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AXISYMMETRIC INSTABILITY IN A NONCIRCULAR TOKAMAK

Bruce Lipschultsz

Under the supervision of

Professor J.C. Sprott and Assistant Professor S.C. Prager

The stability of dee, inverse=dee and agquare
crossection plasmas to axisymmetric modes has been
investigated experimentally in Tokapole II, a tokamak
with a four-null poloidal divertor. Experimental results
are closely compared with prediections of two numericail
stability codes~~the PEST c¢ode {(ideal MHED, 1linear
stability) adapted to tokapole geometry and a code which
follows the nonlinear evolution of =shapes similar to
tokapole equilibria. Experimentally, the square is
vertically =stable and both dee's unstable to a vertical
nonrigid axisymmetric shift. The central magnetic axis
displacement grows exponentially with a growth time"103
poloidal Alfven times”™ plasma L/R time. Proper initial
positioning of the plasma on the midplane allows passive
feedback to nonlinearly restore vertical motion to a
small stable oscillation about the center. Experimental
poloidal flux plots are produced directly from internal

magnetic probe measurements. The PEST code, ignoring



passive feedback, predicts all equilibria to be
vertically unstable with the square having the slowest
growth, With passive feedback, all are stable, Thus
experiment and c¢ode agree that the square is the most
stable shape, but experiment indicates that passive

feedback is partially defeated by finite plasma

resigtivity. In both code and experiment square-like
equilibria exhibit a relatively harmless horizontal
instability,






CHAPTER I

INTRODUCTION

As GENERAL QVERVIEW

The deleterious effect of impurities in tokamak
plasmas has stimulated investigation of poloidal divertor
configurations. The necessarily noncircular shape of
these equilibria is also advantageous with respect to q1
and B.limited MHD instabilitiesz’3‘ Unfortunately any
deviation of an equilibrium from a c¢ircular shape may
permit the plasma to be wunstable to axisymmetric
displacements, with toroidal mode number n=0, The
poloidally asymmetric placement of shaping rings and
walls necessary to establish a noncircular plasma shape
in turn creates nonuniform attractions +to the plasma
current, The plasma, if perturbed, moves in the
direction of the minimum in the accompanying peoloidal
field. Unlike kink and localized interchange modes, the
axisymmetriec instability cannot be controlled by
increasing the toroidal field or reducing the plasma

current.



Unfortunately, the conceptual simplicity of the
axisymmetric instability does not translate into
calculational simpliceity. The importance of this mode

has given rise to a fairly large amount of linear theory
-~ mostly for idealized displacements and analytic

h-12, Recently nonlinear evolution of the

equilibria
instability has been followed numerically 13,
Axisymmetric displacement of dee and elliptical plasmas
has been deduced 1in a few experiments from magnetic

=17 | rhe plasma shape in

probes external to the plasma
these experiments has been inferred from comparison of
these same external magnetic signals with output from
equilibrium computer codes. The numerical moedeling of
the axisymmetric instability, cited above, has apparently
not been specifically applied to any of these

experiments; an unfortunate gap exists between a fairly

well developed theory and experiments performed.

The intent of this thesis 1is twofold. First, to
report direct experimental observation of the
axisymmetric instability in dee, inverse-dee and square
shaped cross sections, Second, to compare these
e#perimental observations with a stability code written
for the actual experimental geometry. This experiment

18,19’

has been performed in the Wisconsin Tokapole IIX a



Tokamak with a four-null poloidal divertor. Experimental
magnetic‘flux plots for the aforementioned range of
"equilibria are produced, from magnetic probe measurements
in the plasma 1interior, in detail eguivalent fto thnat
provided by computer calculations. Conclusions, as to
growth rates and passive stabilization, can be drawn from
the time evolution of these experimental flux plots and
compared with twe numerical codes whiech eclosely reflect
the experimental machine, The PEST oodeao, which has
been adapted to the Tokapole machine geometry, predicta
the linear astability . The effects due to external
conductors are included by appropriate vacuunm

modifications? 122, 3

nonlinear time dependent code,
pATENT' 323, although applied to the PDX°" machine only,
provides gualitative stability predictions and modeling
of the plasma shape as a function of time, Because of
the wide seperation of time scales in this experiment

(e.g. Alfven, plasma and ring L/R times) many

gqualitative conclusions about passive stabilization can

be drawn which are relatively machine independent.
Qualitative comparison can also be made between
experimental results and related models in the

literaturqu.

Several parameter variations are possible both



_experimentally and numerically. For example, proper
positioning of the four field shaping rings allows
equilibria to be varied from dee through square to
inverse-dee shaped. The dee and inverse-dee are
~vertically unstable when not precisely centered on the
machine midplane,. When vertical stability is achieved,
these shapes are still horizontally unstable., The square
is vertically stable even if not precisely positioned,
However, this shape is also horizontally unstable. Since
the horizontal dinstability saturates it is less harmful
than the vertical displacements exhibited in the dee and
inverse-dee, The vertical movement continues
unrestrained towards the x-point (poleoidal field null on
the separatrix). Predictions of the PEST code for
relative stability of these equilibria agree with
experiment, Experimentally, the magnetic axis can be
positicned above, below or exactly on the midplane,. Iin
both the PATENT code and experiment the plasma 1is seen to
correspondingly move up, down or oscillate about the
midplane, Both experimentally and from the nonlinear

code we find the growth of the instability to be

exponential in time. Ideal MHD predicts the growth time,
in the absence of external conductors, to be “T,, the
poloidal Alfvén time. Experimentally, vertical and

horizontal growth times are “103Ta. Passive feedback



apparently increases Tg, the growth time, from T Lo

a
roughly the plasma L/R time. The effect of passive
feedback from rings and walls is =studied eiperimentally
5y changing the plasma resistivty and by varying the
initial position of the magnetic axis. The instability
growth time varies inversely with plasma resistivity.
Stability can be numerically studied with or without

rings or walls to evaluate their effeect on passive

stabilization.

In section B of this chapter an atiempt is made to
give the reader an intuitive feel for the physical nature
of axisymmetric instabilities, Chapter II includes a
description of the experimental machine (II.A) and
techniques (II.B), as well as a review of previous (II.C)
and present (II.D~F) experimental results,. Chapter 111
is devoted to theory. After a review of previous
theoretical work (III.A), the numerical codes used in
this study are described (III.B-D) and their predictions
reviewed (ILII.E-F), Experimental and theoretical results
are discussed and compared in Chapter IV with a summary

in table 1.



The physical nature of the axisymmetric instabllity
can be illuminated through intuitive means. At first we
will assume that currents in the plasma and external
conductors are fixed. Also, for simplicity, we will
.discuss linear as opposed to toroidal geometry.
.Allowance for toroidal curvature introduces a force
produced by the inductive interaction of the plasma
current with its self magnetic field. This force tends
to 1increase the plasma major radius and is different in
néture from the axisymmetric instabilities discussed

here.

It is illustrative to study a stable equilibrium and
then relate what actions must be taken to create an
unstable one. This simple situation of a linear tokamak
plasma is illustrated in figure 1la,. We see, for this
circular shape with return current at infinity, there is
no preferred direction, i.e. there are no currents or
magnetic fields for the plasma current to interact with.
Thus it is neutrally stable with respect to a rigid
displacement; given a perturbation it will keep
travelling at a constant velocity. This neutral

stability to displacements can be modified to instability



Figure 1: Illustration of the vrelation
between deformation and stability in a
linear geometry. All three plasma
crossections include 'torocidal' current
into the paper,. a) ©Neutrally =stable
¢ircular plasma extending into paper. D)
Elliptical plasma deformed from circle by
currents I, & I,. The attractive forces,
Fi & F,, between the plasma current and
each shaping rod are balanced. ¢) Same
elliptical plasma displaced vertically.
F. & F., are no longer balanced -~ vertical
displacement grows,
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by deforming the plasma to a noncircular  shape using

external currents (fig. 1b). Here the plasma current
can interact with the shaping currents, absent in the
circular case, This attraction is the characteristic

driving force of what is generally called - the vertiecal
“taxisymmetric! instability. The word 'axisymmetric' in
this 1linear situation connctes an axially symmetric
movement of the entire plasma column, with axis into the
paper. When this ellipse is positioned precisely between
the two shaping currents, the forces F1 and FZ, between
the plasma and shaping currents, are balanced, If the
ellipse 1is perturbed vertically away from this point, F1
and F2 become unbalanced, and instability growth ensues
(fig. 1e). No great leap of the imagination is needed
to see that increasing the deformation (ellipticity) will
increase the instability growth rate. The attraction is
greater because: 1. The shaping currents are larger and,
2. The plasma is in closer proximity to these currents,
The increase in deformation can best be characterized by
a decrease in the poloidal field radius of curvature; Pas

near the x-point (see fig. 1b).

