
Lundquist Number Scaling in MST

Reversed-Field Pinch Plasmas

by

Stephanie Zofia Kubala

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

(Physics)

at the

UNIVERSITY OF WISCONSIN - MADISON

2023

Date of final oral examination: 06/07/2023

The dissertation is approved by the following members of the Final Oral Committee:

Cary B. Forest, Professor, Physics

Daniel J. Den Hartog, Research Professor, Physics

John S. Sarff, Professor, Physics

Carl R. Sovinec, Professor, Engineering Physics



i

Abstract

Nonlinear MHD fluctuations appear in both natural and magnetic confinement settings,

such as the solar wind, self-organization dynamics in the RFP and spheromak, and cur-

rent disruptions in tokamak plasmas. In this thesis, parameter scaling experiments ori-

ented toward nonlinear MHD dynamics in RFP plasmas are presented. Experimental

data have been gathered spanning a wide range of parameter space characterized by

Lundquist number, S ⇠ 10
4 - 107, and density, ne/nG, where nG is the empirical density

limit. A new programmable power supply allows low-current, low-S operation, which

overlaps with parameters available in numerical modeling. Experimental S scalings of

magnetic fluctuation amplitude agree well with those from the nonlinear MHD codes

DEBS and NIMROD. A transition from quasi-continuous activity to bursty relaxation

having discrete sawtooth events is observed in going from low to high S, with a thresh-

old at around S ⇠ 10
5. The spectral properties of the magnetic fluctuations change at this

transition, including a reduction in fluctuation phase velocity that suggests plasma flow

and/or flow profile changes. Momentum transport and flattening of the flow profile are

known features associated with sawtooth relaxation in RFP plasmas.
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5.5 The top row of plots show Poincarè plots of MST standard (left) and en-

hanced confinement (PPCD) plasmas. The bottom row plots the respective

�e values for these types of MST plasmas compared to the model �st. It is

reproduced from [22, 23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 An example where ensembling was performed using the sawtooth as an

anchoring for the time basis. Here the electron temperature was ensembled

over the sawtooth event where t = 0 is the peak of the sawtooth event. [15] 110



xv

5.7 This chart shows the ranges of Lundquist number accessible to MST, NIM-

ROD (as applied to RFP computations), and DEBS. The latter two are sim-

ulation codes that will be discussed later in the chapter. For the MST bar,

the darker blue region represents the Lundquist number range accessible

with the Legacy power supply system. The lighter blue bumpers of this

bar represent the Lundquist number space that has been (the lower S val-

ues) or will be (the higher S values) made accessible by the upgraded Pro-

grammable Power Supply (PPS) system. . . . . . . . . . . . . . . . . . . . . 111

5.8 This plot summarizes the operating parameters used for each ensemble in

the magnetic field fluctuation amplitude scaling results. For the shots in-

cluded in an ensemble shot list, these parameters were held fairly constant

over the time window during which averaging was performed for the shot. 113

5.9 This figure shows example traces used for filtering 500 kA, low Greenwald

fraction data. The signals are from a single shot that was ultimately in-

cluded in the shot list. The pinch parameter was not used for filtering data

but is included for reference. The target values for the ensemble are repre-

sented by the dashed green line and the window over which the shot was

averaged is bracketed by the dashed red lines. . . . . . . . . . . . . . . . . . 115

5.10 These plots summarize the b̃T scalings. These were looked at to assess if

the resolution limit of the magnetic field coil array has been reached. . . . . 119



xvi

5.11 This figure compares the data generated by plasmas powered by the PPS

system with those generated by the Legacy power supply system. This is

done at Ip = 200 kA where the two systems overlap. The example shown

here shows that there is not significant difference between the two systems

when looking at that magnetics data. . . . . . . . . . . . . . . . . . . . . . . 120

5.13 This plots the neoclassical correction factors to illustrate the impact of the

trapped particle fraction on the Lundquist number value. The black curve

represents Te,0 = 300eV and the red curve represents Te,0 = 30eV with

constant density ne = 1E19 m�3. This plot was provided courtesy of John

Sarff [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.14 The trapped particle fraction profile. This is reproduced from Stoneking’s

paper [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.15 The set of ensembled temperature profiles are shown as the plasma current

is varied. These profiles are for the low Greenwald fraction case. The 100

kA case includes fewer shots in the ensemble because it is data taken from

a run day that was not employing the Greenwald fraction framework. . . . 128

5.16 The set of ensembled temperature profiles are shown as the plasma current

is varied. These profiles are for the high Greenwald fraction case. The 100

kA case includes fewer shots in the ensemble because it is data taken from

a run day that was not employing the Greenwald fraction framework. . . . 129



xvii

5.17 The core temperature values are scaled with plasma current here. The

dashed lines represent the best fit of the data grouped by Greenwald frac-

tion. For the high Greenwald fraction case, the 500 kA data point was ex-

cluded from the fit. The 200 kA data in each case include two points. These

are separated by the power source used. . . . . . . . . . . . . . . . . . . . . . 130

5.18 This figure shows and example electron density profile inversions per-

formed by MSTFIT using the FIR data. This data is for the low Greenwald

fraction 75 kA case (A) and the low Greenwald fraction 200 kA case (B). . . 131

5.19 These plots show the data for the magnetic field fluctuation amplitudes

and their respective inferred Lundquist numbers. This is meant to be viewed

in conjunction with Fig. 5.20 but has been split up to improve the visibility

of the plots. Each point represents the results from an ensembled data at

that point in parameter space. The lines are the best fit of the data to Eqn.

5.21. The left column contains the low density Greenwald fraction, gwf=

0.23, and the right column contains the high density Greenwald fraction,

gwf= 0.34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.20 These plots show the data for the magnetic field fluctuation amplitudes

and their respective inferred Lundquist numbers. This is meant to be viewed

in conjunction with Fig. 5.19 but has been split up to improve the visibility

of the plots. Each point represents the results from an ensembled data at

that point in parameter space. The lines are the best fit of the data to Eqn.

5.21. The left column contains the low density Greenwald fraction, gwf=

0.23, and the right column contains the high density Greenwald fraction,

gwf= 0.34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



xviii

5.21 This set of figures summarizes the results of fitting the magnetic field fluc-

tuation amplitude scaling data to Eqn. 5.21. The top figure shows the re-

sults of the coefficient of the scaling fit on a semilog plot against the toroidal

number. The bottom figure shows the scaling parameter, ↵, on a linear plot

against the toroidal mode number. In keeping with the convention of all

data presented herein, the low density Greenwald fraction data is shown

in blue while the high density Greenwald fraction data is shown in orange. 136

5.22 Scalings of the energy confinement time for the low density case (a) and the

high density case (b) against Lundquist number. A note on the ⌧E values

plotted here: a set back of using the MSTFIT results for ⌧E is that uncer-

tainty estimates cannot be practicably made for the results of the code. For

this reason, energy confinement times displayed here lack error bars. . . . . 140

5.23 The scaling of energy confinement times on a shot by shot basis using Eqn.

5.22. Figure (A) includes all data, while Figures (B) and (C) include only

specific Greenwald fractions (and therefore only scale with plasma current). 141

5.24 Poloidal � for the low density case (a) and the high density case(b) against

Lundquist number. �✓ values were generated using MSTFIT on the same

ensembles used to create the b̃n vs. S scalings. . . . . . . . . . . . . . . . . . 142

5.25 NIMROD simulations run by C. Jacobson to study magnetic field fluctua-

tion scaling against Lundquist number in the computational code. . . . . . 145

5.26 DEBS simulations run by C. Jacobson to study magnetic field fluctuation

scaling at the edge of the plasma against the Lundquist number. . . . . . . . 147



xix

5.27 This figure summarizes the results of fitting experimental and computa-

tional data for magnetic field fluctuation magnitudes at the edge scaling

with Lundquist number to the equation b̃n(a) = cnS�↵n . . . . . . . . . . . . 149

5.28 This figure, adapted from [37] with updates to include improved enhanced

confinement performance, shows the MST RFP in context with past, cur-

rent and projected tokamak experiments. . . . . . . . . . . . . . . . . . . . . 153

5.29 This figure plots the results from S-scaling the magnetic field fluctuation

amplitudes out reactor-relevant Lundquist numbers. The red dashed lines

indicate the point at which island overlap with the neighboring mode is

projected to be eliminated via a decrease in the field fluctuation amplitude.

The orange data represent the high Greenwald fraction case which is more

relevant in the context of considering what RFP reactor dynamics may be. . 155

5.30 This set of figures summarizes the results from extrapolating the magnetic

field fluctuation amplitude S-scaling results to a point where magnetic is-

land overlap is just eliminated. The upper plot plots the Lundquist number

value at which the magnetic field fluctuation amplitudes are projected to

diminish to this point by toroidal mode number. The lower figure plots the

same information by the resonant location for each mode. . . . . . . . . . . . 158

5.31 This figure plots the results from S-scaling the magnetic field fluctuation

amplitudes out reactor-relevant Lundquist numbers. The red dashed lines

indicate the point at which island overlap with the neighboring mode is

projected to be eliminated via a decrease in the field fluctuation amplitude.

The orange data represent the high Greenwald fraction case which is more

relevant in the context of considering what RFP reactor dynamics may be. . 160



xx

5.32 This plot uses the extrapolated values for magnetic field fluctuation ampli-

tudes to estimate the stochastic transport for reactor relevant parameters

and scales (S ⇠ 10
9) for magnetic modes n=6-15. Each result is plotted at

its resonant location. The green line marks the �st = 1 threshold below

which stochastic transport would be minimized enough so that a reactor

could obtain sufficient confinement. . . . . . . . . . . . . . . . . . . . . . . . 163

6.1 This figure visualizes the transition under discussion in this chapter using

the toroidal gap voltage scope, which as a scope enables visualizing the

variation in reconnection activity. The toroidal gap voltage scope is plot-

ted (in Volts) versus ⇠ 20 ms of the flattop period. Each row is the signal

from an example shot from the ensembles created for the previous chapter,

plus from additional data collected outside of that framework. Each row

is also labeled on the y-axis by the approximate Lundquist number of the

shot. The magentic signals represent data generated via the PPS system

and the blue signals represent data generated via the Legacy system. The

Lundquist number for each shot increases as the rows go downward. . . . . 176

6.2 This reproduces Fig. 5.2, highlighted the relevant range of data for this

chapter. Here, the yellow box highlights the portion of data collected that

spans the transition from quasicontinuous to bursty/discrete reconnection

activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.3 This figure shows the progression moving from low to high Lundquist

number showing the transition from continuous to discrete for shots where

the plasma current is 80 kA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



xxi

6.4 This figure shows the progression moving from low to high Lundquist

number showing the transition from continuous to discrete for shots where

plasma current is 100 kA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.5 Fast Fourier transforms of integrated b-dot signals. The left column rep-

resents signals from the toroidal coil of coil set number 26 and the right

column represents signals from the poloidal coil of coil set 34. . . . . . . . . 182

6.6 This series of figures show an example of the process outlined to analyze

the time delay of the signal. This process is modeled off of that described

by Marrelli et. al [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.7 Comparing self-similarity analysis of S-scaling data with those found by

Marrelli et. al [2]. In both (A) and (B) The top row shows the results from

Marrelli et. al and the bottom row shows the benchmarked data. The re-

sults agree relatively well and are qualitatively consistent. In (B) the rele-

vant Marrelli results that represent standard MST plasmas are plotted with

the black diamond symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.8 This figure shows a summary of the results from applying the signal differ-

ence analysis below, at and above the threshold between quasicontinuous

and discrete magnetic reconnection activity. . . . . . . . . . . . . . . . . . . 188



xxii

7.1 This set of figures summarizes the results of fitting the magnetic field fluc-

tuation amplitude scaling data to Eqn. 5.21. The top figure shows the re-

sults of the coefficient of the scaling fit on a semilog plot against the toroidal

number. The bottom figure shows the scaling parameter, ↵, on a linear plot

against the toroidal mode number. In keeping with the convention of all

data presented herein, the low density Greenwald fraction data is shown

in blue while the high density Greenwald fraction data is shown in orange. 194



xxiii

List of Tables

5.1 This table summarizes the results to fitting the fixed F = �0.2 NIMROD

runs to the equation b̃n(a) = cnS�↵n . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2 This table summarizes the results to fitting the fixed F = �0.2 DEBS runs

to the equation b̃n(a) = cnS�↵n . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3 This table shows the results of applying the Relative Error Metric (Eqn.

5.26) to the n=6-8 modes for the experimental and both NIMROD and

DEBS simulated data for the coefficient of the fits, cn as well as the scal-

ing parameters, ↵n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4 This table shows the results of applying the �2 Metric (Eqn. 5.27) to the

n=6-8 modes for the experimental and both NIMROD and DEBS simulated

data for the coefficient of the fits, cn as well as the scaling parameters, ↵n. . . 151

5.5 This table shows the results of applying the Hyperbolic Tangent Metric

(Eqn. 5.28) to the n=6-8 modes for the experimental and both NIMROD

and DEBS simulated data for the coefficient of the fits, cn as well as the

scaling parameters, ↵n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



xxiv

5.6 This table summarizes scaling to TITAN operational parameters using MST

results as a benchmark. The columns show results for different scaling

parameter, or ↵, values. The high Greenwald fraction is used to obtain

density and the Lawson criterion (n⌧ ). . . . . . . . . . . . . . . . . . . . . . . 159

5.7 This table summarizes scaling to ARIES-like operational parameters using

MST results as a benchmark. The columns show results for different scaling

parameter, or ↵, values. The high Greenwald fraction is used to obtain

density and the Lawson criterion (n⌧ ). . . . . . . . . . . . . . . . . . . . . . . 160



1

Chapter 1

Introduction

In this chapter, we will briefly preview the main goals of the thesis and the key results.

To start, little to no familiarity with the topic is assumed; so, the description is brief and

simplified. We also preview key results the reader may look forward to reading about

in the thesis. As we will see in a moment, one of the main applications of the results

obtained is to consider what they mean for the RFP as a fusion concept. This motivates a

discussion of fusion energy and how it could fit into a climate crisis solution. Finally, we

will go over an outline for the rest of the thesis.

1.1 Key Goals and Results

The main goal of this thesis was to assess how magnetic field fluctuation amplitudes scale

with Lundquist number in Madison Symmetric Torus (MST) reversed-field pinch (RFP)

plasmas. In plasmas, charged particles tend to travel around magnetic field lines. RFP

plasmas are magnetically confined in a toroidal shape with the toroidal magnetic field

(going the long way around the torus) that is of approximately the same strength as the

poloidal (going the short way around) magnetic field. The configuration gets its name



2

because the toroidal magnetic field reverses direction as you move from the center of the

device to the edge.

The Lundquist number is the ratio of the resistive diffusion time of a plasma to the

Alfven time. RFP plasmas are ohmically driven, so for the purposes of this quick in-

troduction, we can somewhat naively trust the choice of the Lundquist number as the

parameter to appropriately characterize the plasmas, with the Alfven time acting as a

normalization factor. Stochastic transport is the main transport mechanism by which par-

ticles and heat escape the core of today’s standard RFP devices. This rapid loss of particles

and heat radially out from the core of a device diminishes the performance of the device.

The word ”stochastic” refers to the nature of the magnetic field lines within the device,

which are largely chaotic due to magnetic field fluctuations leading to neighboring field

lines reconnecting via a process called magnetic reconnection. It therefore follows that if

the strength of the magnetic field fluctuation amplitudes decrease with Lundquist num-

ber, the stochastic transport may cease to be a dominate loss mechanism, improving the

RFP’s potential as a fusion concept.

Data were collected for a wide range of Lundquist numbers ranging from 10
4 � 10

7.

These data were used to determine the Lundquist number and the magnetic field fluctu-

ation amplitudes. They were then fit to the following expression:

b̃ = cS�↵, (1.1)

where b̃ is the normalized magnetic field amplitude, S is the Lundquist number, and c

and ↵ are the fit parameters. This assumption of a power-law dependence implies that

we can expect the magnetic field fluctuation amplitudes to decrease more strongly as ↵

becomes more positive. This would be favorable for quickly reducing transport in the
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FIGURE 1.1: This figure summarizes the results of fitting the magnetic field
fluctuation amplitude scaling data to Eqn. 1.1. The orange points represent
data collected at higher electron densities while the blue points represent data
collected at lower electron densities. It is one of the key results of this thesis.

RFP caused by stochastic magnetic fields.

The key results from the thesis are shown in Fig. 1.1. We will dive into the details of

this plot in the following chapters, but we can see that generally speaking, ↵ ⇠ 0.3� 0.4.

This is a higher value that has been previously expected from MST [1].

1.2 Fusion and the Climate Crisis

Global warming is a crisis that threatens the planet with mass extinction. Fusion is often

touted as a near ideal solution to producing carbon-free energy fueled by abundantly

available hydrogen isotopes that can be extracted from water. A key application of the
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work presented herein is to consider the implications of the results for the RFP as a fusion

concept. So, let’s first provide context for where we are now and how fusion fits into this

picture.

Fusion is when two nuclei, or the relatively dense center of atoms containing pro-

tons and neutrons, collide and come together into a single nucleus. Recall that Einstein’s

famous equation states that energy equals mass times the speed of light squared, or,

E = mc2. So, if two light nuclei collide, energy will be released in the process because

the total mass of the constituent nuclei going into the reaction is greater than the mass of

the nucleus at the end of the reaction. The number of protons, or positively-charged par-

ticles, in a nucleus defines which element the atom is. For example, all hydrogen atoms

contain one proton in their nucleus. The number of neutrons, or particles containing no

net charge, in a nucleus can vary amongst nuclei of the same element. The number of

neutrons dictates which isotope of an element the atom is. Considering hydrogen again,

we have atoms with zero, one, or two neutrons. We call these three isotopes of hydrogen

protium, deuterium, and tritium respectively.

Because fusion involves changing the state of a nucleus, it is a type of nuclear reaction.

The other type of nuclear reaction, fusion’s more infamous and maligned counterpart, is

fission, where instead of two nuclei coming together, a single nucleus splits apart into

two nuclei, again, releasing energy in the process via the differential between the total

mass present before and after the reaction. This can occur with heavier elements. Fis-

sion reactions are what fuel today’s nuclear reactors. In conducting fusion research, we

are interested in developing a blueprint for using fusion reactions to fuel a power plant,

supplanting not only nuclear, but also coal power plants. To understand why this is such

a tempting avenue of exploration, we will consider the equations for the most relevant
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examples of each of these two types of nuclear reactions.

Equation 1.2 below shows an example fission reaction where a uranium isotope, U235,

is split, via neutron, n, bombardment. This is the main reaction that is used to fuel a nu-

clear reactor. The advantages to using it for electricity generation are many. No carbon

dioxide or other greenhouse gas is produced. Uranium is also energetically denser than

fossil fuels: the total volume of rods needed to power the United States in 2019, a coun-

try which accounted for four percent of the world’s population and 17% of the energy

consumed, would fill less than one millionth of a percent of Lake Mendota, whereas the

volume of fossil fuels necessary would fill the lake 7 times over [2, 3, 4]. Finally, nuclear re-

actors are very safe, despite their image to the contrary, causing fewer deaths and injuries

than any fossil fuel, particularly when taking into account the deaths that emissions indi-

rectly cause [5]. The downside of fission is that, though it does not produce greenhouse

gases or other harmful pollutants, it does produce radioactive elements, the most long-

lived of which, if using waste processing strategies, is plutonium, with a half-life of 24,000

years. However, the volume of this waste is small and strategies, such as vitrification and

breeder reactors, exist to handle or eliminate the waste, respectively. The remaining ra-

dioactive byproducts can decay into a harmless form in around 50 years [2]. Ultimately,

these time scales and the geopolitical consequences associated with a nuclear-powered

world can be psychologically daunting but may pale in comparison when considering

that a good fraction of CO2 emitted today will linger in the atmosphere for thousands of

years, and the consequences of this emission on Earth’s climate and populations will be

felt for even longer than that [6].

0n
1
+ 92U

235 ��! 58Ce
140

+ 40Zr
94
+ 2 0n

1
+ 6 e

�
+ 206MeV (1.2)
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Now let’s consider fusion reactions. Equations 1.3 and 1.4, with equation 1.5, show the

reactions that most of the fusion community are aiming to utilize to fulfill their promise

to provide a carbon-free, safe, and abundant means of energy production. The reactants

are deuterium, D, an isotope of hydrogen that is naturally occurring. The products are

helium-3, He, alpha particles (another isotope of helium), ↵, tritium, T , neutrons, n, and

protons, p. Tritium is radioactive with a half-life of 12.26 years, but can be also be con-

sumed as a reactant in the fusion reaction shown in equation 1.5. It can also be bread

using Lithium coating on reactor walls [7]. The high-energy neutrons produced in equa-

tions 1.3 and 1.5 are the main safety concern. Because they have no electric charge, they

cannot be contained and would activate materials in the wall of the reactor, however, the

half-life of these materials would be short. Because fusion reactions are not initiated via

neutron bombardment, there is no risk of a nuclear meltdown, as occurred with Three

Mile Island and Fukushima. Though deuterium only makes up 0.0156% of all hydrogen

atoms on Earth, it can be easily extracted and is abundant enough to fuel our planet for

2 billion years at the present rate of energy consumption [2]. Deuterium is remarkably

energy dense, even more so than the fuel for nuclear fission. For all these reasons, fusion

has captivated generations of scientists and the public interest as a panacea to the energy

crisis.

D+D ��! He
3
+ n + 3.27MeV (1.3)

D+D ��! T + p + 4.03MeV (1.4)

D+ T ��! ↵+
n + 17.6MeV (1.5)

While we have safe, reliable nuclear fission energy production as an option available
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today, there are significant challenges that prevent fusion energy production from being

readily viable. To begin to understand these hurdles, we will consider a relatively sim-

ple equation, Coulomb’s law, shown below in Equation 1.6, where F is the force, ke is

Coulomb’s constant, q1,2 represents the charge of the objects in question, and r is the dis-

tance between them. r̂ represents a unit vector which points in the direction of the force.

This law tells us that electrically-charged objects of the same charge repel each other and

that the strength of this repulsion increases as the distance between them shrinks. If we

examine this as it pertains to the fusion reactions in equations 1.3 and 1.4, we see that we

have two positively charged nuclei that must come together in order for the reaction to

occur and that this task becomes exponentially harder as the nuclei get closer together,

until nuclear forces can overwhelm Coulomb repulsion, allowing the nuclei to fuse. The

amount of energy that this necessitates is at the heart of the challenge of engineering an

economically viable, practical, and robust fusion reactor.

�!
F = ke

q1q2
r2

r̂ (1.6)

Energy production is essential for human life. Ultimately, fusion energy is a promising

means of energy production. However, given that the most attainable fusion reactions still

produce radioactive byproducts, it naturally follows that the comfort with nuclear fission

reactors must first also be increased. A usable fusion reactor is many years away. Nuclear

fission reactors work today. And it is already past time that drastic measures be taken

to cease the emission of greenhouse gases into the Earth’s atmosphere. Fusion reactors

cannot be a part of the initial solution.
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1.3 Thesis Outline

The remainder of the thesis will provide more detail about how the key results were ob-

tained and providing the necessary background to understand the question under inves-

tigation and the results. In the next chapter, we will go over the magnetohydrodynamic

physics concepts that underlie this investigation. This will motivate the set-up for the

data collection and analysis. We will then go over the Madison Symmetric Torus and the

diagnostics used to gather the data presented in this thesis. We will discuss how data

were collected. The chapter after that will cover the Thomson scattering diagnostic. This

tool provided electron temperature measurements which were particularly important for

this thesis project. The Lundquist number as a strong dependence on this parameter.

Having by then provided appropriate context, we will go over the results of the scaling

study. The study’s definition of the relevant parameters and the sensitivity to the selected

definition will be discussed there. The scaling results will be presented as well as the

scaling of other transport related quantities. We will discuss how consistent the results

are with stochastic theory and explore what they mean as the RFP device is scaled to

larger sizes. We will also compare the results to computational results.

We will then discuss the results from an extra question that arose while collecting

data. It was observed that the nature of the reconnection activity in the RFP changed

around S ⇠ 10
5 as the Lundquist number was decreased to values that had not been

previously explored. A presentation of this observation and the results of some basic

spectral analyses will be given.

We will conclude with a summary of the thesis and suggestions for some future work.
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Chapter 2

Nonlinear MHD and Lundquist Number

Scaling

The central goal of this thesis was to investigate and characterize how plasma dynamics

and behaviors scaled with Lundquist number in reversed-field pinch (RFP) plasmas. This

is a basic plasma science question but also has applications in understanding how the RFP

might scale as a fusion device. Many of the dynamics of the RFP can be aptly described

by resistive magnetohydrodynamics (MHD). The Lundquist number, S, defined as the

resistive diffusion time normalized by the Alfvén time, is the constant for one of the main

dissipative terms in the resistive MHD equations and has been a traditional choice for the

independent parameter in many scaling studies [1, 2, 3]. As such, it was chosen as the

independent parameter for this thesis. In this chapter, we will cover the nonlinear MHD

model, and some of the most relevant resistive MHD features in MST RFP plasmas. This

will frame the motivation for the specific parameter scalings in this thesis.

