higher POD modes, averaged over saturation, are of equal and opposite strengths. In Fig. 5.2(b)

we keep five kx connected modes and see that the linear and nonlinear rates do not cancel out

as accurately. In fact, for certain POD modes they both have the same sign. The cause for

this discrepancy is not clear. Due to this reason, it was decided to not keep any connected kx

modes in the POD analysis. It is expected that the mode structures of lower POD modes are

not affected significantly by these connections, simply because their amplitude decays rapidly

within the z = [−π, π] domain, so it is okay to ignore them. These connections affect the mode

structure of higher POD modes, but these modes contribute a small fraction to the energy and
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hence the connections can be ignored. Another important factor in this unresolved issue is

the hyper-diffusivity. Unlike all the simulations presented until now, which used relatively high

hyper-diffusivity, simulations for Fig. 5.2 had lower hyper-diffusivities, Dz = 0.25 and Dv = 0.2.

Using high hyper-diffusivity coefficients does not lead to an imbalance between the linear and

nonlinear rates, at least for the POD numbers shown in Fig. 5.2. Thus, it might be beneficial to

redo these calculations taking into account the connected kx modes with high hyper-diffusivity

and/or collisions. In the next section we look at the effect of hyper-diffusivity in greater detail.

Figure 5.2: Plots of the linear and nonlinear rate of change of energy of POD modes. dE/dt|linear
is given by Eq. 5.1 and dE/dt|nonlinear is given by Eq. 4.32. These quantities are plotted for the
sampling of POD modes 200, 210, 220,..., 440. (a) is without kx connections while (b) is with
five kx connected modes.

5.2.2 Effect of low hyper-diffusivity

In Sec. 5.1 we calculated various dissipation rates using high hyper-diffusivity values as shown

in the parameters file in Appendix C. Studies prior to this thesis have been done using lower

values of hyper-diffusivity, Dz = 0.25 and Dv = 0.2. Those studies show a different behavior of

the amplitude attenuation rate, as shown in Fig. 5.3, compared to Fig. 5.1(d). For Fig. 5.3, in

addition to low hyper-diffusivity, the time sampling frequency for POD is halved compared to the

sampling frequency shown in Appendix C. Also, the POD modes are defined in a slightly different
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manner such that their normalization, Eq. 4.19, does not include the background Maxwellian

F0 in the denominator. We see that the AAR (G(n)) attains a flat value after POD mode 200.

This is termed as amplitude attenuation rate equipartition (AARE). This can prove to be a very

useful quantity as it shows a very simple behavior across all the complicated, higher POD modes.

Is this equipartition a universal feature of gyrokinetic turbulence? We see the same behavior at

other wavenumbers also. In Fig. 5.4, the AAR is calculated in the same way for two other kinds

of turbulence; ETG (Electron temperature gradient turbulence) [93], [94] and TEM (Trapped

electron mode turbulence) [81], [95]. These simulations have vastly different parameters from

the CBC simulations done till now. However, we see that across all these different kinds of

Figure 5.3: A plot of AAR (G(n)) for 1000 POD modes at k = (0, 0.25) for CBC-ITG turbulence.
AAR is calculated for a simulation with lower hyper-diffusivity, lower time sampling frequency
and a different normalization of the POD modes. We see equipartition above mode number 200.

turbulence and wavenumbers, we always get equipartition of AAR. There is a sharp drop in the

first 50-100 POD modes after which the AAR flattens out. What is the reason for this? If AARE

is physically meaningful, then it can be a powerful tool to handle the POD modes. In the next

couple of sections we look at some hypotheses for explaining this phenomenon of equipartition

of amplitude attenuation rate.
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Figure 5.4: Plots of AAR (G(n)) for (a) TEM and (b) ETG turbulence. The simulation parameters
can be found in Refs. [93] and [81] for ETG and TEM respectively. The different colors are for
different wavenumbers, all of which show equipartition above POD number 300 or so. Resolution
in (kx, ky, z, v‖, µ) for TEM and ETG both was (128,16,16,32,8).

5.2.3 Understanding AARE

One way to view the AARE is that for higher POD modes the AAR becomes independent of

the mode number n. We turn to the nonlinear couplings in order to explain this mode number

independence. Since the amplitude attenuation rate is a linear rate of change, we should expect

that in saturation it should be equal and opposite to some three-wave nonlinear term. We can

write a heuristic equation for such a balance of the lth POD mode as,

G(l)
k

=
∑

k′

∑

m,n

Clmn(k
′,k′′)β

(m)
k′ β

(n)
k′′

∫

dtπ
(l)∗
k

π
(m)
k′ π

(n)
k′′

∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ
(l)∗
k

χ
(m)
k′ ψ

(n)
k′′ . (5.6)

We keep only β
(m)
k′ β

(n)
k′′ on the R.H.S because AAR is divided by β

(l)
k

in its definition (Eq. 5.5).

To explain AARE, we should explain why G(l)
k

is independent of not only l, but also m and

n. If we are considering ITG turbulence, we know that the dominant coupling is with zonal

wavenumbers, i.e., either k′y = 0 or k′′y = 0. However, that doesn’t tell us what m and n are.

Also, we know that AARE is observed not only in ITG but also in TEM and ETG turbulence,

where zonal flows are not important. Thus, it does not seem that zonal flows are playing an

important role in AARE.
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Figure 5.5: A plot of log10[β
(m)
k′ β

(n)
k′′

∫
dtπ

(l)∗
k

π
(m)
k′ π

(n)
k′′ ] for l = 500, k = (0.1,−0.25), k

′ =
(0,−0.25) and k

′′ = (0.1, 0) as a function of m and n. The plotting grid is coarse grained
with a grain size of (10 × 10) POD modes, thus reducing the range of 1000 POD modes to 100
points.

We can claim that the dominant interactions are with the highest singular value POD modes,

i.e., m = n = 1. This can be easily verified, as shown in Fig. 5.5. This figure plots the following

part of Eq. 5.6: β
(m)
k′ β

(n)
k′′

∫
dtπ

(l)∗
k

π
(m)
k′ π

(n)
k′′ ; for l = 500, k = (0.1,−0.25), k

′ = (0,−0.25) and

k
′′ = (0.1, 0) as a function of m (on x-axis) and n (on y-axis). The POD number for l = 500 is

chosen arbitrarily, but we see the same result for other choices. There are 1000 POD modes but

the plotting grid is coarse grained over a box of (10× 10) modes, i.e., every (m,n) on the plot is

actually a sum of 100 (m,n) combinations in the range {10×(m−1)+1 : 10×(m), 10×(n−1)+1 :

10× (n)}. Hence the plot domain is from 1 to 100. The color scale is the logarithm of the triplet

correlation quantity and it shows a strong dependence on (m,n). The strongest coupling is with

(m,n) = (1, 1), even if the plot is not coarse grained. This implies that we can assume m = 1,

n = 1 in Eq. 5.6 and drop the other terms. This eliminates the m and n dependence of Eq. 5.6.

