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Abstract

Alfvén continua and Alfvén eigenmodes (AEs) have been generated for reversed-field

pinch (RFP) plasma equilibria in Madison Symmetric Torus (MST). Data gathered

from the extensive suite of diagnostics on MST was used to generate equilibria using

MSTFIT and VMEC. Three dimensional equilibria for spontaneous helical states

were generated using the equilibrium reconstruction code V3FIT. The reduced-MHD

codes AE3D and Stellgap were run on all generated equilibria to calculate the

continua and AEs. All continuum solutions contain a toroidicity-induced Alfvén gap

at 200 � 400 kHz, within which AE solutions appear by coupling of m = 0, 1 at

medium n.

The first observation of beam-driven instabilities on the RFP was performed using

MST magnetics during neutral beam injection (NBI). Spatially coherent bursts with

n = 5,m = 1 were observed in plasmas with edge safety factor qa = 0. The bursts

oscillate at 65 kHz, and reach maximum amplitude and decay away within 100 µs.

These bursts persist for the duration of NBI. Secondary n = �1 and n = 4 bursts

are coupled in time, reaching maximum amplitude with 50 µs after the n = 5 peak

amplitude. While the n = 5 bursts scale weakly with the electron density ne and

strongly with the beam velocity v

beam

, the n = 4 bursts scale with the Alfvén speed

vA. The burst frequencies are well below those of the calculated AEs and the modes

are driven even with v

beam

< vA, suggesting that the bursting modes are EPMs

exciting continuum resonances.

Burst characteristics were examined in a variety of plasmas. In reversed plasmas,

the temporally changing q profile changes the burst resonances, bringing n = 6 into

resonance halfway through the sawtooth cycle. The n = 5 mode switches from its

frequency in non-reversed plasmas to a higher frequency at the end of the sawtooth
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cycle. In deeply reversed plasmas, the bursts are weaker and display chirping behavior

as the plasma reversal increases. During the transition to a helical state, the bursts

increase in frequency as q on-axis changes, altering the parallel wavenumber kk. When

the helical state is established, the bursts terminate.
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Chapter 1

Introduction

In order to achieve sustained fusion, a hot, dense plasma must be confined for long

enough to begin self-heating. Although simply stated, this goal is tremendously

di�cult in practice because plasma is a reactive and dynamic medium. Powerful

magnetic fields in a torus can confine plasmas, but large scale collective processes

such as plasma waves and small scale local processes such as particle collisions can

work against confinement. Fluid dynamics, electromagnetism and particle kinetics

conspire in often unexpected ways to confound e↵orts at achieving a burning plasma.

Nonetheless, for 60 years plasma physicists have been steadily improving plasma

confinement as they build new machines.

Sometimes the plasma processes work in favor of confinement, o↵ering a clear way

forward for researchers. The “bootstrap current” that is crucial in tokamaks is one

example [1]. Subsequent tokamak design e↵orts sought to maximize this e↵ect so

that less external current drive was necessary.

The reversed-field pinch (RFP) configuration was likewise stumbled upon. In

1974, six years after the ZETA pinch was shut down, analysis of its ramp-down phase

led to the realization that its confining magnetic fields had self-organized [2]. The
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plasma had determined its own stable equilibrium, and it was drastically di↵erent

than the equilibrium the researchers had planned for. In this new equilibrium, the

toroidally-oriented field reverses direction, possessing opposite chirality in the interior

and at the edge of the plasma. In this configuration, the plasma is in a minimum

energy state where the lines of current are aligned with the internal magnetic fields.

The plasma-generated field significantly reduces the need for external field generation.

From analysis of the “o↵” phases of a machine that been shut-down for six years, a

new type of plasma confinement device was born.

At the time of writing, Madison Symmetric Torus (MST), an RFP, has the fourth

largest magnetic confinement program in the United States. The three largest ex-

periments are tokamaks. The first RFP devices aimed at plasma confinement were

constructed in the late 1970’s, and the RFP community has been working to replicate

stellarator and tokamak advances in the context of the configuration’s unique field

structure. RFP research has benefitted significantly from collaboration and discus-

sion with the greater magnetic confinement community, but many gaps exist. The

relatively small amount of resources available have been used to study the proper-

ties of this fascinating equilibrium, dividing the focus of research between interesting

basic physics and fusion-relevant experiments.

The first neutral beam injection (NBI) system for current drive and heating was

installed and operated in 1972 [3], five years before the first RFP finished construc-

tion. The first such system on an RFP was installed in 2010 on MST [4]. As such,

beam-driven instabilities arising from the presence of a small fast ion population are

one area where the tokamak and stellarator communities have performed consider-

ably more research than the RFP community [5, 6]. This research is highly relevant

to fusion reactors as beam ions may interact with the plasma in a similar manner to

fusion-produced alpha particles. In fact, the ratio of the MST fast ion orbit size to
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the machine size was chosen to be comparable to these fusion-produced particles in a

reactor. The instabilities are often resonant interactions determined by the distribu-

tion of fast ions and the geometry of the magnetic fields in the equilibrium. Because

the field direction is crucial to determination of the excited waves, the uniqueness

of the RFP configuration precludes the immediate application of knowledge gained

from other machines.

The pitch of the magnetic fields around the machine axis changes with the distance

from the axis. The inverse shear length quantifies the degree to which the pitch

changes. As expected, the RFP has a significantly larger inverse shear length than

tokamaks and stellarators. High shear tends to eliminate instabilities by shrinking

the domain of a given resonant interaction. What the eigenmodes of an RFP look like

has been an open question in plasma physics. Moreover, whether beams can drive

large instabilities in such high shear conditions has also been unknown.

This thesis addresses both the question of the continuum and eigenmode struc-

tures in RFP plasmas, and whether beam-driven instabilities exist. It presents the

first observation of beam-driven Alfvén waves in the RFP, performed on Madison

Symmetric Torus.

1.1 Outline

The remainder of Chapter 1 presents background necessary to interpret the presented

results and discussion. The basics of plasma equilibria, Alfvén eigenmodes and en-

ergetic particles modes, and the overall configuration of the MST experiment are

presented.

Chapter 2 describes the plasma diagnostics that are relevant both for analysis

of high frequency waves and for equilibrium reconstruction. Diagnostics are divided
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into several categories and evaluated based on their relevance for these two tasks.

Particular attention is paid to the magnetic diagnostics, whose properties have not

been catalogued in one place prior to this work. The intent of this section is both to set

up the necessary understanding for later results, and to compile a su�cient summary

of relevant diagnostics for future researchers to continue the studies presented here.

Section 2.1.1 contains a table with the location of probes in the magnetic arrays.

Section 2.5 contains a table that summarizes the locations of diagnostics relevant to

equilibrium reconstruction.

Chapter 3 describes the methods used to perform 3D equilibrium reconstructions

and to determine the Alfvén resonances on MST. VMEC and V3FIT, the equilibrium

solver and reconstruction code, respectively, are introduced. The Alfvén continuum

solver Stellgap and the Alfvén eigenmode solver AE3D are described.

Chapter 4 catalogues the Alfvén continua and eigenmodes for many MST plasma

equilibria. The non-reversed base case is examined with varied parameters. Con-

tinuum solutions for reversed and deeply reversed cases are presented. Finally, con-

tinuum solutions for helical plasmas are shown. In Section 4.2, continuum solutions

and eigenmodes for a wide variety of MST plasmas are presented. In Section 4.3.1,

the first fully 3D equilibrium reconstruction results are presented. In Section 4.3.2,

continuum solutions corresponding to these results are shown.

Chapter 5 deals with the observation of bursting modes during discharges with

NBI. The computational algorithm used to resolve high frequency periodic bursts is

described. The first observation of beam-driven instabilities in an RFP are presented.

Results from non-reversed operation, including magnetic polarization and frequency

scaling are shown. Finally, the internal characteristics of the bursting modes and the

relevance to MST plasmas is connected. A discussion of the identity of the modes

follows. In Section 5.2.1, time-spectrograms showing the first observation of magnetic
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bursts due to beam injection are shown. In the following sections, various related

bursts of interest are presented.

1.2 Plasma Equilibria

A plasma is in magnetohydrodynamic (MHD) equilibrium when its magnetic field and

pressure profiles are static [7]. In other words, a plasma is in MHD equilibrium when

it is neither expanding nor contracting. A physical description of such a state follows,

informed heavily by the Miyamoto text, Controlled Fusion and Plasma Physics [8].

In a given fluid element, no electric fields E and no local velocities V can exist to

satisfy this condition in the simplest case. In practice, global flows are often present.

The equation of motion for fixed element in a magnetofluid is

⇢m

✓
@V

@t

+ (V ·r)V
◆

= �rp+ j⇥B, (1.1)

where ⇢m is the plasma mass density, V is the velocity of a fluid element, p is the

pressure, j is the current density vector, and B is the magnetic field vector. On the

left-hand side is the rate of change of momentum of the fluid element, which in the

fixed frame of reference must include a spatial gradient (V ·r)V. The right-hand

side includes the forces due to a pressure gradient and Ohm’s law. Setting V = 0

satisfies the equilibrium condition, resulting in

rp = j⇥B. (1.2)

This is the fundamental force balance equation for equilibrium. The addition of

Ampère’s Law,

r⇥B = µ

0

j, (1.3)

Gauss’s Law for magnetism,

r ·B = 0
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Figure 1.1: Visualization of cylindrical flux surface coordinates and plasma quantities

and the time-invariant continuity equation for current density,

r · j = 0

complete the picture for a plasma in equilibrium. The cross product in Eq. 1.2

implies that the pressure gradient is perpendicular to both the magnetic field and the

current density everywhere. This does not imply that B and j are perpendicular to

each other, but it does imply that they lie parallel to a surface of constant pressure.

A plasma in equilibrium consists of a set of surfaces of constant pressure, parallel to

which lie the magnetic field lines and current density lines, Fig. 1.1.

The surfaces as determined by Eq. 1.2 are surfaces of constant  , where

(r ) ·B = 0. (1.4)

In a torus with cylindrical coordinates such that  =  (R,�, Z), where Z is normal
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to the hole in the torus, the magnetic field components are determined by B = r⇥A,

BR =
1

R

@AZ

@�

� @A�

@Z

B� =
@AR

@Z

� @AZ

@R

(1.5)

BZ =
1

R

@

@R

(RA�)�
1

R

@AR

@�

.

An equilibrium that is invariant in the � direction, @/@� = 0, is called axisymmetric

or two-dimensional. In that case,

 (R,Z) = RA�(R,Z). (1.6)

A helically symmetric system has some helical pitch ↵, such that  =  (R,�� ↵Z).

The solution in this case is

 (R,�� ↵Z) = AZ(R,�� ↵Z) + ↵RA�(R,�� ↵Z). (1.7)

In the axisymmetric case, the surfaces are a nested set of toruses. In the helical

case, the nested surfaces are noncircular and have a rotational transform, Fig. 1.2.

The value of  scales directly with amount of flux through two types of surface. The

first is a two dimensional surface in the (R,Z) plane, through which B� passes.  t

defined by this flux is referred to as the toroidal flux function. The second is an

annulus in the (R,�) plane whose ring begins at the magnetic axis (the point of zero

flux) and extends outward radially. BZ passes through this surface, and  p is then

referred to as the poloidal flux function.

The determination of flux surface locations is performed by solving Eq. 1.2 ac-

cording to the constraints provided. j⇥B is recast as 1

µ0
r⇥ B⇥B using Eq. 1.3,

resulting in a di↵erential equation that can be solved iteratively. In the axisymmetric

case, the Grad-Shafranov equation is arrived at by examining the radial component

of this force balance[9]. In the case of a plasma with helical symmetry in a torus,
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Figure 1.2: Visualization of helical flux surface coordinates and plasma quantities

an analytical solution can be found, but does not approximate most real systems

well[10].

1.3 Alfvén Eigenmodes and Energetic Particle

Modes

The shear Alfvén wave is a fundamental plasma wave that propagates along a mag-

netic field line, with perturbed B and E components perpendicular to the field [11].

From Faraday’s Law and Ampère’s Law,

r⇥ E = �@B
@t

r⇥B = µ

0

✓
J+ ✏

0

@E

@t

◆
,

the well-known wave equation can be constructed,

r⇥r⇥ E = �r⇥ Ḃ = �µ
0

✓
@J

@t

+ ✏

0

@

2E

@t

2

◆
. (1.8)

We care about the perturbed quantities, so E! Ẽ, J! j̃. We choose k k B
0

for an

incompressible shear wave, and assume Ẽ is linearly polarized and Ẽ ? k, Ẽ ? B̃ ? k.



9

Linearizing the equation by assuming fluctuating quantities ũ = ũ exp [ik · x� i!t]

replaces r ! ik, @/@t! �i!. The result is

�k
⇣
k · Ẽ

⌘
+ k

2Ẽ =
!

2

c

2

Ẽ+
i!

✏

0

c

2

j̃. (1.9)

Solving along the direction of Ẽ with j̃ = qin0

ṽi, this equation becomes

✏

0

�
!

2 � c

2

k

2

�
Ẽ = �i!n

0

eṽi, (1.10)

where the ion motion can be shown to be dominant and the electrons follow due to

charge neutrality. ṽi is found by solving the ion equation of motion for an electro-

magnetic perturbation in a uniform magnetic field,

mi
@ṽi

@t

= eẼ+ eṽi ⇥B
0

(1.11)

which results in

ṽi =
ie

mi!
Ẽ

✓
1� !

2

ci

!

2

◆�1

, (1.12)

where !ci = eB/mi. The velocity perturbation parallel to B̃ contains information

about the E⇥B drifts of the ions and electrons caused by Ẽ, and will be neglected in

pursuit of the Alfvén speed. For the relatively low-frequency Alfvén wave, ! ⌧ !ci.

Taking this into account and substituting into the linearized wave equation,

!

2 � c

2

k

2 = �n

0

e

2

mi

!

2

!

2

ci

= �!2

min0

✏

0

B

2

0

= �!2

c

2

µ

0

min0

B

2

0

. (1.13)

Preemptively, we will designate the Alfvén speed vA = B

2

0

/µ

0

⇢m, where ⇢m = min0

.

We solve for !/kk, where the kk denotes that k k B
0

, and we assume c

2

/v

2

A � 1.

!

2

k

2

k
=

c

2

1 + c

2

/v

2

A

(1.14)

!

kk
= v� = vA (1.15)
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The Alfvén speed is then the phase velocity of a wave with Ẽ ? B
0

, B̃ ? B
0

, k k B. A

shear Alfvén wave propagates along the magnetic field with a restoring force provided

by v ⇥B. This type of wave is analogous to a magnetic field line being plucked like

a string.

The remaining discussion of Alfvén waves in toroidal systems is informed primarily

by the Heidbrink 2008 review [6] and the Wong 1999 review [5]. In a cylinder with

axial symmetry, the magnetic field lines can have an axial component B� and an

azimuthal component B✓. Assuming a characteristic length 2⇡L and designating the

distance from the axis as r, the waves will be periodic along field lines. The parallel

wave vector is resolved in azimuthal mode number m and axial mode number n,

kk =
mB✓

r|B| �
nB�

L|B| . (1.16)

Introducing the safety factor describing the pitch of the field lines, q = rB�/LB✓, the

above equation can be condensed to

kk =
m� nq

r

B✓

|B| . (1.17)

When the cylinder is bent into a torus, L is replaced with the distance from the torus

center, R, but the above kk equation is una↵ected to first order. m becomes the

poloidal mode number that designates the periodicity around a circular cross section

of the torus. n becomes the toroidal mode number, designating the periodicity along

the torus ring. As q = q(r) and B = B(r), the value of kk changes across the minor

radius of the plasma. This implies that under most conditions, ! = kkvA is also a

function of the minor radius. The continuous solution !mn(r) is referred to as the

Alfvén continuum for a given couple of poloidal and toroidal mode numbers.

For a given flux surface, a single frequency corresponds to to the Alfvén resonance.

As kk changes across the minor radius, so does this frequency, Fig. 1.3. If a packet

of energy is deposited in a region of finite width with central resonant frequency !,
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Figure 1.3: The Alfvén continuum in a cylinder. The crossing of m and m� 1 for a
given n is plotted in frequency vs. radius.

the nearby surfaces resonant at ! = !

res

± �! will shear apart the wave. The phase

mixing must necessarily happen because shear waves must have finite radial extent in

order to propagate. The wave is dispersed with a magnitude �# / d!/dr. The Alfvén

continuum forms a continuous set of resonances which lose wave energy rapidly in

practice.

The �# term is zero at any point where the continuum contains an extremum.

The relatively coherent clustered frequencies form a potential well within which an

eigenmode solution exists. One extremum is in the core of the plasma, where the

magnetic axis creates an extremum in the safety factor. The waves that arise from

this condition are Global Aflvén Eigenmodes (GAEs). Another extremum can occur

if the dq/dr reverses direction, creating a kk extremum that generates Reversed-Shear

Alfvén Eigenmodes (RSAEs). A phenomenon that is general to toroidal confinement

devices is the set of extrema created by toroidicity, which lead to the Toroidicity-

induced Alfvén Eigenmodes (TAEs). All of these Alfvén Eigenmodes (AEs) have
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been observed on tokamak and stellarator devices [12, 13, 14, 15].

A field line traveling in a torus encounters a periodic variation of the magnetic

field B

0

as its helical path takes it inboard and outboard of the magnetic axis. The

background field periodicity is in the poloidal direction, B
0

/ cos ✓. The wave speed

is vA / B

0

and the periodic amplitude of the perturbation is B̃ / cos(m✓ � n�).

The factor of (1/R) in the toroidal portion of the gradient, (1/R)d/d�, along with

the variation in wave velocity vA / cos(✓), couple m± 1 waves with the same n. At

the point where the frequencies of m ± 1 surfaces cross, a gap in the continuum is

formed. This crossing occurs at kk,m,n = �kk,m±1,n, where the negative sign refers to

a wave propagating in the opposite direction. Because kk is a function of q, this sets

a condition on q for a crossing to occur,

q =
2m± 1

2n
. (1.18)

The lowest q value for crossing is therefore q = 1/2n. The solutions bifurcate into

a low frequency maximum with a phase di↵erence between the background and per-

turbed field �(B̃
0

, B̃!) = ⇡, and a high frequency minimum with �(B̃
0

, B̃!) = 0, both

of which have d!/dr = 0, Fig. 1.4. It should be noted that for this thesis, kk = |kk|

is used in order to display the coupling of the Alfvén continuum in an intuitive man-

ner. In reality, @!/@r < 0 corresponds to kk < 0 or n < 0 solutions, depending on

preference. The ±n terminology will be recovered when it is necessary to distinguish

between directions of propagation. The potential well created in the gap between

these two extrema is the locus of the TAE, and its frequency is bounded by the gap.

One of the most widely observed sources of energy transfer to the waves is a

population of energetic particles. Three conditions must be met in order for energy

transfer from particles to the Alfvén waves to occur[6]. First, some component of

the fast ion motion point transverse to field lines, such that vi · Ẽ 6= 0, where Ẽ
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Figure 1.4: A TAE gap opening in the Alfvén continuum from the coupling of m and
m� 1 at a given n. The TAE frequency lies within the gap, above and below which
@!/@r = 0.

is the expected oscillating transverse field of an Alfvén wave and vi any component

of the fast ion motion. In many devices, this component is the radial drift velocity

vD of a population of circulating ions, and in others it is the radial component of

trapped ion orbits. Second, the fast ion energy transfer must not phase-average to

zero,
H
Ẽ · vi 6= 0. This is equivalent to the average alignment of kk vectors, or

m+ l � nq

r

B✓

|B|vk =
m� nq

r

B✓

|B|vA (1.19)

where l is any integer and vk is the component of the beam velocities parallel to the

magnetic field line.

Third, there must exist some gradient in energy space for the beam ions such that

the total energy of the ion population decreases by its flattening Fig. 1.5. The ion

population is characterized by a distribution function f , and the condition for energy

transfer to the wave is �" > 0, where �" / ! @f/@W . A “bump-on-tail” distribution is

generated from neutral beam injection, where a small group of particles are injected
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Figure 1.5: The flattening of the distribution function f at a resonance. The total
energy is decreased by particles moving from right to left.

at high velocity, appears as a bump in velocity space so that its low-velocity side

has @f/@W > 0, Fig. 1.6. This situation is known as Inverse Landau damping.

After a short period of time, the bump-on-tail tends to evolve into a slowing-down

distribution with @f/@W < 0, causing wave damping instead of drive.

Another energy gradient, however, exists in real space. A population of beam ions

injected on-axis has a radially-peaked distribution. The toroidal angular momentum

is

P⇣ = miRV⇣ � qi , (1.20)

where  is the flux given by Eq. 1.6. As discussed before,  increases with minor

radius, so P⇣ decreases in the same direction. Because Wi,⇣ increases with the kinetic

energy P

2

⇣ /mi, a distribution of ions that is peaked on-axis will have �" / @f/@P

2

⇣ /

@f/@W > 0, Fig. 1.7. Fast ions with peaked density gradients at the magnetic axis
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Figure 1.6: Inverse Landau damping from a bump-on-tail distribution in velocity
space. The low-velocity side of the bump flattens analogously to Fig. 1.5.

are an energy source to drive instability. For the Alfvén eigenmodes (AEs), the radial

density gradient of fast particles is a ready source of drive.

Energetic particle modes (EPMs) arise when the drive from the fast ion population

is su�cient to overcome continuum damping. If �" > �# and the conditions for particle

resonance are satisfied, resonant frequencies in the Alfvén continuum will be driven

unstable. Coherent waves with !, n and m specified by a compromise between the

continuum and the beam ions will grow.

1.4 Madison Symmetric Torus

Madison Symmetric Torus is an RFP with plasma parameters as specified in Table

1.1 [16]. The machine has a major radius of 1.5 m and a minor radius of 0.52 m,
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Figure 1.7: Resonant drive by a fast ion spatial gradient. As the flux  and radial co-
ordinate r increase away from the axis, the toroidal angular momentum P⇣ decreases.
Particles moving outward decrease the total energy.

giving an aspect ratio R

0

/a ⇡ 3, Fig. 1.8. The conducting shell is 5 cm thick, and

its inner wall has graphite tiles that cover the toroidal extent at ✓ = 0�, 180�.