The experimental data for this project were also collected with an eye toward perform-

ing rudimentary comparisons to simulation results and creating a database that could act

a basis of comparison for any future validation work. Validation efforts assess the degree
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to which the physics taking place in the experiment is reflected by computational codes.

The ability for computational codes to accurately predict plasma behavior as it scales is

particularly important for developing a financially viable fusion reactor, due to the neces-

sary scale, and, therefore, expense such a device would require. The computational codes

used for comparison in this thesis, DEBS and NIMROD, will be briefly covered in the

second part of this chapter.

2.1 A Physics Background for Lundquist Number Scaling

in the RFP

In the 1960s, observations made on the ZETA toroidal pinch device [4] where periods of

low magnetic turbulence were associated with the toroidal field reversal near the plasma

edge via self-organization[5] inspired the concept of the reversed-field pinch. In linear

(ideal) magnetohydrodynamic (MHD) stability analysis, it is found that this field reversal,

paired with a sufficiently close-fitting conductive shell, is key for the stability of internal

modes[6]. The study of the RFP and the physics of the plasmas it produces is not only

useful for understanding the viability of the RFP as a fusion concept, but also has tie-ins

to a myriad of other open physics questions. The self-organization process has also been

seen in other fusion plasmas [7, 8, 9, 10] and exhibits a great deal of overlap with magnetic

reconnection observed in space plasmas [11, 10]. While not every observed process is well

understood, many have been successfully described by resistive MHD. In this section, we

will review this model as well as the most relevant features of MST RFP plasmas.
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2.1.1 Resistive MHD Equations

Magnetohydrodynamics (MHD) is an approximation that can be arrived at systematically

by starting with the kinetic equations for ions and electrons. A perhaps more intuitive

approach is to consider macroscopic quantities that would appear in the equation of state

for any electrically conducting fluid. Through this method of essentially combining the

Navier-Stokes (fluid) equations and the Maxwell equations, one can arrive at the ideal,

or non-dissipative, MHD equations [12]. So for the RFP, where dissipative effects such

as resistivity and viscosity are significant, we must modify this base model to capture

relevant physics. To begin, we can add resistivity to Ohm’s law and combine it with

Faraday’s law, then cast the equation in dimensionless form to arrive at the induction

equation for resistive MHD,

@B

@t
= r⇥ (v ⇥B) +

1

S
r2B, (2.1)

where B is the normalized magnetic field, t is time, v is the bulk plasma velocity normal-

ized by the Alfvén speed (vA = B/
p
⇢µ0) , and S is the Lundquist number. The Lundquist

number is defined as

S =
⌧R
⌧A

=
µ0a2

⌘(Zeff , ne, Te)

B

a
p
µ0⇢

⇠ T 3/2
e Ip (2.2)

where ⌧R and ⌧A are the resistive diffusion and Alfvén times, a is the typical scale length

of the system, µ0 is the permeability of free space, ⌘ is the resistivity of the plasma, Zeff

is the effective charge state of the plasma, Te and ne are the electron temperature and

density, B is the magnetic field amplitude and Ip is the plasma current.

The other resistive MHD equation that captures dissipation and that is coupled to
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the induction equation is the momentum equation. Cast into a dimensionless form, and

assuming negligible plasma pressure and constant mass density, it looks like,

@v

@t
+ (v ·r)v = (r ⇥ B)⇥B +

1

Re
r2v, (2.3)

where Re is the Reynold’s-like number defined as,

Re =
⌧momentum

⌧A
=

a2

⌫

B

a
p
µ0⇢

, (2.4)

where ⌧momentum is the momentum diffusion time and ⌫ is the viscosity. The magnetic

field is normalized to a typical field value and the velocity is normalized to the Alfvén

speed [1].

So from equations 2.1 and 2.3, we see that the Lundquist number and the Reynold’s

number are the key parameters that characterize a dissipative plasma. For this study, the

Lundquist number was chosen as the independent parameter along which the scaling

analyses were performed. There are many reasons for this:

• It is the traditional choice of several similar and previous studies [1, 2, 3].

• It is an intuitive choice: a relatively large amount of current is injected into MST

plasmas which have relatively low density (low viscosity). Therefore resistivity is

the more natural parameter on which to focus.

• It was the most feasible option: MST plasmas can be high temperature such that

measuring viscosity is a challenge. Additionally viscosity is a highly anisotropic

quantity, especially relative to resistivity, in MST.
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• Resistivity and collisional viscosity scaling cannot be separated (i.e. Pm = ⌫/⌘=

constant). The perpendicular viscosity scales like ⌫? ⇠ �T 3/2
i . Since Ti / Te and �

varies only weakly in MST plasmas, the viscosity therefore scales like the Lundquist

number (S ⇠ T 3/2
e ).

Ultimately, it was just one way to tackle such a study. We will detail which dependent

parameters were scaled in Ch. 5. In the next section, we will review the tearing modes of

MST and the features they produce.

2.1.2 Tearing Modes and Features of MST RFP Plasmas

One of the most significant consequences of resistivity is the violation of ideal MHD’s

conservation of local magnetic flux. Breaking this condition leads to changes in field line

topology via magnetic reconnection, a process that is still not entirely understood [13].

Due to the RFP’s magnetic topology, tearing modes, driven by gradients in the current

density profile, are the prevalent MHD modes in the plasma [10, 14]. These modes are

resonant inside the plasma and create magnetic islands. A few parameters that are used

to quantify the RFP’s magnetic topology are the reversal parameter, which characterizes

extent of the toroidal magnetic field reversal and is given by,

F =
B�(a)

< B� >
, (2.5)

the pinch parameter, which is the ratio of poloidal magnetic field at the edge to the aver-

age poloidal field and is given by,

⇥ =
B✓(a)

< B✓ >
, (2.6)
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and the safety factor which characterizes the field line pitch in the cylindrical approxima-

tion is given by,

q =
rB�

RB✓
, (2.7)

such that small q represents a tightly wound helix and infinite q represents a straight

toroidal field line.

In the above equations B� are the B✓ are toroidal and poloidal components of the

magnetic field, a is the minor radius or edge location, and r and R are the minor and

major radial coordinates. For standard MST plasmas, typical values for these parameters

are F ⇡ �0.2, ⇥ ⇡ 1.7, and q(r = 0) ⇡ 0.2.

The q-profile is of particular significance in understanding tearing modes in MST. The

magnetic perturbations that are measured at the edge of MST (see Ch. 3) are resonant

inside the plasma volume where a magnetic island can form due to the tearing instabil-

ity. These islands appear periodically with the same helicity as their associated tearing

modes. A condition for resonance of a helical perturbation to the equilibrium magnetic

field with a wave vector k = (m/r)✓̂ � (n/R)�̂ is

k ·B = 0. (2.8)

This expression can be rearranged to obtain the safety factor,

q = rB�/RB✓ =
m

n
, (2.9)

where m and n are the poloidal and toroidal mode numbers, and ✓ and � are the poloidal

and toroidal directions. m and n are integers so that where q is a rational number, the
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tearing modes are unstable. These locations are called resonant surfaces. The left-hand

plot in Fig. 5.3 shows the q-profile and island widths for a typical MST equilibrium. Due

to the aspect ratio and relative magnetic field component strengths, the safety factor of

the MST RFP is just below 0.2 in the core, passes through zero at the reversal surface

and is negative at the edge. This means that the m = 0 modes are resonant at the reversal

surface, which is the surface where the toroidal field passes through zero before reversing

direction at the edge relative to the core, and m = 1 modes are resonant away from that

surface. The core and mid-radial resonant modes (m = 1, n = 6 � 9) are most unstable,

with the n = 6 mode holding most of the energy. The n = 5 mode exhibits unique

behavior and only appears as the core value of the safety factor surpasses 0.2, which

occurs for a just small portion of the sawtooth cycle (which will be reviewed shortly). The

m = 0 (all n but mainly n = 1�4) mode is linearly stable, but can be driven by nonlinearly

coupling to core modes.

The width of these magnetic islands is given by,

�mn = 4

q
rmn|b̃rmn|/(nB✓|q0mn|), (2.10)

where q0mn is the gradient of the q-profile at the (m,n) rational surface [16]. As tearing

modes grow in amplitude, magnetic islands begin to overlap with adjacent islands, so

that deterministic field line trajectories give way to stochastic magnetic fields. Fig. 2.2

visualizes how stochasticity increases as tearing mode amplitudes increase. The “stochas-

ticity parameter”, s, which is plotted on the right-hand side of Fig. 5.3, is given by,

s =
�mn +�m0n0

2|rmn � rm0n0 | . (2.11)
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FIGURE 2.1: The left hand plot shows a typical q-profile over the minor ra-
dius for MST standard plasma with island widths depicted both in black in
the plot and in blue on the right. The right hand figure plots the stochasticity
parameter (Eqn. 2.11) over the minor radius of the plasma. Reproduced from

[15]

and is a measure of overlap between adjacent islands. In the limit of s � 1, indicating

a large amount of overlap and stochasticity, the radial thermal conductivity, �, scales

like � ⇠ B̃2
r as was put forth by Rechester and Rosenbluth[17, 16]. This is qualitatively

validated by agreement between mode and temperature behavior, coupled with relatively

large tearing mode amplitudes in MST, suggesting that thermal transport is dominated by

stochastic transport [18, 19, 15]. When looked at through a more heuristic lens, we know

that charged particles tend to follow magnetic field lines, so as the field becomes more

and more stochastic with increasing magnetic field fluctuation amplitudes, confinement

of these particles and, therefore, energy deteriorates. As such, reducing the magnitude of

magnetic field fluctuation amplitudes, and, thereby, minimizing stochasticity, is a good

mitigation strategy for this major loss mechanism in RFP plasmas. Promisingly for the

RFP fusion concept, it is both theoretically predicted and observed experimentally in the
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FIGURE 2.2: This figure shows poincare plots of the MST magnetic field lines.
As you move from left to right the field lines go from being ordered to some-
what stochastic to completely disordered. These changes occur as tearing
mode amplitudes are increased moving from left to right. Reproduced from

[20]

analyses of this thesis, that magnetic field fluctuation amplitudes do in fact decrease with

increasing Lundquist number (see Ch. 5).

2.1.3 Nonlinear MHD and Sawteeth in MST

Another manifestation of tearing modes in RFP plasmas are “sawteeth.” These are sharp,

quasi-periodic events whose signature appears on most every MST diagnostic, an exam-

ple of which is shown in Fig. 2.3. Rather than being localized to a, e.g., core or edge

location, a sawtooth crash is a global event where the entire spectrum of tearing modes

grow exponentially and rapidly flatten the current density profile across the entire minor

radius.

RFP equilibrium is understood fairly well and can be described by Taylor’s theory
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FIGURE 2.3: The top figure plots the average toroidal field and the bottom
figure plot the toroidal field at the wall. The waveforms show sharp changes
in magnitude at times denoted by the dashed lines. These are manifestations

of sawtooth events. This figure is reproduced from [15]



20

of relaxation [21]. In order to maintain reversal, the plasma must create additional re-

versed toroidal field to compensate for the classical diffusion processes. This mechanism

of anomalous electric field sustainment and generation for time scales longer than the

resistive diffusion time is called the dynamo.

This dynamo mechanism is well described by the nonlinear MHD model which cap-

tures the nonlinear interactions of MHD instabilities that drive the dynamo [22]. The lat-

ter has been most relevant to the RFP dynamo and simulations incorporating this model

have successfully recreated the sawtoothing behavior. In the RFP, nonlinear interaction of

the m=1 mode is responsible for the RFP sawtooth. As the center of the plasma is heated,

either ohmically or externally, the resistivity will decrease as a result of the inverse de-

pendence on temperature and resistivity, and more current will diffuse radially inward

so that the current profile becomes peaked in the core. This will in turn lead to a further

decrease in resistivity and further peaking of the current profile, causing the on axis value

of q to decrease. The m = 1 mode has been shown to be the fastest growing mode for the

RFP [22, 23, 10], and, as we saw earlier, the RFP has many m = 1 modes. The coupling

of two m = 1 modes with helicities (m,n) = (1, n1) and (1, n2) can lead to modes with

helicities (m,n) = (0, n1 � n2) and (2, n1 + n2). The means by which these modes interact

is actively being investigated.

In this thesis, as Lundquist number was decreased to values that had been inaccessible

prior to the implementation of the programmable power supply system that will be dis-

cussed in Ch. 3, a transition from discrete sawtoothing activity to more quasi-continuous

sawtoothing behavior was observed at a Lundquist number S ⇠ 10
5, as is depicted in Fig.

2.4. This observation aligns with results obtained in simulations. This effect is not entirely

understood and its characterization has proven difficult. We will discuss it in more detail
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FIGURE 2.4: This figure plots the toroidal gap voltage signal of a 20 ms time
window from the flattop period of three example discharges. The top row
is from a discharge with S < 105, for the middle row, S ⇠ 105 and for the
bottom row, S > 105. This visualizes the transition from quasi-continuous to
the more bursty sawtoothing activity that we are familiar with in MST RFP

discharges.

and its implication on analyses in Chs. 5 and 6.

2.2 Computational Codes

In this section, we will touch base on two codes used to simulate plasmas created in the

MST experiment. As fusion devices scale to larger and larger sizes, the development

of computational codes as a tool to predict plasma behavior is especially vital. Computa-

tional codes are limited in the range of Lundquist numbers they can simulate: as resitivity

drops (Lundquist number increases) the expense of performing a simulation increases.

Fig. 2.5 shows the ranges of Lundquist number accessible for the simulations and the
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FIGURE 2.5: This diagram depicts the achievable ranges of Lundquist num-
ber with the various MST power supplies and the two simulation codes used

in this thesis.

power supplies used in this thesis. As the experimentally achievable value of Lundquist

number was lowered in MST, this allowed for greater overlap and more meaningful com-

parisons with DEBS and NIMROD simulation results. We will now briefly describe these

codes. The reader may refer to the references herein for more detailed explanations of

their intracacies.
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2.2.1 DEBS

DEBS computes the 3-D, nonlinear, resistive, force free, single-fluid MHD equations in a

periodic cylinder[24]. These single-fluid visco-resistive MHD equations are given by

@A

@t
= SV ⇥B � ⌘J (2.12)

⇢
@V

@t
= �S⇢V ·rV + SJ ⇥ B +

⌫

⌘
r2V (2.13)

where A, V , B, J , ⇢, ⌫, and ⌘ are dimensionless parameters representing the vector po-

tential, velocity, magnetic field, current density, density, viscosity, and resistivity, and S is

the Lundquist number. An advantage of using DEBS to simulate MST plasmas is that it

can be run with dynamically-adjusted viscosity to dissipate energy at small scales. This

allows for larger computational time steps. However, using an artificial viscosity that in-

creases as needed to reduce grid-scale fluctuations during these relaxation events has an

unclear effect on the computed evolution. Another aspect to note is that the pressure is

not self-consistently evolved (i.e. � =
pthermal

pmagnetic
= 0) so that the resistivity profile cannot

be self-consistently calculated. The resistivity profile can, however, be calculated from

experimental data and applied as a constraint to the simulations. DEBS has successfully

reproduced the sawtooth events and q profiles observed in MST.

For the simulations used in this thesis, a neoclassical resistivity profile was used. The

profile was the same as that used with the NIMROD simulations covered in the next

section. The DEBS simulations were run for the m = 1, n = 5 � 8 modes applying a

flat viscosity profile and either holding a�0 fixed or holding the reversal parameter fixed

where a is the scale length of the system and �0 is a global constant for the solution of

the variational problem that minimizes the magnetic energy and conserves the magnetic
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helicity (i.e. µ0J = r⇥B = �(r)B, and �(r) = �0f(r), where �0 = �(r = 0)).

2.2.2 NIMROD

The NIMROD (Non-Ideal Magnetohydrodynamics, with Rotation - Open Discussion)

code [25] can be used to simulate nonlinear plasma evolution in a wide variety of con-

figurations. It is an initial value solver for the extended MHD system of equations. As

was discussed earlier in this chapter, most derivations of the MHD equations ignore dis-

sipative effects or use collisional equations as closures (e.g. Braginskii). The extended

MHD equations on the other hand are developed from two-fluid equations with general

closures for the conductive heat flux and the stress tensor, which provides a reasonable

basis for describing macroscopic plasma effects for arbitrary collisionality regimes. As

such, these equations capture effects not only from the ideal and resistive MHD models

but also the reduced, neoclassical and two-fluid models. The generalized Ohm’s Law and

momentum equation for this set of equations are,

E = �v ⇥B +
J ⇥B

en
� rpe

en
+ ⌘J +

me

e2n

@J

@t
(2.14)

min
@v

@t
= J ⇥B �rp�r ·⇧gyro �r · ⌫minW (2.15)

where mi and me are electron and ion masses, n is density, ⇧gyro is the gyroviscous stress

tensor, and W = rv + (rv)T � 2
3I(r · v).

For a more thorough discussion of the NIMROD code and how it can be used to sim-

ulate RFP plasmas, please refer to [26, 23, 25, 27].

The NIMROD simulations used as a basis of comparison for this effort were performed

using a single-fluid, cylindrical geometry set-up at two electron densities in two different
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contexts, keeping the reversal parameter, F , fixed and keeping a�0 fixed. Just as with the

DEBS simulations, a flat viscosity profile was applied.
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Chapter 3

The Madison Symmetric Torus

The Madison Symmetric Torus (MST) is a toroidal device that is used to study basic

plasma physics and fusion reactor concepts. It can be operated in several reversed-field

pinch modes and as a low-field tokamak. In this thesis, data were collected from stan-

dard reversed-field pinch (RFP) plasmas, with no application of enhanced confinement

techniques.

MST’s features include an extensive diagnostic suite, enabled by minimal external

field coils, and an upgraded programmable power supply (PPS) system that has ex-

panded the range of currents and operational schemes available on the device. These

features were crucial to the success of this work’s endeavor to characterize Lundquist

number scaling in reversed-field pinch plasmas.

In this chapter, the relevant intricacies of the MST device will be reviewed. To begin,

we will discuss the device itself: its operation as a reversed-field pinch and the power

supplies fueling its operation. In the subsequent sections, we will go over the systems

used to diagnose the plasmas, starting with the magnetic field coil array and MSTFit,

then the spectral diagnostics used to measure electron temperature and collect data for

an estimate of the effective charge state of standard plasmas. A overview of the Thomson
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scattering diagnostic, which was particularly vital to this effort, will be reserved for the

next chapter, where it can be given more attention.

3.1 Generating Standard RFP Plasmas and MST Power Sup-

plies

Measuring RFP plasmas at a wide range of Lundquist numbers was one of the main

experimental accomplishments of this thesis. In this section, MST’s mechanism for gen-

erating standard RFP plasmas will be described. We will also cover the original or, as

it’s commonly called, ”Legacy” power supply system, then move on to describing the

programmable power supplies (PPS) which have enabled access to a wider range of pa-

rameter space and were an upgrade to MST that in large part inspired this undertaking.

We will conclude this section with a discussion of the fueling and conditioning done on

the device during operation.

3.1.1 Standard RFP Plasma Generation and the Legacy Power Supply

Fig. 3.1 contains two depictions the MST device. Fig. 3.1a shows a rendering of the

MST device, featuring the iron-core transformer, C-windings, and pumping duct. Fig.

3.1b is a top-down photo of MST before any diagnostics were added, which showcases

the unusually large amount of space available to diagnostics. MST is composed of a 5-

cm thick aluminum, toroidally-shaped shell with a major radius of 1.5 m and a minor

radius of 0.52 m tightly wrapped around an iron core and a pumping duct designed

to avoid the magnetic field errors that would arise with large pumping ports [1]. This
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(A) (B)

FIGURE 3.1: Fig. 3.1a shows a mock-up of the MST device. The iron core
transformer that is used to drive the toroidal electric field is visible. Fig. 3.1b
is a photo of the MST device from above before the installation of diagnostics.

shell acts as a vacuum vessel that maintains a pressure around 10
�7 torr and as a single-

turn toroidal field winding. It also acts to stabilize external ideal kink modes. Wrapped

around this vessel is the 40-turn iron-core transformer. To generate a standard plasma

discharge, deuterium gas is puffed into the vacuum vessel and an inductive electric field

is applied, breaking down the gas into a plasma which then self-organizes and relaxes into

the reversed-field pinch configuration that was covered in Chapter 2. In this subsection,

we will go into more detail about the magnetic fields involved in this process and the

‘’Legacy” power supply system.
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Poloidal Field System

The poloidal field (PF) system generates the poloidal magnetic field and the toroidal

plasma current. Its main components are the continuity or C-windings and the poloidal

flange, the poloidal field (PF) winding, and the bias winding. A schematic is shown in

Fig. 3.2 [2].

The C-winding is a conducting sheet that connects the two sides of the poloidal gap,

circling around, but not connecting to, the iron transformer. It is necessary to mitigate

error fields, or unwanted magnetic fields, that would otherwise arise. The C-winding in

effect carries the image current on the inner surface of the vessel wall across the insulated

poloidal gap. Without this, the image current would transfer to the outside surface of the

vessel generating a large radial magnetic field at the gap. [2].

The PF winding magnetizes the transformer to create the inductive electric field that

forms the plasma current. It consists of 40 copper bars that surround the outside of the

C-winding and pierce the poloidal flange. Strong mutual coupling of the PF winding and

C-winding help control the image current to minimize field errors. . The PF winding

is wound in eight bundles of five turns which can be configured in series or parallel

combinations to set the turn ratio between 5:1 and 40:1 [2].

The bias winding is a 40-turn winding that is situated inside the C-winding tight to

the iron core. It reverses the bias flux in the iron core so that a full 2-Wb flux swing can

be achieved. It is designed and wound to ensure that the flux leakage into the plasma

volume is minimized. [2].
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FIGURE 3.2: A schematic of the MST Poloidal Field System
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Toroidal Field System

Most of MST’s toroidal field is generated by poloidal current in the plasma via the pinch

effect and dynamo action. The TF circuit provides a small initial toroidal field for plasma

formation, then acts to sustain the reversed field at the plasma surface. The toroidal field

(TF) system is shown in Fig. 3.3. Poloidal current is driven through the aluminum shell

acting as a single-turn winding. Current enters the shell at the toriodal gap, located at

the midplane on the inside of the torus, fed in by an axisymmetric flange system that

symmetrizes the shell currents. The dominant resonant Fourier component of the ripple

in the toroidal magnetic field is m= 0, n= 4 and has a normalized amplitude of ⇡ 0.01 on

the machine minor axis. The error is resonant at the toroidal field reversal surface, and

the resultant magnetic island width is 1 cm [2, 3]. The toroidal field circuit can have an

impact on the way sawteeth are formed as changes in the toroidal flux induced by the

RFP’s dynamo effect couple into the TF circuit.

3.1.2 Legacy Power Supply System

The Legacy power supply is a large ignitron-based pulse-forming network (PFN) that

stores up to 2 MJ of energy. When using the Legacy power supply system, four large

capacitor banks supply power to the PF-winding. The voltages applied and the number

of banks used can be varied to control the discharge duration and plasma current (the two

parameters correlated parameters). A primary Bt capacitor bank is fired 10-15 ms prior

to the start of the plasma discharge to create the initial toroidal field. A low-voltage Bt

crowbar capacitor bank is sometimes used to sustain field reversal late in the discharge

by sending current in the reversed direction [2, 3].
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FIGURE 3.3: A schematic of the MST Toloidal Field System
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The iron core transformer is capable of a flux change of 2 webers when it is initially

reverse-biased to -1 weber. For reference, one weber provides one volt of inductive drive

for a period of one second. With the Legacy power supply system, achievable plasma

currents range from about 200 kA to 600 kA with discharges lasting less than 100 ms

and inductive toroidal loop voltage peaking at approximately 20 V. The plasma current is

constant during what is called the flat top phase of the discharge for about 20 ms.

3.1.3 Programmable Power Supply Systems

Inductive control is at the heart of the science and the plasma control potential of the

RFP, given its nature, even more so than other fusion concepts. In this section, we will

cover the programmable power supply (PPS) upgrades to both the toroidal (BT-PPS) and

poloidal (BP-PPS) field generation systems. Programmable power supplies are used in

several fusion experiments; the unique challenge of applying these systems to RFPs stems

from the large power flow between the toroidal and poloidal magnetic field circuits via

nonlinear relaxation process inherent in and regulated by RFP plasmas. At present, the

programmable power supplies permit for low current operation, which has allowed ex-

periments to achieve Lundquist numbers that overlap more with those achieved in com-

putational results. This low current operation is also being used to test advanced control

schemes before applying these to high currents [4]. The modular design of the supplies

will enable scaling the power supplies to make higher plasma current discharges possible

[5]. These upgrades have in large part motivated this thesis, and additionally, the profile

control provided by these systems enabled the observations presented in Ch. 6. We will

go over both the BT-PPS and BP-PPS systems below. Larger, more capable supplies are

currently under construction.