This same prescription: decreasing r, ~ increasing

~

deformation plasma more unstable to displacements, can

be applied to other shapes, In the presence of an
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octupole field (fig. 2a), a square cross section plasma
Wwill be more stable to displacements in the direction of

an octupole current than either a dee or inverse-~dee,

The latter two shapes are equivalent 1in a linear
geometry. In comparison to the square, the dee of
equivalent current is closer to either pair of
Z-symmetric shaping current conductors. Also these

closer currents must be increased to initially create the

dee, Thus the dee will experience greater attractive
forces. The more unstable shape again has the greater
deformation or smaller r,. The dee, when perturbed

upward (downward) will move towards the upper {lower)

closest octupole current, The attractive force increases
as the dee moves closer. Figure 2b 1llustrates the
situation. Although this is what is generally denoted a

vertical instability a more apt name that I will wuse in
this discussion 1is x-point instability. The attractive
force that drives this instability is always between two

like currents that generate a field null (x-point).

The role of the plasma current distribution is
important fo these instabilities. A flat current
distribution is more unstable than a parabolic profile
for approximately the same plasma shape and total

current. There is more plasma current 1in closer
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proximity to the shaping currents, The attractive force
is « 1/r, where 1r 1s the relative distance between the

currents involved.

Understanding horizontal (equivalent to vertical
direction in a 1linear device) displacements is not as
straightforward as the x-~point instablity. if a toroidal
current filament were placed centrally in a linear
octupole field, it would be horizontally stable.
Designating the torocidal direction as into the paper,
‘then examination of the lfilxﬁpol force at points along
the midplane, for this test current and vacuum poloidal
magnetice fileld, reveal a restoring force that increases
@onotonically with minor radius. A potential energy
curve, illustrating this effect, 1is drawn as a function
bf distance along the midplane in figure 3a. Note this
curve is shaliower than that for the x-«point direction
(fig. 2b) because the octupole rods are closer to

machine center than the image currents that represent the

wall, A plasma is not a current filament: we must take
into account the sum of forces over the plasma
cross section. Furthernore, the plasma 1is a cohesive
entity described by the MHD equations. Figure 3b

exhibits this force field, experienced by a filament test

current, for one guadrant of the octupole field. The
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complete flux plot from which this figure is derived 1is
shown 1n fig. 5. Since, in linear geometry, all
quadrants ére eguivalent only_one is shown in fig. 3b.
- The area that repels horizontal movement Is shaded.
Comparing the square shape, placed ét machine centér, to
the inverse-dee, displaced to the right, the =square
contains less of the horizontally stabilizing region than
the inverse-dee. Therefore, the square is least stable

to horizpntal as opposed to x-pcint displacements.

Up until now, we have treated the plasma and
external conductors as having fixed currents during
displacements. If +the currents involved are allowed to
react to the plasma motion, passive stabilization c¢an
ocecur. Let wus first treat the.idealized case of two

parallel currents with the constraint that their total

flux be neld constant during movement (fig. ),
Ignoring reconnection (i.e. for an infinitely conducting
plasma at the x-point), if they are allowed to move

towards each other, field lines will be compressed and
the 4integral of B‘'dl around each rod will increase.
Antiparallel currents will be correspondingly induced %o
keep this integral a constant, Thus the currents are

reduced causing the attractive force, 21112/r1202, and

growth rate to decrease, This effect, of induced



PARALLEL CURRENTS

Figure 4: Two parallel linear (into paper) currents with

accompanying guadrupole magnetic field.

15
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currents slowing the movement, is termed passive

stabilization.

There are two complicating factors that can affect
the efficiency of passive stabilization. The first to be
_discussed is finite resistivity in the conductors.
Compressed flux can be pushed through the rods cn a

gsoak~in time scale T proportional to the square root

soak
of conductivity. The net effect 1is fhat induced
stabilizing ocurrents will decay over time. Thus, if a
movement (instability) could be stabilized by rods of

infinite _conduotivity, then allowing finite resistivity

enables the instability to grow with a_ratef1/Tsoak-

The other factor in passive stabilization 1is the
presence of plasma,. In a vacuum field, lines can
reconnect instantly. In the presence of plasma, line

reconnection occurs at a rate « 1/Tres‘ T is the

res
characteristic resistive decay time of the plasma., Thus,
additional flux e¢ompression c¢an ocecur, slowing the

instability growth rate,

If we apply the concept of passive stabilization to
the case of the x-point unstable dee in an octupole

field, the plasma and nearest rod are the primary
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currents involved. There is also, of course, plasma at
the x-point. Some passive stabilization will oeccur but
full stabilization is not neccesarily possible. If we

bring into this discussion the effect of conducting

elements other than those primarily involved, then
passive stabilization will be more effective, Filux
. decompression, with aecﬁmpanying induced attractive
eurrents, will occur in the other conductors {(e.g. the

other three rods and opposite walls). The efficiency of
induced effects will not only be determined by the
characteristic resistive decay time scales involved, but
on the amount and proximity of induced currents as well.
The dee is in closer proximity to fewer rings and walls
than the square of equivalent total current, Therefore,
passive stabilization will be more effective for the
sguare than for the dee, In either case, if the plasma
is not completely stabilized, then the growth time will
be slowed to the order of the minimum of the resistive

time scales involved.

Not discussed, heretofore, is the relation of the
‘toroidalt field to the axisymmetric instability.
Intuitively, it must play a much smaller role than the
poloidal field. The deformation will stretch the

poloidal field on the order of a minor radius-scale
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length. On the other hand, the toroidal field 1is only
slightly deformed while the entire field line is being
pushed out of the way, either up or down. There may be
some horizontal stretching to this movement but 1t is on
‘the order of'the majof radius, Thus, the displacement
" divided by the scale length involved is smaller for the
' toroidal field. In addition to this small contribution
of the stretched toroidal field, there is the effect of
its gradient introduced by toroidality. In equilibrium,
by definition, the ipolxﬁtor force is balanced everywhere
by itorxﬁpol (for low pressure). When the plasma becomes
unstable, this condition may perhaps no longer hold.
Examnination of the ipolx§tor force near the principal
x-point involved, shows that the force increases as major
radius R decreases., The introduction , therefore, of
toroidal curvature can perhaps differentiate between the
two dee's making the dee slightly more unstable than the

inverse-dee.

In summary, through the application of basiec
physical concepts, we can see that increased deformaticon
.'(decreasing rc) indicates a shape to be relatively more
unstable toward x-point displacements. This implies the
square 1is more stable than the dee or inverse-dee.

Passive feedback stabilization «can either completely
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stabilize this movement or at least slow its growth to
the resistive time scales involved. Its effectiveness
should be greater for the square than for the dee's, The
relative stability of these shapes becomes reversed when
discussing horizontal displacements, The effect of
toroidal field, though all important for Thigher n
(toroidal mode number) instgbilities, has only a minor
influence on the stability of the axisymmetric modes

:(n=0).
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CHAPTER II

EXPERIMENT

£4 Machine Deseriggggg

The Tokapole I1I device18, on which'these experiments
were performed, has a 50 cm. major radius square
cross section (4% x 44 cm.,) vacuum chamber. The vacuum
magnetic flux plot is that of an octupole (fig. 5a),
which provides vertical and horizontal fields to center
the discharge, The octupole vacuum poloidal field 1is
produced by inductively driving, through an iron core
linking the toroid, four 5 cm, diameter copper toroidal
rings. These rings can carry up to a total of T0OO k4,
and are each supported by three copper~beryllium rods.
While the chamber is under vacuum the rings can be moved
vertically +5mm. by external means, When plasma current
is driven toroidally through the octupole null, a tokamak

with a four-null divertor is generated (fig. 5b) .

Electrical characteristics are shown 1n figure 6.
The current in an outer ring rises sinusoidally to 4% ki

(fig. 6a). A 1 msec. pulse of 10 KkW. §.8 GHz



Figure 5: Numerical poloidal flux plots
(major axis to left). a) Without plasma.
b) With plasma., Each tic mark indicates
2 om.
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Figure 6: Electrical characteristics. Time, in ms., is given on
abscissa. a) Current in an outer ring vs. time. Also shown is a 10
kW, 8.8 GHz, 1 ms. microwave preionization pulse. b) Plasma current.