However, the l dependence still remains. To handle that, we take a look at the following terms:
∫
dtπ

(l)∗
k

π
(1)
k′ π

(1)
k′′ in Fig. 5.6(a) and

∫
dzdv‖dµ(πB0Ĵ(z)/F0)ψ

(l)∗
k

χ
(1)
k′ ψ

(1)
k′′ in Fig. 5.6(b). These
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Figure 5.6: (a) shows
∫
dtπ

(l)∗
k

π
(1)
k′ π

(1)
k′′ and (b) shows

∫
dzdv‖dµ(πB0Ĵ(z)/F0)ψ

(l)∗
k

χ
(1)
k′ ψ

(1)
k′′ for

k = (0, 0.25), k′ = (0.1, 0) and k
′′ = (−0.1, 0.25) as a function of l.

terms are plotted from l = 200 up to l = 1000, the range in which we observe equipartition. These

correlations show a very weak dependence on l although they have a significant scatter around

a mean value. This analysis shows that AARE is supported by the underlying mode coupling

properties which render the dominant correlations of energy transfer equal for all damped modes,

but with considerable statistical scatter.

However, this does not answer everything. We still haven’t explained why the triplet cor-

relations in Fig. 5.6 depend very weakly on l. The coupling coefficient in Eq. 5.6, Cl11(k
′,k′′),

still has a l dependence. The form of Cl11(k
′,k′′) is not known, which is related to another open

issue, which is that Eq. 5.6 is a heuristic equation. If it can be derived from first principles,

then we can obtain the form of Cl11(k
′,k′′). We next try to derive Eq. 5.6 from the gyrokinetic

equation.

In saturation, the linear rate of energy change of POD modes (Eq. 4.25) should balance the

nonlinear rate (Eq. 4.32) when summed over time, i.e.,

〈Q〉(l) + 〈C〉(l) + 〈R〉(l) = −
∑

t

2Re

{∫

dzdv‖dµ
πB0Ĵ(z)

F0
ψ(l)∗β(l)π(l)∗×

∑

k′

(k′xky − kxk
′
y)χ(k

′)g(k− k
′)

}

. (5.7)
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Here, Eq. 5.4 and its analogues are used to define the time sum on the L.H.S. Suppose the term

〈R〉(l) is negligible and we ignore it. We substitute the POD (Eq. 4.18) for χ(k′) and g(k− k
′),

divide by β(l) and convert the sum over time into an integral, assuming that the time step is just

a constant ∆t (which is approximately correct), to get,

G(l) = −2Re

{
∑

k′

∑

m,n

(k′xky − kxk
′
y)

∆t
β
(m)
k′ β

(n)
k′′

∫

dtπ
(l)∗
k

π
(m)
k′ π

(n)
k′′

∫

dzdv‖dµ
πB0Ĵ

F0
ψ
(l)∗
k

χ
(m)
k′ ψ

(n)
k′′

}

.

(5.8)

Here we have used Eq. 5.5 to obtain the L.H.S. Eq. 5.8 looks exactly like Eq. 5.6 and we can

identify the nonlinear coupling coefficient as Clmn(k
′,k′′) = (k′xky − kxk

′
y)/∆t. Indeed it turns

out to be independent of l, m and n. Can this explain AARE? In deriving Eq. 5.8 we assumed

that 〈R〉(l) is negligible. Unfortunately, numerical calculations show that 〈R〉(l) is comparable

to 〈Q〉(l) and 〈C〉(l). We try to work around this by incorporating 〈R〉(l) in the definition of

AAR, i.e., G̃(l) ≡ (〈Q〉(l) + 〈C〉(l) + 〈R〉(l))/β(l). This quantity, G̃(l), will satisfy Eq. 5.8 exactly.

Unfortunately, this quantity does not show the nice behavior of equipartition as seen in Fig. 5.3.

Thus, there are many unanswered questions about the AARE. At the same time, there are

concerns about noise contamination in the higher POD modes. In fact, in signal processing, POD

modes are regularly used to eliminate noise from numerical simulations [96], [97]. The general

idea is to decompose the noisy signal into POD and then discard the modes with small singular

values. Reconstructing the signal from the remaining modes reduces the noise in the signal.

Thus, it is possible that the omnipresent AARE is an artifact of the noise in the POD. Hence, it

is necessary to determine if the higher POD modes are physically meaningful or contaminated

by noise, which is the topic of the next section.

5.3 Structure and physicality of POD modes

To determine the physicality of POD modes, let us look at their structure in the parallel velocity

(v‖) and parallel spatial (z) coordinates. Fig. 5.7(a) shows the mode structure of select POD

modes in the z coordinate, averaged over v‖ and µ. For this section, there are five kx connected
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modes kept in the domain, so the domain stretches from −5π to 5π, with 2π for each connected

mode. For each 2π domain there are 16 grid points, thus giving a total of 80 grid points which

are plotted on the abscissa. These are mode structures of the 1st, 10th, 50th and 200th POD

modes. The modes are normalized so that their peak matches with the peak of the 1st mode,

just for ease of viewing. As was noted in Sec. 5.2.1, the low POD modes (1st and 10th) are not

affected by kx connections as their amplitude drops rapidly outside the central 2π domain. The

connections are important for higher POD modes, but their amplitude is very small. We see

that the higher POD modes develop fine scale structure. Mode number 200 develops a zig-zag

structure between consecutive grid points. This indicates that the mode is not resolved. The

structure in parallel velocity, v‖, averaged over connected kx, z and µ is shown in Fig. 5.7(b). In

this case there are 32 grid points. Again we see a zig-zag structure developing for higher POD

modes but they seem to be better resolved in v‖ space.

Physical quantities, which depend on gradients, calculated from unresolved modes cannot

be trusted. In the AAR, the dissipation, 〈C〉(l), dominates other terms. Both hyper-diffusive

dissipation (used here) and collisional dissipation depend on second and higher order gradients

in z and v‖ [74], [98]. These gradients will not be calculated correctly because the fine scale

structure is not resolved. We can expect the dissipation to level out (in other words, equipartition)

because the fine scale structure smaller than grid scale, which would have contributed to higher

dissipation, is all zeroed out. It should be noted that a mode should be well resolved in both z

and v‖ for it to be physically meaningful. Even if it is unresolved in only the z coordinate, it is

rendered meaningless for physical calculations. We do not look at the resolution in µ as we do not

implement dissipation in the µ space. The mode structure has been studied by taking different

averaging procedures with different weights. We have also looked at mode structure at particular

points in phase space rather than averaging over the remaining phase space coordinates. All these

variations do not change the results shown in Fig. 5.7.