Table 1.1: MST Parameters

Parameter Abbreviation Minimum Maximum

Plasma Current (MA) Ip 0.2 0.6
Toroidal Field On-Axis (T) B�(0) 0.2 0.55

Axis Safety Factor q

0

0.167 0.23
Edge Safety Factor qa -0.15 +0.01

Electron Density (m�3) n̄e 0.3⇥ 1019 1.6⇥ 1019

Electron Temperature (keV) Te 0.1 2
Discharge Duration (ms) 30 75

The RFP configuration can be approximated by a Taylor State [2], a minimum
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Figure 1.8: Madison Symmetric Torus

energy state of the current and magnetic fields, which are prescribed by

r⇥B� �B = 0, (1.21)

where � is the magnitude of the parallel current jk. The solution to this equation

is a Bessel function model (BFM) whose notable features are that � is constant and

hB�i ⇠ hB✓i. In practice, � = 0 at the boundary, so near the boundary it sharply

decreases, a feature that is not captured by the BFM. The q profile is small and

monotonically decreasing, passing through zero and into negative values at the edge,

Fig. 1.9.

The RFP configuration is generated on MST through a few steps. First, a toroidal

field B� is produced by driving poloidal current in the conducting shell. Deuterium

gas is pu↵ed into the vessel through holes in the shell. The gas is ionized by a

toroidal electric field E� induced by the iron core transformer, Fig. 1.10. The field
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Figure 1.9: Magnetic field and safety factor profiles for an MST discharge. The
toroidal field and safety factor go to zero at the edge.
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also causes initial current to flow toroidally, which generates the poloidal magnetic

field B✓. The resulting twisted fields act as conduits for the ions and electrons to flow

along, generating a progressively more twisted field farther from the magnetic axis.

As the configuration relaxes into a minimum energy state, B� at the edge goes to zero

or reverses direction from its core value. This reversal is maintained by the sawtooth

cycle, which regenerates toroidal flux. The resultant magnetic fields are shown in Fig.

1.9. The plasma sustains the configuration by acting as the transformer secondary,

converting poloidal flux from the transformer to toroidal current in the magnetic

shell. The discharge is limited by the number of V · s available to drive E�.

A typical discharge for MST is shown in Fig. 1.11. The line-averaged electron

density n̄e spikes at the ionization point, then flattens as the discharge stabilizes.

The plasma current Ip ramps up continuously and reaches a flat-top at 15 ms before
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Figure 1.10: The iron core transformer is used to drive toroidal electric field.

ramping down at 35 ms. The toroidal field at the wall B�w starts high and reverses as

the RFP configuration develops, while the average toroidal field hB�i tracks roughly

with Ip. Most of the physics research requiring steady-state operation is performed

during the flat-top of Ip, when the field evolution is only governed by the sawtooth

cycle.

1.4.1 Tearing Modes and Sawtooth Events

The iron core transformer drives current toroidally by inducing a toroidal electric field

E�. At the edge of the plasma, B✓ � B�, restricting the ion and electron motions in
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Figure 1.11: Time traces of plasma current, electron density, edge safety factor,
toroidal magnetic field at the wall, and average toroidal magnetic field. Experiments
are traditionally performed from 20 to 40 ms, in the “flat top” portion of the discharge.
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Figure 1.12: Core n = 6 islands and stochastic magnetic fields past mid-radius for
MST. Multiple overlapping islands outside the core cause the field lines to wander
across from mid-radius to the reversal surface. From [17]

the toroidal direction. Current is driven principally in the core of the plasma, altering

the � profile. Concurrently, finite resistivity permits growth of tearing modes located

on rational surfaces, q(r) = m/n. The core tearing mode island grows and saturates

as q
0

decreases over time. Tearing mode islands outside the core overlap, creating a

stochastic field that degrades energy confinement, Fig. 1.12[17].

When the current in the core reaches a critical threshold, the flux surfaces deform

globally. Nonlinear coupling of the m = 1 tearing modes in the interior of the plasma

with m = 0 modes at the q = 0 reversal surface enables a rapid relaxation of the

peaked current profile. The plasma regenerates toroidal flux, resetting to a state closer

to the Taylor state. These events are referred to as “sawteeth” for their characteristic

form on the hB�i signal. They are evident in the B� traces on Fig. 1.11.
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1.4.2 Neutral Beam Injector

In 2010, a 1 MW neutral beam injector NBI was installed on MST, Fig. 1.13. The

injector fires 25 keV (vB,H = 2.2 ⇥ 106 m/s, vB,D = 1.6 ⇥ 106) atomic hydrogen and

deuterium tangentially to the core magnetic field. The beam is typically run with

97% H and 3% D, but can be run with other mixtures of gasses, including 100%

deuterium. The neutral beam particles are ionized by collisions along the beam path,

predominantly in the core of the plasma. Beam parameters are listed in Table 1.2.

Table 1.2: MST NBI Parameters

Parameter Abbreviation Value

Beam Power (MW) P

beam

0.35 - 1
Neutral Energy (keV) E

beam

17 - 25
Beam Current (A) I

beam

20 - 40
Pulse Length (ms) 5-20

Previous calculations using the Transp[18] code for beam deposition were per-

formed to determine the fast ion profile. The fast ion distribution builds up in the

core of the plasma with pitch relative to field lines of vk/v = 0.9, Fig. 1.14. Previous

work has established that the fast ion confinement time is significantly longer than

the energy and particle confinement times of thermal ions, ⌧fi = 5� 30 ms [19]. This

classical confinement is a product of the pitch of the injected ions, which orbit-average

over the tearing mode islands and stochastic fields, Fig. 1.15, resulting in
H
Ẽ ·v = 0

. The deposited fast ions have an inverse rotational transform qfi which is boosted

o↵ of the plasma safety factor by the fast ion pitch, 1.16.

With a steadily-increasing population of fast ions in the core whose density gradi-

ent is sharp in radius, there is opportunity for TAE and EPM excitation by @f/@P 2

⇣ >

0. MST plasmas with beam injection are excellent test beds for investigations into

beam-driven instabilities. This work describes the results of those investigations.
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Figure 1.13: Neutral Beam Injector installed on MST. The beam passes through the
core of the plasma tangentially. The diagnostic neutral beam is also depicted passing
through the plasma radially.

Figure 1.14: Fast ion density nfi after 2 ms of beam injection. The fast ions are
highly core-localized, with high vk.
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Figure 1.15: Fast ion guiding center puncture plot overlaying field line puncture plot
for MST. The fast ions are insensitive to islands and stochastic fields, localizing them
to the core of the plasma.
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Figure 1.16: Fast ion and plasma safety factor. The fast ion safety factor is boosted
o↵ of the plasma safety factor due to the high pitch of injected ions.
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Chapter 2

Relevant Diagnostics for Mode

Analysis and Equilibrium

Reconstruction

In order to examine physical characteristics of plasma equilibria inside MST and to

diagnose MHD activity at Alfvénic frequencies, a host of diagnostics are employed.

This chapter inventories the diagnostic suite on MST at the time of writing, briefly

outlines the physics associated with each tool, and assesses its viability for 3D equi-

librium reconstruction and mode characterization from the standpoint of information

content, temporal and spatial resolution, and position. Particular attention is paid to

the magnetic diagnostics. The focus is on the necessary information to work with the

diagnostic outputs. Discussion of the diagnostics methods upstream and downstream

of MST is left to the cited publications.
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2.1 Magnetics

By Faraday’s Law, a changing magnetic flux through an area induces an EMF along

the edge of the loop. The magnitude of this EMF is ✏ = �d�/dt, where the magnetic

flux � = BA cos (�), B is the magnetic field strength, A is the area of the loop, and �

is the angle between the loop and the average field line direction. With a conducting

loop of known area A and resistance R, N turns can be included to multiply the total

induced EMF. If the loop is at a fixed orientation, ê, and one includes Ohm’s law,

I = ✏/R, one can calculate the magnitude of change in magnetic field normal to the

coil area as:
dBe

dt

= ê · b̂
✓

I

ANR

◆
(2.1)

where b̂ is the normalized vector corresponding to the orientation of the magnetic

field. Integration of this quantity over time with the correct constant of integration

(t = 0, B = 0) will provide the total magnetic field at the coil at a point in time.

2.1.1 Magnetic Arrays

On MST, most of the magnetic diagnostics are a�xed to the inside of the conducting

shell, between the shell and the plasma boundary set by the 1.3 cm limiter. Eddy

currents in the shell cancel out the magnetic fields inside at a skin depth of � ⇡ 2 cm

on the timescale of a 60 ms pulse, making measurement of internal fields implausible

outside of the vessel.

In order to resolve all 3 components of the perturbed magnetic field vector B̃

at a point in space, 3 loops with orthogonal facings, êi · êj = 0, are used. This

configuration is known as a Mirnov triplet. Ceramic coil forms for the Mirnov triplets

were fabricated such that they could be attached to the vessel wall while protecting

the coils from plasma interactions, Fig. 2.1 [20]. The forms are 3.8 ⇥ 2.5 cm,
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Figure 2.1: Array coil forms and graphite covers. Br, B✓ and B� coils are located at
di↵erent places in the coil form. The wires exit through a port on one side of the coil
form.
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with 5-turn coils of 32-gauge HML-coated wire and e↵ective areas of 1.5 ± .1 cm2.

Because of the need for compactness in the radial direction, the coil forms could not

accommodate all coils in a 3D geometry. They are designed with the radial-facing

coil serving as the basis for positioning, with the poloidal-facing coil o↵set by 8 mm

and the toroidal-facing coil o↵set by 22 mm, both in the same direction. The plasma-

facing side of the coil form is fitted with a 3/32” graphite cover to protect the coils

while minimally impacting any detectable magnetic fields.

In order to resolve perturbations that are periodic in the toroidal direction, a set

of evenly-spaced Mirnov triplets with resolution on relevant scales for the system in

question is desired. Dominant tearing modes on MST are n = 5 or n = 6 pertur-

bations, requiring at least 10 triplets to resolve by the Nyquist-Shannon sampling

theorem[21]. However, secondary modes exist up to arbitrarily high mode numbers

due to a safety factor q profile that passes through 0. Experimentally, < 1% of the

total tearing mode energy is contained in the n > 10 modes. 64 locations were chosen
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for three reasons. First, many digitizer boxes have 4, 8 or 16 inputs. Factors of 2 are

preferable for Fast Fourier Transforms[22]. Finally, 64 locations leads to a Nyquist

resolution of n = 32, providing the capability to analyze ⇡ 27 higher-n secondary

modes in addition to the dominant tearing mode. n = 32 corresponds to a resonant

location at q = 0.03125 for m = 1 modes, close to the reversal surface.

The formula for toroidal location (in degrees) of the triplets is:

�i = 5.625 · i+ 2.813, i = 0� 63

All coil forms in the toroidal array are located at ✓ = 241� and r = 0.5165 ⇡

0.993 · a. They are attached to the vessel inner wall on the inboard side, 61� below

the midplane, Fig. 2.2.

A small o↵set in coil locations must be accounted for in mode analysis codes. The

centerline of each coil form, aligned with the radial-facing coil, sits at �i as calculated

by the formula. However, due to the necessary flatness of the coil forms, the B✓ and

B� coils have a toroidal o↵set. For the B✓ coil, the o↵set is 8 mm, or �
o↵

= 0.393�.

For the B� coil, the o↵set is 22 mm, or �
o↵

= 1.0�. Although the o↵set is a small

distance compared to the transit length of the torus at � = 241� (7.85 m), for high-n

modes this leads to a phase o↵set of up to 32�. Wire leads enter each coil form from

the opposite side as the o↵set, and exit the torus near � = 180�. In order to avoid

bending the wires unnecessarily, the wires exit facing this location, causing opposed

o↵sets on either half of the torus, Fig. 2.3. This leads to a new equation for the coil

locations:

�i =

8><>: 0  i  31 : 5.625 · i+ 2.813� �
o↵

i > 32 : 5.625 · i+ 2.813 + �

o↵

(2.2)

where �
o↵

is the number quoted in the above paragraph.

Three poloidally symmetric arrays of coils were installed to resolve poloidal mode

numbers (m) in addition to toroidal mode numbers (n). Dominant tearing modes
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Figure 2.2: MST magnetic array locations. Three poloidal arrays, one toroidal array,
a flux loop and a Rogowski coil comprise most of the internal magnetic diagnostics
on MST.
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have m = 0 or m = 1, so a small number of coils were required to resolve even-odd

asymmetry. Like the toroidal array, the number of coils in each array is factorable

by 2, and the coils are evenly spaced. For the arrays of 8 coils at � = 155� and 16

coils at � = 177�, the coil configurations are the same as those in the toroidal array.

Each has a triplet of coils in the same type of coil form, Fig. 2.3. However, because

the coil forms are aligned in the same direction, long side toroidally parallel with all

o↵sets in the same direction, there is no relative o↵set to correct.

The formulas for the poloidal locations (in degrees) of each set of triplets are:

✓

155,i = 45.0 · i+ 16.0, i = 0� 7 (2.3)

✓

177,i = 22.5 · i+ 16.0, i = 0� 15 (2.4)
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Figure 2.3: Illustration of the coil form o↵sets on MST. The o↵sets arise because the
Br coil is below the centering line, and the wire exits opposite the B� and B✓ coils
displacements.

O!setO!set O!set

The poloidal magnetic array at � = 0� is di↵erent than the other two due to its

special function. It is located at the poloidal gap, where radial magnetic field can

penetrate. At 32 locations, radially-facing coils monitor this radial field to inform

the active feedback system, enforcing B · n̂ ⇡ 0. These coils have many more turns

than the other arrays, giving them an e↵ective area of 25 cm2.The field correction

improves confinement and reduces rotational locking, an undesirable e↵ect [23]. These

measurement locations are:

✓Br,i = 11.25 · i+ 5.625, i = 0� 31

No toroidally-facing coils are placed in the gap array, but poloidal field coils are

located at every other coil form. These 16 coils are used primarily to determine the

Shafranov shift in axisymmetric plasmas [24]. They have 10 turns, giving them an

e↵ective area of 3 cm2 Their locations are:

✓Bp,i = 22.5 · i+ 5.625, i = 0� 15
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Table 2.1: Toroidal and Poloidal Array locations

Measurement � ✓ o↵set A
coil

(cm2)

Toroidal B� 64⇥ 5.625� 241� 1� 1.5
Toroidal B✓ 64⇥ 5.625� 241� 0.39� 1.5
Toroidal Br 64⇥ 5.625� 241� 0� 1.5
Gap B✓ 0� 16⇥ 22.5� 3
Gap Br 0� 32⇥ 11.25� 25

Poloidal Br,✓,� 155� 8⇥ 45� 1.5
Poloidal Br,✓,� 177� 16⇥ 22.5� 1.5

A table is included for ease of reference in the future, Table 2.1.

Array signals are passed through integrator circuits to determine B̃ (t) or solely

through amplifiers to preserve the dB/dt signal. Absolute calibration of the B�

signals is performed just before t = 0 in each shot, when a known vacuum toroidal

field is present. Relative calibration of the B✓ coils is performed during the shot by

comparison of the average signal in each coil over a large averaging window. These

signals are assumed to be the same average amplitude, provided that any tearing

modes are continuously rotating throughout the averaging window, and no static

perturbations are dominant. This assumption can be easily checked on either the B�

or B✓ signals for any shot.

The fixed toroidal and poloidal magnetic coil arrays provide the backbone of

periodic perturbation analyses, whether at high frequency or for static perturbations.

The arrays have seen extensive use in tearing mode analysis [25, 26, 27].

For Alfvénic frequency activity (100’s of kHz), 32 B✓ signals from the toroidal

array and 8 of both B� and B✓ signals from the poloidal array at � = 155� were

digitized at f =2 MHz, corresponding to a Nyquist frequency of f = 1 MHz. In

order to do this, 250 kHz low-pass filters were jumpered out in the amplifier-only

portion of the integrator-amplifier boxes. These filters screen high-frequency noise
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Figure 2.4: Toroidal array coil gains and time o↵sets on Ḃ signals at three di↵erent
gain settings.
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from the magnetics signals, providing a cleaner signal for tearing mode studies. As

tearing mode frequencies are generally below 50 kHz, filters are practical for that

application. Unfortunately, they preclude easy access to toroidally-resolved high fre-

quency signals. Additional signals or higher-frequency digitization could provide yet

more information, but 32 B✓ signals was considered adequate for mode analysis, and

both hardware and digital storage constraints limited further modification. Toroidal

array frequency response was measured up to 5 MHz and shown to be relatively flat

up to 1 MHz, Fig. 2.4.

A number of features allow the toroidal and poloidal arrays to be easily used for

high frequency mode analysis. Coil spacing is nearly ideal for analysis in Fourier

space, and spatial decomposition is a well-documented and computationally robust

process on MST. At higher digitization frequencies, this process is identical because

it is done at each time point individually. Because of the wide coverage of the arrays,
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they are ideal for determining phase for use in pseudospectral analysis [26], allowing

correlation with chord or point measurements.

For three-dimensional equilibrium reconstruction, the toroidal and poloidal arrays

are essential. The integrated signals provide a strong constraint on the phase of a

helical equilibrium, as well as its perturbation amplitude at the wall. While toroidally-

localized chord measurements provide strong constraints on internal mode structure,

poloidal phase is often weakly constrained due to uncertainties and symmetry along

chords. This strong constraint from the magnetics arrays forces reconstructions to

fit internal measurements via adjustment of internal values for magnetic field and

pressure.

2.1.2 Dense Array and Probes

In addition to coil arrays that span a full toroidal or poloidal transit, there are a

number of other possible coil sets for detecting magnetic perturbations. There is

an additional ”dense array” of 32 ~B� and 16 ~B✓ coils, designed to measure high-

frequency, short wavelength fluctuations and turbulent spectra [20]. There are also

many portholes through which probes with magnetic or electrostatic sensors may be

inserted.

The dense array is a structure centered at � = 246�, ✓ = �32�. It is shaped

like a “plus” sign, with four extended arms. The �-direction arms have 8 B� coils

separated by 1 cm, and the ✓-direction arms are similar, albeit with B✓ coils. The

coils are constructed from 25 turns of 38 gauge HML coated copper wire, with an

e↵ective area of 1.4 cm2 each. The center of the structure is a graphite block similar

in appearance to those on the magnetic arrays, and it acts as both a limiter and a

router of wires coming from the coils. The signal from these coils is amplified but not

integrated.
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Using bi-spectral analysis, the dense array can resolve the wavenumber spectrum

of high frequency fluctuations on time scales up to 3 MHz and spatial scales down

to ⇡ 100 m�1. Although it must be correlated with the toroidal array in order to

determine whether oscillations are periodic throughout the torus, the dense array

is nonetheless a useful tool for detecting transient and high frequency waves. Its

resolution is adequate well above Alfvénic frequencies. Dense array signals could be

digitally-integrated to provide an outboard magnetic constraint on three dimensional

equilibria, but this is not done at present.

Probes are constructed regularly for insertion into MST through its many port-

holes. Probes containing magnetic loops can be used to detect Ḃ at many locations.

They can be inserted⇠ 5 cm to obtain magnetic field measurements inside the plasma.

For both mode analysis and equilibrium reconstruction, they could provide additional

spatial resolution. At present, neither insertable probes nor the dense array are used

in MSTFIT or V3FIT.

2.1.3 Single Loops

By applying Faraday’s Law to a loop surrounding the plasma poloidally, Eq. 2.1

and integrating, one measures the total toroidal magnetic flux �. If this number is

divided by the area enclosed, the result is the average toroidal field in the plasma,

hB�i = �/A. One such flux loop is located at 60� toroidal. The average toroidal

field is an important constraint for helical equilibrium reconstruction. It is a highly

accurate measurement that prevents solutions from arbitrarily modifying the toroidal

magnetic field to scale perturbation amplitudes.

If the loop enclosing an area is a solenoid of constant solenoidal area AS and n

turns per unit area instead of a solid wire, Fig. 2.5, application of the same formula
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Figure 2.5: Measuring the flux through the bent coil is equivalent to measuring the
current enclosed.

gives:

� = nAS

I
l

~B · d~l

Where ~l is vector in the ✓̂ direction around the circumference of the plasma. By

Ampère’s Law,
H
l
~B · d~l = µ

0

I

plasma

, where I

plasma

is the current in the plasma that

the solenoid surrounds. Applying Faraday’s law again and integrating, the total

current in the plasma can be found:

� = nASµ0

I

plasma

�d�

dt

= ✏ = �d (nASµ0

I

plasma

)

dt

I

plasma

= � 1

nAsµ0

Z
✏ · dt
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Integration of the voltage generated in the solenoid over time, multiplied by geometric

factors and constants, provides the total plasma current enclosed. This measurement

apparatus is known as a Rogowski coil. MST has one such internal coil, located next

to the flux loop at 60� toroidal. The total plasma current provides a similar constraint

to the flux loop, limiting the how much an equilibrium reconstruction code can change

global plasma values.

2.2 Passive Diagnostics

Plasmas radiate light and eject particles through a variety of processes, o↵ering ample

opportunity to diagnose plasma conditions without perturbative methods. Magnetic

loops as discussed previously are one type of passive diagnostic, but others include

cameras for light collection or holes in the wall that lead to particle analyzers. Often

passive diagnostics will be set up in arrays or coupled to active diagnostics in order

to exert more control over the conditions of measurement.

2.2.1 Soft X-Ray (SXR)

Bremsstrahlung radiation, or ”braking radiation,” occurs when a fast-moving electron

accelerates through an electric field. The electron emits radiation via conservation

of energy. In plasmas, this happens when electrons come into proximity of the much

more massive ions. This type of interaction is ubiquitous in the plasma, so light is

produced throughout the plasma volume. For a single electron’s deceleration, the

power radiated (P ) is given by the Larmor equation:

P =
e

2

a

2

6⇡✏
0

c

3

where e is the electron charge, a is the acceleration, and c is the speed of light. If

one assumes a Maxwellian distribution of electrons slowing on a similarly-distributed
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Figure 2.6: Old thin-filter and new 4-camera SXR systems using for equilibrium
reconstruction. From [28].
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background of ions, it has been shown that power radiated from a unit volume at a

given energy E goes as:

P (E) / n

2

eZeffT
1/2
e e

�E/Te

where ne is the electron density, Te is the electron temperature and Zeff is the e↵ective

charge per ion for background ions. Zeff quantifies the e↵ect of impurities on the

observed properties of the ion population.

By using a double filter method [28], the energy-independent e↵ects on radiated

power from Zeff and ne can be corrected for simultaneously, allowing for a measure-

ment of Te alone. Even without this correction, soft x-ray measurements can provide

information about the flux surfaces. If Zeff is assumed to either be a flux function or

be flat across the plasma volume, P (E) can be assumed to be a flux function itself.