¢) Loop voltage at machine center with and without plasma,
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mierowaves is used for preionization (fig. ©6b). The
plasma current is induced by the same source as the ring
.current. The value for the total toroidal plasma curent
is inferred from measurements of the polecidal fleld
transformer primary current and loop vﬁitage, at the
wall, employing a simple model treating the plasma and

rings as coupled inductor325’26‘

The current inside the
separatrix is also calculated from measured mégnetic flux
plots. The peak total plasma current is ~ #0 kA with 7 &
msec pulse length (fig. 6b). The toroidal field is
effectively. constant during the experiment at a value of
3.2 kG at machine center, with capability of iup to 8.5
kG . The vacuum torcidal 1loop voltage (fig. 6c) at

~

ﬁachine center decays as a cosine to zero in 3 msec and
is then:_crowbarred. In the presence of plasma the loop
voltage is depressed during plasma current rise and
enhanced during ecurrent decline due to the back EMF
self-induced by the plasma current. Peak electron
temperatures are ~ 100 eV surmised, with ” 25% accuracy,
from modeling of the time evolution of a set of impurity
lines (e.g. 0I-OVI). The electron density is ~ 103
cm"3 as measured by microwave interferometry and Langmuir
probes, The 1ion temperature varies from 20-70 eV as

determined by charge-exchange analysis and from the

doppler broadening of He II.
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B, Experimental Technigues

The basic¢ information without which this research
would not be possible is the poloidal magnetic flux plot,
The tool used for obtaining a flux plot is the 'é' probe
- so termed because the output 1is proportional to the
time derivative of magnetic flux at the probe tip. The
'R probes used in these experiments consist of two 40
turn, Y4x4x5 mm coils of wire, located at the sealed end
cf a 1/4 inch tube, The coils are wound on top of each

other and have normals parallel and perpendicular to the

probe length, The orientation allows both components of

poloidal magnetic field to be resolved. The frquency
responge of this probe varies between 100 kHz, and 1
mHz. depending on the exact number of turns and areas of

the coils.

After passive integration, each probe signal 1is
digitized and stored by computer. To correct for probe
misalignments at a given polnt, a discharge with only the
torocidal field is =stored and subtracted from the data

with both magnetic fields and plasma. After this
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correction, the probe signal every 50ps, for 4 msec., is

stored on floppy disk for further analysis.

The expression wused to calculate the poloidal

flux, Y is
P o= Ofdrf 2M(Ro+1r " )Byeopp(rt) (2.1)

where Ry, r' and Eperp are the major radius of the
magnetic axis, the minor radius and the poloidal field
gomponent perpendicular to the path of integration

respectively. Surfaces of constant 1 are generated from

.the magnetic field data measured at 90 spatial points on

a 2 cm by 2 cm grid (fig. 7Ta). Within any =six point
rectangular grid area, or r.g.a. (same figure), the
vertical and horizontal poloidal magnetic field

components are fit to a polynomial of the form

- 1.2 i i i i
B(xi,yi) ATy + BTx ¥y o+ Chxy o+ DUyy o+ E (2.2)

where Al, Bl,....., Ei are the coefficients for the ith

r.g.a, B(xi,yi) is either the first or second component,

vertical or horizontal, of the magnetic fieild at the

ith

local coordinates (xi,yi) within the r.g.a. From
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equations (2.1) and (2.2), an explicit polynomial in x4

and y; can be found for 1

¥ _o4i i i i i
p(r,8) = (X, ¥39X50.V50sA7 2087 200 0B 2) + ¥
| | (2.3)
where w% is the value of V{ at the edge of the r.g.a. of
position (xio,yio) relative to the magnetiec axis

(y(0,6)=0). The subscript 1,2':on the magnetic field
coefficients refer to the vertical or horizontal
éomponents of the poloidal field. Thus, once the
position of the magnetic axis is known, the approximate
value of V¥ along a ray out from the axis is obtained in a
stepping fashion. Y é is determined by the final value
obtained in integration through the previous r.g.a. out

along that ray.

The position of the wmagnetic axis 1is found

numerically by first searching for the data point with

minimum BZ. This point and the eight surrounding 1it,
define two r.g.a.'s, j-1 and j. Using explicit forms for
J J 2,J 2
3 s 3y, 3% 3 s e 5
g%j Yy o By T (24

the first order Taylor series expansion for ¥J is
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iterated to find VY=z0. Five iterations are usually

sufficient for convergence,

After the magnetic axis is found, the progran

generates an array V¥ (k) containing the value of flux

sav
every 4% mm along a horizontal ray from the axis to the
‘edge of the data grid. Then, every 5 degrees around the
axis, ¢the progran gsearches for the radius at

which ¥(r(k,8))=V,_ ,(k). These values of r(k,8) define a

flux surface.

Once the locus of points defining a flux surface is
determined, variocus line integrals over the flux contours
are approximated using Newton's 3/8  rule. The safety
factor gq{k), toroidal current I(k) and area A(k) within

the kth closed flux surface are given by

rB
q(k) = %=/ ygd do
fr(k,e),0}

1
(k) = g I Bgr a6
{r(k,8),8}

Alk) = fpa dae (2.5)
{r(x,0),01

The last step is to compute the toroidal current
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density averaged over the annulus between two flux

surfaces,

J(k)=[I(k+1)=I(k)I/[ACk+1)-8(k)] (2.6)

Ancther diagnostic that is important to this study
is the electric field probe. This consists of a few turn
coil of wire 4% mm wide by 50 cm in length. As in the
case of the B probe, the coill is contained in a 1/4 inch
probe tube. The prineciple by which it works is
illustrated in figure Tb. The output is proportional to
the time derivative of the pololidal magnetic flux through
the coil,. Assuming the poloidal field to be sinusoidal
in time, then the probe signal is a measure of the flux
between the toroidal circle A&, that its tip defines, and

the machine wall. Let us designate this flux & {see

probe

fig. 7b). The toroidal electrie fleld at A, though, is
proportional to the amount of flux between 1t and the

core = (d The flux linked by the wall,

probe 7 ¢wa11)'

dWall’ is opposite in direction. Converting this formula

to measurable voltages we see

Viocop * Vprobe = Vpg (2.7)
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where V. is the poloidal gap voltage (< &,,71), and

v & In actual wuse, care must be taken to

pr'obecc probe’

insert the probe only con the mideylinder so that there is
‘no component of toroidal electric field along the long
sections of the coil. For the same reason the other end

of the coil must be outside the machine,.

£, Previous Experimentsl Work

Experiments heretofore performed on noncircular

14,16

tokamaks have included doubletszT, ellipses and

dee's1”’16’17.

Verification of the shapes studied has
occurred through external means, For exanple, in
10SCA' #1710, external magnetic field signals were compared
with a computer model's predictions for those signals.
Another variation, used on doublets and TOSCA, is the use
of measured winding currents combined with appropriate
plasma parameters to model the plasma, The existence of
certain poloidal modes of the tearing instability has
also proved to be useful in determining q, which thru the
assumption of ellipticity, in turn determines the plasma

shape28
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Although exiztence of these equilibria has been
shown in only a few papers, the stability of  shapes to
axisymmetric modes is even 1less documented. Both
Toyama17 and Bhatnagar29 have verified the instability's
existence in their respective machines, but that is the
extent of their study. Bhatnagar considered the
" instability as a problem to be controlled, not studied.
He found that the discharge length could be doubled by
proper active feedback stabilization, The only major
experimental study of the axisymmetric instability,

previous to the present, was performed in TOSCA.