38

BT-PPS

The BT-PPS grants greater control over the toroidal field. At the start of a discharge, it

allows a larger toroidal field magnitude. This helps to minimize the resistance so that

higher currents can be reached and the BP transformer’s capacity can be more fully uti-

lized, since less flux is consumed during the startup of the plasma discharge. Ultimately,

this maximizes the Ip and the discharge duration by safely utilizing the full 2 webber

swing of the iron-core transformer in the poloidal field circuit. This is in part achieved by

doubling the turns ratio in the toroidal field transformer. BT transformer windings can

be connected at ratios of 20:1, 40:1, and 80:1 [6, 5].

The hardware basis of the BT-PPS system is 128 fast-switching solid-state insulated

gate bipolar transistors (IGBTs) H-bridges. The system controls the discharge of MST’s

capacitor bank. The supply’s maximum voltage (±1800 V) and current (±25 kA) are ap-

plied with a bandwidth of several kHz. The switching cycle time for the system is 100 µs

[6].

The BT-PPS for this work was operated with open-loop feedback control so that the

supply’s output current targeted a preprogrammed waveform. The control system was

able to hold plasma currents, and therefore, other plasma parameters such as density

more uniform than is achievable with Legacy system operation. This enabled the spectral

analyses discussed in Ch. 6 and improved the Thomson scattering pulse summing analy-

sis technique used to resolve low-density edge Thomson scattering measurements which

will be described in Ch. 4. Three-level Pulse Width Modulation (PWM) with a carrier

frequency of 5kHz generates the desired analog toroidal field waveform [5]. Open-loop

feedback control is a relatively simple operational mode and more sophisticated meth-

ods are necessary to respond in real time to changes resulting from plasma relaxation.
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Goumiri, et. al [4] have been developing the MST Control System (MSTCS) and basic

closed-loop feedback control has been demonstrated.

BP-PPS

While the BT-PPS system increases Bt during start up, the BP-PPS system increases the

range of accessible plasma currents and extends the duration of a plasma discharge. The

BP-PPS system design is based on the BT-PPS design. The poloidal field is generated

using MST’s 40-turn iron-core BP transformer. Triplets of H-bridge modules in series

generate an output voltage of ±2500 V. Thirty-two of these triplets yield a total primary

current of 75 kA. Each of the three modules of a series of triplets can be controlled in-

dependently. A seven-level PWM strategy was selected for the BP-PPS system over a

three-level PWM because it demonstrated less switching noise and output ripple and can

output significantly more current [5].

At present, the supplies have greatly expanded the lower bound of achievable plasma

currents from 200 kA to / 30 kA, or from S ⇠ 10
6 down to S ⇠ 10

4. This has enabled

larger overlap with simulated results from computational codes as we will see in Ch. 5.

While MST’s ultimate upper bound on Ip will in part be determined by plasma behavior,

a power balance calculation for relaxed-state equilibrium, which was benchmarked to

actual MST plasmas, estimates that the upper bound of plasma currents could be pushed

from 600 kA to as high as 800 kA [6]. In standard plasmas, Te ⇠ Ip, and so, recalling from

Ch. 2 that S ⇠ T 3/2
e Ip, Lundquist number scales like S ⇠ I5/2p . This expansion of the upper

limit of Ip could then consequently make S ⇠ 10
8 achievable in MST plasmas.

For low current operation, plasma durations have been doubled. To generate these

longer lasting plasmas, a newly added auxiliary capacitor bank (that is not suited for
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larger current or waveform control) is fired and the BT-PPS system is employed for higher

startup Bt. Additionally and most importantly, the BP-PPS system controls currents so

that output currents will be limited to safe outputs should the poloidal transformer core

saturate due to, e.g., early plasma termination. Fig. 3.4 shows a block diagram summa-

rizing the BP-PPS system.

3.1.4 Fueling and Conditioning

This subsection describes the fueling and conditioning practices followed during the data

collection that generated the database for this thesis. These practices control the density

and quality of plasma that are generated by the MST device. Beginning with condition-

ing, for typical MST operation, it is considered best practice to run the pulsed-discharge

cleaning (PDC) system beginning at the end of one day of operation and concluding at

the start of the next. The PDC system generates a few-ms-long 0.1 MA helium plasma [6].

Normally, discharge conditioning is not required during the run day. The PDC process

is recommended for consistency but is not always necessary for quality data collection.

However, its impact on the data results is not thoroughly understood.

Exceptions were made to this best practice during data collection for this study. PDC

was not run during data collection with the PPS system. Running the PPS system required

a change in the winding ratio of the transformers. This in turn affected the capability to

operate the PDC system. Therefore these data were collected without having run PDC

the night prior. Additionally, there were issues with the functionality of the PDC system

during some of the data collection, so some Legacy data are also from days when the PDC

system had not been run the night prior. PDC was available during 500 kA, high current,

high density runs when its potential impact was most crucial as this day was challenging
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FIGURE 3.4: A block diagram of the BP-PPS system reproduced from [5]
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operationally even with PDC. A spreadsheet that details the conditioning status for each

run day is included with the database generated for this thesis. Instructions for accessing

that can be found in Appendix A.

The plasma quality and control seemed largely unaffected by a lack of PDC condi-

tioning on the days for the S-scaling data collection that had lacked PDC conditioning.

The machine was poorly conditioned during the quasi-continuous to bursty reconnection

activity data collection. However, poor conditioning can be due to a number of factors,

not just a lack of PDC. Altering the operational strategy did improve data collection on

these days. These data were collected using the PPS system, so conditioning was not per-

formed using the PDC system in between run days. The density control was somewhat

challenging during these days and a few strategies were adopted to improve plasma con-

trol. First, at the beginning of the run day, and following any breaks in operation, or

premature plasma terminations, the plasma was conditioned with tens of shots of 250 kA

plasmas. Second it was helpful to sweep the density from low to high instead of from

high to low so that the wall loading of gas would gradually contribute to building up

density levels. Again, the details from these run days are included in spreadsheets from

the run days that are in the database.

Next, we will move onto a discussion of plasma fueling. To fuel the plasmas, deu-

terium gas is puffed in from the walls and is supplemented by the residual gas that is

inevitably loaded onto the walls of the device [7]. For legacy operation, gas is puffed:

(1) prior to the discharge, (2) at the anticipated end of the discharge, and (3) at periods

during the discharge. The goals for these puffing periods are: (1) to provide enough fuel

so that a plasma is generated but not so much that the gas fails to break down, (2) to

maintain a load at the end of the discharge and prevent the rise of current through the
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transformer primary, and (3) maintain a constant electron density over the duration of

the plasma flattop.

Puffing during the PPS operation using the BT-PPS system was slightly more nuanced.

The firing of the PPS system is timed differently than the Legacy system. If gas is puffed

too early, a pre-discharge plasma forms. This is sometimes considered to be harmful to

the quality of the discharge. However, this was not strictly avoided during data collection

for this project as it was sometimes useful in achieving desired density levels and did not

seem to affect the quality of the discharges.

3.2 Measuring Magnetic Fields and MSTFit

The measurements of magnetic fields were crucial data for the analyses presented in this

thesis. Recall from the previous chapter that the magnetic field fluctuation amplitude was

a key scaling relationship studied in this work. In this section, we will cover the relevant

magnetic field coil arrays that were used to measure these magnetic fields as well as the

equilibrium solver, MSTFit.

3.2.1 Magnetic Field Coil Arrays

Magnetic field coils are a crucial diagnostic on MST. Tearing modes are a dominant fea-

ture of MST plasmas and the toroidal array is used to measure them. The toroidal array,

shown in Fig. 3.5, consists of orthogonal triplets of magnetic pick up coils (measuring

B�, B✓, Br) that are mounted on the inside of the vessel (i.e at r/a = 1) at 241� poloidal.

The coils produce a voltage proportional to the time derivative of the local magnetic field.

Integrating this signal over time gives the magnetic field amplitude. Fourier analyses,
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which will be covered in more detail shortly, can be and are robustly and routinely per-

formed to determine the amplitude and phase of the tearing modes [8, 9]. The poloidal

coils from these triplets were used for the scaling analysis. These coils most effectively

measure the m=1 mode. The toroidal coils in the coil sets tend to collect data not only

from the m=1 mode, but also from higher poloidal mode number data. However scaling

from these coils is also included in the analysis presented later. The resolution and sys-

tematic errors associated with these coils is difficult to assess. Therefore systematic errors

are not reported and only statistical errors are used when presenting magnetics data.

Fourier mode decomposition analysis was performed on data taken from the toroidal

array. In plasma physics, it is common practice to characterize fluctuations in a frame-

work of mode number content. As was mentioned in Ch. 2, m is the poloidal mode

number, or the number of periods in one poloidal circumference, and n is the toroidal

mode mode, or the number of periods in one toroidal circumference. The Fourier decom-

positions were performed so that,

B(�, t) =
NX

n=0

Bn(t)cos(n�� �n(t)) (3.1)

where B(�, t) is the measured magnetic field as a function of toroidal angle and time, Bn

is the amplitude of the tearing mode with toroidal mode number n, �n is the phase of

the n mode, and N is the Nyquist limit of the sampling (determined by the number of

coils used). Total number of coils employed when looking at the poloidal coil was 32, and

when using the toroidal coils in the toroidal array was 64 [7, 10]. Because the toroidal

array is at one poloidal location, it cannot distinguish the poloidal mode number, m. The

magnitudes, Btheta,n, were used to calculate the normalized magnetic field fluctuation
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FIGURE 3.5: Diagram of MST internal magnetic field coil locations

amplitudes.

Relative calibration of the B� coils is performed just before t = 0 in each shot, when a

known vacuum toroidal field is present. Relative calibration of the B✓ coils is performed

using data from the flattop of the shot by comparing B of the average signal in each

coil over a large averaging window when the plasma is rotating. Data from non-rotating

plasmas are therefore disregarded.

The dense array was used for the analyses related to the transition from quasi-continuous

to bursty reconnection activity in Ch. 6. Fig. 3.5 denotes its location in MST at 246
�
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toroidal and �32
� poloidal. The dense array is a plus-sign-shaped cluster of closely-

spaced, poloidal and toroidal coils. The arrays provide time derivative measurements

of the magnetic field amplitudes, as the signal is amplified but not integrated.

Finally, some of the coil data are used as constraints in MSTFit equilibrium reconstruc-

tions.

3.2.2 MSTFit

MSTFit is a non-linear Grad-Shafranov toroidal equilibrium reconstruction code that was

developed specifically for the MST device. The code uses Ampère’s Law and the magnetic

divergence constraint while assuming a cylindrically axisymmetric field, and enforcing

radial force balance (J⇥B = rP). The assumption of an axisymmetric field is generally

sound during high-performance regimes of the RFP such as in between sawtooth events

of standard RFP plasmas or when using enhanced confinement operation. The code uses

electron profile measurements from Thomson scattering and inverted electron density

profiles from the FIR diagnostic to invert the Grad-Shafranov equation [11, 12] and cre-

ate flux surfaces inside MST [13]. This uses the ansatz that temperature and density are

constant on flux surfaces. The results is a two dimensional geometry of the plasma flux

surfaces.

The MSTFit code solves the Grad-Shafranov equation over an unstructured mesh of

746 elements. At each step in the parameter space synthetic diagnostic measurements

are computed and the compared to real data gathered by diagnostics to calculate �2. This

process is repeated a second time to minimize for �2 using the previous result as a starting

point [13, 14].
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MSTFit reconstructions can evaluate the internal stored energy in toroidal geometry

so that the energy confinement time (⌧E = internal stored energy divided by ohmic input

power) can be calculated. The stored internal thermal energy can be volume integrated

by MSTFit and the ohmic power is simply given by P⌦ = IpVp during the flattop.

3.3 Spectroscopic Diagnostics

This section will briefly cover the spectral diagnostics that were used to measure the plas-

mas created for this dataset, leaving the Thomson scattering diagnostic for the next chap-

ter so that it can be covered in more detail. The non-invasive, non-perturbative nature of

spectroscopy is a huge advantage of these measurement techniques and a variety of spec-

troscopic methods exist to diagnose MST plasmas. Plasmas inherently emit radiation and

this can be passively measured to infer parameters such as temperature. Alternatively, a

plasma can be non-perturbatively coaxed to emit non-inherently generated radiation that

can then be measured to determine temperature, density and other parameters associated

with various species (i.e. ions or electrons). There is also interferometry which studies

properties related to the index of refraction of the plasma which compares the phase of

an electromagnetic wave sent through the plasma with a reference. Despite often measur-

ing the same plasma parameters, these tools all make independent measurements. This

means that they can be modularly combined in a Bayesian analysis framework to fully

leverage the data collected by each diagnostic. This technique will be described in greater

detail in Ch. 5.

One main goal of utilizing this bevy of spectral diagnostics was to infer the effective

charge state, Zeff , of standard RFP plasmas. Zeff is one of the parameters needed to



48

calculate the Lundquist number and so its updated measurement was of great interest to

this project. The process for measuring this quantity has vastly improved over previous

methods [15] and has determined that the effective charge state of enhanced-confinement

RFP plasmas is Zeff ⇡ 2.3 in the core [16]. We will leave further discussion of inferring

this parameter to Ch. 5. For now, let us dive into discussing the basic overviews of the

FIR, SXR and CHERS diagnostics.

3.3.1 FIR

The far-infrared (FIR) laser interferometer diagnostic is a system that is used to measure

the plasma parameters that affect the index of refraction of the plasma, including the

magnetic field parallel to the laser path, Bz, and the line-integrated electron density, ne.

This thesis used the FIR system to measure ne to a high degree of accuracy with high

time response. A feature of the dataset described herein is that most of its shots were

diagnosed by the FIR system, which is a vast improvement over a traditional MST dataset

which tended to use the less accurate and less robust CO2 interferometry system for the

majority of density measurements [17].

The idea behind interferometry is that a beam passing through the diameter of the ma-

chine is compared to a reference beam that does not pass through the plasma. From the

measured phase difference between these two electromagnetic waves, the line-integrated

electron density can be inferred. The relevant equation derived from the Appleton-Hartree

formula for the refractive index of a cold plasma is

�� =
e2

4⇡c2me✏0

Z
nedl (3.2)
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where � is the phase difference between a wave from a chord that has passed through

the plasma and the reference beam, � is the wavelength of the electromagnetic, or laser,

wave, z is the distance along the length of the chord through the plasma,
R
nedl is the

line-integrated electron density, and ⇡, c, me, e and ✏0 are the numerical constants for the

ratio of a circle’s circumference to its diameter, the speed of light, the mass of an electron,

the charge of an electron and the permittivity of free space, respectively [17].

The key components of the FIR interferometry system are two newly updated, solid

state, continuous wave sources tuned to slightly different frequencies and a recently up-

graded set of planar-diode mixers. When the sources are combined, a modulated signal

is produced. From that, the relative phase between the lasers can be obtained. There are

eleven FIR chords that pass through the machine that are separated into two sets that are

toroidally displaced by five degrees. A diagram of this set up is shown in Fig. 3.6. After

the lasers pass through the machine, they are combined at wave-splitters and measured

with a UCLA fabricated diode/pre-amplifier assembly [17].

3.3.2 Soft X-Ray Diagnostic Systems

Plasmas passively emit x-rays that can be collected and measured at relatively much less

expense than the other diagnostics that will be covered in this thesis. Soft x-rays (SXR)

spectroscopy measures radiation from lower energy, or longer wavelength, section of the

x-ray spectrum (100 eV . h⌫ . 10 keV). The SXR region is often chosen for observation

because it is a much “cleaner” portion of the spectrum that is easier to interpret than

vacuum ultraviolet (i.e. h⌫ . 100 eV) and more intense than hard x-ray (h⌫ & 10 keV)

emissions at thermal temperatures. We will now go over the main features and sources

of this spectrum.
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FIGURE 3.6: A schematic of the FIR system. This shows the old system that
was powered by laser-pumped CO2 sources. New solid state sources were
installed by James Duff and employed for the data collection presented in

this thesis [17].
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Plasmas emit several varieties of electromagnetic radiation. The primary source of

x-rays in MST is bremsstrahlung (braking) radiation, which is created when an electron

is decelerated by passing through the field of an ion. This is the “background” radia-

tion of the SXR spectrum. Effects from impurity ion species contribute more interesting

and challenging features to the spectrum. Low-Z impurities, such as (C, N, or O), most

significant contribution comes from radiative recombination, a process where an ion cap-

tures a passing electron and radiates the residual kinetic energy. This shows up in the

spectrum in features that look like steps. Medium and high-Z impurities contribute ad-

ditional challenging features to the spectrum. These impurity ions are not fully ionized

so that when they interact with a passing electron, bound ground-state electrons of the

atom are excited to higher energy levels. When this excited energy electron decays back

to the ground state, photons are emitted with the residual energy. This process appears

in the spectrum in the form of excitation lines. MST plasmas typically emit very bright

excitation lines at E ⇠ 2keV which significantly complicates the interpretation of the

SXR measurements [14]. For a more detailed description, please refer to P.D. VanMeter’s

thesis[14].

The SXR tomography diagnostic utilizes two-color measurements measure electron

temperature as well as reconstruct internal features of MST plasmas [18]. A diagram

depicting the lines-of-sight of the diagnostic is shown in Fig. 3.7. Four detectors at a

toroidal location of � = 90
� make up this diagnostic. The detectors’ viewing geometry

was selected to sample the plasma cross-section sufficiently for tomographic inversion.

Each detector has 20 Si photodiodes which are approximately paired to share a line-of-

sight with another photodiode so that ten chords are effectively viewed at each of the

four detector locations. The diodes look through beryllium foils with either a “thick” (172
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m) or “thin” (45 m) thickness. This allows the diagnostic to sample the slope of the SXR

continuum so that Te can be inferred. The signal from each photodiode is passed through

a differential transimpedance amplifier and then digitized [14].

Another SXR tool used for the project was the NICKAL2 Ross filter detector. It is a

single-chord spectrometer that was designed specifically to isolate the signal from Al+11

and Al+12 transition lines [19] by carefully selecting filter pairs to create pass-bands into

which incoming radiation can be isolated. Fig. 3.8 shows transmission curves for the

three filters installed in the NICKAL2 detector.

The detector itself is made up of three photodiodes, the same type that is used for the

SXR tomography diagnostic. A more detailed description of the diagnostic can be found

in N. Lauersdorf’s senior thesis [20]. The filter choice was designed to, of course select for

the appropriate passband, but also to provide enough structural support and ease-of-use.

The three filters ultimately chosen were made up of Zr (2.0 m)+ Mylar (8.0 m), Al (6.8 m)

+ Be (31.2 m), and Si (10.0 m) + Be (12.7 m) [20].

The NICKAL2 Ross Filter was used to measure Al impurity densities to inform a Zeff

estimate for standard plasma that will be discussed in Ch. 5.

3.3.3 CHERS

To measure parameters such as density and temperature of impurity ion species, the line

radiation emitted by these impurity ions is analyzed. Line radiation, which was briefly

touched upon above, is the emission of light from an atom due to the transition of elec-

trons between bound states. In a magnetically confined plasma, the dominant processes

that lead to line radiation are electron impact excitation and charge exchange recombi-

nation. The charge exchange recombination spectroscopy (CHERS) diagnostic obviously
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FIGURE 3.7: This figure shows the lines of sight of the SXR tomography di-
agnostic. It is reproduced from [14]
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FIGURE 3.8: This figure shows the lines transmission bands for the three
filters of the NICKAL2 Ross filter detector. The dashed lines represent the
brightest Al emission lines in a characteristic MST plasma. The figure is re-

produced from [20]
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focuses on measuring the latter. Charge exchange occurs when an electron from a neutral

atom is donated to an ionized atom. When the donated electron, which is initially in an

excited state, quickly de-excites, it emits line radiation at a wavelength that is determined

by the ionization state of the atom. This process is on the nanosecond time scale, much

faster than any relevant ion dynamics of interest in the plasma [21].

One strategy to obtain local measurements of an otherwise inherently line-integrated

view, is to inject a neutral beam of particles perpendicular to the optical line of sight. This

actively provides a local source of charge exchange emission that can then be analyzed

to infer the plasma parameters at the intersection of the neutral beam and the optical

line-of-sight.

The Charge Exchange Recombination Spectroscopy (CHERS) diagnostic on MST is

optimized to measure fully stripped carbon, C+6, which becomes C+5 when an electron

is donated by atoms in the neutral beam. The lines of sight and beams depictions of the

beams traveling through MST are shown in Fig. 3.9. To obtain a measurement, a diagnos-

tic neutral beam (DNB) provides the donor neutral atoms to provoke charge exchange.

Eleven poloidal view ports with lines of sight perpendicular to MST retrieve the emit-

ted light that is then fed to a high-throughput, double-grating spectrometer optimized to

measure the C+5 line at 343.383 nm. Thirty-two photomultiplier tubes record the light

from the exit slit of the spectrometers and their signal is digitized and filtered. Data from

a “passive” view at a similar location through the plasma is also gathered so that the

background electron impact emission can be accounted for in the total “active” signal.

CHERS data collection in this thesis was relatively limited (see Fig. 3.12) due to re-

source constraints. However, data was collected at key points in parameter space with an

eye toward being able to extrapolate and interpolate the measurements to other locations
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FIGURE 3.9: This figure shows a poloidal view (left) and a toroidal view
(right) of the CHERS diagnostic in MST. On the left, green lines represent
poloidal optical views intersecting the diagnostic neutral beam, intersecting
the beam perpendicularly. On the right, we see bothe the “active” view that
observes charge exchange from the neutral beam and the background impact
emission as well as the “passive” view which only collects the background

electron impact emission. This figure is reproduced from [21].

in parameter space.

3.4 Summary

Two aspects of the experimental set-up were discussed in this chapter: producing RFP

plasmas over a wide-range of Lundquist numbers and the main tools used to diagnose

those plasmas. Plasma current and electron density are the ”knobs” on MST that an op-

erator can control to vary the Lundquist number, as is depicted in Fig. 3.10. The new PPS

system enabled the plasmas created to span a wider range of Lundquist numbers than

had previously been possible on MST.
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To diagnose these plasmas, several diagnostics coupled with Bayesian analysis tech-

niques and the MSTFit equilibrium solver were used to infer the plasma parameters and

used in the analyses presented later in this thesis. Fig. 3.11 provides an overview of

how each of the major diagnostics contributed to the inferred plasma parameters in the

main scaling relationship that was studied, i.e., how magnetic field fluctuation ampli-

tudes scaled as Lundquist number was varied.

Ultimately, the data collected create a valuable database, not only for this study, but

also for future use. The utilization of the FIR diagnostic to measure density for most every

shot in this data set is a vast improvement over the CO2 interferometer density data that

make up most other MST datasets. Additionally, the Thomson scattering diagnostic was

able to collect data over the whole radial profile with an improved signal-to-noise ratio,

which has not been possible in other Thomson scattering data collection. These data will

therefore be invaluable contributions to future studies, particularly any efforts to validate

computational codes and results, especially given the expensive of operating many of the

spectral diagnostics employed. Information about accessing this database can be found

in Appendix A.

As was mentioned earlier, the Thomson scattering diagnostic played a particularly

important role in diagnosing the plasmas, and therefore, its discussion as been given its

own chapter. We will be going over its nuances and contributions next.
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FIGURE 3.10: A figure depicting how to vary the Lundquist number on MST.
The two control ”knobs” are plasma current, Ip, and density, ne. Each color

represents a different density.



59

FIGURE 3.11: This is the equation covered in Ch. 2 (Eqn. 2.2 ). This figure
depicts what tools were used to infer the quantities therein.

FIGURE 3.12: This table summarizes where in parameter space the diagnos-
tics described in this chapter and employed by this project were used.
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Chapter 4

The Thomson Scattering Diagnostic on

MST

The Thomson scattering (TS) diagnostic on MST is an active spectral measurement tool

that provides high spatial resolution electron temperature and relative electron density

profile measurements. For this thesis, the temperature profiles from TS were utilized to

infer the Lundquist number (S ⇠ T 3/2
e ) for the Lundquist number scalings (Ch. 5), to con-

strain MSTFit equilibrium reconstructions, and to create a database of ensembled electron

temperature profiles across a wide range of Lundquist numbers. It also has contributed

to inferring an effective ion charge of MST plasmas via an integrated data analysis tech-

nique, or Bayesian approach [1]. This measurement is an important improvement to our

inference of S in MST plasmas.

