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Abstract

Drift and Hall e�ects on magnetic tearing, island evolution, and relaxation in pinch con�gurations

are investigated using a non-reduced �uid model with �rst-order FLR e�ects. When the tearing layer

width is smaller than the ion sound gyroradius (ρs), cylindrical computations show that kinetic-Alfvén-

wave (KAW) physics increases linear growth rates relative to resistive MHD. An unexpected result

with a uniform pressure pro�le is a drift e�ect that reduces the growth rate at intermediate-ρs values.

This drift is present only with warm-ions FLR modeling, and analytics show that it arises from ∇B

and poloidal curvature represented in the Braginskii gyroviscous stress. While the �ux-surface average

contribution from these drifts are small relative to diamagnetic drifts in tokamaks, they are dominant

in pinch pro�les. Growth rates and rotation frequencies are derived for a heuristic dispersion relation

using the ion-drift e�ects and a resistive-MHD Ohm's law. This dispersion relation is in agreement with

numerical results in the intermediate drift regime before KAW e�ects are signi�cant. Nonlinear single-

helicity computations with experimentally-relevant ρs values show that the warm-ion gyroviscous e�ects

reduce saturated island widths. In contrast to diamagnetic drift-tearing, the ∇B and poloidal curvature

pro�les are largely una�ected by magnetic islands. The result suggests an increasing tendency to obtain

quasi-single helicity in reversed-�eld pinches with increasing ion temperature. [King et al., Phys. Pl.

2011]

Multihelicity simulations show that mode amplitudes are suppressed during warm-ion computations

through the in�uence of ion gyroviscosity as in our single-helicity results. Both MHD and Hall dynamos

contribute to relaxation events. The presence of Hall dynamo implies a �uctuation-induced Maxwell

stress, and the simulation results show net transport of parallel momentum. The magnitude of force

densities from the Maxwell stress and a competing Reynolds stress, and changes in the parallel �ow

pro�le are within a factor of 2-3 of measurements [Kuritsyn et al., Phys. Pl. 2009] during a relaxation

event in the Madison Symmetric Torus.
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Part I

Introduction

Computational plasma physics creates and implements models which are able to provide insight into exper-

imental plasma-con�nement devices that may be di�cult to observe with direct measurements. Ultimately,

a goal is to develop predictive capability in order to determine device characteristics that could guide design.

Computations are routinely used to reconstruct plasma equilibrium states, and to characterize these states by

identifying the properties of potentially unstable modes, to examine the nature of turbulent �uctuations, and

to study the nonlinear evolution. However, computation of the full plasma dynamics by simply tracking the

motion of each particle in self-consistent electromagnetic �elds is impractical given the enormous number of

particles, and thus degrees of freedom. All models must apply some simplifying assumptions for the problem

to be computationally or analytically tractable. Understanding these simpli�ed models is essential for con-

�dence in predictive computations, and e�ort is being made to compare the results of plasma computations

with experimental measurements to validate a given model as reproducing the underlying physics. Equally

important is ensuring that a given code faithfully reproduces a model, and this is veri�ed by comparing

codes relative to each other or speci�c cases that can be treated analytically.

Initially the path to a fusion reactor appeared straightforward, however most concepts are subject to

plasma instabilities and turbulence which degrade the con�nement time and/or disrupt the discharge. Ad-

vances in our understanding of basic high-temperature plasma science directly improves our engineering

capabilities for a plasma reactor. They also allow for new understanding of astrophysical phenomena. High-

temperature magnetized plasma models are applicable on many astrophysical scales, for example, stellar

modeling on a small scale, the dynamics of the solar wind on an intermediate scale and astrophysical jets

on a large scale. Although some experimental devices are built to study basic plasma science, and some to

study astrophysical phenomena, many plasma devices are constructed with fusion energy as an ultimate goal.

Predictive simulation could provide a cost-e�cient path to the construction of plasma reactor using nuclear

fusion, as it may partially circumvent the construction of multiple experimental test reactor concepts.

Although comprehensive predictive simulation may be considered the major goal of computation, the

achievement of such simulation is in the future, and the journey towards it can produce fascinating new re-

sults. The work presented here is part of this journey. While both the plasma device, the reversed-�eld pinch

(RFP), and model, a magnetohydrodynamic (MHD) �uid model with e�ects �rst-order in Larmor radius
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(or particle gyroradius), have been studied for almost 50 years, we are still able to �nd new, experimentally

relevant physics. Before a detailed statement of our thesis in Sec. 7, we will review the bare minimum of

necessary fundamental plasma physics. The concepts presented are more fully treated in textbooks, for

example Refs. [1, 2, 3].

We have three new results from this work, covered in Parts III-V, respectively. For the �rst, we use a

two-�uid model to show the growth of the tearing mode in the RFP is reduced by a drift response related

to the gradient of the magnetic �eld and poloidal curvature when the drift frequency is on the order of

the growth rate of the mode. This e�ect is manifest through contributions from ion gyrovisocity in the

momentum equation, and is relevant to pinch con�gurations but not tokamaks as the latter have relatively

small �eld gradients and poloidal curvature. (Additionally, the drift from the signi�cant toroidal curvature

in tokamaks is not aligned with the resonant �ux surfaces of the tearing modes.) For our second result

we show that the saturated width of an island formed by tearing activity is reduced by contributions from

the ion gyroviscous force when the ion gyroradius is signi�cant. This reduction in the saturated width

occurs for parameters that are experimentally relevant to modern RFPs. This e�ect is present in our highly

nonlinear computations with multiple modes which approximate the dynamic activity of RFP operation

where we �nd the mode amplitudes with the two-�uid model are reduced relative to single-�uid MHD, and

compare well with experimental measurements. Our �nal result examines the modi�cation of the mean

�elds by the tearing �uctuations; with two-�uid modeling both the MHD and Hall dynamo emfs act to

�atten the current pro�le during a relaxation event. There is a Maxwell stress associated with the Hall

dynamo. The momentum transport is largely determined by the interplay between the Maxwell stress and a

self-consistently-modeled nonlinear Reynolds stress. We �nd these stresses generally oppose as a function of

radius, and although the computation exhibits momentum transport, it would be much larger if the stresses

did not nearly cancel. The opposing nature and magnitude of these stresses, and associated momentum

transport has been experimentally measured. These measurements qualitatively agree with our two-�uid

computations, and these e�ects are not present in previous single-�uid modeling.

1 Some basic plasma concepts

1.1 Nuclear fusion

Nuclear fusion is achieved when two nuclei overcome the Coulomb barrier of their electric repulsion and fuse

to produce a heavier nuclei. The easiest reaction, in terms of required temperatures and densities, being
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considered for fusion reactor purposes is the fusion of the hydrogen isotopes deuterium and tritium. This

process creates a fast neutron and an alpha particle and releases 17.7MeV of energy:

2H +3 H → n (14.1MeV ) + 4He (3.5MeV ) . (1.1)

The cross section for this reaction to occur requires a high plasma temperature, and peaks around 25keV or

3× 108K, in order to overcome the Coulomb barrier. Lawson determined that the triple product neτET ≥

1021keV s/m3 is su�cient for the D-T reaction to ensure the thermal energy gained from the reactions

sustains the plasma temperature without energy input (this condition is known as ignition) [4]. Here ne is

the electron density, T is the temperature, and τE is the energy con�nement time de�ned as the ratio of the

energy stored in the plasma divided by the energy loss rate.

In general, fusion plasma con�nement concepts may be categorized as either inertial or magnetic con�ne-

ment. Inertial con�nement involves the isotropic compression and heating of the fusion products to extremely

high densities and temperatures to achieve ignition. Modeling of inertial con�nement fusion must be able

accurately determine the physics of the propagating shocks, or steep gradients in the density, temperature

and �eld quantities, that result from this scheme. This process is typically very fast and the target fuel must

be consumed quickly to get a fusion yield before instabilities associated with the steep gradients degrade the

con�nement. In principle, it must be repeated in short regular intervals to get a steady state reactor.

Alternatively magnetic con�nement relies on the magnetic �eld to trap ionized particles. A charged

particle moving perpendicular to a magnetic �eld is subject to a Lorentz force which causes it to orbit the

magnetic �eld line. This basic concept is used in magnetic con�nement to con�ne the plasma with a longer

τE but lower density than compared to inertial con�nement. Magnetic con�nement models typically do not

need to resolve shocks, but must determine the plasma properties on longer time scales and must deal with

highly anisotropic systems - particles are well con�ned perpendicular to the magnetic �eld, but their motion

is unconstrained parallel to the magnetic �eld. Magnetic con�nement devices can be further categorized

as toroidal or non-toroidal. Examples of non-toroidal devices are mirror and �eld-reversed con�gurations.

Toroidal con�nement is characterized by magnetic-�eld lines that wrap back upon themselves and never leave

a con�ning surface. The only surface which can bound a well-behaved divergence-free vector �eld must be

topologically toroidal [5]. These con�gurations prevent the particles from escaping through the uncon�ned

motion parallel to �eld lines.
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1.2 Guiding-center drifts

Charged particles orbit a magnetic �eld with gyro-frequency ωcα = qαB/mα at a radius ρα = v⊥α/ωcα

where α = e/i indicates electron or ion species, respectively, qα is the particle charge, B is the magnetic

�eld magnitude, mα is a species mass and v⊥ is the particle velocity perpendicular to the magnetic �eld.

A particle with a non-zero perpendicular velocity orbits a magnetic �eld-line with a �nite gyroradius (or

�nite-Larmor radius, FLR) given by ρα. Note that ρα/L << 1 over at least part of the con�guration, where

L is a characteristic device length scale, must be satis�ed by the de�nition of magnetic con�nement.

We now consider a particle in the presence of both a magnetic �eld, B, and electric �eld E. For con�ne-

ment considerations, we are interested in the perpendicular motion, relative to B. As the fast gyro-motion is

unimportant to con�nement, what we really want to know is the average drift, or the velocity of the particle

guiding center, de�ned at the axis of the gyro-rotation. As shown in Chap. 2 of Ref. [1], using ρα/L as a

small ordering parameter, the zeroth-order guiding-center drift (the limit of vanishing ρα) is the E×B drift,

vE×B =
E×B

B2
(1.2)

and the �rst-order drifts (∼ ρα/L) are the ∇B and inertial drifts:

v∇B =
mαv

2
⊥α

2qαB2
b̂×∇B (1.3)

vinertial =
mα

qαB2
B× dv0

dt
. (1.4)

We de�ne b̂ = B/B as the magnetic-�eld unit vector and v0 is the zeroth-order drift, v0 = v‖b̂ + vE×B ,

where v‖ is the unconstrained motion along the �eld line. The inertial drift can be decomposed into several

terms, an important term for our purposes is the curvature drift,

vκ =
mαv

2
‖

qαB2
B× κ (1.5)

where v‖α is a specie's parallel velocity and κ = b̂ · ∇b̂ is the curvature vector. The �rst-order drifts are

proportional to |qα|, unlike the E ×B drift. Thus the ∇B and curvature drifts will cause relative ion and

electron motion, unlike the E×B drift where the motion is in the same direction.



R�Z rχ

a R0

R�Z

rχ

�P =

�
SP

dS · B ,

SP

B · ��P = 0

�P �P B

�P �P

�P

�P

�T =

�
ST

dS · B

ST
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note ΨT is also a �ux surface quantity, however as we will discuss, it is poor �ux surface label for the RFP

as it is not monotonic for this con�guration.

An essential quantity in plasma stability analysis is the safety factor, q (ΨP ), de�ned by

q (ΨP ) ≡ dΨT

dΨP
. (1.8)

Physically the safety factor is the average number of times a �eld-line orbits about the center of the torus

divided by the number of times it orbits about the magnetic axis before closing on itself. If q is irrational the

�eld-line never closes on itself, and passes arbitrarily close to every point of the magnetic �ux surface. For

rational surfaces, de�ned by where q is rational, we may write q = −m/n where m is the number of toroidal

and n is the number of poloidal transits required for a �eld-line to close on itself. If q > 0, ΨT increases

as a function of �ux surface, and if q < 0, ΨT decreases as a function of �ux surface. The reversed-�eld

pinch is characterized by the reversal of BT at the wall relative to the core, thus we may expect q > 0 in

the core and q < 0 at the edge. The �ux surface where q = 0 is known as the reversal surface, and contains

purely poloidal magnetic �eld. Additionally, as ΨT is not monotonic as a function of �ux surface, it does

not constitute a good �ux label for the RFP.

By using a straight cylinder with coordinates rθz we approximate a toroidal con�guration, and the physi-

cal conclusions of the next two paragraphs are generalizable to toroidal cases. The cylindrical approximation

is reasonable when poloidal localization and toroidal curvature e�ects are small, conditions to be discussed

in Sec. 1.4. In this approximation the torus is `unwrapped' and the toroidal direction then becomes the

axial ẑ direction with length 2πR0, the poloidal direction is θ̂, and the end-caps are periodic. Assuming

axisymmetric �elds which allow us to use the radius as a �ux label, we may simplify the safety factor as

q (r) =
Bz · dST
Bθ · dSP

=
Bz (r) d

(
πr2
)

Bθ (r) d (2πR0r)
=

rBz (r)

R0Bθ (r)
. (1.9)

Next we consider a general magnetic di�erential equation, B · ∇f̃ (r) = C (r), where f̃ (r) is a cylindrical

perturbation and C (r) is a known function. As we shall see, equations of this form are common with a

�uid plasma model. We are interested in solving for f̃ (r), and express it in a separation-of-variables form

such that the spatial structure varies as ∼ f̃ (r) exp (imθ + inz/R0) + c.c.. Thus the left-hand side (LHS) of

B · ∇f̃ (r) = C (r) becomes

B · ∇f̃ (r) =
Bθ
r

∂f̃

∂θ
+Bz

∂f̃

∂z
=

(
Bθ

im

r
+Bz

in

R0

)
f̃ (r) . (1.10)
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The equation is singular, i.e. f̃ (rs) is undetermined, if Bθm/rs + Bzn/R0 = 0. We may rewrite this as

rBz/R0Bθ = −m/n, or q (rs) = −m/n. Here rs is de�ned as the resonant surface of the perturbation where

f̃ (rs) is undetermined. In this sense, the amplitude of f̃ (rs) is arbitrary. The singularity is resolved when

other, typically di�usive, terms with factors of f̃ (rs) are included in the model. As we shall see, the concept

of resonance will be important for a class of instabilities in the RFP, tearing modes, which we will discuss

at length throughout this document.

1.4 Toroidal con�nement devices

Before discussing the RFP in detail, we will contrast it with two more-well-known toroidal-con�nement

devices, tokamaks and stellarators. By no means do we intend this as an exhaustive treatment of the latter

devices. We begin by considering the magnetic �eld generated by a current from a solenoidal coil bent into

a torus with major radius R0 and minor radius a as shown in Fig. 1. Using the steady-state Ampere's law,

i.e. without displacement current,

µ0J = ∇×B (1.11)

the magnetic �eld distribution without a plasma is BT = µ0Icoil/2πR, where Icoil is the coil current, J is the

current density, and µ0 is the vacuum permeability. Thus the magnetic-�eld magnitude on the inboard side

of the torus (R < R0) is larger than the outboard, which creates a magnetic-�eld gradient pointing in the

negative R̂-direction. The ∇B and curvature drifts, Eqns. (1.3) and (1.5), will be in the vertical Ẑ-direction

for this `vacuum' magnetic-�eld distribution, and charged particles con�ned by this �eld will drift into the

wall on the top or bottom of the torus depending on the sign of their charge.

This con�guration is uncharacteristic of con�nement devices as q is in�nite everywhere without poloidal

�eld. With poloidal magnetic �eld and symmetry in the vertical Ẑ direction, the �ux-surface average of

drifts normal to the surface vanishes. For con�gurations with toroidal axisymmetry, poloidal �eld cannot be

imposed with external coils and must be introduced by driving toroidal current in the plasma, typically with

an inductive electric �eld. Another method is to abandon axisymmetric con�gurations, and use external

coils to construct a fully 3D vacuum �eld. This �eld may be designed to minimize the particle drifts which

result in the loss of con�nement, along with other constraints not discussed here. The use of a fully 3D

con�guration to construct a �nite-q pro�le was �rst proposed by Spitzer in 1958, who called the concept a

stellarator [6]. Internal plasma currents modify the vacuum magnetic con�guration, for example stellarators

with �nite pressure gradients must account for P�rsh-Schlüter currents. However, stellarator con�gurations



q = 1

m = 1 n = 1 q (r)

lim
r� 0

q (r) = q0 =
2Bz (0)

Rµ 0Jz (0)
=

2

φ (0)R

φ (r) =
µ 0J · B
B2

.

φ (0) � 2/R φ (0) > 2/R
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We now turn to a discussion of toroidal 2D axisymmetric equilibria force balance based on

J×B = ∇p (1.14)

where the force from pressure gradients is balanced by the Lorentz force from particles moving perpendicular

to B, which is a valid description if plasma �ows and gyroradii are small. Since B · ∇p = 0, pressure is a

�ux function, p (ΨP ). In an axisymmetric system we may express B as

B =
∇ΨP

R
× Φ̂ +BΦΦ̂ (1.15)

and through Ampere's law,

µ0J =
∇F
R
× Φ̂− ∆∗ΨP

R
Φ̂ (1.16)

where F (ΨP ) = RBΦ and ∆∗ ≡ R2∇ ·
(
R−2∇

)
. (See Ref. [1], Chap. 3.9) In general, we may also write

µ0J = λB + µ0J⊥ (1.17)

with J⊥ determined from the crossing the force balance equation, Eqn. (1.14), with B:

J⊥ =
p′B×∇ΨP

B2
(1.18)

where the prime indicates di�erentiation with respect to ΨP and ∇p = p′∇ΨP . Explicitly, the components

of Eqn. (1.17) are

∆∗ΨP + λF + (∇ΨP )
2 µ0p

′

B2
= 0 (1.19)

and

F ′ = λ− F µ0p
′

B2
. (1.20)

By eliminating λ from this set of equations we arrive at the well-known equation of axisymmetric toroidal

force balance, the Grad-Shafranov equation [7, 8],

∆∗ΨP = −FF ′ − µ0p
′R2 . (1.21)
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BΦ (0) aλ (0) α Te (a) Te (0)

(a) tokamak-like, force-free 2T 0.6 1.5 100eV 100eV
(b) tokamak-like 2T 0.6 1.5 100eV 1keV
(c) pinch-like, force-free 0.4T 3.9 3 50eV 50eV
(d) pinch-like 0.4T 3.9 3 50eV 350eV

Table 1: Input parameters to Eqns. 1.22 and 1.23 used to solve the Grad-Shafranov equation, Eqn. 1.21, for
four cases (a)-(d) with Te = Ti, R0 = 3 and a = 1.

An equilibrium ΨP can be found after specifying F (ΨP ) and p (ΨP ), typically motivated by experimental

measurements. We will use this equation to illustrate some of the di�erences between tokamak-like and

pinch-like toroidal equilibria.

Note for force-free con�gurations (p′ = 0) the parallel current pro�le is speci�ed through F ′, as expressed

in Eqn. 1.20. To illustrate equilibrium conditions for tokamaks and RFPs, we specify F as an alpha-like

model such that

F ′ (ψ) = λ (0)
(

1− ψ−α/2
)

(1.22)

where ψ is a normalized �ux bounded by 0 (magnetic axis) and 1 (wall), and λ (0) is an input parameter

which sets the parallel current on the magnetic axis if p′ (0) = 0. The constant of integration, F0, is used

specify F (0). Additionally, we use a parabolic pressure pro�le

p (ψ) = p0 + p1

(
1− ψ2

)
. (1.23)

The four cases, listed in Table 1, then allow us to contrast and compare pinch and tokamak pro�les.

Figures 3 and 4 show surfaces of constant ψ, |B|, λ, BΦ, Bpol, and Te from solutions of the Grad-

Shafranov equation with the NIMEQ code [9], for the cases listed in Table 1 assuming a constant density

pro�le. Compared to the tokamak-like cases, (a) and (b), the pinch-like pro�les, (c) and (d), have |B|

surfaces which are roughly aligned with �ux surfaces. Thus we expect the ∇B and curvature drifts to be

dominantly within a �ux surface for the pinch cases, unlike the tokamak-like pro�les where the|B| distribution

is very similar to the vacuum �eld. In addition, the trapping of particles by the variation of |B| on a �ux

surface leads to important e�ects for tokamaks. We note that for the pinch this trapping will be smaller

in comparison. From these considerations, the tokamak theory must include the full 2D �eld topology,

however a pinch may be well-approximated as a 1D periodic cylinder. (Where the axial direction of the
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cylinder approximates the toroidal direction) Many results from RFP computation discussed in Sec. 3 use

this cylindrical approximation.

Tearing modes [10], introduced in Sec. 4.2 and discussed in detail in Part III, are sensitive to the drift

dynamics at their resonant surfaces, i.e. a �ux-surface-averaged drift. We now make an order of magnitude

estimate of the �ux-surface-averaged ion diamagnetic (which is a �uid e�ect from the J⊥ = ne (ve⊥ − vi⊥)

that balances the equilibrium ∇p), curvature and ∇B-drift frequencies for the tokamak and pinch equilibria:

ω∗i ∼ k⊥
r̂ · ∇pi
minωci

, (1.24)

ω∗κ ∼ k⊥
kBTi
miωci

B2
pol

B2r
, (1.25)

ω∗∇B ∼ k⊥
kBTi
miωci

r̂ · ∇B
B

, (1.26)

where kB is Boltzmann's constant and k⊥ is the perpendicular wave number of the mode. For a tokamak,

we may write r̂ · ∇ ∼ 1/a ∼ 1 m−1 and B2
pol/B

2r ∼ (0.25 T)2/((2 T)
2 × 0.5 m) ∼ (1/32) m−1. Thus

ω∗i/ω∗κ ∼ 32, and the diamagnetic e�ect will be the dominant drift. From radial force balance, r̂ · ∇B/B ∼

B2
pol/rB

2, thus ω∗i >> ω∗κ ∼ ω∇B , for the drift contained within a �ux surface. For a pinch pro�le, again

r̂ · ∇ ∼ 1/a ∼ 1 m−1 but now B2
pol/B

2r ∼ (0.2 T)2/((0.2 T)
2 × 0.5 m) ∼ 2 m−1. In addition, we note

r̂ · ∇B/B ∼ 0.2 T/(0.2 T × 1 m) ∼ 1 m−1 such that we conclude ω∗i ∼ ω∗κ ∼ ω∗∇B . In this sense, the

∇B and curvature drifts are at least as important to the tearing dynamics as the diamagnetic drift in pinch

con�gurations. Additionally, as discussed in Sec. 6, for �nite island widths the pressure pro�le is �attened

through thermal conduction or sound wave mixing and diamagnetic e�ects are diminished. However, the

equilibrium magnetic pro�le is not greatly a�ected, and in this sense the ∇B and curvature drifts may be

more important than the diamagnetic drift to the nonlinear dynamics.

Returning to the comparison of the pro�les in Figs. 3 and 4, we note that the inclusion of a pressure

gradient does not greatly a�ect the magnetic pro�les. This is evident upon examining the di�erences between

cases (a) and (b), and (c) and (d). Thus the use of pro�les without a pressure gradient but with nonzero

uniform pressure to study the e�ect of the ∇B and curvature drifts is justi�ed.
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Figure 3: Surfaces of constant ψ, |B|, and λ for cases (a)-(d) with parameters as listed in Table 1
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Figure 4: Surfaces of constant BΦ, Bpol, and Te for cases (a)-(d) with parameters as listed in Table 1
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2 Fluid modeling

The degree of detail required in a model to describe a particular aspect of the physics in a device varies

widely, even when considering only toroidal con�nement devices. Given the enormous complication of a �rst-

principles approach, approximations are needed to treat any physically relevant problem. In this section we

describe the approximations used to derive the �rst-order FLR �uid model used here, and relate this model

to the well-known resistive and ideal-MHD models.

2.1 The kinetic description

The �rst-principles approach is to solve Maxwell's equations,

∇×E = −∂B

∂t
(2.1)

∇×B = ε0µ0
∂E

∂t
+ µ0J (2.2)

∇ ·E =
ρc
ε0

(2.3)

∇ ·B = 0 (2.4)

by specifying the charge density, ρc (r, t) =
∑
p
npqp, and current density, J (r, t) =

∑
p
npqpvp, through the

solution to the equation of motion for each particle, Fp = mp∂vp/∂t. Here p is a particle label and ε0 is

the vacuum permittivity. In the non-relativistic limit, the electromagnetic forces are Fp = qp [E + vp ×B].

Although the solution to these equations provides a nearly complete description of the plasma motion, with

realistic plasma densities of 1019m−3 the problem is intractable for realistic geometries even computationally.

Simplifying approximations are necessary.

A �rst step is to treat the plasma statistically by introducing a distribution function, fα (r,v′, t) which

speci�es the probability of �nding a particle of species α in the phase space volume drdv′. This allows us to

write the kinetic equation,

∂fα
∂t

+ v′ · ∇fα +
Fα
mα
· ∂fα
∂v′

= C (fα) (2.5)

where the LHS describes the motion of non-interacting particles, and the right-hand side (RHS) describe

the e�ects of particle interactions, or collisions where C (fα) is the collision operator. The appropriate

expressions for charge density, current and force become ρc (r, t) =
∑
α
nαqα, J (r, t) =

∑
α
nαqαvα, and

Fα = qα [E + vα ×B], respectively. If the number of particles in a Debye sphere, ND = 4πλ3
Dn/3 where

λD =
√
ε0kBTe/neq2

e , is large the system exhibits collective motion that de�nes a plasma. If characteristic
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length scales are large such that L >> λD, particle motion screens out electric �elds and ion and electron

charge densities are roughly equal. For ions with Z = 1, where qi = Ze, this implies ne ' ni. Including the

e�ect of the charge screening, the electric �eld from a particle is proportional to exp (−r/λD) /r instead of

1/r2. In this sense, plasmas are weakly interacting, and tractable analytic forms of the collision operator

may be obtained. (See Ref. [3], Chap. 12 for a detailed overview)

2.2 Moment equations

The distribution function may be transformed into �uid variables by integration over velocity space. The

particle density, velocity, pressure, stress tensor, heat �ux are de�ned as

nα (r, t) =

ˆ
fα (r,v′, t) dv′ (2.6)

nαvα (r, t) =

ˆ
v′fα (r,v′, t) dv′ (2.7)

pα = nαkBTα = (Γ− 1)
mα

2

ˆ
c2αfα (r,v′, t) dv′ (2.8)

Pα (r, t) = mα

ˆ
v′v′fα (r,v′, t) dv′ (2.9)

qα (r, t) =
mα

2

ˆ
c2αcαfα (r,v′, t) dv′ (2.10)

where cα = v′ − vα (r, t) is the random velocity with respect to the rest frame, kB is the Boltzmann

constant, and Γ is the ratio of speci�c heats. Moment equation for the �uid variables are obtained by taking

the appropriate moments of the kinetic equation, Eqn. (2.5). For example, the moments with respect to 1,

mv′ and mv′2/2 yield equations for the evolution of density, momentum and energy equations:

∂nα
∂t

+∇ · (nαvα) = 0 (2.11)

mαnα
dαvα
dt

+∇pα +∇ ·Πα − nαqα (E + vα ×B) = Rα (2.12)

nα
Γ− 1

∂kBTα
∂t

+
nα

Γ− 1
vα · ∇kBTα + nαkBTα∇ · vα + Pα : ∇vα +∇ · qα = Qα . (2.13)

where Pα = Πα + Ipα, d
α/dt ≡ ∂/∂t+ vα · ∇, and Eqns. (2.11) and (2.12) have been substituted into Eqn.