In this case, the measured brightness f along a chord is a suitable reconstruction

parameter.

On MST, soft x-ray camera systems have undergone two major iterations relevant

to equilibrium reconstructions. Prior to June 2011, a system with 408 µm thin filters

on two cameras and 821 µm thick filters on two cameras was in place at 300� toroidal.
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The cameras with thick filters were located at �45� and +45� poloidal, and the

cameras with thin filters were at +75� and +165� poloidal, Fig. 2.6. Each camera

housed an array of 20 diodes, corresponding to 20 viewing chords per camera, or

80 chords total. The system is useful for brightness measurements and tomographic

emissivity, but uncertainties made it insu�cient for tomographic reconstruction of

temperatures. The system was redesigned and moved to 90� toroidal, with cameras

at �22.5�, 45.5�, 87.5� and 157.5�, Fig. 2.6. The new set of cameras has 80 individual

diodes, with two filters for each of 40 viewing chords, allowing both tomographic

emissivity of the whole plasma and two full-diameter Te profiles for the whole plasma.

The entire system is digitized at 500 kHz, but the practical bandwidth is limited to

< 20 kHz by the signal-to-noise ratio. The amplifier circuits also impose a limit at

higher frequency, between 30 and 100 kHz.

Although Soft X-Ray camera systems have been used to study high frequency

mode activity in the past [12], such systems require detection frequencies at greater

than twice the mode frequency. Such a thing is feasible, as the primary theoretical

limitation of most camera systems is the signal-to-noise ratio. This ratio decreases

with the width of temporal binning �t, but increases with P (E) and decreases with

filter thickness. With high bandwidth amplifiers, and at high plasma temperature

and thin filter thickness, high frequency T̃e could be observed and correlated with

magnetic fluctuations.

The high density of viewing chords makes SXR an ideal diagnostic for equilibrium

reconstruction. Direct brightness reconstruction of 2D temperature profiles is under

development, and temperature reconstruction can be combined with density profiles

to determine pressure profiles for equilibria. If the equilibrium reconstruction model

does not adequately handle the two-filter technique, f may still be utilized to deter-

mine flux surface shapes, so long as it is a flux function. On MST, this assumption
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is generally held to be true.

2.2.2 D-Alpha Array

The H-alpha transition is the drop of an electron bound to a hydrogen or deuterium

nucleus from excitation level n = 3 to n = 2. This transition isotropically emits red-

colored light at the coherent wavelength of 656.28 nm. Because the dominant fueling

gas for MST plasmas is Deuterium, the observed light is at � = 656.1 nm, and is

referred to as D-Alpha (D↵). The D↵ line intensity is described by the equation:

�D↵ = nen0

h�⌫i
excitation

(2.5)

where n

0

is the neutral deuterium density and h�⌫i
excitation

is the electron impact

excitation reaction rate.

On MST, an array of 16 filtered photodiodes detects D↵ light and uses Eq. 2.5

to calculate chord-averaged neutral deuterium density. This output can be inverted

to find the two dimensional density profile of background neutrals. Because MST

neutral density is heavily edge weighted, 1018 m�3 in the edge versus 1015 m�3 in the

core, standard Abel inversions have high uncertainties. The neutral particle following

code NENE[29] is used to generate several characteristic neutral density profiles based

on plasma equilibria and several realistic neutral sources. These profiles are linearly

combined to obtain a best fit to the measured D↵ emission profile.

While not directly applicable to either Alfvénic frequency mode analysis or equi-

librium reconstruction, determination of n

0

is crucial for other diagnostics. The

neutral particle analyzers discussed below and the recombination spectroscopy sys-

tem all measure the products of charge exchange, a process whose reaction rate is

governed by neutral density. As the neutral density changes across a plasma shot,
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the D↵ array is used to normalize the signals from these diagnostics, providing better

relative calibration.

2.2.3 Advanced Neutral Particle Analyzer

Ions in the plasma can pick up an electron from the background neutral gas, neutral-

izing them in a process known as charge exchange. The former ion retains its velocity

and orientation, but is no longer sensitive to electromagnetic e↵ects, causing it to exit

the plasma in a straight line. The particle analyzer is oriented to allow particles with

a predetermined pitch, �c, to enter. It is also restricted to ”fast” particle detection,

or ions with E > 5 keV, above the high plasma temperature achieved in the machine.

After taking into account the fraction that reionize before reaching the wall, fr, the

predicted flux of particles into the detector is [30]:

�
meas

=

Z
L

n

0

nfih�⌫icx� (� � �c) (1� fr) dld�

where integration takes place along a line extending from the detector, nfi is the

density of fast ions, and � is the pitch of fast ions along the line. h�⌫icx is the local

cross section for charge exchange. The intent of the measurement is to determine

nfi (�c) along the measured line. Proper interpretation requires knowledge of n
0

and

of the orientation of field lines along the chord. Because of this requirement, a full

equilibrium reconstruction is necessary. With this information determined, h�⌫icx

and fr can be estimated and a value for nfi (�c) can be extracted.

The Advanced Neutral Particle Analyzer (ANPA) is a 20-channel E k B analyzer

whose energy range is ⇡5-40 keV. Its layout is shown in Fig. 2.7. The system is set

up to measure hydrogen neutrals and deuterium neutrals simultaneously, each with

10 channels that span the full energy range. This provides an energy resolution of

⇡ 1 � 4 keV, although the energy range and thus the resolution is tunable. The
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Figure 2.7: Advanced Neutral Particle Analyzer layout with particle trajectories plot-
ted in purple. From [30].

ANPA reionizes incoming neutrals with thin foil stripping cell. A magnetic field

perpendicular to the ions’ motion causes the ions to bend with di↵erent gyroradii due

to their energies, according to rg = mv?/ (|q|B). A uniform electric field oriented

in the same direction separates deuterium and hydrogen ions due to their di↵erent

masses. Detector channels are spaced to collect the incoming ions.

The ANPA has been placed at two viewing angles to sample fast ions with di↵erent

�c. The original mount was a radial view at � = 180�, ✓ = 7�. This was used to

capture ions moving perpendicular to equilibrium field lines. The second location

was at � = 220�, ✓ = �19�, oriented along the magnetic axis. This view was used

to study NBI-sourced fast ions traveling parallel to the core magnetic field lines.

The frequency of digitization is 1 MHz, but the amplifier circuits have a practical

frequency response of 100 kHz.

The pitch-resolved fast ion content is an important quantity for mode analysis.

As indicated in Section 1.3, fast ions can couple to waves in the plasma via reso-
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nant motion. Although the amplifier response for the ANPA is too slow to resolve

Alfvénic frequencies, depletion or enhancement of fast ions on a slower timescale

could be indicative of resonant interaction. By performing a measurement in time at

several pitches and locations, understanding could be gained about the mechanism

and location of mode excitation.

2.3 Laser and Wave-based Diagnostics

Characteristics of plasmas can be determined by launching electromagnetic radia-

tion through them. EM waves may be reflected, absorbed or change phase as they

propagate because plasmas have variable indices of refraction. At the atomic level,

light may scatter o↵ of the electrons which form one component of the plasma. By

injecting EM waves in either form and detecting their properties as they are scattered

or exit the machine, values for plasma quantities can be determined.

2.3.1 Far Infra-Red Interferometer-Polarimeter

For a wave with ! � !c,!p propagating perpendicular to the background magnetic

field (wave vector k ? B) in a plasma, the index of refraction is:

µ

(k?B)

⇡ 1� 1

2

✓
!

2

pe

!

2

◆
where !2

pe = nee
2

/✏

0

me is the plasma frequency and ✏
0

is the free space permittivity.

The wave vector for a given wave is defined as k = µ!/c. If one wave is launched

through vacuum and another through the same distance in plasma, the di↵erent

indices of refraction will result in a cumulative phase di↵erence of:

�� =

Z
(k

vac

� k

plasma

(l)) dl ⇡ 1

2!c

Z
!

2

pe(l)dl =
�e

2

4⇡c2me✏0

Z
ne(l)dl.

Replacing constants with numbers, this equation becomes simple:
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�� = 2.814⇥ 10�15

�

Z
ne(l)dl

If a wave of known vacuum wavelength � is passed through the plasma, it will

undergo a phase shift relative to passing through vacuum. The shift will be due solely

to the density of free electrons that it passes through. By subtracting the phases,

one determines the line-averaged density n̄e =
R
ne(l)dl/

R
dl. With multiple chords

and some assumptions about symmetry or additional phase information, n̄e can be

inverted to determine ne(r).

In a plasma, the index of refraction is not only dependent on plasma density, but

varies based on magnetic field strength, light polarization and propagation direction.

This quality of optical anisotropy is known as birefringence. When it is associated

with a magnetic field, it is known as circular birefringence, and arises due to the

Faraday e↵ect. Propagation of any circularly polarized wave along a parallel magnetic

field results in a rotation of the wave polarization. The di↵erence in polarization

rotations for a right and left handed circularly polarized wave is

 =
2⇡

�

Z
(nR � nL)

2
dl

= 2.62⇥ 10�13

�

2

Z
ne(l) ~B · d~l

If such a measurement is performed in tandem with an interferometry measure-

ment, the inverted ne(r) profile can be used to find the line-averaged magnetic field

parallel to the chord of measurement,
R
~B · d~l. In order to measure the Faraday rota-

tion and phase shift simultaneously from the same beamline, two oppositely-polarized

beams of slightly di↵erent frequency can be launched. The beam polarizations will

be rotated in opposite directions. Taking only one component of the polarization, the

mean phase change for both beams will be related directly to the index of refraction
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of the plasma. The di↵erence in phase change will be related to the degree of Faraday

rotation as the wave vectors are rotated oppositely.

The Far Infra-Red (FIR) Interferometer-Polarimeter on MST uses a � = 432 µm

laser, split into 11 vertically-oriented chords[31]. Six of these chords enter the plasma

at � = 255�, at impact parameters (R � R

0

) of -32, -17, -2, +13, +28 and +43 cm.

Five chords enter the plasma at � = 250�, at (R � R

0

) = -24, -9, +6, +21 and +36

cm, Fig. 2.8. The phase signals are digitized at 6 MHz, but operating in 3-beam

mode to obtain simultaneous Faraday rotation and interferometry limits bandwidths

to < 300 kHz. The phase resolution for the interferometer is ⇡ 0.03 radians, which

corresponds to n̄e ⇡ 3.5 ⇥ 1010, less than 0.05% of equilibrium density. Error in

the Faraday rotation measurement is ⇡ 0.1�, compared to total rotation of  < 5�.

Spatial resolution is the spacing between channels, or 7-8 cm. This is adequate to

resolve the structure of global perturbations, but may be insu�cient for fine structure

of local perturbations.

Both capabilities of the FIR system are useful in high frequency mode analysis

and equilibrium reconstruction. For mode analysis, the interferometer is capable of

measuring line-averaged internal density fluctuations ¯̃ne in the low Alfvénic frequency

range, f  250 kHz. With 11 chords, the structure of the density fluctuations can be

determined across the plasma. Via correlation analysis, the polarimetry system can

determine fluctuating magnetic fields. From internal fluctuations, n and m numbers

can be found.

The FIR system provides essential information for 3D equilibrium reconstruction.

It is currently used in MSTFIT[24]. 11 chords producing both n̄e and
R
~B ·d~l provide

strong constraints on the magnetic field and pressure profiles. While these measure-

ments could be inverted or used to determine the current profile before reconstruction,

these processes are equivalent to using them to constrain the equilibrium. Each chord
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Figure 2.8: FIR layout with chords passing through the plasma. Image provided by
Liang Lin.

in 3-beam mode provides 2 signals to constrain the fit. The addition of values calcu-

lated from those signals (such as the current profile) would be redundant. ne ⇡ ni is

a good assumption due to electron motion mirroring charge distribution of ions, so

ni can be inferred from interferometer data. Both the polarimeter and interferometer

are included in MSTFIT and V3FIT reconstructions.

2.3.2 CO2 Interferometer

Via the same mechanism as the FIR Interferometer, an additional CO2 interferometer

system with � = 10.6 µm measures line-averaged density n̄e. A single double-pass



47

laser is located at � = 40�, ✓ = �75�. Due to its shorter wavelength, the CO2 laser

has better temporal resolution than the FIR Interferometer, and is digitized at 300

kHz. No polarimetry is measured on the CO2 system, and the reduced complexity

from fewer measurements and fewer chords allows it to be operated as a standard

diagnostic for all runs. However, as the entire system sits close to the machine itself,

o↵sets and harmonic modulations to the n̄e signal arise from shaking of the optics

board. These o↵sets are corrected by comparison with a Helium Neon laser.

As it is the same type of measurement, the CO2 laser inhabits the same parameter

space as the FIR system. In principle, it can be used to search for ñe in the same fash-

ion, and can be used to constrain the density profile for equilibrium reconstruction.

In practice, uncertainty from vibration of the optics board leads experimenters to rely

solely on the FIR system for precise measurement. Nonetheless, with a proper pre-

run calibration of the two systems, they could be operated simultaneously to acquire

an additional toroidally separated data point. The CO2 interferometer is included in

MSTFIT reconstructions.

2.3.3 Thomson Scattering

When an electron is struck by a photon with energy well below the rest mass energy

of the electron, it is accelerated along the direction of the photon’s electric field.

An electron initially at rest oscillates along this same direction, forming a dipole

oscillator that radiates light with intensity I / sin2(�), where � is the angle between

the incident and scattered wave vectors, Fig. 2.9. The cross section for this interaction

is

�

Thomson

=
8⇡

3

✓
e

2

4⇡✏
0

mec
2

◆
2

= 6.65⇥ 10�29 m2

where the term in parentheses is the classical electron radius [32]. When passing a

beam of light through a plasma, many photons are interacting with many electrons,
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Figure 2.9: Thomson scattering o↵ of an electron. The light strikes the electron,
accelerating it along the direction of the electric field. The electron then re-emits the
light with the same polarization.
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Particle Motion

Charged
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resulting in a total scattered power of P
total

= �

Thomson

I

beam

Ne, where I

beam

is the

energy flux per area per time, and Ne is the total number of electrons within the

beam path.

If the electrons responsible for scattering are in motion, the emergent light will be

Doppler-shifted from its source by an amount proportional to the electron velocity. If

the beam of light is su�ciently intense to pass all the way through a plasma, viewing

this beam at di↵erent locations along its length will yield light that is Doppler-shifted

by the local electron velocity. The velocity of electrons is assumed to be isotropic, and

the resulting Doppler shift corresponds to the local plasma temperature. From a single

beam, multiple Te(r) may be measured at an arbitrary number of locations, provided

there is su�cient viewing resolution to distinguish between scattering volumes.

On MST, the Thomson scattering system uses a fast pulse, high intensity beam

generated by one of two collinear laser beams. The beam enters at � = 222�, ✓ = 90�,
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Figure 2.10: The trajectories for the scattering light from Thomson scattering through
the collection lens and into the collection fibers. From [32].
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at the top of the machine. 21 fibers monitor locations vertically, going from r ⇡ 0 to

r = a at ✓ = 270�, in a line below the magnetic axis. The viewing port is located at

✓ = 20�, where a lens focuses scattered light from all viewing angles onto fibers to be

piped to polychromators, Fig. 2.10. The system can operate at multiple speeds. As

pulse length of the laser is only 9 ns and the resolution of the amplifying avalanche

photodiodes (APDs) is 200 ns, temporal resolution of measurements in a single plasma

discharge is limited by the repetition rate of the lasers and not the temporal width

of the measurement[32]. With the current Thomson scattering system, this speed is

80 µs, or 40 µs by interleaving the two laser beams. This corresponds to a frequency

of 25 kHz for  8 laser pulses in a row. Temperature resolution varies from 10-100

eV depending on signal level.

The Thomson scattering system can measure at frequencies high enough to detect

high frequency temperature fluctuations, T̃e, although correlation with the toroidal

array is necessary. The measurement location is a point and not a chord, so informa-

tion can be readily used to generate T̃e(r) without inversion. Along with ñe, by the

ideal gas law,

p̃e = kB

⇣
Te · ñe + T̃e · ne + T̃e · ñe

⌘
provides the magnitude of electron pressure fluctuations. Although the described

waves are incompressible shear waves, they will cause will cause measurable p̃e on

surfaces with finite rpe . Alfvénic waves result from the movement of ions, so elec-

tron pressure fluctuations are assumed to be coupled to ion motions through charge

balance. The waves are su�ciently slow that this is a good assumption.

As with density, temperature is an important quantity for equilibrium reconstruc-

tion. The rp term in the magnetic pressure balance equation requires knowledge of

both T and n, both of which refer to the full (ion and electron) quantities. Although

ne ⇡ ni is a good assumption due to charge balance, Te = Ti can only be achieved
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through many ion-electron collisions and thus is not always a good assumption. Other

diagnostics must be used in concert with Thomson scattering to determine the full

pressure. Thomson scattering is included in both MSTFIT and V3FIT reconstruc-

tions.

2.4 Particle Beam Diagnostics

In addition to beams of light, beams of particles can be used to measure plasma

properties. Much like the photons in light beams, neutral particles have a multitude

of ways in which the plasma might a↵ect them. Charge exchange stimulates light

emission with electrons from previously neutral atoms and makes the newly-created

ions sensitive to the plasma potential, changing their paths. Neutral atoms can be

scattered o↵ of the background plasma, or can pass through but emit light from

energy level jumps of their electrons. The emitted light or particles themselves can

be collected in large numbers to build a picture of the plasma.

2.4.1 Charge Exchange Recombination Spectroscopy and

Diagnostic Neutral Beam

Each charge exchange not only produces a fast neutral particle that exits the plasma

rapidly, but this particle also generates light as the electron de-excites in its new

bound state. The wavelength of emitted light from this electron is governed by the

mass of the receiving ion and the available energy levels, a proxy for the degree of

ionization. These lines are well-known and documented for all relevant ion species to

MST plasmas [33]. By filtering light to detect only one line, a diagnostic of charge

exchange for a single ion species is produced. A photomultiplier array viewing the
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plasma receives a chord-averaged brightness of this particular line, similar to the SXR

measurements.

When the emitter is in motion relative to the point of observation, the observed

light is Doppler-shifted from its rest wavelength by �� = �

0

(v/c), where v is the

relative velocity of the emitter along the line of observation, �
0

is the rest wavelength,

and c is the speed of light. Emitters moving away from the point of observation will

increase �, and emitters moving towards it will decrease �. A population of emitters

in isotropic motion, as in a gas at thermal equilibrium, would then broaden the

distribution of observed wavelengths. A coherent directional motion along the line of

sight would shift them uniformly. Because the wavelengths are a direct proxy for a

velocity distribution, the observed distribution is a Gaussian function,

f (�) / exp
� (�� �c)2

2�2

where �c and � provide the flow velocity and temperature, respectively. The first

term,

�c = �

0

+�� = �

0

⇣
1 +

v

c

⌘
comes from the Doppler-shifted wavelength due to flow, and determines the peak

shift. The second term,

� =
�

0

c

r
kT

m

is a result of the Doppler-broadening due to the average particle temperature, T , and

determines the peak width.

In a plasma, a high level of background light emission complicates the measure-

ment, making a passive system impractical. By simultaneously viewing o↵ and along

the path of a beam of neutral particles whose cross section for Carbon VI charge

exchange peaks at the beam injection energy, comparison of the two measurements

yields a more readily distinguishable set of lines. On MST, a hydrogen-atom neutral
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Figure 2.11: A diagram of the DNB and both toroidal and perpendicular CHERS
views. Images created by Steve Oliva and Rich Magee.
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beam is injected radially from � = 270�, ✓ = �22.5�, with a beam energy of E = 50

keV and a current of I
beam

= 5 A. There are 11 viewing locations oriented perpen-

dicular to the beam, each location containing one view along the beam and one view

just o↵ the beam for comparison, Fig. 2.11 [34]. At present the system has only 2

photomultiplier arrays, so only one location may be monitored per shot. The most

common measurement has been the Carbon VI line at �
0

= 343.38 µm, although

other wavelengths have been examined[35]. A last location views the magnetic axis

tangentially from � = 312�, Fig. 2.11, with the o↵-beam view passing just below

the active view. The combination of beam and views is referred to as the Charge
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Exchange Recombination Spectroscopy (CHERS) system on MST.

The CHERS system has some use for diagnosing 3D fields, but its function in

equilibrium reconstruction is not easily implemented. Impurity ions are sensitive to

magnetic islands, which are not included in the flux surface representation presented

in Section 1.2. A chord viewing the predicted location of the helical axis could be used

as an independent confirmation of the phase of a helical equilibrium. In tokamaks, a

second impurity ion species with temperature Tz and density nz has been used as a

component of the total pressure. Well-calibrated charge exchange systems have been

used to constrain the equilibrium in a similar fashion to the electron temperature

and density[36]. This diagnostic is not implemented as a constraint for MSTFIT or

V3FIT.

2.4.2 Motional Stark E↵ect

Traversing magnetic fields alters the wavelength of light emitted due to electron

energy transitions. As the neutral atoms from the DNB impact background plasma

electrons, the bound electrons in the atoms gain energy and jump into new shells. A

charge moving across a magnetic field, as in MST, sees an e↵ective electric field of

~E
e↵

= ~v⇥ ~B. Due to the Stark e↵ect produced by E

e↵

, the many spectral lines of light

emitted from dropping down in energy will separate in wavelength. These lines will

have a wavelength separation proportional to the strength of ~E
e↵

and thus of ~B?v. If

~v is known, a camera observing a single point along the beam could determine ~B?v,

where in an axisymmetric plasma with a radially-injected beam, ~B?v ⇡ ~B.

The e↵ective electric field ~E
e↵

is a vector, and its orientation alters the overall

polarization of emitted light. By measuring this polarization, additional information

about the pitch of the magnetic fields is obtained. The safety factor profile, q(r) =

rB�/RB✓ is a measure of this pitch and is thus directly determined the polarization
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Figure 2.12: A diagram of the DNB and MSE views. Image from [34].
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. Without the polarization information, |B| can still be extracted from the

peak shifts.

On MST, the MSE diagnostic views the previously described DNB at two locations

[34]. The cameras are located at the same toroidal location as the beam, but view

from ✓ = �45�. One camera views the on-axis magnetic field, and the other views

the beam at mid-radius, Fig. 2.12. Temporal resolution is 100s of µs, and spatial

resolution is ⇡ 5 cm for both views.