This chapter provides an overview of this particularly important diagnostic. To begin,

we will review the salient physics and principles of the Thomson scattering diagnostic.

We will then cover the components that comprise the MST TS system. Extensive calibra-

tions and alignments of the various subsystems were performed before undertaking the

experimental campaigns discussed herein. These will also be reviewed and summarized.
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Following that, we will discuss the new ensembling technique developed to create Te(r)

profiles at low Lundquist numbers, improving the profile quality and extending the lower

bound in density at which temperature measurements can be made. We will end with a

summary of the chapter.

At its peak diagnostic capacity, the TS system produces high-temporally and spatially

resolved temperature measurements with the capacity to measure the absolute electron

density as well. These features, however, require a great deal of resources. Even a basic

Thomson system possesses a relatively high number of components, compared to say

more passive spectral diagnostic such as x-ray diagnostics. All of this is to say that, given

that the Thomson diagnostic during the main thrust of this thesis project was operated

with a two person team and an occasional part-time engineer, rather than the previous

team of seven, a challenge for this thesis was to adapt TS usage so that it could be operated

with relatively limited resources. This motivated a myriad of adaptations and updates to

the diagnostic’s subsystems since the last graduate student to work on Thomson wrote

a thesis; herein we will pay special attention to noting these changes. I hope this helps

any future users who may endeavor to use of the diagnostic again. This also motivated,

in part, the creation of high-quality profiles that may be employed by future MST users,

should Thomson not be available during their run campaigns.

4.1 Key Physics and Principles Underlying the Thomson

Scattering Diagnostic

In the classical limit (~! << mc2), when an incident electromagnetic wave impinges on a

charged particle, in this context, an electron, it is accelerated by the electromagnetic wave,
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FIGURE 4.1: This figure depicts the process of Thomson scattering, including
details specific to the MST diagnostic.

thereby emitting electromagnetic radiation. This re-emitted radiation is called a scattered

wave, and this process is called Thomson scattering.

Fig. 4.1 depicts this sequence, including details specific to MST TS. The Thomson scat-

tering diagnostic on MST uses a Nd:YAG (neodymium-doped yttrium aluminum garnet)

laser to produce the incident radiation that accelerates the plasma electrons. The scattered

light is doppler-shifted by the movement of the electron and collected by the collection

optics. In the figure, ~ks and ~ki are the scattered and incident wave vectors respectively.

The electric field of the incident laser wave, ~Ei, is oriented in the toroidal direction. One

dimension of the scattering is sampled, defined by ~k = ~ks � ~ki, due to the nature of the

experimental set-up.

The appeal of harnessing Thomson scattering to diagnose plasmas becomes clear when



66

we look at the equation for the scattered power spectrum. To make the appeal most obvi-

ous, we will start with showing this expression in the nonrelativistic dipole approxima-

tion, where the scattered power spectrum per unit solid angle is given by,

d2P

d⌦sd⌫s
=


2⇡r2e

Z

V

hSiid3r|ŝ⇥ (ŝ⇥ ê)|
�
fk
⇣!
k

⌘
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(4.1)

where ⌫s is the scattered frequency, hSii is the average incident Poynting vector magni-

tude, ŝ and ê are the unit vectors associated with the scattered wave vector and the electric

field of the incident electromagnetic field respectively, and fk is the one-dimensional ve-

locity distribution in the k-direction. From this expression, we see that the scatter power

spectrum is simply proportional to fk. The one-dimensional velocity distribution function

for a Maxwellian distribution is given by,

fk = ne

✓
me

2⇡Te

◆1/2

exp

✓
�mev2k

2Te

◆
, (4.2)

where vk is the magnitude of the electron velocity as defined by ~k. It then follows that by

measuring the power spectrum of Thomson scattering, one can infer the electron temper-

ature and density of the plasma.

It is important to note that Eqn. 4.1 is a simplified, nonrelativistic formulation that

neglects to account for headlighting effects that are significant in high temperature plas-

mas; neglecting to account for relativistic effects would lead to overestimating the plasma

temperature. Accounting for this effect, Zhuravlev and Petrov developed a fully rela-

tivistic formulation for the power spectrum that can be solved analytically using a rela-

tivistic Maxwellian distribution [2]. TS systems in high temperature plasma applications
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typically employ Selden’s formulation of this expression, which is computationally con-

venient and given by,

S!(�s, ✓, µ, ne) =
ner2ex

4 · q(�, µ, ✓)
2�iK2(µ)

p
1 + x2 � 2xcos✓

exp
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where x =
�i
�s

, µ =
mec2

Te
and K2(µ) is the modified Bessel function of the second kind with

order two, and the scattering angle, ✓, is defined as the angle between the incident and

scattered wave vectors such that cos✓ = ~ki · ~ks/|ki||ks| [3, 4].

This dependence of the scattered power spectrum on the distribution presents a sig-

nificant advantage to using the Thomson scattering diagnostic, relative to say, x-ray di-

agnostics that passively measure the inherent electromagnetic field of the plasma to infer

temperature, but whose interpretation of the data is significantly more complex. How-

ever, there are quite a few challenges associated with the TS diagnostic.

First let’s consider the cross-section for Thomson scattering, given by,

� =
8⇡

3
r2e = 6.65⇥ 10

�29m2, (4.4)

where re is the electron radius. This means that of the incident photons used to incite

Thomson scattering, only a small fraction (likely around ⇠ 10
�13) will be collected. This

necessitates the use of high-powered lasers so that the enough scattered photons can be

gathered to infer the temperature.

Additionally, because Thomson scattering necessitates the use of more components

than an x-ray diagnostic (laser optics in addition to collection optics), there are many

added complexities for each of these subsystems. We will cover these in the next section

as we go over the MST TS system’s many components.
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4.2 MST Thomson Scattering

In this section, we will go over the constituent components of the MST TS system. We

will start by giving an overview of the system and its most relevant components. We will

then touch base on the subsystems that have been adapted to increase the diagnostic’s

ease-of-use. Many of these improvements were spearheaded by others so they will only

briefly be discussed to give a picture of the state of the system at the time of this chapter’s

writing.

4.2.1 System Overview

To get an idea of the components that make up the TS MST system, we will now walk-

through how TS data is generated during a MST plasma discharge or “shot.” The TS

system also takes what are called “Thomson” or “laser shots” that are distinct from MST

shots. A laser shot is the process of firing the laser and collecting data from the scattering

process. Many Thomson shots are fired during a single MST shot when the diagnostic is

being used. To take a Thomson shot, first the laser system- which for the data collection

presented herein comprised of one of the two 2 J Nd:YAG lasers- is set to fire at set in-

tervals for up to 15 laser shots. For the vast majority of the data collected for this effort,

the laser was set to fire at 1 ms intervals for 15 laser shots during the flattop period of the

plasma discharge. The laser head resides in the Thomson laser room across the hall from

the MST machine area. When fired, the beam makes its way through the beamline enclo-

sure and via a set of turning mirrors through the ceiling, across the hall to the machine

area, and eventually, to a turning box directly above the MST machine at 222� toroidal.
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FIGURE 4.2: This figure shows the path of the laser through MST and the
scattering volumes that are measured by the fiber image plane. The green
vectors represent the incoming and scattered light while the red rays trace
the field-of-view of the fiber optic cables in the fiber image plane that collect

scattered light from 21 radial points (1-2 cm resolution).
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From there, it is directed downward into MST as is shown in Fig. 4.2. The laser makes its

way through the device into a beam dump at the bottom of MST.

When inside the device, the laser light is scattered by electrons and a portion of that

scattered light is captured by the collection optics. The collection optics assembly, con-

sisting of primarily a collection lens system and a bundle of fiber optic cable faces, sits at

20� poloidal. At the time of the data collection for this thesis, the lens system consisted

of a seven-element lens with a replaceable plasma facing component. This plasma facing

component becomes coated with repeated use, diminishing the signal strength. A new

streamlined design for the collection lens system has since been implement to improve

ease-of-use. This will be covered in a subsequent section. In the image plane of the collec-

tion lens, 23 fiber optic cables collect light from radial locations along the minor radius as

is shown in Fig. 4.2. Each fiber samples a different direction of the distribution function:

while ~ki remains constant, ~ks shifts slightly for each location, thereby changing the direc-

tion of ~k. Sampling volumes at the edge are slightly larger ( 2 cm) while near the core the

radial extent of the sampling volume is smaller ( 1.3 cm) [5]. The fiber optic cables trans-

mit the scattered light to the Thomson room to a set of 6- or 8-channel General Atomics

polychromators equipped with avalanche photodiode (APD) modules. Each polychro-

mator, using light collected from a single minor radial location in MST, has a relay lens

and a different bandpass filter in front of each channel so that a different passband of

the scattered light spectrum is detected by that channel’s APD. These APDs produce a

DC signal and a delay-line subtracted ’AC’ signal. The DC signals are digitized at 10 ns

time resolution over a 2V full-scale range with 16 bit resolution using Struck digitizers

(SIS3302), which allows for the digitization of both the signal, the background light, and

any scattered laser light. The AC signals are digitized at 1 ns time resolutions with 8 bit
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FIGURE 4.3: This diagram depicts a six-channel polychromator. Each channel
of the polychromator is equipped with an APD detector and a preamplifier

module.

resolution over a full scale range of ⇠ 200 mV. These signals are then fit and analyzed

in a Bayesian framework to infer the plasma electron temperature and relative electron

density.

As has been mentioned, several portions of the TS system have been modified since

the last time the system as been throughly discussed in a thesis. The rest of this section

covers the most significant of these updates.

4.2.2 APD Detector Power Supply and Feedthrough Panel Upgrade

In order to facilitate discussion of the upgrade of the APD power supply system, we will

begin with an overview of the polychromators, APDs, and preamps that comprise the

system.

Fig. 4.3 shows the layout of a six-channel polychromator. The MST system has 21

polychromators, 15 of which have six channels and six of which have eight. Each chan-

nel is equipped with and APD+preamplifier module, totaling 138 APDs. The amplifier
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modules and polychromators were manufactured by General Atomics. Each preampli-

fier module has a four step DC gain selection. The preamplifier modules are powered by

±8 V and the APDs are biased by a steady high voltage input between 270-430 V. Each

detector is set to its own specified bias voltage. The gain of the detector is dependent on

the bias voltage. The output of each module includes a DC signal and an AC signal as

was described above. All the detectors are housed in racks in the laser room of the TS

system. Their digitizer and power supplies reside in the mezzanine above the laser room.

RG 174U coax cable is used for the two gain cables (since removed), three bias cables, and

two signal cables.

Before the upgrade, a single power supply powered all the detectors and distributed

this power via a feedthrough panel in the roof of the laser room/floor of the mezza-

nine. This feedthrough panel also allowed for the gain of the preamplifier modules to be

changed and also served as an interface between the digitizers on the mezzanine and the

detectors in the laser room. Each of the cables interfaced with the feedthrough panel via

a BNC connector.

This system left much room for improvement. First, the gains for the preamplifier

modules, which were meant to be kept floating, were often shorted, leading to issues

with the temperature inferences that were difficult to diagnose. Additionally, it was very

possible to mix up the high voltage input with any of the others, potentially leading to

damage in the preamplifier modules. Excess cable also was coiled and hung around in

the room before interfacing with the feedthrough panel, introducing unnecessary signal

degradation. These factors all motivated an upgrade to the feedthrough panel and power

supply system for the detectors. In 2018, the upgrade was completed with the help of

several student hourlies [6]. Broadly speaking, its goals were to improve the reliability,
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safety, and usability of the system.

Fig. 4.4 shows a diagram of the laser room and mezzanine both before and after the

upgrade. The upgrade replaced the single power supply with a set of 138 modular power

supplies. Each power supply is housed in a rack system and can be easily removed and

replaced or repaired. Each PCB board contains two power supplies powering two detec-

tors. Fig. 4.5 shows a simple block diagram of the power supply. A more detailed circuit

diagram and PCB layout can be found in the document library. These power supplies

were designed and implemented with extensive help and input from Don Holly. A major

design requirement was that no new sources of noise be introduced to the system and that

the output voltage be stable. ±8 V input from the back of the rack is carried through to

the front connectors. +8V is fed into a 5V regulator which is then used to power a switch-

ing regulator. This regulator utilizes a controlled transition time to retard high frequency

harmonic, while efficiently “boosting” to HV. A Resonant Royer Converter (RRC) further

reduces noise produced by the switching regulator by minimizing the high frequency

harmonic in the power drive stage. A RRC is essentially a saturable-core transformer and

saturating the transformer core leads to switching. In a RRC, transistors in a push-pull

configuration conduct out-of-phase switching. The RRC outputs a square wave that is

rectified to produce the HV bias. The HV bias is also provides feedback to the switch

current sink to maintain a constant bias [7].

Fig. 4.7 shows the results of noise and stability testing that was performed before

implementing the system. The stability testing was performed by measuring both small

and long time scale voltage variations. The tolerance for a voltage change before the APD

gain was impacted was calculated to be �V = ±0.244 V. This was obtained by taking

the temperature coefficient of the DC reverse operating voltage for constant gain, then
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multiplying that value by the temperature tolerance allowed during calibrations [8]. We

see that the stability tests remain well below this value for both the long and short term

testing.

The noise was tested by measuring the dark variance of the detectors while powered

by the new and existing power supplies, as well as a linear power supply. The signal to

noise ratio for the APD detectors is given by,

SNR =

r
N ⇤ QE

F
, (4.5)

where N is the number of photons, QE is the quantum efficiency of the of the detector,

and F is the noise enhancement factor beyond Poisson statistics. The ratio of F/QE is

given by,
F

QE
= NAPD

�2
pulsed � �2

dark

S2
APD

, (4.6)

where �2
pulsed is the variance while the light source in pulsed, �2

dark is the variance while

the light sources is off, and SAPD is the signal from the APD. By measuring the dark

variance of the detector, we could therefore monitor the impact of the power supplies to

the dectectors’ signal-to-noise ratios. The results of the noise testing indicated that the

performance of the new system matched the performance of the replaced system.

In addition to upgrading the power supplies, a portion of the feedthrough panel was

removed so that cables could be fed directly to the mezzanine without interruption. The

connector type for the HV cable was change from BNC to SMA. No other connectors

used this type of connection. Cables to the power supplies and digitizer where therefore

shortened significantly and the possibility of a harmful misconnection was eliminated.

In summary, the spurious issue with the preamplifier gains was the eliminated, the
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FIGURE 4.4: These pictures show the ”feedthrough panel” in the Thomson
detector/laser room before the upgrade. The feedthrough panel resided in
the ceiling of the room/the floor of the mezzanine above the room. The photo
of the left (A) is a view from the mezzanine and the photo on the right (B) is

the view up from the laser room.

risk of component damage due to improper application of HV was mitigated, and the sig-

nal degradation was decreased with to the elimination of excess cables. The new power

supply system supplied stable biased voltage in both short and long time scales, while in-

troducing no new noise to the system. Additionally, its modular design added robustness

to the system.

4.2.3 Beamline upgrade

Around 2018, a beamline upgrade for the Thomson scattering lasers was completed. The

project was spearheaded by Craig Jacobson to enable the TS system to obtain an absolute

electron density measurement and improve overall data quality. Prior to the upgrade, the

abundance of straylight prohibited an absolute density calibration. The spectral channel
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FIGURE 4.5: This is a block diagram summarizing the layout of the upgraded
high voltage power supplies. A full circuit diagram and PCB layout board

can be found on the MST document library.
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FIGURE 4.6: These diagrams show the layout of the system pre- (A) and post-
(B) upgrade.
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(A) Stability testing results of the new APD
power supplies. The upper plot shows the long
time scale results while the lower plot shows the
short time scale results. The voltage change re-
mained well below the acceptable threshold for

both tests.

(B) The noise testing results for the new power
supplies. The dark variance measured when em-
ployed the upgraded, or ”Switched”, power sup-
ply matched the variance when using the re-

placed power supply (labeled ”Legacy PS”).

FIGURE 4.7: The figures here summarize the noise and stability testing results
performed on the upgraded detector power supplies.
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centered around the laser line would saturate, so that the total number of scattered pho-

tons could not be measured. This in turn means that absolute electron density cannot

be inferred. The beamline for the Thomson system was upgraded to include a longer

beam path before entering the MST vessel so that baffles could be added to mitigate the

effects of straylight. Detectors were also added to measure the laser output. Ultimately,

an absolute density calibration was never performed. Fig. 4.8 shows the baffling system

employed to mitigate straylight in the system [9, 10].

Although the absolute density measurement never came to fruition, the overall reduc-

tion in straylight improved data quality for standard TS temperature profile. Straylight

from the laser line would often leak into adjacent spectral channels. This was particularly

a problem for the edge-most points. At the edge, the plasma temperature decreases such

that only a few spectral channels collect data. Temperature measurements could not be

resolved with parasitic straylight leaking into neighboring channels and saturating them.

Following the beamline upgrade, the plasma temperature could be measured effec-

tively to the edge of the device; previously the limit was around r/a ⇠ 0.8. A selection of

ensembled profiles generated for this thesis will be shown in the next chapter, including

temperature measurements at radial locations out to the edge of the device (r/a ⇠ �0.95).

4.3 Calibration and Alignments

Extensive TS system calibrations and alignments of subsystems were performed prior to

and during any data collection presented herein. The procedures for these calibrations

have been well described and documented by others [11, 4, 12]. In this section, we will

summarize the procedures performed.
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FIGURE 4.8: The figure shows the Zeemax modeling that informed the beam-
line upgrade. The modeled rays are shown in blue and an ideally absorbing
plane plane stops the rays from scattering directly from the focal lens to the
viewing optics. This figure is reproduced from Craig Jacobson’s RSI paper

[10].

4.3.1 Summary of Procedures Performed

A series of calibrations were performed both before and throughout the data collection

process. The more time intensive procedures were performed before data collection.

These included: polychromator and detector alignment, noise calibration, and a spectral

calibration.

The polychromator alignment procedure involves shining a light source into the poly-

chromator then ensuring that the relay mirrors center the light appropriately onto the

next channel in the sequence. This procedure is performed on each channel, starting at

the zero-channel until all the channels have been aligned. Additionally, the APD posi-

tion behind the filters is adjusted to maximize the signal strength. This procedure was

performed on all the polychromators.

The noise calibration procedure is adapted from what previously would have been

wrapped up in the absolute gain calibration procedure. This procedure and model were

developed by Lucas Morton [11, 12, 13]. The noise calibration is technically only part of
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the absolute gain calibration procedure. To completely replicate the result of that pro-

cedure, a gain calibration would also need to be performed, which is more time inten-

sive than the noise calibration, though still less intensive than the absolute calibration

procedure. Since the detectors themselves had not changed since a calibration was last

performed, a noise calibration was deemed sufficient but necessary given the use of up-

graded power supplies. The noise model written in terms of signal variance �2 is given

by,

�2
= ✏2S2

+GMFS + (GMFsbg + v2e)⌧int, (4.7)

where ✏ is the relative uncertainty introduced by numerical integration or pulse-fitting

method, S is the signal, G is the gain, M is the avalanche gain, F is noise enhancement

factor, sbg is the mean background signal level in volts produced by background plasma

light, v2e is the background electronic noise spectral density in V2/Hz measured at the

output of the detector, and ⌧int is the integration time. The two middle terms in Eqn. 4.7

are the photonic noise contribution to the signal variance, or,

�2
phe = GMF (S + sbg)⌧int. (4.8)

Luckily, it has been found that the noise model coefficients GMF are constant over the

range of relevant wavelengths. These noise model coefficients can be determined simply

by fitting the variance. In this updated formulation, the signal to noise ratio is given by,

SNR =

r
S

GMF
. (4.9)

The noise calibration is performed using the daily calibration system, which will be
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discussed again shortly. Fibers from shine 940 nm light from integrating spheres obliquely

onto each APD, bypassing the interference filter. While the amplitude of the light cannot

be varied, neutral density filters of varying attenuation are placed in front of the light

source to vary the amplitude. The measured variances are then fit to Eqn. 4.7 to obtain

the necessary noise factors to properly calibrate the system.

The last of the significant procedures was a spectral calibration. This procedure is

used to create the instrument functions for each polychromator channel. The instrument

function for a given polychromator, Ipoly is given by,

Ipoly(�) = GM ⇤ T (�) · ⌘APD(�), (4.10)

where T (�) is the transmission function of the filter and ⌘APD(�) is the quantum efficiency

(sometime called QE) of the detector. It is necessary to determine the instrument func-

tion so that the model signal can be determined, which we will see in the next section is

necessary for fitting the data to determine temperature. The model signal is given by,

Smodel =

Z
S!(�, Te, ne)GM⌘(�)T ()d�, (4.11)

where S!(�, Te, ne) is the scattered spectrum in photons per nm.

The spectral calibration procedure requires a stable light source with a broad output

spectrum and a calibrated reference detector. A supercontinuum (SC) light source, pro-

ducing broad spectrum wavelengths covering the necessary range from 700-1200 nm, is

passed through a SpectraPro 500i scanning monochromator. The monochromator trans-

mits a narrow spectrum with a selectable central wavelength and selectable width. This
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FIGURE 4.9: This figure shows an example instrument function. The dip at
910 nm is a result of a dip in the fiber transmission at that wavelength.

light is sent via fiber optic cable to a reference detector and the polychromator being cal-

ibrated. The monochromator central wavelength is scanned over the range of relevant

wavelengths in 1 nm intervals with 100 repeated trials at each step. For the calibra-

tion performed for this thesis, this wavelength range included the zero-channel which

includes the laser line. However, the zero-channel was not included in the fit procedure

because a method had not been developed to subtract the laser light from the total signal,

even though the straylight mitigation effort made it so that these channels were no longer

always saturated. Following the sweep, the dark voltages are recorded. The measured

signals from the polychromator APDs are divided by the reference APD signal to elimi-

nate variations caused by the lamp spectrum and monochromator transmission. Fig. 4.9

shows an example of a resulting transmission function for a polychromator.
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During the data collection, radial calibrations of the system were performed fairly

regularly. The radial calibration procedure determines from where in the minor radius a

polychromator is collecting data. This procedure had to be performed every time the

plasma-facing component of the collection lens was replaced. Additionally, the fiber

mount holding the fiber optic cables in place had to be realigned at this time. Nomi-

nally to perform this procedure, a radial calibration probe with a 1064 nm HeNe laser is

sent up through the machine from the beam dump, driven upward by a stepper motor.

This probe design was flawed such that the pinhole was not wide enough to emit light

and all emitted light came from an aperature in the side of the probe that was too wide to

localize the probe’s location. While the probe is inserted into the device, the Struck digi-

tizers simulataneously collect data from the zero-channel APDs. The stepper motor was

roughly calibrated to a specific radial locations, however, it is possible for these values to

drift and it is not a reliable way to set locations. Some fibers were also used as reference

values, although, this too was less than ideal, as the fiber mount and focusing can shift

when replacing the lens and aligning the fiber mount. Essentially, a reliable radial cali-

bration could not be performed and the values are rough estimates. This system has since

been updated by Daniel Den Hartog and Mark Thomas. The radial calibration probe is

now designed to emit only light out of a pinhole aperature so that the radial location can

be precisely determined. Additionally, the stepper motor driver has been updated and

has been calibrated so that exact position can be determined. The software to operate

this procedure has also been upgraded so that it can now be more easily performed by

one person. Finally, a new collection lens assembly has been designed and installed so

that the collection lens can be easily replaced without the use of the crane and needing to

realign the fiber mount.
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The radial calibration procedure was also used to monitor the degree to which the

collection lens had become coated. It has been observed that relatively high tempera-

ture discharges, and particularly disruptions, lead to the collection lens becoming coated

faster. Therefore data collection was performed starting at lower current and working

upward.

Finally, each day before data collection, a daily calibration procedure was performed.

This procedure is used to monitor the signals from the detectors before any data collection

begins so that any issues may be addressed from the outset. It is meant to provide a quick

check of the detector system and provide a record should any questions arise during

analysis. To perform this procedure, a pulsed, near-infrared LED emits 940 nm light that

is sent to three integrating spheres. This light is near the peak sensitivity for the APD

detectors. These then distribute light to each of the 138 APD channels via a port at the

top of the channel that bypasses the bandpass filters. The digitized signals are collected

by the Struck digitizers and then plotted to be quickly checked by the Thomson operator

as part of the Thomson set-up checklist to ensure that there are no obvious issues.

4.4 Low Density Analysis Technique

During data collection, many low density and temperature shots were taken. This pushed

the limits of what the Thomson system could diagnose. To improve the quality of these

low temperature fits, a new ensembling technique was developed.