(2.13). The moments of the collision operator have been de�ned as
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0 =

ˆ
C (fα) dv′ (2.14)

Rα =

ˆ
mαv′C (fα) dv′ (2.15)

Qα =

ˆ
mα

2
v′2C (fα) dv′ − vα ·Rα (2.16)

which obey the conservation properties
∑
α

Rα = 0 and
∑
α
Qα = 0. (See Ref. [11], Chap. 1)

2.3 Closure relations

Formulation of the higher-order and collision operator moments (Πα, qα, Rα and Qα for our purposes) in

terms of moments evolved by the lower-order moment equations (nα, vα, and Tα in Eqns. (2.11), (2.12) and

(2.13)) is referred to as a closure problem. In 1965 Braginskii reviewed a closure that we will use to motivate

our model. (Ref. [11], Chap. 2) In the absence of forcing, the equilibrium state of the kinetic equation is a

Maxwellian distribution,

fMα (r,v′, t) =
nα

(2πkBTα/mα)
3/2

Exp[− mα

2kBTα
(v′ − vα)

2
] (2.17)

and it can be shown that a non-Maxwellian distribution will relax to this state within a characteristic time,

τα, determined by collisions. For ions the collisional relaxation time is determined by ion-ion collisions,

τi =
4ε20
√
π3mik3

BT
3
i

Λq4
i ni

(2.18)

and for electrons it is determined by ion-electron collisions,

τe =
4ε20
√
π3mek3

BT
3
e√

2Λq2
i q

2
eni

(2.19)

where Λ is the Coulomb logarithm, typically ∼ 15. The Braginskii closure relations assume the distribution

is dominantly a local Maxwellian at each point in space, thus ωτα << 1 where ω is a characteristic frequency

of the e�ect being studied with the model. Finally, the spatial gradient length scale, L‖, in the direction

parallel to the magnetic �eld must be large in comparison to the mean-free path for particle collisions,

vTατα/L‖ << 1 where L‖ ∼ 1/∇‖ and vTα =
√
kBTα/mα is the thermal speed. We will consider relations

which apply to a strongly magnetized plasma, where a particle makes many orbits between collisions and
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thus ωcατα >> 1, although Braginskii's relations are more general. Other closures consider the related limit

of small gyroradius compared to the perpendicular length scale, ρα/L⊥ = vTατα/ (ωcαταL⊥) << 1, see Ref.

[12] and references contained within.

With these assumptions, the Πα may be characterized by the anisotropic properties of the magnetized

system as a viscosity with perpendicular (∼ 1/ω2
cατα), gyro (cross �eld, ∼ 1/ωcα), and parallel (∼ τα)

contributions. Additionally, part of Rα captures the e�ect of collisions between ions and electrons, analogous

to electrical resistance. We will presently discuss the gyro and parallel viscosity, and the resistive part of Rα

for a plasma with Z = 1.

The ion-gyroviscous stress from Ref. [12] with arbitrarily-oriented magnetic �eld is

Πgv =
mipi
4eB

[
b̂×

(
W +

5

2

∇qi +∇qTi
pi

)
·
(
I + 3b̂b̂

)
+ transpose

]
(2.20)

where W = ∇vi +∇vTi − (2/3)I∇ · vi is the rate of strain tensor, and b̂ = B/B is the magnetic-�eld unit

direction. Braginskii considered the limit with �ows on the order of vTi where contributions from q may be

ignored. Although the measured �ows in the RFP are small compared to vTi as discussed in Sec. 2.5, we will

also ignore contributions from q. Our studies will concentrate on the tearing modes in the RFP core where

the pressure pro�le is relatively �at, and we argue the associated �nite-β corrections from q are small. Thus

the form of gyroviscosity used in our studies is

Πgv '
mipi
4eB

[
b̂×W ·

(
I + 3b̂b̂

)
−
(
I + 3b̂b̂

)
·W × b̂

]
(2.21)

Kaufman showed gyroviscosity captures gyro-orbit frequency shifts and ellipticity resulting from the gyro-

orbit averaging of ∇E and is non-dissipative [13]. Compared to a characteristic inertial frequency ω, the

gyroviscous stress scales as ρivTi/L
2, where ρi = vTi/ωci is the ion gyroradius and L is a characteristic

gradient length. In this sense, it is a �rst-order FLR e�ect and important only with warm ions (Ti 6= 0).

The parallel and perpendicular contributions to the ion stress tensor are modeled as

Π‖ = −3

2
minν‖b ·W · b̂

[
b̂b̂− I

3

]
(2.22)

Π⊥ = −minν⊥W (2.23)

where contributions from q have again been ignored. The parallel viscous coe�cient scales as ν‖ ' v2
Tiτi ∼

T
5/2
i and is signi�cant for high temperature fusion plasmas, whereas the perpendicular viscous coe�cient ν⊥
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is proportional to 1/τi and is expected to be relatively small. Instead of concentrating on the exact form of

the small contribution of perpendicular stress tensor we simply model it as isotropic di�usion.

Finally, the contribution to Re from ion-electron collisions is

Ref = neeηJ (2.24)

where η is an isotropic resistivity, η = me/nee
2τe. E�ects associated with an anisotropic conductivity

(σ = η−1) only contribute a factor of 2 and are neglected in the computations described here.

2.4 Two-�uid formulation

For our model of a two-species quasi-neutral plasma, electrons and ions with Z = 1 and n = ne = ni, we

include the necessary terms to model low-frequency current-driven instabilities with �rst-order FLR e�ects

in the RFP. Transport e�ects associated with the modes are left for future work. As previously mentioned

contributions from heat �ux are ignored, and we will only include the necessary terms in the energy equation

to capture the �nite-β e�ects that are necessary for kinetic-Alfvén-wave-tearing response described in Sec.

5.2.

Instead of using vi and ve to describe the �uid motion, we transform the equations in terms of the

equivalent v and J, where v is the center of mass velocity,

v =
mivi +meve
mi +me

' vi . (2.25)

By adding together the ion and electron momentum equations, Eqn. (2.12), and transforming to v and J we

�nd what is known simply as the momentum equation,

min
dv

dt
= J×B−∇p−∇ ·

(
Π‖ + Πgv

)
−∇ · ν⊥minW (2.26)

where we have dropped terms ∼ me/mi and de�ne p = pe + pi. Ion gyroviscosity, Eqn. (2.20), and parallel

viscosity, Eqn. (2.22), have been included along with a perpendicular-like isotropic viscosity as the last three

terms in Eqn. (2.26). The addition of the momentum equations exactly cancel the friction force through the

conservation properties of Rα, and the electric �eld force is canceled with quasi-neutral conditions.

As v ' vi the momentum equation speci�es the ion �uid evolution. Alternatively, the fast motion of

the mobile electron �uid evolution is used to specify the electric �eld by solving the electron momentum
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equation to produce a generalized Ohm's law,

E = −v ×B +
J×B

ne
− ∇pe

ne
+ ηJ +

me

ne2

∂J

∂t
. (2.27)

We have used the de�nition of current density, J = nevi − neve to eliminate electron �ow velocity resulting

in the �rst two terms on the RHS, the ideal-MHD and Hall contributions. The combination of these terms

is equivalent to −ve ×B, and when the Hall term is large in comparison with v×B, it signi�es decoupling

of the electron and ion perpendicular dynamics. To the extent that the last three terms of Eqn. (2.27)

are small, E ∼= −ve × B, and the magnetic �ux is frozen into the electron �uid. Instead of evolving the

electric �eld independently with Ampere's law, we use the constitutive relationship established through the

generalized Ohm's law for E. Since the phenomena we study involves only the low-frequency dynamics, we

use an approximate Ampere's law where the displacement current is dropped,

µ0J = ∇×B , (2.28)

to determine J and thus the electron response, ve. By substituting the generalized Ohm's law into Faraday's

law, Eqn. (2.1), the magnetic �eld is evolved through the induction equation.

The last three terms on the RHS of Ohm's law are electric �eld contributions from the electron pressure

gradient, the resistive term, Re/ne, and electron inertia. Electron inertia is reduced to the form of Eqn.

(2.27) by expanding it as

me

e

deve
dt

=
me

e

(
∂ve
∂t
− ve · ∇ve

)
=
me

e

(
∂v

∂t
− ∂

∂t

(
J

ne

)
− v · ∇v + v · ∇ J

ne
+

J

ne
· ∇v − J

ne
· ∇ J

ne

)
.

(2.29)

The dominant term is ∼ ∂J/∂t as described in Ref. [14]. We will concentrate on cases physically relevant

to the RFP where e�ects proportional to me are small. Thus the contribution from electron inertia and the

implicitly ignored Πe are unimportant.

Finite-β e�ects are captured through the continuity and energy equations,

dn

dt
= −n∇ · v +Dn∇2n (2.30)

and
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n

Γ− 1

dkBT

dt
= −p∇ · v +∇ · χn∇kBT . (2.31)

We model both the electron and ion temperatures through the ion energy equation as remaining at a �xed

fraction of T , i.e. Ti = fTiT and Te = (1 − fTi)T , where fTi is a speci�ed parameter. Separate sets of

computations reported in Parts III and IV consider the cold-ion (fTi = 0) and rapid-equilibration (fTi =

0.5) limits. Heating e�ects from Qi/e are neglected, and qi is simply a di�usive term with small thermal

di�usivity χ. Additionally we use a small particle di�usivity, Dn, in the density equation for numerical

stability. In cases presented here, their coe�cients are chosen to be small with respect to resistivity, such

that Dn = χ = 0.1η/µ0. The magnetic Prandtl number, specifying ratio of the resistive and perpendicular

viscous di�usivities Pm = µ0ν/η, is either 0.1 or 1.

Our model uses Eqns. (2.26), (2.1), (2.11), (2.13) to specify the evolution of v, B, n, and T with the

constitutive relations from Eqns. (2.27) and (2.28) which specify E and J. After prescribing the relation

among di�usion coe�cients, a set of �ve dimensionless parameters describes the plasma in the model: (1)

fTi, (2) the plasma-β (2µ0p/B0), (3, 4) the normalized ion and electron skin depths, dα/a = c/ωpαa, where

ωpα =
√
ne2/ε0mα is the plasma frequency for species α, and (5) the Lundquist number, S = τR/τA, where

τR = µ0a
2/η is the resistive time and τA = a/vA = a

√
µ0ρ0/B0 is the Alfvén time. In reality, the ion and

electron skin depths are not independent, as their ratio is determined by the electron and ion masses.

2.5 Relation to resistive, ideal MHD

If the �ows associated with the E×B drift dominate the perpendicular macroscopic dynamics,

v⊥ ∼ vE×B ∼ vT (2.32)

then MHD ordering is valid and one may approximate Ohm's law with only the advective term as

E = −v ×B . (2.33)

This equation is known as the ideal Ohm's law, and it captures only the e�ect of the large E × B �ow.

Additional terms must be included to determine the parallel electric �eld (note E‖ = 0 with ideal MHD)

and at resonant surfaces where contributions to the induction equation from the line-bending term, B · ∇v,

become a magnetic di�erential equation (Sec. 1.3) and vanish as described later in Sec. 4.1. Resistive MHD
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resolves these issues and is appropriate when the gyroradius is small, ρi/a << 1, and terms ∼ di in the

generalized Ohm's law, Eqn. (2.27), may be neglected. Thus

E = −v ×B + ηJ . (2.34)

To the extent the Hall term may be ignored in both formulations ve⊥ ' vi⊥, and the ion and electron �uids

are coupled. In this sense, we refer to ideal- and resistive-MHD as single-�uid models. For a more complete

discussion of these approximations, see Ref. [1], Chap. 6, for example.

Before reviewing RFP dynamics, we motivate their study with a two-�uid model by considering ion �ow

measurements in the Madison Symmetric Torus (MST, see [15]) RFP. Using a characteristic temperature

of 300eV , the thermal speed of a deuterium plasma is vTi = 120km/s. From mean �ow measurements in

Ref. [16], we note vmean = 30km/s and vmean/vTi ∼ 0.25. More importantly, from measurements of the

�uctuations associated with the instabilities in Ref. [17], vfluct = 1 − 5km/s and vfluct/vTi ∼ 0.04. Given

the small instability �ows we may anticipate vE×B does not strictly dominate the instability dynamics, and

two-�uid e�ect may be signi�cant.

3 Reversed-�eld pinches

The considerations of pinch equilibria in Sec. 1.4 are only based on axisymmetric steady-state solutions

to force balance, J × B = ∇p. However a true steady state would have ∂/∂t → 0 for all the equations

which describe a plasma. In practice, magnetically-con�ned plasma are always in a state of approximate

force balance as it is enforced on the fast Alfvénic time scale, τA = vA/a with the Alfvén speed de�ned as

vA = B/
√
µ0min. For dynamics that are slow relative to Alfvénic propagation, the plasma evolution can be

conceptualized as a sequence of equilibrium states described by force balance. Additionally, the assumption

of axisymmetry does not hold in the RFP. In fact many unstable and nonlinearly driven modes are present,

and a fully 3D con�guration develops. In the next section we discuss how these e�ects impact standard RFP

dynamics, particularly the quasi-periodic sawtooth cycle and edge reversal of the toroidal �eld, compared to

the magnetic axis, which distinguishes an RFP from a simple pinch.
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3.1 Edge-BT reversal and dynamo emfs

Consider the cylindrical, force-free, Ohmic (∂B/∂t = 0) equilibrium described by Robinson as a paramagnetic

pinch [18]. These conditions may be expressed by components of Faraday's law

∂Bθ
∂t

= −∂Ez
∂r

= 0 → Ez (r) =
VT

2πR
= const. (3.1)

∂Bz
∂t

=
1

r

∂

∂r
(rEθ) = 0 → Eθ (r) = 0 (3.2)

where VT is the inductive toroidal loop voltage. With a simple resistive Ohm's law we may write −vrBθ +

ηJz = VT /2πR and vrBz +ηJθ = 0, where vr is a radially-inward pinch �ow, vpinch. Solving these equations

we �nd

λpara (r) = λ (0)Bz (0)
Bz
B2

(3.3)

and

vpinch (r) = − η

µ0
λ (0)Bz (0)

Bθ
B2

. (3.4)

Energy �ows from the boundary through the E × B �ux associated with the pinch �ow, and is dissipated

resistively throughout the pro�le. In this sense the loop voltage drives both toroidal and poloidal components

of the parallel current. With experimentally relevant values for resistivity and inductive loop voltage, the

paramagnetic pro�le has a large gradient in λpara(r) which provides a free-energy source for core-resonant

instabilities.

Standard operation of reversed-�eld pinch (RFP) experiments relies on macroscopic magnetohydrodynamic-

like modes to distribute λ (ψ) over the pro�le and relax the gradient in λ (ψ) compared to Robinson's para-

magnetic pinch. The resulting broad distribution gives the con�guration its characteristic reversal of the

toroidal magnetic �eld near the wall. (Reversal of the magnetic �eld requires poloidal current driven by the

modes) With some possible exceptions, the dominant unstable modes of standard RFP pro�les are tearing

modes that saturate nonlinearly by coupling to stable resonant modes [19] and by reducing their drive through

pro�le modi�cation [20]. We separate �elds into mean and �uctuating components, A = 〈A〉+ Ã = A0 + Ã,

where the tilde indicates a perturbed �eld and 〈〉 indicates an axial and poloidal average. Mean-�eld analysis

[21] of the parallel generalized Ohm's law (see Appendix D),

E0‖ ' −
〈
ṽ × B̃

〉
‖

+

〈
J̃× B̃

ne

〉
‖

+ ηJ0‖ , (3.5)
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shows that part of the parallel-current-density pro�le may be sustained against resistive dissipation by an emf

produced from the correlation of �uctuations instead of being driven directly by the inductive loop voltage.

Through-out this document we use perpendicular (⊥), and parallel (‖) to refer to the magnetic coordinates

(r̂, ê⊥ = b̂0× r̂, ê|| = b̂0) where b̂0 = B0/B0. In single-�uid models, the correlation of �uctuating �ows and

magnetic �eld induces the MHD dynamo e�ect,
〈
ṽ × B̃

〉
[22]. Two-�uid models allow a Hall dynamo e�ect,〈

J̃× B̃/ne
〉
, from the correlation of the �uctuating current density and magnetic �eld [23, 24], in addition

to the MHD dynamo e�ect.

In MST, the dynamo emfs are not steady-state, and instead are correlated with quasi-periodic relaxation

events, or `sawteeth.' These events are characterized by an increase in mode activity and fast changes in the

pro�les, and are typically separated by a quiescent period of approximately ∼ 5 − 10 ms. With our simple

model, the process can be described as a quick modi�cation of the pro�le through dynamo emfs, stabilization

of the pro�le and decay of the mode energies and their associated dynamo emfs, a quiescent period where the

current pro�le modi�cation from the dynamo resistively decays, followed by destabilization of the instabilities

and a repeat of the cycle. Figure 5 shows experimental measurements of the mode magnetic amplitudes at

the wall during a sawtooth crash for an MST standard 400 kA discharge.

3.2 Relaxation theory

In contrast to the computational models, which track the mode dynamics, RFP relaxation theory predicts the

plasma will tend towards a `relaxed' state where the plasma energy, W , is minimized subject to constraints.

In 1958 Woltjer was interested in explaining force-free con�gurations in astrophysical phenomena [26]. He

noted the global magnetic helicity,

K0 =

ˆ
V0

dVA ·B (3.6)

where A is the magnetic vector potential and V0 is the full plasma volume, is a constant of the plasma

motion with astrophysical (or conducting wall) boundary conditions and E ·B = 0 as in ideal MHD. Woltjer

demonstrated that if the energy of the system is minimized with the constraint of constant K0, the plasma

tends to a force-free state, µ0J = λcB where λc is a constant. This work was soon extended to include a

second global invariant of dissipationless single-�uid MHD, global cross helicity,

M0 =

ˆ
V0

dV v ·B , (3.7)



m = 1
F = �0.22 F = 0 m = 0

F = �0.22 F = 0 t = 0
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where the minimum energy state is force-free with constant λ but additionally has �eld aligned �ows [27].

However in ideal systems, it can be shown that the helicity is not just a global invariant, but is invariant for

the volume bounded by each good �ux surface [28]. Thus for a plasma with good nested �ux surfaces there

are an in�nite number of constraints.

In 1974 Taylor postulated that in the RFP �nite-resistivity tearing-mode dynamics allow helicity on

individual �ux surfaces to change during relaxation while global helicity is relatively well conserved [5]. This

conjecture allowed Taylor to predict that relaxation �attens the current pro�le to move the plasma towards

towards a constant-λ state. He used the constant-λ pro�le to �nd the �elds in a cylinder in terms of Bessel

functions. The normalized current,

Θ =
Bθ0 (a)

〈〈Bz〉〉
(3.8)

where 〈〈〉〉 is a volume average, and edge-�eld reversal parameter,

F =
Bz0 (a)

〈〈Bz〉〉
, (3.9)

calculated from the modi�ed-Bessel-function model behave qualitatively similar to plasma experiments [29].

Measurements of K and W in MST also provides some support for the hypothesis that K is nearly constant

in comparison to W during a relaxation event [30].

With a two-�uid model, the invariant quantities become the hybrid ion and electron helicities

Kα =

ˆ (
A +

mαvα
qα

)
·
(

B +
mαUα

qα

)
(3.10)

where Uα = ∇× vα is the vorticity [31, 32, 33, 34, 35]. To the extent the electron mass is small, the hybrid

electron helicity is equivalent to the magnetic helicity K. Cross helicity, Eqn. (3.7), is no longer an invariant

with the two-�uid model. However in the MHD limit, the hybrid ion helicity reduces to cross helicity [36].

The two-�uid relaxed states, found when both Ki and Ke are used as constraints and W is minimized,

no longer must be force-free, and plasma �ows are speci�ed in addition to the �eld con�gurations. Thus

coupling between �ows and �elds occurs naturally for two-�uid relaxation.

This coupling is apparent by considering the parallel momentum equation with mean-�eld theory,

min
∂v‖

∂t
+min 〈ṽ · ∇ṽ〉‖ =

〈
J̃× B̃

〉
‖
− 〈∇ ·Π〉‖ (3.11)

where the second term on the LHS comes from the Reynolds stress and the �rst term on the RHS is from
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Figure 6: (a) Dynamics of Hall dynamo (solid line) and inductive electric �eld (dashed line) during magnetic
relaxation event. Time t = 0 denotes the sawtooth crash. Data have been ensemble averaged over 380
independent sawtooth events. (b) Phase di�erence between current and magnetic �eld �uctuations and (c)
current density �uctuations dynamics over sawtooth crash. This �gure is from Ding et al., Ref. [25].

the Maxwell stress, along with the parallel generalized Ohm's law, Eqn. (3.5). Clearly the Hall dynamo is

closely related to the Maxwell stress, and it is no surprise that in two-�uid relaxation the �ows are naturally

coupled to the �elds.

3.3 RFP experimental measurements relevant to two-�uid dynamics

Direct experimental measurements on MST during relaxation events have provided a window into the two-

�uid dynamics of the RFP. In the core, Ding et al. made laser polarimetry measurements during 400 kA

discharges that demonstrate the Hall-dynamo e�ect from the inner-most core-resonant mode (m = 1,n = 6)

is signi�cant, as shown in Figs. 6 and 7 [37, 25]. These measurements indicate that the e�ect is anti-dynamo

in the sense that it reduces the parallel current and that it is peaked around the resonant surface of the

mode. Additionally, measurements made without signi�cant edge reversal and its associated strong m = 0

mode show the Hall dynamo e�ect is small and indicate the strong nonlinear coupling provided through this

mode is important. (For example, the m = 0, n = 1 mode couples the m = 1, n = 6 and m = 1, n = 7

modes as described in Ref. [20])
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However, the linearized radial component of the advective term in the induction equation is a magnetic

di�erential equation,

r̂ · ∇ × (ṽ ×B0) = r̂ · [−B0∇ · ṽ + (B0 · ∇) ṽ − (ṽ · ∇) B0] = (B0 · ∇) ṽr (4.2)

where we assume cylindrical geometry and note there is no radial component of the mean magnetic �eld. The

tilde indicates a perturbed quantity with spatial and time dependence, ã = ã (r)Exp (−iωt+ imθ + inz/R) =

ã (r)Exp (−iωt+ ik · r) where the wave-vector k = θ̂m/r + ẑn/R, and the equilibrium is denoted with a

subscript `0'. The radial component of the resistive-MHD magnetic-induction equation is then

γB̃r = (B0 · ∇) ṽr +
η

µ0
r̂ · ∇2B̃ , (4.3)

where γ = −iω. If η → 0 this equation is singular at the resonant surface of the mode, as discussed in

Sec. 1.3, and the only solution is B̃r (rs) = 0. Indeed this is the case for ideal instabilities. The inclusion

of �nite resistivity resolves the singularity and allows resistive instabilities, solutions with B̃r (rs) 6= 0.

Non-zero B̃r (rs) leads to magnetic-�eld topology change and associated reconnection. Since the Lundquist

number, de�ned by the length scale of the minor radius in our cases, is large for experimental cases, we may

neglect resistivity everywhere but in a thin boundary layer near the resonant surface. This property of the

induction equation permits a boundary-layer formulation of the problem: near the resonant surface at least

the resistive-MHD equations are used - referred to as the inner region, and away from the resonant surface,

the outer region, the ideal-MHD equations are su�cient. The solutions from each region are then matched

at the interface between the layers.

Figure 13 sketches the structure of the tearing mode. The �gure assumes both the wavenumber and

reconnecting �eld are oriented in the perpendicular vertical direction. The reconnecting �eld reverses sign

at the resonant surface, and thus k · B0 (rs) = 0. Perturbed �ows form a vortex structure which advects

�ux to the resonant surface, and when the perturbation is large an island will form. However in the linear

stage the amplitude is small such that the island width is negligible. In a simple slab geometry, the �ow

symmetrically advect �ux to the resonant surface where the gradient of B̃⊥ is large and the resistive term

can balance γB̃r in Eqn. (4.3).

With a resistive-MHD model the tearing mode dispersion relation may be obtained from the radial



�b0 · � ×
�
ρ
dv

dt
+� · �

〉
= �b0 · � × (J × B)

�b0 = B0/B0

0 = �b0 · � ×
〈

�J × B0 + J0 × �B
}

π �Br = (B0 · �) �vr .

B � · B = 0

�B = � �� × B0 + �B��b0 ,

�v = �b0 × � �ν + �v��b0 .
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Thus

B̃r = ik⊥B0ψ̃ (4.9)

B̃⊥ = −B0ψ̃
′ (4.10)

ṽr = −ik⊥φ̃ (4.11)

ṽ⊥ = φ̃′ (4.12)

where the perpendicular direction is b̂0×r̂, such that k⊥ =
(
b̂0 × r̂

)
·k, and primes indicate radial derivatives.

As in Ref. [39] the outer equations in cylindrical geometry may be written in terms of ψ̃ and φ̃ as

(
fψ̃′
)′
− fgψ̃ = 0 (4.13)

γψ̃ = − ik‖φ̃ (4.14)

where

f =
r

k2
(4.15)

and

g = k2 +
(m/r)

2 − (n/R)
2

r2k2
+
( n
R

)2 2µ0p
′
0

(k ·B0)
2
r

+
(mBθ/r − nBz/R)

k ·B0

(
2µ0p

′
0

rB2
0

− 2µ0p
′
0

B2
0

λ0 + λ′0

)
− 1

r

(
rµ0p

′
0

B2
0

)′
+

2

k2r

( n
R

)2 µ0p
′
0

B2
0

+

(
µ0p
′
0

B2
0

)2

− 2mn

r2Rk2
λ− λ2 . (4.16)

4.2 Small-∆′ current-driven tearing modes

Equations (4.13) and (4.14) may be solved for ψ̃ and φ̃ by integrating from the edge of the domain with

speci�ed boundary conditions and a dispersion relation is obtained after mapping onto solutions from the

inner region. The matching parameter is de�ned as

∆′ ≡ 1

ψ̃

∂ψ̃

∂r

∣∣∣∣∣
+rs

−rs

=
1

B̃r

∂B̃r
∂r

∣∣∣∣∣
+rs

−rs

. (4.17)

We immediately note ψ̃∆′ ∼ ψ̃′. For modes not too close to marginal stability, ∆′ ∼ a−1 ∼ O (1) there is a

large jump in ψ̃′ over the layer, and we may assume ψ̃′′ ∼
(
ψ̃∆′

)′
∼
(
ψ̃∆′

)
/l. The layer width, l, is de�ned

by the region where ψ̃′′ (or Ẽ‖) is large, and as we shall see it is small, l << k−1 ∼ a. Thus we may order
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where the kink term may be neglected given the small layer width and lψ̃′′ ∼ ∆′ψ̃, and

µ0J̃‖ ' −B0ψ̃
′′ . (4.20)

The kink term is still associated with instability drive, however for the tearing mode this drive is provided

through the solution to the equations in the outer region and the determination of ∆′. We make a Taylor

expansion of equilibrium quantities in the small layer around rs, where x ≡ r − rs, x ∼ εrs, and ε is a small

parameter:

b̂0 → b̂0s + xb̂′0s +
1

2
x2b̂′′0s +O

(
ε3
)

(4.21)

k → ks + xk′s +
1

2
x2k′′s +O

(
ε3
)
. (4.22)

Finally, assuming the �ow is nearly incompressible and noting that the inner-region aspect ratio is small,

kl ∼ O (ε), due to the smallness of the layer width, we may order ṽr ∼ εṽ⊥ and φ̃ ∼ O (1) implies φ̃′ ∼

O
(
ε−1
)
. We order each successive radial derivative of φ̃ as ε−1 and may write the vorticity to leading order

as

Ũ = φ̃′′ +O
(
ε−1
)

.