Determination of the q profile is crucial for locating mode resonances. MSE is too

slow to detect magnetic fluctuations, but has been used on tokamaks to determine

how q

0

varies with mode frequency.

Equilibrium reconstruction directly depends on magnetic field information, so

MSE is a crucial diagnostic. Point measurement of the pitch of a field line in the

helical configuration provides a powerful constraint on the phase and flux surface
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shape. Because the helical axis has a shift, both measurements from MSE will likely

be o↵-axis measurements, where field line pitch can be determined via the same

method. With a pitch resolution o↵-axis of ±10� [37], the diagnostic can provide

bounds on q. The current on-axis view is not set up to handled polarized light. MSE

is not currently included in V3FIT equilibrium reconstructions, but is included in

MSTFIT.

2.4.3 Rutherford Scattering

While viewing light produced from electron transitions after charge exchange allows

a measurement of the impurity ion temperature, tracking the scattering of a mo-

noergetic neutral particle beam provides information on the bulk ion temperature.

Divergence due to Rutherford scattering of a tightly focused beam of neutral particles

will carry a dependence on the temperature of the plasma. In the case of an ideal

beam, the energy distribution of scattered particles is

f (E) = C


ZpZbe

2

4⇡✏
0

�
2 1

E

3

0

s
⇡E

µTi

1

sin4

✓

exp

(
�
�
E � E

0

�
1� µ sin2

✓

��
2

4µE
0

Ti

)
,

where Zp and Zb are the plasma ion and beam particle masses, and E

0

is the initial

beam energy [38]. C is a scaling factor that includes various experimental consider-

ations. It is clear from the formula that Ti correlates directly with the width of the

energy distribution. By detecting the spread in energies at a given angle, a direct

inference of the temperature of the bulk plasma can be made. The chosen angle must

not be in line with the beam as the signal from scattered particles is desired.

On MST, the Rutherford scattering system is located at � = 180�, where the beam

fires vertically upward from ✓ = 270�. Two analyzers are located at ✓ = 79.8�, 100.2�,

both 10.2� displaced from a directly vertical position, Fig. 2.13. The analyzers view

the beam at a position ⇡ 15 cm below the machine mid plane, and the view extends
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Figure 2.13: The Rutherford scattering set-up on MST. The beam passes radially
through the plasma. The neutral analyzers sample a volume below the midplane.
from [39].

15 cm in either direction, just touching the axis. Temporal resolution is up to 10

points per shot due to signal levels, about 200 Hz, although the data are digitized at

1 MHz before smoothing.

Ion temperature is a di�cult quantity to measure in plasmas, but contributes

strongly to the plasma pressure, influencing therp term in MHD equilibria. Although

the resolution of the Rutherford scattering diagnostic is too poor to distinguish flux

surface, volume-averaged Ti provides a constraint on the ion pressure. The total

pressure is p = kB (neTe + ⌃niTi), with the sum over ion species in the plasma. If
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charge neutrality is assumed and the pressure due to non-bulk ions is assumed to

be small, Ti is the final pressure constraint after electron diagnostics. Rutherford

scattering signals are not included directly in MSTFIT or V3FIT. Measurements are

indirectly incorporated by assuming the ion pressure is linearly related to the electron

pressure using previously measured ratios.

2.4.4 Heavy Ion Beam Probe

An ion passing through a plasma can undergo electron impact ionization by collision

with plasma electrons. In a region of finite potential, the stripped electron will

remove �E = �e�l from the ion, where �l is the local electrostatic potential. Loss

of this electron will alter the charge of the ion by +e, changing the curvature of its

trajectory through the plasma. If the ion is heavy enough, the magnetic field will not

be su�cient to confine it. Depending on the point of ionization, the plasma-ionized

heavy ion will exit the plasma at a correspondingly di↵erent pitch and location, Fig.

2.14. By injecting a beam of heavy ions into the plasma and collecting at a port that

”views” a particular location of ionization, the change in energy can be measured and

thus the �l at that location can be determined via the formula,

�l =
Wd �Wi

qs � qp

where (Wd �Wi) is the change in energy from source to detector of the beam ions, and

(qs � qp) is the change in charge at ionization. This measurement is finely localized

in time if the flight time of the ions is known to greater accuracy than the temporal

resolution of the system.

While the individual ion energy decreases proportionally with the electrostatic

potential, the beam current at the detector is a function of the plasma density at the

location of ionization, Is / ne,l. The more electrons in the sample volume to impact
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Figure 2.14: Heavy Ion Beam Probe mock-up. Image provided by Peter Fimognari.
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on the ions, the more ionizations will occur in the sample volume, thus directing more

secondarily-ionized products to the detector.

On MST, the Heavy Ion Beam Probe injects a ⇠ 100 µA beam of < 200 keV

sodium or potassium ions which take a three dimensional path through the plasma

[40]. Their time-of-flight is ⇠ 5 µs. The injector is located at � = 128�, ✓ = 105�,

with the detector plates for 3 paths located at � = 138�, ✓ = 19�. Three points within

the plasma can be sampled simultaneously, and the beam can be steered to change

the radius at which sampling is performed. The samples are performed at 1 MHz,

with a spatial resolution of ⇠ 1 cm and the ability to resolve potential fluctuations

of �̃ ⇡ 2 � 5 V. The system been calibrated for fluctuating relative electron den-

sity measurements ñe/ne, but requires the FIR Interferometer to determine absolute

fluctuation levels.

The HIBP system has the capability to measure the electrostatic potential fluc-

tuation amplitude, �̃, for high frequency waves up to 500 kHz. A point measurement

of this quantity can be correlated with magnetics to determine relative phase. Point

measurements of ñe can be correlated with interferometry to resolve internal poloidal
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Figure 2.15: Heavy Ion Beam Probe on MST. From [40].
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harmonics. The TJ-II heliac has performed these measurements successfully [41].

The flight path of the beam is a stringent check of the equilibrium. Only a small

subset of possible fields bend the HIBP ions correctly into the detector. If the HIBP

sees a signal, the flight path can be calculated during equilibrium reconstruction as

a check. If the calculated flight path does not enter the detector, the equilibrium is

not correct. This has been implemented in MSTFIT, but not in V3FIT.

2.5 Summary

A number of diagnostics are currently in operation on MST that can provide data for

equilibrium reconstruction and mode analysis. Table 2.2 summarizes those relevant
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to equilibrium reconstruction, a subset of which are currently employed. Table 2.3

summarizes those relevant to Alfvénic frequency mode analysis.

Table 2.2: MST Equilibrium Reconstruction Diagnostics

Diagnostic Measured � Geometry

Flux Loop hB�i 60� Circle at r = 0.52
Rogowski Coil Ip, B✓w 60� Circle at r = 0.52

Magnetic Arrays B(a) Tab. 2.1 Triplets
Probes B(r < a) Various Point

SXR Cameras (Old) Te, ✏ 300� ✓

view

= �45�, 45�, 75�, 165�
SXR Cameras (New) Te, ✏ 90� ✓

view

= �22.5�, 45.5�, 87.5�, 157.5�
FIR Interferometer n̄e 255� R�R

0

= �32,�17,�2, 13, 28, 43
FIR Interferometer n̄e 250� R�R

0

= �24,�9, 6, 21, 36
FIR Polarimeter neBz 250�/255� Same as Interferometer

CO2 Interferometer n̄e 40� r chord from ✓

in

= �75�
Thomson Scattering Te � = 222� 21 pts, Z = 0.01 to �0.45, R = 1.5

DNB 270� Radial from ✓ = �22.5�
ChERS k Ti (imp.) 312� ✓ = 180� viewing DNB at axis
ChERS ? Ti (imp.) 270� 11 points viewing ? to DNB

MSE Camera B, |B| 270� DNB points viewed from ✓ = �45�
Rutherford Ti 180� ✓

beam

= 270�, ✓
view

= 79.8�, 100.2�

HIBP � 128�
in

, 138�
view

✓

in

= 105�, ✓
view

= 19�

Table 2.3: MST Alfvén wave Diagnostics

Diagnostic Measured f

Nyquist

Localization

Magnetic Arrays B̃�, B̃✓, B̃r 1 MHz 100+ Points
Dense Array B̃�, B̃✓ 3 MHz 4 Points

FIR Interferometer ñe 1 MHz 11 Chords
FIR Polarimeter ñeBz + neB̃z 1 MHz 11 Chords

CO2 Interferometer ñe 300 kHz Chord
ANPA �E>2 keV neutral

50 kHz Chord View
Thomson Scattering T̃e 12.5 kHz 21 Points

HIBP �̃, ñe/ne 500 kHz Scannable Point
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Chapter 3

Equilibrium Reconstruction

A plasma equilibrium is a necessary starting point in order to compute the Alfvén

continuum in a plasma. In the search for wave eigenmodes, the continuum provides

a map of wave resonances that aides in mode characterization.

Plasma equilibria provide a basis to compare diagnostic measurements based on

flux functions and serve as the starting point for a number of computational analyses.

Equilibrium reconstruction on MST has been historically done using MSTFIT, a

Grad-Shafranov reconstruction code. However, a number of mature analysis routines

rely on output files from the Variational Moments Equilibrium Code (VMEC), a fully

three-dimensional equilibrium solver[42]. VMEC has been adapted to reconstruct

RFP equilibria on MST. The modifications to VMEC allow for it to be utilized with

V3FIT to reconstruct non-axisymmetric plasmas. The resultant 3D equilibria can

likewise be processed using these analysis routines.
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3.1 History of Equilibrium Reconstruction on

MST

Before equilibrium reconstruction from diagnostic signals was done, several cylindrical

models were successively employed in order to model RFP equilibria from experiment.

The models all possess the common feature of fitting the � = constant consequence of

Eq. 1.21. The models are modified to account for experimental observations of zero

current at the plasma boundary, implying �! 0 at the edge. A thorough account of

all of these models is made in the Anderson thesis[24].

MSTFIT was developed by Jay Anderson as the next logical step beyond the 1D

models, and was documented in his thesis in 2001. The reconstruction takes a guess

from the Modified Polynomial Function Model as its starting point, then performs

a �2 minimization to match observed diagnostic signals. The reconstruction routine

was based on the EFIT tokamak equilibrium reconstruction code.

MSTFIT uses an iterative routine to solve the Grad-Shafranov equation with

poloidal flux as the ordinate,

J� =
2⇡FF

0

µ

0

R

+ 2⇡RP

0 (3.1)

where J� is the toroidal current density, R is the distance to the machine center,

F = RB� and P is the pressure. This solution takes place on an up-down symmetric

triangular mesh grid, to which the diagnostic signals are mapped. The computed

equilibrium then undergoes a �2 Amoeba [24] minimization with respect to the avail-

able plasma diagnostics. MSTFIT performs this comparison by generating synthetic

signals for each of the included diagnostics.
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3.2 Variational Moments Equilibrium Code

(VMEC)

The Grad-Shafranov equation used in MSTFIT is an axisymmetric application of the

more general radial force balance equation,

~J⇥ ~B = rp

which describes the current, magnetic field and pressure of a plasma in equilibrium.

VMEC satisfies this equation by minimizing the total magnetic and thermal energy

of a plasma [42],

Wp =

Z
⌦p

✓
1

2µ
0

B

2 + p

◆
dV.

This minimization is done by modifying the spectral components that describe a

finite number of flux surfaces. The coordinates for a flux surface, R , Z and � are

decomposed into their spectral components,

R =
X
m,n

Rmn(s) cos (m✓ � n⇠)

Z =
X
m,n

Zmn(s) sin (m✓ � n⇠)

� =
X
m,n

�mn(s) sin (m✓ � n⇠)

where m and n are the poloidal and toroidal mode numbers of the spectral mode, ⇠

is an index that maps directly to toroidal angle, and � is a normalization function

used to truncate the Fourier series at a discrete number of harmonics. The radial-like

coordinate s increases from the magnetic axis to the edge. For axisymmetric cases,

only the R

0,0, Rm,0 and Zm,0 terms are important, as toroidal angular dependence is

removed. For circular flux surfaces, R
1,0 = Z

1,0 and no higher-m terms are included.

R and Z each only have one sinusoidal term because the equilibrium is assumed to

be in stellarator coordinates, with the helical axis outboard at � = 0�.



65

The solution algorithm for VMEC is the equivalent step to the Grad-Shafranov

solver in MSTFIT. While VMEC includes a more general set of physics and requires

more computation time, it is only an equilibrium solver. Linkage to diagnostics is

performed separately by codes with �

2 minimization routines, such as STELLOPT

and V3FIT [43, 44]. These codes initialize VMEC and perform similar loops to

those found in MSTFIT, generating equilibria and minimizing the di↵erence between

synthetic and measured signals.

The required inputs forVMEC are: a rotational transform profile ◆(s) = 2⇡RB✓/rB�,

a pressure profile p(s), a specification of the total toroidal flux �B�
or the total toroidal

plasma current Ip, and some geometric specifications for the system. The mesh size

and number of harmonics to be included may be specified alongside other parameters

for the fit and minimization. For three-dimensional reconstructions, the number of

field periods may be specified beforehand, as well as harmonics of the last closed flux

surface (LCFS) if known.

VMEC has been used on a number of devices over the years, including stellarators

[44, 45], tokamaks [46], and more recently the RFP [47]. It has proven to be a fast

code for equilibrium reconstruction.

3.2.1 Modifications for the RFP

Although the choice between poloidal and toroidal flux is arbitrary for tokamaks

and stellarators, toroidal flux  t was initially chosen as the coordinate linked with

s in VMEC reconstructions. When RFX-mod reported their findings on the Single

Helical Axis (SHAx) state [48], work began to modify VMEC to function in poloidal

flux.

A Jacobian,
p
g, is used to convert between flux coordinates and real space coor-

dinates. It is applied before minimization to convert cylindrical inputs, and can be



66

applied again after minimization to transform answers back to real space. Flux is

linked to the coordinate s and not explicitly included in the calculation, so only the

transformation must be modified. For toroidal flux,

p
gt =

B

co

� + ◆B

co

✓

B

2

where B

co

� is the covariant toroidal field, B

co

✓ is the covariant poloidal field, and

◆ = 2⇡/q is the rotational transform. For poloidal flux,

p
gp =

qB

co

� + B

co

✓

B

2

.

Post-reconstruction routines that require the Jacobian and flux to convert to cylin-

drical or cartesian coordinates, but do all calculations in real space, need only switch

their inputs to accept the new poloidal outputs of VMEC. In an RFP, q = 0 at the

reversal surface, implying ◆ ! 1. Therefore, the rotational transform input must

be modified. In RFP mode, VMEC accepts the q-profile as its input instead of the

◆-profile.

In order to maintain the high degree of confidence in fits for axisymmetric plas-

mas, a �2 minimization algorithm was not applied to VMEC equilibria. Instead,

the full MSTFIT routine was used to reconstruct these equilibria, and then the out-

put parameters were fed as inputs into the VMEC fit. Recall that VMEC is not

explicitly compared to signals as the MSTFIT loop is, so appropriate comparison

is made between equilibrium quantities of the two routines when run on the same

q-profile, flux, and plasma current. Pressure, magnetic field and flux surface profiles

are compared and are in good agreement, Fig. 3.1.

3.2.2 AE3D and STELLGAP

In order to calculate the Alfvén continuum, a compressionless, reduced MHD equation

is solved in Boozer coordinates. The Alfvén continuum solution routine Stellgap
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Figure 3.1: Comparison of VMEC and MSTFIT axisymmetric equilibria.
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and the eigenmode calculation routine AE3D are codes developed for this purpose by

Don Spong at Oak Ridge National Laboratory [49, 50]. Both codes rely on XMet-

ric, a routine that prepares matrix elements from the Boozer coordinates output by

Booz-Xform, which is contained in the VMEC code suite. It was deemed much

more time-consuming to replicate these procedures for MSTFIT than to adapt VMEC

for the RFP, so they remain tied to the VMEC code. It should be noted that familiar-

ity with Booz-Xform and other codes associated with VMEC presents significant

opportunity for collaboration with other machines.
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STELLGAP

Using the formulation presented by Salat and Tataronis [51], the shear Alfvén contin-

uum can be generated. This treatment starts with reduced MHD in the pressureless

limit and generates two eigenvalue equations that correspond to field-line localized

solutions and radial surface-localized solutions. The latter equation is traditionally

associated with solutions for the Alfvén continuum,

µ

0

⇢m!
2

|r |2

B

2

E +B ·r

|r |2

B

2

(B ·r)E 

�
= 0, (3.2)

where ⇢m is the mass density, ! is a radial frequency, and E is the covariant  

component of the electric field. Using the Fourier expansion,

E =
LX

j=1

E

j
 cos (nj⇣ �mj✓) ,

and transforming the system to Boozer coordinates, the equation can be recast as

!

2

 !
A x =

 !
B x

where x =
⇥
E

1

 , E
2

 , E
3

 · · ·EL
 

⇤
. The equation is now a matrix eigenvalue solution

problem, with the !2 values as eigenvalues. The code Stellgap diagonalizes this

matrix and finds eigenvalue solutions at a range of  locations for a range of n and

coupled-m modes. These solutions are the shear Alfvén continuum modes, whose flux

surface location, frequency and mode numbers are outputs. These solutions are no

longer meaningful when ! ! !c = 5 � 10 MHz, at which point cyclotron e↵ects are

dominant.

As inputs, Stellgap takes a processed VMEC equilibrium and additional files

specifying the ion mass, density profile and a range of Fourier modes to examine.

As described previously, this processed equilibrium is first transformed to Boozer

coordinates with Booz-Xform, then broken into matrix elements describing field
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Figure 3.2: Stellgap output before and after the Jacobian was adjusted. The
reversal surface is the source of discontinuity at  

norm

= 0.85. Image provided by
Don Spong.
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line orientations as a function of flux by XMetric. As outputs, Stellgap returns

a list of frequencies, each corresponding to a flux surface, n number, and dominant

m number.

This code has been applied to stellarators, tokamaks and, more recently, RFPs,

[49, 18]. Note that with the appropriate adaptation of VMEC, Stellgap handles

the reversal surface well, Fig. 3.2. Its solutions provide a map of the continuum,

which helps to locate Alfvén eigenmodes in radial and frequency space. The code

required no adaptation to run on 3D equilibria, as its calculations are done in flux

coordinates.

AE3D

In order to capture the physics of Alfvén eigenmodes in the pressureless, reduced-

MHD limit, a di↵erent approach must be taken to account for their radial extent.

The formulation used to build Stellgap identifies eigenvalues on radial surfaces,

which makes it insu�cient for locating global modes. The reduced-MHD formulation

presented by Kruger, Hegna and Callen [52] excludes short wavelength modes and dis-
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tinguishes between equilibrium and perturbation scale e↵ects. The modified vorticity

equation and Ohm’s law equation are employed in the pressureless, compressionless

limit to obtain

!
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✓
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where � is the electrostatic potential and Jk0 is the equilibrium parallel current.

Recognizing that v

2

A = B

2

/µ

0

⇢m, this equation is of a similar form to Eq. 3.2 with

the additional third term of higher order. Multiplying by a trial function �̃ and

integrating by parts, the equation becomes
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A similar approach to the solution of Eq. 3.2 is taken, with Fourier expansions in

� and �̃. In this case, finite radial elements fp(⇢), fq(⇢) are included in the basis

functions to permit solutions with radial extent. The basis functions are

� =
IX

i=1

PX
p=1

�ipfp(⇢) cos(mi✓ � ni⇣);

�̃ = fq(⇢) cos(mi✓ � ni⇣),

where i is the Fourier mode index, p is the flux surface index, and ⇢ is the flux surface

label. Once more, the problem is cast as a matrix equation,

!

2

 !
G y =

 !
F y

where y is a vector containing the �ip terms, with two loops over i and p within the

one-dimensional vector. The resultant matrix is large, and more easily solved when a

frequency band is selected beforehand. For this reason, it is useful to run Stellgap
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beforehand to identify gaps within which eigenmodes might reside. Both solutions

for eigenmodes and continuum resonances can be found using this method, although

it is a significantly slower tool than Stellgap for that purpose. Because a finite

radial element is used, the global eigenfunction is determined by solution for the !2

values. Multiple Fourier harmonics may couple along a wide radial extent, providing

the expected form of the eigenfunctions for TAEs and other Alfvén eigenmodes.

AE3D uses the same input file from XMetric that Stellgap uses. The code

returns eigenfunctions of the electrostatic potential � and their associated eigenfre-

quencies. Although both continuum modes and Alfvén eigenmodes are found, they

are easily distinguishable by their eigenfunctions (It should be noted that although

continuum modes are eigenmodes of the matrix equation, the moniker of Alfvén eigen-

mode is reserved for special cases with radial extent due to coupling.). Continuum

modes have sharp singularities in their forms, Fig. 3.3, which bely either short wave-

length couplings or phase mixing, two phenomena whose scale lengths are too short

to be captured by the reduced MHD formulation. The resonant surfaces at  (!
res

)

are marked, along with the adjacent non-resonant surfaces with ! 6= !

res

. The ad-

jacent non-resonant surfaces cause phase-mixing, and for this reason the continuum

functions are ignored. The AEs have a broader radial extent and either no singu-

larities or singularities far from the bulk of their eigenfunction, Fig. 3.4. They are

significantly smoother than their continuum counterparts. The resonant and non-

resonant surfaces are indicated once more, but it is clear from the picture that the

radial extent of the mode creates a wide area of resonance where growth can occur.

An eigenmode that crosses the continuum was chosen to show that although it is next

to non-resonant surfaces, it has a broader eigenfunction, rendering it more resistant

to local dispersion. The code has no built-in selection criterion for identifying AEs,

but they can be readily identified by browsing the output eigenfunctions.
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Figure 3.3: Example Alfvén continuum mode structure as output by AE3D. The solid
lines represent poloidal spectral components of the solution. Surfaces where ! = !

res

is the dominant resonance are plotted in dotted red, while surfaces where ! 6= !

res

are
dominant are plotted in dotted blue to illustrate phase mixing at nearby non-resonant
surfaces.
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The eigenfunction solution code AE3D has also previously been applied to stel-

larators and tokamaks [50]. Without adaptation to function with the poloidal flux

version of VMEC, the reversal surface presents a significant problem for RFPs. The

frequency distortion present in Stellgap manifests as a “hole” in the resonant eigen-

function. Because AE3D connects radial steps to enforce continuity, this hole kinks

or zeroes the eigenfunction at the reversal surface. [At the time of writing, this issue

has not yet been resolved. Several eigenfunctions will be presented in Sec. IV, whose

recalculation is straightforward once modifications in the code have been made.]