The shape of TO0SCA's different eguilibria is found
by comparing external experimental data with predictions
cf an ideal MHD calculation. The experimental input
consists of plasma and winding currents in addition to a
limiting wall, Plasma movement, both radial and
vertical, is calculated using a model that assumes the
plasma to be a current filament. The difference in
magnetic field, due to plasma current only, on opposite
gsides of the plasma gives the relative pogition of a
current filament between those two machine sides. Cima
predicts that the filament wmodel only leads to errors
of 53 mm in predicting the magnetic axis posgition! Using

this technique of locating the magnetic axis as a
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function of time, growth rates of the instabllity are
generated, No comment is given to explain how, and when
during instability growth, the growth rate 1is derived,
This has the added consequence of shedding no light on

the instability's non-linear or linear nature,

An effort was made to compare their results with
related analytic and numerical studies in the literature,
which were not performed for TOSCA. The plasma
equilibrium is described gquantitatively by the decay
index n=-R/Bz(de/dR) averaged over the plasma volunme,
This average is performed using the vacuum poloidal field
of the winding currents. The averaged decay index H 1is
found to be a monotonic function of ellipticity (e).
Results indicate that there are certain #, or e,
parameter limits beyond which no stable equilibria exist,

Khen the equilibrium is unstable, they find ita growth

rate to be proportional to the shaping currents. 1In
other words, inereasing the amount of noncircular
deformation decreases plasma stability, Indications are

given that T, is increased by the presence of the passive

g

feedback coils.
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D.. Relative Stability of Dee, Inverse-dee and Sguare

Eguilibria

This experiment allows comparison of wvaricus plasma

‘'shapes in one machine under similar c¢onditions. By
varying the placement of the rings, which attract the
plasma, the shape of the tokamak separatrix can be
changed from dee to inverse-~dee {figures 8a-c). If the

inner rings are moved closer together, and thus nearer
the plasma, the equilibrium is positioned slightly inward
in ma jor radius producing a dee (fig. 8a). An
inverse~dee (fig. 8b) 18 e¢reated by positioning the
outer rings closer together., The intermediate case is a
square plasma (fig. 8ec). Previous experiments
concerning noncircular tokamaks have deduced the plasma
shape using external measurements such as winding
currents, plasma current and edge magnetic fields,
combined with computer modeling. All important data in
this paper, such as flux plots, current density and
electric field profiles are deduced from Internal probe
measurements, A description of these experimental

techniques is given in the previous section (III.C).

The time histories of magnetic flux plots show that

the dee and inverse-dee are unstable to a non-rigid



Figure B8: Experimental flux plots mapped
cut with magnetic probes. Only the area
inside the separatrix is shown. Each tic
mark indicates 2 cm. a) Dee. b)
Inverse-dee, <c) Square,.
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vertical movement, along a line of sight from the
magnetic axis to a ring (figure 9). The square is stable
to this movement on the time scale of +this experiment.
For the vertically wunstable shapes, a plot of the
magnetic axis position, szhown in figure 10, indicates
that the vertical displacement increases exponentially

with a growth time T, 450 usec. Tg"103Ta, where T, is a

g
poloidal Alfvén time calculated with a suitably averaged
poloidal field. It is also interesting to note, and will
be ~discussed later, that Tg is much less than the
resistive decay time of rings and walls (15 msec) and
very close to the plasma L/R time (-~ .5-2.0 msec).
Axisymmetry has been verified at several machine
azimuths, Also, the effect of plasma cutside the
separatrix has been examined: That plasma was wiped out
by a movable limiter. The resulting instability growth

rate and equilibrium shape were identical to the 'normal!

case, within experimental uncertainties,

We find that all these eguilibria can be stabilized
to vertical movement, on the time scale of this
experiment, by precise positioning of the ringas. After
the vertical movement is stabilized there still remains a
horizontal motion that i3 independent of the rise and

fall of the plasma current., This horizontal instability



Figure 9: Time evolution of the
experimental flux plot for a) inverse-dee

& b)) square. The dee evelves similarly
to inverse~dee,
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éccurs in the square as well as the dee and inverse-dee,
The direction of this motion depends strictly on which
set of rings the inner plasma separatrix encircles. When
the plasma "leans™ on the outer (inner) set of rings the
movement is towards increasiﬁg (decreasing) major radius.

Growth times for this horizontal instability, 1like the

vertical, are "103Ta. Thus a plot of the magnetic axis
position vs, time for horizontal movement is identical
to that shown for the vertical (fig. 10). This

horizontal instability does not saturate on the time

scale of the experiment.

E. Effect of Plasma Resistivity

The role of passive stabilization could be all
important to this instability and perhaps in practice
eclipse distinctions based on plasma shape. Since the
rings are inductively driven, there are no external
circuit <connections between them. Thus they are free to
independently respond to the piasma motion. However, the
efficacy of passive feedback, arising from induced image
currents flowing in external conductors and plasma, is

limited by the finite resistivity of the the elements
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- Figure 10: Distance travelled by the magnetic axis as a function
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involved. Wooton et. al.1u found the plasma growth time
of an axisymmetric instability in TOSCA to be slowed down
by the resistive decay of induced stabilizing currents in
the walls and external field shaping coils, The
equivalent theoretical prediction has been_ made8'13.
However, all these calculations assume “an ideal,
:infinitely_conducting plasma. In the Tokapole experiment
‘the finite plasma resistivity (L/R time ~ 1 msec) is the
.major contributor tc the damping of induced sﬁabilizing
currents. The rings and walls in this experiment.have a
‘much longer resistive decay time (15 msec.) than the

. plasma. Indeed, instability growth occurs on-the plasma

~L/R time scale.

To address this issue we changed the _plasma
;resistance while keeping the plasma inductance and shape
_ relatively constant. Resistivity profiles are 6btained
. from current and electric field profiles disussed in

section III.C.

The resistivity profile was varied 1in two ways:
First, by lowering the toroidal magnetic field which
lowers the plasma current. Second, by puffing Ar gas, in
addition to the normal Hs, to increase Z.pp directly. In

elither case the electric field profile stayed relatively



Figure 11: Spatial profiles at 2.0 msec.
a) Current density for two values of
toroidal field. The electric field
profiles for both wvalues are similar;

only one 1s shown. b) Resistivity
calculated from electric field and
current in a). The separatrix is at . a

minor radius of &6 c¢cm,
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Figure 12: Spatial profiles at 2.6 msec.
a) Current density and electric fields
for two values of toroidal field. b)

Resistivity calculated from profiles 1in
aj.
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constant while the current channel width and magnitude
decreased as shown for the first method in figures 11 &
12, In the particular case shown the instability onset

occurred at 2 msec. Such large resistance changes were
necessary in order to exceed the 20% uncertainty in the
measurements involived. The shape of the equilibrium was
verified to be approximately the same as the unmodified
case, at instability onset, by examination of the
magnetic flux plots. The plasma inductance remained

relatively unchanged (<10%) indicating that the decrease

in the L/R time of the plasma was mainly due to the

change in plasma resistance,. As seen from figures 10 &
i3 Tg decreased by at least a factor of 2 for either
lower toroidal field or Ar puffing. Correspondingly,

figure 12 indicates the plasma resistance increased by
roughly a factor of two. This result is consistent with
the general statement that Tg is proportional to the
minimum resistive decay time in the passive stabilization
circuit. In our specific case Tg is inversely

proportional to the plasma resistance.
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F. Effect of the Initial Plasma Position

It is important to be able to adjust the initial
vertical position of the plasma in order to investigate
the marginal stability case, assess the difficulty of

passive stabilization and check the vertical symmetry of

the machine, Through ring movement we can position the
magnetic axis, initially, up to .1 minor radil above or
below the midplane. We can also, for dee and inverse-dee

equilibria, precisely position the plasma z-symmetrically

such that it appears vertically stable.

When an otherwise unstable shape 1is =stabilized
through proper positioning, the magnetic axis exhibits an
oscillatory motion {(fig. 14a) about the midplane with
period approximately equal to the growth time of the
unstable cases. For small vertical displacements of the
initial magnetic axis position from the midplane, this

same oscillatory motion is =superimposed wupon a steady

vertical movement (fig. 14b ), For still larger
displacements of the initial magnetic axis position, the
cacililatory motion disappears and the movement is
strictly exponential (fig, 10). Thus we see that

increasing the initial displacement leads to faster

growth. Machine wvertical symmetry 1is verified by



Figure 14: Distance travelled by the
magnetic axis as a function of time for

different initial positions of the
inverse-dee. a) Initial position on the
midplane. b) Initial position slightly
above the midplane {(3-5 mm,). When

initially positioned an equivalent amount
below the midplane identical downward
motion is observed., The case of initial
position further still above the midplane
(5-10 mm.) is shown in figure 10.
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- positioning the initial magnetic axis above or below the

midplane and observing upward or. downward motion

respectively.



53

CHAPTER III

THEORY

A, Review of Previous Theoretical Work

To put the present study into perspective, a review
of other investigations of the axisymmetric instability
is appropriate. Quantitative comparison of the evolution

of experimental equiiibria with published numerical

examples 1s not precise. Experimental equilibria are
poorly mirrored by analytic models (e.g. Solov'ev30 or
Rebhan®:%), Also, theoretical studies have, for the most

part, defined the shape parameter limits to instabllity
onset a3 opposed to examining the relative stabllity of
different unstable shapes. The following 1is a brief
summary of the majority of the abovementioned relevant

literature.