We would like to develop a metric to estimate whether a mode is resolved or not. We Fourier

transform the mode structure in z and v|| space, giving its spectrum in kz and kv‖ . These are

shown in Fig. 5.8 for the POD modes shown in Fig. 5.7. If the mode is well resolved, then we
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Figure 5.7: (a) POD structure in z space averaged over v‖ and µ and taking 5 kx connected
modes. The 80 grid points span a domain of [−5π, 5π] (b) POD structure in v‖ averaged over
kx, z and µ. The 32 grid points span a domain of [−3vT i, 3vT i]. The legend applies to both
plots. Averaging is done with the proper weights, i.e., 〈ψ〉z = |(

∫
dzJ(z)ψ)/(

∫
dzJ(z))| and

〈ψ〉v‖ ,µ = |(
∫
dv‖dµψ)/(

∫
dv‖dµ)|. All POD modes are calculated at k = (0, 0.25).
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expect the Fourier spectrum to fall rapidly at high wavenumbers compared to low wavenumbers.

This is the case for POD modes 1, 10 and 50 in kz space, seen in Fig. 5.8(a). However since mode

200 develops zig-zag structure in z-space we see that its Fourier transform remains relatively flat

at higher kz. The modes appear well resolved in v‖ space, which can be seen in Fig. 5.8(b) where

the Fourier transform of all the modes drops at higher kv‖. Thus, we define the simplest metric

Figure 5.8: Spectrum of POD modes in (a) kz and (b) kv‖. These are Fourier transforms of the
POD modes shown in Fig. 5.7. Legend applies to both plots.

as follows. We take the ratio of the average amplitude for the lower half of wavenumbers to the

average amplitude for the upper half of wavenumbers. This ratio should be larger than unity

for well-resolved modes and should drop to unity for unresolved modes, as the Fourier transform

becomes flatter. The central kz = kv‖ = 0 spectrum point is ignored in this ratio. This ratio

is plotted in Fig. 5.9 where plot (a) is this ratio calculated for the kz spectrum and (b) is the

ratio calculated for the kv‖ spectrum. We can see that this ratio falls quickly to unity for the

z coordinate and then stays flat at unity. We can estimate that modes above 400 or so are

unresolved. The ratio is larger than unity in the v‖ coordinate for the first 800 or so modes.

However, we can clearly say that out of tens of thousands of POD modes, very few, of the order

of 100, are well resolved. This means that we cannot study any broad, generalizable, physical

quantity for POD modes beyond the first few hundred.
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Figure 5.9: Ratio of the average amplitude of POD spectrum in lower half of wavenumbers to
the average amplitude in upper half of wavenumbers for (a) kz spectrum, and (b) kv‖ spectrum,
plotted for first 1000 POD modes.

AARE is more pronounced when we take lower hyper-diffusivity values (Sec. 5.2.2), for which

the POD modes become unresolved at lower mode numbers, around 100. That is precisely where

the AARE starts to appear (Fig. 5.3). The above analysis was done using higher hyper-diffusivity,

which damps the fine scale fluctuations and hence extends the range of well-resolved POD modes

up to 400. There are also indications in resolution studies that the onset of AARE is pushed to

higher mode numbers as the resolution is increased. All these results seem to indicate that the

AARE is an artifact of the unresolved nature of higher POD modes. However, several questions

still remain. Why did we not see AARE in the higher hyper-diffusivity runs? If it is due to the

fine scale structure being damped away, then will we see AARE if we extend the simulation run

to even higher POD modes? Why does removing the background Maxwellian from the POD

normalization (Eq. 4.19) improve the AARE (Sec. 5.2.2)? Why do we need to sample the data

at a low frequency to get AARE? More work will be needed to answer these questions. However,

since only the first few hundred POD modes are physically meaningful, they are probably not

useful in obtaining meaningful spectra. Thus, we decided to take a look at the linear eigenmodes.
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5.4 Structure and physicality of linear modes

The linear eigenmodes are eigenvectors of the linear gyrokinetic operator, written in a discretized

matrix form. Gene has a full eigenvector solver based on SLEPc, PETSc, and SCALAPACK,

which is very useful in this regard [99]. It solves for the left and right eigenvectors of the gyroki-

netic operator and their eigenvalues [100]. We denote the nth left eigenvector by ψ
(n)
l,k (z, v‖, µ)

and likewise the nth right eigenvector as ψ
(n)
r,k (z, v‖, µ). The left and right eigenvectors are or-

thonormal to each other under a simple dot product [21]. The orthonormality condition is given

by,
∑

kx,z,v‖,µ

ψ
(m)∗
l,k (z, v‖, µ)ψ

(n)
r,k (z, v‖, µ) = δm,n, (5.9)

where the sum denotes a sum over all the grid points of z, v‖ and µ and the connected kx

modes. Like the POD modes, here also there is a central k mode along with connected kx

modes. All the linear mode analyses have been performed with a total of five kx connections.

Similar to Fig. 5.7, Fig. 5.10 shows the structure of the linear modes in z and v‖ space, averaged

over the other coordinates. Here we have employed the standard average without weights. The

numbering of the modes is in order of decreasing growth rate or increasing damping rate. We

see that compared with the first POD mode, Fig. 5.7, the first linear mode shares a very similar

structure. This mode represents the unstable ITG mode. As the mode number increases, the

POD mode structure starts deviating from the linear modes rapidly. For the CBC, only the first

linear eigenmode is unstable, rest all modes are damped.

Like the POD modes, even the linear modes develop a fine scale structure. However it

appears that the linear modes are better resolved compared to POD (compare mode number 200

in Figs. 5.7 and 5.10). To check this, we again apply the test that was applied on POD modes

(Fig. 5.9). We calculate the Fourier spectrum of the linear modes. Then we calculate the ratio

of average amplitude in the lower half of the spectrum to the average amplitude in the upper

half of the spectrum. This ratio is plotted in Fig. 5.11. We observe that the linear modes are

well resolved up to mode number 2000 in both the z and v‖ coordinates, after which this ratio

flattens out at unity. This is an order of magnitude more well-resolved modes than in the POD.
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Figure 5.10: Absolute value of linear mode structure in (a) z space averaged over v‖ and µ, and
(b) v‖ space averaged over kx, z and µ. The modes are normalized so that the peak matches
with the peak of Mode 1. The z coordinate has 80 grid points spanning the domain [−5π, 5π]
and v‖ has 32 grid points spanning the domain [−3vT,i, 3vT,i].
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However, we will see in Sec. 5.6 that the resolved POD and linear modes span a similar range of

scales in z and v‖, namely, up to the grid scale. In order to get this result we have used higher

values of hyper-diffusivity (Dz = 8.0 and Dv = 5.0) which smoothens out the modes and makes

them more physical.

Figure 5.11: Plot of ratio of the average amplitude in lower half of spectrum to the average
amplitude in upper half of spectrum for (a) kz spectrum and (b) kv‖ spectrum. The first 5000
linear modes are plotted.

5.5 Amplitude and energy dissipation rate of linear modes

The distribution function can be expressed as a linear combination of the right eigenvectors in

the usual way,

gk(z, v‖, µ, t) =
∑

n

π
(n)
r,k (t)ψ

(n)
r,k (z, v‖, µ). (5.10)

Again, for simplicity, we are ignoring the species index, and from now on we will also drop the

subscript k. π
(n)
r is the time dependent amplitude of mode ψ

(n)
r . In a nonlinear simulation, it is

straightforward to extract the amplitudes of the linear modes by taking the dot product of the
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distribution function with the left eigenvector,

π
(n)
r,k (t) =

∑

kx,z,v‖,µ

ψ
(n)∗
l,k (z, v‖, µ)gk(z, v‖, µ, t). (5.11)

Here we have used the orthonormality property, Eq. 5.9.