3.3 3D Equilibrium Reconstruction

The adaptation of VMEC to work with RFPs was motivated primarily by the pres-

ence of a helical axis in RFX plasmas [48, 53]. The same phenomenon occurs for MST
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Figure 3.4: Example TAE structure as output by AE3D. The solid lines represent
poloidal spectral components of the solution. The domain where ! = !

res

is the
dominant resonance is indicated in dotted red while the surfaces where ! 6= !

res

are
dominant are shown in dotted blue. The mode has a nonsingular eigenfunction across
a significant portion of the plasma.
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plasmas, which transition to a helical equilibrium in high Ip non-reversed discharges.

The shift is characterized by a large increase in the amplitude of the coremost mode,

from B̃

w

/B

w

= 1% ! 8%. Simultaneously, the secondary modes decrease in ampli-

tude, decreasing stochasticity and leading to a new equilibrium with a single helical

axis (SHAx). The condition for single felicity expressed in terms of the spectral index,

Ns =

264 15X
n=5

0B@
⇣
b̃n

⌘
2

P
15

n=5

⇣
b̃n

⌘
2

1CA
2

375
�1

(3.5)

where the growth of any single mode and decrease of other modes will cause Ns ! 1.

On MST, the n = 5 mode grows and the spectral index decreases to Ns ⇡ 1.1 as the

other mode amplitudes decrease.

The modifications to VMEC for RFPs allowed V3FIT, an equilibrium reconstruc-

tion code built to run with the equilibrium solver VMEC, to work with the RFP. The
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Figure 3.5: SXR emissivity compared to NCT-SHEq equilibrium. (a), the NCT-SHEq
flux surface solutions calculated from external magnetics. (b)(d) The SXR emissivity
mapped to NCT-SHEq flux surfaces. (c) The reconstructed SXR emissivity map
from only SXR measurements. (e) The compared reconstruction from (b) with the
measured data. From [54].

expanded access to analysis routines built on VMEC was a happy secondary e↵ect of

this adaptation. While the main focus of this thesis is on Alfvnénic activity and thus

on the AE3D and Stellgap, a significant push has also been made to reconstruct

helical plasmas on MST using V3FIT. Because the output of a V3FIT reconstruc-

tion is a VMEC equilibrium, these analysis routines can be applied immediately after

reconstruction. However, the first reconstruction of MST plasma equilibria using

internal diagnostics along with magnetics is itself an important result.

3.3.1 Newcomb Toroidal Code

Reconstruction of helical flux surfaces has been performed previously using the New-

comb Toroidal Code (NCT) for comparison with the Soft X-Ray system [54], Fig.
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Figure 3.6: n̄e from FIR Interferometry compared to NCT-SHEq equilibrium. (a), the
NCT-SHEq flux surface solutions calculated from external magnetics. (b) ne surfaces
from mapping measurements to flux surface solutions. From [55].

3.5, and the Interferometer-Polarimeter [55], Fig. 3.6. NCT performs a spectral de-

composition to form flux coordinates, as VMEC does. However, the code takes a

pressureless, perturbative approach to calculating the flux surfaces. First the zeroth

order approximation, non-concentric circular flux surfaces with a Shafranov shift, is

calculated. This solution closely matches the equilibrium in an axisymmetric plasma.

Then the first order correction, the dominant helical mode eigenfunction, is calcu-

lated. These two solutions are linearly combined to match the edge magnetic mea-

surements [56].

Although the solution approximates the helical flux surfaces well, it is not a fully

three dimensional calculation. Secondary harmonic content in the calculation of flux

surfaces plays a role in defining their shapes, and is not included in the NCT calcula-

tion. Pressure is also not included in the calculation, which for the axisymmetric case

is a good approximation. This approximation may not hold true at all points for 3D

equilibria, although the region of strong pressure gradient seen on RFX is observed to
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have little e↵ect on NCT reconstructions[57]. Because pressure is not included, and

neither are internal diagnostics, density is not constrained in the calculation by inter-

ferometry. Polarimetry relies on the ne(r) inversion from interferometry to decouple

its neBz measurement. Without a self-consistent constraint on density, achieving a

match between diagnostic results and modeled signals can be deceptive. For these

reasons, a fully three dimensional equilibrium reconstruction code like V3FIT is pre-

ferred as the ultimate direction of equilibrium reconstruction on the RFP.

3.3.2 V3FIT

The three-dimensional equilibrium reconstruction routine V3FIT is a modular code

that performs �2 minimization between computed and measured signals. Although

V3FIT is designed to interface with any equilibrium solver, VMEC maintains dom-

inance in the realm of 3D equilibrium solvers, and is to-date the only one imple-

mented. V3FIT has been used to reconstruct 3D stellarator and tokamak equilibria

in the past [44]. The adaptation of VMEC to function with the RFP consequently

permitted V3FIT to be run with the RFP, and reconstructions have been performed

for the RFX-mod device [58]. Recently, V3FIT has been benchmarked against NCT

for axisymmetric RFP equilibria on RFX-mod[59].

Minimization algorithm

The code seeks to minimize the total weighted di↵erence between observed signals and

computed signals. The description presented here follows the method presented in

Hanson’s 2009 paper [44]. First, a VMEC equilibrium is generated from initial inputs

according to the method described in Section 3.2. The set of parameters p included

in the VMEC and V3FIT input files are inputs that are allowed to vary throughout

the reconstruction. The set of diagnostic values d are measurements whose values
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are fixed throughout the reconstruction. The computed signals, or model signals,

S

m
i (p) are generated from the equilibrium. The observed signals, So

i (d,p) include

the diagnostic values in the simplest case, but can also include values calculated from

a combination of diagnostics, which can be used for averaging or taking the largest

value of a set. Associated with the observed signals is a measurement error �i in the

same units as Si. A weighting for each signal i may also be specified. A similar

function to �2 is computed,
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This is the function that V3FIT seeks to minimize, and is distinguished from �

2

in the presence of a weighting value i and the use of signals S

o
i , which may be a

function of the parameters as well as the diagnostics. g

2 ⇠
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the condition for a good fit, corresponding to the state where the mean (weighted)

value of |So
i � S
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i | is equal to the measurement error. An error vector normalized to

�i has components defined as
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m
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The error vector is used to construct a Jacobian in conjunction with a dimensionless

parameter vector aj = pj/⇡j, where ⇡j is a normalizing factor. This Jacobian,

Aij = �
@ei

@aj

(3.8)

describes how a small change to model parameters will a↵ect the computed signal

S

m
i . Singular value decomposition is performed on Aij. Quasi-Newton steps are used

to avoid computing the Hessian matrix. The step towards minimizing g

2, �a is found

through the equation

AT ·A · �a = AT · e. (3.9)
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Taking the step A ·�a leads to a decrease in the error vector. The expected new error

vector

ẽ = e�A · �a (3.10)

contributes to an expected new value,

g̃

2 = ẽ · ẽ. (3.11)

At this point the VMEC solver is run again, and the new g

2 value is calculated in the

same fashion. This process is repeated until user-defined criteria such as maximum

number of iterations, minimum �g2, or minimum g

2 are met. The final equilibrium

solved by VMEC is returned as the result of the reconstruction.

Parameters

V3FIT alters the equilibrium through modifying the input parameters to the VMEC

reconstruction. VMEC accepts pressure as an input to determine the rp term in

the equilibrium, but does not separate out T and n from p = nkBT . Additional

profiles for flux functions such as density and brightness are included in the V3FIT

inputs, but must be implemented with care as they are determined independently of

the VMEC reconstruction. These profiles are altered in the V3FIT minimization step

after a VMEC reconstruction, subject to the constraint imposed by pressure and the

flux surface shapes. They do not have direct input into the VMEC solution.

Each parameter is associated either with a static number or a multivariable pro-

file. Each point in a profile, in addition to any single value inputs, may be specified

as a parameter to be varied. Along with identification, a step size in the units of

the associated parameter must be specified. Table 3.1 contains a list of the parame-

ters that may be varied during V3FIT reconstruction, and the following paragraphs
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explain any parameter meanings that may be unclear. Finally, a description of the

available parameterization functions for use in both VMEC and V3FIT follows.

Table 3.1: V3FIT and VMEC parameters

Parameter Variable Name Flux Label Code Type

Pressure p ‘am aux f’ ‘am aux s’ VMEC Profile
Pressure Norm. ‘pres scale’ VMEC Value
Safety Factor q ‘ai aux f’ ‘ai aux s’ VMEC Profile
Toroidal Flux �Bt ‘phiedge’ VMEC Value

Electron Density ne ‘pp ne af’ ‘pp ne as’ V3FIT Profile
Electron Temperature Te ‘pp te af’ ‘pp te as’ V3FIT Profile
Soft X-Ray Emissivity ✏ ‘pp sxrem af’ ‘pp sxrem as’ V3FIT Profile
Axis R Fourier Comp. R

0

‘raxis’ VMEC Profile
Axis Z Fourier Comp. Z

0

‘zaxis’ VMEC Profile
Bndry R Fourier Comp. Ra(m,n) ‘rbc(m, n)’ VMEC 2D Profile
Bndry Z Fourier Comp. Za(m,n) ‘zbs(m, n)’ VMEC 2D Profile

The first several inputs to consider when reconstructing a plasma are terms di-

rectly relevant to radial force balance, J⇥B = rp. The variable ‘am aux f’ param-

eterizes the pressure profile and accepts a vector of variables as input. The associate

flux label for each point in a spline fit is ‘am aux s’. These may also be varied as

parameters in the model. The associated variable ‘pres scale’ is a normalization

factor intended to be used to convert between units of pressure. It directly multiplies

each term of the pressure profile. The variable ‘ai aux f’, when VMEC is running

in poloidal flux, parameterizes the q profile. Its associated flux label is ‘ai aux s’.

Finally, ‘phiedge’ is the total toroidal flux through a toroidal cross section.

V3FIT contains a number of inputs that parameterize flux functions, but do not

directly a↵ect the VMEC equilibria. The coe�cients in ‘pp ne af’ describe the

electron density of the plasma if a spline fit is chosen, with appropriate flux labels

‘pp ne as’. Similarly, ‘pp te af’ and ‘pp te as’ correspond to the electron temper-

ature, and ‘pp sxrem af’ and ‘pp sxrem as’ correspond to soft X-ray emissivity.

All three profiles may have their primary inputs as ‘ b’ instead of ‘ af’ as part of a
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two-power fit instead of a spline, resulting in no need for the ‘ as’ flux labels.

The three profiles can be coupled or decoupled in V3FIT, depending on the options

chosen. By using p = nkBT , the model only requires pressure and density to be

parameterized to fit all three variables. Through the specifier ‘model te type’, the

user can specify whether a Te profile is input and varied, or whether only a density

profile is input and temperature is calculated from p = nkBT . Soft X-ray emissivity

can be calculated from the simple model ✏ = p

1/2 (ne/ne0)
3/2, once again relying only

on the density and pressure. However, implementation of this model in practice is

quite di�cult due to filtering techniques present on most soft X-ray camera systems.

An independent emissivity profile assumed to be a flux function is still useful as an

identifier of flux surface shape and phase. The two options are selected between with

the specifier ‘model sxrem type’. Finally, the ion pressure pi contributes along

with the electron pressure, so a scalar relation between the two is assumed in the

model, and the ratio of electron pressure to the total pressure can be specified with

‘e pressure fraction’.

The flux surface geometry can also be taken as a parameter. Specification of the

last closed flux surface (LCFS) in helical plasmas informs VMEC of where it should

stop calculating its solution. The ‘rbc(m, n)’ and ‘zbs(m, n)’ input parameters

specify the Fourier components of the LCFS, where m and n are the poloidal and

toroidal mode numbers in VMEC coordinates, respectively. When running V3FIT,

the exact shape of the LCFS may not be known at the outset, so allowing these

parameters to vary permits deformation at each subsequent VMEC calculation. The

variables ‘raxis’ and ‘zaxis’ are initial guesses for the Fourier components of the

magnetic axis. Because a line is being described and not a surface, the two parameters

are only 1D. VMEC takes the ‘axis’ parameters only as guesses, and calculates a

di↵erent magnetic axis in the course of its solution. However, a poor magnetic axis
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guess can start the equilibrium su�ciently far away from convergence that no solution

can be found.

A number of functions are available for parameterization of profiles in VMEC and

V3FIT. These functions are selected between for each variable with ‘pp xx ptype’

in V3FIT and ‘pxxxx type’ in VMEC. The traditional power series centered at 0,

f(s) =
NX

n=0

pns
n
, (3.12)

is included as ‘power series’. A more explicit fit to the form of many plasma

parameters, the two-power fit,

f(s) = p

0

[ p
1

(1� s

p2)p3 ] ✓(s)✓(1� s) (3.13)

has terms with a more direct interpretation, and is specified with ‘two power’. If

instead the user wishes to perform spline fits, with p(s) corresponding to values of the

parameter at discrete flux surfaces, two such fits are available. The ‘cubic spline’

type fit is the standard piecewise cubic interpolation between data points with a con-

tinuous 2nd derivative. The ‘akima spline’ type fit has been added more recently,

and resolves issues of oscillations around bending points of a curve. However, the

Akima spline requires 5 points to be specified in order to generate a fit, so it is not

practical for all profiles.

Diagnostics and Signals

The ability of V3FIT to reconstruct equilibria hinges on the diagnostics included

in its reconstruction. At present, the diagnostics included in V3FIT are flux loops,

Rogowski coils, Interferometry, Polarimetry, Soft X-ray cameras and Thomson scat-

tering, Fig. 3.7. All of these diagnostics have been implemented on MST. Each

diagnostic has a file specifying the geometric location of its measurements. In addi-

tion, each signal Sm
i generated by a diagnostic, corresponding to one measurement,
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Figure 3.7: A single flux surface of the helical plasma core with field lines superim-
posed, over plotted on a diagram of MST diagnostic locations. The mode locks with
random phase, but the diagnostics themselves are fixed.
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can have a specified �i and i. If the user wishes to calculate values for a particular

diagnostic but not use it as a constraint, i may be set to 0 for one or all points.

The location of each diagnostic is important, but VMEC contains a peculiarity

that must be accounted for in specifying the geometry of the fit. VMEC assumes

that the helical axis is outboard at � = 0�, keeping only the (R cos) and (Z sin)

terms in its spectral decomposition. In MST, the helical axis locks with random

phase with respect to the � = 0� location, so a scheme is implemented to account

for this, utilizing the toroidal array as a phase designator. The magnetics signals,
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Figure 3.8: The mode is rotated so that it is outboard at � = 0�. The magnetics are
not rotated, but all diagnostics are moved along with the mode.
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once filtered for the n = 1 harmonic introduced by error field at the toroidal gap,

are approximated well by n = 5 and its higher-order harmonics. To avoid having

to shift all ⇠ 100 coils for each fit, the B✓ and B� signals are Fourier decomposed

and shifted to place the mode outboard at � = 0�, then recalculated for each coil.

In practice, the location of the coils at ✓ = 241� requires �(B✓,max

, ✓ = 241�) = 47�,

which corresponds to �(B✓,max

, ✓ = 0�) = 0�, assuming n = 5 periodicity. This

technique cannot be performed in the ✓ direction for diagnostics that are localized in

� because toroidicity negates ✓ symmetry. Processing the data in a spectral fashion

would introduce significant uncertainty, so a di↵erent approach is taken. All non-

magnetic diagnostics have their � locations dynamically determined for each shot,

with the rotation angle determined by the processing of the toroidal array data.

E↵ectively, the magnetics rotate the mode around the machine, and the diagnostics

rotate toroidally with the mode, Fig. 3.8.

In fixed-boundary mode, V3FIT does not specify currents external to the LCFS.
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Figure 3.9: (a)(b) Flux surfaces generated by currents in the plasma. (c)(d) The
same flux surfaces after calculation of Green’s function response in 72 toroidal current
filaments representing the conducting shell. Image by Jay Anderson.
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Figure 3.10: �B✓ at the toroidal array coil locations vs. Ip. The value for �B✓ is
calculated from Green’s tables applied to MSTFIT equilibria at each of four plasma
currents. The fit line represents the first order correction employed in V3FIT.
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Instead, the LCFS is specified, and the B and j are solved for self-consistently inside

of this surface. However, the model-calculated B outside the LCFS includes only the

plasma current contribution. This mismatch in observed and modeled signals was

initially confusing, so care has been taken to handle it. On MST, a non-uniform j�w

current distribution in the toroidal shell generates vertical magnetic field Bz to close

flux surfaces at the wall, Fig. 3.9. This current arises in the conducting shell from

induction due to the magnetic flux of the plasma. The toroidal and poloidal arrays are

located outside the LCFS by design. V3FIT does not account for �B✓(a) = Bz(a) · ✓̂,

so �B✓(a) must be calculated and subtracted from the coil measurements before

fitting. Tables using Green’s functions to determine the j�w from j�plasma

(r, ✓) have

been constructed previously for MSTFIT [24]. These tables were used to determine

the first order-correction to the B✓ supplied to V3FIT by calculating the j�w and

thus Bz at the coil locations in an axisymmetric plasma equilibrium. This process

was performed at 4 Ip values with axisymmetric MSTFIT equilibria, then fit linearly
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to obtain �B✓,coil(Ip), Fig. 3.10. This first-order correction is �B✓(a) ⇠ 10%B✓(a).

A similar correction is made to the n = 5,m = 1 contributions to the coil magnetic

field. Empirically, �Bn=5

(a) = 60%Bn=5

(a) for both B̃✓ and B̃�. Work is underway

to incorporate calculation of the helical shell currents into the fit itself.

A crucial signal in the reconstruction is the plasma limiter. While not a ‘diag-

nostic’, the location of the limiter provides information about the allowable space

the plasma can occupy. Its specification is purely geometric, but it is included as

a V3FIT signal whose expected value is 0. When the plasma enters the limiter by

deformation of the outer flux surfaces, e
lim

(Eq. 3.7) rises rapidly, forcing the fit to

maintain the LCFS outside the limiter. This signal may also be weighted with i.

3.4 Summary

Axisymmetric plasmas have been reconstructed in the past using the MSTFIT equi-

librium reconstruction routine. With the adaptation of the VMEC equilibrium solver

to handle RFP equilibria, new access to mature analysis routines has been gained,

along with the capability to reconstruct three dimensional plasmas. The NCT pertur-

bative equilibrium reconstruction code has been used to reconstruct plasmas using the

assumption of a single helical mode superimposed on an axisymmetric background.

The V3FIT 3D equilibrium reconstruction code has been implemented on MST, and

full advantage has been taken of its included diagnostics and variable parameters.
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Chapter 4

Alfvén Eigenmodes and Continua

The Alfvén continuum provides a map of the frequencies at which energy can be

transferred to the plasma without a coherent wave excitation. In the presence of a

large population of resonant energetic particles, the Alfvén continuum becomes a map

of the frequencies that may be driven unstable for given mode numbers. The Alfvén

eigenmodes (AEs) that are located in gaps in the continuous spectrum are weakly

damped, allowing them to be driven easily both by waves and energetic particles.

For the first time, the determination of the Alfvén continuum and of the eigenmode

structures of several Alfvén eigenmodes has been performed for the RFP.

First, the methodology for determining the eigenmodes and continua is outlined.

Then this method is applied to three types of axisymmetric equilibria: non-reversed,

reversed and deeply reversed plasmas. Finally, the equilibria for helical plasmas are

determined and the same method is applied to determine continua and eigenmodes

in these cases.
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4.1 Methodology

In order to generate the Alfvén continuum, equilibria must be reconstructed. For

each case, many shots with similar plasma current Ip, electron density ne, and edge

safety factor qa were selected. During these shots, the Rogowski loop, flux loop,

B✓ coils at the toroidal gap, Interferometry, Polarimetry, Thomson scattering and

MSE all collect data to be used in equilibrium reconstruction. MSTFIT o↵ers the

capability to use average quantities from many shots to form an ensemble, so a single

fit is generated from this set of shots. The goodness-of-fit is assessed from �

2 and

knowledge of the analytical plasma equilibrium quantities.

The MSTFIT-determined pressure profile, q profile, toroidal flux and LCFS ge-

ometry are taken from the MSTFIT equilibrium and passed as input parameters to

the VMEC equilibrium solver. The solver is run in RFP mode, generating its own

equilibrium in VMEC flux coordinates. This is checked against the MSTFIT equi-

librium for incongruities that may have developed due to the use of di↵erent solvers.

In the three dimensional case, V3FIT is run instead of MSTFIT, with the toroidal

array B� coils included and the MSE diagnostic excluded. As the resultant file is a

VMEC equilibrium, there is no need to import it into VMEC. In either case, at the

end of this step a VMEC equilibrium is produced.

The VMEC equilibrium is processed from flux coordinates into Boozer coordinates

by Booz-Xform. The XMetric code then prepares the metric elements for use

with the Alfvén codes. Because this equilibrium only contains information on the

pressure, the density profile must be imported from either the MSTFIT outputs or

the V3FIT profiles. The Alfvén continuum is solved for using Stellgap, with each

toroidal mode number n and many possible poloidal mode numbers m solved in one

continuum calculation. This step is performed across multiple n’s. After gaps or
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spaces in the continuous spectrum are identified from the Stellgap output, AE3D

is run across each gap frequency range. By browsing the output of the AE3D code,

global modes are identified.

4.2 Axisymmetric Continua and Eigenmodes

The Alfvén continua for axisymmetric plasmas are calculated. While more similar

to each other than they are to the three dimensional continua, these continua span

the majority of RFP operating regimes on MST. Particular attention is paid to non-

reversed plasmas, as it is under these plasma conditions that the EPMs are observed.

Figure 4.1: 300 kA qa = 0 Alfvén continuum. The m = 0 branch on the right goes to
zero frequency at the reversal surface. m = 0 couples to m = 1 at q = 1/2n for each
n shown, forming a gap above 250 kHz.
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4.2.1 Non-Reversed Plasmas

When the edge safety factor qa is brought to 0 by short-circuiting the poloidal current

in the plasma shell, the decreased activity from m = 0 modes in the plasma provides

enhanced opportunity to study MHD activity. The sawtooth cycle is modified, with

smaller m = 0 bursts taking the place of large parallel current relaxation events.