The first person to deal with the stability to
horizontal and vertical notions of a plasma 1is
Yoshikawa31n He examines the forces on a toroldal plasma
current of winor radius a, and major radius Eq . This

examination reveals, that for horizontal stability, there
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must exist a potential well such that the restoring force
(Itoprz)R decreases slower, with major radius, than the
inductive expansion force from the plasma. To express

this relation we write

d (2 TRIB.) > d _{1pLI®} )
dR 2’ dR %p (3-1)

Phe same idea is applied to the restoring force in the

vertical direction to give

ext
(d/dz)[BR 1 <o (3.2)

These two equations are combined with the relation

(VXBext)¢=0 and the assumption that BZOC(RO/R)n to give
n>0 (vertical stability) (3.3)
n<3/2 (horizontal stability) (3.4)
The parameter n:»(R/BZ)(de/dR) is termed the vacuun
field decay index. Note that it is strictly a loecal

quantity.

A modification of Yoshikawa's result is obtained by

Seki in references 7 & 8. He derives the forces acting
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on the plasma’ current center and- surface. Also  taken
into account is the interaction of the plasma  current
with eddy currents in a resistive shell surrounding the
piasma. The plasma i circular and a constant current
density is maintained during plasna movement . This
movement: is therefore being treated as a rigid shift.
The equations of motion for the plasma are solved about
an equilibrium state using perturbation theory.
Yoshikawa's results for decay index limits are recovered
with some modification in the horizontal direction. The
presence . of a wall is predicted to reduce the instability
growth rate to the inverse of a modified shell resistive

decay time.

Another study that investigates: the- role of decay
index in stability is Sakurai et al.'®., An important

difference over previous work is that a tokamak: with an

octupele vacuum field is studied. This, of course, leads
to noncircular eguilibria. Walls are not included in
thia paper. Very little information is given as to how
this calculation is  performed. The criterion for

stability seems to be that if the plasma is: shifted
rigidly in the vertical direction, then it is: stable
given the destabilizing JxB force on it is convergent,.

Reported results are that the square 1s vertically
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stable, the dee and inverse-dee vertically unstable. Off
axis equilibria were found for the dee but mnot for the

inverse~dee,

In a departure from studies utilizing decay indices
and forces, Okabayashi & Sheffield3, using the energy
princip1e32, investigated plasmas characterized by
~ellipticity. The toroidal plasma current is modeled by a
set of current filaments. A rigid vertical displacement
(m=1, n=0) is given to the whole plasma column and
stability is evaluated from the change 1in energy stored
by the plasma current filaments. The two parameters m &

n refer to the poloidal and toroidal mode numbers

respectively. It was found that rectangular shapes are
stable for e<3 and ellipses for e<1,3. These two were
the only plasma cross sections studied. In additicen,

their results indicate that rectangles with flat spatial
current profiles are more stable than parabolic current
profiles.

Rosen10, also studied the axisymmetric instability
in the absence of external conductors. Stability of
rectangular and elliptic c¢ross sections to m=1 and m=3
axisymmetric modes is performed using a reduced form of

the energy princip1e33. He finds the ellipse unstable to
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a rigid shift in the direction of elongation with

ellipticity limits similar to those found by
Okabayashi11. The square was found always stable to this
rigid (m=71) shift. Although %the sguare is attracted

toward the x-points, it is repeled by the antiparallel
shaping currents (on the midplane and mideylinder) 45
degrees between the x-points. Thus the square would be
stable to. a =shift but Dbecomes unstable when an m=3

wrinkle is added to the perturbation,.

A study that includes the entire energy principle
applied to rigid shifts is that of Rebhanu. His goal is
to define the analytic stability 1limits of noncircular
deformations to dee, elliptical and inverse-dee shaped
plasmas, The general form of rigid movement is wutilized
which includes flipping as well as linear motion. Other
assumptions made in this paper include <the absence of
external <c¢onductors, incompressible plasma motion, and
p'(y) and I'(Y) being constants. I and p are RBi,, and
plasma pressure, respectively. After writing down a form

of the energy prineciple, Rebhan points out that the

plasma term

#
%Sm-yy ) Eds (3.5)
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drives the vertical instability. £ is the perturbation,
p* is the total pressure (p+B2/2) and S is the surface of
the plasma. In other words, a gradient of the total
"pressure drives the instability. A stabilizing influence

is due to flux compression in the vacuum through the term

1 . .
2f(§_ (Sﬁv) g._q,sS. (3.6)
S
Rebhan's results indicate, for rigid vertical movements,
that the ellipticity limit for total stability is lower
for ellipses than for dee or inverse-dee shapes. In

studying his eguations, one finds that all torcidal field

terms are absent. This occurs because he is modeling a
purely vertical shift, which does not stretch the
torcidal field. He interprets this as the plasma

slipping through the toroidal field.

Rebhan & Salat5 extend this work in Rebhan's second
axisymmetric instability paper by including rectangles
among the shapes studied. They drop Solov'ev egquilibria
in favor of a constant pressure, surface current model
that allows for non-rigid as well as rigid shifts. The
shapes studied are described by

2
o - e2(R-1) 24 (1472) 22 28T (R-1)2°-Ty 42 (R-1) %27 (3.7)



59

where e, T3 and Ty, are shape parameters describing
elliptiecity, triangularity and rectangularity
respectively. Also, A, R and z are the aspect ratio,

majoh radius and vertical distance above the midplane,
The aim of this work is to again define parameter limits,
but in this case, with a different set of parameters and
for nonrigid movements, Qualitatively, what is found is
that squares and ellipses have approximately the same
elliptiecity limit for total stability. But, in contrast
to rigid shifts, increasing Tq (deeness) implies a lower
ellipticity limit. Also, a typical dee or inverse-dee
(1T3|".3) has a lower ellipticity limit than a typical
square (Tu".3). In studying the form of the non-rigid
movement, we see that the perturbation is largest where
the surface poloidal curvature is greatest (near the
x-point). Rebhan & S8Salat predict that 1in the presence of
a conducting wall this instability will have a lower

growth rate,

A paper, egimilar in nature to those mentioned of

Rebhan's, is that by Chu & Miller3". Here the energy

principle is minimized numerically with respect to
arbitrary displacements. An improvement, however, is the
allowance of a nonuniform plasma current, They find that

the minimizing digplacement, or most unstable eigenmode,
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for rectangles and dee's always contains a nonnegligible
triangular component (m=3). This result, that the
unstable displacement 1is nonrigid, agrees well with

10 yall stabilization was included in

'Rebhan5 and Rosen
Chu & Miller's work and found necessary for elliptical
plasmas, Peaked current profiles were found to be less

stable than flat profiles in the presence of a wall,

Rectangular shapes, overall, were more stable than
ellipses.
Using numerical equilibria, Becker & Laokner12

computed the asixymmetric stability of dee's and squares
using a similar method to that of PESTZO, which 1is
described in section III.C. However, the inverse-dee 1is
not studied nor are external conductors included in this
model. Squares are found to be more stable to non-rigid
vertical movements than the dee. Additionally, beaked
'current profiles are predicted to be more stable than
flat. This result is different from the previous paper

for reasons that are undecipherable from these reports.

In the continuing improvement of these studies, and
computer codes in general, Jardin13 pushes on 1into the
nonlinear regime. The c¢ode he used is described in

detail in section III.D, but it will briefly be described
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here for completeness. This code, PATENT'3723, steps the
full 2-D time dependent MHED equations in time using a
fiux coordinate system which gives us a continuous
picture of the plasma shape. Current carrying colls in

the vacuum can bhe allowed to interact with the plasma and

themselves through c¢ircuit equations. The =square 1s
found to be more stable than the dee or inverse-dee,. in
the presence of passive stabilization, the square and

other equilibria of small deeness can be stabilized on
the time scale of his code (200 toroidal Alfvén times).
In addition, in a statement similar to Rebhan's, Jayrdin
reports that the portion of plasma nearest the current

carrying coils deforms the most,

Using the linear stability code ERATO35 and analytic
Solov'ev egquilibria, Bernard et al.? study axisymmetric
"stability as a function of parameters used by the first
Rebhan paperu. The difference hetween these papers is
that here allowance is made for non-rigid displacements,

Qualitatively, agreement is reached with previous work in

that the unstable deformation 1s found to be greatest

near x~points. Also, walls are gtabilizing, thus
increasing the ellipticity limits of a given
triangularity. Bernard Joins Jardin13 in comparing the

relative stability of unstable equilibria: the dee is
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more stable than the inverse-dee. Critical distances to
the wall for stabilization are quoted as a function of

ellipticity and triangularity.