The typical APD response to a signal is a negative-going pulse in the DC signal at

around ⇠ 1300 ns, and after the short duration of the laser pusle the APD current signal

quickly returns to the background level with a time constant ⇠ 40 ns. These pulses are
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then fit with a pulse fitting routine [5, 4, 14], and then the signal is integrated to obtain

the number of photons measured by the detector. Using this data the temperature is then

determined in a Bayesian framework [5]. Bayes Theorem says:

P (X|D, I) =
P (D|X, I)P (X|I)

P (D|I) (4.12)

where X is the model or inference, D is the data and I is additional background infor-

mation. P (D|X, I) is the likelihood and represents the probability of recording the data

given the model and background information. P (X|I) is the prior probability and rep-

resents information already known, such as constraints on the measured parameters (i.e.

temperature and density must be positive). P (D|I) is referred to as the evidence and is

significant when comparing different models but otherwise simply serves as a normal-

ization factor.

When we apply Eqn. 4.12 to the Thomson diagnostic we obtain the following formula:

P (Te, ne|D, �, I) =
P (D|Te, ne, �, I)P (Te, ne|I)

P (D|I) , (4.13)

where � represents the error. We neglect the evidence, and set the prior such that it is uni-

form over the measurement range. Then, assuming that the signals from each polychro-

mator channel are independent and Gaussian distributed, we can obtain the following

expression for the posterior:

P (Te, ne|D, �, I) =
1

QND

j=1

p
2⇡�j

exp

✓
�1

2
�2

◆
(4.14)
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�2
=

NDX

j=1

⇥
SAPD,j � Smodelj

⇤2

�2
j

(4.15)

where SAPD represents the number of photons determined analyzing the APD signal,

Smodel represents the number of photons expected by the model, and ND represents the

total number of polychromator channels. Because the absolute density measurement is

not incorporated, that parameter is marginalized out:

P (D|Te) =

Z
P (D|Te, ne)dne (4.16)

The error is estimated from the 1/e width of the one-dimensional probability distribution.

For low temperature data, a relatively small number of channels pick up a signal so

it is important to maximize the quality of fit in these channels. Additionally, since the

density will also be smaller at lower temperatures, the signal strength is diminished. To

compensate for this, a technique was developed to ensemble data. The pulses from each

laser shot within a single MST discharge were summed and then fit. This improved the

signal-to-noise ratio for the temperature determination. A prerequisite to performing this

procedure is to ensure that the data that are being ensembled are taken during period

when the plasma conditions are held constant, particularly the electron density. Most of

the low temperature and density data were collected using the PPS system on MST, which

is remarkably good at maintaining constant conditions. The results of the fit are reviewed

by eye to eliminate any overfitting or to exclude any channels whose data looks suspect.

This further improves the result, but is much more time intensive than the standard fitting

procedure. Fig. 4.10 shows an example of a plot generated for review when performing

this procedure. It shows data from “Polychromator 4” which has six channels. The zero-

channel, which surrounds the laser line, is excluded from the fit. The blue traces represent
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four laser shots during a single MST discharge. Here we only show four traces for clarity.

The red trace represents the summed result. These traces are processed to be in volts but

the summation is performed on the raw data and then processed the same as the other

traces. The black dashed lines shows the fitted pulse. Channels one and two look reason-

able. Channel three appears to be overfit and was manually set to be zeroed. Channels

four and five are also set to zero and also show signs of overfitting resulting in a photon

count that would be negative. Typically these channels are disregarded in the fit but here

the results are set to zero, which a is reasonable result when looking at the signals. It is

also possible to exclude a channel from the fit, rather than setting the result to zero if it

displays any signs of not functioning. This is done, for example, with channels one and

five for Polychromator 5 shown in Fig. 4.11.

A template Jupyter notebook has been created so that others may utilize this proce-

dure and instructions on how to do so have been documented on the Thomson scattering

plasma wiki under the MST wiki. The results of these improved fits are shown in both

the Appendix and in Ch. 5.

4.5 Summary

The Thomson scattering diagnostic was a vital component to the S-scaling effort. It pro-

vided electron temperature measurements, contributed to an IDA determination of Zeff ,

and a set of electron temperature profiles with r/a values > 0.8 thanks to the beam line

upgrade spearheaded by Craig Jacobson. It was adapted to be run with a team of two to

three people down from seven at its peak. These efforts increased the ease which which

the diagnostic can be used. A new ensembling technique was developed to improve the
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FIGURE 4.10: This figure demonstrates how the summing procedure may
be used to improve the temperature measurement. The traces are plotted in
volts versus time. Each blue trace represents data generated during a single
laser shot. The red trace represents the sum of the blue traces. The black
dashed lines overlaying the data represent the result of the pulse fitting rou-
tine. The traces are offset to provide an unimpaired view of the signal. Typ-
ically, this is done for all 10-15 laser shots taken during the MST discharge,
or for as many TS laser shots that are valid to include in the ensemble. The
data shown here are from a low temperature discharge (⇠ 50 eV). There is an
overfit of the data in channel 3 that can be zeroed by the person ensembling

the data, preventing an overestimation of the temperature.
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FIGURE 4.11: This figure shows a polychromator with two faulty channels as
an example for the type of channel that is excluded from the fit with the new
ensembling technique. Channels one and five show evidence of not collecting

data and should therefore be excluded from the fit.

quality of low density and low temperature data so that the database of Te profiles created

could span a large range of Lundquist numbers.
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Chapter 5

Lundquist Number Scaling Results

What follows is a presentation of the results from the main question posited by this study:

How do RFP dynamics scale with Lundquist number?

This question is explored to provide insights into how the RFP configuration might scale

to reactor-relevant sizes as well as how to better capture and investigate its physics with

simulations. Important performance metrics scale with Lundquist number, namely, the

magnetic field fluctuation amplitudes for various mode numbers, energy confinement

time, poloidal beta and the stochastic thermal diffusion. First, we will cover the frame-

work used to conduct the investigation and define relevant parameters and jargon for

this study. We will then go over the scaling results obtained from experimental data.

Then these results will be compared to those obtained from the modeling codes briefly

described in Ch. 2. We will also use the results to extrapolate to fusion-relevant scales.

The chapter will conclude with a summary of key take-aways and a discussion of how

the results align with stochastic theory.
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5.1 Framework

In this section, we will discuss the framework for the experimental data collection, estab-

lish the vocabulary used to describe these data, and go over the experimental definition

and significance of the various parameters of relevance. The “scaled parameters”, or pa-

rameters that were analyzed as Lundquist number was scaled, were the magnetic field

fluctuation amplitudes for many of MST’s magnetic modes, or bn, and several transport-

related quantities including the energy confinement time, ⌧E , toroidal �✓, and the thermal

electron diffusivity, �e. The word “parameter” is used broadly herein to refer to a values

that can be easily controlled by an operator of MST, such as plasma current and plasma

density, as well as values that are more indirectly controlled, such as the Lundquist num-

ber. To start, we will begin with a discussion of Lundquist number and then we will

briefly review each of the parameters whose scaling was studied as Lundquist number

was varied.

5.1.1 Data Collection: Scaling Lundquist Number on MST and the Green-

wald Fraction

The Lundquist number, S, served as the independent variable against which the scaling

study was performed (see Ch. 2 for a discussion on the theoretical and practical basis for

this choice of independent parameter). Recall that the Lundquist number is the resistive

diffusion time over the Alfven time, or,

S =
⌧R
⌧A

⇠ T 3/2
e Ipn

�1/2
e . (5.1)
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This parameter was varied on the MST device through a choice of plasma current,

Ip, and the line-integrated electron density, ne, where Ip served as a coarse adjustment

“knob” and varying density then more precisely adjusts the S value. Electron density and

temperature are correlated so that varying density affects the electron temperature. For

these scaling studies, data collection focused several plasma currents spaced across the

range of currents which MST is capable of generating, ranging from 35kA . Ip . 500kA.

The spacing between selected currents is not even and was chosen based on practical

considerations when employing the PPS system. At each of these currents, data collection

was focused at primarily on two density fractions of the Greenwald limit, or what will be

referred to as the Greenwald fraction, or ne/nG, herein. These values were ne/nG = 0.23

and ne/nG = 0.34 and were selected somewhat early on in the data collection. Due to time

constraints, data collection was concentrated over a relatively short period of time. These

values worked well for low current plasmas, while still being feasibly achievable at high

currents. Sometimes, these Greenwald fractions will be referred to as the low density data

and the latter will be referred to as the high density data respectively.

The Greenwald limit is an empirical upper bound on the achievable density at a given

plasma current in tokamak plasmas. It is given by nG =
Ip
⇡a2 , where Ip is the current in

MA, ne is the line-averaged density in 1
2
0 m�3, and a is the relevant scale length in m, the

minor radius of MST in this case [1, 2]. In practice, the RFP density limit is a soft limit

above which impurity and radiation losses are so significant that confinement degrades

and the plasma discharge prematurely terminates [3]. MST has achieved densities above

the Greenwald limit, however, for normal operation, MST plasmas obey the neG < 1

criterion, as do tokamaks. The use of this parameter has become somewhat standard in

RFP scaling studies.
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Fig. 5.1 shows a mapping of Greenwald fraction and current to Lundquist number

values to illustrate how Lundquist number was varied on the MST device. The Lundquist

number itself is not directly measured and the process employed to infer the Lundquist

number will be covered shortly. For the high density case, the high value does not follow

the expected pattern. Briefly, the data that make up the ensemble at that point are less

robust and fewer shots were included in that ensemble. This will be discussed in more

detail later on in the chapter.

The Greenwald fraction, or ne/nG, is equivalent to the inverse of the Ip/N parameter

that was used by Stoneking [4] and others in past RFP studies, where N = ne ⇤ ⇡a2.

In that study, data collection was also focused around two values of Ip/N = 2, 6 which

are equivalent to ne/nG = 0.5, 0.17 respectively. The full range of Ip/N , and thus the

full range of ne/nG, is accessible for any Ip such that the parameter space of Ip versus

Greenwald density fraction is rectangular. Stoneking’s study used a smaller range of

Lundquist numbers, but a wider range in Greenwald fraction. For this S-scaling study,

some data were collected for a Greenwald fraction ne/nG = 0.45. A fewer number of shots

were obtained for this high Greenwald fraction value, so those data were not analyzed or

included herein, though it would be possible to analyze these data for a smaller range of

Lundquist numbers than was done for ne/nG = 0.23, 0.34 cases.

Fig. 5.2 shows the data collected for this study. In the figure, ne/nG versus Ip space

is depicted and each dot represents an MST shot taken at that point in parameter space.

The magenta points represent data collected using the PPS system and the blue points

represent data collected using the Legacy power supply system. Lines of constant ne, a

more intuitive variable for most MST operators and users, are included for reference. The

yellow tinted area represents the band of parameter space that was used to create the
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low density, or ne/nG = 0.23, ensemble and the orange tinted band represents the high

density ensemble, or ne/nG = 0.34. Both these bands are centered at the precise value

and bounded by a 10% variation in this central value. A third band representing ne/nG =

0.45, shaded in gray, is also depicted. Data collection was also done at this band where

possible, however, because it is at a high density, ensembling these data over the entire

range of accessible Lundquist values was experimentally challenging, namely at high

current data collection. Using high densities was particularly challenging when using the

Thomson scattering system. High density operation typically leads to more disruptions

that coat the Thomson collection lens. Thomson personnel resources were limited, so

a balance was struck between pushing to high density operation and limiting resource-

intensive maintenance to the Thomson scattering system. Like was mentioned earlier,

these ne/nG = 0.45 data are included in the database created by this experimental effort,

but analyses of them are not presented here. In total, the dataset consists of over three

thousand MST shots and are accessible for any other analyses that subsequent WiPPL

users may utilize. Appendix A provides details on how to access and utilize this database.

5.1.2 Inferring Lundquist Number from Experimental Data

For the results presented herein, the Lundquist number was inferred from its constituent

experimentally-diagnosible plasma parameters. Looking at the expression for Lundquist

number again, this time expanding the expression, we have,

S =
⌧R
⌧A

=
µ0a2

⌘(Zeff , ne, Te)

B

a
p
µ0⇢

, (5.2)
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FIGURE 5.1: Mapping of density and plasma current to Lundquist number.
This mapping was done ensembling data of the measured quantities used to
determine Lundquist number to then make the Lundquist number determi-
nation. Two points exist at currents where both Legacy and PPS data were

collected.
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FIGURE 5.2: Plot depicting the data collected for this experimental effort in
Greenwald fraction over plasma current space. Over three thousand MST
shots are included. Not all shots shown here were used in the ensembles
used to create the S-scaling results presented in this chapter. The yellow and
orange shaded bands represent the low and high density ranges used for
those S-scaling ensembles. The magenta points were created using the PPS
system and the blue points were created using the Legacy system. The solid

colored lines represent constant electron density.
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where ⌘ is the resistivity, Zeff is the effective ion charge, Te is the electron temperature,

B is the magnetic field, and a is the minor radius of MST. B, ne and Te are relatively

straightforward to infer via measurement. However, the determination of resistivity, ⌘, in

part due to its constituent parameter Zeff , is a more complex and much less standardized

inference on MST. Its value will be discussed in more detail later, but to start, we will first

formulate a more practicable expression for the Lundquist number.

First, let’s take a look at our expression for the resistive diffusion time, which is given

by,

⌧R =
µ0a2

⌘
(5.3)

where a is the minor radius of MST, µ0 is the magnetic permeability of free space, and ⌘ is

chosen to be defined as a Spitzer resistivity, ⌘Spitz, following the formulation laid out by

Stoneking [5, 6, 4, 7], which is given by,

⌘k =
5.22⇥ 10

�5Z�ln⇤(Te[eV])�3/2

1� ft
⌦m, (5.4)

where ln⇤ is the Coulomb logarithm, ft is the trapped particle fraction, and Z� is given

by,

Z� ⇡ 0.4 + 0.6Zeff . (5.5)

This functional relationship between Z� and Zeff is taken from Hirshman and Sigmar

following Hutchinson’s notation and is an approximation via linearization [7, 6, 4, 8, 9].

Zeff is taken to be constant from a core value of the profile as Lundquist number is varied

(Zeff = 2.0). It is an estimation that was not directly measured from the plasmas gener-

ated for this study. This will be discussed in more detail later. The neoclassical correction

is 1/(1� ft) and is a volume averaged value that assumes that the plasma is collisionless.
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Its value was set to ft =0.38 which was obtained via equilibrium modeling [4, 10]. The

implications of these choices will be discussed in a subsequent subsection.

Next we look at the normalization factor, ⌧A. This is given by,

⌧A = a/vA =
a(µ0⇢)1/2

B
, (5.6)

where ⇢ = Aimpni is the ion mass density for deuterium (i.e. Ai = 2) and B = µ0Ip/(2⇡a)

is used as the characteristic magnetic field.

Ultimately, we get the following expression for the Lundquist number in terms of

experimentally measurable and convenient values:

S =
30 · IpT 3/2

e,0 (1� ft)

(0.4 + 0.6Zeff )ln�
p

Ain̄e,0

, (5.7)

where n̄e,0 is the line-integrated electron density for the central cord in units of 1019 m�3

measured by the FIR diagnostic, Ip is the plasma current in kA obtained by integrating

the signal from the Rogowski coil that encircles the plasma, and Te,0 = Te(r ⇠ 0) is the

core electron temperature in eV from averaging the three core-most points measured by

the 21-point Thomson scattering system and is used as the characteristic temperature for

this study. Ultimately, the Lundquist number is a global quantity and this definition is

a combination of core and line-averaged parameters. In order to scale with Lundquist

number, however, S needed to be distilled to a single value. Profile considerations will be

discussed in a subsequent subsection.
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5.1.3 Parameters Scaled

Magnetic field fluctuation amplitudes

The main parameter around which the scaling study was focused was the magnetic field

fluctuation amplitude. As was discussed in greater detail in Ch. 2, magnetic field stochas-

ticity leads to a rapid loss in particle confinement radially (i.e. out of the device). Large

magnetic field fluctuations lead to overlap in magnetic islands so that the magnetic topol-

ogy is stochastic rather than deterministic. The goal was to see how magnetic field fluc-

tuation mode magnitudes varied with Lundquist number. Should field fluctuation am-

plitudes diminish significantly as Lundquist number is increased, field lines in the RFP

will be deterministic enough that stochasticity would no longer be the major contributor

to radial particle transport.

For this study, normalized magnetic field mode amplitudes were investigated by mode

number. The expression for the normalized magnetic field fluctuation amplitude is,

b̃m,n = B̃m,n/B0,↵, (5.8)

where m and n are the poloidal and toroidal mode numbers respectively, B̃m,n is the

mode fluctuation amplitude, and B0,↵ is magnetic field on axis as determined by the al-

pha model [11, 12]. The fluctuations, B̃, are measured with sets of magnetic field coils

situated in the toroidal shell of the device (i.e. r/a = 1). As was described in Ch. 3, these

measurements are then Fourier decomposed into mode numbers that are resonant within

the plasma at locations shown in Fig. 5.3. The poloidal mode number for most of the

modes is m = 1 except at the reversal surface where all the m = 0 modes are present. The

toroidal field array cannot resolve the poloidal mode number, therefore, b̃m,n is in reality
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b̃n. For the majority of the data presented herein, B̃n = B̃n,✓(r = a) is the the poloidal com-

ponent of the magnetic field measured by the toroidal array of the magnetic field coils in

MST’s shell. B̃✓,n(r = a) primarily contains the m = 1 mode.

In this chapter, we look at the m = 1, n = 5 � 15 and the m = 0 modes. The m = 0 is

denoted as the n = 1 mode (see q-profile in Fig. 5.3). Though we are discussing plasmas

in the multi-helicity regime herein, and so there are no “dominant” modes as such, the

n = 6 mode exhibits distinct behavior and contains the most magnetic energy as is shown

in Fig. 5.4, particularly during a sawtooth crash. The n = 5 mode intermittently appears

in standard plasmas: it only exists for portions of the sawtooth cycle when q is larger than

0.2. Its signal shows an inverse sawtooth behavior, increasing at the crash when q(r = 0)

suddenly increases, then decreases until the next sawtooth crash. The m = 0 modes at

the reversal surface and m = 1 modes resonant in the core interact nonlinearly to produce

sawtooth events. The m = 0 of when the reversal parameter F = 0, thereby eliminating

the reversal surface [13, 14]. We will not focus on the regime where this occurs but will

look at the m = 0 mode keeping in mind its role in fueling these large dynamo events.

Sets of {S, b̃n} data were fit to the following equation:

b̃n = cnS
�↵n , (5.9)

where cn is the coefficient of the fit and ↵n is the scaling parameter of the fit.
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FIGURE 5.3: Example of an MST q-profile for a standard plasma. The island
widths are depicted by the horizontal bars. We see that the m = 0 low n
modes are all located at the reversal surface. The innermost mode is the n = 6

mode though the n = 5 can sporadically appear during sawtooth events.

FIGURE 5.4: Distribution of magnetic mode energy away from and during a
sawtooth crashed. Reproduced from [15].
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Energy Confinement Time

The global energy time, ⌧E , was also investigated in this study. This quantity represents

the e-folding relaxation time of the plasma energy due to heat conduction. It is given by,

⌧E ⌘ U

Win
(5.10)

where U is the global energy content in the plasma and Win is the net rate of energy input

[16].

The energy confinement time is of particular interest in the context of fusion. It is

one of the terms in the fusion triple product, a quantity that encapsulates the parameters

that need be maximized in order to increase the efficacy of a fusion reactor. For the RFP

concept, the energy confinement times are relatively low and this low magnitude is cited

as a weakness of the concept [17, 18].

Typical energy confinement times for standard discharges in MST are ⇠ 0.5 - 1.0 ms

[19, 20]. The confinement times shown in the following section were estimated in one

of two ways: (1) using MSTFIT code, which was briefly described in Ch. 3, to create

profiles on ensembles constrained by the ensembled electron temperature profiles, and

(2) by plugging diagnosed values into a simplified formula on a shot-by-shot basis. There

is no firmly established, universal scaling relationship for this parameter.

Electron Thermal Conductivity

Rechester-Rosenbluth type diffusion of thermal electrons is expected to behave as �R�R ⇡

Dstvth,e where Dst is the stochastic diffusion coefficient and vth,e is the thermal electron



106

velocity. The diffusion coefficient is given by

Dst(r) ⇡ ⇡LAC
|B̃r(r)|2

B2(r)
(5.11)

where LAC is the autocorrelation length for magnetic fluctuations and is LAC ⇠ 0.7 � 1.0

m and �mfp is the collisional mean free path and is on the order of 10s of meters [10].

The electron heat flux, Qe, is given by,

Qe = ��enerrTe, (5.12)

where �e is the electron thermal conductivity. In areas where the magnetic field is stochas-

tic, it has been established that the collisionless stochastic transport model adequately de-

scribes the measured heat diffusivity, i.e. �e ⇡ �R�R [21, 22]. For reference, Fig. 5.5 shows

how the measured �e aligns well with the stochastic model result, �R�R for standard plas-

mas. It also shows that in enhanced confinement plasmas in MST (i.e. PPCD plasmas),

the magnetic field is much less stochastic so that non-stochastic transport is dominant and

the magnitude of �e is an order of magnitude lower.

The �R�R values presented in the next section are estimated using the measured mag-

netic field fluctuations, the measured Te, Lac from a field line tracing program, and RESTER

profiles to translate edge measurements to the radial component magnetic field fluctua-

tions. More detail will be given about the RESTER calculations in the subsequent sections.
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FIGURE 5.5: The top row of plots show Poincarè plots of MST standard (left)
and enhanced confinement (PPCD) plasmas. The bottom row plots the re-
spective �e values for these types of MST plasmas compared to the model

�st. It is reproduced from [22, 23]
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Poloidal Beta

The � parameter is the ratio of the plasma pressure to the magnetic pressure in the plasma.

Therefore, the poloidal beta is given by,

�✓ =
< p >

(B2
✓/2µ0)

(5.13)

taking only the poloidal component of the magnetic field at r = a. It is advantageous for

a reactor to have a high � value as this corresponds to having high density and temper-

atures with relatively little applied magnetic field. Producing high magnitude magnetic

fields is expensive and reduces the efficiency of a reactor. The RFP concept possesses a

relatively high �, with experimental values in MST measured as high as 26% and an ideal

� limit on the order of 40% [18]. In RFPs, high � regimes are associated with a reduction

in dynamo activity and large reduction in magnetic field fluctuation power [24]. These

high � values are cited as an advantage of the RFP concept.

The �✓ values reported in the next section were calculated using the MSTFIT equilib-

rium reconstruction code.

5.1.4 Ensembling Methodology

“Ensembling”, a common practice in laboratory plasma physics, is an averaging tech-

nique that averages data from similar plasma discharges to improve the statistics of a

result. The typical methodology for creating ensembles in MST is to use a sawtooth event

as an anchoring for the time axis. One can then either average over the sawtooth event,

avoid it altogether by looking at times far away from an event, or look at specific peri-

ods during the sawtooth cycle. See Fig. 5.6, reproduced from J. Reusch’s thesis [15], as
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an example for such a technique. This methodology was feasible in this context, because,

for plasmas generated via the Legacy power supply system, the range of available plasma

current (i.e. Lundquist numbers) was limited to relatively high values where sawtoothing

in MST was limited to large discrete events.

However, this traditional approach was untenable for the work presented here. Fig.

5.7 shows the range of Lundquist number values accessible to each of the simulations

and experimental power supplies applicable to MST. As we’ll see in more detail in Ch.

6, as the Lundquist number is lowered, sawtoothing becomes more complex, making

it no longer feasible to use a sawtooth event as an anchoring for time-based averaging

and ensembling, as the reconnection activity moves from being discrete to more quasi-

continuous. Additionally, given the nature of the study, it makes sense in the context

of this investigation to average data over the entire flattop. We are not interested in the

dynamics of the reconnection events but instead in the general behavior of the plasmas.

It also happens to allow values measured at lower Lundquist numbers to be compared to

those measured at higher Lundquist numbers, despite not having easily distinguishable

sawtooth events.

We will now walk through in more detail the ensembling methodology employed,

using the magnetic field fluctuation amplitude scaling as the relevant example. Each

point in the plots containing the results of this study, more specifically, each point in one

of the subfigures in Figs. 5.19 and 5.20, represents an ensemble. Plasma discharges are

very reproducible and it is reasonable to treat each shot at similar plasma parameters as

a“trial” in a set of repeated experiments.