The eigenvalues of these eigenvectors are the linear frequency and growth rates, also calculated

by Gene. In CBC, there is one unstable mode, the ITG mode, and the rest are stable, with

negative growth rates. In Fig. 5.12 we plot the the growth rates (γ(n)), real frequencies (ω(n)) and

the time averaged amplitudes of these modes over the saturated state of a nonlinear simulation

(ln[〈|π(n)r (t)|〉t]). In (a) we have used a high artificial dissipation with Dz = 8.0 and Dv = 5.0. In

(b) lower values are used, Dz = 0.25 and Dv = 0.2. The simulations with low hyper-diffusivity

show a significant amplitude for the higher, damped modes and the amplitude does not show a

decreasing trend with increasing damping rate. With a higher dissipation, there is a larger range

of damping rates and also a smooth decreasing trend of the amplitudes. In earlier studies low

values of dissipation were used and extremely high amplitude damped modes were observed [21].

It was thought that the non-orthogonality of these modes might be responsible for such high

amplitudes, as two “almost parallel” (highly nonorthogonal) modes can have equal and opposite

large amplitudes which almost cancel out in the net sum. In fact, POD modes were utilized in

order to overcome this issue. It appears that using higher artificial dissipation can alleviate this

problem. It should also be remembered that low dissipation makes the higher modes unresolved

(Sec. 5.3), which could also have been a contributing factor to the extreme non-orthogonality of

such modes earlier.

We can now calculate the amplitude attenuation rate (AAR) for the linear modes, as was

done for POD modes. It is simply the time averaged amplitude multiplied by the growth rate,

〈|π(n)r (t)|〉tγ(n). The energy dissipation rate (EDR) can also be calculated, which is just the

amplitude squared multiplied by growth rate, 〈|π(n)r (t)|〉2t γ(n). These rates are shown in Fig. 5.13.

Fig. 5.13(a) and (b) show the AAR and EDR respectively, for the first 10000 linear modes. The

first mode is excluded from these plots as it is unstable. There is a lot of scatter but we can see a
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Figure 5.12: Plot of the natural logarithm of time averaged linear mode amplitudes on Z axis
(also shown in color), growth rate γ(n) on X axis and real frequency ω(n) on Y axis. Case (a)
is using large hyper-diffusivity (Dz = 8.0, Dv = 5.0) and case (b) is with low hyper-diffusivity
(Dz = 0.25, Dv = 0.2).
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Figure 5.13: Amplitude attenuation rates (on left) and energy dissipation rates (on right) of
linear modes, plotted in different ways. See text for a detailed description.
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decreasing trend in both for the first 2000 modes. We also know that modes beyond 2000 are not

well-resolved (Sec. 5.4). To get rid of the scatter, a box-car averaging procedure is done for the

next plots in Fig. 5.13. The ordinate of every point is replaced by the average of the ordinates of

the surrounding 200 points (or however many points possible, but less than 200). This smoothens

the plots. Fig. 5.13(c) plots the box-averaged AAR and (d) plots the box-averaged EDR. We can

now clearly see that these rates flatten after mode 2000. There is some trend up to modes 1000

and a change in behavior from modes 1000 up to 2000. Figs. 5.13(e) and (f) plot the absolute

value of AAR and EDR respectively on a log-linear scale, for the first 5000 linear modes. It is

plausible that an exponential might fit the EDR spectrum across this range. Figs. 5.13(g) and

(h) plot the absolute value of AAR and EDR respectively on a log-log scale, for the first 10000

linear modes. We see three distinct regions in both AAR and EDR. The range from modes 2 up

to 100 is relatively flat. The range from 100 to 1000 shows a power law behavior and then the

range from modes 1000 up to around 4000 shows a different power law spectrum. This result will

have to be verified using more simulations with varying resolutions and parameters to see how

robust it is and how these power laws and their break-points change with parameters. However,

all these plots are as a function of mode number, which is not a physical quantity. A more

physical quantity is the damping rate and eventually we would have to relate the mode number

to a damping rate. Figs. 5.13(i) and (j) plot the absolute values of AAR and EDR respectively

as a function of the damping rate on a log-linear scale. The range of damping rate corresponds

to the first 5000 modes. Again it might be possible to fit two different exponentials to the EDR

spectrum.

These spectra are promising and hopefully lead to a better understanding of the damped

modes in gyrokinetics. Another useful concept to study in turbulence is the mechanism of

energy transfer, which is the topic of the next section.
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5.6 Parallel transfer of energy

In gyrokinetics there are thousands of damped modes. In Sec. 5.5 we saw how their en-

ergy/amplitude dissipation rates behave. We know that energy is transferred to them by three-

wave interactions with unstable modes, and in the case of ITG, with zonal flows. What is the

nature of these three-wave interactions? In three dimensional hydrodynamic turbulence it is well

known that the energy transfer is local, i.e., the three wavenumbers in the interaction have a

similar magnitude. Similarly, energy is transferred from one mode to another in the mode de-

composition space. What is the nature of the modes involved in this transfer? We try to answer

this question using both POD and linear modes.

5.6.1 Parallel transfer to POD modes

We are interested in tracing how energy flows through the subdominant POD modes. We start

with a nonlinear CBC simulation and let it saturate. At one time step in the saturated phase,

the amplitude of the first POD mode at wavenumber k = (0, 0.25) is extracted using the POD

orthogonality (Eq. 4.19). This amplitude is multiplied by a factor of 10 and the simulation

is allowed to evolve self-consistently. This is akin to injecting some energy into the first POD

mode. As the simulation evolves, this energy will get redistributed and eventually dissipated. We

observe the energy of the other POD modes at this wavenumber and also at other wavenumbers

to see where the excess energy goes. As this energy is transferred to other modes, we expect

to see a spike in their energies as well. This is shown in Fig. 5.14. In (a) we see that the first

POD mode of k = (0, 0.25) gets a kick at t ≈ 688. As time goes on it relaxes back to its original

saturated level. We see that at a later time, around t ≈ 694, the 6th mode energy reaches a

peak. This is followed by the 11th mode reaching a peak at t ≈ 695 and the 26th mode peaking

at t ≈ 696. All the modes are seen to rise at nearly the same time, indicating that energy is

transferred simultaneously to all of them. Fig. 5.14(b) plots the same mode energies for the zonal

wavenumber k = (0.1, 0), but we do not see any prominent energy injection peak that stands out.

This is probably because, as seen earlier (Fig. 4.9), very little energy is transferred to the zonal
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Figure 5.14: Time traces of POD mode energies (|β(n)π(n)|2) for modes 1, 6, 11 and 26. (a) is for
k = (0, 0.25), (b) is for k = (0.1, 0) and (c) is for k = (−0.1, 0.25). The peaks of the subdominant
modes have been scaled to match the peak of first POD mode, for better visibility. The vertical
line indicates the time at which energy is injected into the first POD mode at k = (0, 0.25).
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modes in such interactions. Finally in (c), we see the mode energies at k = (−0.1, 0.25), and

here also we see that all the POD modes get a spike in their energy at the same time, suggesting

energy transfer to all these modes is in parallel.