We choose the ion-rest frame where v0 = 0, and neglect viscosity and the coupling to p̃ through curvature

e�ects. Thus to leading order in each term the inner layer equations for parallel vorticity and magnetic �ux

(the radial induction equation, Eqn. (4.3)) become

γφ̃′′ = −v2
Aik
′
‖sxψ̃

′′ (4.23)

γψ̃ = −ik′‖sxφ̃+
η

µ0
ψ̃′′ (4.24)

where we make use of the fact that k‖s = 0. Contributions from cylindrical curvature are small with this

ordering, and the inner layer equations are the same for slab geometry.

These coupled equations may be expressed as a single integro-di�erential equation via the following

substitutions: Following the method described in Ref. [1], we substitute Ẽ = −φ̃′, where the signi�cance of

notation connects the streamfunction, φ̃, to the electric potential, Φ̃ through the perpendicular E×B �ow.

If this �ow dominates,

ṽE×B =
Ẽ×B0

B2
0

' −∇Φ̃

B0
× b̂0 ' −∇φ̃× b̂0 . (4.25)
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We may also relate ψ̃ to parallel component of the vector potential, Ã‖, given the representation of B̃ in Eqn.

(4.7). In fact, some formulations use the parallel component of Maxwell's equation, Ẽ‖ = −b̂0 ·∇Φ̃−∂Ã‖/∂t,

with Ẽ‖ = ηJ̃‖ to derive Eqn. (4.24) instead of the radial induction equation. Returning to our initial point,

we substitute Ẽ = −φ̃′ into Eqn. (4.23),

γẼ′ = v2
Aik
′
‖sxψ̃

′′ = v2
Aik
′
‖s

[
x2

(
ψ̃

x

)′]′
. (4.26)

Integrating this equation yields

γẼ = v2
Aik
′
‖sx

2

(
ψ̃

x

)′
+ C (4.27)

where C is a constant of integration to be determined by the matching conditions. Dividing Eqn. (4.24) by

x and taking the derivative we �nd

γ

(
ψ̃

x

)′
= ik′‖sẼ +

η

µ0

(
ψ̃′′

x

)′
(4.28)

which after substituting in Eqns. (4.26) and (4.27), may be written

1−

(
vAk

′
‖sx

γ

)2
 Ẽ − η

µ0

x2

γ

[
Ẽ′

x2

]′
=
C

γ
. (4.29)

To match to the outer solution we examine the behavior of this equation at large x, x >> l, which gives a

balance of the second term on the LHS and the term on the RHS,
(
vAk

′
‖sx
)2

Ẽ ' γC. Thus we may expect

φ̃′ ' − γC(
vAk′‖sx

)2 , x >> l (4.30)

The zero-β asymptotic behavior of the outer solution as it approaches the singular layer is given by Hazeltine

and Meiss as

φ̃outer → φ̃R,L +
φ̃0

x
(4.31)

where φ̃0 and φ̃R,L are constants and φ̃R,L may di�er on each side of the layer. Given Eqn. (4.14) the

associated behavior of ψ̃ is

ψ̃outer → ψ̃R,Lx+ ψ̃0 (4.32)

where γψ̃0 = −ik′‖sxφ̃0 and ψ̃R,L and φ̃R,L are similarly related. Combining Eqns. (4.30)-(4.32), we �nd the
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relation

ψ̃0 = − iC

v2
Ak
′
‖
. (4.33)

Finally, we integrate J̃‖ over the layer,

ˆ
J̃‖dx '

ˆ
ψ̃′′dx = ∆′ψ̃0 = − iC∆′

v2
Ak
′
‖

(4.34)

=
γ

v2
Aik
′
‖

ˆ
Ẽ′

x
dx (4.35)

where the relation on the �rst line is established through the de�nition of ∆′, Eqn. (4.17), and the relation

on the second line from the parallel vorticity equation, Eqn. (4.23). Using this to establish a relation between

C and Ẽ, we may now rewrite Eqn. (4.29) as

1−

(
vAk

′
‖sx

γ

)2
 Ẽ − η

µ0

x2

γ

[
E′

x2

]′
=

1

∆′

ˆ
Ẽ′

x
dx . (4.36)

Ref. [1] describes the terms on the LHS as inertial, line-bending, and resistive contributions, respectively.

The term on the RHS is the contribution from the kink term as it is linked to the solution in the outer

region, and thus the kink drive of the mode, through ∆′. For small-∆′ tearing the mode is close to marginal

stability and the growth rate is small enough that the inertial term may be ignored. This is equivalent to

the constant-ψ̃ approximation used by Furth, Kileen and Rosenbluth (FKR) [10].

We may estimate the layer width and the growth rate through a balance of the line-bending, resistive and

kink terms. Using x→ l and Ẽ′ ∼ Ẽ/l, the balance of the line-bending and resistive terms,
(
vAk

′
‖sl/γ

)2

∼(
η/µ0l

2γ
)
, gives an expression for the layer width,

l2 ∼
(
γ
η

µ0

)1/2
1

vAk′‖s
. (4.37)

The balance of the resistive and kink terms,
(
η/µ0l

2γ
)
∼ 1/∆′l, after substitution for l gives

γ ∼ ∆′4/5
(
η

µ0

)3/5 (
vAsk

′
‖s

)2/5

. (4.38)

The exact solution to the integro-di�erential equations for Ẽ, Eqn. (4.36) without the �rst term on the

LHS gives may be solved for in terms of parabolic cylinder functions. The exact result is (see Ref. [1] for the
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solution method, this is the result of FKR, Ref. [10]),

γMHD =

[
∆′Γ (1/4)

2πΓ (3/4)

]4/5(
η

µ0

)3/5 (
vAsk

′
‖s

)2/5

. (4.39)

The tearing mode grows on a hybrid-resistive-Alfvén-time scale, γMHD ∼ S−3/5 , as expected. The sign of

γMHD depends on the sign of ∆′, thus ∆′ is also a stability parameter where instability is characterized by

∆′ > 0. Thus for considerations of tearing stability only the solution to the Newcomb equation in the outer

region is necessary. Marginal stability has ∆′ = 0 and we expect modes which become unstable though the

slow pro�le evolution on a transport-time scale to be in the small-∆′ regime. In fact estimates from the

relaxed pro�les of MST indicate ∆′ ∼ 1− 10, and make the constant-ψ̃ approximation �tting for the tearing

activity in the RFP.

To �nd the layer width, where Ẽ‖, ψ̃
′′ → 0, we take x→ l in our inner layer equations. Dropping the last

term ∼ ηψ̃′′ in Eqn. (4.24) and combining this with Eqn. (4.23) with φ̃′′ → φ̃/l2 we �nd

γψ̃ ' −ik′‖slφ̃ '
(
ik′‖svA

)2

l4
ψ̃′′

γ
'
(
k′‖svA

)2

l4

(
∆′ψ̃

)′
γ

'
(
k′‖svA

)2

l3
∆′ψ̃

γ
. (4.40)

Solving for l after substitution of Eqn. (4.39) to eliminate vAk
′
‖s and dropping a factor of 1.28 gives the layer

width,

l ' ∆′δ2
η . (4.41)

Where we de�ne the resistive skin depth, δη/a = 1/
√
SγτA, by the characteristic gradient length scale

required for the resistive term to balance the inertia term in the radial induction equation, Eqn. (4.3). The

tearing mode is a slowly growing mode with γ ∼ S−3/5, thus we expect δη ∼ S−1/5, l ∼ S−2/5 and the

layer width to be small in the physically-relevant asymptotic limit of large S. These arguments justify our

assumptions.

In Sec. 9.1, we show ∆′LB = 2 (1/kLB − kLB) for our particular periodic slab con�guration with an

in�nite current sheet enclosed by distant conducting walls, where LB is the gradient scale length of the

magnetic �eld. As the positive contribution to ∆′ is proportional to (kLB)
−1

the most unstable mode

corresponds the longest wavelength, and the negative contribution, −2kLB , stabilizes modes with large

wavenumber. This behavior is similar for cylindrical con�gurations [18]. Thus the most unstable tearing

mode has a long wavelength, is easy to detect experimentally, and its global structure greatly impacts plasma

con�nement.
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4.3 Finite-β e�ects

Of course, the tearing mode is not the only source of reconnection. Coppi, Greene and Johnson extended

FKR's result to cases with �nite pressure and distinguished a spectrum of modes from resistive interchange

to tearing [39]. The distinction between being that the tearing drive is provided by the kink term, through

the matching condition ∆′; whereas resistive interchange is an instability driven through the equilibrium

quantities at the resonant surface with non-zero curvature and p′0. It is manifest through the interchange

term in the parallel vorticity equation (Eqn. (4.18)), 2b̂0 × κ0 · ∇p̃.

The linearized energy equation, Eqn. (2.31), is used to �nd an expression for p̃,

γp̃ = ik⊥φ̃p
′
0 − Γp0∇ · ṽ (4.42)

where we have assumed v0 = 0 and q = 0. Thus the interchange term becomes

2b̂0 × κ0 · ∇p̃ = 2b̂0 × κ0 · ∇

(
ik⊥φ̃p

′
0 − Γp0∇ · ṽ
γ

)
' 2

b20θ
r

k2
⊥s
γ
p′0φ̃− 2

b20θ
r

Γp0ik⊥s∇ · ṽ (4.43)

where we have assumed the dominant curvature is poloidal, κ0 = −b20θ/r with b0θ = B0θ/B0, as is the

case for the RFP. In a cylinder, Coppi et al. �nd instability driven by the �rst term on the RHS through

p′0 evaluated at rs. This interchange mode is unstable in regions of bad curvature which for the RFP is

approximately whenever the equilibrium pressure decrease is radially outward. The second term on the RHS

is �rst time ∇ · ṽ has appeared explicitly in our equations, and through this term the mode is coupled to

compressible motions. For slab cases κ0 → 0 and there is no contribution from the interchange term, thus

no dependence on β through coupling to ∇ · ṽ with a resistive-MHD model.

4.4 Notes and extensions

The con�guration itself has implications on the appropriate model as well, our considerations use conducting

walls placed on each horizontal side of Fig. 13 and vertical periodic boundary. The �ux is then conserved,

and the tearing instability can reconnect at most the available �ux before nonlinear saturation. This is the

case for spontaneous reconnection as there is no drive from the boundary. An alternative con�guration is

that of driven reconnection, where �ux is pushed in through the horizontal boundary and allowed to �ow out

the vertical boundary. Studies of driven con�gurations may approximate astrophysical e�ects such as solar
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�ares or the Earth's magneto-tail. Analytic studies typically use a model to establish a reconnection rate,

which measures how quickly the �ux passes through the inner region, as opposed to a growth rate which

measures the exponential time-rate of change of the amplitude of the perturbation.

The �ux in MST undergoes a rapid change during sawtooth events. For example, in the low-current

discharges studies by Kuritsyn et al. the toroidal �ux increases by 7− 10% over approximately a tenth of a

millisecond, even though the associated toroidal-�eld reversal is deepened. Our cases with a conducting wall

boundary condition do not capture this e�ect as �ux is conserved with a speci�ed constant electric �eld at

the boundary. However, one expects that core-resonant tearing modes in a RFP are spontaneously unstable

in experimental cases, and our model is su�cient to qualitatively capture their dynamics.

The edge-resonant m = 0 modes are typically nonlinearly driven through core-mode coupling during a

large sawtooth event, as predicted computationally in Ref. [20]. Experimentally this has been observed, as

Choi et al. measured the drive through the m = 0 nonlinear advective term of Ohm's law [40], and Tharp

et al. measured the Hall-term drive [41]. As we model both terms in our two-�uid computations present

in Part V, we self-consistently capture both the core-mode spontaneous drive through an unstable-pro�le

con�guration and the nonlinear drive of the m = 0 mode.

5 First-order FLR e�ects on the tearing mode

As discussed in Secs. 2 and 3, in the experimentally-relevant parameter regimes of interest, important non-

MHD e�ects arise from particle motions as �nite-Larmor-radius (FLR) contributions. The FLR e�ects may

be included in a �uid model, to �rst order, with a two-�uid Ohm's law and ion gyroviscosity. Their in�uence

on tearing modes has been the subject of many theoretical studies over more than four decades. Important

FLR e�ects on RFP tearing, drift-tearing and kinetic-Alfvén-wave (KAW) e�ects, are discussed in the next

two subsections. These e�ects are considered via the inclusion of the linearized Hall term in Ohm's law:(
J0 × B̃ + J̃×B0

)
/n0e. In Sec. 5.1 we include the J0 × B̃ contribution along with v0 6= 0, which together

represent advection of B̃ by ve0 and leads to a drift-tearing response. In Sec. 5.2 we include the second

contribution, J̃×B0, which couples the equations to B̃‖ and introduces two-�uid responses via the whistler-

and kinetic-Alfvén-waves.

We will not carry out calculations in complete detail, but intend to only illustrate the physical importance

and origin of these FLR e�ects. Thus the dispersion relations we �nd will only constitute a heuristic model,

and references to more complete works will be indicated.
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5.1 Diamagnetic-drift tearing

Previous drift-tearing work begins with Coppi's analysis of ion FLR e�ects, which identi�es a stabilizing

drift-tearing behavior resulting from pressure gradients at the resonant surface [42]. As appropriate for

large-aspect ratio tokamaks, this study orders both the perturbed pressure and the reconnecting component

of magnetic �eld to be small. A drift-tearing response occurs when the ion and electron dynamics separate

parallel to k at the resonant �ux surface.

The steady-state mean �uid velocities may be found by crossing Eqn. (2.12) with B, and neglecting

contributions from Πα and Rα:

vi⊥ =
E×B

B2
+

B×∇pi
neB2

, (5.1)

ve⊥ =
E×B

B2
− B×∇pe

neB2
, (5.2)

and associated current density,

J⊥ = ne (vi⊥ − ve⊥) =
B×∇p
neB2

(5.3)

consistent with Eqn. (1.18). As noted, the E×B drifts do not depend on charge and do not lead to separation

of the �uid species, unlike the diamagnetic drift. Diamagnetic-drift tearing may be examined by including

contributions from the vi⊥0, ve⊥0, and J⊥0 in our inner layer equations.

There are additional terms to consider in the parallel vorticity equation, Eqn. (4.18): the advective term

v0 · ∇Ũ , and −b̂0 · ∇ × ∇ · Π. As shown in Part III, there is a contribution from −b̂0 · ∇ × ∇ · Πgv

proportional to p′0 which exactly cancels with the diamagnetic contribution to the advective term. Thus the

parallel vorticity equation, with an advective contribution from the E×B �ow, becomes

(γ + iωE×B) φ̃′′ = −v2
Aik
′
‖sxψ̃

′′ (5.4)

where ωE×B = k⊥svE×B .

The radial-induction equation will now have a contribution from the advective term ∇×
(
ve0 × B̃

)
,

r̂ · ∇ ×
(
ve0 × B̃

)
= r̂ ·

[(
B̃ · ∇

)
ve0 − (ve0 · ∇) B̃

]
= −ik · ve0B̃r ' − (ik⊥s)

2
ve0B0ψ̃ (5.5)

where ve0, as determined by Eqn. (5.2), is incompressible and has no radial component. With this term, the



43

inner-region radial-induction equation becomes

(γ + iω∗e + iωE×B) ψ̃ = −ik′‖sxφ̃+
η

µ0
ψ̃′′ (5.6)

where ω∗e = k⊥sv∗e0 = −k⊥sp′e0/n0eB0 (mean quantities evaluated at rs) is the diamagnetic-drift modi�ca-

tion.

Using Eqns. (5.4) and (5.6) as the inner layer equations we �nd the dispersion relation relative to the

MHD growth rate is

(γ + iω∗e + iωE×B)
4

(γ + iωE×B) = γ5
MHD . (5.7)

When ω∗e → 0, γ = γMHD−iωE×B and the growth rate of the mode is unchanged, however it acquires a real

frequency associated with the Doppler shift of the E×B �ow common to both species. When ω∗e & γMHD

the drift e�ect reduces the growth rate of the mode. We stress that the e�ects from J̃×B0 have been ignored

so far; this term enters the equations on the same order and is discussed in the next section. Thus we only

present this relation as a heuristic description - for more complete treatments see Refs. [43, 44, 45]. As a

�nal note, the contribution from ∇pe/ne to the radial induction equation vanishes as

r̂ · ∇ × ∇p̃e
n0e

= r̂ ·
[
∇×∇p̃e
n0e

+∇
(

1

n0e

)
×∇p̃e

]
= 0 . (5.8)

5.2 Kinetic-Alfvén-wave mediated regime

Drake and Lee identify the importance of the parallel component of perturbed electric �eld in the collisionless

(γ >> 1/τe, or equivalently d
2
e >> 1/γτAS and ρi >> l) and semi-collisional (γ << 1/τe and ρi >> l)

regimes that occur when the reconnection scale is smaller than the ion gyroradius [46]. The resistive-MHD

regime occurs when both γ << 1/τe (neglect electron inertia) and ρi << l (neglect FLR corrections), and

was described in detail with our model in Sec. 4.2. Consideration of the radial component of Faraday's law

without speci�cation of Ẽ,

γB0ik⊥ψ̃ = −r̂ · ∇ × Ẽ = −ik⊥Ẽ‖ + ik‖Ẽ⊥ (5.9)

demonstrates the signi�cance of Ẽ‖, given k‖ → 0 at rs. The perpendicular electric �eld may be written as

Ẽ⊥ = −ik⊥φ̃B0 − ik⊥ψ̃B0ve0‖ −
J̃rB0

n0e
− ik⊥p̃e

n0e
+ ηJ̃⊥ +

me

ne2
γJ̃⊥ . (5.10)
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Thus the contribution from ṽ ×B0 gives the ion advective contribution, ik⊥φ̃, in Eqn. (4.24) through Ẽ⊥.

When ρi >> l, the ions become demagnetized and are no longer sensitive to the dynamics in the thin tearing

layer. Thus in the collisionless and semi-collisional limits, Drake and Lee ignore the advective contribution

from Ẽ⊥ to Eqn. (5.9), and the dynamics in the layer are determined fully by Ẽ‖,

Ẽ‖ = −b̂0 ·
[
ve0 × B̃ +

∇p̃e
ne

]
+ ηJ̃‖ +

me

ne2
γJ̃‖ . (5.11)

We will ignore the drift contribution, ve0 × B̃, discussed in the last section, note b̂0 · ∇p̃e ' ik′‖sxp̃e

cancels with a contribution from Ẽ⊥ consistent with Eqn. (5.8), and use the tearing layer ordering to justify

k⊥sJ̃‖ >> k′‖sxJ̃⊥ in the resistive and electron inertia contributions. The distinction between the collisionless

and semicollisional regimes may be understood with a �uid model by comparing the resistive ∼ η and electron

inertia ∼ γme/ne
2 terms in the parallel Ohm's law, Eqn. (5.11). Using the de�nition of resistivity from Sec.

2.3, η = me/ne
2τe, we note the resistive term dominates is the semi-collisional regime, and the electron

inertia term dominates in the collisionless regime, as one would expect from the nomenclature.

Collisionless regime

In the collisionless regime at rs, Ẽ‖ ' meγJ̃‖/ne
2 = γd2

eµ0J̃‖ ' −γd2
eB0ψ̃

′′, where we have used Eqn. (4.20),

thus Eqn. (5.9) at rs becomes

ψ̃ ' −d2
eψ̃
′′ ' d2

e

ψ̃∆′

lk
. (5.12)

This gives an expression for the collisionless layer width,

lk = ∆′d2
e . (5.13)

Individual electrons slightly o� the resonant surface experience a Doppler shift, ωD = k · b̂0vTe ' k′‖sxvTe,

from their random-thermal parallel motion along a �eld-line. If ωD > γ these electron are subject to an

ac rather than a dc electric �eld. Drake and Lee point out the layer width of the mode is limited by this

Doppler shift, such that γk ' ωD. Thus the collisionless growth rate is

γk ' k′‖slkvTe ' k
′
‖s∆

′d2
evTe . (5.14)

A signi�cant feature of the collisionless regime is neither lk or γk depend on S. Rather they are determined by

electron inertia and ∼ d2
e. This regime is of interest for hot fusion plasmas, however typical RFP discharges
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are semi-collisional and thus our regime of study is that which resistivity dominates.

Semi-collisional regime

In the semi-collisional regime Ẽ‖ ' ηJ̃‖ ' − (η/µ0)B0ψ̃
′′, and we may write Eqn. (5.9) as

γscψ̃ ' −
η

µ0
ψ̃′′ ' η

µ0

ψ̃∆′

lsc
. (5.15)

The parallel electron motion is no longer free streaming, but limited by collisions thus ωD '
(
k′‖sxvTe

)2

τe.

Again, this Doppler shift limits the growth rate at the semi-collisional layer width, lsc, thus ωD (lsc) ' γsc.

Combining this equation with Eqn. (5.15), expressions for the layer width and growth rate in the semi-

collisional regime are

lsc ' ∆′δ2
sc '

(
η

µ0

1

dek′‖svTe

)2/3

∆′1/3 (5.16)

and

γsc '
(
η

µ0

)1/3

∆′2/3
(
dek
′
‖svTe

)2/3

. (5.17)

The semi-collisional growth rate scales as S−1/3 and the layer width as S−2/3. The layer width has the same

form as the collisional case, ∆′δ2
sc, where δsc/a = 1/

√
SγscτA.

Given the expressions for layer width in the three regimes, Eqns. (4.41), (5.13) and (5.16), we de�ne the

tearing skin depth as

δ =

√
a2

SγτA
+ d2

e (5.18)

which allows us to write a single expression for the small-∆′ layer width valid everywhere,

l ' ∆′δ2 . (5.19)

Kinetic-Alfvén-wave mediated regime

That the separation of the electron and ion responses in both the semi-collisional and collisionless regimes is

not speci�cally dependent on ion thermal energy (ρi) but also arises at scales below the ion-sound gyroradius,

ρs = cs/ωci, from electron thermal energy was emphasized in Ref. [47] for the m = 1 tokamak mode. This

type of separation is discussed in general terms for reconnection in Ref. [48] as a kinetic-Alfvén-wave type

dispersive response that maintains reconnection out�ows at scales below ρs. We may illustrate this response

in a �uid model with the inclusion of the Hall term in the radial induction equation. In addition to drift
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terms from Eqn. (5.5), we include

r̂ · ∇ ×
[
J̃×B0

]
= r̂ ·

[
(B0 · ∇) J̃−

(
J̃ · ∇

)
B0

]
= (ik ·B0) J̃r . (5.20)

Using Ampere's law to solve for J̃r,

µ0J̃r = ik⊥B̃‖ + ik‖B0ψ̃
′ . (5.21)

Thus the full contribution from the Hall term, with the inner layer ordering, is

r̂ · ∇ ×
[
J̃×B0 + J0 × B̃

]
= −k⊥sk′‖sx

B0B̃‖

µ0
−
(
k′‖sx

)2 B2
0

µ0
ψ̃′ + (k⊥s)

2
J0⊥B0ψ̃ + k⊥sk

′
‖sxJ0‖B0ψ̃ (5.22)

where the last two terms are associated with the drift e�ects described in Sec. 5.1. We may neglect the

second (O
(
ε2
)
) and fourth (O (ε)) terms, thus the inner layer radial induction equation becomes

(γ + iω∗e + iωE×B) ψ̃ = ik′‖sx

(
−φ̃+

B̃‖

µ0n0e

)
+

η

µ0
ψ̃′′ (5.23)

and the solution is now coupled to B̃‖ when 1/µ0n0e ∼ d2
i e/mi is appreciable. The expression for B̃‖ from

the parallel induction equation has considerably more terms than the radial component. Until now our

equations have been general for both slab and cylindrical cases, for simplicity we consider B̃‖ for a slab

without pro�le gradients (∇B0 = p′0 = 0) or a mean �ow (v0 = 0). In this case

γB̃‖ = −B0∇⊥ · ṽ + divAik
′
‖sxB0ψ̃

′′ + η∇2B̃‖ . (5.24)

where the �rst term on the RHS comes from b̂ ·∇× (ṽ ×B0) and the second from b̂ ·∇×
(
J̃×B0

)
. Unlike

the resistive-MHD cases where the guide �eld, B0 (rs), was unimportant, the cases where the contribution

from B̃‖ is large will have a critical dependence. Additionally, it is evident that mode is now coupled to the

perpendicular compression, ∇⊥ · ṽ = ∇ · ṽ − ik′‖sxṽ‖, through the �rst term on the RHS.

Mirnov et al. (and references contained within) discuss the two-�uid responses through the coupling to B̃‖

as whistler-mediated and kinetic-Alfvén-mediated regimes with a double layer formulation [14]. Their study

of slab geometry with uniform pressure orders the ratio of the reconnecting and guide �elds to be small,

εB << 1, includes contributions from nonzero ∇ · ṽ, and considers the regime of ρs, di > δ. The whistler-

mediated regime may be described without coupling to the perturbed pressure through ∇⊥ · ṽ, and occurs

when di/a >> (mi/me)
1/4

(LB/a) ε
−1/2
B . This corresponds to either the large εB or small guide �eld limit,
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which is important in astrophysical situations but rare for con�nement devices, or a small magnetic �eld

gradient scale length, LB . For small LB , ∆′ ∼ 2/kL2
B and we expect whistler-mediated reconnection to be

important for large-∆′ cases. In MST, di/a ∼ 0.2, LB/a ∼ 1, and εB ∼ 1, thus (mi/me)
1/4

(LB/a) ε
−1/2
B ∼ 8

and whistler-mediated is not the relevant regime. Alternatively, �nite-β e�ects must be included to model

the kinetic-Alfvén-mediated regime which occurs when ρs & l. This is the relevant regime for MST. For

example, in the discharges described by Ding et al. in Ref. [37], the ion-sound gyroradius is approximately

1cm, less than a tenth of the minor radius but comparable to a tearing layer width. As a new result, Mirnov

et. al. identify a limitation on the electron response from the di�usion of B̃‖ and �nd the dispersion relation

Γnρs

G
(
Γn/
√
β
) +

2

∆′
=

2δG
(
Γn/
√
β
)

πΓn
(5.25)

which is valid for both small- and large-∆′. Here Γn is the normalized growth rate, Γn = γτA/ρsk⊥, and the

G function is de�ned as

G (x) =
x1/2Γ (1/4 + x/4)

2Γ (3/4 + x/4)
. (5.26)

Ahedo and Ramos use a di�erent ordering to include both the transition to and the MHD regime in Ref.