To create an ensemble, first, a set of parameters is selected to be desired operating

point at which data will be gathered. In this case, a specific plasma current and electron
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FIGURE 5.6: An example where ensembling was performed using the saw-
tooth as an anchoring for the time basis. Here the electron temperature was
ensembled over the sawtooth event where t = 0 is the peak of the sawtooth

event. [15]
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FIGURE 5.7: This chart shows the ranges of Lundquist number accessible to
MST, NIMROD (as applied to RFP computations), and DEBS. The latter two
are simulation codes that will be discussed later in the chapter. For the MST
bar, the darker blue region represents the Lundquist number range accessible
with the Legacy power supply system. The lighter blue bumpers of this bar
represent the Lundquist number space that has been (the lower S values) or
will be (the higher S values) made accessible by the upgraded Programmable

Power Supply (PPS) system.
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density with the reversal parameter, F = Bt(a)/ < Bt >, held relatively constant at

F = �0.2 across all ensembles. Then plasma operation and data collection is targeted at

these parameters.

To begin processing these gathered data, a time window is selected across which the

data will be averaged. This window was selected to be during the majority of the flat-

top duration. When ensembling, the practical yet effective approach used here was to

briefly scan over all the relevant shots from a given day to select a uniform time window

that would apply to all shots within the shot list from that sequence of repeated shots.

This window lasted at least 10 ms and typically encompassed the times during which

the Thomson laser was firing. This time window was then used when assessing which

shots to include in an ensemble. More details about the specific time windows used for

each ensemble can be found in the Jupyter Notebooks in the database information (see

Appendix A).

A list of MST shots whose data would be averaged for each ensemble data point was

then created. The shots included in this list have plasma parameters that match the de-

sired parameters within a certain tolerance. For the ensembling here, the tolerance was set

to 10-15% of the target value. The shots were scanned by eye to determine which would

be included based on meeting the plasma parameter targets. Again, a Jupyter notebook

containing the results of this ensembling, as well as routines for repeating the procedure,

is included in the database.

Fig. 5.8 below summarizes the target parameters that were used for each ensemble.

The values in the figures represent the average over the time window. The pinch param-

eter, or ⇥ = Bp(a)/ < Bt >, while not controlled for, is included for reference as well.

Generally speaking, ⇥ was fairly constant across all ensembles. The reversal parameter
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FIGURE 5.8: This plot summarizes the operating parameters used for each
ensemble in the magnetic field fluctuation amplitude scaling results. For the
shots included in an ensemble shot list, these parameters were held fairly
constant over the time window during which averaging was performed for

the shot.

for the lowest current, high density ensemble is slightly less reversed. This was simply

due to an operational oversight. The difference is still within 15% of the other values. The

error bars represent the standard deviation of the average values for each shot.

Fig. 5.9 shows an example of plot used to filter a 500 kA, low ne/nG shot. The red

dashed lines represent the time window of the averaging. The green dashed line represent

the target value for the scope. We see that these values differ from the target values. The

shot shown was included in the ensemble based on the top three plot and that the plasma
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was rotating.

The shots were also checked to see if mode locking had occurred. This was done by

looking at the velocity of the magnetic modes given by the poloidal coil of the toroidal ar-

ray (velocity of Bp,n). If the plasma is not rotating, the recalibration procedure performed

for the magnetic coil array will not have been effective so that shot and its data must be

excluded.

To create the ensemble points in the plots in Figs. 5.19 and 5.20, the Lundquist num-

ber and magnetic field fluctuation amplitudes had to be determined for each ensemble.

The Lundquist number will be covered in more detail in the next subsection, but broadly

speaking, it depends on the plasma current, electron density and electron temperature.

The plasma current and electron density values used to determine S were averaged over

the flattop time window. The electron temperature data was taken from the central cord

of the FIR diagnostic. Obtaining the temperature value for a shot was a distinct process

due to the nature of the Thomson scattering which does not provide as many time points

for the temperature data as can be obtained for these other parameters. For high and mid-

range temperature data (i.e. data from Ip � 200 kA plasmas), which were not summed

raw signals as described in Ch. 4, the electron temperature was taken for a shot by us-

ing the average core temperature from the three most radial points and averaging those

values for all laser pulses that were fired within in the time window selected for the shot.

For temperature data from shots with Ip < 200 kA, the average core temperature from the

three core-most points was taken from the ensembled temperature profile generated by

summing the raw signals. In the vast majority of cases, all the Thomson time points were

used. Occasionally, particularly at lower plasma current data collection where maintain-

ing a constant density was deemed especially important for the ensembling process, a
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FIGURE 5.9: This figure shows example traces used for filtering 500 kA, low
Greenwald fraction data. The signals are from a single shot that was ulti-
mately included in the shot list. The pinch parameter was not used for filter-
ing data but is included for reference. The target values for the ensemble are
represented by the dashed green line and the window over which the shot

was averaged is bracketed by the dashed red lines.
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few Thomson time points were excluded from the window. Ultimately, the core tempera-

ture, core from a single shot were used to determine the Lundquist number for that shot.

All the Lundquist numbers for the shot list were then averaged to obtain the Lundquist

number for the ensemble.

The magnetic field fluctuation magnitudes were ensembled in a similar method. The

magnetic field fluctuation value for a given shot was taken to be the average fluctuation

over the time window of the shot normalized by the average on-axis magnetic field as

given by the alpha model. The error was taken to be statistical, using the standard de-

viation of each of the values as their respective error and then taking the error for the

normalized magnetic field fluctuation amplitude to be the propagation of these statistical

errors. As will be discussed later, the systematic errors for the magnetic field coils are

difficult to determine. The data were then averaged for all the shots in the shot list. The

error for the ensemble was propagated through this averaging. Ultimately, these statisti-

cal errors are too small to appear on the plots.

5.1.5 Implications of Experimental Limitations and Definitions

This subsection will address the impact of the choices described in the previous subsec-

tion and other experimental limitations to that will be presented shortly. The Lundquist

number is a global quantity and not a single localized value. The Lundquist number for

this study was defined as a combination of central point and line-integrated values. We

will discuss the profiles of the parameters that were distilled into a single point, includ-

ing Zeff , Te, and ft. But first, we will discuss experimental limitations and considerations,

namely the resolution limit of the magnetic field coil array and the use of different power

supply systems.
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Magnetic Field Coil Array Resolution

Assessing the resolution of the magnetic field coil array is not straightforward, but it is

important to consider when looking at results from higher mode numbers. Since the

integrator circuit gain, coil areas, and other parameters related to the coils are fixed, we

assume that it is some fixed value, based on the relative calibration values, likely around

0.2 G. When looking at the scaling data, if the resolution limit is hit, the scaling will not

lose its dependence on Lundquist number as one might initially expect because the values

are normalized. It may therefore not be obvious that the resolution limit has been reached

by looking at the scaling results alone. At low Lundquist numbers, where the resolution

limit is most likely to be reached, the value for b̃n would increase as S decreased: this is

due to the normalizing magnetic field decreasing. Ultimately this would show up in the

data as a having two different scaling parameter values for different segments of the fit

and would ultimately raise the value of scaling parameter ↵. This does not appear to be

the case in the n=5-15 modes that were investigated.

To get a sense if this was accurate, the scalings of the toroidal component of the mag-

netic field coil array were examined. The results of scaling these values are summarized

in Fig. 5.10. The mode numbers for the toroidal components go to higher n because

more coils are in the array that measure this component of the field. However, the mea-

surements are more likley to include contributions from higher order poloidal modes (i.e.

m=2). Additionally, several of the coils in the array are not working. Their reported mea-

surement values are given by an average of the two neighboring coils. This could lead

to a resonance effect in the data with certain mode numbers. Therefore these data are

harder to interpret. The scaling for b̃T and b̃P appear to be consistent for n=7-15 modes.

The range n=5-15 is likely most clearly m=1 dominant. In the figure, we also observe an
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effect in the n=22 mode that might be due to field errors in the device.

To summarize, the mode numbers presented later in this thesis were deemed to most

likely not be suspect.

Comparing Legacy and Programmable Power Supply Results

Another experimental constraint of this study was the use of multiple power supply sys-

tems. This could introduce errors in the data due to, for example, noise in one system

that the other system would not contribute. Switching noise was of particular concern

due to the nature of the upgraded power supply system that provided access to the lower

Lundquist numbers of the parameter space investigated (see Ch. 3). In order to assess

whether this noise had a significant impact, data was collected at Ip = 200 kA using both

the Legacy and the PPS power supply. Measured data were then compared to look for

any significant variations between the data from the two different power supply systems.

Fig. 5.11 shows the magnetic field fluctuation data from both systems for both the high

and low density scenarios. In each case we see no concerning difference between the two

data sets. This sort of comparison was also performed for the Te and ne measurements

with no concerning discrepancies observed.

Impact of Zeff

The effective ion charge state of a plasma, Zeff , is a challenging quantity to measure. It is

given by the following equation,

Zeff =

X

j

Z2
j nj

ne
(5.14)



119

(A)

(B)

FIGURE 5.10: These plots summarize the b̃T scalings. These were looked at to
assess if the resolution limit of the magnetic field coil array has been reached.
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FIGURE 5.11: This figure compares the data generated by plasmas powered
by the PPS system with those generated by the Legacy power supply system.
This is done at Ip = 200 kA where the two systems overlap. The example
shown here shows that there is not significant difference between the two

systems when looking at that magnetics data.
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where j is each of the constituent ion species in the plasma, Zj is the charge of the species,

and nj is the density of the species. As we see in Eqn. 5.2, the effective ion charge state

is a significant component used in the determination of the resistivity of a plasma, and,

therefore, also the Lundquist number. It can be inferred by measuring the bremsstrahlung

radiation. On MST, the soft X-ray diagnostic is used to measure the continuum spectrum,

including bremsstrahlung, line, and recombination radiation. From these data, a Zeff

determination can be made. The measured emissivity follows the form,

✏ /
X

j

nenjZ2
jp

Te

e�E/Te ⇥ [gff + recomb.] (5.15)

where ✏ is the emissivity, E is the energy of the emitted X-ray photon, gff is the gaunt

factor, and recomb. is a recombination radiation factor [25, 7]. Limitations in the model

used to interpret the X-ray radiation data used to infer Zeff led to errors in inferring

the value of Zeff when Stoneking attempted to measure the Lundquist number in his

S-scaling study [4]. Namely, contributions to the spectrum made by line radiation led

to a significant overestimation in low-density values of Zeff (Zeff ⇠ 10) [4]. Thus, when

Galante, et al. made significant improvements in inferring Zeff , it in part motivated a new

study investigating Lundquist number scaling [26]. As of this writing, the most up-to-

date inference of Zeff was performed by L.M. Reusch et. al. It utilized Bayesian analysis

to combine information from independent diagnostics so as to not unnecessarily discard

information these tools gather, thus arriving at a more informed estimate for Zeff [26, 25].

Fig. 5.12a shows the results from applying this process to enhanced confinement plasmas.



122

(A) Zeff inference from Reusch et. al 2018 [25]. This inference was obtained
utilizing integrated data analysis (IDA) techniques, a subset of Bayesian anal-
ysis, to combine information from the soft x-ray two-color diagnostic and
Thomson scattering diagnostic. The blue curve and shading show the soft X-
ray determination of Zeff . The red curve shows the IDA result. The shading

represents the 1� uncertainty.

(B) A determination of Zeff from enhanced confinement plasmas. This in-
ference was arrived at by employing a multi-energy X-ray camera, soft x-ray
tomography and Thomson scattering data. It is adapted from a figure in [27]



123

Due to resource limitations, a Zeff determination for standard plasmas was not per-

formed. In addition to the thorough parameter space coverage with the Thomson scatter-

ing diagnostic, CHERS, multi-energy and soft X-ray data were gathered for higher range

plasma temperature (i.e. where the emissivity was sufficient to be measured). These data

may be employed by future users to infer a Zeff value for high current standard plasmas.

For the results presented herein, the Zeff value was taken to be approximately the core

result from the red IDA curve in Fig. 5.12a. Zeff is a constant in the formulation for S

given by Eqn. 5.7 so this choice has a negligible impact on the scaling results.

Trapped Electron Fraction Impact

Here we will consider impacts of the resistivity profile on the Lundquist number deter-

mination and scaling, more specifically, the impact of trapped electrons. The resistivity

profile as a whole does have an effect on MHD dynamics, however this impact is not well

understood. The resistivity was taken to be a Spitzer resistivity with a small correction

for the trapped electron particle fraction ( 1
1�ft

) that was held constant across all Lundquist

numbers. Here, we will describe the shortcomings and significance of this choice. To be-

gin, we will look at the neoclassical expression for the resistivity. Following Hirshman’s

approach [28, 29], this resistivity is effectively given by,

⌘neo = ⌘?⇤
�1
E (Zeff )(1�

ft
1 + ⇠⌫⇤

e

), (5.16)

where ⇤E is the Coulomb parameter, ⇠ is a factor that approximately equals one for Zeff =

2.0, and ⌫⇤
e is the effective electron collision frequency given by,

⌫⇤
e = ✏�3/2⌫e⌧b = ⌫e

⇡a

vth,e
f�3
t , (5.17)
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where ⌧b is the bounce time, ✏ is the inverse aspect ratio, a is the minor radius, vth,e is

the electron thermal speed, and ⌫e is the electron collision frequency. When ⌫⇤
e < 1, the

plasma is said to be in a collisionless regime.

Again, this study chose to define the resistivity with a constant trapped particle cor-

rection. This followed the convention chosen by Stoneking [4]. The choice of Lundquist

number used herein is a hybrid of core and line-averaged values. Fig. 5.14 shows the

trapped particle fraction profile. The trapped particle fraction goes to zero at the core,

but the profile shape varies with Lundquist number. Stoneking concluded that MST plas-

mas were purely in the collisionless regime, however, it is likely that at low Lundquist

numbers, this is no longer the case and neoclassical enhancements would start to become

significant as shown in Fig. 5.13 which plots the neoclassical correction factor, R⌫⇤ , which

is given by

R⌫⇤ =

1� ft
1+⌫⇤e

1� ft
. (5.18)

If the neoclassical correction were to be omitted at lower Lundquist numbers, it would

lead to relatively larger S inferences at the lower range of Lundquist numbers, therefore

increasing the value of the scaling parameter ↵n [28]. Ultimately the largest this factor’s

impact would be is 1
1�ft

=
1

1�0.38 =⇡ 1.6. This factor is relatively small especially relative

to other profile effects that might be considered such as electron temperature which as a

stronger impact on S.

Electron Temperature and Density Profile Considerations

The electron temperature has the most significant impact on the Lundquist number de-

termination (S ⇠ T 3/2
e ) of any of the other parameters. The electron temperature was



125

FIGURE 5.13: This plots the neoclassical correction factors to illustrate the
impact of the trapped particle fraction on the Lundquist number value. The
black curve represents Te,0 = 300eV and the red curve represents Te,0 = 30eV
with constant density ne = 1E19 m�3. This plot was provided courtesy of

John Sarff [29].
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FIGURE 5.14: The trapped particle fraction profile. This is reproduced from
Stoneking’s paper [4]

taken to be the average of the three core most points. Here, we consider the impact of the

electron temperature profile as a whole.

Figs. 5.15 and 5.16 show ensembled Thomson electron temperature profiles for the

low and high Greenwald fraction cases respectively. We see that at low current, the pro-

file is flatter and progressively becomes more peaked in the core as the current is in-

creased. Therefore, if the characteristic temperature were taken to be at the mid-radius,

the Lundquist number would increase more slowly, while the magnetic field fluctuations

remain the same. This would lead to an increase in the value of scaling coefficient ↵.

Fig. 5.17 shows how the core electron temperature scales with plasma current grouped

by Greenwald fraction. Craig Jacobson performed a similar scaling grouped by constant

electron density [30]. The results of the scaling by Greenwald fraction are, for the ne/nG =

0.23 case:
Te,0

eV
= (0.87± 0.04)

Ip
kA

+ (59.72± 13.25), (5.19)
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and the results of the scaling for the ne/nG = 0.34 case:

Te,0

eV
= (0.84± 0.09)

Ip
kA

+ (19.51± 19.61). (5.20)

For the latter, the 500 kA data point was excluded from the fit. The 200 kA data are

broken into two points: one for PPS data and one for Legacy which can be distinguished

by referring to Figs. 5.15 and 5.16. The slopes for each Greenwald fraction case are very

similar, which is not the case when density is held constant when doing an analogous

temperature scaling [30].

The electron density profiles do no exhibit the same peaking that the temperature pro-

files do. Additionally the Lundquist number is not as obviously dependent on the elec-

tron density (recall S ⇠ n�1/2
e ). MSTFIT provides electron density profile inversions of the

FIR data, however, the Lundquist number definition used here takes the line-integrated

density value from the core most point. The general shape of the electron density profile,

aside from the peaking in the core, is similar to the shape of the electron temperature mea-

surement. Example profiles are given in Fig. 5.18. The density is relatively flat through

the core and mid-radius before dropping off.

5.2 Scaling Results

In this section we will present and discuss the results of the scaling study performed

over the range of MST-achievable Lundquist numbers. We will start by going over the

most direct measurement, the magnetic field fluctuation amplitudes scalings. We will

then review quantities that are related to transport and are calculated either via estimates

based on the measured data or the use of the MSTFIT equilibrium code.
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FIGURE 5.15: The set of ensembled temperature profiles are shown as the
plasma current is varied. These profiles are for the low Greenwald fraction
case. The 100 kA case includes fewer shots in the ensemble because it is
data taken from a run day that was not employing the Greenwald fraction

framework.
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FIGURE 5.16: The set of ensembled temperature profiles are shown as the
plasma current is varied. These profiles are for the high Greenwald fraction
case. The 100 kA case includes fewer shots in the ensemble because it is
data taken from a run day that was not employing the Greenwald fraction

framework.
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FIGURE 5.17: The core temperature values are scaled with plasma current
here. The dashed lines represent the best fit of the data grouped by Green-
wald fraction. For the high Greenwald fraction case, the 500 kA data point
was excluded from the fit. The 200 kA data in each case include two points.

These are separated by the power source used.
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(A)

(B)

FIGURE 5.18: This figure shows and example electron density profile inver-
sions performed by MSTFIT using the FIR data. This data is for the low
Greenwald fraction 75 kA case (A) and the low Greenwald fraction 200 kA

case (B).
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5.2.1 Magnetic Field Fluctuation Scalings

Before diving into a presentation of the magnetic field fluctuation amplitude scaling re-

sults, we will briefly recap a few relevant details regarding the measurement and the

notations used. For even more detail, please refer to the first section of this chapter. The

magnetic field fluctuations were measured using the toroidal array in the shell of MST.

These fluctuations are then normalized by the magnetic field amplitude on the magnetic

axis as calculated by the alpha model. We define this scaled quantity as b̃n = |B̃✓,n/B0,↵|.

These measurements were taken for two Greenwald fractions across a range of Lundquist

numbers. Multiple shots were ensembled to create an average value for each data point

for a given S. Once an ensembled data point is obtained for Lundquist numbers spanning

the range accessible to the MST, the data were then fit to the following equation:

b̃n = cnS
�↵n (5.21)

where cn and ↵n are the fit parameters.

The results for these scalings are shown in Figs. 5.19 and 5.20. The figures plot the

same data for different mode numbers and have been divided between two figures to

improve the visibility of the plots. In these figures, the left column shows the low density

Greenwald fraction data while the right column shows the high density Greenwald frac-

tion data. Each point represents an ensemble of data. The errors for each ensembled data

“point” were taken to be average error of each MST shot measurement. The error of each

measurement is the standard deviation in the magnetics signal over time window for the

measurement. Because ensemble sizes are large and the plots are log-log, the error bars

are too small to appear on the plots but can be found in the database (Appendix A).
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FIGURE 5.19: These plots show the data for the magnetic field fluctuation
amplitudes and their respective inferred Lundquist numbers. This is meant
to be viewed in conjunction with Fig. 5.20 but has been split up to improve
the visibility of the plots. Each point represents the results from an ensem-
bled data at that point in parameter space. The lines are the best fit of the
data to Eqn. 5.21. The left column contains the low density Greenwald frac-
tion, gwf= 0.23, and the right column contains the high density Greenwald

fraction, gwf= 0.34.
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FIGURE 5.20: These plots show the data for the magnetic field fluctuation
amplitudes and their respective inferred Lundquist numbers. This is meant
to be viewed in conjunction with Fig. 5.19 but has been split up to improve
the visibility of the plots. Each point represents the results from an ensem-
bled data at that point in parameter space. The lines are the best fit of the
data to Eqn. 5.21. The left column contains the low density Greenwald frac-
tion, gwf= 0.23, and the right column contains the high density Greenwald

fraction, gwf= 0.34.
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The high density data set was challenging to collect at the high end of plasma currents

that MST generates. The highest Lundquist number was collected at Ip = 500 kA. For a

Greenwald fraction gwf = 0.34 (the high density case), this requires a line-averaged elec-

tron density ne = 2.0 ⇥ 10
19 m�3. With densities this high, MST struggles to breakdown

the gas to form a plasma and discharges usually terminate early if they manage to gen-

erate a plasma at all. And so, at this highest current at which data were gathered, only a

few usable shots were generated. These points are still shown because high density cor-

responds to a relatively high Thomson scattering signal. However, these data may not be

as robust as other ensembles, as the ensemble consists of only a couple of MST shots. Ad-

ditionally, the data at this point actually produced a Lundquist number lower than that of

the next highest current data point at Ip = 400 kA. Even at Ip = 400 kA, for gwf = 0.34 , a

line-averaged electron density ne = 1.6⇥ 10
19 m�3 is required. This was more practicable

than the 500 kA case but is still challenging operationally.

A summary of the fit parameter values obtained from these data can be found in Fig.

5.21 where the exponential parameter of the fit, ↵n, and the coefficient parameter of the

fit, cn, are plotted against the toroidal mode number. The coefficient data is displayed on

a semi-log plot as most of the values were similar except for the high density n=5 mode.

The behavior of n=5 mode data is notably different. The safety factor profile is such that

the n=5 mode is sometimes not resonant. We ensemble over the entirety of the flattop

duration in these data, without consideration for the evolution the safety factor at r = 0.

The parameter of great interest in a scaling study is the exponential scaling parameter,

↵n. Apart from the n=5 mode, we see that the high Greenwald fraction data generate

higher ↵n. This would correspond to a stronger mitigation of the magnetic field fluctu-

ation amplitudes with increasing Lundquist number for the high density case. This is
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(A)

(B)

FIGURE 5.21: This set of figures summarizes the results of fitting the magnetic
field fluctuation amplitude scaling data to Eqn. 5.21. The top figure shows the
results of the coefficient of the scaling fit on a semilog plot against the toroidal
number. The bottom figure shows the scaling parameter, ↵, on a linear plot
against the toroidal mode number. In keeping with the convention of all data
presented herein, the low density Greenwald fraction data is shown in blue

while the high density Greenwald fraction data is shown in orange.
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encouraging for the potential of the RFP as a reactor concept given that a reactor will

most likely need to operate with relatively high electron densities.

Another interesting data point to note is the low Greenwald fraction (gwf = 0.23) n=6

mode scaling parameter, or ↵n=6, value. It is very low indicating that the magnitude of

the fluctuations for this mode will not change much as Lundquist number is varied. Ad-

ditionally, referring back to Fig. 5.19, looking at the gwf = 0.34 and the n=6 data in the

third row of the righthand column, and recalling that the second highest Lundquist num-

ber data point is less robust that other data points, an argument could be made that even

for this high-density case, the n=6 mode number does not vary much with the Lundquist

number, especially relative to other modes. This n=6 mode carries the most magnetic

energy in MST and distinguishable island structures associate with the mode have been

observed in MST [31, 32, 10]. This seems to be further evidence that the mode is acting

differently from the other m = 1 modes.

We can also see that the m = 0 ↵n=1 value is relatively high for the high density case.

This could bode well for confinement scaling to higher Lundquist number given that the

nonlinear interaction of this mode with the m = 1 modes inside of the reversal surface

has been attributed to fueling large sawtoothing events that lead to transport.

Finally, we see in Fig. 5.21 a drop in both cn and ↵n for modes n = 12� 15 is observed.

This indicates that these modes will be relatively small in the range of Lundquist numbers

accessible to MST and may not decrease in amplitude as rapidly and the more inward

modes as the Lundquist number is increased beyond the values accessible to MST. We will

discuss the degree to which we can expect this to be a concern in a subsequent section.
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5.2.2 Transport and Confinement Scaling

Our interest in measuring the magnetic field fluctuation amplitudes is anchored in their

relationship to transport in the RFP. So, let’s now consider the scaling of some of the

transport-related quantities. To begin with, we look at the energy confinement time, ⌧E .