Figure 5.15: Average rise times for a sample of POD modes at three wavenumbers (a) k =
(0, 0.25), (b) k′ = (0.1, 0) and (c) k′′ = (−0.1, 0.25). These are averaged over an ensemble of five
simulation runs and plotted for a sample of 40 POD modes: 1, 10, 19, 28, . . . , 352.

A cleaner way to look at this is to calculate the rise times of the subdominant POD modes.

Rise time is the time it takes from energy injection in the first POD mode to the subdominant

mode energy reaching its peak. For example, in Fig. 5.14 the rise time for the 6th POD mode

at k = (0, 0.25) would approximately be 694 − 688 = 6. This is calculated for a sample of POD

modes, over the range of well-resolved modes, at the three standard wavenumbers; k = (0, 0.25),

k
′ = (0.1, 0), and k

′′ = (−0.1, 0.25). An ensemble average over five ensembles with different

initial conditions is taken to smooth out the statistical fluctuations. The results are plotted

in Fig. 5.15. We see rise times for k = (0, 0.25) in plot (a). They do not seem to follow any

increasing or decreasing trend, on an average the rise time is same for all the subdominant
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modes. In (b) the rise times of the POD modes at k
′ = (0.1, 0) are given and they also seem

flat. In reality, the zonal modes receive very little energy from the energy injection and do not

show a distinctive energy spike. Thus, their rise times correspond to just random fluctuations

and hence, their average rise time is higher compared to k = (0, 0.25). In (c) the rise times for

k
′′ = (−0.1, 0.25) are given and they show same behavior as k = (0, 0.25). This analysis shows

that energy is transferred to all the POD modes at the same time in a parallel manner.

Figure 5.16: Rise times for the 40 POD modes: 1, 10, 19, . . . , 352 at k = (0, 0.25) (same as
Fig. 5.15(a)). These are now plotted as a function of average POD wavenumbers 〈kv‖〉(n) (in (a))

and 〈kz〉(n) (in (b)).

We can also associate a parallel wavenumber kz and a parallel velocity wavenumber kv‖ with

each POD mode. The Fourier transforms of POD modes in z and v‖, ψkz and ψkv‖ respectively,

are already defined in Fig. 5.8. We use them to define an average parallel wavenumber, 〈kz〉(n),

for the nth POD mode,

〈kz〉(n) ≡

√
√
√
√

∑

kz k
2
z |ψ(n)

kz |2
∑

kz |ψ
(n)
kz |2

. (5.12)

The average parallel velocity wavenumber, 〈kv‖〉(n), is defined in an analogous manner. Fig.

5.15(a) (rise times for POD modes at k = (0, 0.25)) is replotted in Fig. 5.16, with the POD
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numbers on the x-axis replaced by their corresponding 〈kv‖〉(n) and 〈kz〉(n) in plots (a) and (b)

respectively. The data point close to zero rise time is for the first POD mode. Other than that,

the rise times are flat over a variation of factor of five in 〈kv‖〉(n) and 〈kz〉(n). This shows that

parallel transfer occurs over a significant range of scales in the z and v‖ coordinates of gyrokinetic

phase space. This result will be extended below to linear modes as well (Sec. 5.6.2).

The zonal flow might be playing a role in this behavior. In ITG, zonal flows strongly couple

with all the subdominant modes and transfer energy to them simultaneously. It is not a local

cascade like hydrodynamic turbulence, but rather a nonlocal cascade in which the zonal flows

always participate in the dominant three-wave interaction. Of course, these results will have to

be verified with other turbulence simulations as well as higher resolution studies. In the next

section we study parallel transfer of energy to linear eigenmodes.

5.6.2 Parallel transfer to linear eigenmodes

We want to find out whether the parallel transfer of energy, seen in POD modes, holds for linear

modes also. For that, we perform the same numerical experiment on linear modes. A CBC

simulation is allowed to saturate in the nonlinear state. At a particular time step, the amplitude

of the unstable linear mode at k = (0, 0.25) is extracted using the orthogonality condition,

Eq. 5.9. This amplitude is then amplified by a factor of 100, akin to injecting energy into this

mode. The time traces of the linear mode amplitudes at this wavenumber are observed, and

we see spikes in them which are very similar to Fig. 5.14(a). The rise times for these modes

are defined and calculated in the same way as was done in Sec. 5.6.1 for POD modes. Also,

the average parallel wavenumber, 〈kz〉(n), and average parallel velocity wavenumber, 〈kv‖〉(n), of

the nth linear mode are calculated just as in Eq. 5.12. The only difference is that instead of

the POD mode Fourier transform, ψ
(n)
kz , the Fourier transform of the right eigenvector, ψ

(n)
r,kz, is

used as a weight for the average. All this data is used in plotting Fig. 5.17. It plots the rise

times for the first 5000 linear modes at k = (0, 0.25) as a function of their average wavenumbers

〈kz〉(n) and 〈kv‖〉(n). The data is ensemble averaged over three simulation runs with different

initial conditions. We see a very flat profile of the rise times over a factor of 5 in kz and almost a
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factor of a decade in kv‖ . This shows that energy is transferred in parallel to linear modes also,

spanning a large range of scales in z and v‖. There seem to be two different sets of modes, one

that receives energy earlier, at t ≈ 0.2, and another that receives it later, at t ≈ 0.8. More study

will be required to see if this is real or an artifact.

Figure 5.17: Ensemble averaged rise times for the first 5000 linear modes at k = (0, 0.25), plotted
as a function of their average wavenumbers 〈kz〉(n) and 〈kv‖〉(n) in (a) and (b) respectively.

5.7 Discussion

This chapter dealt with the energetics of damped modes in gyrokinetic turbulence. We believe

that the damping rate is a chief characteristic of such modes, and as such it should play a central

role in any theory aiming to describe them. With this goal in mind, we calculated the amplitude

and energy damping rates of these modes, using both POD and linear decompositions.

Several problems were encountered when dealing with the higher POD modes. It appears that

the POD modes rapidly become unresolved as their mode number increases. This also introduces

complications in their energy balance when higher kx connections are kept. A metric is defined

to estimate the physicality of such modes. Hyper-diffusivity seems to be a key factor controlling
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the behavior of these modes. Higher hyper-diffusivity extends the number of physical modes,

both POD and linear. It also alleviates the problem of nonorthogonality of linear modes. In

Ch. 4 higher hyper-diffusivity lead to more consistent results in the calculation of forward energy

transfer via zonal flows (Fig. 4.10). There are also indications that the use of a collision operator,

and its collisionality, has a big impact on the spectrum of damped modes [101]. The phenomenon

of amplitude attenuation rate equipartition (AARE) in high POD modes was observed across

all turbulence simulations. Several hypotheses were suggested to explain this observation. It

appears that this is an artifact of the unresolved nature of higher POD modes.