[49]. Their ordering allows for arbitrary εB and di, but requires �nite-β, β >> (γ/vAk⊥)
2
and small-∆′. The

restriction on β is easily met as long as β 6= 0 as (γ/vAk⊥)
2
is very small for tearing modes. This ordering

allows them to consider the MST-relevant kinetic-Alfvén-mediated regime, while neglecting the e�ect of

whistler waves. Their dispersion relations smoothly transition between six regimes parameterized by β and

di:

1. the collisional (resistive-MHD) regime [ρs << l or d2
i∆
′ << l],

2. at high β, the transition between (1) and (3) [
√
β >> ∆′δ and d2

i∆
′ ∼ l],

3. the large-di, B̃‖-di�usion dominated regime [
√
β >> ∆′δ and d2

i∆
′ >> l],

4. at large di, the transition to between (3) and (5) [ρs >> l and
√
β ∼ ∆′δ],

5. the semi-collisional regime [ρs >> l and
√
β << ∆′δ], and

6. at low β, the transition back to resistive-MHD [ρs ∼ l and
√
β << ∆′δ].

In the collisionless regime (γ >> 1/τe), the transisition of regime (4) may be characterized by the relation of

the electron gyroradius to the layer width, ρe ≷ l. These regimes are shown in Fig. 15 with the normalized



48

Plasma Phys. Control. Fusion 51 (2009) 055018 E Ahedo and J J Ramos

10
1

10
0

10
1

10
2

10
 2

10
 1

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

A

I

–

–

Figure 6. Dashed lines indicate the boundaries of the different parametric regions in the plane of
primary input parameters. Solid lines show the location of plasmas A and I of table 1 for k−1�′
ranging from 0.1 (top) to 10 (bottom).

Table 3. Scaling laws for the growth rate, the widths of the inner layers and the subsonic range
in PR1, PR3 and PR5. The extension of these laws to the intermediate regions PR2, PR4 and
PR6, by patching where they intersect, is straightforward. Recall kdi = α, kds = αβ1/2 and
k−1�′ ∼ 2(kL)−2.

PR1 PR3 PR5

εγ ∼ ε
3/5
η ε

2/5
B (kL)−2 ε

1/2
η (kdi)

1/2ε
1/2
B (kL)−5/2 ε

1/3
η (kds)

2/3ε
2/3
B (kL)−2

d2/L ∼ ε
2/5
η ε

−2/5
B (kL)−1 ε

1/4
η (kdi)

3/4ε
−1/4
B (kL)−7/4 ds/L

d1/L ∼ d2/L ε
1/2
η (kdi)

−1/2ε
−1/2
B (kL)−1/2 ε

2/3
η (kds)

−2/3ε
−2/3
B (kL)−1

β � ε
6/5
η ε

4/5
B (kL)−4 εη(kdi)εB(kL)−5 ε2

η(kdi)
4ε4

B(kL)−12

PR5; for β � ε
2/3
η in PR4; for β � εηα in PR3. Thus, the tearing mode is subsonic in all

the parametric space except for extremely low values of β or very large values of the Hall
parameter α. Second, we have checked (for kLB ∼ k−1�′ ∼ 1) the subsonic condition to
be necessary and sufficient to neglect the imaginary terms dropped in the derivation of our
basic inner region model, equations (45) and (46), hence to keep the growth rate purely real.
Therefore, the real-to-complex transition of the growth rate is expected to occur at the sonic
range. Future work based on the full inner model, equations (40)–(43), could address whether
the growth rate is effectively complex in the cold-plasma and very-strong-Hall limits.

Both the parametric location and the growth rate of the tearing mode depend on εB

and k−1�′. Considering the dependence on εB , β̂ and α̂2 are proportional to ε
2/5
B and εγ

19

Figure 15: Dashed lines indicate the boundaries of the di�erent parametric regions in the plane of primary
input parameters. Solid lines show the location of characteristic parameters for (A) Alcator C-MOD and (I)
ITER for k−1∆′ ranging from 0.1 (top) to 10 (bottom). This �gure is from Ahedo and Ramos, Ref. [49].

parameters

α̂ =
kdi

ε
1/5
η

(
εB∆′2

C2k3
⊥L

)1/5

, (5.27)

and

β̂ =
β

ε
2/5
η (Γ/2 + β)

(
C8εBk

2
⊥

π5L∆′3

)2/5

, (5.28)

where εη = k⊥η/µ0vA and C ' 2.12. Regimes 3-5 correspond to those covered by Mirnov et al. in Ref. [14].

We will use the analytic slab dispersion relations of Refs. [14] and [49] in the transition from resistive-

MHD to large di at high β (compare to Ahedo et al.) and the transition at large di from high β to small β

(compare to Mirnov et al.) for code veri�cation in Sec. 10. Our linear cylindrical computations with ∆′δ ∼ 1

con�rm that electron-�uid separation increases the tearing growth rates in pinch pro�les when ρs exceeds

the tearing layer width.

In addition, a portion of our computations include warm-ion e�ects through �uid gyroviscosity. This

e�ect only entered the preceding discussion through the gyroviscous cancellation of the diamagnetic drift

in the ion momentum equation. In cylindrical geometry, our warm-ion computations show an intermediate
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drift-regime with reduced growth rates at ρs-values that are smaller than the tearing layer width. These

computations are force-free thus there is no diamagnetic-drift e�ect (ω∗e = 0). We will show in Sec. 11 that

the drift e�ect results from ∇B0 and poloidal curvature, absent in force-free slab cases. Although our model

only includes �rst-order FLR e�ects, in warm-ion conditions where ρs is comparable to the resistive skin

depth the electron dynamics are decoupled and the tearing mode becomes less sensitive to the ion dynamics.

Thus �rst-order FLR modeling for warm ions should provide at least a semi-quantitative description of

tearing through the transition from MHD to electron-MHD.

6 Nonlinear growth and saturation of the tearing mode

We next describe nonlinear e�ects on the tearing mode relevant when the island size becomes comparable or

greater than the layer width. The nonlinear e�ects with a resistive-MHD model as described by Rutherford

are reviewed in Sec. 6.1. Work on island evolution with drift and semi-collisional FLR e�ects is considered in

Sec. 6.2. These studies will be used contextualize our nonlinear results where drift e�ects enter the equations

through ion gyroviscosity.

6.1 Rutherford theory

In Rutherford theory for the resistive MHD evolution of islands, the perturbed current produces a third-

order J × B force, where the ordering refers to the perturbation amplitude, that counteracts the linear

forces driving the island growth [50]. Figure 16 sketches this magnetic island structure. The components B̃r

and J̃‖ are indicated at the resonant surface, where the phase shift is speci�ed by Eqns. (4.9) and (4.20).

Additionally, the perpendicular components of ṽ are shown, with phases in agreement with Eqns. (4.11) and

(4.12) and the phase relationship to the perturbed �ux established by the radial induction equation in the

outer and inner regions, Eqns. (4.14) and (4.24). Using mean-�eld theory we note that correlations of ṽ and

B̃ can induce a second-order mean emf, −
〈
ṽ × B̃

〉
‖
, as it is proportional to the square of the perturbed

amplitude. This emf will drive a perturbed mean current, J0 ≡ 〈J〉 − Jeq, which will oppose the initial

equilibrium current, Jeq, at the resonant surface. The e�ect is described by Eqn. (3.5) and may also be seen

through consideration of the perturbations in Fig. 16. One conceptual picture of the island saturation is to

consider the e�ect of J0 on the solution of the outer region equations. This modi�es ∆′, and saturation is

achieved when ∆′ → 0. However, care must be taken as the nonlinear island may be of signi�cant width,

such that the small layer width ordering of Sec. 4 may no longer be valid.
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does not capture the saturation of the island, only a slowing of the growth, and the regime of validity is

referred to as the Rutherford stage. Recent theories perturbatively use the island size as a small parameter,

and �nd relations for the saturated width in a slab, Ref. [51], and cylindrical paramagnetic pinch, Ref. [52].

6.2 FLR e�ects

Previous work has typically considered slab geometries or large-aspect-ratio tokamak ordering where the only

contribution from Πgv leads to the cancellation of advection from the ion diamagnetic drift. As described

in Part III, we will demonstrate there is a linear drift e�ect proportional to ∇B0 and curvature in pinch

pro�les which is manifest through contributions from Πgv with a response similar to the diamagnetic-drift

tearing described in Sec. 5.1. In order to provide a basis for interpretation of the contributions from Πgv to

Eqn. (6.1), we now review the nonlinear work on diamagnetic-drift tearing and FLR e�ects in tokamaks.

Early nonlinear results on drift-tearing modes showed magnetic islands evolve to the same saturated width

found with resistive MHD modeling [53, 54]. These results assume drift e�ects are manifest only though n′0

and T ′i0 as the large parallel thermal conductivity, κ‖e ∼ T
5/2
e , �attens T ′e0 locally at the resonant surface for

small perturbations [55]. In Ref. [53], Biskamp makes a quasilinear mixing-length argument when the island

width is greater than the tearing layer width, w > l, to justify an assumption of particle density and ion

temperature �attening over magnetic island �ux surfaces. Thus ω∗ → 0 at �nite island width which leads to

resistive-MHD evolution in quasilinear computation. In Ref. [54], Monticello and White do not assume the

density pro�le �attens over the evolving island width in nonlinear computations. While this a�ects rotation

during the evolution, the helical �ux evolution is shown to be independent of rotation, and the saturated

state again matches resistive MHD predictions. Their description points out the free energy available to

the drift-tearing mode is the same as resistive-MHD through consideration of ∆′ (w). Both Biskamp and

Monticello and White consider the �uid-gyroviscous e�ect only from the dominant ion-pressure-gradient

contribution as appropriate in large-aspect-ratio tokamaks.

More complete nonlinear modeling by Scott et al. con�rms the density-�attening e�ect through sound-

wave mixing [56, 57]. In their description, the density pro�le �attens when

ω∗n ∼
(
k⊥sv

2
Tα/ωcα

)
(n′0/n0) ∼ k′‖wcs (6.3)

and temperature pro�les �atten when

ω∗α ∼ k′2‖ w
2κ‖α/n0 . (6.4)
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The parallel thermal conductivity can be included in our model through q‖α = κ‖αb̂0 · ∇kBTα where

κ‖α ' nkBTατα/mα. With roughly equal species temperatures, we expect the electron thermal di�usivity to

be greater than that of the ions by a factor of
√
mi/me, and the electron temperature gradient to relax faster.

Given the large parallel thermal conduction of both species, the temperature pro�les �atten at a smaller

magnetic perturbation amplitude than the density pro�le, and once w > ω∗n/k
′
‖cs the island evolution

is well described by resistive MHD. Drake et al. demonstrate that inclusion of the large parallel thermal

conductivity with the drift-tearing response leads to a linear stabilization of the mode through a screening

e�ect [58]. At the resonant surface, the mode rotates with frequency ω∗e, but slightly o� the resonant surface

where temperature pro�le �attens, as described by Eqn. (6.4) with w → l, it rotates with frequency ω∗n.

This di�erential mode rotation leads to a stabilizing e�ect. However, Scott and Hassam show this linear-

stabilization e�ect is only relevant to the nonlinear dynamics at very small perturbation amplitude, and for

perturbations on the order of the teaing layer width, the standard algebraic growth described by Rutherford

is again valid [59].

Large perturbations occur in the RFP, and thus from these consideration we expect the diamagnetic-

drift e�ects and stabilization associated with the large parallel thermal conduction are small. Additionally

as the pressure-pro�le gradients relax with increasing island width, the interchange e�ects associated with p′0

described in Sec. 4.3 become progressively less important [60]. Our modeling does not consider large parallel

thermal conduction or pro�les with pressure gradients; however, given the decreasing importance of these

e�ects for large islands, we believe the e�ects associated with ∇B0 and curvature that we study in detail are

more relevant to the RFP.

Our nonlinear two-�uid computations with cold ions, where contributions from Πgv vanish, show magnetic

islands that evolve to the same saturated width found with resistive-MHD modeling. In contrast, our

computations with warm ions show that the ion-gyroviscous stress in pinch con�gurations a�ects nonlinear

island evolution and saturation. The gyroviscous stress supplements the nonlinear Lorentz force that occurs in

resistive MHD and reduces the saturated island width. Moreover, the ∇B0 and poloidal curvature pro�les,

which lead to the important gyroviscous contributions in our linear cases, are largely una�ected by the

nonlinear evolution unlike the pressure-gradient e�ects considered in other studies.
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7 Thesis

To provide a basis for understanding two-�uid e�ects in MST, the computations presented here consider linear

(Part III) and nonlinear (Part IV) properties of individual tearing modes in cylindrical pinch pro�les with

uniform density and temperature. These equilibrium conditions approximate the core of relaxed pinches that

largely con�ne particles and energy in their outer region. When the tearing layer width is smaller than the

ion sound gyroradius, our cylindrical computations show that kinetic-Alfvén-wave (KAW) physics increases

linear growth rates relative to resistive MHD. An unexpected new result is a drift e�ect that reduces the

growth rate at intermediate-ρs values. This drift is present only with warm-ions FLR modeling, and arises

from ∇B and poloidal curvature represented in the Braginskii gyroviscous stress. As our computations have

a uniform pressure pro�le, there are no diamagnetic-drift e�ects. Using the orderings described in Sec. 4,

we �nd the contributions from Πgv to the parallel momentum equation and as appropriate for the RFP we

do not use large-aspect ratio ordering. We show that these contributions lead to ∇B0 and curvature drifts.

Coupling this with simple resistive-MHD �ux evolution through the radial induction equation, we derive a

heuristic dispersion relation. The growth rates and rotation frequencies from this dispersion relation are in

agreement with numerical results in the intermediate drift regime before KAW e�ects are signi�cant [61].

Unlike the diamagnetic e�ects which diminish in importance with nonlinear considerations, in Part IV we

demonstrate that the gyroviscous e�ects are relevant to the nonlinear evolution and limit the saturated island

width. As described in previous work, the ∇p0 pro�le is �attened by �nite-island-width e�ects; however, we

note the magnetic pro�le associated with drift e�ects is largely unchanged by island saturation. We examine

terms of the saturated-island force balance, and show that for warm ion cases the ion gyroviscous force can

supplement the nonlinear Lorentz force described in Sec. 6.1. Given the nonzero contribution from ∇ ·Πgv,

there is an incomplete cancellation of the nonlinear Lorentz force and the driving forces in Eqn. (6.1), and

thus the perpendicular current density and Hall dynamo e�ect are nonzero at saturation. We make a helical

projection of the island magnetic and ion �ow structures. Unlike cold-ion cases where the ion �ows advect

�ux into the magnetic island, the warm-ion cases exhibit �ows that are signi�cantly distorted by the ion

gyroviscosity [61].

Our studies of single tearing-mode dynamics are not directly applicable to the inherently multi-mode

discharges present in MST, although they provide a clear understanding of the physics governing the mode

growth rate and island saturation width. Part V considers computationally challenging cases with full

multi-helicity dynamics. The magnetic perturbations are smaller with a two-�uid computation than that

with a resistive-MHD model, as to be expected from the single-helicity results of Part IV. We compare
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both our single- and two-�uid computations with edge measurements of the perturbed-�eld amplitudes, and

�nd the computed amplitudes without the ion gyroviscous e�ects tend be approximately a factor of two

larger than the experiment. These two-�uid computations show that both the MHD- and Hall-dynamo

emfs contribute to the �attening of the current pro�le during relaxation events. The decomposition of

the Hall dynamo and assumption of one dominant term that are used in the measurement of Ding et

al. is checked, and our computation produces results similar to their measurement. The presence of Hall

dynamo implies a �uctuation-induced Maxwell stress. The magnitude of force densities from the Maxwell

stress and a competing Reynolds stress, and associated changes in the parallel-�ow pro�le are comparable to

measurements by Kuritsyn et al. These measurements do not compare well with our single-�uid computation,

and we conclude that at least two-�uid modeling is necessary to capture the dynamics of RFP experimental

discharges.
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Part II

Methods and parameters

We now turn to the practical matters of code implementation (Sec. 8), the con�guration of the computa-

tional domain for our various cases (Secs. 9.1 and 9.2), and the characterization of the various geometric,

equilibrium, dissipative, and physics parameters that describe the model (Secs. 9.3 and 9.4).

8 The NIMROD code

We solve the model equations, summarized in Appendix C and described in Sec. 2.4, using the initial-value,

extended-MHD NIMROD (Non-Ideal MHD with Rotation, Open Discussion) code [62]. The implementation

evolves perturbations from a prescribed steady state, and the computations may be either linear or fully

nonlinear. Results on pinch tearing modes reported in Part III are computed with the linear option. In Parts

IV and V, we describe results from fully nonlinear computations, including modi�cation of the symmetric

pro�les.

8.1 Spatial discretization

The code's spatial representation is spectral �nite elements [63, 64] over a 2D plane and �nite Fourier series

for a periodic coordinate. The Fourier direction may be con�gured with either linear (straight) or toroidal

geometry. This along with the �nite element mesh allows the code to capture con�gurations with shaped

2D cross-sections and one direction of geometric symmetry. For our cases, numerical quadrature with a

Gauss-Legendre rule is used to perform the integration required by the �nite element representation with 49

quadrature points per element.

Our slab cases use a rectangular mesh for the xy-plane and a single Fourier component, m = 0, in the

axisymmetric z-direction. The mesh has either 120 or 240 elements in the x-direction (the direction of

equilibrium �eld variation) and 14 elements in the periodic y-direction (the direction of the wave-vector).

The elements are of polynomial degree four, and the mesh is packed around the resonant surface of the mode

at x = 0. The numerical convergence of our linear cases is checked by increasing the polynomial degree from

4 to 5, and using smaller time-step sizes.

In the cylindrical-pinch computations described here, we use the Fourier representation for the azimuthal
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Figure 17: The packed, polynomial-degree four, 240 × 30 (radial×axial) mesh as used in our single helicity
computations described in Parts III and IV is displayed. Each rectangle represents 5×5 �nite elements with
the similar packing, and the resonant surface is indicated.

angle and the �nite-element representation for the rz plane. A periodic boundary condition is imposed in the

axial direction of the cylinder, with periodicity 2πR. Our single-helicity nonlinear computations (Part IV)

have 0 ≤ m ≤ 2 Fourier components and �nite-element basis functions of polynomial degree four in a 240×30

(radial×axial) mesh that is packed about the resonant surface as shown in Fig. 17. Numerical convergence is

checked by running computations with polynomial basis functions of degree �ve and six Fourier components,

0 ≤ m ≤ 5. The integrated value of the m = 1-mode
∣∣∣B̃∣∣∣ changes at most by 1.6% when increasing the

polynomial degree of the rz mesh and 3% when the axial resolution is doubled.

For our multi-helicity computations, described in Part V, we require additional axial and poloidal resolu-

tion, and must account for radially distributed resonant surfaces that move with the plasma pro�le evolution.

In these cases we use an unpacked 240× 60 �nite element mesh with polynomial degree four and six Fourier

components, 0 ≤ m ≤ 5. These cases push the limits of the computational resources allocated through

the National Energy Research Scienti�c Computing center (NERSC), and we rely on our experience with

the single helicity cases to give us con�dence that the cases are reasonably numerically converged. Our

cases represent a compromise between including all the computationally-intensive e�ects, and tractable but

well-understood resistive-MHD modeling. The boundary of what is tractable is continuously being pushed
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by improvements in computational power and algorithm and solver e�ciency. The multihelicity cases are

typically run on the Carver machine with 30 nodes where each has 2 quad-core Intel Xeon 5500 2.67 GHz

processors, 24 GB of DDR3 1333 MHz memory per node, and QDR In�niBand interconnects.

8.2 Temporal discretization

The NIMROD code uses a staggered time advance where the velocity is speci�ed on the time steps (j, j+1),

and density, temperature and magnetic �eld are speci�ed on the half-time steps (j + 1/2, j + 3/2). The

time-discretized velocity advance is

min
j+1/2

(
∆v

∆t
+

1

2
vj · ∇∆v +

1

2
∆v · ∇vj

)
−∆tLj+1/2 (∆v) +∇ ·Π (∆v)

= Jj+1/2 ×Bj+1/2 −min
j+1/2vj · ∇vj −∇pj+1/2 −∇ ·Π

(
vj
)

(8.1)

where the RHS (quantities with time step label j and j + 1/2) is known and the LHS is to be inverted to

�nd ∆v = vj+1 − vj . The semi-implicit di�erential operator L is de�ned as,

L (∆v) = C0

{
1

µ0
(∇× [∇× (∆v ×B)])×B + J×∇× (∆v ×B) +∇ (∆v · ∇p+ Γp∇ ·∆v)

}
+ C1pnl∇2∆v , (8.2)

and it vanishes as ∆t → 0. The part of L ∼ C0 is the linear-ideal-MHD-force operator which is part of a

fully-implicit time-advance scheme for ideal-MHD and its inclusion on the LHS of (8.1) e�ectively adds a

wavenumber-dependent inertia. Its use limits the frequency of high-k mode activity and gives the algorithm

numerically favorable properties [62]. The second term ∼ C1 ensures stability as non-symmetric pressures

develop where the nonlinear pressure coe�cient pnl is de�ned as the maximum in the Fourier direction of

the sum of the perturbed magnetic (B2/µ0) and internal (Γp) energy minus the axisymmetric magnetic and

internal energy. Typical values for our computations are C0 = 0.3 and C1 = 0.38. Once vj+1 is known, the

time-discretized temperature, number density and magnetic �eld equations,

∆n

∆t
+

1

2
vj+1 · ∇∆n = −∇ ·

(
nj+1/2vj+1

)
, (8.3)

n̄

Γ− 1

(
∆T

∆t
+

1

2
vj+1 · ∇∆T

)
= − n̄

Γ− 1
vj+1 · ∇T j+1/2 − n̄T j+1/2∇ · vj+1 (8.4)
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and

∆B

∆t
+∇×

[
me

µ0n̄e2
∇× ∆B

∆t
− 1

2
vj+1 ×∆B +

1

2

1

n̄e

(
Jj+1/2 ×∆B + ∆J×Bj+1/2

)
+

1

2
η∆J

]
= −∇×

[
1

n̄e

(
Jj+1/2 ×Bj+1/2 −∇p̄e

)
− vj+1 ×Bj+1/2 + ηJj+1/2

]
(8.5)

are advanced to �nd nj+3/2, T j+3/2 and Bj+3/2. De�nitions used here are ∆n = nj+3/2 − nj+1/2, ∆T =

T j+3/2 − T j+1/2, ∆B = Bj+3/2 − Bj+1/2 and n̄ =
(
nj+3/2 + nj+1/2

)
/2. The non-self-adjoint advective,

Hall and viscous terms, are implemented implicitly, resulting in a mixed semi-implicit/implicit leapfrog

advance described in Ref. [65]. In Ref. [66] von Neumann analysis of plane waves demonstrates this system

is numerically stable if C0 ≥ 1/4. Additionally, further analysis demonstrates that time-centered implicit

terms are essential for numerical accuracy.

Each advance equation, Eqn. (8.1) and (8.3)-(8.5), may be written in terms of a known RHS vector

b where each component represents the solution at a particular spatial location, a known matrix A on

the LHS, and an unknown solution vector x, in the sense Ax = b. Thus solving an advance equation is

equivalent to �nding the inverse of A. The deliberate choices made by the staggering scheme allow for

v, n, T and B to be solved for independently in that order, as opposed to a fully-implicit time-centered

scheme where they are solved for at the same time. As this choice limits the size of A it improves the

computational e�ciency for �nding its inverse. The problem is solved for x with the generalized minimal

residual method (GMRES)[67]. The method is iterative where the computational cost scales as each iteration

squared. Therefore it is necessary to have a good preconditioner and initial guess for x. The change in the

�elds,∆v, ∆B, ∆n and ∆T , from the last time step is used as the initial value for x. The preconditioner

is based on the LU decomposition of the independent contribution from each Fourier component to A.

To be more speci�c, one may conceptualize each Fourier component as having a 2D �nite element mesh

associated with it and the LU decomposition associated with each 2D �nite element mesh composes the

preconditioner. The LU decomposition is done by the distributed SuperLU code [68]. This preconditioner

does not capture the coupling between Fourier components, and although the NIMROD code has Fourier

component preconditioning through Gauss-Seidel and Jacobi iteration it is not used in our cases.

The modeling of dispersive waves and largely anisotropic di�usion involves ill-conditioned matrices which

may require a combination of large iteration number and small time step to solve. Thus the inclusion of

the whistler waves, KAWs, large parallel thermal conduction and large parallel viscosity can increase the

computational cost of a given problem. The time-step size in our cases is limited by one of four conditions:
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1. an e�ective �ow-CFL restriction [69] which requires ∆t ≤ 1/2kmaxvf , Lelement/2
√

3vmesh (where kmax

is the largest wavenumber in the Fourier direction, vf is the maximum Fourier direction �ow speed,

Lelement is a characteristic element size, and vmesh is the maximum �ow speed in the mesh),

2. a nonlinear-CFL restriction based on wave speeds computed with the nonlinear pressure,

3. the requirement that the solver for each �eld converge before 50 iterations, or

4. a hard Alfvénic limit (∆t . 3τA).

Linear computations are typically limited by the hard limit or the �ow-CFL condition, single-helicity com-

putations are limited by the nonlinear-CFL condition, and multihelicity by the either the �ow-CFL or the

solver.

The two-�uid implicit leap-frog time-advance is benchmarked to the analytic tearing dispersion relations

of Sec. 5.2 for slab geometry without ion gyroviscosity in Part III, on plane-wave propagation in Ref. [66],

and slab interchange with ion gyroviscosity in Ref. [70].