Unlike the standard plasma case [32], the q profile evolves minimally throughout this

modified cycle, providing a fixed equilibrium. Cases are compared at three densities

and three plasma currents around a base case of Ip = 300 kA, n̄e = 0.7 ⇥ 1019 m�3,

which was chosen because it has been the subject of significant study for EPMs.

Figure 4.2: qa = 0 Alfvén continuum, n = 5 at multiple Ip. Solutions are similar, but
with frequencies scaled by vA / |B| / Ip.
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The Alfvén continuum for 300 kA non-reversed plasmas has a number of important

features, Fig. 4.1. The outermost branch for all modes is dominantly m = 0 due to

the location of the reversal surface q = 0 at the plasma edge. The zero-frequency
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point for a given mode lies at q = m/n, so all m = 0 modes have zero frequency at

the reversal surface. The m = 1 branch is the second closest to the edge, and couples

to the m = 0 to create the first gap in the continuous spectrum. All toroidal mode

numbers n that have have m-coupling to create a gap have m = 0, 1 coupling. With

q < 0.23, the lowest possible mode number for a gap coupling is n = 3,m = 0, 1,

Eq. 1.18. Mode numbers for gaps can then be described as medium n, low m. The

gap itself is in the frequency range from f = 200 � 350 kHz, independent of mode

numbers.

Figure 4.3: 300 kA qa = 0 Alfvén continuum, n = 5 at multiple n̄e. Solutions are
similar, but with frequencies scaled by vA / 1/sqrt(ne).
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The Ip = 200 kA and Ip = 400 kA cases have similar features to the 300 kA case,

Fig. 4.2. The n̄e = 0.4 ⇥ 1019 m�3 and n̄e = 1.0 ⇥ 1019 m�3 case also have similar

features, Fig. 4.3. The m = 0, 1 couplings and m branch locations are unchanged,

and a frequency gap is evident. The only discernible di↵erence comes from the Alfvén

scaling vA = |B|/pµ
0

⇢m, where ⇢m = mini / ne and |B| / Ip. The continuum is
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Figure 4.4: 300 kA qa = 0 Alfvén continuum, n = 5 at multiple q

0

. The altered q

profile shifts kk, changing resonances and zero crossings.
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scaled along the frequency axis proportionally to plasma current and inversely with

the square root of density, vA / Ip/
p
ne. The properties along the radial axis change

minimally.

A small scan of q
0

was performed, as determination of this parameter has been

elusive in the past, Fig. 4.4. The base case with q

0

= 0.212 is shown alongside

q

0

= 0.2 and q

0

= 0.235 cases. The radial position of the gap and zero frequency

crossings are a↵ected as the q profile alters kk.

The most obvious class of eigenmodes evident from the AE3D solutions are the

TAEs, Fig. 4.5. Each solution from n = 4 to n = 8 is localized to the gap, and has

poloidal harmonic content fromm = 0, 1 coupling. Unlike tokamak continua [5], there

are few coupled poloidal harmonics at medium n, with only 1-2 m couplings present.

Much like the locations where the gap is created, the peak mode amplitudes move

farther outward as n increases. When n becomes large enough (n = 9 here), m = 1, 2



93

Figure 4.5: n = 4 through n = 8 TAE structures in the non-reversed 300 kA base
case. The n = 4 � 7 TAEs have m = 0, 1 coupling, while the n = 8 TAE has
m = 0, 1, 2 coupling. All TAEs extend across the radius of the plasma.
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crossings appear and corresponding TAEs are present. The mode frequencies lie in a

similar range to the m = 0, 1 modes, but the peak mode amplitudes are closer to the

core. As is shown in this case, coupling across all three m modes can occur.

4.2.2 Standard Plasmas

The 400 kA standard plasma continuum is similar to the non-reversed 400 kA con-

tinuum seen in 4.2, with several notable di↵erences, Fig. 4.6. Although Ip and n̄e are

the same, the modification to the q profile is evident in the shifted mode resonances.

Particularly, the qa < 0 condition means the reversal surface q(r) = 0 is inside the

plasma. This means that the m = 0 modes have branches both inside and outside

the reversal surface. For high-n modes, there is m = 0,�1 coupling outside the re-

versal surface. Because q
0

> 0.2, the zero-frequency point for the n = 5,m = 1 mode
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Figure 4.6: 400 kA qa = �0.06 Alfvén continuum, with q

0

= 0.205. The altered q

profile shifts kk from the non-reversed case, changing resonances and zero crossings.
qa < 0 adds an m = 0 branch outside the reversal surface.
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remains. However, the n = 5 zero point has shifted 1 cm closer to the magnetic axis

due to the slight drop in q, as expected from Fig. 4.4. The continuum gap resides

at a similar frequency to the non-reversed case, between 250-400 kHz. Continuum

resonances exist outside the reversal surface, where q passes through zero.

For standard plasmas, q

0

varies considerably during the sawtooth cycle, from

q

0

>

1

5

! q

0

= 1

6

. However, qa does not vary considerably. An additional continuum

was generated with q

0

= 0.18 to examine the shift of the Alfvén continuum that

naturally occurs between sawteeth. As shown Fig. 4.7 as compared to Fig. 4.6,

a radial shift of the zero-frequency crossings and the gap crossings occurs. The

n = 6,m = 1 continuum takes on a similar character to the n = 5 in the non-reversed

case, with a zero-frequency point near the axis. This frequency shift has a substantial
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Figure 4.7: 400 kA qa = �0.06 Alfvén continuum, with q

0

= 0.18. The altered q

profile shifts kk from the q

0

= 0.18 case, changing resonances and zero crossings.
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Figure 4.8: n = 4 through n = 6 TAE structures in the 400 kA qa = �0.06 case. The
TAEs are similar to the non-reversed case, although the discontinuity at the reversal
surface zeroes their amplitude at the edge.
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e↵ect on the radial profile of resonance below the TAE gap.

The AEs in these plasma equilibria are similarly sparse inm-content, Fig. 4.8, and

only at n = 8 and above does the m = 1, 2 coupling appear. The kink at the reversal

surface is evident at  = 0.85, where �̃ looks like it will change sign, but instead is



96

Figure 4.9: 300 kA qa = �0.15 Alfvén continuum for deeply reversed plasmas. Further
decreased q

0

shifts kk, and qa = �0.15 creates a coupling outside the reversal surface,
with a gap above 150 kHz.
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zeroed. In these plasmas, whose reversal surface is closer to the boundary than in

deeply-reversed plasmas, the distortion of the eigenmode appears to be minimal.

4.2.3 Deeply Reversed Plasmas

Deeply reversed (qa < �0.1) plasmas are achieved in MST by externally driving B�w

more negative through a poloidal current in the conducting shell. This process is

known as pulsed poloidal current drive (PPCD), and the resulting plasma equilibria

are sometimes referred to as “improved confinement” plasmas. They will be referred

to as deeply reversed equilibria for the remainder of this work, while the term PPCD

will be used in reference to the period within which current is being driven. The most

notable changes to the equilibrium for deeply reversed plasmas are a peaking of the
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Figure 4.10: q profile during PCCD. The plasma is deeply reversed, with edge safety
factor qa = �0.15.
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density profile on-axis and a large dip in qa and q

0

, Fig. 4.10. The sawtooth cycle is

temporarily halted[60], so although qa continuously decreases throughout the PPCD

period, it is unlikely that q

0

is decreasing as in standard plasmas. As in standard

plasma, the m = 0 zero-frequency point is inside the plasma, but the reversal surface

is farther into the plasma and the q profile is much steeper outside of it, Fig. 4.10.

The deeper qa value allows branches of m = �1 to appear at lower n numbers outside

of the reversal surface. The gap is in a similar location at 250-400 kHz, although it

is at 150-250 kHz outside of the reversal surface.

Alfvén eigenmodes in these plasmas couple on either side of the reversal surface,

Fig. 4.11. As evident in Fig. 4.9, a gap exists near hri = 0.45, at !/2⇡ ⇡ 200 kHz.

Indeed edge-localized coupled AEs with m = 0,�1 and core-localized coupled AEs

with m = 1, 0 are both found, but due to the current inability of the code to handle

the reversal surface, there is no coupling of the two. It is unknown the degree to

which the two will couple when the reversal surface is handled adequately by AE3D.
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Figure 4.11: n = 5 through n = 6 TAE structures in the 300 kA deeply reversed
case. AE3D does not allow TAE to couple across the reversal surface. Edge-localized
TAEs are seen where a gap exists outside the reversal surface.
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4.2.4 Summary

The Alfvén continua and eigenmodes in axisymmetric RFP plasmas are similar, with

di↵erences attributable to vA and the q profile. The dominant coupling in all plasmas

is medium n, m = 0, 1, at q = 1/2n. The resulting m = 0, 1 TAE at f ⇡ 250 � 300

kHz has wide global extent. AE3D is not equipped to handle the reversal surface at

present, so modes in qa < 0 plasmas cannot couple across it. A TAE resonant near

the edge with m = 0, 1 and f ⇡ 200 kHz appears in deeply reversed plasmas, where

qa ⇠ �q0. In all equilibria, the closest zero point for continuum frequencies lies at

q = 1/n, where kk changes sign. The coremost zero frequency points are n = 5,m = 1

for q
0

> 0.2 and n = 6,m = 1 for q
0

< 0.2.
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4.3 Three Dimensional Continuum and

Eigenmodes

Although no high frequency magnetic activity has been detected in SHAx plasmas,

the search for such activity is made easier by predictions for eigenmodes and the

shape of the Alfvén continuum. For this reason, and owing as well to the fact that

VMEC equilibria were used to generate all previously shown continua, three dimen-

sional equilibria have been generated and processed to produce Alfvén continua for

the special case of a helical RFP plasma. Because the process of full equilibrium

reconstruction in three dimensions is novel for MST, results of successful reconstruc-

tions are presented before moving on to Alfvén calculations. A single case is used for

the continuum and eigenmode calculations, as the SHAx occurs spontaneously and

persists over a narrow range of high Ip, low ne conditions.

4.3.1 V3FIT Equilibrium Reconstruction Results

The equilibrium reconstructions were performed on the same set of data used for the

Bergerson [55] and Auriemma [54] papers from 2011. This set of data was chosen

for comparison to the previously published works, and because the full diagnostic set

useable in V3FIT was employed during data taking. The legacy thin-filter soft X-ray

system with 2 cameras at � = 300� is used in this reconstruction as the new system

was not installed until late in that year. Interferometry, polarimetry and Thomson

scattering were all employed. In addition, the flux loop, the Rogowski coil, and 64

B�-facing coils and 32 B✓-facing coils from the toroidal array were included.

The shots examined have Ip = 500 kA, n̄e ⇡ 0.5 ⇥ 1019 m�3 and qa = 0. Equi-

librium reconstruction is performed on single time slices after SHAx has been estab-

lished. The observed and modeled number of field periods is Nfp = 5. Multiple mode
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Figure 4.12: Example parameterized profile with a 5-point spline. Varied directions
are depicted with red arrows.
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phases with respect to machine coordinates were investigated.

Input Parameters

After all parameters were poorly fit by two-power type parameterizations, all of them

were switched to cubic splines. Each spline consists of an on-axis point that can vary

in magnitude, a second point that may vary in position and magnitude, two points

to determine the shape of the profile towards the edge, and a last to pin the function

at the edge, Fig. 4.12. For the q profile, the on-axis and edge point are not allowed

to varied, while the three middle points may vary. In other words, q
0

is specified in

the VMEC input and remains fixed for the full reconstruction. For all other profiles,

only the edge point is not varied. In the VMEC inputs, p(s) and q(s) are specified,

while ne(s) and ✏(s) are specified in V3FIT. The electron temperature Te(s) is not

specified, as the option to calculate it on from density and pressure is used.

The q

0

value (q
0

= 0.155) is chosen from NCT cases, as it is not currently well-

constrained by measurements. V3FIT has ambiguity in the width and shift of the
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helical surfaces, as the two values may be interchanged to produce nearly identical

magnetic signals at the edge. The width and shift are directly determined by the core

q values, so the innermost and second innermost points can be modified to produce

degenerate results. In this respect NCT may be superior until q
0

measurements can

be included in V3FIT, as NCT uses a simple method of linear combination. V3FIT

has significantly more freedom to deform flux surfaces due to its full spectral decom-

position method, resulting in solutions ranging from q

0

= 0.1 to a near-axisymmetric

q-profile (q
0

= 0.2). The q(s) profiles associated with this range of values have dips

and peaks that reproduce the correct magnetic field amplitudes at the edge. With q

0

fixed, varying the remaining points is su�cient to fit the data, and the resultant q

profiles are similar across a wide range of shots.

Five values are allowed to vary for the LCFS, Fig. 4.13. The Ra(0, 0) value

determines the center of the boundary surface. The Ra(0, 1) and Za(0, 1) values

determine its radius, tracing a circle in R,Z coordinates. The Ra(1, 0) and Za(1, 0)

values determine the helical shift of the LCFS, translating in the same direction as

the helical axis. Depending on whether the coordinate system employed is right-

handed or left-handed, and on the sign of Ip ·B� in this coordinate system, Za must

be given the correct sign, as V3FIT has di�culty reversing this value as it iterates.

For the standard field orientations on MST, Z < 0. It should be noted that due to

the conducting shell, the helical shifts are small, Za(1, 0) ⇡ 0.5 mm.

The limiter was specified as a circular boundary at the same distance as the

outboard limiter from the wall, rL = 0.517 m. The actual MST limiter consists of

two 3 cm bands of graphite tiles covering the full toroidal extent, at poloidal angles

✓ = 0�, 180�. The full circular limiter in this case was chosen to avoid letting V3FIT

“step” the LCFS out of the machine in any direction.
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Figure 4.13: Picture of specified VMEC variables describing the last closed flux sur-
face.
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Results

The V3FIT equilibria converged successfully with g

2 ⇡ 340, where
P

i i = 200. This

corresponds to hSm
i � S

o
i i ⇡ 1.3�i. The primary factor influencing good convergence

were the internal diagnostics, particularly interferometry, polarimetry and soft X-ray.

Examination of their error vectors indicates that they were oppositely-oriented, sig-

nifying opposed influences on parameters during reconstruction. Polarimetry data

pushes the helical distortion to be smaller, while interferometry and soft X-ray push

helical surfaces to be larger. Inclusion of all relevant diagnostics in the reconstruction

is evidently important, as it allows this competition to contribute to the end degree

of confidence. Reliance on individual comparisons of these diagnostics to equilibria

reconstructed only from magnetics can be deceptive. The disagreement between di-

agnostics evidences either poor assumptions of measured quantities as flux functions,

or of additional complicating physics.

The reconstructed equilibria have helical shifts of �R
1,0 = 17.5 cm in addition

to Shafranov shifts of �R

0,0 = 3.2 cm. The helical surfaces have slight elliptical

character, with |Ra(1, 0)| < |Za(1, 0)|. This is likely due to the competition between

the Shafranov shift and the conducting shell, which causes the perturbation to be more

limited in the radial direction, e↵ectively “squashing” it. In the toroidal direction

+�, the helical mode rotates counter-clockwise, in the +✓ direction. On the magnetic

axis, B� = 0.5 T, and p = 1100 mbar. The on-axis safety factor q

0

was fixed, and

the reconstruction determined peak safety factor was q

peak

= 0.157. Two fits of an

inboard-locked and outboard-locked mode are compared in terms of p and q, Fig.

4.14, showing good agreement.

Although the safety factor has decreased to q

0

< 0.2, eliminating the n = 5 res-

onance, the equilibrium has Nfp = 5. It is important to note that while the flux

surfaces are helically translated with n = 5 symmetry, the safety factor is lowered be-
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Figure 4.14: Comparison of pressure and safety factor for inboard and outboard
locked SHAx cases.

cause helical distortion has introduced writhe that reduces q. As in the axisymmetric

case, magnetic field lines complete greater than one poloidal circuit around the n = 5

magnetic axis in one toroidal round, implying q < 0.2.

The plots from the Auriemma and Bergerson papers that show helical surfaces

calculated by NCT are reproduced with V3FIT, Fig. 4.15. The resultant flux func-

tion plots for ✏(s) and ne(s) are reproduced from the final fit profiles from V3FIT,

4.16. Note that the V3FIT fitted profiles are hollow, whereas the profiles mapped

to NCT are peaked. Finally, the plots for synthetic and observed diagnostic out-

puts from the Bergerson paper are compared to the results from V3FIT, Fig. 4.17.

The V3FIT helical distortion is evidently smaller in amplitude, but persists across a

greater number of flux surfaces than the NCT solution. Both codes fit the profiles

adequately, although it should be noted that a single shot with all diagnostics is being

fit by V3FIT, so data has not been selected for the best fit for a given diagnostic.

A converged equilibrium ideally has g2 =
P

i i = 200, a 40% decrease in g

2 and a

corresponding 25% decrease in hSm
i �S

o
i i from the currently reconstructed equilibria.
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Figure 4.15: Flux surfaces generated by V3FIT reconstruction. A Shafranov shift of
�R

0,0 = 3.2 cm is seen, along with a helical shift of �R

1,0 = 17.5 cm.
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Figure 4.16: Output ne(s) and ✏(s) mapping to flux surfaces from V3FIT. Both
profiles are hollow and broad.
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Figure 4.17: Synthetic (V3FIT) vs. measured values for FIR Interferometer-
Polarimeter measurements.
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Nonetheless, the profile produced is both an equilibrium satisfying J⇥B = rp force

balance, and a fit to the data within hSm
i � S

o
i i = 1.3 �i. The usefulness of a 3D

VMEC equilibrium in calculating the Alfvén continuum and eigenmodes is retained.

4.3.2 3D Alfvén Continuum and AEs

The reconstructed equilibrium from Figs. 4.15 and 4.16 is used with Stellgap and

AE3D to generate an Aflvén continuum and the AEs. The Boozer coordinates used in

these codes readily accept three dimensional variations in the plasma, so they may be

straightforwardly applied to the VMEC equilibria according to the method described

at the beginning of this chapter. The density profile ne(s) has conveniently been

iteratively solved for by V3FIT in the reconstruction, allowing it to be directly used

in the calculations.

The continuum calculated by Stellgap is significantly di↵erent than the continua

generated from axisymmetric equilibria, Fig. 4.18. The continuum branches now

have extended flat or @!/@r =const. regions. Due to the change in the q profile

and resulting change in kk, the n = 5,m = 1 and n = 6,m = 1 continuum branches

lose their zero-frequency points. The continuum gap has moved to 300 � 400 kHz,
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Figure 4.18: 500 kA qa = 0 Alfvén continuum in a helical state. The n = 4 and
n = 5 zero crossings disappear due to the change in kk from a lowered q profile. The
n = 6,m = 1 branch has an extended flat area.
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consistent with an upshift due to vA from high |B| / Ip. The n = 6 inner continuum

branch flattens over much of the core due to the change in kk.The gap also has a

greater slope in frequency space.

The AEs in the three dimensional plasma are similar to the axisymmetric so-

lutions, albeit higher in frequency, Fig. 4.19. No n = 4 TAE was found. The

downward spike in the n = 5 TAE eigenfunction is a result of a core continuum

crossing at !/2⇡ = 383 kHz, whose resonant location can be seen in Fig. 4.18. The

n = 6 TAE has an extended m = 1 component where its m = 1 branch is flattened

in the continuum.
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Figure 4.19: n = 5 and n = 6 TAEs in a 500 kA qa = 0 helical plasma. They appear
similar to the 300 kA non-reversed case, although the n = 5 has a continuum crossing
and both TAEs are at higher frequency.
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4.4 Summary

Using MSTFIT equilibria imported into VMEC, Alfvén continua were generated us-

ing AE3D and Stellgap for non-reversed, standard and deeply reversed plasmas.

The lowest n eigenmodes and continua have dominantly m = 0, 1 coupling, and so-

lutions in several plasmas are similar except for the coremost resonance and mode

branches outside the reversal surface. The toroidicity-induced Alfvén eigenmodes had

global extent and TAE frequencies ranged from 200� 400 kHz. The TAEs from the

reversed case resembled those in the non-reversed case, with m = 0, 1 coupling for

n = 4 through n = 6. At moderate n in deeply reversed plasmas, mode coupling

occurred outside the reversal surface. Three dimensional equilibria were generated

for the SHAx cases presented in previous papers using V3FIT. The equilibrium recon-

structions converged and fit the data well. The continuum solutions show an increase

in central ! / kk, with the same m = 0, 1 coupling seen in axisymmetric plasmas.

Eigenmodes in the helical equilibrium are similar to the axisymmetric cases, albeit

at higher frequency.



109

Chapter 5

Characteristics of observed

Alfvénic modes

The rapid growth of energetic particle modes and Alfvén eigenmodes can induce

rapid transport of fast ion populations confined with plasmas. EPMs arise from the

resonance between the characteristic frequency of a large group of fast ions and a

point in the Alfvén continuum. As shown in Chapter 1, such a group exists due

to neutral beam injection. For the first time on the RFP, a beam-driven instability

has been observed and characterized. The analysis was performed using the toroidal

and poloidal arrays of magnetics detailed in Chapter 2, along with interferometry

and polarimetry. The Alfvén continua generated in Chapter 4 provide context and

insight into the resonance location of the EPM.

This Chapter details the method by which bursts with coherent frequency and

mode number were extracted from magnetics signals. Then the mode characteristics

are detailed. The e↵ect of the magnetic bursts on the fast ion population is discussed,

and finally an overview of the work done on characterization of the internal mode

structure is presented.
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5.1 Numerical Methodology

The observed magnetic signatures of AEs and EPMs on other devices have been both

transient and nonstationary in frequency space[14]. For this reason, the develop-

ment of a scheme by which to identify the frequency and time of short bursts signals

was sought. The analysis of MST magnetic signals to find these modes utilizes the

toroidal array, processed through three successive stages: a spatial Fourier decompo-

sition, a wavelet transform, and an event tagging scheme similar to previously used

sawtooth ensembles [61]. The principle behind each method is described along with

the practical usage parameters.

An arbitrary vector, or signal, fi may be described by any complete set of nor-

malized vectors,

fi =
X
i

aivi.