Rebhan & Salat® further extend their work by
including passive and active feedback due to external
conductors. The new terms added to the energy principle

are for active feedback

5Wi = J/(B, 8B,) E'ds (3.8)
S

and passive feedback
SW_ = %SJ‘(.B.V'LS_B.Q) £'ds (3.9)

where B, is the total vacuum field. V x6B4 and Vx0B, are
.the currents in the active and passive feedback coils
respectively. Swp is always positive, or stabilizing,
for quasi-static field changes. Therefore, that term can

be dropped retaining a sufficient stability condition
§ Wy + SWj 20 (3.10)

where §Wy is the perturbed energy without feedback (see

Rebhans). Feedback for properly positioned z-symmetric
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.coils is found possible for dee, inverse-dee, square and

elliptical <c¢ross sections, If the elongation is too
large, i.e. & belt pinch, feedback stabilization becomes
more difficult. For smaller elongations, feedback coils

in the direction of the x-points are always effective.

Summary

Although the visualization of the axisymmetric
instability is simple, the modeling of its action and
character is not. As can be seen by reading the above
review, the degree of complexity and accuracy of these
studies has increased over time in search for £fThe most
physical model. Starting with a simple current filament,
generalization was made to current profiles and the
linearized forces acting upon them. HNoncircular shapes
were then included and the treatment modified to
linearization of the MRED equations, the energy principle.
Einally, allowance has been made for the stabilization
due to external conductors and an investigation using the
full set of nonlinear MHD equations was performed. It is
easy to see that the latest papers present the most
accurate modeling process but the guestion arises as Lo
which is the most physical, The most dmportant

difference between the latter studies is the type of
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equilibria utilized: analytic or numerical, Certainly
numerically generated equilibria are more useful because
of their ability to represent almost any shape and set of
blasma parameters., Inclusion of feedback is definitely
important because many shapes of interest are

éxisymmetrically unstable,

B. Numerigal Equilibrium Code

The reasons for undertaking a theoretical study to
complement this experiment are twofold. First, previocus
theoretical work, for the most part, has emphasized
defining limits in parameter space to absolute stability.
For the Tokapole and other noncirecular tokamaks, most
realizable and interesting equilibria are unstable to
axisymmetric modes, Therefore, what becomes of greater
interest than stability limits, is the relative stability
of these equilibria with an eye toward the wuse of
stabilization; either passive or active. Besildes the
redirection of theoretical emphasis, the =second reason
for this study is that published work does not accurately

reflect our experimental machine.
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To perform a stability calculation on an egquilibrium
that c¢losely parallels the physical reality of the
Tokapole, the Princeton | Equilibrium programag was
modified by Dr. Alan Todd to include the Tokapole walls,
In this section, I will describe the equilibrium progranm
which was originally written by Dr. S.C. Jardin, and

the Grad-Shafrancv - equation whiech it utilizes, In

sections IXI.C and D, the PEST and PATENT stability codes

will pe described. These both wutilize ¢the numerical
equilibrium, that will be described in this section, as
input. Theoretical predictions by these stabllity codes

will be described in secticns III.E and F.

Basic to this discussion of numerical equilibria is
the Grad-Shafranov egquation, The usual cylindrical
coordinates are used here (R,ﬁ,z) with the z axis being
the major or symmetry axis of the toroid (fig.1%a}.
Keeping in mind that &6, the toroidal angle, is an
ignorable coordinate, we can write down the magnetic

field

B = W{ay8) + ByS (3.11)

Following the lead of other derivations, we now introduce

a stream function 1
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Figure 15: Description of the numerical equilibrium code. a} Cylin-
drical coordinate system used. Note nested flux surfaces. b) Surface

S over which poloidal flux,W, is integrated.
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[oe)
n

ER‘U(_\Z_Q‘ + Béﬂ

- Uk - 18%e . B0 (3.12)

It can be shown that ¥ is proportional to the poloidal

flux
b= Ypo1/2 = (1/2w%ﬂ§pol'g§ (3.13)

by evaluating the above integral using 3.12. The surface
S (fig. 15b) is toroidal with one wedge on a figed
gircle, the other intersecting a point whose poloidal
flux is to be measured. Contours of constant V¥ form

nested surfaces within the plasma.

The current density J is computed from

leu
[

Ko YxB

%[% %F(RBd) - R%E(RBé)]
2
e -4 3

-(AW/R)E + FRBY) x Lo (3.14)
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where By is the toroidal field magnitude, and we define

the coperator

C e _ 5
= R 3 3
Ay = "B"ﬁ']R‘ '3‘1% M '3—2‘:% {3.15)

Using 3.12 we see that B ¥y=0, indicating that B lies on
a flux surface, From this we can show that the pressure
p. is a surface gquantity (p=p{(¥)) by B'VYp=B-(JxB)=0.
Solving for p we see

pep' (WY = [-( 4 YTE + L(RByxVS] x

it

[T xV8 + B4RLE]

. %y - BgRY(RBY) 7 (3.18)
R® R”

RB¢ must also be a surface quantity because, like all
other terms in this equation, E(RBé) must be parallel

toVy . Thus we define
I(y) = RBy (3.17)
I(y) is proportional to the poloidal current inside a

fiux surface characterized by ¥, This can be shown using

the representation for J(y ) from 3.14
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Tpor = dpo1"d3
[Z(BgR) x 31-as
=5k
= _ll_(ﬂLQZTTRQQ = T(Y)2m
ng R Mo
ice. I(V) = 20Th01 ) (3.18)

Using 3.14% & 3.15 we can rewrite the force balance

equation, 3.16, as
0% s RPugp ()« IIT(Y) = poRIgo. (W) (3.19)

which is the Grad-Shafranov equation. Jardin, for use in
his equilibrium code, renormalizes 3.19 and changes unitsa
to obtain

B = -(2u/By)2R%p (W) - (2mp)Pgg’ (¥) (3.20)

where x5 1s the major radius at which the constant By,

the torolidal field magnitude, is specified.

To solve equation 3.20, which is an elliptic
equation, two things must be specified. 1) ¥ on the

boundary (real space) and, 2) the right-hand side (RHS3)
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of the equation, RJi,n everywhere, However, since RJi,n
must be specified as a function of (W,R) and we do not
know, a priori, how Y depends on real coordinates, a
double nest of iterations is ﬁsed. The inner loop solves
for the RH3, given ¥ on the boundary and a specified form
for g(V) and p'(¥). The outer loop calculates a new Y on
the boundary given the RHS. The inner loop is made ¢to
converge before the outer loop is accessed. The

equilibrium is found when both loops converge,

The iterations are performed usng a rectangular
finite difference grid, whose spacing, Ax and Az, is
specified. Other parameters that need to be specified
are the value for the total toroidal plasma current, the
position of, and current in, each external current, the
‘toroidal field By at a particular major radius x,, the
grid size and the functional form for RJtor(w)' This
form is generated by the two functions p{¥) and g(y)

where

gl = 1-8,8(9) (3.21)

The parameter gp is used to maintain +the total plasma

current constant during iterations., Explicitly
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gl ([wlim -y ]/[lplj_m - ‘Pm;_in}) ’

H]

ply)

11

({wlim ”q’]/[u&im = Wmin]) (3-22)

where W,, and Y4, are the values of P at the limiter
and magnetic axis, respectively. Also specified are pg,
o and B, parameters which describe the toroidal current
profile. For a8 on the order of 1 a flat current
profile is produced similar to that of the Tokapole.
For 6 R on the order of 2, a parabolic profile 1is

produced similar to most other tokamaks.

L. The PEST Stability Code

Much effort, in plasma theory, has been expended to
determine the axisymmetric stability properties of
different equilibria. There are two main classes of
:techniques to tackle this problem: The first, and most
obvious, 1is to perturb the plasma and watch its time
development. This technique has been implemented in the
form of the PATENT code described in the following

section (III.D.). It has the advantage of providing
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insight into the mnonlinear aspects of the instability
growth. What will be discussed in this section 1is the
second technique whiech can be termed a 'variational’
approach. All versions of this technique have thelr
basis in the energy principle as stated by Bernstein et
51.32. If knowledge of stability only, yes or mno, 1is
désired, not growth rates, then the perturbed potential

énergy
SW = =(1/2)fav{E " F(&) (3.23)

is studied. F(E is the perturbed force which 1is a
function of the perturbation . Should any perturbation
cause SW<0, then the kinetic energy 1s correspondingly

increased indicating the system is unstable.