9 Geometric approximations and equilibria

We now describe the equilibrium con�guration of the computational domain for slab (Sec. 9.1) and cylindrical

(Sec. 9.2) cases, the conducting wall boundary condition (Sec. 9.3), and our parameter space (Sec. 9.4). In

general equilibria are found using Eqn. (1.17) with speci�ed current and pressure pro�les. For cylindrical

cases this becomes

B′θ = Bzλ−
Bθ
r
− µ0Bθ

B2
p′ (9.1)

and

B′z = −Bθλ−
µ0Bz
B2

p′ , (9.2)

where the prime indicates a radial derivative and we have used ∇ · B = ∇ · J = 0 to eliminate the radial

components of the �elds. The equations in slab geometry are similar, but without the cylindrical-curvature

term on the RHS of Eqn. (9.1) and with the transformation rθ → xy. Our computations use force-free

(Jeq × Beq = ∇peq = 0) equilibria. Thus we use Jeq = λeqBeq and set peq as a constant to investigate

�nite-β two-�uid e�ects without equilibrium diamagnetic �ow.
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9.1 Slab

For our slab cases we use a `Harris sheet' current pro�le:

λslab =
εB
LB

sech2

(
x

LB

)
, (9.3)

where εB = lim
x→∞

Beqy (x) /Beq0 and Beq0 = Beqz (0). With small εB , this leads to the equilibrium �elds

Beqy (x) ' εBBeq0 tanh

(
x

LB

)
, (9.4)

Beqz (x) =
[
B2
eq0 −B2

eqy (x)
]1/2 ' Beq0 , (9.5)

Jeqz (x) ' εBBeq0
µ0LB

(
1− tanh2

(
x

LB

))
=
εBBeq0
µ0LB

sech2

(
x

LB

)
, (9.6)

and

Jeqy (x) = Jeqz (x)
Beqy (x)

Beqz (x)
' Beq0ε

2
B

µ0LB
sech2

(
x

LB

)
tanh

(
x

LB

)
. (9.7)

To �nd ∆′ for this case we solve the Newcomb equation in the outer region. The expression for the

Newcomb equation given in Sec. 4.1, Eqn. (4.13), is for a general cylindrical case with non-zero pressure

gradient. Our slab cases are greatly simpli�ed by the absence of curvature terms, a constant wave-vector

k = kŷ, axisymmetry in the ẑ-direction such that ∂/∂z → 0, and no pressure gradient. We may derive an

analogous equation by using J×B to write

ikBeqyJ̃− J̃xB′eq + B̃xJ
′
eq − ikJeqyB̃ = 0 . (9.8)

The x-component of this equation establishes J̃x = λB̃x. The z-component may be reduced to

BeqyB̃
′′
x −

(
k2Beqy +B′′eqy

)
B̃x = 0 (9.9)

after using the relations J̃z = B̃′y − ikB̃x, B̃′x + ikB̃y = 0, and associated equilibrium conditions. After

substitution of the equilibrium �elds we have the relation

B̃′′x =

(
k2 − 2

L2
B

sech2

(
|x|
LB

))
B̃x (9.10)

where we have used the property sech (x) = sech (−x) to introduce the absolute value. The solution to this
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equation (from, for example, Ref. [49]), valid in the outer region where x 6= 0, is

B̃x = Bx0e
−k|x|

(
1 +

2

LB
tanh

(
|x|
LB

))
(9.11)

with

B̃′x = −ikB̃y = −Bx0
x

|x|
e−k|x|

[
k +

1

LB
tanh

(
|x|
LB

)
− 1

kL2
B

sech2

(
|x|
LB

)]
. (9.12)

It is clear there is a discontinuity in B̃′x at x = 0. Evaluating ∆′, Eqn. (4.17), we �nd

∆′ =
2

LB

(
1

kLB
− kLB

)
. (9.13)

As the growth rate of the tearing mode depends on the sign of ∆′ (Eqn. (4.39)), the destabilizing term

(1/kLB) is large for small-k, and the stabilizing term (kLB) is small for small-k, we expect the most unstable

mode to correspond to the longest wavelength.

Our computations use a periodic boundary condition in the y-direction, and the length, Y , determines

the most unstable k = 2π/Y . The analytic theory assumes an in�nite domain in the x-direction, x→ ±∞.

Of course, our mesh cannot extend to in�nity and we place conducting walls at x = a, and require a >> LB

such that these walls do not in�uence the mode dynamics. Given the outer solutions exponentially decay as

Exp [−k |x|] we do not expect this requirement to be severe. Fig. 18 shows the growth rate as a function of

a/LB , and a value of 6 is su�cient to limit the in�uence of the walls. This ordering creates a separation of

spatial scales, a > LB >> ρs, l where cases span the range of l >> ρs and l << ρs, that makes the problem

computationally challenging.

The slab cases may be related to the cylindrical through the transformation xy → rθ. Although the

outer solution is governed by signi�cantly di�erent equations, compare Eqns. (4.13) and (9.9), the zero-β

resistive-MHD inner layer equations described in Sec. 4.2 are identical. However, as we shall see, in the two

�uid regime the inner layer equations between slab and cylindrical cases di�er. Speci�cally, curvature and

equilibrium gradient terms in the response of B̃‖ are absent in the slab cases. When studying two-�uid e�ects

the slab cases are useful as benchmark, but cylindrical cases must be run for experimental comparison.

9.2 Cylindrical

Our cylindrical computations use the force-free, cylindrical, paramagnetic-pinch equilibrium [18]. The

motivation behind the choice of this equilibrium, and the speci�c current and radial pinch �ow, veq =
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Figure 18: Slab tearing growth rate (γτA) as a function of computational domain size (a).

Eeq ×Beq/B
2
eq, pro�les were describe in Sec. 3.1. We include a uniform axial electric �eld which models the

inductive loop voltage, such that the equilibrium is an Ohmic steady state ∇× Eeq = 0. The particle and

energy compression from ∇·veq are not considered in these simulations; we assume that they are balanced by

transport processes that are outside the scope of the model. Moreover, the pinch �ow, Eqn. (3.4), scales as

1/S and in the experimentally relevant high-S regime, it is likely to be just a small part of overall transport.

Single-helicity computations

For our single-helicity cases we set λ(0) = 3.3 when specifying the parallel-current pro�le, Eqn. (3.3), which

leads to the pro�le shown in Fig. 19(a). The pinch parameter, a measure of the normalized current, is then

Θ = Bθ0(a)/Bz0 = 1.38, where the over-bar indicates a volume average. This pinch-parameter value is

roughly 10−15% below that of the MST discharges described in Ref. [37]. At larger pinch-parameter values,

the parallel-current-density gradients of the paramagnetic pinch are larger, which is less representative of

relaxed RFP pro�les.

We limit the �uctuation spectrum of our nonlinear computations, which are three-dimensional, by using

a reduced aspect ratio of R/a = 0.505. This value makes the �rst axial wavenumber, kza = 1.98, comparable

to that of the dominant m = 1, n = 6 mode in MST. The safety factor (Eqn. (1.9)) for the single-helicity

computations is shown in Fig. 19(b), and the primary mode is resonant at the q = 1 rational surface,

rs = 0.35. Unlike MST, however, the next axial wavenumber is twice as large as that of the dominant
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Figure 19: The (a) parallel-current pro�le and (b) safety factor versus radius for the paramagnetic pinch
with λ0 = 3.3 and R/a = 0.505.

mode, which limits nonlinear coupling and allows us to focus on single-helicity behavior. The dominant

m = 1, kza = 1.98 mode in the computations has the tearing stability parameter ∆′a = 15.2, according to

an independent eigenvalue computation which solves the cylindrical Newcomb equation, Eqn. (4.13). The

only other MHD-unstable mode for this equilibrium has m = 1 and kza = 3.96. Its stability parameter

value of ∆′a = 3.0 leads to a smaller resistive-MHD growth rate, and the stabilizing gyroviscous e�ect

described in Sec. 11 is considerably stronger for this mode. It is not observed to be signi�cant in our

nonlinear computations. Our computations allow the dominant mode to couple with its higher harmonics,

m = 2, 3..., so single-helicity shaping and spectral broadening are permitted numerically, but these e�ects

are not observed to be signi�cant in our cases. Finally, we note that the paramagnetic pinch is not a reversed

state; reversal is achieved via the full RFP dynamo, which is not present in these low-Θ, reduced-aspect-ratio

cases.

Multi-helicity computations

Our multi-helicity computations use λ (0) = 3.88 when specifying the equilibrium parallel-current pro�le and

R/a = 3.03 such that the m = 1, n = 6 axial wavenumber is the same as our single-helicity computations

and similar to MST , kza = 1.98. However, the realistic aspect ratio leads to a pro�le with unstable modes

for m = 1, 6 ≤ n ≤ 21. This multi-mode case is initialized with a low-resolution, S = 5000, resistive-MHD

computation such that the m = 1, n = 6 mode is large, there is �nite n = 7+ activity, and the pro�les are

considerably more relaxed at t = 0. Thus the two-�uid multi-helicity computation begins in a nonlinear state

and almost immediately a relaxation event occurs which causes the axial-magnetic-�eld pro�le to reverse.
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9.3 Boundary conditions

Apart from a �xed e�ective axial voltage, which represent the transformer-driven inductive electric �eld,

boundary conditions at r = a represent a conducting wall,

n̂ · B̃(a) = n̂× Ẽ (a) = 0 , (9.14)

with a no-slip condition on �ow,

ṽ (a) = 0 . (9.15)

Dirichlet conditions are used for the evolving number density and temperature,

ñ (a) = T̃ (a) = 0 , (9.16)

which permit density and temperature to di�use into and out of the computational domain. Edge-peaked

pro�les for the resistivity and isotropic viscosity increase by a factor of 10 or 20 and spread boundary-layer

e�ects over a narrow region adjacent to the wall.

9.4 Model parameter space

In the high-current (400 kA) MST discharges analyzed in Refs. [37, 25], the electron and ion temperatures

are approximately 300 eV , n ' 1019m−3, B ' 0.4T , the minor radius is a ' 0.5m, and the major radius is

R ' 1.5m. With these conditions di ' 0.2a and ρs ' 0.02a in the core. If we use the linear growth rates from

our single-helicity cylindrical cases of Sec. 11 to estimate the resistive skin depth and tearing-layer width we

�nd l ' ρs for core modes in this un-relaxed but low-Θ current pro�le. In more relaxed pro�les the growth

rate is smaller, which puts the linear behavior in the MHD regime. Alternatively, nonlinearly driven modes

may grow faster and have tearing-layer widths that are signi�cantly smaller than ρs; though semi-collisional

conditions are still expected [71]. Understanding the transition from MHD to two-�uid tearing is therefore

important for MST.

Our linear parameter scans examine the two-�uid transition by varying β or di hence ρs while keeping

S, ∆′, and other parameters �xed so that the MHD response does not change for a given S -value. Table 2

summarizes the parameters of our scans and compares them with the high- and low-current MST discharges

of Ref. [37, 25, 16]. In terms of the normalized two-�uid parameters, α̂ and β̂ described in Sec. 5.2, our

linear scans cover the parameter space relevant to MST. In Sec. 10 we use the slab cases to verify the



65

MST MST slab slab cylinder
400 kA 200 kA β scan di scan di scan

kdi 0.71 0.71 0.42 0.015− 0.95 0.12− 6.02
β 0.015 0.04 10−7 − 0.1 0.1 0.1
kρs 0.08 0.01 6.8× 10−4 − 0.68 0.01− 0.63 3.5× 10−3 − 1.74
α̂ 8.21 6.33 16.0 0.46− 29.2 0.09− 46.7

β̂ 0.51 0.80 9.1× 10−5 − 84.1 13.4 0.621
∆′k−1 O (1) O (1) 0.30 1.45 4.37
S (k) 3.9× 105 1.1× 105 1.79× 107 3.50× 107 2.3× 104

Pm 0.16 0.43 - - 0.10
∆′δ ∼ 0.27 ∼ 0.52 0.02− 0.07 0.06− 0.11 0.62− 0.98
kl ∼ 0.03 ∼ 0.09 0.002− 0.017 0.003− 0.008 0.09− 0.22

Table 2: Normalized two-�uid tearing parameters computed for a core-resonant m = 1, n = 6 mode in
experimental high- and low-current discharges (left two columns), and for the linear scans of Part III (right
three columns). For cylindrical cases k⊥ (rs) is used as the wavenumber and ky is used in slab cases. The
Lundquist number quoted here uses the inverse wavenumber as the characteristic length scale and is denoted
S (k), as opposed to the minor radius which is used elsewhere in the text (and is denoted simply as S). The

α̂ and β̂ parameters are the normalized parameter space of Ahedo and Ramos (Ref. [49]) shown in Fig. 15.
Finally, the linear growth rates from Sec. 11 are used to estimate the layer width in MST.

implementation of the code by benchmarking against the analytic theory. Our cylindrical scans, which are

more experimentally relevant, are summarized in Secs. 11 and 12.1. For our cylindrical cases the response is

dependent on the choice of a warm-ion model (Ti = Te) or cold-ion model (Ti = 0) while β is �xed. Our slab

cases are not sensitive to this choice as the e�ect is the result ∇B0 and curvature drifts manifest through

the ion gyroviscosity.

For convenience, the electron mass is arti�cially increased by a factor a 10 in most computations relative

to the physical value, thus the mass ratio is me/mi = 2.72 × 10−3, and the ratio of the skin depths is

de/di = 5.21×10−2. Cylindrical computations near the collisionless limit have more realistic mass ratios such

that de = min
(
5.21× 10−2di, 9.0× 10−3a

)
, and the tearing conditions are in the experimentally-relevant

semi-collisional regime.

The parameter space of our nonlinear computations is summarized in Table 3. Our single-helicity cases

examine two particular cases with small and moderate di, referred to as kρs = 0.035 and kρs = 0.17 cases

respectively in Part III. Varying di in the nonlinear computations allows us to study single-helicity tearing

and subsequent magnetic island evolution in the single-�uid and two-�uid regimes. To examine the e�ect

of warm ions, i.e. ion gyroviscosity, we run each case twice: once with warm ions (fTi = 0.5) and once

with cold ions (fTi = 0). Our single-helicity nonlinear computations have a low Pm-value of 0.1, whereas

the multihelicity cases use Pm = 1. Computational practicalities presently limit our nonlinear cases to

S . 1× 105.
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MST MST SH cyl. SH/MH cyl.
400 kA 200 kA small di moderate di

kdi 0.71 0.71 0.12 0.60
β 0.015 0.04 0.1 0.1
kρs 0.08 0.13 0.035 0.17
α̂ 8.21 6.33 0.94 4.67

β̂ 0.52 0.80 0.62 0.62
S (a) 1.4× 106 3.7× 105 8× 104 8× 104

Pm 0.16 0.43 0.1 0.1/1
λ (0) 3.8 3.7 3.3 3.3/3.88

Table 3: Normalized two-�uid tearing parameters computed for a core-resonant m = 1, n = 6 mode in
experimental high- and low-current discharges (left two columns), and the nonlinear cases of Parts IV and
V (right two columns). The last column list both single-helicity (SH) and multi-helicity (MH) parameters.

These cases use k⊥ (rs) as the wavenumber. The α̂ and β̂ parameters are the normalized parameter space
of Ahedo and Ramos (Ref. [49]) shown in Fig. 15.
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Part III

Linear tearing modes

We naturally order our discussion such that each subsequent part becomes increasingly more complex. In

this part, we examine linear tearing, before moving to considerations of nonlinear e�ects (Part IV) and

multiple nonlinearly-interacting modes (Part V). Thus our study begins with code veri�cation by comparing

our computations to analytic linear-tearing-mode theory in slab geometry in Sec. 10, and �nishes with code

validation through comparison to published MST measurements (Part V). With regard to the rest of our

linear results, in Sec. 11 we study the dispersion relation in cylindrical geometry and �nd signi�cant drift

responses proportional to ∇B0 and poloidal curvature. And in Sec. 12, we examine the modi�cation to the

eigenfunction from decoupling and drift e�ects and the quasi-linear mean-�eld emfs generated by the linear

mode.

10 Slab geometry

10.1 Benchmark to analytic theory

Figure 20 shows the result of our numerical computations compared to the analytic dispersion relations of

Refs. [14, 49] previously described in Sec. 5.2. In Fig. 20(a) the value of the �at equilibrium temperature

pro�le is varied while all other parameters are held constant such that a range of β and thus ρs values are

scanned. The converged growth rates from NIMROD are compared to the theory of Mirnov et al. in Ref.

[14], Eqn. (5.25), with and without �nite electron inertia. At large kρs, the di�usion of B̃‖ described in Sec.

5.2 limits the growth rate of the mode, and this e�ect is captured by both the theory and numerics. At

small values of kρs, the numerical results asymptote to the single-�uid limit described by resistive MHD. The

theory does not capture this transition as its regime of validity is restricted to stationary ions. In Fig. 20(b)

the value of di is varied while other parameter are held constant, and the resulting numerical growth rates

from NIMROD are compared to the theory of Ahedo et al. in Ref. [49]. Their assumption of β >> (γ/vAk⊥)
2

and small-∆′ are less restrictive than those of Ref. [14], and there is quantitative agreement between the

computations and the theory within 2.3%. Both the theory and computation capture the asymptotic limit

of single-�uid behavior at small kdi.
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Figure 20: Comparison of numerical tearing-mode growth rates from the NIMROD code with (a) theoretical
analysis of Ref. [14] for conditions of S = 1.79×107, ∆′k−1 = 0.30, εB = 1/25, kLB = 0.93, and kdi = 0.418,
and with (b) the analysis of Ref. [49] for conditions of S = 3.50×107, ∆′k−1 = 1.45, εB = 1/50, kLB = 0.76,
and β = 0.1.

10.2 Eigenmode structure

Before studying the eigenfunction of the two-�uid tearing mode in cylindrical geometry, it is useful to start

with a more idealized slab geometry. Equilibrium quantities are dependent only on the x-coordinate and

are either symmetric or anti-symmetric about x = 0, where the resonant condition, k ·B0 = 0, is satis�ed.

The equilibrium magnetic �eld has no curvature, and with uniform pressure, its magnitude is also uniform.

The electron �ows of tearing modes in this simple con�guration symmetrically advect the reconnecting

magnetic �ux into a magnetic island, as illustrated schematically in Fig. 13. Given the spatial representation

ÃExp [imθ + inz/R], we choose the complex phase of the mode such that B̃r (0) is positive and real, as shown

in the schematic. With a single-�uid resistive MHD model, this choice makes B̃r (r) purely real and B̃⊥ (r)

and B̃‖ (r) purely imaginary as established by Eqns. (4.7), (4.24), and (5.24) (without the contribution from

the Hall term), see Ref. [39]. The x-point in�ow is then part of the purely imaginary ṽr (r), and the x-point

out�ow is part of the purely real ṽ⊥ (r) as established by Eqns. (4.23), (4.11) and (4.12). How this choice of

the complex-phase normalization corresponds to the tearing structure is shown on the RHS of Fig. 13.

In order to aid comparison, we choose to examine a slab case with parameters that no longer satisfy

the strict scale separation of the analytic theories, but are similar to our cylindrical cases: S = 8 × 104,

β = 0.1, kρs = 0.17, εB = 0.1, kLB = 0.56, Pm = 0.1. These choices result in k−1∆′ = 4.45 (Eqn. (9.13)),

γτA = 9.6 × 10−3 and kl = 0.025 with a two-�uid model, and γτA = 5.4 × 10−3 and kl = 0.040 with a

single-�uid model. Figure 21 shows the magnetic eigenfunction near the resonant surface, as ka = 3.48 the

plots are scaled to show −0.348 ≤ kr ≤ 0.348. Consistent with the discussion of the previous paragraph,
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Figure 21: Eigenmode components of B̃ for computations with S = 8 × 104, β = 0.1, kρs = 0.17, and cold
ions using (a) a single-�uid resistive-MHD model, and (b) and two-�uid model which includes the generalized
Ohm's law.

with a single-�uid model only the set of components
(
<B̃r,=B̃⊥,=B̃‖

)
are non-zero as shown in Fig. 21(a).

Additionally, the small-∆′ tearing ordering established in Sec. 4 is apparent: B̃r = ik⊥B0ψ̃ ∼ B̃⊥ = −B0ψ̃
′

and it is clear that B̃′⊥ ∼ ψ̃′′ will be large. Examining the magnetic eigenfunction with a two-�uid model,

Fig. 21(b), we note that the component <B̃‖ is now signi�cant. As this component is antisymmetric with

respect to rs, it creates a quadrupole �eld around the x-point. This term is directly related to the Hall

term in Eqn. (5.24), second term on the RHS. Our phase normalization makes ψ̃ purely imaginary with a

single-�uid model. Thus the inclusion of the Hall term, ∇×
(
J̃×B0

)
∼ ik′‖sxψ̃

′′, leads to the purely real

contribution that creates this quadrupole �eld.

The �ow structure of the single- and two-�uid slab cases is plotted in Fig. 22. In all cases, the electrons �ow

forms symmetric eddies around the resonant surface, as sketched in Fig. 13. Relative to the single-�uid case,

Figs. 22(a) and (c), the magnitude of the two-�uid electron �ow, Figs. 22(b) and (d), is increased as expected

from both the increase in growth rate and decrease in layer width. It is clear that there is a separation between

the electron and ion �ows with a two-�uid model at these parameters. This separation is associated with

non-zero
(
=J̃r,<J̃⊥

)
. A straightforward application of Ampere's law shows that the magnetic perturbations(

<B̃r,=B̃⊥,=B̃‖
)
produce a current perturbation with the phase orientation

(
<J̃r,=J̃⊥,=J̃‖

)
. The non-

zero contributions from the components of the perturbed current density that lead to species-�ow separation,(
=J̃r,<J̃⊥

)
, are a direct consequence of the non-zero quadrupole �eld, <B̃‖. As a �nal point, the �ow

structure of the plots con�rms the tearing ordering of Sec. 4. The sheared structure of ṽr = −ik⊥φ̃ leads to

a ṽ⊥ = φ̃′ which is at least an order magnitude larger.
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Figure 22: Eigenmode components of the tearing �ow structure plots show (a,b) the tearing x-point in�ow
and (c,d) the tearing x-point out�ow for computations with S = 8× 104, β = 0.1, kρs = 0.17, and cold ions
using (a,c) a single-�uid resistive-MHD model, and (b,d) and two-�uid model which includes the generalized
Ohm's law.
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11 Cylindrical dispersion relation

We now move our discussion from symmetric slab cases to more realistic cylindrical computations. These

cases involve additional e�ects from �eld-line curvature, an asymmetric parallel-current pro�le with respect

to the resonant surface, and mathematical regularity conditions at r = 0. Aside from the coupling to the

perturbed pressure discussed in Sec. 4.3, with cold ions the inner-region parallel-vorticity and radial-induction

equations, Eqn. (4.23) and (4.24) respectively, are identical in the slab and cylindrical cases. However, as

discussed in Sec. 11.1, the cylindrical parallel-induction equation, Eqn. (5.24), includes signi�cant e�ects

from terms proportional to poloidal curvature and mean-magnetic-�eld gradients that are not present in slab

cases. These additional terms cause a distortion of the eigenfunction such that the complex-phase of the

components varies as a function of radius. As a consequence, the growth rate is not purely real when ρs & l,

where the imaginary part represents rotation of the linear mode. Additionally, there is now an important

distinction in our cases between computations with cold (fTi = 0) and warm ions (fTi = 0.5), where the

former do not include the e�ect of gyroviscosity.

11.1 Computational result

Figure 23 shows linear growth rates versus kρs for calculations with cold (fTi = 0) and warm ions (fTi = 0.5)

at S = 8 × 104. Using the single-�uid growth rate to compute the skin depth, we �nd kl ' 0.24 and the

cold-ion trace shows growth rates that exceed the MHD result by about 20% when ρs ∼ l. Thus, our

cylindrical results with cold ions are consistent with expectations from the analytical slab theory as electron-

ion decoupling and enhanced growth rates are found when ρs & l. Our results with warm ions show a more

complicated transition. In the small-ρs limit, both the warm- and cold-ion results approach the single-�uid

growth rate. At large-ρs values, the electron �ow decouples from the ion �ow such that the warm-ion e�ects

are not important. Thus, the warm- and cold-ion growth rates also converge at large ρs. In the intermediate

regime, the ion response is modi�ed by a drift e�ect from the ion gyroviscosity. This drift e�ect leads to

growth rates that are smaller than the single-�uid result when ρs is not large enough for the KAW response

to decouple the tearing from the ion �uid. Numerical results for similar warm-ion conditions in slab geometry

do not show this drift regime, so the important gyroviscous e�ect is associated with the cylindrical geometry

and equilibrium.
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Figure 23: Growth rates (<γτA and |=γτA|) as a function of the ion sound gyroradius (kρs) for linear
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circles (<γτA ) and triangles (|=γτA|)). The single-�uid result is shown as the solid horizontal line. These
ρs scans are performed at S = 8× 104, Pm = 0.1 and β = 0.1.

As shown in Fig. 23, the growth rate is complex for our cylindrical cases where the imaginary part

is associated with mode rotation. In the intermediate regime, the mode rotation is determined by the

gyroviscous drift which will be described in detail in Sec. 11.2. In the KAW-mediated regime, ρs & l, the

cold-ion cases start to rotate and eventually =γ > <γ. Similarly, the warm-ion cases approach the same

result as the cold-ion cases as the ion �uid is decoupled. This drift e�ect is not present with slab geometry

and can be qualitatively described through examination of the cylindrical inner-region parallel-induction

equation (The analog to Eqn. (5.24) in slab cases). The J̃×B0 part of the Hall term in cylindrical geometry

is

b̂0 · ∇ ×
(
J̃×B0

)
= ik‖B0J̃‖ − J̃r

(
∇B0

B0
− b20θ

r

)
' −ik′‖sxB0ψ̃

′′ − ik⊥sB̃‖
(
∇B0

B0
− b20θ

r

)
(11.1)

where b0θ = B0θ/B0, the last term on the RHS is not present in slab theory and tearing ordering (Sec. 4)

has been applied (J̃‖ ' −B0ψ̃
′′ and J̃r ' ik⊥sB̃‖ + ik′‖sxB0ψ̃

′). In particular, equilibrium quantities are

Taylor expanded about the resonant surface by the small parameter x ≡ r− rs where |x| ∼ εrs with ε << 1.

For these equilibrium and geometric quantities, primes indicate di�erentiation with respect to r, evaluated

at r = rs. Unlike a �ute ordering, the wavenumber of the tearing mode, k⊥ =

√
(m/r)

2
+ (n/R)

2
, is order

1. The second derivative of ψ̃, which is proportional to the perturbed parallel current in the layer, is large

in this ordering, ψ̃′′ >> k2ψ̃ ∼ kψ̃′.

Adding the b̂0 · ∇ ×
(
J̃×B0

)
and other contributions from cylindrical curvature from the v ×B term

to the parallel-induction equation, we �nd
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(γ − iω∗H + iωE×B) B̃‖ ' −B0∇⊥·ṽ−B0ṽr

(
∇B0

B0
− b20θ

r

)
−ik⊥sB0ve0θ

b0θ
r
ψ̃+divAik

′
‖sxB0ψ̃

′′+η∇2B̃‖

(11.2)

similar to the equation derived in Ref. [72]. We assume �at temperature and density pro�les and de�ne the

drift frequency from the Hall e�ect as

ω∗H = k⊥sdivA

(
b20θ
r
− B′0
B0

)
. (11.3)

Comparing Eqn. (11.2) to Eqn. (5.24) we note that the ω∗H term on the LHS and the second and third

term on the RHS are only present in the cylindrical case. The second term on the RHS is from ṽ×B0 and

modi�es =B̃‖ relative to the slab cases. The third term is from ve0 × B̃, and even without ion �ow it still

may contribute as b0θJ0θB̃r/n0er if the Hall term is included. Through this term, the inclusion of mean

poloidal ion �ow will cause mixing of the complex-phases of the mode, even with a single-�uid model.

The ω∗H term is a result of including the Hall e�ect in our equations, and is a drift e�ect which acts only

on B̃‖. Thus we expect a drift-like response of the mode to be signi�cant when there is a large contribution

from B̃‖ to the radial induction equations, Eqn. 4.24, similar to the KAW e�ects. Indeed Fig. 23 shows the

rotation becomes large, |=γτA| ∼ <γτA, at kρs ∼ kl ' 0.24 just like the KAW e�ects which are signi�cant

for ρs & l.