Vector notation is used because physical signals are discrete functions, and all cal-

culations will be performed on these signals. In the most straightforward case, the

unit vectors corresponding to each element of fi, xi, are used. Each unit vector cor-

responds to a time or spatial point, and its weight ai is the value of fi at that point,

or

fi = [f
1

, f

2

, f

3

· · · fn]T =
X
i

aixi

x
1

= [1, 0, 0 · · · 0]T

x
2

= [0, 1, 0 · · · 0]T

xn = [0, 0, 0 · · · 1]T

ai = fi

The basis vectors need not be orthogonal, vi · vk = 0. If there are more vectors than

the number of points in the signal, the set of vectors cannot be linearly independent.
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In order to transform from a description by this set of vectors to one where

gi =
NX
i

biui,

the matrices U,V are needed, where V is a matrix whose ith column is vi and U

is a matrix whose ith column is ui. For the case where fi is comprised of spatial or

time points, V = I. The transformation matrix is T = U�1V = U�1,

gi = U�1fi.

For the most straightforward case of “transforming” into the same space using the

xi’s, the matrix for transformation is merely the identity matrix I and

fi · I = fi.

It is important to remember that a basis transformation is only a dot product, and

a dot product is only a test of how similar two functions are. An “overcomplete”

set of vectors spans the space, but is not linearly independent and has more vectors

than signal points. After transformation to an ovecomplete basis from an orthogonal

complete basis, the total amount of information in the transform will be “padded”

with degenerate data. Performing the inverse transform on only a subset of the

transformed data can return the original signal.

5.1.1 Fourier Transform of Array Data

The Fourier transform is a basis transformation to the orthogonal, complete set of

basis functions comprised of the sine and cosine functions:

uis(x) = sin (2⇡ix)

uic(x) = cos (2⇡ix)
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In the case of digital signals, the functions and coordinates are discrete, and the

discrete-time Fourier transform (DTFT) is used. In the case of a signal with N

points where n is the index, the vector representation of sine and cosine functions is

uis[n] = sin

✓
2⇡in

N

◆

uic[n] = cos

✓
2⇡in

N

◆
1  i  N/2,

where a single i = 0 term for a constant o↵set is retained as well. If the system is

unevenly binned, it is necessary to replace n with x[n], the point of measurement,

and N with L, the total span of the measurement. The designator for the new basis

is the frequency, f (i) = i/L.

At i = N/2, ui[N/2] = [cos (⇡n) , n = 0, 1, 2...] = [1,�1, 1,�1 · · · ]T, which is the

maximum resolution of the system. At i > N/2, the sinusoidal functions vary faster

than ⇡ radians per index, so that u
(N/2+1)c · u(N/2�1)c 6= 0 and u

(N/2+1)s · u(N/2�1)s 6=

0. The Nyquist frequency, the frequency corresponding to the minimum periodicity

interval of the sinusoidal basis functions, is then equal to 1/2 the number of points in

the signal. This provides the exactly N basis functions necessary to form a complete,

orthogonal set.

The DTFT is the transform of a signal using the Fourier basis functions in vector

form,

gi = U�1
s fi

gN/2+j = U�1
c fi,

although the indices may be arranged di↵erently with respect to the sine and cosine

components.
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For spatial mode decomposition using the toroidal array on MST, the argument

to the sinusoidal functions is (2⇡i x[n]/360), where L = 360 is chosen to describe one

toroidal transit of 2⇡ radians. The j indices are then properly toroidal mode numbers,

where ni = i. The values for fi are the measured Ḃ at the magnetic coils in either the

✓ or � direction at a single time point, and the x[n] values correspond to the toroidal

locations of the coils as described in Eq. 2.2. The poloidal array mode decomposition

is handled similarly, with the exception that the poloidal mode numbers are found,

and the locations of the x[n] are taken from Eq. 2.4. The fi values returned are

then Ḃn and Ḃm for each case. The transform is performed for each point in time,

so Ḃn(t[n]) and Ḃm(t[n]) are constructed, where each mode number corresponds to

a time series t[n] of Ḃ values.

5.1.2 Wavelet Transform of Time Series

The wavelet transform provides a compromise between the frequency localization of

the Fourier decomposition and the temporal localization of the original signal basis.

The following discussion is informed by the 1998 guide to wavelets by Torrence [62]

and the 2009 tutorial on wavelets by Yan [63]. Recall that a basis transform is a

dot product, which is a test of how alike two vectors are. By tapering the sinusoidal

perturbations with a windowing function, they can be temporally localized. The form

of a simple wavelet is

fj(t) =
1p
s

W

✓
t� ⌧
s

◆
sin

✓
d (t� ⌧)

s

◆
, (5.1)

where s is the scale parameter that modifies frequency, wave packet size and ampli-

tude, d is a fixed parameter to determine the number of wave periods in the window,

⌧ describes time shifts to move the wavelet, and W is a windowing function such as

a Gaussian. j is used as the index because wavelet transforms are often performed
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with overcomplete bases. Because the multiplicative inclusion of windowing is itself a

function with a finite Fourier-transformed amplitude, frequency localization is weaker

than in the Fourier transform. One sinusoidal period in time is necessary to resolve

frequency, therefore temporal localization is also weaker than in the untransformed

signal.

The strength of this approach is that, by varying ⌧ , the window can be moved

along the signal, providing frequency data as a function of time. The resultant fj(t)

then has temporal information like the original signal, and frequency information like

the Fourier-transformed signal. Intuitively, the matrix transformation is then more

sparse than the Fourier transform, containing zeros outside the relevant window.

The value of the scale parameter s is in its locking of frequency, window size and

amplitude. The shape of the wavelet is unaltered as s is varied - the function is only

stretched. Compared to the windowed Fourier transform (WFT), there are a number

of advantages. The WFT takes the form

fjWFT

(t) = W (t� ⌧, LW ) sin

✓
j (t� ⌧)

LW

◆
, (5.2)

where LW is a fixed window length. LW is fixed and j varies, fitting multiple frequen-

cies inside a single window that slides along the signal. The weakness of this approach

is that the temporal resolution �⌧ is fixed by LW and the frequency resolution �f

is fixed by the number of wave periods that fit inside LW . In the case of the wavelet

transform, the ratios �⌧/⌧ and �f/f are fixed. The locking provided by s preserves

these ratios. This locking is desired compared to the WFT because of the nature of

transient signals. For signals that rapidly change in frequency or appear in bursts, the

WFT provides unnecessary and deceptive frequency resolution at higher frequencies,

sacrificing temporal resolution in the process. By convoluting a less transient basis

function with a high-amplitude transient signal, a low amplitude result with high fre-
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quency resolution is found. However, a transient signal has inherently low frequency

coherence. The real signal is changing rapidly either in amplitude or frequency, and

is thus best fit with wavelets whose forms mimic the signal features. By choosing d

in the wavelet transform, the ratio of frequency resolution to temporal resolution is

chosen, and this balance is preserved for all frequencies.

The discrete Wavelet transform (DWT), similar to the DTFT, is performed on a

signal vector. The continuous form of the Morlet wavelet set, which was used in the

analysis for EPMs, is

wjs(t) =
1

⇡

1/4p
sj

exp

"
�1

2

✓
t� ⌧j
sj

◆
2

#
sin

✓
d

✓
t� ⌧j
sj

◆◆
(5.3)

wjc(t) =
1

⇡

1/4p
sj

exp

"
�1

2

✓
t� ⌧j
sj

◆
2

#
cos

✓
d

✓
t� ⌧j
sj

◆◆
. (5.4)

The form of the wavelet as well as its scaling with sj and d is shown in Fig. 5.1.

As with Fourier transforms, both sine and cosine terms are used to capture phase.

The sj values range from arbitrarily small up to the length of the signal, and should

be of a set s = s

0

· 2l, where l is an integer. Overcomplete representations often

use octaves instead, where l is a multiple of 1/8. To approximate the continuous

wavelet transform, the ⌧j values chosen for the DWT are one Nyquist period apart,

although this causes the basis to be strongly overcomplete. In order to transform

back to the original basis, only the subset of the new basis functions where l is an

integer and ⌧j values are s/2 separated should be used. It is the shift ⌧j and the scale

sj that form the final time-frequency map of the transformation. The value for d is

commonly chosen to be d > 5, as lower values may result in a non-zero o↵set of the

wavelet functions. Higher values result in greater frequency resolution, while lower

values result in higher temporal resolution. Although it is tempting to call d/sj the

frequency, in reality a Fourier transform must be performed on the basis functions to

determine their center frequencies.
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Figure 5.1: The Morlet wavelet sine and cosine components for several values of s
and d. Increasing s stretches the wavelet and decreases its amplitude. Increasing d

adds more internal oscillations to the wavelet.

In the vector form used for mode analysis, the sine and cosine terms are combined

into a complex exponential, resulting in a complex output that captures the phase.

The wavelet transform vectors are

wj[n] =
1

⇡

1/4p
sj

exp

"
�1

2

✓
t[n]� ⌧j

sj

◆
2

#
exp


�id

✓
t[n]� ⌧j

sj

◆�
(5.5)

where the assumed fi[n] vector is any signal with respect to time. W is a matrix with

a number of rows equal to the length of fi and whose jth column is wj[n].

In the mode analysis, the wavelets are used to transform each of the Ḃi[n] signals,

where the i denotes the original time basis and a single m or n signal is transformed

at a time. The basis transformation

Ḃj = W�1Ḃi (5.6)
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is a map of a one-dimensional vector Ḃi[n] to another one-dimensional vector Ḃj[j].

However, the result can be represented two-dimensionally as Ḃj[⌧, s] because both ⌧j

and sj are uniquely determined by the index j. By assigning the center frequency

hfis from Fourier decomposition of the original wavelet, the map is instead cast as

Ḃj[⌧, hfis]. It is important to note that the map Ḃj[⌧, s], known as a time-scaleogram,

is the exact mapping of the data to wavelet basis functions, while, Ḃj[⌧, hfis], the

time-spectrogram, is an approximation based on central frequencies. The time-

scaleogram is the more accurate representation of the data, but frequency is often

preferred for calculations and ease of understanding, and so time-spectrograms are

presented here.

In the time basis, integration is required to remove the d/dt e↵ect on the magnetic

signals. However, if the signals are assumed to be sinusoidal, this component can be

extracted in frequency space.

B! = B

0

sin (! t[n])

Ḃ! = !B

0

cos (! t[n]) .

The contribution of the frequency hfis is divided out of the wavelet signals, resulting

in the final output Bj[⌧, hfis], whose phase is reversed in time and shifted by 90� (due

a derivative of cosine and sine functions). The correct phase of Bj[⌧, hfis] is recovered

by manually adjusting the phase, which is the equivalent of a Hilbert transform.

The Morlet wavelet is employed for these wavelet transforms, with d = 10 to

obtain high frequency resolution. The resultant time-spectrogram can be produced

for any n and m with data from the toroidal and poloidal arrays. The most common

transient features observed are “bursts” whose frequency is coherent but whose am-

plitude is rapidly changing in time. The time-spectrograms range from 20 Hz up to
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the Nyquist frequency, and can be used to look for any changing magnetic fields as a

function of time.

5.1.3 Event Tagging and Analysis

In order to find and ensemble a large set of events, two routines are employed. The

first routine generates spectrograms, identifies large amplitudes at relevant frequen-

cies, filters for false positives using other signals, and finally records the shot number,

time spread, frequency spread and amplitude of each burst. The second routine takes

this burst list as an input and performs a number of functions, from correlation analy-

sis for each burst to estimating the core Alfvén speed for each burst based on internal

diagnostics.

The burst identification code takes as an input a list of shots, a relevant frequency

range or minimum frequency f
min

, a relevant time window, and a minimum fluctuating

amplitude B̃
min

. The list of shots allows ensembling to be done on similar plasmas and

only on shots with the neutral beam running. The choice of f
min

is important because

the code does not screen out the tearing modes, whose rotation frequency is f < 40

kHz. In general, f
min

= 60 kHz is chosen to exclude these low frequency modes.

The time window allows plasma ramp-up and ramp-down phases to be excluded,

and allows the neutral beam duration to be focused on. Finally, B̃
min

is crucial for

screening out noise and setting the threshold for “good” bursts.

Inside the specified time and frequency window applied to the Bj[⌧, hfis] signal,

the algorithm finds the maximum B amplitude. If this amplitude occurs in the

bottom-most frequency band, it is discarded and B[⌧, f
min

] is zeroed to remove the

tails of lower frequency modes. If this amplitude is below the threshold, it is likewise

discarded. The spectrum of at this time point B⌧ [hfis] is chosen, then a simple

Gaussian with a linear o↵set is fit to amplitude versus frequency. The peak of this
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fit is recorded as f

peak

, and the full-width half-maximum (FWHM) values of the

frequency, f
low

and f

high

, are calculated from the square root of variance, �, from

the Gaussian fit. The code then returns to the original Bj[⌧, hfis] map and finds

the temporal FWHM by tracing the amplitude contours in time. The start and end

times, t
start

and t

end

, are recorded at these FWHM points. The end result is a box in

Bj[⌧, hfis] space. All B values inside an area twice the size of this box and centered

at the same point are zeroed to exclude them from the next scan. This zeroing results

in a “hole” in the time-spectrogram. The code iterates this procedure and returns a

list of bursts across many shots and times.

Further processing of this list is performed after bursts are selected. The Bm=0

signal is checked for high amplitude spikes, and coincident bursts are discarded to

remove magnetic signatures from sawteeth. The n̄e signal from the FIR or CO2

system is also checked to make sure that data is available for vA calculation.

The burst analysis portion of the code takes the burst list as an input and per-

forms various analyses using several other signals. It is in this routine that the signals

in Table 2.3 are examined for each burst, either as a time-averaged value or a full time

trace. Multiple time-averaged values are tabulated for each burst, allowing frequency

or amplitude scaling to be extracted by comparison with the listed burst parameters.

This method is used to compare core Alfvén speed and beam energy to burst fre-

quency. Full time traces are averaged together over each burst to determine average

behavior, or their correlation with each other at each burst is averaged together. This

method is used to determine, for instance, ANPA signal drops across bursts.
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5.2 Burst Characteristics, Scaling, and

Prevalence

Original detection of the EPM bursts occurred by visual analysis of the Bj[⌧, hfis]

maps throughout the duration of NBI, during 300 kA plasma shots with edge safety

factor fixed at qa = 0 and with n̄e = 0.7 ⇥ 1019 m�3. The rate of bursting in non-

reversed plasmas is the highest and the greatest amount of secondary analysis has

been performed on them, so the characteristics of bursts in this equilibrium will be

described as the base case. Helical plasmas, reversed plasmas and deeply reversed

plasmas will then be compared to this base case.

5.2.1 Non-Reversed Plasmas

Bursts with toroidally coherent periodic magnetic structure are observed during NBI

in Fig. 5.2. This case shows a single plasma shot from 10 to 40 ms. The plasma pa-

rameters as a function of time, Ip, n̄e(0), and P

beam

are plotted with the B✓,n=4

[⌧, hfis]

and B✓,n=5

[⌧, hfis] time-spectrograms. The Alfvén continuum for these type of plas-

mas is shown in Fig. 4.1. When the beam turns on, there is a delay of ⇡ 3ms before

bursts appear. Coherent n = 5 magnetic perturbations appear in bursts at frequency

f

peak

⇡ 90 kHz. The bursts rapidly grow to amplitudes of B̃✓ < 2 G and decay to

noise level within ⇡ 150 µs. After correcting for the Doppler shift due to plasma rota-

tion, the average burst frequency is 65 kHz. Immediately following the n = 5 bursts

are similar n = 4 bursts with a frequency of f
peak

= 160 kHz, whose growth begins

approximately when B̃✓,n=5

reaches its peak. Correcting for Doppler shift, this n = 4

frequency is 140 kHz. The n = 4 bursts reach their own peak amplitude of B̃✓,n=4

< 2

G between 40 and 60 µs later. Although the n = 4 bursts can have amplitudes up

to 2 G, across many bursts hB̃✓,n=4

i = 0.6 G, compared to hB̃✓,n=5

i = 1.7 G. Due to
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Figure 5.2: Wavelet spectrograms of n = 4 and n = 5 bursts in a shot from the base
case. Bursts appear during beam injection at constant frequency, and turn o↵ with
the beam.
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their lower amplitude and wider variability in amplitude, the n = 4 bursts are not

always evident after n = 5 bursts, although they may be falling below the noise level

of the magnetic signal.

The particular case of n = 5 bursts followed by evident n = 4 bursts in non-

reversed plasmas was studied extensively, and is discussed in this section. Neutral

beam injection prompts magnetic activity in a plasma that already contains magnetic

e↵ects from tearing modes and sawteeth. The physics behind the studied bursts is

both interesting and the most readily quantifiable.

Figure 5.3: A single burst on a single coil, resolved into n = 4, n = 5 and n = 1
components
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The 1D raw trace of the poloidal magnetic field signal B̃✓ from a single coil,

filtered to exclude the tearing mode frequencies, shows a burst that grows rapidly
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Figure 5.4: Time evolution Ḃp of a burst across all coils. An n = 5 perturbation ap-
pears, then transitions to an n = 4 perturbation, mitigated by a counter-propagating
n = �1 burst.
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in time and changes frequency, Fig. 5.3. When filtered into n = 5, n = 4 and

n = 1 components, the frequencies correspond directly to toroidal harmonics. The

structure of the signal is similar to early fishbone modes seen in tokamaks [64], but

this similarity is merely indicative of a mode that grows rapidly in time and damps

rapidly. A more complete picture of the filtered B̃✓ signals contains all 32 coils in

the toroidal array, where the 3 wave components are evident, Fig. 5.4. The n = 5

perturbation grows, then transitions via an n = 1 intermediary to a higher frequency

n = 4 state. It is clear from this picture that the intermediate mode is n = �1, as

it propagates counter the toroidal angle. As discussed in Sec. 1.3, n < 0 is used to

refer to the counter-propagating modes whose continuum slope is @!/@r < 0.

The poloidal array at � = 177� was used to determine the polarization and poloidal

mode number m of the bursts. 8 of the 16 sets of B� and B✓ facing coils were

monitored to resolve m = 0 � 3 in correlation with the n = 5 bursts. The modes
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do not obey the expected polarization condition set by the conducting boundary,

and the mode is composed of two dominant poloidal harmonics with nearly equal

amplitude.The dominant poloidal mode is B̃�,m=0

, with an amplitude B̃�,m=0

= 2.3

G. The limiter excludes the B̃✓,m=0

mode, whose amplitude is ⇡ .25 G and may

be attributed to aliasing. While the B̃�,m=1

signal carries a significant amount of

noise, correlation shows that its amplitude is B̃�,m=1

= 1.7 G. Finally, the B✓ signal,

B̃✓,m=1

= 1.8 G is within calibration errors and secondary mode contributions from

B̃✓,n=5

= 1.7 G, Fig. 5.5. The limiter also fixes jr = 0 in the current-free region at

the edge of the plasma. When combined with Ampere’s law, r ⇥ B = 0, the ratio

B̃�/B̃✓ = (na) / (mR

0

) is fixed as well. Predicted amplitudes for correlated signals

of m = 1, n = 5 bursts are B̃�/B̃✓ = 1.6, but measured amplitudes are B̃�/B̃✓ ⇡ 1.

The discrepancy could be due to small coupled B̃�,n>5

modes that are out of phase

with the dominant n = 5 perturbation. As Ḃ� was not measured from the toroidal

array due to practical constraints on number of measured signals, this has not yet

been confirmed.

Scaling studies were performed in non-reversed plasmas to determine frequency

dependence on a number of parameters. To systematically alter vA = |B|/pµ
0

⇢m,

where ⇢m = mini, three plasma parameters were changed. The plasma current Ip /

|B| was scanned from Ip < 200 kA to Ip = 400 kA. The electron density, which by

the charge neutrality condition ene = qini, was scanned from n̄e ⇡ 0.4⇥ 1019 m�3 to

n̄e ⇡ 1.5 ⇥ 1019 m�3. The mass density and charge of the plasma ions was changed

by switching fueling gas from deuterium, mD/qD = 2mp/qp, to hydrogen mH/qH =

mp/qp, to helium, mHe/qHe = 2mp/2qp = mp/qp, where mp and qp are the mass and

charge of a proton, respectively. The core Alfvén speed is scannable from vA0

=

1� 4⇥ 106 m/s, but decreased prevalence of bursts at high density and poor plasma

conditions in low density hydrogen limited the e↵ective range to vA0

= 1.1�2.4⇥106



125

Figure 5.5: Burst amplitudes resolved by toroidal and poloidal mode number, versus
n = 5 amplitude from the toroidal array. All other amplitudes are linear with n = 5
amplitude.
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The neutral beam injector is capable of injecting fast hydrogen or fast deuterium

at a range of energies. Scaling studies covering the full extent of the NBI capabilities

were performed in these plasmas, varying I

beam

= 15�40 A and E

beam

= 17�25 keV,

corresponding to v

beam

= 1.8� 2.2⇥ 106 m/s. Beam scaling studies were performed

on the base case of non-reversed plasmas.

Di↵erent frequency scalings for the two types of bursts were observed. The n = 5

bursts scaled weakly with core density and not with core magnetic field, Fig. 5.6.

The density scaling fn=5

/ n

�0.3
e could be attributable to fast ion deposition, as
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Figure 5.6: Scaling of the n = 5 frequency with magnetic field and density. There is
no magnetic field scaling, and density scaling is weak.
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Figure 5.7: Scaling of the n = 5 bursts with v

beam

. The n = 4 bursts do not scale
with beam velocity, but the n = 5 bursts do.
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the NBI focus and direction are fixed but the beam ionization rate is proportional

to density. This weak scaling persisted with respect to mass density, fn=5

/ ⇢

�0.3
m ,

which was investigated by switching the plasma ion species. The deuterium beam

ions into hydrogen plasmas excited similar-frequency bursts to the hydrogen beam

ions, albeit with greater frequency spread. No strong scaling with vA was found

for the primary bursts. The burst frequencies scaled strongly with the velocity of
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injected ions, fn=5

/ v

beam

, Fig. 5.7. Although the beam-born ions could not be

varied widely in velocity, the intercept of a line of best fit to 4 beam energies passed

through fn=5

= 0, v
beam

= 0, suggesting a linear scaling.

Figure 5.8: Scaling of the n = 5 and n = 4 bursts with vA. n = 4 scales strongly
with vA, while n = 5 does not. The fit line to the n = 4 frequencies is overplotted in
green.
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The n = 4 burst frequency scaled with core density and magnetic field individually.