If in addition to knowledge of stability, growth
rates are desired, then inclusion of a kinetic energy
ternm will supply time derivatives, Equivalence of
Hamilton's principle applied to the systenm Lagrangian has
been shown36. In the literature, the application of this
ﬁrinciple is referred to as making the Lagrangian L

stationary

§/L dt = Sfdt[K.E. -~ W(E,£)}] =0 (3.24)
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'where L is of the form

2
= 1 w2 _P_ _ BZ 3.25
L= AV (3ov® - 537 - Bg,) (3.25)
All the terms above are clear as to their origin and are
written in terms of the perturbation lgby linearizing the

MHD equations:

9 z =v°V - PV
g% v ¥p V'y (3.26)

The terms presented in 3.25 are all that is needed to
evaluate stability with respect to kink and interchange
modes for normal tokamak geometry. However, in the
presence of external c¢onductors, more terms should be

21

added.  Dewar does this by including the 'kinetic’



74

energy of the currents involved through a 1/2L12 Lerm.

Todd22 nas implemented this new term in the modified PEST

"code used here.

In practice, the energy terms must be written as a
function of some general perturbation g. In the case of
the PEST code it appears that g_is presented as the sum of

toroidal harmonics unk+1 of order n and degree k-1/21:

ug,q = {coshi - cosTﬁi/zei(n¢+kn)Pﬁ_1/2(U) (3.27)
These harmonics are centered at various axes 1in the
plasma, to model the plasma shape and current, and at each
of the external current sources with accompanyinrg image.
The symbols U, n and # represent the torolidal coordinates
centered at these axes. Fach potential energy ferm is
minimized with respect to the coefficients of these
toroidal harmonics. When the most unstable £ is found,
the kinetic energy is evaluated. Because this calculation
is 1linearized, K(E£,E), the kinetic energy can be written

as w2K(§J§) so 3.24 becomes

2 _ Wiz )
W mm%,ﬁg-«y (3.28)

and a growth rate can be solved for. The notation W(E,&)
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is used in the literature to denote that W is guadratic
in &. The eigenmode in toroidal coordinates 1is decomposed
into its poloidal components so that the principal
poloidal mode numbers can be ascertained, Typilical output
showing the strength of each poloidal component and also

the velocity field are shown in figure 16.

D. PATENT Lode Description

Linear codes can gquickly, in terms of computer fime,
give relevant results. Time-dependent codes, as mentioned
in section III.B, can possibly provide insight into the
nonlinear interaction of the modes and physical elements
involwved. What is meant by nonlinear and time dependent
is that PATENT follows the full set of nonlinear MHD

equations through time.

PATENT takes the numerical equilibrium described 1in

Section III.B and displaces it some small amount above or

below the midplane ({(usually .02 minor radii). If an
egquilibrium is unstable, then the displacement will
increase with time. If the configuration is stable, the

magnetic axis will oscillate about the midplane.



Figure 16: PEST predictions for an

unstable PDX equilibriun. a) Magnitude
of poloidal fourier components (ordinate)
vs. Psi (abscissa). Each gurve
represents a different poloidal component
ranging from m=-15 to 15. The dominant
components, here, as for all vertical
axisymmetric modes are m=3, -3. b)

Velocity field for this perturbation.
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This code, 1like PEST, can include rings in its
stability calculation. Their resistance can be varied,
but this ability is of little use since the ring L/R time
cannot be allowed to approach the instability growth tinme
without numerical instability ensuing. Thus, any external
conductors, as in PEST, have essentially infinite

conductivity.

In both <c¢odes, these rings can be electrically
arranged in almost any circuilt imaginable. In the case of

PATENT, the ring currents I; are described by

E(: Mika + niKi -+ nir‘iIi 2_ nivi (3'29)

wnere
Mgy o= mngM0(xg X)) (3.30)
is the mutual inductance between coils i -and k. G(X5,Xy)
is the infinite medium Green's function. K; 1s the
poleidal flux at c¢oil i due to the plasma current. The

. plasma and external currents communicate through boundary
conditions at the plasma surface and the Green's function,
The number of turns, voltage and resistance of coil 1 are

n V. and rj respectively. Application of Kirchhoff's

i? i
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law to these circuit equations leads to a set of equations
‘describing dIi/dt. These are stepped forward in time, as
dynamical variables, along with the full set of MHD

equations,

The technique applied in PATENT to solve these
equations is termed the dynamical grid methnod. This
method, described in great detail elsewhere23, ig neither

Eulerian (in the moving plasma coordinate system) nor

l.agrangian (in the laboratory frame), but is based on the

structure of the changing magnetic field. A
time~dependent nenorthogonal magnetic flux coordinate
transformation is introduced to accomplish this. This
transformation to the coordinates W, proportional to

poloidal flux, and ©, a measure in the direction around a

flux surface, determines the grid used in the computation.

An important consequence of this technique is that
the plasma shape can be followed through time,. This ig
because the positions of grid points, which outline each
flux surface, are treated as dynamical wvariables, The
-explanation o©of how the MHD equations are recast in this
coordinate system as well as the two step advancement

scheme is also given in reference 23.
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The output capabilities of this code include flux and
velocity vector plots at specified time intervals, the
position of specific grid points, and the magnitude of
feedback currents as a function of time. Samples of

output are shown in figures 17 & 18 .

F, Results Without Passive Feedback

The PEST code is used to evaluate the axisymmetric
étability of a range of Tokapole and FPDX equilibria
(figures 19-21) from inverse dee to square to dee.
Comparison of Tokapole and PDX results can be wused to
determine the generality of the experiment, Stability may
be calculated with the rings and walls either included or
excluded to assess the role of passive stabilization., The
deeness of the equilibria may be described by fitting the

flux surface just inside the separatrix by eguation 3.7,

where e is the ellipticity, T3 is a measure of the
triangularity or deeness, Ty is a measure of
rectangularity and A is the aspect ratio. This expression
is useful because it ailows a deséription of dee,

inverse-dee, elliptical as well as square shaped



Figure 17: Prediections by PATENT for
vertical position of the magnetic axis as

a funetion of time. The ordinate is in
units of 10~' minor radii. Initial.
perturbation, in this case, is .02 minor
radii. The abscissa 1is _in 7its of

toroidal Alfven times (popa2/B )1
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Figure 19: Theoretical vertical growth
rates vs. T,, as predicted by PEST, for

the Tokapole. Three c¢ases are shown,
¥ - Without passive stabilization.
0 - Only rings included. (J - Only walls
included. Sgquare, dee and inverse-dee
shapes are described by T3=0, <0 & >0
respectively. Including both™ rings and

walls completely stabilizes all shapes
other than extreme 1T3l.
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Figure 20: Theoretical vertical growth

rat<€s vs. T, for PDX as predicted by the
#£ST and PA%ENT codes _without passive

A stabilization.
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Figure 21: Theoretical horizontal growth
rates vs, T3 for the Tokapole, as
predicted by PEST, without passive
stabilization,
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cross sections. The dependence of the instability growth
rate on deeness (T3) may now be observed, Ignoring the
presence of rings and walls, figures 19 and 20 show that
the square is more stable, vertically, than the dee or
.inverse—dee, which have roughly equal growth rates, for
both Tokapole and PDX equilibria. These machines are
quite different in geométry'and size. In addition, the
Tokapole has a flatter current profile.than the parabolic
shape predicted for PDX. It appears that the relative
stability of different shaped cross sections is fairly

machine independent.

The growth rates for PDX calculated by PATENT (figure
20) agree well with PEST. Using PATENT, the motion of the
magnetic axis may be observed for different initial
perturbations. It is seen (fig. 17) that if the axis 1is
initially .02 minor radii above the midplane the plasma
moves unstably upward. Equivalent positioning of the axis
below the midplane produces downward motion. Initial and
final pictures of an equilibrium are shown in figure 18 .
The growth is exponential for excursions well into the
noniinear Eégime. Growth rates inérease as the initial
position of the magnetic axis is moved farther from the

midplane (fig. 22). For an initial vertical position of



Figure 22: Theoretical predictions of the
nonlinear code (PATENT) for growth rate
as a function of perturbation,
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the magnetic axis on the midplane, the axis poscillates

about that starting point.