11.2 Heuristic reduced gyroviscous model

We examine the gyroviscous e�ects in our pinch pro�les by considering the parallel component of the vorticity

equation, Eqn. (4.18). A stress tensor makes two contributions: the �rst appears directly as the last term

on the RHS of Eqn. (4.18), and the second appears when eliminating ∇⊥B after writing the Lorentz force

on the right-hand side in terms of the curvature vector κ. We assemble a heuristic dispersion relation using

resistive-MHD magnetic-�eld evolution, Eqn. (4.24), and including the e�ect of Π̃gv in the parallel vorticity

equation. A complete dispersion relation would include both the �nite-β e�ects that couple parallel �ows

and the two-�uid Ohm's law. However, through comparison with the results from NIMROD, we show that

our heuristic model explains the stabilizing gyroviscous e�ect in the drift regime at intermediate-ρs values.

We expand the gyroviscous stress operator about rs in the inner region where the tearing �ows are non-
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negligible and apply tearing ordering. Consistent with the aspect ratio ordering of the �ow described in

Sec. (4) and con�rmed in our computational slab cases of Sec. 10.2, the radial �ows ṽr = −ik⊥φ̃ are order

ε smaller than the perpendicular �ows, ṽ⊥ = φ̃′. For the perturbed streamfunction, φ̃(x), primes indicate

derivatives with respect to x. The localized nature of the tearing response leads to an ordering with respect

to x with each derivative of φ̃ lowering the order of a term by ε. Higher-order contributions result from the

expansions of b̂0 and k.

While forces from the gyroviscous stress of the tearing vortices include terms as large as order ε−3, many

do not contribute to the parallel vorticity. The leading-order force,
(
pi0φ̃

′′′/2ωci0

)
r̂, for example, does not

have a component in the b̂0 × κ0 direction. Including terms of order ε−2, the force is

− ∇ · Π =

[
pi0

2ωci0

(
φ̃′′′ +

φ̃′′

r

)
+

(
pi0

2ωci0

)′ (
φ̃′′ + xφ̃′′′

)]
r̂ +

pi0
2ωci0

ik⊥φ̃
′′b̂0 × r̂ + O

(
ε−1
)
. (11.4)

From this, we �nd the leading-order curvature-induced modi�cation to b̂0 · ∇ × (J×B),

2b̂0 × κ0 · ∇ · Π̃ =
pi0
ωci0

b20θ
r
ik⊥φ̃

′′ +O
(
ε−1
)
. (11.5)

The leading-order forces in the radial and perpendicular directions, of order ε−3 and ε−2 respectively in Eqn.

(11.4), may be rewritten in terms of ṽr and ṽ⊥ as

−∇ ·Π ∼=
pi0

2ωci0

[(
∇2ṽ

)
⊥ r̂−

(
∇2ṽ

)
r
b̂0 × r̂

]
. (11.6)

Figure 24 shows that when the expression on the right-hand side is computed with the �ow velocity of a

warm-ion cylindrical tearing mode, it provides a good approximation to the full gyroviscous force.

The gyroviscous force contains at most three radial derivatives from di�erential operations: the divergence

of Π, the ∇ṽ in the rate of strain tensor, and the gradient of φ̃. Thus, the force has lowest order terms at

O
(
ε−3
)
. For the parallel ion-gyroviscous torque, −b̂0 ·∇×∇· Π̃, the radial derivatives in the curl operation

act only on the perpendicular force, which is of O
(
ε−2
)
, so there is no contribution to the torque at O

(
ε−4
)
.

In fact the radial derivative of the lowest-order perpendicular force, O
(
ε−2
)
, cancels exactly with the O

(
ε−3
)

term ik⊥ (∇ ·Π)r from the radial force during the curl operation. This cancellation is related to the nearly

incompressible nature of the �ows, and thus there are at most terms of O
(
ε−2
)
in the gyroviscous torque.
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(a) (b)
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Figure 24: The perpendicular, (a), and radial, (b), ion-gyroviscous stress as well as the leading-order terms
expressed in Eqn. (11.6) for a linear computation with S = 8× 104, β = 0.1, kρs = 0.17 and warm ions.

This requires evaluation of the perpendicular gyroviscous force to O
(
ε−1
)
, where the additional terms at

O
(
ε−1
)
are

pi0
2ωci0

[
ik′⊥xφ̃

′′ +
ik⊥φ̃

′

r

(
1 + b2θ

)]
+

(
pi0

2ωci0

)′
ik⊥

[
2φ̃′ + xφ̃′′

]
. (11.7)

Applying the b̂ · ∇× operation to the gyroviscous forces through O
(
ε−1
)
, we �nd the O

(
ε−2
)
gyroviscous

torque,

−b̂0 · ∇ ×∇ · Π̃ =
pi0

2ωci0

b20θ
r
ik⊥φ̃

′′ +

(
pi0
ωci0

)′
ik⊥φ̃

′′ +O
(
ε−1
)

(11.8)

which is of the same order as the leading contribution from 2b̂0 × κ0 · ∇ · Π̃. The calculations are detailed

in Appendix F. Using Ũ ' φ̃′′ to order ε−2 and ignoring contributions from the relatively small isotropic

viscosity and perturbed pressure, we rewrite the parallel-vorticity equation as

(γ − iω∗gv + iωE×B)φ̃′′ = −v2
Aik
′
‖sxψ̃

′′ (11.9)

where again the kink and line-bending terms have been reduced as in Sec. 4 and we de�ne the gyroviscous

drift frequency as

ω∗gv =
k⊥
min0

pi0
ωci0

(
3

2

b20θ
r
− B′0
B0

)
= k⊥fTiβdivA

(
3

2

b20θ
r
− B′0
B0

)
. (11.10)

For conditions with an ion diamagnetic drift, v0 = b̂0 ×∇pi0/ωci0min0, the advective term of Eqn. (4.18)

becomes −ik⊥p′i0φ̃′′/ωci0min0 and cancels with the contribution from the ion-gyroviscous torque that is

proportional to p′i0 in Eqn. (11.8). Thus, even though we study cases without an equilibrium-pressure
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gradient, we recover the general lowest-order e�ects with respect to ρi/L in the ion-�ow equation.

As a new result found in this work, the ω∗gv term from gyroviscous stress has the form of an ion-drift

e�ect in the parallel vorticity equation, and it provides stabilizing e�ects that are generally observed with

drift-tearing, see Sec. 5.1. To demonstrate the stabilizing e�ects, we choose the ion rest frame such that

ωE×B → 0 and combine Eqn. (11.9) with resistive-MHD evolution of the perturbed magnetic �ux, Eqn.

(4.24). This results in a coupled pair of second-order di�erential equations,

(γ − iω∗gv) φ̃′′ = −v2
Aik
′
‖xψ̃

′′

γψ̃ + ik′‖xφ̃ =
η

µ0
ψ̃′′ . (11.11)

Using these as our inner-layer equations for the tearing mode, the resulting heuristic dispersion relation is

γ4 (γ − iω∗gv) = γ5
MHD similar to the relation found in Sec. 5.1, Eqn. (5.7), where γMHD is the growth rate

when ω∗gv → 0.

11.3 Comparison

The growth rates of Fig. 23 are computed with parameters that we use in our nonlinear single- and

multihelicity studies. Instead of comparing our heuristic gyroviscous model with these computations, we

perform a second set of computations that are in the asymptotic limit of large S (106), which is important

for the validity of the tearing ordering, and have small Pm (10−3) as we have ignored contributions from

isotropic viscosity. We then compare the growth rate and real frequency of the heuristic dispersion relation

with results from three subsets of these linear computations from NIMROD as shown in Fig. 25.

The �rst subset of computations uses a resistive-MHD Ohm's law with the cylindrical geometry and

parameters of our pinch case, and β is very small in order to reproduce the simpli�ed response assumed

for the heuristic model. Thus to capture the e�ects of ion gyroviscosity, an ad-hoc gyroviscous coe�cient is

scaled to vary ω∗gv. Although the numerical computations include more than just the leading-order e�ects

with respect to |x|/a, we see that there is good agreement between our heuristic model and the growth rate

and real frequency computed with NIMROD, and a strong stabilizing e�ect from the gyroviscous stress is

apparent.

The second subset of numerical computations shown in Fig. 25 is computed with β = 10% and fTi = 0.5;
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Figure 25: A comparison of <γ (top curve, �lled symbols) and |=γ| (bottom curve, open symbols) between
the heuristic ω∗gv model and three sets of numerical computations with S = 106, Pm = 10−3 and ion
gyroviscosity.
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the Ohm's law is again resistive MHD. Although the heuristic model does not include coupling between

parallel �ow and perturbed pressure, we observe that there is semi-quantitative agreement with the heuristic

model under-predicting the stabilizing e�ect at large-ω∗gv values.

The third subset of computations uses the generalized Ohm's law, Eqn. (2.27), and essentially the same

parameters as the computations shown in Fig. 23 except that S = 106 and Pm = 10−3. The results for the

real growth rate are similar to those with β = 10% and the resistive-MHD Ohm's law up to ω∗gv/γMHD '

10 where the real frequency changes sign as the KAW-type e�ects become important. Note that ω∗gv

is proportional to the ion-sound gyroradius and in our computations, ω∗gv/γMHD ' 315kρs. Thus, the

gyroviscous contribution becomes important at kρs ' 3.2 × 10−3, before KAW responses occur, and loses

signi�cance for kρs & kl ' 7× 10−2 .

The regime boundaries from the S = 106 results are consistent with the S = 8 × 104 results for warm

ions shown in Fig. 23. For these cases ω∗gv ' γMHD at kρs = 5× 10−3, and we conclude that a single-�uid

MHD model captures the physics when ω∗gv < γMHD, the drift regime begins when ω∗gv & γMHD, and

KAW decoupling e�ects dominate when ρs & l.

12 Cylindrical structure

12.1 Eigenfunction components

We now examine in additional detail two sets of cases, each set composed of both a warm- and cold-ion

case, from the linear growth rate scan shown in Fig. 23. In particular we choose a set near the single-�uid

limit for cold ions but in the intermediate ω∗gv-drift regime for warm ions with kρs = 0.035, and a set with

kρs = 0.17 where the KAW decoupling is signi�cant. These cases roughly correspond to the range of MST

experimental parameters, see Tab. 3. In our subsequent nonlinear discussion we will examine the set of cases

with kρs = 0.17 in more detail, and our multihelicity modeling of Part V is run with kρs = 0.17 and warm

ions.

As described in Sec. 10.2, two-�uid e�ects alter the phases of the tearing eigenfunction as a function

of radius, so the single-�uid phase relations are not valid. In Figs. 26 and 27 we plot two di�erent sets of

computed eigenfunction components for di�erent physical parameters. The �rst set corresponds to the non-

zero perturbations in the single-�uid limit (<B̃r,=B̃⊥,=B̃‖), and the second set (=B̃r,<B̃⊥,<B̃‖) is non-zero
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Figure 26: Eigenmode components of B̃ in phase with a single-�uid eigenfunction for computations with
S = 8 × 104, β = 0.1 and (a) kρs = 0.035 and cold ions, (b) kρs = 0.17 and cold ions, (c) kρs = 0.036 and
warm ions, and (d) kρs = 0.17 and warm ions.

(a) (b)

(c) (d)
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Figure 27: Eigenmode components of B̃ out of phase with a single-�uid eigenfunction for computations with
S = 8 × 104, β = 0.1 and (a) kρs = 0.035 and cold ions, (b) kρs = 0.17 and cold ions, (c) kρs = 0.035 and
warm ions, and (d) kρs = 0.17 and warm ions.
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only when two-�uid e�ects are considered. The linear magnetic components of the �rst set at S = 8 × 104

are plotted in Fig. 26 for kρs = 0.035 and kρs = 0.17 with warm and cold ions. The amplitude of the

eigenfunction has been normalized such that <B̃r(0) = 0.004B0 for comparison with the nonlinear plots

discussed in Part IV. Note that the pro�le and relative amplitude of the (<B̃r,=B̃⊥,=B̃‖) components in

our cylindrical cases are largely unchanged by the two-�uid e�ects.

In contrast with the slab results, the cylindrical cases do not have a clear quadrupole �eld from <B̃‖.

We surmise that in addition to the fourth term on the RHS of the parallel induction equation, Eqn. (11.2),

which is responsible for the quadrupole �eld, the contribution from ω∗H and the third term on the RHS

are signi�cant and distort <B̃‖ (which is determined by Eqn. (5.24) in slab cases). For all cylindrical cases,

the parallel component of the magnetic �eld in phase with a single-�uid eigenfunction, =B̃‖, is not small

nor solely determined by −B0∇⊥ · ṽ. As seen from the second term on the RHS of Eqn. (11.2), it has

contributions from ṽr when the equilibrium magnetic �eld gradient and poloidal curvature are non-zero at

the resonant surface.

The magnetic-�eld components out of phase with the single-�uid eigenfunction produce a current-density

perturbation (=J̃r,<J̃⊥,<J̃‖) that is in phase with the �ows associated with reconnection. These non-zero

out-of-phase components of J̃ demonstrate that the electron �ow required for reconnection decouples from

the ion �ow as ρs is increased. Figures 28 and 29 compare components relevant to a reconnecting electron and

ion �ow, as well as their separation, −J̃/n0e. At kρs = 0.17, the electron in�ow and out�ow are comparable

to the relevant components of −J̃/n0e near the resonant surface, and the ion �ows are much smaller. This

is in contrast to the smaller-ρs results, where the ion and electron �ows are closely coupled, especially with

cold ions. We note that the x-point out�ow velocity is an order of magnitude larger than the in�ow velocity,

consistent with the ordering of Sec. 4 where ṽr ∼ O
(
ε0
)
and ṽ⊥ ∼ O

(
ε−1
)
. In the cases with cold ions, the

peak of the out�ow velocity is only slightly shifted from the resonant surface, indicating that the asymmetry

of the cylindrical geometry has only a moderate in�uence. In the warm-ion kρs = 0.17 case, the peak of ṽ⊥

shifts outward, and the ion �ows do not penetrate all the way to the resonant surface. We surmise that the

oscillations in radius are part of the cylindrical drift-tearing-like behavior when the equilibrium curvature

and gradient e�ects are important.
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Figure 28: Linear electron and ion reconnecting �ows and the di�erence, J̃/ne. The radial components
(x-point in�ow) are displayed for computations with S = 8×104, β = 0.1 and (a) kρs = 0.035 and cold ions,
(b) kρs = 0.017 and cold ions, (c) kρs = 0.035 and warm ions, and (d) kρs = 0.17 and warm ions.
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Figure 29: Linear electron and ion reconnecting �ows and the di�erence, J̃/ne. The perpendicular compo-
nents (x-point out�ow) are shown for computations with S = 8× 104, β = 0.1 and (a) kρs = 0.035 and cold
ions, (b) kρs = 0.17 and cold ions, (c) kρs = 0.035 and warm ions, and (d) kρs = 0.17 and warm ions.
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Figure 30: The dynamo electric �elds inferred from the linear eigenmodes for computations with S = 8×104,
β = 0.1 and (a) kρs = 0.035 and cold ions, (b) kρs = 0.17 and cold ions, (c) kρs = 0.035 and warm ions,
and (d) kρs = 0.17 and warm ions.

12.2 Dynamo contribution to the electric �eld inferred from the linear mode

With nonlinear evolution, correlated �uctuations of electron �ows and magnetic �eld can modify the mean

�eld via the generation of a dynamo emf as described by Eqn. (3.5) in Sec. 3.1. Together, the �rst two terms

on the RHS of Eqn. (3.5) are the �uctuation-induced dynamo emf, Ef . The �rst of these terms represents

the MHD-dynamo e�ect, while the second is the Hall-dynamo e�ect.

Figure 30 shows the parallel component of the dynamo emfs calculated from the linear eigenfunctions,

where parallel is with respect to the equilibrium magnetic �eld. In the cold-ion small-ρs regime, case (a),

where ion and electron �ows are coupled, the Hall dynamo is small and the MHD dynamo dominates. Since

the MHD and Hall dynamo are �ux-surface averages, the results follow from the relationship between the

phases of the �uctuation components that determine the cross product in the quadratic dynamo terms. As

discussed in Sec. 12.1, in the single-�uid limit the perpendicular component of reconnecting ion �ow, ṽ⊥(r),

and the radial component of the magnetic perturbation, B̃r(r), as well as the pair of the functions ṽr(r)
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and B̃⊥(r), are in phase and contribute to the MHD-dynamo electric �eld. However, in the single-�uid limit

the perpendicular and radial components of the current perturbation are out of phase with respect to the

corresponding magnetic components; thus, the Hall dynamo vanishes. In contrast, the Hall contribution is

signi�cant in the two-�uid regimes (b and d) where the electron and ion �uids decouple and a fraction of

the perturbed current arises in phase with the corresponding magnetic components. This e�ect is described

in more detail for slab geometry in Ref. [23].

With cold ions and kρs = 0.17, Fig. 30(b), the Hall dynamo peaks near the rational surface and adds

to the MHD dynamo. Away from the rational surface, they tend to cancel. The peaked structure of the

Hall dynamo near the rational surface qualitatively agrees with the analytic prediction at large ρs in Ref.

[23]. However, the Hall dynamo is an even function about the resonant surface in slab geometry with a

symmetric λ pro�le, whereas it is an odd function in our cylindrical cases. The inclusion of warm ions and

ion gyroviscosity results in further decoupling of the ion and electron �uids and appreciable Hall dynamo

even at small ρs, as shown in Fig. 30(c). With warm ions and kρs = 0.17, case (d), the Hall dynamo is

more signi�cant, and strongly peaked at the resonant surface with �ne structure. Figures 28(d) and 29(d)

demonstrate that the ions do not penetrate to the resonant surface, and an eddy forms on the outboard side.

Figure 30(d) shows that the resulting MHD dynamo also shifts outward, but it is largely canceled by the

Hall dynamo.

13 Discussion

Our linear results con�rm the tearing ordering of slab theory for two-�uid cases, verify the NIMROD code

relative to this theory, and extend the theory into the cylindrical regime where we �nd important drift e�ects

related to the magnetic-�eld gradient and poloidal curvature. With respect to the gyroviscous drift which

a�ects the ion �uid, we note its form, Eqn. (11.10), is remarkably similar to the ∇B and curvature drifts

found from consideration of single-particle orbits, Eqns. (1.3) and (1.5), where we may estimate vi '
√
Ti/mi.

Unlike the E×B drift, the∇B and curvature drifts cause the ion and electrons to move in opposite directions,

and it is not surprising to �nd a drift-tearing response similar to that caused by diamagnetic e�ects as

reviewed in Sec. 5.1. Additionally unlike tokamak con�gurations, these drift e�ects are signi�cant for pinch

pro�les as the dominant ∇B and curvature drifts are aligned with the �ux surfaces as described in Sec. 1.4.

As the tearing perturbation grows to signi�cant amplitude and the growth rate slows as described in Sec.

6.1, the semi-collisional tearing-layer width broadens (l ∼ ∆′δ2 ∼ ∆′/SγτA), although eventually the linear
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tearing ordering is no longer valid. As the layer width broadens, we expect our KAW-mediated linear cases

which initially have ρs & l will transition back to the collisional regime where ρs < l. Thus to the extent

that our linear observations are relevant to the nonlinear regime, for large islands which evolve slowly we

do not expect the KAW and ω∗H e�ects to be signi�cant. However, the gyroviscous drift is important when

γ . ω∗gv and as the growth of the perturbation slows our linear considerations predict that this drift e�ect

increases in signi�cance. Additionally, unlike the diamagnetic drift which is limited by �attening of pressure

pro�le upon nonlinear saturation (Refs. [53, 54, 56], reviewed in Sec. 6.2), we do not expect the ∇B and

poloidal curvature pro�les and thus ω∗gv to be greatly modi�ed.
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Part IV

Nonlinear single-helicity tearing

14 Island structure in a cylinder

We now consider results from fully nonlinear cylindrical computations, where the perturbations modify the

mean �eld via the dynamo emf and the mode saturates. As described in Sec. 9.2, we use a small aspect

ratio, R/a = 0.505, such that our dynamics model the evolution of a single mode with m = 1 that is roughly

equivalent to the m = 1, n = 6 mode in MST. We run the computations through the Rutherford stage

described in Sec. 6.1 (Ref. [50]), where the nonlinear pro�le modi�cation a�ects the growth of the mode, to a

nearly steady �nal state. Figure 31 plots the island width in time for cold and warm ions at S = 8×104 with

kρs = 0.17. Early in the nonlinear evolution, the island-width evolution is characteristic of the Rutherford

stage with nearly linear growth: dw/dt = A∆′η/µ0 where w is the island width and A is a coe�cient of order

unity. Spectral broadening to m ≥ 2 is allowed in the simulations, but it is not observed to be signi�cant.

cold ions

warm ions

w
/a

t/τ
A

Figure 31: The island width as a function of time for computations with warm- and cold-ion models and
kρs = 0.17, S = 8 × 104 and β = 0.1. The lighter colored data points at w(t) = 0 represent the earliest
indications of nonlinear evolution.

As discussed in Sec. 10.2, the linear MHD eigenfunction can be normalized such that =B̃r(r) = <B̃⊥(r) =

<B̃‖(r) = 0. This relation among the phases of the components is approximately valid for the nonlinear
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Figure 32: Components of B̃ from a saturated island in phase with a single-�uid eigenfunction for compu-
tations with S = 8× 104, β = 0.1, kρs = 0.17 and (a) cold ions and (b) warm ions.

saturated structures. The dominant part of the magnetic-�eld perturbation, for the kρs = 0.17 cases at

S = 8 × 104, is <B̃r(r), =B̃⊥(r) and =B̃‖(r) which are in phase with the single-�uid eigenfunction. (See

Fig. 32) Including the e�ect of ion gyroviscosity from warm ions reduces the saturation amplitude in the

kρs = 0.17 cases, although the shape of the perturbations is largely unchanged. This result is not sensitive to

the Lundquist number, at least in the conditions tested numerically between S = 5000 and 8×104. For both

the warm- and cold-ion cases, the shape of the perturbations is reminiscent of the linear results in Fig. 26

with the sharper features washed out. A notable di�erence is the large peak of =B̃⊥ that is only present in

the linear results. This can be qualitatively explained through use of the ∇ ·B = 0 constraint. One expects

that =B̃⊥ scales like <B̃r/kw in the nonlinear stage, whereas it scales like <B̃r/kl in the linear stage. Thus,

relative to <B̃r, the peak of =B̃⊥ is expected to be ∼ l/w smaller in the nonlinear stage.

The saturated magnetic perturbations which are out of phase with the single-�uid eigenfunction are

plotted in Fig. 33. The amplitude of the out-of-phase components is two orders of magnitude smaller than

the saturated in-phase magnetic components. This contrasts with the linear results (Fig. 27), where the

magnitude of the out-of-phase magnetic perturbations are approximately one third of the corresponding in-

phase component magnitude. In the linear cases, the large out-of-phase magnetic components are associated

with induction through the relatively large, decoupled, reconnecting �ows. In contrast the �ows are much

smaller in the saturated state, as they only advect enough �ux into the island to balance the resistive

dissipation.
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Figure 33: Components of B̃ from a saturated island out of phase with a single-�uid eigenfunction for
computations with S = 8× 104, β = 0.1, kρs = 0.17 and (a) cold ions and (b) warm ions.

14.1 Helical projection method

To help visualize the saturated states, we project the single-helicity perturbations onto a helical surface

that captures the variations across the magnetic island. We make a parametric de�nition of a set of nested

surfaces in cylindrical coordinates,

{
r,

2πmζ

m2 + (nr/R)
2 − h,

nr2

R

2πζ

m2 + (nr/R)
2 +

mR

n
h

}
(14.1)

where 0 ≤ r ≤ a is the radial coordinate, 0 ≤ ζ ≤ 1 is a normalized helical coordinate along a given helical

surface, and 0 ≤ h ≤ (na/R)
2 (

2π/
[
m2 + (na/R)2

])
is a helical-surface label. The projection of the single-

helicity perturbations onto these surfaces is independent of surface choice. A single helical surface is given

by a �xed value of h and can be de�ned as

Hh(r, θ, z) =
nr

R
θ − m

r
z +

(
nr

R
+
m2R

rn

)
h = 0 . (14.2)

We note that variations in the k̂ direction are captured on each helical surface as k ·∇Hh = 0, but variations

in r̂ are not captured on a single helical surface, as r̂ · ∇Hh 6= 0. The surface mapped out at constant ζ is

Hζ(r, θ, z) = mθ +
n

R
z − 2πζ = 0 . (14.3)

As r̂ · ∇Hζ = 0, we conclude that variations in r̂ merely move between the surfaces at constant ζ. Since

all the Hh surfaces are identical, we choose one (h = 0) and project the r̂ and k̂/L (r) vector components,

where L(r) is the helix length at a given radius, onto this surface.
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(a)                                   (b)

r/a r/a

ζ ζ

Figure 35: `Streamlines' of a helical projection of Beq + B̃ for computations with S = 8 × 104, β = 0.1,
kρs = 0.17 and (a) cold ions and (b) warm ions.

kρs S w/a (cold) w/a (warm)

single-�uid 5000 0.36
0.035 5000 0.36 0.36
0.17 5000 0.36 0.24
0.17 8× 104 0.36 0.24
0.70 5000 0.36 0.21

Table 4: Magnetic-island widths at saturation as a function of ρs for cases with cold and warm ions at
β = 0.1.

island width decreases as ρs is increased in the warm-ion cases.

Steady single-helicity conditions require a helical electrostatic-�eld con�guration arising from the recon-

necting �ows [73, 74] as well as helical force balance. Our results show that the Hall term in Ohm's law does

not signi�cantly modify this electrostatic con�guration when ions are cold. Thus, the �nal magnetic �eld

perturbation amplitude is not a�ected by ρs. How gyroviscous e�ects from warm ions modify the island

force balance and thus the saturated width is discussed in Sec. 15.2.

After nonlinear saturation, advection of magnetic �ux into the island continues to balance resistive

di�usion. This �ow, plotted in Figs. 36 and 37, is analogous to the equilibrium pinch �ow in establishing an

Ohmic steady state. Comparing the �gures, we note that the general shape of the electron �ows is relatively

unchanged by the warm-ion e�ects; however, their amplitude is reduced. The eddies are larger in the cold-ion

case to sustain the larger island against dissipation. The narrow structure of the linear �ows is replaced by

a radially broad eddy in the saturated state. The �ows in the saturated nonlinear cases are roughly an order
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(a) (b)

r/a r/a

Figure 36: Electron and ion reconnecting �ows and the di�erence, J̃/ne. The radial components (x-point
in�ow) are displayed for computations with S = 8×104, β = 0.1, kρs = 0.17 and (a) cold ions and (b) warm
ions.

(a) (b)

r/a r/a

Figure 37: Electron and ion reconnecting �ows and the di�erence, J̃/ne. The perpendicular components
(x-point out�ow) are displayed for computations with S = 8 × 104, β = 0.1, kρs = 0.17 and (a) cold ions
and (b) warm ions.

of magnitude smaller in amplitude than their linear counterparts (Figs. 28 and 29) scaled by the magnetic-

perturbation amplitude. However, we �nd that the ratio of the perturbed kinetic to magnetic energy of the

saturated state is only a factor of two less that of the linear state, due to the broad �ow structure in the

nonlinear state.