The amplitude attenuation rates and energy dissipation rates of linear modes are calculated.

Box averaging these spectra helps to smoothen them and reveal their trends. These show promis-

ing results in the form of spectra in the range of physical modes that seem to follow power law

or exponential behavior. It should be very interesting to explain these spectra analytically. The

fact that they follow a regular behavior as a function of damping rate, encourages our belief that

the damping rate has to be a central quantity in the description of these modes.

In hydrodynamic turbulence, energy is transferred over the inertial range by means of local

interactions amongst wavenumbers that do not differ drastically in magnitude from each other.

In gyrokinetic turbulence, it is observed that the damped modes do not interact locally to transfer

energy to neighboring modes with similar damping rates. Instead, energy is transferred in parallel

to all the damped modes simultaneously. These modes can vary in their scales in z and v‖ up to a

decade. It is plausible that the zonal flows in ITG are responsible for such non-local interactions,

as they are very efficient in energy transfer.
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Chapter 6

Conclusions and future directions

Our design has been to present a broad overview of damped modes in plasma microturbulence.

Through a comprehensive survey of turbulence models relevant for fusion plasmas, we have shown

that damped modes are very important in saturating the energy injected by the unstable modes.

While earlier studies had shown this for a few models like the ITG and TEM, this work shows

it for a wide variety of models. This is very surprising, because these models have been studied

in detail for several decades, with the role of damped modes in them going unnoticed.

Damped modes are important in saturation when their damping rate is comparable to, or less

than, the instability growth rate. In such a case, energy dissipation by damped modes peaks in

the unstable, small wavenumber range. This is very different from the conventional dissipation

that is associated with small scale viscosity. In the fluid models, damped modes dissipate energy

at large scales by driving a reversible, negative heat flux back into the equilibrium gradients.

While this dissipation is not irreversible, it damps fluctuation amplitudes, affects saturation,

and is therefore treated as dissipation in this sense. This results in a drastic reduction of the

true heat flux compared to quasilinear estimates. In gyrokinetics, the details of the dissipation

mechanism are still not fully understood, although it is the irreversible dissipation, either through

hyper-diffusivity or collisions, which seems to dominate the reversible, negative heat flux.

One question that can be asked is: do damped modes affect other kinds of turbulence, and

in what way? Homogeneous fluid and astrophysical turbulence is made up of eddies and waves,
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are driven by external stirring, and hence do not involve unstable/stable modes. However,

inhomogeneous fluid and astrophysical turbulence can have damped modes. One example is the

magneto-rotational instability (MRI) in accretion disks [102]. This instability has associated

stable modes and the model parameters show that the threshold criterion for excitation of stable

modes (Pt) is satisfied in this model. It would be interesting to find out how damped modes

affect the transport of angular momentum by the MRI, which is very crucial in accretion disks.

We also looked in detail at the regulation of ITG turbulence by self-consistently generated

zonal flows, using a simple fluid model as well as a comprehensive gyrokinetic model. It has been

shown that zonal flows help transfer energy from unstable to stable modes via three-wave interac-

tions. The key reasons for the dominance of such interactions are the frequency matching in such

triads, the high zonal flow amplitude in ITG, and the nonlinear coupling coefficients. This expla-

nation is very different from the conventional zonal flow-drift wave shearing paradigm [47] which

says that shearing due to zonal flows is responsible for enhanced energy transfer to dissipative,

large wavenumbers and leads to regulation of turbulence. We do observe a forward transfer of

energy consistent with zonal flow shearing, but a significant fraction of this energy is dissipated

by damped modes which lie at large wavenumbers that are not traditionally associated with

dissipation. Also, we see that the zonal flow amplitude and shearing rates are intimately linked.

Thus, it is important to further tease out the effects of shearing versus zonal flow amplitude.

There are several aspects of zonal flows and damped modes that can be further explored.

The zonal flow-drift wave shearing paradigm makes several predictions related to predator-prey

oscillations, Dimits shift, and zonal flow collisionality [47]. Predator-prey oscillations, in which

the zonal flows act as predators and the drift waves as prey, are observed in gyrokinetic and

fluid simulations of ITG, as well as in experiments. It would be interesting to see what kind

of a behavior damped modes introduce in these oscillations. This can also open up a way to

investigate damped mode effects in experiment. Zonal flows are thought to play a key role

in the Dimits shift of the ITG instability threshold, by quenching all the turbulence near the

threshold. Do damped modes play a role in this? Gyrokinetic simulations can answer this

question. Zonal flow collisionality is an important knob to control turbulence level. According
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to the view presented in this thesis, this is explained via the dependence of frequency matching

on zonal flow collisionality. This can also be verified in gyrokinetic simulations.

An important concept introduced is that of frequency matching, which says that the most

dominant three-wave interactions have a minimum frequency sum. How broad is the applicability

of this principle? Can it always predict which three-wave interaction will be the most dominant?

If yes, this can be a very powerful tool. This can be probed more by running different kinds

of simulations, either fluid or gyrokinetic. We have applied this principle using the linear and

nonlinear frequencies. It is possible to use the linear frequencies if the nonlinearity is weak, but for

strong nonlinearity the nonlinear frequencies can be calculated only from a simulation. It would

be very useful to quasilinear techniques if a way can be found to extract the nonlinear frequency

directly without running a simulation. Identifying the dominant three-wave interactions can be

very helpful in doing a computationally cheaper simulation using only such interactions. It might

also be possible to verify this principle in experiment using bi-spectral analysis.

This work has introduced some metrics which can be very handy in analyzing damped modes

in turbulence. Firstly, the threshold parameter Pt is very convenient in predicting whether or

not one should be worried about damped modes in their model. Secondly, the ratio of low

wavenumber to high wavenumber amplitude is very useful in determining the physicality of basis

modes. We used two kinds of mode decompositions, POD modes and the linear eigenmodes.

Gram-Schmidt orthogonalized modes have also been used to study damped modes before [21].

This raises the question about which modes are suitable for which situations? Is there any

preferred mode decomposition for a particular application and, if so, how do we arrive at it?

Several new nonlinear energy transfer diagnostics were developed for use in gyrokinetics. Another

topic to study is the effect of dissipation mechanisms. Higher hyper-diffusivity seems to be able

to alleviate several numerical issues of non-orthogonality and variability faced by the damped

modes. What would be the effect of using a realistic collision operator on the behavior of these

modes?

The equipartition of amplitude attenuation rate was investigated, but it seems to be an

artifact of the unresolved nature of higher POD modes. As the damping rate of modes increases,
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they develop fine scale structure in the parallel spatial and velocity space. There are already

existing theories describing such a phenomenon [103], [88]. Damped modes (either POD or

linear) in high-resolution gyrokinetic simulations can be used to verify/falsify these theories.