This was calculated for ensembles of data (few data points). ⌧E was also calculated using

the equation below on a shot-by-shot basis: each shot in the ensemble and many of that

were excluded from the above calculation because they did not fit into the Greenwald

fraction were included in this ⌧E scaling. The relatively low values of RFP ⌧E is often

cited as a relative disadvantage of the RFP concept to the tokamak. The formula used to

determine the ⌧E on a shot-by-shot basis is given by,

⌧E =
9n(Te,0 + Ti)V

8P⌦
, (5.22)

where V is the plasma volume,Ti is the ion temperature, and P⌦ ⇡ I�V� is the Ohmic

input power. The ion temperature was taken to be equal to to two thirds the electron

temperature based a calculation done with data collected from the CHERS diagnostic

at high Lundquist numbers and a number quoted by J. Boguski in his thesis [33]. This

formulation is arrived at by assuming a parabolic density profile and a flat temperature

profile.

The ⌧E data gathered from MSTFIT equilibrium reconstruction calculations of the

ensembles were used to generate Figs. 5.19 and 5.20. These reconstructions were con-

strained by ensembled electron temperature profiles and assuming the ion temperature

relationship used in Eqn. 5.22. The energy confinement time results are plotted against

Lundquist number in Fig. 5.22. However, the quality of this fit is somewhat poor and
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it does not necessarily follow that the energy confinement has a scaling relationship to

Lundquist number in the same way that the magnetic field fluctuation amplitudes are

expected to.

Scaling the energy confinement time based on current and density makes more sense.

The plasma thermal energy scales like W / a3nT and the input powers scales like P /

a�1I2T�3/2. It follows that the energy confinement time scales as ⌧E / a4I�2nT 5/2. Then,

applying similar scaling relationships from stochastic transport where � / aI�2↵n↵T 1/2�3↵,

where ↵ is the exponential scaling parameter determined in the previous section. Putting

this together, using a value of ↵ = 1/3, we expect ⌧ / I4/3(n)�2/3, or equivalently,

⌧ / I2/3(ne/nG)
�2/3. A calculation of ⌧E was also done on a shot-by-shot basis as de-

scribed by Eqn. 5.22 and the results are displayed in Fig. 5.23. The results of the fit do not

match with this stochastic scaling for the density dependence, only weakly displaying

any dependence on the density, implying that there is physics that the stochastic model

may not be capturing all the dynamics at play related to this parameter. However, the

current scaling very closely follows the scaling relationship predicted by the stochastic

transport model, particularly when the Greenwald fraction is held constant.

The next confinement related parameter that was scaled was the poloidal beta of the

plasma, �✓, which is given by

�✓ =
< p >

B2
✓/(2µ0)

. (5.23)

Fig. 5.24 shows the results of scaling �✓ against the Lundquist number. These values

were also fit to Ip and the gwf following the form of Eqn. 5.23. This fitting is shown in

Fig. 5.24. The �✓ values were generated by MSTFIT and therefore do not have associated

uncertainties. In both these cases, we see �✓ decreases as Lundquist number or other

operational parameters are increased.
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(A) Low density ensemble

(B) High density ensemble

FIGURE 5.22: Scalings of the energy confinement time for the low density
case (a) and the high density case (b) against Lundquist number. A note on
the ⌧E values plotted here: a set back of using the MSTFIT results for ⌧E is
that uncertainty estimates cannot be practicably made for the results of the
code. For this reason, energy confinement times displayed here lack error

bars.
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(A) Energy confinement time scaled by Lundquist number. These energy confinement data were
calculated with MSTFIT.

(B) (C)

FIGURE 5.23: The scaling of energy confinement times on a shot by shot ba-
sis using Eqn. 5.22. Figure (A) includes all data, while Figures (B) and (C) in-
clude only specific Greenwald fractions (and therefore only scale with plasma

current).
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(A)

(B)

FIGURE 5.24: Poloidal � for the low density case (a) and the high density
case(b) against Lundquist number. �✓ values were generated using MSTFIT

on the same ensembles used to create the b̃n vs. S scalings.
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The results are consistent with what has been observed in the past [4].

The final parameter in this category that we will look at is the electron thermal diffu-

sion, �e,st, which is approximately given by

�R�R ⇠ vthLac(B̃r/B)
2, (5.24)

where Lac is the autocorrelation length, vth is the thermal velocity, and Br is the radial

component of the magnetic field fluctuation. In MST, a field line tracing routine has es-

timated that Lac ⇡ 0.75 m [10]. Scalings for this parameter are not shown here but it

will come into play in a subsequent section when discussing magnetic field fluctuation

amplitude results.

5.3 Comparing Experimental Results to Preliminary Com-

putational Data

5.3.1 Computational Results

Although there are plans to extend the upper bound of MST-accessible S values via the

programmable power supply system, at the time of this study’s data collection, the up-

grade had started by expanding the lower range of Lundquist numbers accessible on the

device. The main virtue of creating access to this portion of parameter space is that ex-

perimental results can have more overlap with simulated results, which are bounded by

computational capacity in producing data at Lundquist numbers high enough to have

substantial overlap with MST plasmas produced by the traditional power supply system.
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Fig. 5.7 shows the span of Lundquist numbers accessible to all the tools discussed in this

section.

In this section, we will present the results of some preliminary simulated data and how

they compare to the data presented in this study. Comparison of these data have some

shortcomings. The choice of definition for experimental parameters such as Lundquist

number were selected for experimental convenience rather than alignment with compu-

tational results. Additionally, results for only four toroidal mode numbers were reported

[30]. The simulated were also run with a different data collection framework in mind and

were only performed for essentially three toroidal mode numbers. Ultimately, resource

limitations precluded an extensive validation effort. However, the database of exper-

imental results produced here can be used in more thorough future validation efforts.

Information on accessing this database can be found in Appendix A.

Two computational codes frequently used to simulate MST plasmas are DEBS and

NIMROD [34, 35]. Brief descriptions of these codes can be found in Ch. 3. Several simu-

lated runs (performed by C. Jacobson) were performed using each code in order to gather

b̃ simulated scaling data [30]. These simulations were originally performed with a differ-

ent framework in mind, where ne was kept constant instead of the ne/nG as current was

varied. For each of these codes, two sets of simulations were run. Here we focus on one

set of simulations where the reversal parameter, F , was held constant which aligns with

how the experimental data were gathered.

Fig. 5.25 shows the results from these NIMROD runs. These were performed using a

single-fluid, cylindrical geometry with an aspect ratio R/a = 3, Prandtl number Pm = 1,
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FIGURE 5.25: NIMROD simulations run by C. Jacobson to study magnetic
field fluctuation scaling against Lundquist number in the computational

code.
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NIMROD scaling results summary for fixed F = �0.2
Mode number cn ↵n

m=1,n=5 0.09± 0.047 0.27± 0.053
m=1,n=6 0.13± 0.026 0.20± 0.020
m=1,n=7 0.10± 0.028 0.21± 0.028
m=1,n=8 0.08± 0.049 0.23± 0.062

TABLE 5.1: This table summarizes the results to fitting the fixed F = �0.2
NIMROD runs to the equation b̃n(a) = cnS�↵n .

a flat viscosity ⌫ profile, and the following resistivity profile:

⌘(r) = ⌘0(1 + (

p
20� 1))(

r

a
)
20
)
2. (5.25)

In order to keep F = �0.2 constant, the initial dimensionless parameter for the parallel

current, a�0, was set to 4.13, 4.08, 4.05, 4.02, and 4.01 respectively for each step increasing

in Lundquist number. These simulations were run for ⌧R ⇠ 10
4⌧A. The average fluctuation

at r = a was taken over the nonlinear saturated state. Table 5.1 summarizes the results of

fitting these results to the equation b̃n(a) = cnS�↵n .

Fig. 5.26 shows the results from DEBS runs created with a similar aim. As with the

NIMROD simulations, a single-fluid, cylindrical geometry with aspect ratio R/a = 3,

Prandtl number Pm = 1, a flat viscosity ⌫ profile, and the same resistivity profile above

in Eqn. 5.25 were used to generate the data. The nonlinear numerical viscosity was turned

off. Table 5.2 summarizes the results of fitting these data to the scaling equation.

With an experimental database that is freshly capable of directly overlapping in Lundquist

number with the simulated runs, it is possible to compare experimental data generated

in the upper range of Lundquist numbers accessible to the NIMROD and DEBS codes.

However, for the comparisons that follow, we simply employed the scaling results that
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FIGURE 5.26: DEBS simulations run by C. Jacobson to study magnetic field
fluctuation scaling at the edge of the plasma against the Lundquist number.

DEBS scaling results summary for fixed F = �0.2
Mode number cn ↵n

m=1,n=5 0.40± 0.197 0.41± 0.050
m=1,n=6 0.14± 0.069 0.22± 0.049
m=1,n=7 0.17± 0.097 0.29± 0.056
m=1,n=8 0.06± 0.022 0.21± 0.036

TABLE 5.2: This table summarizes the results to fitting the fixed F = �0.2
DEBS runs to the equation b̃n(a) = cnS�↵n .
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were gathered over the range of Lundquist number values accessible to the MST. We will

now go over comparison between these experimental data and the preliminary simulated

data.

Fig. 5.27 compiles the magnetic field fluctuation scaling results from both computa-

tional and experimental data. A common technique for assessing the degree of agreement

between computational and experimental data is to employ validation metrics. The selec-

tion of which metric or metrics to use is more of an art than a science. Three metrics that

we will look at are the relative error metric, the �2 metric, and the Hyperbolic Tangent

Metric. Below are expressions for each where yi is the set of simulated values with stan-

dard error �yi while Yi and �Yi are the experimental data and errors. The Relative Error

Metric is given by,

M =
1

n

nX

i=1

|yi � Yi

Yi
|, (5.26)

where M = 0 represents perfect agreement and M = 1 represents perfect disagreement.

The �2 Metric is given by,

M = �2
y =

1

Ndegrees

nX

i=1

(
yi � Yi

�yi � �Yi

)
2, (5.27)

where, once again M = 0 represents perfect agreement and M = 1. Finally, the Hyper-

bolic Tangent Metric is given by,

M = 1� 1

n

nX

i=1

tanh(|yi � Yi

Yi
|+ |�Yi

Yi
|+ |�yi

yi
|), (5.28)

where M = 1 indicates perfect agreement and M = 0 indicates perfect disagreement [36].



149

(A)

(B)

FIGURE 5.27: This figure summarizes the results of fitting experimental and
computational data for magnetic field fluctuation magnitudes at the edge

scaling with Lundquist number to the equation b̃n(a) = cnS�↵n .
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Tables 5.3-5.5 summarizes the results of employing these metrics to quantify the de-

gree of agreement between experimental and simulated data where the data for each

mode number n=6-8 were summed to calculate a given metric. The n=5 mode data is

excluded given that this mode is only sporadically present in the experimental plasmas.

Generally speaking, we see good agreement between simulation and experimental data

for both the scaling parameters, ↵n and the coefficient for the fits, cn. Experimental pa-

rameter definitions were selected to be intuitive to an experimentalist rather than to align

well with simulated results. Focusing on the metrics that incorporate uncertainties into

their calculations, there is some disagreement as to whether the higher Greenwald frac-

tion data agree better with the simulated data or if the lower Greenwald fraction data do.

Finally, the degree of agreement for the scaling parameter comparisons is similar between

the NIMROD and DEBS for all three of the metrics employed here.

Many improvements can be made to these comparisons. It would be prudent to ex-

pand the simulated data set to account for two-fluid effects which were neglected for the

results presented here. Additionally, the validity of these comparisons could be further

improved using all the experimental data have been gathered since the simulated results

were generated.

5.4 Comparing and Extrapolating Results

In this section, we will apply the scaling results obtained within the range of MST-achievable

Lundquist numbers to estimate the performance of the RFP at larger Lundquist numbers.

As has been previously discussed, the RFP is an underexplored avenue of investigation en
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Relative Error Metric Values (0= perfect agreement, 1= perfect disagreement)
cn NIMROD DEBS
gwf = 0.23 2.88 3.46
gwf = 0.34 0.48 0.38
↵n NIMROD DEBS
gwf = 0.23 0.35 0.35
gwf = 0.34 0.38 0.30

TABLE 5.3: This table shows the results of applying the Relative Error Metric
(Eqn. 5.26) to the n=6-8 modes for the experimental and both NIMROD and
DEBS simulated data for the coefficient of the fits, cn as well as the scaling

parameters, ↵n.

�2 Metric Values (0= perfect agreement, 1= perfect disagreement)
cn NIMROD DEBS
gwf = 0.23 5.71 1.32
gwf = 0.34 0.21 0.21
↵n NIMROD DEBS
gwf = 0.23 2.05 2.01
gwf = 0.34 1.30 1.15

TABLE 5.4: This table shows the results of applying the �2 Metric (Eqn. 5.27)
to the n=6-8 modes for the experimental and both NIMROD and DEBS sim-
ulated data for the coefficient of the fits, cn as well as the scaling parameters,

↵n.

Hyperbolic Tangent Metric Values (1= perfect agreement, 0= perfect disagreement)
cn NIMROD DEBS
gwf = 0.23 0.28 0.15
gwf = 0.34 0.06 0.05
↵n NIMROD DEBS
gwf = 0.23 0.47 0.50
gwf = 0.34 0.34 0.40

TABLE 5.5: This table shows the results of applying the Hyperbolic Tangent
Metric (Eqn. 5.28) to the n=6-8 modes for the experimental and both NIM-
ROD and DEBS simulated data for the coefficient of the fits, cn as well as the

scaling parameters, ↵n.
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route to a viable fusion reactor. The vast majority of resources in magnetic confinement fu-

sion research are devoted to the tokamak concept and so it is often an intuitive reference.

Fig. 5.28 depicts the performance of past, current, and planned tokamak experiments and

reactors [37]. The MST RFP is added to the figure at two points. The MST point with the

shorter energy confinement time represents standard RFP operation and the MST point

with the longer energy confinement time represents MST operating in an improved con-

finement mode, where magnetic field fluctuations are reduced. When implementing this

performance improvement, the RFP’s becomes competitive - out-competes even- with

similarly-sized tokamak devices. This makes a compelling case for creating more RFPs to

fill out a similar expanse of parameter space. However, should we want to employ the

RFP as a reactor, steady-state operation will be advantageous. This is not possible with

the current mechanism for minimizing magnetic field fluctuations that is depicted on the

graphic in Fig. 5.28. So here, we delve into what stochasticity decreases one might expect

to see simply by increasing the Lundquist number.

In this section, extrapolations of the scaling results to reactor-relevant scales (S ⇠ 10
9�

10
10) will first be presented. We will also discuss the implications for how some tranpsort-

related quantities might scale to larger Lundquist numbers and the implications of those

results for the performance of a RFP device.

5.4.1 Magnetic field fluctuation amplitude scaling extrapolation

Fig. 5.29 shows results of the magnetic field fluctuation amplitude scalings extrapolated

to estimated reactor-relevant Lundquist numbers. The blue data represent low Green-

wald fraction results and the orange data represent high Greenwald fraction results. The
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FIGURE 5.28: This figure, adapted from [37] with updates to include im-
proved enhanced confinement performance, shows the MST RFP in context

with past, current and projected tokamak experiments.
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lines come from the best fits of the data to the equation: b̃n = cnS�↵n . Within this sub-

section, data shown is for the m = 1, n = 6 � 15 modes and since any RFP reactor will

most likely run with relatively high density plasmas, discussion will focus on the high

Greenwald fraction results.

Also shown on Fig. 5.29 is a dashed line which represents an estimate for the mag-

netic field fluctuation amplitude at which the island corresponding to that mode number

will no longer overlap with its neighboring island. To obtain an estimate for this point,

first the island widths for each mode number were determined working from the edge

inward such that each island would just touches its nearest neighbors [38]. To obtain an

expression for these widths, we start with the stochasticity parameter, s, which quanti-

fies the degree of stochasticity in a plasma where the larger the s, the more stochastic the

plasma and s = 1 represents the threshold at which the field lines no longer overlap. At

this point s = 1, the plasma at that resonant location transitions from stochastic to deter-

ministic field lines. The expression for s for the m = 1, n = n island and its neighboring

m = 1, n = n0 is given by,

s =
1

2

(wn � wn0)

|rn � rn0 | , (5.29)

where wn represents the width of the island for the n mode and rn is its resonant location.

Taking s = 1, assuming that, for large n, wn ⇡ wn+1, and Taylor expanding the safety

factor near r = rn, yields the following expression for the island width at the threshold

between stochastic and deterministic field lines:

wn =
1

n(n+ 1)|q0n|
, (5.30)
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FIGURE 5.29: This figure plots the results from S-scaling the magnetic field
fluctuation amplitudes out reactor-relevant Lundquist numbers. The red
dashed lines indicate the point at which island overlap with the neighboring
mode is projected to be eliminated via a decrease in the field fluctuation am-
plitude. The orange data represent the high Greenwald fraction case which is
more relevant in the context of considering what RFP reactor dynamics may

be.
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where |q0n| is the radial derivative of the safety factor at the resonant location of the mode,
@q
@r (rn).

We can relate this result to the measured magnetic field mode amplitudes by looking

at the more general expression for the island width. The width of the magnetic island for

the m=1,n mode is given by,

wn = 4

s
B̃r,n(rn)

B✓,n(rn)

rn
n

1

|q0n|
, (5.31)

where B̃r,n is the (unnormalized) radial component of the magnetic field fluctuation, B✓

is the (unnormalized) poloidal component of the magnetic field, and rn is the resonant

location of the mode, n is the relevant toroidal mode number. So, by equating Eqn. 5.30

and Eqn. 5.31, we obtain an expression for the magnetic field fluctuation at the s = 1

threshold.

However, the values measured when presenting the scaling results are b̃n(r = a) =

B̃✓(r=a)
B0,↵

where B0,↵ is the magnetic field amplitude on the magnetic axis according to the

alpha model, and a is the minor radius. So, we need a way to relate this measurement

at the edge to B̃r(rn)
B✓(rn)

at the resonant surface. To get an approximation for this value, the

RESTER code was utilized. RESTER is a numerical tool that calculates the stability of

cylindrical, force-free profiles [39, 40]. This code does not include non-linear effects and

utilizes a cylindrical plasma approximation, however, is sufficiently detailed for the pur-

poses of this estimation. These RESTER plots, made for standard plasmas of � = 0 and

are included in Appendix B for future reference [38].

Fig. 5.30 summarizes the results from Fig. 5.29, plotting the Lundquist number for

each mode at which the stochasticity parameter is projected to equal one. Fig. 5.30a
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plots this value against the mode number and Fig. 5.30b plots this quantity against r/a

by placing the results at the resonant location for the mode. If we assume that a RFP

reactor will have a Lundquist number around S ⇠ 10
9 � 10

10, the islands corresponding

to n < 12 would have fluctuations small enough such that the islands would not overlap,

corresponding to the plasma volume r/a . 0.662 having deterministic magnetic field

structure. This implies that stochasticity would cease to be the dominate loss mechanism

within this significant core portion of the plasma volume (43% of the core-most volume).

5.4.2 Extrapolating Confinement to Reactor Conditions

Using the results presented herein, one can extrapolate energy confinement time to assess

the feasibility of an ohmically ignited RFP reactor plasma. In order to make such an

estimate, an operating point needs to be chosen. Here we use TITAN and an ARIES-

like scenario as examples [41, 18, 42, 43, 44, 45]. Each has a fusion power Pf = 2.3 GW

and a net electric power Pe = 1.0 GW. A major caveat when considering these targets,

particularly TITAN, is the neutron wall loading. TITAN’s ultra compact design comes

with a neutron wall loading of Pn = 18 MW/m2 and the ARIES-like scenario’s neutron

wall loading is Pn = 5 MW/m2. Materials able to handle even Pn = 5 MW/m2 are

not yet developed. The ARIES scenario is therefore most realistic. In any case, we are

extrapolating over many orders of magnitudes and do not have information as to how

Lundquist number scalings change over that range of Lundquist number. That being

said, these extrapolations are still of interest, and make use of the data currently available.

Assuming an ohmically heated plasma with stochastic transport, it can be shown that

⌧ / [a(7�2↵)I(�1+11↵)
p (ne/nG)

(1�11↵)
]

1
6�6↵ , (5.32)
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(A)

(B)

FIGURE 5.30: This set of figures summarizes the results from extrapolat-
ing the magnetic field fluctuation amplitude S-scaling results to a point
where magnetic island overlap is just eliminated. The upper plot plots the
Lundquist number value at which the magnetic field fluctuation amplitudes
are projected to diminish to this point by toroidal mode number. The lower

figure plots the same information by the resonant location for each mode.
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TITAN (⌧= 0.2s)
↵ 0.3 1/3 0.4
scaled ⌧ [s] 0.023 0.036 0.10
n⌧ [1E20 s/m3] 0.127 0.196 0.55

TABLE 5.6: This table summarizes scaling to TITAN operational parameters
using MST results as a benchmark. The columns show results for different
scaling parameter, or ↵, values. The high Greenwald fraction is used to obtain

density and the Lawson criterion (n⌧ ).

where a is the minor plasma radius [46]. For the results here, we find that the electron

confinement time scales close to ⌧E / I2/3p , while holding Greenwald fraction constant.

This matches the stochastic transport scaling for ↵ = 1/3. Table 5.6 summarizes results

from extrapolating MST confinement to the TITAN case where a = 0.6 m and Ip = 18 MA.

The Greenwald fraction is taken to be ne/nG = 0.34. TITAN’s operating point requires

⌧E = 0.2 s. The projected confinement falls short by an order of magnitude for ↵ = 0.3 but

only a factor of two short for ↵ = 0.4 [47]. The projected confinement for the ARIES-like

scenario with a =1.5 m, Ip = 30 MA, and a consequent ⌧E = 0.8 s is summarized in Table

5.7. In this case, the confinement is sufficient for ohmic ignition for ↵ = 0.4, which is the

value measured for ne/nG = 0.34 case.

Stoneking did a similar estimate using TITAN as a target and MST as a benchmark.

Fig. 5.31 reproduces his results [4] where he plots the scaling parameter, ↵, against the

operating current of the machine. The blue and orange lines mark the average ↵ values

obtained for the mid-radial modes for the low and high Greenwald fraction cases respec-

tively. Tracing where these values overlap with the current provides a estimate for the

operating current for TITAN for these two Greenwald fraction cases. This plot, combined

with the scaling estimates for TITAN and ARIES-like reactors, show how strongly these

scalings depend on ↵ when extrapolating the results.
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ARIES-Like (⌧ = 0.8 s)
↵ 0.3 1/3 0.4
scaled ⌧ [s] 0.13 0.22 0.79
n⌧ [1E20 s/m3] . 0.18 0.31 1.14

TABLE 5.7: This table summarizes scaling to ARIES-like operational parame-
ters using MST results as a benchmark. The columns show results for differ-
ent scaling parameter, or ↵, values. The high Greenwald fraction is used to

obtain density and the Lawson criterion (n⌧ ).

FIGURE 5.31: This figure plots the results from S-scaling the magnetic field
fluctuation amplitudes out reactor-relevant Lundquist numbers. The red
dashed lines indicate the point at which island overlap with the neighboring
mode is projected to be eliminated via a decrease in the field fluctuation am-
plitude. The orange data represent the high Greenwald fraction case which is
more relevant in the context of considering what RFP reactor dynamics may

be.
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5.4.3 Stochastic Diffusion at Fusion Relevant Scales

Now let’s consider the electron thermal stochastic diffusion, �R�R. Recall, that �R�R ⇠

vth,eLAC(B̃r)
2. Given this, the extrapolated results of the the magnetic field fluctuation

amplitudes can be used to estimate the stochastic transport at reactor relevant scales. To

do so, we again use the results from RESTER to translate the edge measured quantities,

bn = B̃✓,n/B0 to B̃r. The autocorrelation length is assumed to be Lac = 3.14 m (i.e. a

minor radius equal to one meter for the reactor). Additionally, an estimated core electron

temperature Te,0 = 10 keV is used to create a temperature profile along the minor radius

using the alpha model (Te(r/a) = Te,0(1 � (r/a)↵)�) to obtain the approximate electron

thermal velocity at the resonant location of each mode.

Fig. 5.32 shows the results of these estimated reactor (i.e. S ⇠ 10
9 � 10

10) diffusion

coefficients for the n= 6-15 modes for the high Greenwald fraction scenario. �e,st is plotted

at the resonant location and the blue dashed lines mark these locations. The green solid

line marks where �R�R = 1 m2/s. �e,st will likely need to be less than this value for

stochastic diffusion to be minimized to a point that is sufficient for competitive fusion

reactor design.

When we think about minimizing the magnetic field fluctuations for higher mode

numbers and refer to the safety factor profile, we see that the spacing between adjacent

modes becomes smaller as we move out along the minor radius. It would then intuitively

follow that it should be more difficult to eliminate stochastic diffusion via a reduction

in magnetic field fluctuation at larger toroidal mode numbers. However, we see that this

intuition is misleading given that �e,st / B̃r
2
. So, even though the resonant locations grow

closer together, they do so while the magnetic field fluctuation strengths grow weaker.