In Fig. 38 we project the vectors and streamlines of the ion �ows onto a helical surface, along with the

streamlines of the magnetic �eld. The contributions from the axisymmetric �ows are not included. The

eddies in the cold-ion case support reconnection, and as Figs. 36(a) and 37(a) show, they are coupled with

the electrons. The eddies in the warm-ion case are decoupled and out of phase with a reconnecting �ow.
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(a) (b)
ℐ

r/a r/a

Figure 39: The �uctuation-induced dynamo electric �elds and mean current modi�cation at island saturation
for computations with S = 8× 104, β = 0.1, kρs = 0.17 and (a) cold ions and (b) warm ions.

contributions from B̃r and ṽe⊥ above and below the o-point. Away from the rational surface, there is an

induced Ef‖ anti-parallel to J0 from the interaction of B̃⊥ and ṽer.

As described in Secs. 3.1 and 6.1, in the saturated state the dynamo emf drives a nonlinear axisymmetric

current density, J0 ≡ 〈J〉 − Jeq (The initial equilibrium �eld is denoted by the subscript `eq.'), that is

associated with pro�le changes:

Ef = −
〈
ṽ × B̃

〉
+

〈
J̃× B̃

n0e

〉
' −ηJ0 . (15.1)

The dynamo emfs and induced current are plotted in Fig. 39. The combined dynamo emfs produce an

axisymmetric current perturbation that primarily reduces J‖0 inside the island and increases it outside. The

Hall dynamo is relevant only when the �ows decouple; thus in the saturated cold-ion state with coupled

�ows, the MHD dynamo is dominant. In the warm-ion case the ion �ows are modi�ed, as shown in Fig.

38(b); however, the electron �ows maintain a �ow pattern resembling Fig. 16, as demonstrated in Figs. 36

and 37. The Hall dynamo is signi�cant with warm ions and the mean-current modi�cation is smaller, which

is consistent with the smaller island size.

From Figs. 30 and 39, we note that the Hall dynamo must vanish at some point in the nonlinear evolution

when ions are cold. To examine this e�ect, Fig. 40 shows the island size and dynamo emf for the cold-ion

case at di�erent stages of nonlinear growth. The Hall dynamo becomes small relative to the MHD dynamo

approximately when the island width becomes larger than di = 0.17a. In the linear cases, the two-�uid scales

must be compared with the linear tearing layer width, l, which is small, whereas in the nonlinear stage the
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Figure 40: The �uctuation-induced dynamo electric �elds and mean current modi�cation for computations
with S = 8 × 104, β = 0.1, kρs = 0.17 and cold ions at di�erent times: (a) t = 2, 116τA, (b) t = 2, 712τA,
(c)t = 3, 431τA and (d) t = 3, 722τA.

two-�uid scales are compared with the island width, w, which can be considerably larger than l.

15.2 Island force balance

In Rutherford theory for the resistive MHD evolution of islands (Sec. 6.1), the perturbed current produces a

third-order J×B force, where the ordering refers to the perturbation amplitude, that counteracts the linear

forces driving the island growth [50]. In order to illustrate this e�ect in our computation, we express the

m = 1 force-balance equation as

ρ0
dṽ

dt
∼= f̃d + f̃3 −∇ ·Π (15.2)

where f̃d is the driving force, and f̃3 is the third-order force as de�ned in Sec. 6.1.

The driving, third-order, and ion-gyroviscous perpendicular forces in phase with a reconnecting �ow

are plotted in Fig. 41. Contributions from the inertial and isotropic viscous terms are small and are not

shown. With cold ions, saturation results when the secondary force balances the driving force. This is the
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(a) (b)

3

r/a r/a

Figure 41: The driving, third-order and ion-gyroviscous perpendicular forces in phase with a reconnecting
�ow for computations with S = 8× 105, β = 0.1, kρs = 0.17 and (a) cold ions and (b) warm ions.

same balance that occurs with a resistive-MHD model. However with warm-ion e�ects, gyroviscosity plays

a signi�cant role in opposing the driving force, as shown in Fig. 41(b). The current pro�le modi�cation

required to balance f̃d is smaller as f̃3 and ∇·Πgv combine to oppose the driving force. Thus warm-ion cases

with kρs > 0.035 have a reduced saturation amplitude and a smaller total dynamo emf at saturation relative

to resistive MHD. Additionally, because the gyroviscous forces prevent alignment of current density and

magnetic �eld, the Hall dynamo remains active in the saturated state, as observed in the previous section.

As emphasized throughout the discussion of the tearing structure, the two-�uid e�ects mix the phases

of the perturbations compared to a single-�uid model. Figure 42 shows that Eqn. (11.6) is still a good

approximation for the gyroviscous force in the saturated state. As the Laplacian operator does not mix the

phases, the stabilizing ion-gyroviscous force in phase with the reconnecting �ow, such as in Fig. 41, is out

of phase with the �ow eddy that produces it. Figure 38(b) demonstrates that the dominant ion eddies are

out of phase with the reconnecting �ows with warm ions. Thus the force balance out of phase with the

reconnecting �ow is signi�cant. These �ow eddies are produced by the interaction of the ion-gyroviscous

force resulting from the ion �ow in phase with reconnection and the Lorentz forces related to the decoupling,

where the perturbations have the phases (=B̃r,<B̃⊥) and (=J̃r,<J̃⊥). Figures 33, 36 and 37 show that the

perturbations with these phases are nonzero in the warm-ion saturated state.
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(a) (b)

r/a r/a

Figure 42: The perpendicular, (a), and radial, (b), ion-gyroviscous stress as well as the leading order terms
expressed in Eqn. 11.6 for a computation of the saturated island with S = 8× 104, β = 0.1, kρs = 0.17 and
warm ions.

16 Discussion

Our linear and nonlinear single-helicity cases do not represent the dynamic relaxation events observed in

RFPs, which result from strong nonlinear interaction among tearing perturbations of multiple resonant

helicities. However, because ion and electron temperatures are comparable in the experiment, we expect

that the ω∗gv drift in�uences island widths, possibly reducing the mode coupling and magnetic stochasticity

that occurs during and between relaxation events. An experimental measurement of the relative phase

between the magnetic perturbation and the ion �ow could be compared to the predicted phases from this

study in order to empirically determine the importance of the ω∗gv drift to a particular discharge.

Our �ndings may have more direct relevance to RFP discharges achieving QSH and to pro�le-control ex-

periments [75, 76]. As ion temperature increases with improved con�nement, it may lead to a self-reinforcing

process where the ω∗gv drift increases, further limiting the magnetic perturbations. Additionally, QSH dis-

charges are often associated with the dominance of the innermost resonant mode, and we note the poloidal

curvature and the gradient of the magnetic �eld are relatively weak near the magnetic axis. Other modes

would be subject to a larger drift e�ect, so there may be a natural tendency to produce QSH. Further study

with a FLR model and transport e�ects is needed to clarify the in�uence of the ω∗gv drift e�ects on these

improved con�nement discharges and in standard multi-helicity RFP dynamics.
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Part V

Multi-helicity dynamics

We now turn to modeling of plasma behavior with an aspect ratio comparable to MST (R/a ' 3), and thus

full multi-mode dynamics. As described in Sec. 3.1, previous RFP computation has typically been performed

with single-�uid models. Our two-�uid results di�er in key aspects, which we believe bring them closer to the

physical processes present in experiment. In particular in Sec. 17, we show that mode amplitudes are reduced

relative to single-�uid modeling - an e�ect that is associated with the stabilizing gyroviscous e�ects described

in Parts III and IV. In Sec. 18 we discuss the MHD- and Hall-dynamo emfs in our two-�uid computations

and show both are signi�cant during relaxation. We also perform an analysis of the measurements by Ding

et al. (Ref. [25]) which compare reasonably well with our computations. The momentum transport mediated

by the forces from the Maxwell stress associated with the Hall dynamo and the Reynolds stress is analyzed

in Sec. 19. Similar to the measurements by Kuritsyn et al., the computed �uctuation-induced stresses

exhibit radial variation and generally oppose each other (Ref. [16]). The computed redistribution of parallel

momentum from these stresses during a relaxation event also compares well to experimental measurements.

An overview of our modeling is given by the spectral magnetic and kinetic energies plotted in Fig. 43.

Figure43(a) shows the result of our two-�uid computation with S = 8×104, ρs = 0.05a, β = 0.1 and Pm = 1,

and Fig. 43(b) plots the result of a single-�uid computation initialized from the two-�uid state at t = 2, 921τA.

The parameters of the single-�uid computation are identical to the two-�uid, only the model equations di�er.

The value of ρs on axis is the same as our kρs = 0.17 single-helicity cases, however as our multihelicity cases

exhibit many modes over a range of wave-numbers, we normalize the ρs value by the minor radius. With

regard to the two-�uid computation, a large initial-relaxation event occurs at t ' 650τA as characterized

by a spike in the magnetic- and kinetic-mode energies. After this event, the spectral energies are lower,

indicating partial stabilization of the pro�le. There are additional relaxation events as the computation

progresses (see t ' 3, 250τA, t ' 5, 800τA and t ' 7, 900τA), however the amplitude of the spectral energies

remains much smaller than the initial event. The subsequent relaxation produces signi�cant m = 1 and

6 ≤ n ≤ 8 activity, but only during the initial event are m = 0 modes excited to large amplitude. The

kinetic energy spectrum is broader than the magnetic, and considerable mean kinetic energy is generated by

the �rst event and sustained throughout the computation. Additionally, although them = 0, n ≥ 1 magnetic

energy remains small during the plasma evolution subsequent to the initial event, the m = 0, n ≥ 1 kinetic
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(a) Magnetic (top) and kinetic (bottom) spectral energies for our two-�uid computation.
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(b) Magnetic (top) and kinetic (bottom) spectral energies for our single-�uid computation.

Figure 43: Magnetic and kinetic spectral energies as a function of time for the (a) two-�uid and (b) single-
�uid multi-helicity computations with S = 8× 104, ρs = 0.05a, β = 0.1 and Pm = 1. Values are normalized
such that the mean magnetic energy is approximately 1, where the mean magnetic energy has temporal
variations of less than 1% in our computations.
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(a) Field-reversal parameter F , Eqn. 3.9
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(b) Normalized current Θ, Eqn. 3.8

Figure 44: Plots of the (a) Field-reversal parameter and (b) normalized current for our two- and single-�uid
computations.

is large. Comparing and contrasting the spectral energies between our two- and single-�uid modeling, we

note three aspects: (1) The magnetic spectral energies are larger in the single-�uid computation, although

in general the kinetic spectral energies remain in the same range as the two-�uid case. (2) The energy of

the mean �ows in the single-�uid computation is immediately damped, however the m = 0, n = 1 kinetic

energy remains large similar to the two-�uid modeling. (3) The relaxation event that occurs at t ' 3, 250τA

in the two-�uid case is delayed until t ' 4, 100τA with the single-�uid model, and the m = 0, n = 1 magnetic

energy is excited to signi�cant amplitude relative to the two-�uid computation.
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17 Mode amplitudes

17.1 Experimental comparison

Figures 44 and 45 show time traces of F and Θ and the amplitude of B̃|| (a) decomposed by mode, respectively,

as a function of time for both our single- and two-�uid cases. Similar to the behavior of the spectral

magnetic energies, the amplitude of the B̃‖ (a) is much larger during the initial relaxation event relative to

the subsequent evolution in the two-�uid computation, and the initial event is comparable in amplitude to the

result obtained with a single-�uid model. Given the dominance of the mean poloidal magnetic �eld at the wall,

we may compare B̃‖ (a) to the experimentally measured values of B̃θ (a) by Ding et al. in Fig. 5. Using the

normalization B0 ' 0.4 T for the 400 kA experimental discharges they measure, we �nd B̃‖ (a) /B0 = 0.0025

is equivalent to 10 Gs. It is natural to compare the two-�uid initial-relaxation-event and the event with

the single-�uid model to the F = −0.22 experimental cases, as signi�cant m = 0 activity is present. The

mode amplitudes in the computations are larger by approximately a factor of 1.75 when compared with the

experimental measurements, even though the current drive in the computation (Θ ' 1.6) is slightly less than

the experimental cases (Θ ' 1.7). Alternatively, we may compare the subsequent behavior (t & 2, 000) of

the two-�uid computation with the F ' 0 measurements, as little m = 0 mode activity is present. In terms

of amplitude, there is remarkable similarity between the computation and experiment where both have mode

amplitudes of approximately 10 Gs. However, the m = 1, n = 5 dominates the dynamics in the experiment,

whereas the m = 1, n = 6, 7 are dominant in the computations. Given Eqn. 1.12, this indicates the parallel

current on-axis is smaller and thus the pro�le is more relaxed in the experiment.

17.2 Equilibria and island force balance

As the m = 0, n = 1 mode mediates three-wave coupling between the dominant m = 1 modes of our

computations, n = 6 and 7, the amplitude of m = 0 activity can signi�cantly alter the relaxation dynamics.

We will study the initial (large m = 0 activity) and subsequent (small m = 0 activity) relaxation events

of our two-�uid computation in more detail by evaluating quantities around the peak in the kinetic-energy

spectrum associated with each event: 612τA ≤ t ≤ 684τA and 3, 178τA ≤ t ≤ 3, 332τA, see Fig. 43.

Equilibrium quantities associated with these time windows are plotted in Fig. 46. The safety factor in the

core is comparable between the two time windows, however the reversal surface location di�ers; it is located

at r ∼ 0.8a during 612τA ≤ t ≤ 684τA and r ∼ 0.9a during 3, 178τA ≤ t ≤ 3, 332τA. The parallel current

pro�le dynamics mirror the safety factor. There is very little variation in the core between the di�erent
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Figure 45: The amplitude of B̃|| (a) for the m = 0, n = 1 and the m = 1, 5 ≤ n ≤ 10 modes as a function of
time for our (a) two-�uid and (b) single-�uid computations.
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(d) 3, 178τA ≤ t ≤ 3, 332τA

Figure 46: The (a,c) safety-factor and gyroviscous frequency for the m = 0, n = 1 mode pro�les, and the
(b,d) parallel-current, the gyroviscous frequency for the resonant m = 1 modes, and the β pro�les from the
two-�uid computation are shown for two time periods. The top plots (a,b) are averaged over the time range
612τA ≤ t ≤ 684τA, and the bottom plots (c,d) are averaged over 3, 178τA ≤ t ≤ 3, 332τA.

times and small di�erences in the edge. The parallel current pro�le for r > 0.6a during the initial relaxation

is more radially distributed with a �atter gradient at r ' 0.8a than during 3, 178τA ≤ t ≤ 3, 332τA.

The pro�le of km=1ρs is also plotted in Fig. 46, where we compute km=1 for the mode resonant at a given

radial location such that

km=1 =

√
1

r2
+

1

q2R2
. (17.1)

The km=1ρs pro�le diverges in two locations, as r → 0 and as q → 0. Our �rst-order FLR model of ion

gyroviscosity breaks down when km=1ρs approaches unity, and we do not expect the m = 1 ion dynamics to

be accurately modeled. The range of validity with respect to the m = 1 mode is roughly 0.1a . r . 0.65a,

where the ion gyroradius is strictly less than the ion-sound gyroradius, ρi < ρs (for our cases with equal

specie's temperature, ρi is smaller than ρs by a factor of
√

2). Figure 56 in Appendix shows the resonant
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surface location as a function of time for a collection of modes, and we note m = 1 modes with 6 ≤ n ≤ 20

are resonant within the range of m = 1 validity. These modes dominate our computations as larger-k modes

are both strongly damped (the dissipation scales as k2), and, as described in Sec. 4, the most unstable

tearing modes are those with longer wavelengths. Thus we argue our model su�ciently captures the current-

drive core dynamics. In our constant-equilibrium-pressure cases, the plasma-β pro�le increases by roughly a

factor of 9 at the wall relative to the core from magnetic-�eld amplitude variation. However, the experimental

pressure pro�le is typically peaked in the core such that β is constant if not decreasing. As ρs ∼
√
β, the

inclusion of a more realistic pressure pro�le would lead to smaller values of km=1ρs in the edge, although it

would not eliminate the divergence as q → 0.

Also plotted in Fig. 46 are the gyroviscous frequency pro�les (Eqn. 11.10) for them = 0, n = 1 (k⊥ = 1/R)

and m = 1 (k⊥ = km=1) modes. Similar to the behavior of km=1ρs, ω∗gv,m=1 diverges as q → 0 and the

resonant axial mode number n → ∞, and it is only plotted for r ≤ 0.65a where km=1ρs . 0.5. From our

linear theory, we expect the gyroviscous stabilization to be signi�cant between 0.5a . r . 0.65a where the

m = 1, 10 . n . 20 modes are resonant. Although the km=1ρs pro�le diverges as r → 0, the ω∗gv pro�le

remains �nite as both bθ and B
′
0 vanish. The gyroviscous frequency for the m = 0 mode (left plots in Fig.

46) is small in comparison to the higher-k m = 1 modes (right plots), and thus the linear theory predicts

the stabilizing in�uence of the gyroviscous force is much smaller for the m = 0 mode.

In Sec. 15.2 we examine terms of the helical momentum equation that establish the saturated-island

force-density balance. In order to determine the in�uence of gyroviscosity in our multihelicity computations

we make a similar decomposition, however the decomposition of forces into driving and third-order is no

longer possible as there is no well-de�ned initial equilibrium. In addition, unlike our single-helicity results,

nonlinear contributions to the helical momentum equation are large in our multi-helicity computations. Thus

we decompose the forces into the linear contribution,

Flin = J̃×B0 + J0 × B̃−∇p̃− v0 · ∇ṽ − ṽ · ∇v0 , (17.2)

the nonlinear contribution from J×B, and the gyroviscous force.

These terms in the perpendicular-force-balance equation for the m = 0, n = 1, and m = 1, n = 6 and 10

modes are plotted in Fig. 47. These plots represent the forces governing the x-point out�ow of each mode,

and are averaged over the time windows corresponding to the initial and the subsequent relaxation events in

the two-�uid computation. Alternatively, we could have chosen to plot the radial forces governing the x-point
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Figure 47: The perpendicular force balance for the (a,d) m = 1, n = 6, (b,e) m = 1, n = 10, and the (c,f)
m = 0, n = 1 modes during the (a-c) initial, 612τA ≤ t ≤ 684τA, and (d-f) subsequent, 3, 178τA ≤ t ≤
3, 332τA, relaxation events.

in�ow. For all modes in both time windows, the linear and nonlinear forces are signi�cant. However, the

gyroviscous force makes only a small contribution to the m = 0, n = 1 force balance. It is more signi�cant for

the core modes and is particularly large for the m = 1, n = 6 mode. The small in�uence of gyroviscosity on

the m = 0 mode agrees with the considerations of linear theory where ω∗gv,m=0 is small relative to ω∗gv,m=1

(Fig. 46).

17.3 m = 0 magnetic energy drive

The equilibria and force-balance considerations indicate that gyroviscous stabilization is not directly respon-

sible for the lack of signi�cant m = 0, n = 1 magnetic-mode excitation after t ' 2, 000τA in the two-�uid

computation. In order to investigate the relatively small m = 0, n = 1 magnetic-mode amplitude further,

we consider the spectral-magnetic-energy exchange. As shown in Appendix E, the time-rate of change of the
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magnetic energy may be written as

∂

∂t

B2

2µ0
= −

[
∇ ·
(

E×B

µ0

)
+ E · J

]
, (17.3)

where the �rst term on the RHS is the Poynting �ux, and the second represents coupling to the kinetic

energy. Given the quadratic nature of these quantities, we may decompose volume-averaged according to

contributions from a Fourier expansion. For example, the contribution to the magnetic energy from each

mode becomes
〈〈
Bm,nB

∗
m,n/µ0

〉〉
, where 〈〈〉〉 indicates a volume average. After applying our conducting

wall boundary conditions, the Poynting �ux vanishes, and the time-rate of change of the volume-averaged

spectral magnetic energy may be written as

∂

∂t

〈〈
Bm,nB

∗
m,n

µ0

〉〉
= −

〈〈
Em,n · J∗m,n + E∗m,n · Jm,n

〉〉
. (17.4)

The spectral-magnetic-energy drive, the RHS of Eqn. (17.4), for the m = 0, n = 1 mode is shown in Fig.

48 for both (a,b) the two-�uid and (c) single-�uid computations. This drive is decomposed in terms of the

linear and nonlinear contributions from the m = 0, n = 1 Ohm's law. We �nd the dynamics are dominated

by the v ×B, Hall and resistive terms, and other contributions are not plotted.

During the initial relaxation event, shown in Fig. 48(a), we see the mode is initially driven (positive

−〈〈E · J〉〉) from 550τA to 800τA and then damped (negative −〈〈E · J〉〉) during 800τA . t . 1, 500τA. The

energy drive is provided through contributions from both the nonlinear Hall and MHD terms similar to the

MST measurements described in Refs. [40, 41]. The large nonlinear drive is the result of three-wave coupling

between the core-resonant m = 1 modes with neighboring n numbers. There are temporal di�erences

between the nonlinear Hall and MHD terms however, the Hall term is large and positive for period of 50τA

during the mode-activity peak, and later it reverses sign and drains energy from the mode. In contrast, the

nonlinear MHD term is almost strictly a driving term and is active for a period of approximately 250τA.

The linear MHD term tends to oppose changes in the magnetic energy; during the initial driven period it

is negative, and later it is positive in the damped period. Similar to behavior of our single-helicity cases

where we �nd cancellations between v and J/ne lead to opposing MHD and Hall terms, the linear Hall

contribution tends to drive the mode and partially cancels the stabilizing in�uence of the linear MHD term.

The resistive contribution −
〈〈
ηJ2

〉〉
is strictly a damping term and makes a signi�cant contribution when

the mode magnetic amplitude is large.

Through the two-�uid evolution during the subsequent relaxation event, 2, 921τA ≤ t ≤ 4, 000τA (Fig.
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Figure 48: Spectral energy transfer rate for the m = 0, n = 1 mode. The two-�uid computation is split
between (a) the early time where large m = 0, n = 1 and (b) the later half of the computation where the
m = 0, n = 1 mode remains suppressed. In (c) the single-�uid case is shown.
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48(b)), all terms in the decomposition of −〈〈E · J〉〉 are small. There are small driving contributions from

the linear terms, but not enough to signi�cantly excite the m = 0 magnetic perturbation. We conclude

that it is not gyroviscous stabilization, but rather lack of a nonlinear drive that explains the small m = 0

magnetic amplitudes after the initial relaxation event.

Figure 48(c) shows the spectral-magnetic-energy drive for the single-�uid computation. As the Hall term

is not present in this computation, its contributions are not shown. Associated with the signi�cant m = 1

mode magnetic amplitudes, there is a large nonlinear v ×B drive during 4000− 5000τA. The linear v ×B

term tends to oppose changes in the mode energy as in the two-�uid case.

18 Electric-�eld dynamics

18.1 Dynamo emfs and pro�le modi�cation

Figure 49 shows the parallel dynamo emfs and associated pro�le modi�cation at 612τA ≤ t ≤ 684τA and

3, 178τA ≤ t ≤ 3, 332τA. In both time windows, the combined dynamo emf acts to �atten the current pro�le

by driving parallel current in the edge, and reducing it in the core. The MHD- and Hall-dynamo emfs are

of comparable amplitude. The measurements of Ding et al. �nd a �vefold decrease in the amplitude of the

Hall dynamo between MST discharges with F = −0.22 and F = 0. Our results are similar as the initial

event has F ' −0.11 and a Hall dynamo emf that is approximately a factor of eight larger than during the

subsequent relaxation event with F ' 0.02.

It is clear from Fig. 49 that the sum of the dynamo emfs do not balance the resistive term from the

perturbed mean current. This is natural as the multi-helicity plasma evolution remains dynamic throughout

time and never approaches a steady state, unlike our single-mode modeling. The dynamo emfs are much

larger than the perturbed mean current during a short time window around the relaxation events, and they

are small in the quiescent periods between events.

The contributions from speci�c modes to the dynamo emfs are shown in Fig. 50. In general each mode

�attens the current pro�le around its resonant surface by reducing the current on the radially-inward side and

driving current on the radially-outward side (resonant-surface locations are plotted in Fig. 56, in Appendix

H). For example, the Hall dynamo from them = 1, n = 6 mode is positive on the radially-inward side relative

to its resonant surface, and is negative on the outward side for both the initial (F ' −0.11, rs ∼ 0.3a) and

subsequent (F ' −0.02, rs ∼ 0.2a) relaxation events. As each mode incrementally transfers the current

outward, their collective e�ect is a global redistribution of the parallel-current pro�le.
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(a) initial event

(b) subsequent event

ℐ

Figure 49: Time-averaged dynamo emfs and current-pro�le modi�cation during the (top) initial, 612τA ≤
t ≤ 684τA, and (bottom) subsequent, 3, 178τA ≤ t ≤ 3, 332τA, relaxation events.
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Both the Hall- and MHD-dynamo emfs are signi�cant near each mode resonant surface. Similar to the

behavior of the composite dynamo emfs (Fig. 49), the amplitude of the contributions from each mode to the

dynamo emfs (Fig. 50) are smaller in the F ' −0.02 event relative to the F ' −0.11 event. For example,

both the MHD- and Hall-dynamo emfs are reduced by a factor of four during the F ' −0.02 time window.

With respect to the MHD dynamo, the signi�cant amplitude of the dynamo emfs at mode resonant

surfaces seen in Fig. 50 contradicts the discussion of Ding et al.. They point out the parallel MHD dynamo

emf may be approximated as

〈
ṽ × B̃

〉
‖

=
〈
ṽrB̃⊥

〉
−
〈
ṽ⊥B̃r

〉
' −

〈
ṽ⊥B̃r

〉
(18.1)

motivated by the ordering B̃⊥ ∼ B̃r and ṽr << ṽ⊥. As discussed in Sec. 4, these assumptions are valid for

tearing perturbations where the �ow ordering results simply from the aspect ratio of the in�ow, k−1
⊥ , to the

out�ow which is radially localized in the layer. They then use the property that tearing modes are nearly

incompressible,

∇ · ṽ =
1

r

∂

∂r
(rṽr) + ik⊥ṽ⊥ + ik‖ṽ‖ ' 0 , (18.2)

to relate ṽ⊥ to ṽ‖ by assuming that all terms proportional to ṽr are again small. Their result is an MHD-

dynamo emf which is proportional to k‖ and small at the mode resonant surface. We argue that given

the �ow aspect-ratio ordering, ṽ′r (' −ik⊥φ̃′ for linear theory) is comparable to ṽ⊥ (φ̃′) near the resonant

surface. As the last term (ik‖ṽ‖) on the RHS of Eqn. (18.2) vanishes at rs by de�nition, there is instead

a balance between ṽ⊥ and ṽ′r. Thus nothing precludes the MHD-dynamo emf at the resonant surface from

being signi�cant as observed in our computations, and it may be expressed as −
〈
iṽ′rB̃r

〉
/k⊥.