The amplitude and energy attenuation rates of linear modes show interesting behavior for the

well-resolved modes. They show regions of equipartition as well as power law spectra. It would

be interesting to develop an analytical theory to explain the observed spectra. The fact that

energy is transferred to all the damped modes simultaneously, in parallel, across a large range of

scales in phase space, might also play an important role in explaining these spectra. We believe

that the damping rate should play a central role in any theory aiming to explain the behavior of

damped modes.

Damped modes have turned out to be omnipresent in plasma microturbulence. While they

have always been present in numerical simulations, they were never identified as an important

entity. Now it is realized that they should always be taken into account when thinking about

microturbulence. However, it still remains very important to identify the many effects of damped

modes, not only in simulations but also in experiments.
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Appendix A

Variables and expressions for the 2-field

ITG/ETG model

Expressions relevant for the 2-field fluid ITG/ETG model studied in Ch. 3 are presented in

this appendix.

The nonlinear coupling coefficients for Eq. 3.12 are

Clmn =
(−1)l−1

(R1 −R2)

(k′ × ẑ · k)
2

[

R′
m −R′′

n +
R3−l(k

′′2 − k′2)

(1 + k2)

]

, (A.1)

ClFn =
(−1)l−1

(R1 −R2)

(−iky)
2

[

R′′
n − R3−l(k

′′2 − k′2)

(1 + k2)

]

, (A.2)

ClPn =
(−1)l−1

(R1 −R2)

(−k′xky)
2

, (A.3)

ClmF =
(−1)l−1

(R1 −R2)

(−ik′y)
2

[

R′
m +

R3−l(k
′′2 − k′2)

(1 + k2)

]

, (A.4)

ClmP =
(−1)l−1

(R1 −R2)

(−k′yk′′x)
2

. (A.5)

The nonlinear coupling coefficients for the zonal flow equation, Eq. 3.13, are

CFmn =
−i
2

k′yk
2
x(k

′′2 − k′2)

(δ + k2x)
. (A.6)
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The nonlinear coupling coefficients for the zonal pressure equation, Eq. 3.14 are

CPmn =
(k′ykx)

2
(R′

m −R′′
n). (A.7)

Here l,m, n = 1 or 2 and k
′′ = k− k

′, R1,2 = R1,2(k), R
′
1,2 = R1,2(k

′) and R′′
1,2 = R1,2(k

′′). The

terms in Eq. 3.16 are

Qu =
∑

ky 6=0

−2ky(1 + η + ǫ)Im(R1)|β1|2, (A.8)

Qs =
∑

ky 6=0

−2ky(1 + η + ǫ)Im(R2)|β2|2, (A.9)

Qus =
∑

ky 6=0

−2ky(1 + η + ǫ)Im(R1β1β
∗
2 +R2β

∗
1β2), (A.10)

D =
∑

ky 6=0

−2χk4|pk|2 − 2νk2|φk|2, (A.11)

Dzonal =
∑

ky=0

−2χk4|pk|2 − 2νk2|φk|2. (A.12)

The three wave coupling terms in Eq. 3.18 are

N1mn =
∑

ky 6=0

ARe
[
∑

k′y 6=0,ky

C1mnβ
∗
1β

′
mβ

′′
n

]

, (A.13)

N1Pn =
∑

ky 6=0

ARe
[
∑

k′y=0

C1Pnβ
∗
1p

′
zβ

′′
n

]

, (A.14)

N1mP =
∑

ky 6=0

ARe
[
∑

k′y=ky

C1mPβ
∗
1β

′
mp

′′
z

]

, (A.15)

N1Fn =
∑

ky 6=0

ARe
[
∑

k′y=0

C1Fnβ
∗
1v

′
zβ

′′
n

]

, (A.16)

N1mF =
∑

ky 6=0

ARe
[
∑

k′y=ky

C1mFβ
∗
1β

′
mv

′′
z

]

, (A.17)

where A = 2(1 + k2 + |R1|2). The three wave coupling terms in the zonal field energy Eqs. 3.19
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and 3.20 are,

NPmn =
∑

ky=0

2Re

[
∑

k′y 6=0

CPmnp
∗
zβ

′
mβ

′′
n

]

, (A.18)

NFmn =
∑

ky=0

2Re

[
∑

k′y 6=0

CFmnv
∗
zβ

′
mβ

′′
n

]

, (A.19)

where, in Eqs. (A.13-A.19), m,n = 1 or 2.
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Appendix B

Notation in Gyrokinetics

Most of the notation is borrowed from Ref. [21]. The normalization of (and definition of some)

quantities is

kx,y → kx,y
ρref

v‖ → crefvTjv‖ µ→ Tref
Bref

T0jµ

B0 → BrefB0 t→ Lref

cref
t mj → mrefmj

T0j → TrefT0j n0j → nrefn0j qj → eqj

cref =
√

Tref/mref ρref = cref/Ωref Ωj =
qjB0

mjc

Ωref =
eBref

mrefc
vTj =

√

2T0,j/mj . (B.1)

Here the subscript ‘ref ’ refers to a reference quantity. For example, ρref is the reference ion

gyro-radius calculated using the reference mass mref , reference temperature Tref (the mean

temperature of the species) and reference magnetic field Bref (the equilibrium magnetic field).

j denotes the species index, typically ‘i’ for ions and ‘e’ for electrons. The proton charge is e,

n0,j is the background number density of species j.

The gyrokinetic equation is expressed as

∂gj
∂t

= L[gj ] +N [gj ], (B.2)
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where gj is related to the perturbed distribution function fj through

fj = gj −
2qj

mjvTj
v‖Ā‖F0j . (B.3)

The linear operator L is given by

L[gj ] =− v∗F0jikyχj +
βT0j
LpqjB2

0

v2‖ikyΓj − vTjv‖Γjz

− vd(Kyiky +Kxikx)Γj +
vTjµ

2

∂B0

∂z

∂fj
∂v‖

+ Cj(fj). (B.4)

The first term on R.H.S. is the gradient drive term, second is the finite β term, third and

fourth are the gradient and curvature drift terms, fifth is the parallel gradient term and sixth

term represents dissipation due to either collision operator or artificial dissipation. The parallel

advection term contains the expression,

Γjz =
∂Γj

∂z
+ µ∂zB0

qF0j

T0j
φ̄. (B.5)

The other quantities in Eq. B.4 are,

F0j = F0 = π−3/2e
−(v2

‖
+µB0),

χj = φ̄j − vTjv‖Ā‖j ,

Γj = gj +
qjF0j

T0j
χj,

v∗ =
1

Ln
+

1

LTj
(v2‖ + µB0 −

3

2
),

vd =
T0j
qjB0

(2v2‖ + µB0),

Kx = − sin(z),

Ky = − cos(z)− ŝz sin(z),

B0(z) =
1

1 + ǫt cos(z)
. (B.6)
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Lp, LTj and Ln are the equilibrium gradient scale lengths for the pressure, temperature and

density respectively (normalized to Lref ), vTj is the thermal velocity for particle species j, ŝ is

the magnetic shear, and ǫt is the local inverse aspect ratio. These expressions assume the s− α

model of tokamak geometry which uses circular flux surfaces [104].