The bursts also changed frequency with mi. The scaling with these 3 parameters is

a strong confirmation of Alfvénic scaling, fn=4

/ vA. The computed wavenumber

and o↵set values for !n=4

= kkvA + C is kk = 0.43 m�1 and C = 31 kHz. A line

representing these values is included in Fig. 5.8. The n = 4 bursts were examined

for beam scaling, and no correlation was found, Fig. 5.7.
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Figure 5.9: Continuum calculation with crossing of the n = 5, n = 4 and n = 1
modes marked. Burst frequencies correspond to continuum crossings at several radii.
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The observed n = 4 and n = 5 frequencies do not coincide with the TAE fre-

quencies calculated using AE3D, but fall within the Alfvén continuum below the

TAE gaps, Fig. 5.9. Inverse Landau damping is unlikely as the excitation mecha-

nism because bursts still appear for v
beam

> vA. The observed modes are likely two

EPMs that couple the steepest gradient of the fast ion distribution to the nearest

Alfvén continuum point that satisfies kkvA = kkfi vbeam. The circulating frequency

!

circ

= kkfi vbeam, where kkfi is determined using qfi from Section 1.3, is the most

likely mechanism of coupling. !
circ

is close to the continuum frequencies calculated

by Stellgap and the trapped fraction of particles is small as stated in Section 1.4.2.

Assuming that primary continuum excitation occurs at the n = 4/5,m = 1 resonance,
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the observed frequencies permit calculation of the resonant surfaces, rn=5

= 17 cm

and rn=4

= 10 cm. The n = �1 resonance is also evident at r = 0.28 m.

Figure 5.10: Picture of the mechanism for excitation by multiple flattening of the
distribution function. The n = 5 burst flattens the distribution function, which
steepens it near the n = 4 and n = �1 resonances.

A picture that self-consistently explains the observed behavior is included in Fig.

5.10. The fast ion pressure gradient builds up over time, with a peak gradient at

the n = 5 resonant surface. The frequency of the burst is set by !fi at the point of

steepest gradient in the distribution function. The n = 5 mode burst convectively

transports fast ions outward in radius, generating a new steep gradient in the core

and at mid-radius. One gradient is localized at the n = 4 continuum resonance, and

the another is localized at the n = �1 continuum resonance. Both these resonances

then undergo convective transport, flattening the distribution function locally. The

net e↵ect is an outward convection of ions and an overall flattening of the distribution

function. This type of process has been seen in tokamaks [65]. The NBI then rebuilds

the distribution function by generating new fast ions, repeating the cycle.

The picture described above contains a caveat in order to explain the observed

scalings. In the EPM picture, the beam-like distribution of particles will always
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determine the frequency of the n = 4 burst through its characteristic resonance,

while the background plasma will only set the resonance location. The observed

scaling contradicts this, as there is no beam velocity scaling but an evident scaling

with vA. It is possible to explain this mismatch with a “special radius” picture. The

point where �" � �# is at a maximum will be influenced by the changing slope of

the Alfvén continuum. This slope sets �# / d!/dr. The slope of the distribution

function sets the drive, @f/@W / �", and this slope is likewise changing in the core

of the plasma. The competition between damping and drive could strongly depend

on r(!
res

). In the n = 5 case, the slope around (df/dP 2

⇣ )max

is constant and steep,

localizing the resonance to the point “picked” by the beam ions. It is possible that the

flattening of the distribution function from the n = 5 bursts continues inward until

the subsequent local steepening at the n = 4 resonance causes the n = 4 drive over

damping to reach a maximum. This could pick the resonance of the Alfvén continuum

at a similar radius every burst. Because the Alfvn continuum at a given radius ! / vA,

Alfvénic scaling will be observed. Alternately, initial work by Don Spong suggests

that the n = 4 mode may be a Beta-induced Alfvén Acoustic Eigenmode (BAAE), a

mode that has been observed on tokamaks [66, 67].

5.2.2 Standard Reversed Plasmas

In plasmas where qa < 0, the mode bursts are less frequent and are higher in mode

number. Two factors influence the change in character. First, standard plasmas

have q
0

< 0.2, which lowers along with qa, albeit weakly. Second, when the plasma is

reversed, q
0

changes throughout the sawtooth cycle, decreasing from q

0

⇡ 0.2! 0.167

between sawteeth [32], Fig. 5.11. As discussed in Chapter 4, the continuum branch

locations depend heavily on q. As mentioned in Section 1.3, the !
circ

= kkfi vbeam

values are also dependent on qfi. There is no comparison information for polarization
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from the poloidal array at � = 177� for standard plasmas, so B� is not known.

Figure 5.11: Evolution of the q profile throughout the sawtooth cycle. From [32]
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A typical case for a 400 kA plasma with qa ⇡ �0.04, n̄e = 0.7⇥1019 m�3 is shown

from 21 to 29 ms, Fig. 5.12. In this type of plasma, sawtooth bursts are stronger

than the relaxation events in the base case, and they occur more frequently. 1-2 ms

after each sawtooth, bursting modes with n = 5 appear at < 100 kHz. The central

frequency for these bursts decreases down to 70 kHz before the next sawtooth, while

downward chirps appear below the burst frequencies, Fig. 5.12 at t = 24, 25, 25.5

ms. The time between bursts is short, ⇡ 100 µs. After 4 ms from the last sawtooth

crash, n = 6 bursts appear with fn=6

⇡ 110� 130 kHz, whose peaks are interleaved

with n = 5 peaks at spacings of 40-50 µs. Very late in time, (28.5 ms), n = 5 bursts

at the n = 6 frequency appear along with n = 6 bursts.The n = 4 bursts appear

coincidentally with the n = 5 bursts as in the base case, but less often, at higher

frequencies and at lower amplitudes.

Although the initial n = 5 bursts appear in rapid succession, only 1 burst per

sawtooth cycle reaches the same amplitude of B̃✓,n=5

= 1.7 G as in the base case.

The n = 6 bursts have amplitude B̃✓,n=6

< 1 G. The n = 4 bursts have a similar
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Figure 5.12: Wavelet spectrograms of n = 5 and n = 6 bursts in a standard plasma.
As q evolves, the n = 5 bursts begin to downchirp, and n = 6 bursts appear at 130
kHz.
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amplitude, B̃✓,n=4

< 1 G, although their decreased prevalence suggests that they are

at the margin of critical drive for instability.

Significantly more data was gathered with non-reversed plasmas than reversed

plasmas. Nonetheless, the standard plasmas add some pieces of evidence for mode

identification. The changing value of q
0

and qa across the sawtooth cycle evidently
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Figure 5.13: Continuum calculation with crossing of the n = 4, n = 5 and n = 6
modes marked. Resonant locations change significantly throughout the sawtooth
cycle.
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a↵ects the modes. Initially, the n = 5 bursts occur at higher frequency. This behavior

is in line with the picture presented for the base case, where the steepest gradient

point has changed minimally but the Alfvén continuum has changed, Fig. 5.10 and

Fig. 5.13. The zero point for the Alfvén continuum disappears with the q = 0.2

surface, so the m = 1 branch starts at higher frequency. Halfway through the cycle,

the n = 5 bursts are followed by downward chirping, implying that their activity has

become non-resonant. The n = 6 bursts come into resonance later in the sawtooth

cycle, always appearing after q has decreased substantially from its value just after

the sawtooth. As q decreases, the zero point and thus the m = 1 branch move closer

to the core. Both behaviors can be explained by a kkfi change for the beam ions,

where qfi / q is changing across the sawtooth cycle, a↵ecting !
res

and the resonant

mode numbers.
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5.2.3 Deeply Reversed Plasmas

Several e↵ects that are relevant to bursting modes occur throughout the duration of

PPCD. The edge safety factor decreases steadily from qa = �.04 to qa < �.12. The

density ne rises throughout PPCD, and the density profile becomes peaked in the

core. The temperature Te likewise increases steadily.

A typical deeply reversed shot with plasma parameters is shown from 10 to 25 ms,

Fig. 5.14, during which the NBI is firing at full power. The Alfvén continuum for a

deeply reversed plasma was shown in Fig. 4.11. Both n = 5 and n = 6 bursts appear,

although they appear at low amplitude, B̃ ⇡ 0.1 � 0.2 G. The downchirping n = 5

behavior from standard plasmas is present at the beginning of the PPCD period, but

dies away and is replaced with a 160 kHz n = 5 mode at constant frequency. Low

amplitude n = 6 bursts appear at 130 kHz, decreasing to 110 kHz throughout the

duration. The n = 6 bursts begin to downchirp as well.

Although qa is changing rapidly, q
0

is changing slowly, and thus kk at the point

of steepest fast ion pressure gradient is also changing slowly. The low amplitude

and time-varying behavior of these modes makes ensemble analysis di�cult with

internal diagnostics. It is possible that because the burst modes are global but are

not eigenmodes of the plasma, the increased shear from a steeper q profile has a

weakening e↵ect on the edge amplitudes. It is a notable result that burst modes, like

the n > 6 tearing modes, are weaker during the PPCD period.

5.2.4 Helical Plasmas

EPMs have been seen on stellarators with NBI in the past [15]. Comparison to

RFPs that have transitioned to a helical state is desired, and indeed RFX has found

AEs that show no change during helical discharges [68]. However, bursting modes
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Figure 5.14: Wavelet spectrograms of n = 5 and n = 6 bursts in a deeply reversed
plasma. The bursts are weaker than in the standard and non-reversed cases.
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Figure 5.15: Fast ion confinement time vs. the helical mode amplitude. Image
provided by Jay Anderson.
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that persist throughout the duration of the SHAx state have not been seen on MST.

The likely explanation for this behavior is that the fast ion confinement time drops

significantly after the transition to SHAx, Fig. 5.15, as observed using the neutron

detector. If the population of fast ions is not confined well in the core of the plasma,

no fast ion pressure gradient exists to drive the EPMs.

Although no burst modes persist through the SHAx state, the n = 5 burst behav-

ior changes as the plasma transitions. A typical shot with Ip = 500 kA, qa = 0, from

20 to 30 ms is shown here Fig. 5.16, with the addition of a plot of the n = 5 tearing

mode amplitude over time. As the helical axis develops, the n = 5 bursts increase in

frequency before they are suppressed at SHAx onset. The n = 4 and n = 5 bursts

disappear throughout the SHAx duration. However, as shown in Fig. 5.15, the fast

ion confinement time is decreased substantially, changing the fast ion content and

thus the fast ion gradient.

As shown in Fig. 4.18, the coremost n = 5,m = 1 branch of the Alfvén continuum

rises in frequency up to 450 kHz in the helical equilibrium. The bursts do not scale
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Figure 5.16: Wavelet spectrogram of n = 5 bursts in a plasma transitioning into
SHAx. Bursts increase in frequency and weaken before terminating at SHAx onset.
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with magnetic field and scale only weakly with density, so the likely mechanism of

frequency change is a modification to kk caused by the helical shift of the magnetic

axis. The rapid change to the q profile and the resonant surface could explain the

change in fn=5

during SHAx onset. Accurate modeling of the fast ion profile through

the transition has not been done, as the magnetic fields are decreasing in stochastic-

ity and shifting helically over time. Including fast ion deposition from NBI in this

complex scenario has yet to be tackled with computation.

5.3 Macroscopic E↵ects on MST Plasmas

The observed EPMs have one important e↵ect on MST plasmas: they redistribute

fast ions. The beam-injected ions increase the coremost tearing mode rotation and

decrease the coremost mode amplitude measured on edge magnetics, so fast ion re-

distribution couples secondarily to tearing mode suppression. The ANPA, described

in Sec. 2.2.3 measures high pitch fast ion content in the plasma core, but no other

measures of the fast ion distribution function are utilized on MST at present. An

external neutron detector is used as a proxy for total fast ion content.

During neutral beam injection, the phase velocity v� of the tearing modes is

increased, Fig. 5.17. This enhancement is reversed when the beam is injected counter

to Ip (which sets the tearing mode rotation direction), implying that continuous

injection of ions applies a torque in the direction of injection. The core tearing

mode amplitude measured by the magnetic coils, B̃✓ r.m.s.

, decreases at the same time.

Preliminary theoretical work suggests that the injected ions act as a parallel current

in the core of the plasma, driving down q

0

and decreasing the width over which

the coremost tearing mode is resonant. The neutron flux approximates the fast ion

content of the plasma, and both mode suppression and rotation enhancement scale
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Figure 5.17: Core tearing mode (n = 5) amplitude and velocity during NBI. Image
provided by Jay Anderson.
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Figure 5.18: Bicoherence, ANPA signal and tearing mode amplitude for a burst
ensemble. The n = 5 tearing mode suppression decreases during the bursts as the
ANPA signal drops. From [69]

with the neutron flux.

An ensemble of 1000 bursts was performed by the FIR Interferometry-Polarimetry

group, Fig. 5.18. The r.m.s. amplitude of the n = 5, n = 4 and n = �1 bursts was

compared with the ANPA measurement of 22 keV high-vk fast ions and the r.m.s.

amplitude of the coremost tearing mode. The bicoherence of the three burst modes

is also plotted. At the point when bicoherence peaks, the ANPA signal drops and

tearing mode suppression is relaxed. The coincident e↵ects indicate that fast ion

redistribution, the coupling of several EPMs, and the reduction in tearing mode

suppression are linked. The coupling of n = 4 and n = 5 is the primary coupling,

allowing ions to be convected outward from the core. The n = 1 likely energizes as a

result of that coupling.

The burst cycle repeats as the high pitch passing fast ion density builds up again

in the core. The plasma rotation and tearing mode amplitude flatten after a period
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Figure 5.19: Comparison of beam currents to burst amplitudes, neutron signal, ANPA
signal, and tearing mode suppression. From [70]

of time set by the beam current, Fig. 5.19. The neutron signals and core-localized 22

keV ions asymptotically approach steady-state values[70]. While the ANPA H+ sig-

nal measures the core-localized fast hydrogen ions, the neutron signal measures total

deuterium content. It is evident that the small amount of injected fast deuterium (3%)

asymptotically approaches a maximum while the on-axis hydrogen content asymp-

totes to a minimum. While the total fast ion content may be increasing, the ions

deposited on-axis are being redistributed to di↵erent pitches and radii. The fast ion

population and EPMs form a limit cycle that constrains the shape of the fast ion dis-

tribution function. The tearing mode amplitude is set by a competition between the
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suppression from fast ions and the drive from current on axis. The flattening of the

rotation speed likely also requires eddy currents in the conducting shell to complete

the picture. The continuous torque from the beam allows the rotation to exceed the

“normal” maximum set by braking from eddy currents [71].

5.4 Internal Characteristics

The internal measurements taken by the FIR Interferometry-Polarimetry group com-

plete the known picture of the EPMs at the time of writing. The interferometer

resolves ñe(R) along its 11 chords, giving a picture of the structure of density fluc-

tuations associated with the burst mode. The polarimeter measures the fluctuations

in Faraday rotation  ̃(R) due to vertical magnetic field perturbations. 1000 events

are ensembled together from correlation with the magnetic coils to produce plots of

ñe(R) and  ̃(R).

The line-averaged values for ñe(R) and  ̃(R) of the ensembled n = 5 bursts are

shown in Fig. 5.20. Both ñe and  ̃ peak in the core, inboard of the magnetic axis. The

asymmetry in density is similar to the asymmetry seen on TFTR[72], where a smaller

multi-chord interferometer measured fast ion-driven TAE modes excited in the after-

glow of beam injection. In that case, the magnetic fluctuations were symmetric about

the axis. In the MST case, both magnetic and density fluctuations are asymmetric.

From the R � R

0

= �0.32 m location, the estimated chord averaged burst mag-

netic amplitude has a lower bound of b̃z > 0.6 G, roughly consistent with the point-

measured amplitude at the magnetic coils of b̃z,rms

= B̃✓,peak(a) cos (241�) /
p
2 = 0.6

G. In the core, ñe = 0.3 ⇥ 1017 m�3 is expected to be dominantly compressional,

switching to advection in the edge where the phase between ñe and  ̃ changes sign.

The phase flip of perturbations through the core confirms the m = 1 character ob-
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Figure 5.20: Interferometry and Polarimetry measurements of the n = 5 mode struc-
ture. From [69]

served by magnetics.

Although the n = 4 and n = �1 bursts are not large enough to resolve internal

magnetic perturbations, their density perturbations for all the burst modes are re-

solvable. The ñe amplitude is plotted as a function of time and R � R

0

, Fig. 5.21.

The n = 5 mode has the same radial resonance as shown in Fig. 5.9 (⇠ 15 cm), with

its peak at R � R

0

⇡ �12 cm from the magnetic axis. The n = �1 mode is asym-

metrically outboard at R�R

0

= +18 cm slightly later in time, mirroring the n = 5.

Finally, the n = 4 appears in the core with a less pronounced outboard asymmetry

of R�R

0

= +7 cm.

The internal measurements support the distribution function depletion picture

presented earlier, Fig. 5.10, but generate new questions. The strongest perturbations

to both ñe and b̃z are located in the core, confirming it as the location of resonance.

The n = 5 mode is located farther from the core, as in the continuum picture. As
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Figure 5.21: Interferometry measurements of the asymmetry of n = 5, n = 4 and
n = �1 in time. From [69]

it depletes fast ions, the beam ion pressure gradient steepens, exciting the n = 4

and n = �1 modes. The asymmetry of both n = 5 and n = 4 modes is as of yet

unexplained.

5.5 Summary

Spatial Fourier decomposition is used to generate Ḃ(t) with n = 0 � 15 signals for

Ḃ✓ and m = 0� 3 signals for Ḃ✓ and Ḃ�. Wavelet transforms are performed on these

time traces to obtain B
[

⌧, hfis] maps for each Ḃ signal, using the wavelet-determined

frequencies to separate ˜̇
B = !B̃. An event-tagging routine identifies EPM bursts and

tags them for ensemble analysis.

A large number of scenarios have been analyzed for non-reversed plasmas. Bursts

with n = 5 appear regularly during NBI, each followed by an n = 4 burst ⇡ 40 µs
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later. The n = 5 bursts scale with beam ion velocity vB while the n = 4 bursts

scale with vA. The n = 5 bursts have poloidal mode number m = 1, 0, B̃ ⇡ 2 G,

and Doppler-shifted f = 90 kHz. The n = 4 bursts have poloidal mode number

m = 1, B̃ ⇡ 0.5 G, and Doppler-shifted f = 140 kHz. The altered q and ne profiles

in standard and deeply reversed plasmas bring the n = 6 modes into resonance while

retaining the n = 5 modes. The bursts move to higher frequency during the transition

to SHAx, and terminate before the SHAx flat-top period.

Core tearing mode amplitudes are reduced by the presence of beam ions, while

tearing mode rotation is enhanced. ANPA data confirms that fast ions are redis-

tributed or lost at each burst, reducing tearing mode suppression. The n = 5 and

n = 4 bursts have di↵erent spatial localizations, and energize the n = �1 through

3-wave coupling. The overall behavior supports a picture whereby the distribution

function of fast ions is peaked in the core with large fast ion pressure gradient. This

gradient destabilizes the n = 5, which redistributes ions, enhancing the gradient in

the core. This enhancement subsequently destabilizes the n = 4.
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Chapter 6

Conclusion

This work has presented the first observation of beam-driven instabilities in Madison

Symmetric Torus, a reversed-field pinch. Examination of the characteristics of the

observed modes was informed by the generation of Alfvén continua and eigenmode

solutions for a variety of plasmas, including those with a helical axis. A crucial

component of that endeavor was the adaptation of stellarator equilibrium solution

and Alfvén mode calculation routines for use on the RFP. Current and future work

relies heavily on the extensive diagnostic suite available on MST, which has been

catalogued and assessed for its viability both for the generation of equilibria and for

observing Alfvénic-frequency magnetic fluctuations.

The observed bursts were evidently not Alfvén eigenmodes, as their frequencies

are far too low to match the frequencies for gaps in the Alfvén continuum. The case is

made that they are energetic particle modes resulting from a fast ion density gradient

due to neutral beam injection. Although the distribution function cannot be mea-

sured exactly, the dependence of burst frequencies on the resonant locations of the

Alfvén continuum is strong evidence for fast-ion-determined resonance. Additionally,

the picture of resonant mode appearing at steep points in the distribution function,
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and subsequently flattening it, corresponds with the clustered multiple-n bursts ro-

bustly observed. The apparent Alfvénic scaling of the highest-frequency mode may

be explained by a competition of damping and drive, although the possibility is open

for it to be an AE. The internal characteristics of the bursts and the plasma reaction

to them give credence to this picture.

This work is relevant both to fusion science and to RFP science because particle-

wave instabilities are an inevitability with neutral beam injection or fusion products.

The high shear of the RFP raised questions about whether beam-driven instabilities

could appear, but indeed they have. Both beams and fusion reactions will create

a core-localized population of fast ions that can drive instability, ejecting the fast

ions themselves and limiting the total population of fast particles in the device. The

observed EPMs are not only a consideration for all discussions of fusion RFPs and

NBI on the RFP, but they will also be the primary focus of many experimental and

computational studies in the future.

Future Work

The primary necessity in pushing the understanding of the EPMs further is an ade-

quate modeling code for the wave-particle interaction. Hybrid kinetic-MHD codes ex-

ist and have been used in the past to model this interaction. Examples are MH3D[73],

MEGA[74], GYRO, GENE, NIMROD[75] and TAEFL[76]. Several of them su↵er

from previously-mentioned issues because they function in toroidal flux. Several at-

tempts have been made to entice the developers of these codes to tackle the RFP

problem, but advances have been slow to-date. The work of adapting and applying

such a code to the observed EPMs is the logical next step. A full orbit code is also

under development to determine the characteristic frequencies of particles injected by

the neutral beam. It is planned to be coupled to beam deposition modeling in order
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to describe the expected fast particle population and resonances.

Measurement e↵orts to include T̃e and �̃ in the picture of the EPM bursts are

underway. A full-diagnostic campaign to accurately diagnose the bursts using all

terms indicated in 2.3 should be undertaken. Greater resolution or the inclusion of

new diagnostics for internal measurements will also clarify the picture further. Finally,

an advanced diagnostic to measure the distribution function such as FIDA[77] would

greatly aid determination of the instability drive.

AE3D and Stellgap are close to handling the reversal surface. The last iteration

included an additional pressure term and handled the reversal surface correctly, but

contained a bug that introduced a periodic variation into its eigenmode structures,

rendering it unusable. The amelioration of that issue should result in an answer to

the question of whether eigenmodes couple across the reversal surface.

V3FIT reconstruction is continually improving. It will be benchmarked against

MSTFIT equilibria in the near term. The process of determining initial conditions

for each reconstruction is also currently being refined. Accurate modeling of the

conducting shell within V3FIT is also underway so that the reconstruction can be

freed from MSTFIT inputs.
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