Since stochastic transport goes like this quantity squared, stochastic transport is not as
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significant at higher mode numbers as one might initially expect.

We see this dynamic evidenced in Fig. 5.32. For many mid-radial mode numbers, �e,st

dips below 1 m2/s. A cluster of modes that does so exists for n= 9-11. So in this region,

while there still maybe some slight stochasticity, stochastic transport is not significant. If

this cluster of modes acts as a buffer to stochastic transport, it would confines the plasma

at r/a < rs,n=9, which amounts to a significant 35% of the plasma volume being well-

confined in the core.

A few modes raise back above �e,st = 1 m2/s in large part due to the magnitude of

the alpha exponential value for the scaling decreasing for modes n= 12-13 leading to rela-

tively high fluctuations for these modes at higher Lundquist numbers and in smaller part

due to an increase in the ratio of the radial magnetic field at the resonant location to the

poloidal magnetic field at the edge obtained from RESTER. However, these values are

still close to the desired �e,st, and, given that these are rough estimates, these results in-

dicate that there is good reason to expect stochastic transport to be within in the ballpark

of being sufficiently ameliorated through a natural tendency for the magnetic field mode

amplitudes to decrease as Lundquist number is ramped up.

5.5 Summary

For this study, we produced a large cache of data across the range of Lundquist numbers

accessible to MST. These data were ensembled at points across this expanse to obtain a

relationship for how the magnetic field fluctuation amplitudes measured at the edge of

MST scaled with Lundquist number. A summary of these results is given in Fig. 5.21.
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FIGURE 5.32: This plot uses the extrapolated values for magnetic field fluc-
tuation amplitudes to estimate the stochastic transport for reactor relevant
parameters and scales (S ⇠ 109) for magnetic modes n=6-15. Each result is
plotted at its resonant location. The green line marks the �st = 1 thresh-
old below which stochastic transport would be minimized enough so that a

reactor could obtain sufficient confinement.
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In the scaling fit results, we observe stronger scaling for the higher density scenario.

The n = 6 modes exhibits unique behavior where its magnetic field fluctuation ampli-

tudes seem to level off and not vary strongly with Lundquist number. This effect is less

obvious in the high density case but may still be present when considering extenuat-

ing factors of the data collection constraints. For a chunk of modes n = 7, 8, 9, 10 we see

highly favorable scaling terms, implying that should we extrapolate conditions to reactor-

relevant scales, we have reason to suspect that stochastic transport would cease to be a

dominant transport mechanism for the RFP. This suspicion is further supported by the es-

timation for �e,st(r) performed in the chapter. In all, having an average ↵n,gwf=0.34 ⇠ 0.38

for the core most modes is a very encouraging result for the RFP magnetic confinement

fusion concept.

Some preliminary analyses were also done to compare these data to simulations per-

formed in DEBS and NIMROD. These data have a large range of Lundquist number value

overlap with simulated data. Metrics indicate that ↵n values are better aligned between

experiment and simulation than cn values. This is somewhat expected given that the

choice of parameters used to determine Lundquist number was chosen for experimental

convenience and as opposed to being selected for easy comparisons with simulation re-

sults. In general, simulations and choice of experimental parameter definitions could be

iterated upon to better match each other. Additionally, a more thorough and extensive

validation effort using these experimental data would be a future project of great interest.

Extrapolating results to high Lundquist number values argues for the promise of ex-

panding the RFP fusion research program to larger scales. When looking at the magnetic

field fluctuation amplitude and electron thermal diffusion extrapolations, we see these

quantities that are most closely tied to direct measurements are expected to scale very
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favorably at Sreactor ⇠ 10
9 � 10

10.

Finally, considering ⌧E , these scalings did not produce results consistent with values

that we would expect from a stochastic model and ↵ ⇠ 0.333. This indicates that there

may be physics at play that is not captured by the stochastic model. This somewhat

tempers the promising scaling parameter results.
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Chapter 6

The Transition from Quasicontinuous to

Bursty Reconnection Activity

While exploring the parameter space to which the PPS system upgrade allowed access, a

change in the nature of sawtoothing behavior was observed at relatively low Lundquist

numbers. There, reconnection activity appears to be more quasi-continuous relative to

the more bursty, discrete behavior observed at higher values of Lundquist number. This

chapter presents these observations and a few insights gathered from various spectral

analyses applied to the data. However, the dynamics at play that lead to these different

reconnection activity behaviors are still largely an open question. In this chapter, we’ll

first present the phenomena observed. We will then go over some spectral analysis tech-

niques that were applied. We will end with conclusions drawn from these analyses.
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6.1 Demonstrating the Transition from Quasicontinuous to

Bursty Reconnection Activity

While collecting data for the Lundquist number scaling, a change was observed in the

magnetic reconnection activity as the Lundquist number was lowered to ranges made ac-

cessible by the PPS system. Prior to this upgrade, MST could achieve Lundquist numbers

roughly in the range S ⇠ 3⇥ 10
5 � 8⇥ 10

7. The PPS system extended the lower bound of

this range to S ⇠ 10
4. A change in the reconnection activity was noticed in MST signals

from shots below S ⇠ 10
5. Fig. 6.1 visualizes this transition. Each row shows the toroidal

gap voltage signal from an example shot of each ensemble taken. This signal is represen-

tative of the reconnection activity as it is proportional to the change in toroidal magnetic

flux that results from reconnection activity. Each row is labeled on the y-axis with the

approximate Lundquist number of that shot. The transition between the two types of

reconnection activity takes place moving through the fourth, fifth, and sixth rows.

This behavior has been seen in some simulated plasmas as well as in other RFP de-

vices, namely RFX [1, 2, 3]. However, it has not before been observed in MST.

Following the observation of this phenomena while conducting the S-scaling study

described in the previous chapter, runtime was dedicated to probing scanning Lundquist

number space spanning the boundary between the two types reconnection behavior with

the aim of observing this transition with greater resolution. During this runtime, a variety

of plasma currents for which S ⇠ 10
5 were feasibly attainable, were selected at which to

focus plasma operation, with Ip ⇠ 100 kA proving to be the approximate current at which

this transition is easiest to observe operationally. For each of these currents, the Lundquist

number was varied by changing the electron density. The shots collected during this
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FIGURE 6.1: This figure visualizes the transition under discussion in this
chapter using the toroidal gap voltage scope, which as a scope enables visual-
izing the variation in reconnection activity. The toroidal gap voltage scope is
plotted (in Volts) versus ⇠ 20 ms of the flattop period. Each row is the signal
from an example shot from the ensembles created for the previous chapter,
plus from additional data collected outside of that framework. Each row is
also labeled on the y-axis by the approximate Lundquist number of the shot.
The magentic signals represent data generated via the PPS system and the
blue signals represent data generated via the Legacy system. The Lundquist

number for each shot increases as the rows go downward.
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FIGURE 6.2: This reproduces Fig. 5.2, highlighted the relevant range of data
for this chapter. Here, the yellow box highlights the portion of data collected
that spans the transition from quasicontinuous to bursty/discrete reconnec-

tion activity.

specific campaign are highlighted by the yellow box in Fig. 6.2.

Figs. 6.3 and 6.4 show some sample results from this effort for 80 kA and 100 kA

plasmas respectively. Each row features a set of traces from a 25 ms window during the

flattop period of an example shot. As you move down the rows, the Lundquist num-

ber of the shot increases. The left column shows the toroidal gap voltage; it is a scope

that visualizes the reconnection behavior relatively evidently. The central column shows

the average toroidal magnetic field amplitude and the right column shows the toroidal

magnetic field amplitude at the edge of the device.

Using this technique, plasmas exhibiting three types of behavior were observed. The
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FIGURE 6.3: This figure shows the progression moving from low to high
Lundquist number showing the transition from continuous to discrete for

shots where the plasma current is 80 kA.
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FIGURE 6.4: This figure shows the progression moving from low to high
Lundquist number showing the transition from continuous to discrete for

shots where plasma current is 100 kA.
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“quasi-continuous” behavior at low Lundquist numbers is characterized by relatively fre-

quent, moderately large reconnection events compared to the “bursty behavior” at high

Lundquist numbers which is characterized by less frequent, large magnitude reconnec-

tion events. A “transition zone” exists for plasmas at Lundquist numbers between the

two boundary cases described in the previous sentence. With this behavior, reconnection

activity is a mix between the two, with more frequent but lower amplitude reconnection

activity being observed. The transition region exists around S ⇠ 10
5 for the variety of

plasma currents that were scanned (Ip = 70, 80, 100, 110, 130, 140 kA).

6.2 Spectral Analyses

Spectral analysis techniques were applied to the data to pick out relevant phenomena that

may be at play. For most of the analyses presented here, the pickup-coil signals were not

analog integrated so as to maximize the high frequency resolution of the signals. Addi-

tionally, while these techniques could be applied to the data generated with the Legacy

power supply system, the PPS system allowed for data with less noise and more constant

operational waveforms that lended themselves well to this analysis given that it proved

difficult to isolate distinct characteristics of the different reconnection behaviors.

6.2.1 Fast Fourier Transform Analysis

Fast Fourier Transforms were performed on ensembles of several Lundquist numbers.

These ensembles have Lundquist numbers below, at, and above the transition from quasi-

continuous reconnection activity to bursty, discrete activity. The transform was per-

formed on the numerically integrated signal of the ḃ-coils in MST taken from the dense
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array. The results are shown in Fig. 6.5. In this figure, each row represents an ensemble at

a certain plasma current and Greenwald density fraction (i.e. Lundquist number). As you

move down the rows, the Lundquist number of a given ensemble increases. The columns

show results from two different ḃ-coils in MST. For this set of ensembles the transition is

observed at approximately Ip = 100 kA and ne/nG = 0.34, such that the first two rows in

the figure represent the quasi-continuous cases and the last three rows represent ensem-

bles that exhibit increasingly bursty behavior. No significant difference in the features

of the spectra are observed between the quasi-continuous and bursty cases. However,

during the transition between the two cases, at Ip = 100 kA, ne/nG = 0.34, we see that

the peak normally located at ⇠ 10 kHz, downshifts in frequency. This frequency value

indicates that the feature may correspond to the tearing mode phase velocity. It would

follow, therefore, that the tearing mode phase velocity slows at Lundquist numbers in the

boundary region between quasi-continuous and bursty regions.

6.2.2 Laplace-Type Analysis

A Laplace-type transform was also applied to the data. This can be done, in particular, to

look for the appearance of self-similarity, or lack of it, in fluctuations at various tempo-

ral and spatial scales. A quantity, x, is self-similar in time if distributions of the function

�⌧x = x(t + ⌧)� x(t) collapse to a single distribution. In phenomonological Kolmogorov

theory, for example, these functions collapse to Gaussian distributions, indicating the ran-

domness of the turbulent interactions [2, 4].
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FIGURE 6.5: Fast Fourier transforms of integrated b-dot signals. The left col-
umn represents signals from the toroidal coil of coil set number 26 and the

right column represents signals from the poloidal coil of coil set 34.
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Applying this concept to the data gathered here, for a range of time delays, ⌧ , the time

delay function, S⌧ , was calculated. This equation was defined as,

S⌧ = �⌧ ḃ = ḃ�(t)� ḃ�(t+ ⌧), (6.1)

where once again we are looking at the b-dot time derivative of the magnetics signal

with ḃ� = Ḃ/�B representing the time derivative of the magnetic amplitude with unit

variance and zero mean. Then probability distribution functions, or PDFS, were created

from each of these signal difference functions by binning the amplitudes of the function.

These distributions were then fit to the following function,

F (�b) = Ke�b|�b|↵ , (6.2)

where K, ↵, and b are fit parameters. This process follows that outlined by Marelli et.

al in their work looking at the difference between standard and enhanced confinement

plasmas [2]. As we will see below, the results from Marrelli were replicated for standard

plasmas to benchmark this process. However, we also used this procedure to try to tease

out other features in addition to assessing the self-similarity of the plasmas. In particular,

the procedure was modified to fit the shoulder and wings of the distribution. After look-

ing at S functions for synthetic data, it was observed that for specific ⌧ values that line up

with reconnection activity periods, this is where in the distribution the most significant

change can be found.

Fig. 6.6 shows example plots for each step of the process outlined above for a single

shot. The top plot shows the signal being analyzed for an example shot. The middle plot

shows the time delay function for this plot for an example ⌧ . The bottom plot shows the
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(A)

(B)

(C)

FIGURE 6.6: This series of figures show an example of the process outlined
to analyze the time delay of the signal. This process is modeled off of that

described by Marrelli et. al [2].
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result of binning the amplitude of S to generate a PDF. The wings of this PDF were then

fit to Eqn. 6.2.

Synthetic Data and Benchmarking Results

Again, these analyses follow a process laid out by Marrelli et. al, who looked at this inter-

mittancy behavior in MST [2]. In this section, the results of benchmarking the data here to

the results presented by Marrelli et. al are shown. Fig. 6.7 compares the results obtained

using the data gathered for this work and the results presented by Marrelli et. al. Fig.

6.7a shows a comparison between PDFs generated at ⌧ = 0.3 µs and ⌧ = 171 µs. The top

row show the results from Marrelli and the bottom row shows the benchmarked results.

The ↵ values from the fit match relatively well and the shapes of the distributions appear

qualitatively consistent. Fig. 6.7b shows the ↵ values for fitting various S⌧ distributions,

varying ⌧ . Once again the top row replicates a figure from Marrelli and the bottom row

presents the benchmarked result. In the Marrelli figure the black diamonds correspond to

standard plasmas. We see that because they do not collapse to a single ↵ value, it does not

follow that the turbulence in MST standard plasmas is self-similar in nature. This result

is replicated by the benchmarked data as well. The red and blue data represent different

halves of the distribution for positive or negative S amplitudes. In the following sections,

we combine these data we performing these fits. The benchmarked results replicate the

conclusion drawn by Marrelli et. al.

Results Comparing Quasi-Continuous and Bursty Cases

This analysis technique was applied to ensembles of plasmas displaying quasi-continuous,

boundary and bursty reconnection activity. Self-similarity was not observed in any of
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(A)

(B)

FIGURE 6.7: Comparing self-similarity analysis of S-scaling data with those
found by Marrelli et. al [2]. In both (A) and (B) The top row shows the results
from Marrelli et. al and the bottom row shows the benchmarked data. The
results agree relatively well and are qualitatively consistent. In (B) the rele-
vant Marrelli results that represent standard MST plasmas are plotted with

the black diamond symbols.
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these cases. However, looking at longer times scales of ⌧ , and focusing the fitting to the

shoulder and wings of the distributions, it was hoped that some other frequency differ-

ence could be picked out of the data to distinguish any difference between the cases. The

results of these analyses are shown in Fig. 6.8. The left column shows the ↵ parameter

results from fitting the distribution while varying ⌧ , the middle column shows the b pa-

rameter results from fitting the distribution and the right column shows an example Vtg

signal from the ensemble as a reference for the reconnection behavior displayed. Each

row represents an ensemble of data. The top row would be characterized as exhibiting

quasi-continuous reconnection activity, the second row would be a boundary case and

the bottom two rows are ensembles of bursty plasmas.

A small oscillation in the ↵ values at low ⌧ is observed in lowest three Lundquist num-

ber ensembles. These align with the period of the moderately sized reconnection events.

Bursty reconnection events are narrower in time, and therefore it is to be expected that

they would be more difficult to visualize with this time-difference technique. An inter-

esting bifurcation of the ↵ values appears for the boundary ensemble in the second row,

indicating that moderately large reconnection activity is starting to appear. These events

last longer than more bursty reconnection events but as the events become more bursty,

they also occur more quickly so that the bifurcation disappears as Lundquist number

continues to increase.

6.3 Conclusions and Future Directions

While conducting the Lundquist number scaling study at the low Lundquist number

range, the upgraded PPS system was used to access lower Lundquist number shots than
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FIGURE 6.8: This figure shows a summary of the results from applying the
signal difference analysis below, at and above the threshold between quasi-

continuous and discrete magnetic reconnection activity.
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had been previously possible to generate on the MST. While probing this space for the

first time, a distinct type of reconnection activity was observed. The boundary between

bursty and quasi-continuous reconnection behavior was found to be at approximately at

Lundquist number, S = 10
5. At this boundary, distinct dynamics appear to be at play.

Fast Fourier transforms of ensembles in this range show a feature that likely corresponds

to the phase velocity slowing only in the boundary region. Additionally, fits of PDFs

the time delay distributions in this boundary region show a larger degree to which the

plasma is not self-similar relative to either bursty or quasi-continuous plasmas. This is

still largely an open question but the database generated during this study will provide a

great resource for any future investigations into this topic.
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Chapter 7

Conclusion

7.1 Summary

A large cache of data across the range of Lundquist numbers accessible to MST was pro-

duced. These data were ensembled at points across this expanse to obtain a relationship

for how the magnetic field fluctuation amplitudes measured at the edge of MST scaled

with Lundquist number. A summary of these results is below in the replicated Fig. 7.1.

In the scaling fit results, we observe stronger scaling for the higher density scenario.

The n = 6 modes exhibits unique behavior where its magnetic field fluctuation ampli-

tudes seem to level off and not vary strongly with Lundquist number. This effect is less

obvious in the high density case but may still be present when considering extenuat-

ing factors of the data collection constraints. For a chunk of modes n = 7, 8, 9, 10 we see

highly favorable scaling terms, implying that should we extrapolate conditions to reactor-

relevant scales, we have reason to suspect that stochastic transport would cease to be a

dominant transport mechanism for the RFP. This suspicion is further supported by the

estimation for �RR(r), which estimates that stochasticity will be low enough to be the

dominant loss mechanism. In all, having an average ↵n,gwf=0.34 ⇠ 0.38 for the core most
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modes is a very encouraging result for the RFP magnetic confinement fusion concept, es-

pecially given that a reactor will be more interested in high density cases to optimize the

fusion triple product.

There are a few caveats to these estimations. The ensembling averaged over the flattop

of the plasma discharges, ignoring that the sawtoothing behavior varied with Lundquist

number. Taking into account the transition from quasi-continuous the bursty reconnec-

tion activity that occurs as Lundquist number is increased from below S ⇠ 10
5 to above

that threshold, the activity goes from being low magnitude but persistent to having long

periods of quiescent plasmas with large, intermittent bursts of activity. This could mean

that as an experiment is scaled to higher Lundquist numbers, these transport is concen-

trated during these large reconnection events and is sufficiently large during these times

that stochasticity still continues to be a significant transport mechanism. These analyses

did not do a sawtooth based analysis.

Some preliminary analyses were also done to compare these data to simulations per-

formed in DEBS and NIMROD. These data have a large range of Lundquist number value

overlap with simulated data. Metrics indicate that both ↵n and cn values align well be-

tween the experimental results in the constant Greenwald fraction framework and the

preliminary simulations. This is somewhat expected given that the choice of parameters

used to determine Lundquist number was chosen for experimental convenience as op-

posed to being selected for easy comparisons with simulation results. In general, simu-

lations and choice of experimental parameter definitions could be iterated upon to better

match each other. A more thorough and extensive validation effort using these experi-

mental data would be a future project of great interest.
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Extrapolating results to high Lundquist number values argues for the promise of ex-

panding the RFP fusion research program to larger scales. When looking at the magnetic

field fluctuation amplitude and electron thermal diffusion extrapolations, we see these

quantities that are most closely tied to direct measurements are expected to scale very

favorably at Sreactor ⇠ 10
9 � 10

10.

Finally, ⌧E did not scale with density as is predicted by the stochastic diffusion model,

however, the current scaling dependence matched closely with what is expected from the

stochastic model, with ⌧E ⇠ I2/3p assuming ↵ ⇠ 0.333. This indicates that there may be

physics at play that is not captured by the stochastic model.

A large database of data were created that will be accessible for future use. Perhaps

the most valuable of which is the set of Thomson temperature profiles given that the

diagnostic will be difficult to use without more personnel devoted to its upkeep.

A transition from quasi-continuous to discrete reconnection activity was observed at

S ⇠ 10
5 for a variety of plasma currents. During this transition, but not below or above it,

a feature in the FFTs of the magnetics slows. This feature most likely corresponds to the

phase velocity.

7.2 Future Directions

This project could have been taken in many directions and many interesting avenues of

exploration were not pursued. Namely, now that data directly overlaps in Lundquist

number space with computational codes, a more thorough validation effort would be

interesting and valuable in our understanding of the physics of the RFP. The Lundquist

number definition as used herein could be changed to provide a better comparison with
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(A)

(B)

FIGURE 7.1: This set of figures summarizes the results of fitting the magnetic
field fluctuation amplitude scaling data to Eqn. 5.21. The top figure shows the
results of the coefficient of the scaling fit on a semilog plot against the toroidal
number. The bottom figure shows the scaling parameter, ↵, on a linear plot
against the toroidal mode number. In keeping with the convention of all data
presented herein, the low density Greenwald fraction data is shown in blue

while the high density Greenwald fraction data is shown in orange.
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simulation. Additionally, simulations that incorporate two fluid effects and performed

with an eye of more closely matching the experimental data collection framework would

provide a better basis for comparison.

The change in sawtooth activity with Lundquist number was largely ignored with this

scaling. However, given the possibility that transport is concentrated during the large,

bursty reconnection event at higher Lundquist numbers, it would be worth considering

how magnetic field fluctuations scale during different times through out the sawtooth

period as compared to the quiescent period of the flattop. Josh Reusch performed ensem-

bling to detail the electron temperature behavior over the sawtooth period in his thesis [1].

Jeff Becksted also performed a detailed analysis of the sawtooth scaling of the sawtooth

activity characteristics in his thesis and Stoneking briefly covers sawtooth period scaling

in his Lundquist number scaling studies [2, 3]. These data could be used to investigate the

scaling during and away from sawtoothing, at least for higher Lundquist number cases.

Additionally, the database contains information about when sawteeth occur for many of

the higher Lundquist number shots collected for this project.

The energy confinement times did not scale as expected according to stochastic theory

with regard to the electron density (or, equivalently, the Greenwald fraction) and with

an exponential scaling parameter obtained by this study. This implies that there is some

physics missing in the understanding of this quantity.

Finally, the transition from quasi-continuous to discrete reconnection is mostly an

open question still. Contributions from theorists to direct the effort for understanding that

phenomenon would be a good next step to better understanding the underlying physics.
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Appendix A

Lundquist Number Scaling Database

One of the major outcomes of this study was a database spanning a wide range of Lundquist

numbers of well diagnosed plasma shots often including data from soft x-ray tomogra-

phy, Thomson scattering, FIR, magnetic field coils, Ross Filter, CHERS, and the multi-

energy xray diagnostic. At a minimum, each shot includes high quality Thomson, mag-

netics, and FIR data. Before this study, FIR measurements were not included by default

and instead a less reliable CO2 interferometer was used to measure the density.

The goal of this appendix is to refer future users to resources that were created to help

navigate the database and as well as to files that include shot lists. These resources can be

found in the author’s dave directory (”skubala”) in the subdirectory called ”Lundquist

number scaling database”. At the onset of this project, efforts were made to organize and

”clean” the data that, though ultimately not used for the data analysis performed herein,

is still included in the directory. These efforts included as noting sawtooth times for the

relatively high Lundquist number shots. Basic lists of MST shot numbers used for the

analyses performed herein are also included in text files located in that directory. There is

also a spreadsheet that summarizes all the run days that were used to generate the data,

such as which diagnostics were used, the purpose of the run day, the desired currents and
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densities, and a few other notes. These data can also be found in the MST logbook but the

spreadsheet summarizes the logbook input so that these data can be easily parsed.

Additionally, template Jupyter notebooks for Python 3.6 are included that allow one to

use the functions to visualize the data in the ensemble. Jupyter notebooks are also stored

there for looking at magnetics data, Thomson data, and CHERs data. The MST Thomson

Scattering wiki includes a page called ”How to ensemble/sum low temperature, density

Thomson data” that summarizes the workflow that the author employed when using

these notebooks. As was mentioned in the Thomson section, the Thomson ensembling

technique can be performed using the Jupyter notebook template on ”tsfit” according to

the instructions on this page as well.

I do not claim that all the code included is the most elegant, and I would obviously

make some changes to the structure now that I have more experience working with the

database. However, the time spent creating these shot lists and parsing these data should

still save any future users a lot of time. The text files can be easily read by most program-

ming languages should Python 3.6 and/or Jupyter notebook become antiquated.
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Appendix B

RESTER Plots for Standard Plasmas

Included here for future reference are the RESTER plots that were used to estimate b̃r,

given b̃n(r = a), which in turn was used to estimate island width scaling (see Ch. 5).

They were generated by John Sarff based on Standard, � = 0, F=-0.2 RFP plasmas in MST.

RESTER is a numerical tool for calculating stability of cylindrical force-free profiles. First,

are plots that summarize the results of the RESTER plots. These were also generated by

John Sarff.
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