The overbar denotes a gyro average which (in a Fourier representation) is accomplished by

multiplying by a zeroth-order Bessel function J0.

φ̄ = J0(λj)φ, (B.7)

λj =

(
2B0µ

mj

) 1

2 k⊥
Ωj
, (B.8)

k2⊥ = (kx + ŝzky)
2 + k2y . (B.9)

The gyrokinetic Poisson equation becomes,

φ =

∑

j
n0jπqjB0

∫
J0(λj)gjdv‖dµ

k2⊥λ
2
D +

∑

j

q2j
T0j
n0j(1− Γ0(bj))

,

λD =

√

B2
ref

4πc2nrefmref
.

(B.10)

Here λD is the Debye length, Γ0(x) = e−xÎ0(x) (Î0 is the zeroth order modified Bessel function)

and bj =
v2
Tj

k2⊥
2Ω2

j

. The gyrokinetic Ampere’s law is,

A‖ =

∑

j

β
2 qjn0jvTjπB0

∫
dv‖dµv‖J0(λj)gj

k2⊥ +
∑

j

βq2
j

mj
n0jπB0

∫
dv‖dµv

2
‖J

2
0 (λj)F0j

, (B.11)

where β =
8πnrefTref

B2

ref

. The nonlinear operator is,

N [gj ] =
∑

k′
⊥

(k′xky − kxk
′
y)χj(k

′
⊥)gj(k⊥ − k

′
⊥). (B.12)
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Appendix C

Sample Gene parameters file

A sample Gene parameters file for typical simulations shown in this thesis along with an expla-

nation of non-standard parameters used specifically in this work. The standard parameters can

be found in Gene documentation.

&parallelization

n_procs_s = 1

n_procs_v = 24

n_procs_w = 8

n_procs_x = 1

n_procs_y = 1

n_procs_z = 12

/

&box

n_spec = 1 ! # species

nx0 = 128 ! # radial grid points

nky0 = 16 ! # kys

nz0 = 16 ! # parallel grid pts

nv0 = 32 ! # vpar grid points

nw0 = 8 ! # mu grid points

lx = 125.628 ! box length in x

kymin = 0.05 ! min ky

lv = 3.00 ! domain in vpar

lw = 9.00 ! domain in mu

!adapt_lx = .f.

/
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&in_out

diagdir = ’./output_directory’

chptdir = ’./chpt_directory’

write_checkpoint = F

read_checkpoint = T

istep_mom = 100

istep_nrg = 10

istep_energy= 100

!istep_dfout defines the time steps at which to output distribution function

!at selected wavenumbers

!istep_dfout = 50

!istep_lamp_proj defines the time steps at which to output

!the linear eigenmode amplitudes

!istep_lamp_proj = 50

!istep_nlt defines the time steps at which to output the nonlinear

!energy transfer terms for Fourier or POD modes

!istep_nlt = 50

/

&general

nonlinear = T

arakawa_zv = T !grid for energy conservation

arakawa_cons_bc = T !set #undef hyp_on_h & #undef hyp_over_j in switches.h

calc_dt = .t.

timelim = 53000 ! wallclock limit in sec

ntimesteps = 5000 ! total # timesteps

simtimelim = 10000 ! simulation time limit in L_ref/c_ref

hyp_z = 8.0 !hyper-diffusivity coefficient D_z

hyp_v = 5.0 !hyper-diffusivity coefficient D_v

!following block is for calculating the linear eigenmodes, in order for

!this to work, other parameters have to be changed for a linear run

!comp_type=’EV’ !switch to specify an eigenvalue computation

!which_ev = ’all_mpl’ !solve for all eigenvalues

!n_ev = 20480 !number of eigenvalues and vectors

!ev_out = T !output eigenvalues in file eigenvalues.dat

!ev_right = T !output right eigenvectors in eigenvectors_r.dat

!ev_left = T !output left eigenvectors in eigenvectors_l.dat

!ev_n_test = 40960 !twice of n_ev

!vec_out_limit = T!arrange the eigenvectors in order of decreasing growth rate
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/

&extended_diags

!the following block specifies the wavenumbers to output

!if istep_dfout is non-zero

!this is the first step in calculating energy dynamics of POD modes

!in second step, uncomment the SVD_proj block below to perform an SVD analysis

!in third step, uncomment the nlt_pod block below to calculate n.l. transfer

!num_ky_modes = 3 !number of wavenumbers to output

!num_kx_modes = 1 !number of kx connections to keep

!which_ky = 5 0 5 !ky index of output modes

!which_kx_center = 0 2 -2 !central kx index of output modes

!following block performs SVD analysis

!before this, one needs to output the data using istep_dfout

!SVD_proj = T !switch to activate SVD projection routine

!SVD_kx_ind = 0 !kx index of wavenumber at which to do SVD

!SVD_ky_ind = 5 !ky index of wavenumber at which to do SVD

!SVD_nkx0 = 1 !number of connections kept

!SVD_df_n_time = 1000 !total number of time steps in SVD sample

!SVD_start_time = 0.0 !time in sample at which to start SVD

!SVD_df_file_path = ’./svd_folder’ !where to output SVD data

!SVD_sparse_factor = 2 !decrease sampling frequency by this factor

!SVD_f0_flag = F !uncomment to exclude F_0 from SVD normalization

!this indicates the Fourier modes for which to calculate nonlinear transfer

!num_nlt_modes = 1

!kx_nlt_ind = 0

!ky_nlt_ind = 5

!this block calculates energy transfer functions for POD modes, the third

!and final step in the process, and outputs files nlp_ky...dat

!and nlp_info_ky...dat

!nlt_pod = T !switch to activate nonlinear transfer calculation for POD modes

!num_nlt_pod_modes = 3 !number of POD modes to be calculated

!nx0_nlt_pod = 1 !number of connections kept

!num_nlt_modes = 3 !number of wavenumbers to be analyzed

!start_nlt_pod_mode = 10 !the POD mode at which to start analysis

!!num_podmode_skip = 5 !number of POD modes to skip, for example

!in this example, nonlinear transfer will be calculated for PODs 10, 16, 22

!ky_nlt_ind = 5 0 5 !ky index of modes

!kx_nlt_ind = 0 2 -2 !kx index of modes

!SVD_df_file_path = ’./svd_folder’!directory where SVD_df_ky...files are stored
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!lamp_kick = T !switch to activate energy injection into unstable linear mode

!time_of_kick = 2000 !the time index at which to inject energy

/

&geometry

magn_geometry = ’s_alpha’ !geometry model

shat = 0.7960 ! r/q dq/dr

trpeps = 0.1800 ! r/R_0

major_R = 1.000 ! R_0 (here = L_ref)

q0 = 1.400 ! safety factor q

/

&species

name = ’ions’

omn = 2.220 !L_ref/L_n

omt = 6.960 !L_ref/L_T

mass = 1.000 !mass in units of m_ref

temp = 1.000 !temperature in units of T_ref

dens = 1.000 !density in units of n_ref

charge = 1 !charge in elementary charge units

/
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