"The effect of the toroidal field on instability
growth was found to be minimal, An order of magnitude
difference in the toroidal field produced only a .5%
change in growth rate; stability was enhanced for
inverse-dee's (T3>O), degraded for dee's (T3<0). This
difference is perhaps related to the ipolx§tor force which
points outward from the plasma center (see section I.B}.
As the unstable dee (T3<O) moves inward in major radius to
higher Btor’ the force increases thereby encouraging
unstable motion. For the inverse~dee (T3>O) the motion is

outward and the effect of the toroidal field is opposite.

Stability to horizontal axisymmetric displacements of
Tokapole and PDX equilibria was studied using PEST. For
Tokapole equilibria, the square and other shapes of small
lT31, were found to be horizontally unstable with the
square having the highest growth rate (fig. 21). During
norizontal motion the midpliane forces due to the vertical
field are stabilizing whereas the vertical extremities
experience the destabilizing presence of the x~-points,
Thus, the dee's, which are more heavily weighted 1in area

towards the stabilizing wmidplane, are relatively more
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.stable than the square. Examination of figure 21 reveals
‘the dee to be relatively more stable than the inverse-dee
to horizontal motion. We consider this result to be due
to the toroidal nature of a tokamak; most likely the self
expansive force of the plasma current. For sufficiently

large lT3I both Tokapole and PDX equilbria were found to

" be horizontally stable.

F., Results With Passive Feedhback

Both codes can be used to assess the role of passive
conductors surrounding the plasma, in the case of the
PEST code, any combination of conductors (walls and/or
rings) can be included and their effect on the linear
growth is found by evaluating the inductive contributicon
to the energy principle of Bernstein et al.21’22’32.
Figure 19 shows the effect of adding either rings or
walls. In the presence of both walls and rings all
Tokapole equilibria studied are stable except those of
“extreme triangularity. As can be seen from this same
figure, adding conductors has & greater effect on the

square than on other plasma cross sections, This= may be
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due to the square being in closer proximity to all four
rings or walls than shapes of larger IT31. The
stabilizing effect of the rings exceeds that of the walls
since the rings are closer to the plasma. The PATENT code
yielded similar results when used to evaluate the effect

of passive feedback due to rings.
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CHAPTER IV

SUMMARY AND DISCUSSION

Previous experimental work1u”37

on the axisymmetric
instability in noncircular tokamaks has, for the most
part, inferred gross plasma motion from signals external
to the plasma. Fxperimental results were compared with
related theories in the literature through such parameters
as elliptiecity and/or averaged decay index, derived by
modeling the plasma current as a filament31. In this
experiment we can accurately observe the motion of the
poloidal magnetic flux surfaces and the time evolution of
internal parameters {(J,q,E) through internal measurementsa.
These experimental data are carefully compared to
theoretical predictions of PEST, applied to this specific
machine. The plasma c¢ross section is characterized by
ellipticity, triangularity and rectangularity parameters.
L second code, PATENT, follows the nonlinear time
development, This code is only applied to PDX geometry
with shapes similar &to Tokapole equilibria, Similar
results, by PEST, for the two different machine geometries

indicates our results are fairly machine independent,
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Linear theory predicts that, in the absence of
passive stabilization, all experimental equilibria are
vertically unstable on the MHD time scale (Ta) . However,
the square is more stable than the dee or inverse-dee.
This is consistent with the dee's being poloidally more
asymmetric than the square; that 1is, the radius of
curvature of the magnetic surface near the x-point is
smalliest for the dee's. Furthermore, only square-like
equilibria are horizontally unatable. With the addition
of passive feedback from rings and walls all eguilibria
are predicted to be stabilized with the greatest influence
exerted by the rings. An experimental picture emerges in
close agreement with theory, with modifications te account
for the finite plasma resistivity 1limitation to the
passive feedback. When the experimental plasmna is
z-symmetric both inside and outside dee's oscillate on the
plasma resistive time scale. Thus, these equilibria are
linearly unstable, as in theory without conductors, but
are nonlinearly restored by passive feedback to a stable
oscillation. Passive feedback does not linearly stabilize
the equilibria; i.e. the plasma is displaced a finite
amount before nonlinear feedback ocours. The complete
stabilization of this mode by passive feedback, that the
ideal MHD PEST code predicts, is not observed in the dee's

since the finite plasma resistivity causes damping of the
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induced satabilizing currents in the rings, plasma and
walls. The square appears entirely stable vertically,
implying that passive feedback is more effective for this

shape as is also indicated theoretically in figure 19.

411 evidence, both experimental and theoretical,
indicates that the square is more stable than both dee's,
which have similar stability properities. If the initial
vertical position of the magnetic axis of both dee's is
experimentally positioned above (below) the midplane they
are linearly unstable, However, passive feedback is
unable to reverse the vertical motion and the displacement
grows exponentially with a growth time again on the order
of the plasma L/R time (resistive decay time). The square
is vertically stable, experimentally, even when positioned
away from &the midplane. The form of the vertical
displacement of the dee's seen experimentally (fig. 3) or
in the PATENT code (fig. 18) is a non-rigid deformation
in the direction of the separatrix x-pcint. Also, in both
this code and experiment, growth rate increases as the

magnetic axis is positiocned further above the midplane.

In the absence of vertical movement, a steady
horizontal motion 1s experimentally evident. g the

plasma travels horizontally it becomes increasingly
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dee~shaped (increasing 1T31} and eventually becomes
vertically unstable, Indeed, PEST predicts this same
horizontal instability for the square and other shapes of

small ITBI (fig. 21).

A crucial factor absent in the codes used here, and
in all published calculations, is the finite plasma

8 and Jardin13 discuss only the finite

resistivity. Seki
conductivity of the external conductors. in our
experiment the plasma resistive decay time may impose a

bound on the instability growth time. When the plasma

resistance 1is experimentally doubled, the instability
growth rate also doubles. The correlation is not precise.

Although the plasma shape remains approximately the same,
a 1.5 cm. shrinkage 1in the plaama minor radius
accompanies the resistance change. However, modeling of
the effect of this change on the instability growth by
PEST indicates that the minor radius decrease causes only
a 4% increase in growth rate. The experimental and
theoretical results of this paper are summarized in table

1.

Finally, the results presented here are not peculiar
to the Tokapole machine or geometry for three reasons.

Firstly, the Tokapole machine is up-down symmetric since



Table 1: Comparison of experiment and
theory as predicted by the numerical

stability codes.



THEORY

Vertical Stability:

Dee and inverse dee linearly
unstable without feedback.

Square linearly umstable without
feedbaclk.

Square more stable than dee and
inverse dee.

All shapes linearly stabilized by
paasive feedback.

T o PR . e
“growth T a1evén’ without feedback

stable, with feedback.
Nonlinear growth is exponential.

Nonlinear motion is nonrigid, toward
separatrix field null.

Rffect of plasma reslstivity

1f magnetic axis is initially placed
above, below or precisely on the
midplane, the plasma correspondingly
moves up, down or oscillates.

101

EXPERTHENT

Same.

iinear state undetectable--—
square stable.

Same.

Dee and inverse dee not linearly
stabilized by passive feedback.
All shapes can be nonlineaxly

stabilized by passive feedback.

T ~ L/R with feed-

growth / plasma

back.

Same.,

Same .

T decreases with inereasing
growth

plasma resistivity which limits
effectiveness of feedback.

Same

Horizontal Stability:

Squarelike plasmas are more unstable
than dee and inverse dee.

Same.
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the plasma shows no vertical preference in its motion.
When initially positioned slightly above {below) the
midplane the unstable motion is upward (downward) . When
centralily positioned it oscillates. Secondly, gualitative
comparison of PEST predictions for Tokapole and PDX are
very similar despite cbviocus machine differences.
Thirdly, the wide seperation of the poloidal Alfven,
growth and ring L/R times (Tg ﬁTL/R(plasma) ~.05
Ti/R(rings) ~103Ta) clearly indicates the determining

factors of the growth rate.

IMPLICATIONS

With the knowledge that this thesis work has provided

me, I'd 1like to discuss its implications. It seems, at
this point in time, that tokamaks of the future will
nececesarily have noncircular plasmas. It will be very

important, when designing and running these machines (e.g.
PDX, INTOR), to remember what problems this noncircularity

can cause. The axisymmetric instability will not be the

deciding factor in choosing what shape, dee vs.
inverse—dee vs. sgquare, to use. B=-limits probably will
be. But, this instability will be of prime importance in

machine design and day to day running in that we must take
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intoc account the characteristic decay times of the plasma

and surrounding conductors.,
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