18.2 Experimental comparison

Using values of B0 ' 0.4 T and vA ' 2 × 106 m/s for the 400 kA discharges analyzed by Ding et al., the

measured amplitude of the m = 1, n = 6 Hall dynamo emf in Figs. 6 and 7 of 40 V/m corresponds to

Ẽ/vAB0 = 5 × 10−5 in our normalized units. The amplitude of the m = 1, n = 6 Hall-dynamo emf at the

resonant surface in our computation during the initial relaxation event, Ẽ/vAB0 ' 4 × 10−5 (Fig. 50(a)),

is remarkably similar. Additionally, the Hall-dynamo emf measurements during an F = 0 relaxation event

have an amplitude of 10V/m, a factor of four less than the F = −0.22 measurements (See Fig. 11 in Ref.

[25]). This behavior is similar to the 4× reduction in amplitude between our F ' −0.02 and F ' −0.11

events discussed in the last section. However, there are also some discrepancies between the experimental
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(b) 3, 178τA ≤ t ≤ 3, 332τA; note vertical scale di�ers

Figure 50: Contributions to the Hall and MHD dynamo emfs from individual modes averaged over (a) the
initial relaxation event, 612τA ≤ t ≤ 684τA, and (b) the subsequent relaxation event, 3, 178τA ≤ t ≤
3, 332τA.
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measurements and our computations. In particular, the measurements show a Hall-dynamo emf which is

strictly positive, and radially localized within rs ± 0.1a. Whereas we �nd the emf has a radially-distributed

in�uence and changes sign roughly near rs with both negative and positive contributions.

Ding et al. decompose the Hall-dynamo emf and argue that a single term proportional to the correlation

of
〈
B̃r, B̃

′
θ

〉
dominates. However, as described in detail in Appendix G, we argue that this term is one of

two important contributions to the parallel Hall dynamo emf. To be more speci�c, after elimination of B̃z

with the ∇ · B̃ constraint the poloidal component of the Hall dynamo emf may be written as

µ0

〈
J̃× B̃

〉
θ

=

(
2

r
+

∂

∂r

)〈
B̃r, B̃θ

〉
, (18.3)

and the axial component of the Hall dynamo may be written as

µ0

〈
J̃× B̃

〉
z

= −Rm
rn

∂

∂r

〈
B̃r, B̃θ

〉
+
R

n

(〈
iB̃′r
r
, B̃r

〉
+
〈
iB̃′′r , B̃r

〉)
. (18.4)

We may project these decomposed components into the parallel direction to �nd

µ0

〈
J̃× B̃

〉
‖

=

[
C1 + C2

∂

∂r

]〈
B̃r, B̃θ

〉
+ C3

〈
i

r

∂

∂r

(
rB̃′r

)
, B̃r

〉
(18.5)

where

C1 =
B0θ

B0

2

r
,

C2 =
B0θ

B0
− B0z

B0

Rm

rn
, and

C3 =
B0z

B0

R

n
.

After use of the product rule for the derivatives, the �ve terms of Eqn. (18.5) are plotted in Fig. 51 for the

m = 1, n = 6 mode of our two-�uid case. The sum of the �ve terms in the decomposition are exactly equal

to the Hall dynamo calculated from a straightforward correlation of J̃ and B̃. Aside from terms that become

large as r → 0 and cancel, the dominant contributions come from the term proportional to
〈
B̃r, B̃

′
θ

〉
and

the term proportional to
〈
iB̃′′r , B̃r

〉
. We �nd the term neglected by Ding et al.,

〈
iB̃′′r , B̃r

〉
, is signi�cant in

our computational results. These terms largely tend to cancel as a function of radius for both the initial and

subsequent relaxation events. As described earlier, the measurement of the amplitude of the
〈
B̃r, B̃

′
θ

〉
term

in Figs. 6 and 7 of 40 V/m corresponds to Ẽ/vAB0 = 5 × 10−5 in our normalized units. Comparison with
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Figure 51: Decomposition of the Hall-dynamo emf into the terms of Eqn. (18.5) during the initial and
subsequent relaxation events.

Fig. 51 shows this value is comparable in amplitude to our computations during 3, 178τA ≤ t ≤ 3, 332τA

and four times smaller than the value during 612τA ≤ t ≤ 684τA. The experimental measurement predicts a

bell curve pro�le with a width of approximately 0.2a centered at the resonant surface. In our computations〈
B̃r, B̃

′
θ

〉
has considerable spatial variation, but is largely positive and localized to the mode resonant surface

(rs ' 0.3a during 612τA ≤ t ≤ 684τA and rs ' 0.2a during 3, 178τA ≤ t ≤ 3, 332τA).

The term
〈
iB̃′′r , B̃r

〉
is only nonzero if the complex phase of B̃r varies as a function of radius. To

illustrate, we write B̃r = A exp (−iφ) where A (r) is a real and φ (r) is the complex phase. Derivatives of B̃r

are then

B̃′r = A′ exp (−iφ)− iφ′A exp (−iφ) (18.6)
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and

B̃′′r = A′′ exp (−iφ)− i (2φ′A′ +Aφ′′) exp (−iφ)−Aφ′2 exp (−iφ) , (18.7)

and the correlated quantities are 〈
iB̃′r, B̃r

〉
= A2φ′ (18.8)

and 〈
iB̃′′r , B̃r

〉
= 2φ′A′A+A2φ′′ . (18.9)

The signi�cance of the
〈
iB̃′′r , B̃r

〉
term is not related to the size of ψ̃′′ from tearing ordering (in which case it

would be associated with a term proportional to A′′), but rather due to the radial variation of the complex

phase of B̃r. For our linear slab cases, this e�ect is small (See Fig. 21 where =B̃r ' 0). However, the

ω∗gv- and ω∗H -drift e�ects in our linear single-helicity cylindrical cases cause a distortion of the phase of the

perturbation (Figs. 26 and 27). In addition, nonlinear e�ects from multi-mode interaction may cause further

distortion.

19 Momentum transport

19.1 Flow pro�les and mean forces

Associated with the Hall-dynamo emf is a force from the �uctuation-induced Maxwell stress. We �nd that

this force, along the �uctuation-induced Reynolds stress and viscous forces, is able to generate signi�cant

mean �ow in our computations. Figure 52 shows the parallel �ow as a function of time and radius for

our two-�uid computation, where the �ow pro�le is nearly zero at t = 0. Associated with each relaxation

event, there is �ow driven in the parallel direction in the core, and �ow driven in the anti-parallel direction

mid-radius. Between the events, there is a slow di�usion of the driven �ows. The components of the �ow

pro�le, in both cylindrical and magnetic coordinates, are shown in Fig. 53 at (a) 612τA ≤ t ≤ 684τA and

(b) 3, 178τA ≤ t ≤ 3, 332τA. The parallel �ow is considerably larger during the initial relaxation event in

comparison to the subsequent event. Both events also generate a perpendicular �ow pro�le that is associated

with a mean electrostatic potential.

The mean parallel �ow is largely una�ected by forces from the mean �elds as the parallel component of

J0×B0 vanishes by de�nition, and ∇p0 has only a radial component. Components of the mean momentum

equation are plotted in Fig. 54: the advective term, v0 · ∇v0, the force densities from the Reynolds and
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Figure 52: Mean parallel �ow speed as a function of time and radius for the two-�uid computation.
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Figure 53: Flows pro�les generated during the (a) initial, 612τA ≤ t ≤ 684τA, and (b) subsequent, 3, 178τA ≤
t ≤ 3, 332τA, relaxation events in our two-�uid computation.
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Figure 54: Mean parallel forces during the (a) initial, 612τA ≤ t ≤ 684τA, and (b) subsequent, 3, 178τA ≤
t ≤ 3, 332τA, relaxation events in our two-�uid computation.

Maxwell stress, and the viscous forces. The mean advective term is small in both time windows, and the

dominant forces are from the correlation of the �uctuations associated with the relaxation event. Similar to

the dynamo emfs, the force densities are roughly a factor of four smaller during the subsequent relaxation

event relative to the initial event.

As shown in Appendix E, the model equations for our computations conserve momentum up to viscous

interaction with the wall,

∂

∂t
〈〈minvz〉〉 = −2

a
〈Πrz〉|r=a (19.1)

and

∂

∂t
〈〈minvθ〉〉 = −2

a
〈Πrθ〉|r=a . (19.2)

After signi�cant momentum is radially transported during the initial relaxation event, these viscous drags

cause net momentum generation as shown in Fig. 55. However, our computations apply no-slip boundary
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Figure 55: Axial and poloidal momentum as a function of time for our two- and single-�uid computations.

conditions on the perturbed velocity at the wall (ṽ (a) = 0), and we do not expect the net momentum

generation to be representative of the experiment without more detailed boundary modeling. As seen in the

�gure, the net momentum generated by the two-�uid model is sustained through the computation, whereas

it quickly decays from its initial level to much smaller values in our single-�uid case.

19.2 Experimental comparison

We expect our two-�uid modeling to capture the momentum pro�le changes from the nonlinear stresses

during a relaxation event. The measurements from the low-current discharges studied by Kuritsyn et al.

have B0 ' 0.2 T and n ' 1019 m−3, thus vA ' 106 m/s. The measured characteristic �ow speed of 10 km/s

is then equivalent to ṽ/vA = 0.01 in our normalized units. In Fig. 9 we see the parallel �ow at r = 0.3a is

driven in the parallel direction by 20 km/s and the parallel �ows at r = 0.5a and r = 0.66a are driven in the

anti-parallel direction by 10 and 20 km/s, respectively. These changes compare favorably with those from

our computations. In Fig. 53(a) we see the parallel �ow is increased by 0.01vA at r = 0.3a, and decreased

by approximately 0.005vA at r = 0.5a and 0.66a as the �ow pro�le is nearly zero at t = 0. Although

the momentum transport in the computations is reduced by approximately a factor of two relative to the

experiment, there is semi-quantitative agreement. Additionally, as shown in Fig. 12 when the m = 0 is

not excited during a relaxation event, there is little measured change in the core rotation speed. The �ows

generated in the computation during the subsequent relaxation event is signi�cantly smaller (Fig. 53(b)),

and Fig. 52 shows that the parallel �ow pro�le does not change as signi�cantly for t > 2000τA relative to

the initial relaxation event.

Kuritsyn et al. measured the forces from the Maxwell and Reynolds stresses, Figs. 10 and 11. They �nd
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these forces are signi�cant near relaxation events, and tend to opposed each other with a radially-varying

structure. During the initial relaxation event in our computation, Fig. 54(a), the forces from the Maxwell

and Reynolds stresses are also largely opposed with radial variation in their structure. The magnitude of

the force densities may be compared as well, and using the same parameters as the previous paragraph, we

note that 10 N/m3 is equivalent to F̃ /ρ0vAτ
−1
A = 0.00016. Thus, the forces in the edge are approximately a

factor of three smaller in the computations relative to the experiment.

20 Discussion

Our computations reproduce many two-�uid aspects measured in MST, however given the pinch parameter

of Θ ' 1.6 (Fig. 44), it is natural to expect more signi�cant m = 0 mode activity. The computations

do not have a pressure pro�le, and this addition would add three e�ects: (1) interchange drive, (2) a �at

or decreasing β pro�le, and (3) diamagnetic-drift e�ects. We expect the interchange drive may destabilize

modes resonant near the reversal surface where the pressure gradient is the largest, and a decreasing β pro�le

would limit ω∗gv stabilization and two-�uid decoupling e�ects near the edge. Although the diamagnetic-

drift e�ects may be stabilizing, including the pressure gradient could produce m = 0 mode activity through

increased linear and nonlinear drives.

In addition, our computations use β = 0.1 on the geometric axis, which is greater than the value of the

experimental discharges by at least a factor of two (see Tab. 3). Thus the kρs pro�le is slightly larger in our

computations than that in the experiment, as kρs ∼
√
β. As the stabilizing ion gyroviscous e�ect becomes

smaller as kρs decreases (Part IV), we expect computations with smaller β may exhibit larger m = 1 mode

amplitudes, and possibly greater nonlinear m = 0 mode drive.

Another aspect of the experiment not present in the computations is the toroidal and poloidal gaps on

the nearly-perfectly-conducting shell. With a toroidal gap, the plasma could generate a mean poloidal emf

which modi�es the otherwise �xed total amount of toroidal �ux in the computation. This e�ect is certainly

signi�cant in the experiment where the toroidal �ux changes by as much as 10% during relaxation.

Although our computations do not incorporate these potentially important e�ects, they still represent a

signi�cant development in two-�uid device-scale RFP modeling. The inclusion of two-�uid e�ects expands

the parameter space from resistive MHD, where it may be characterized by the boundary electric �elds (Θ

drive), S and aspect ratio, to an additional parameter space characterized by β and di. Resistive MHD does

model some �nite-β e�ects through the coupling of pressure described in Sec. 4.3, however the two-�uid
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model captures e�ects beyond resistive MHD: �uid-decoupling, KAW-mediated-tearing, and gyroviscous

e�ects. Our studies show these e�ects are important with RFP experimental parameters. Although our

multi-helicity computation only explores one location in this larger parameter space, β = 0.1 and di = 0.17a,

it clearly produces rich e�ects not present with a single-�uid model. There is substantial qualitative and

quantitative agreement with the experimental measurements on the �uctuation amplitude, Hall-dynamo emf,

and parallel-momentum transport, even though some parameters only approximate MST conditions, and S

is at least a factor of ten smaller in our computations.
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Part VI

Conclusions

21 Summary of results

Our main results are the discovery of new cylindrical FLR e�ects on tearing modes. In Secs. 21.1 and 21.2,

we detail the new linear and nonlinear e�ects introduced by cylindrical geometry. Our new results show there

are drifts in pinch pro�les proportional to ∇B and curvature after the linearization of an extended-MHD

model without the use of a large-aspect-ratio approximation. These drifts lead to a stabilizing drift-tearing

response. The linearization of ion gyroviscosity produces to the drift that a�ects the ion �ow, and even

when nonlinear e�ects are signi�cant we �nd the gyroviscous force can supplement the third-order forces

described by Rutherford ([50]) leading to a reduced island saturation amplitude. In our multi-mode two-

�uid computation, which is similar to MST, we �nd both qualitative and quantitative agreement with MST

measurements that are not captured by a single-�uid model (Sec. 21.3). This indicates that �rst-order FLR

e�ects are essential to RFP modeling. Our results represent both code veri�cation, where we �nd numerical

growth rates from the NIMROD code match the result from linear slab two-�uid tearing theory, and partial

code validation through comparison to experimental MST measurements

21.1 Drift e�ects on the linear tearing mode

Our linear computations demonstrate that �rst-order FLR e�ects such as ion-electron decoupling and ion

gyroviscosity impact tearing-mode dynamics at parameters that are relevant to RFP experiments. Previous

studies in slab geometry show KAW mediation of the tearing mode increases the growth rate when ρs & l

[46, 14, 49]. Relative to slab cases, the ion �ow is modi�ed by a drift from the gyroviscous stress that is

associated with the gradient and poloidal curvature of the magnetic �eld with warm ions. The growth rate

of the tearing mode is reduced in this intermediate drift regime where ω∗gv & γ, which occurs at lower-ρs

values than the transition from the collisional regime to the semi-collisional regime (ρs ∼ l). These ω∗gv-

drift contributions are much larger in pinch pro�les than they are in large aspect-ratio tokamaks, where the

poloidal curvature and the variation of the ion gyrofrequency pro�le are weaker.

In the large-ρs regime, ρs & l, we �nd a drift in the parallel induction equation again characterized by

∇B and curvature in addition to the terms that lead to KAW e�ects. In this regime, the decoupled electron
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�uid governs the dynamics of the mode, and our numerical results show that the cold- and warm-ion cases

approach the same growth rate. Therefore, the modeling of ion dynamics is less important where ρs is

largest, and the �rst-order ion FLR modeling should provide a reasonably good approximation over the

entire parameter range.

21.2 Reduction of the saturated island width through FLR e�ects

In the nonlinear regime with experimentally-relevant conditions, the island width and characteristic scale

lengths are signi�cantly larger than ρs, so �rst-order modeling is well justi�ed. With warm ions the nonlinear

gyroviscous force supplements the perturbed nonlinear Lorentz force and reduces the island saturation width.

This contrasts with our cold-ion results and with previous drift-tearing studies for large-island evolution

with a diamagnetic drift where the island saturation width is the same as resistive MHD [53, 54, 56]. The

curvature and gradient of the magnetic �eld are not greatly modi�ed by the nonlinear island evolution, so

the gyroviscous-drift e�ects are also relatively unchanged, unlike the pressure gradient that is important

for diamagnetic-drift e�ects. We suspect this stabilizing e�ect could produce a self-reinforcing cycle where

reduced magnetic-perturbation amplitudes lead to improved con�nement and a hotter plasma, which in turn

increases ρs and further reduces the magnetic-perturbation amplitudes. Additionally, because the gyroviscous

forces balance Lorentz forces, the Hall terms remain signi�cant with warm ions, unlike the results computed

for cold ions. With warm ions, the ion �ows are substantially distorted by the gyroviscous stress, and the

dominant eddy is out of phase with the �ow responsible for reconnection.

21.3 Multi-helicity results

Our two-�uid multi-mode results model the nonlinear interaction of multiple current-driven tearing modes.

However they do not include transport e�ects, and thus we do not expect a self-reinforcing cycle of mode

stabilization. With ρs = 0.05a, a value within the range of RFPs, we �nd mode amplitudes are suppressed

relative to a single-�uid computation. This suppression is related to the gyroviscous stabilization e�ect that

we analyzed for a single mode. Although for some large-n, m = 1 modes kρs is greater than one, our linear

and nonlinear results indicate the ion dynamics ceases to matter at large kρs and our �rst-order FLR model

still captures the electron-MHD physics which govern the mode evolution. In addition, the m = 1 core-

resonant tearing modes, which are the most unstable modes in RFPs and tend to have the largest perturbed

amplitudes, have small kρs and are within the model's range of validity.

The dynamics with a two-�uid model produce e�ects beyond single-�uid modeling. Both the Hall and
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MHD dynamos are signi�cant in our two-�uid computation. The magnitude and sign of the Hall dynamo

qualitatively agree with MST experimental measurements. Associated with the Hall dynamo is a Maxwell

stress. Our computation �nds the force from the Maxwell stress is generally opposed to the force from the

Reynolds stress. This result, the amplitudes of these forces, and the associated momentum transport during

a relaxation event match experimental measurements. Our results indicate a potentially bright future for

RFP �uid modeling, where the inclusion of a more realistic pressure pro�le, and transport and boundary

e�ects has the potential to signi�cantly improve the predictability of nonlinear macroscopic RFP simulation.
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Appendix

A Formulary

Frequencies (1/t)

Gyro- ωcα = |qα|B/mα

Plasma ωpα =
√
nq2
α/ε0mα

Speeds (L/t)

Thermal vTα =
√
kBTα/mα

Sound cs =
√

ΓkB (Ti + Te) /mi

Alfvén vA = B/
√
µ0ρ

Lengths (L)

Skin depth dα = c/ωpα =
√
mα/µ0nαe2

Particle gyroradius ρα = vTα/ωcα

Ion sound gyroradius ρs = cs/ωci =
√

Γβ/2di

Debye λD = vTe/ωpe =
√
ε0kBTe/neq2

e

Tearing skin depth δ =
√
a2/γτAS + d2

e

Tearing layer width l ' ∆′δ2

(small-∆′)

Times (t)

Alfvén τA (L) = L/vA = L
√
µ0ρ/B

Resistive τR (L) = µ0L
2/η

Viscous τV (L) = L2/ν⊥

Electron collision τe = 4ε20
√
π3mek3

BT
3
e /
√

2Λq2
i q

2
eni

Ion collision τi = 4ε20
√
π3mik3

BT
3
i /Λq

4
i ni
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Dimensionless parameters

Lundquist number S = τR/τA

Prandlt number Pm = µ0ν⊥/η

Hartmann number H = S/Pm =
√
τRτV /τA

Plasma β β = 2µ0p/B

Cylindrical safety q (r) = rBz0/R0Bθ0

factor

Parallel current aλ = aµ0J ·B/B2

Di�usivities (L2/t)

Resistive η/µ0 = me/µ0nee
2τe = d2

e/τe

Perpendicular viscous ν⊥ = 3kBTi/10miτiω
2
ci = 3v2

Ti/10τiω
2
ci

Parallel viscous ν‖ = 0.96τikBTi/mi = 0.96v2
Tiτi

Wavelengths (1/L)

Cylindrical wave-vector k = θ̂m/r + ẑn/R
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B De�nitions of notation

We use the following de�nitions of notation:

A (r, θ, φ) ≡ A0 (r) + Ã (r, θ, φ)

A0 (r) ≡ 〈A (r, θ, φ)〉 ≡ 1

(2π)
2

ˆ
A (r, θ, φ) dθdφ

〈〈A〉〉 ≡ (2π)
2

V

ˆ
〈A (r, θ, φ)〉 rdr =

1

V

ˆ
A (r, θ, φ) dV

Ã (r, θ, φ) ≡ Ã0 (r) +
∞∑
n=1

Ã0,n (r) einφ + Ã∗0,n (r) e−inφ

+

∞∑
m=1

∞∑
n=−∞

Ãm,n (r) eimθ+inφ + Ã∗m,n (r) e−imθ−inφ〈
Ã (r, θ, φ)

〉
≡ Ã0 (r)

A0 (r, t) ≡ Aeq (r) + Ã0 (r, t)

b̂ ≡ B/ |B| .

For linear cases with n 6= 0,

A0 (r) = Aeq (r) . (B.1)
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C Model equations

These are the equations that constitute the model:

∂B

∂t
= −∇×E , (C.1)

min
dv

dt
= J×B−∇p−∇ ·

(
Πgv + Π‖

)
−∇ · νminW , (C.2)

dn

dt
= −n∇ · v +Dn∇2n , (C.3)

and

n

Γ− 1

dkBT

dt
= −p∇ · v +∇ · χn∇kBT . (C.4)

They are completed with the relations:

E = −v ×B +
J×B

ne
− ∇pe

ne
+ ηJ +

me

ne2

∂J

∂t
, (C.5)

µ0J = ∇×B , (C.6)

∇ ·B = 0 , (C.7)

Πgv =
mipi
4eB

[
b̂×W ·

(
I + 3b̂b̂

)
−
(
I + 3b̂b̂

)
·W × b̂

]
, (C.8)

Π‖ = −3

2
minν‖b ·W · b̂

[
b̂b̂− I

3

]
, (C.9)

and

W = ∇v +∇vT − (2/3)I∇ · v . (C.10)
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D Parallel electric �eld assumptions

Considerable attention is devoted to the parallel electric �eld. This �eld has no contribution from ve0 ×B0

after the b̂0· operation. Using the generalized Ohm's law, Eqn. C.5, we may express the parallel electric �eld

as

〈E〉‖ = −
〈
ṽ × B̃

〉
‖

+ b̂0 ·
〈

J×B

ne

〉
− b̂0 ·

〈
∇pe
ne

〉
+ ηJ0‖ +

me

ne2

∂J0‖

∂t
. (D.1)

Contributions to the Hall and ∇pe terms proportional to ñ and from electron inertia are found to be small

in our computations and may be neglected. Given b̂0 · (∇pe0/n0e) vanishes, the mean parallel electric �eld

to good approximation is

E0‖ ' −
〈
ṽ × B̃

〉
‖

+

〈
J̃× B̃

n0e

〉
‖

+ ηJ0‖ . (D.2)
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E Conservation laws

E.1 Momentum

∂

∂t
〈〈minv〉〉 =

〈〈
miv

∂n

∂t
+min

∂v

∂t

〉〉
= −

ˆ
dV

[
miv (∇ · (nv)) +min

(
v · ∇v − ∇×B

µ0
×B +∇p+∇ ·Π

)]
= −

ˆ
dV∇ ·

[
minvv − BB

µ0
+

(
B2

2µ0
+ p

)
I + Π

]
= −

ˆ
dS ·

[
minvv − BB

µ0
+

(
B2

2µ0
+ p

)
I + Π

]
(E.1)

Applying the boundary conditions used in our computations (Sec. 9.3), we may write ∂
∂t 〈〈minvz〉〉 = −ẑ ·

´
dS ·Π. Thus total momentum is conserved up to viscous interaction with the wall.

E.2 Magnetic energy density

∂

∂t

B2

2µ0
=

B·
µ0

∂B

∂t
= −B · ∇ ×E

µ0
= −

[
∇ ·
(

E×B

µ0

)
+ E · ∇ ×B

µ0

]
= −

[
∇ ·
(

E×B

µ0

)
+ E · J + ε0E ·

∂E

∂t

]
' −

[
∇ ·
(

E×B

µ0

)
+ E · J

]
(E.2)

where the approximation on the last line is equivalent to ignoring displacement current in Ampere's law.

E.3 Kinetic energy density

∂

∂t

(
ρiv

2
i

2
+
ρev

2
e

2

)
=

∑
α

(
ραvα ·

∂vα
∂t

+
ραv

2
α

2

∂nα
∂t

)
=

∑
α

[
−∇ ·

(
ραv

2
α

2
vα

)
− vα · (∇pα +∇ ·Πα) + nαqαvα ·E− nqαvαηJ

]
' −∇ ·

(
minv

2

2
v

)
− v · (∇p+∇ ·Πi) +

J

ne
· ∇pe + E · J− ηJ2 (E.3)

= −v · ∇p+
J

ne
· ∇pe + E · J− ηJ2 + Πi : ∇v −∇ ·

(
minv

2

2
v + Πi · v

)
(E.4)
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where the we use ne ' ni ' n, vi ' v, me << mi, and ve ' v− J/ne on the third line. On the fourth line,

the �rst two terms are exchanges with internal energy (As we shall see since we set pi ' pe ' p, such that

the ion �ow advection and compression determine pe, the second term is a loss term), the third an exchange

with magnetic energy, and the fourth and �fth are Ohmic and viscous dissipation. The last two terms are

kinetic and viscous �uxes.

E.4 Internal energy density

1

Γ− 1

∂p

∂t
=

1

Γ− 1

[
kBT

∂n

∂t
+ nkB

∂T

∂t

]
(E.5)

= − kBT

Γ− 1

[
∇ · (nv)−Dn∇2n

]
− n

Γ− 1
v · ∇kBT − p∇ · v +∇ · χn∇kBT (E.6)

= − 1

Γ− 1
[v · ∇p+ Γp∇ · v] +

kBTDn

Γ− 1
∇2n+∇ · χn∇kBT (E.7)

= v · ∇p− Γ

Γ− 1
∇ · (pv) +

kBTDn

Γ− 1
∇2n+∇ · χn∇kBT (E.8)

If we instead use separate equations for pe and pi, the internal energy density becomes

1

Γ− 1

(
∂pi
∂t

+
∂pe
∂t

)
= v · ∇p− J

ne
· ∇pe −

Γ

Γ− 1
∇ · (pivi + peve) +

kBTDn

Γ− 1
∇2n+∇ · χn∇kBT (E.9)

and we recover the J · ∇pe/ne term from the kinetic energy density. Additionally, if we include heating

through Qe, the viscous and Ohmic dissipation in kinetic energy density equation become electron heating

terms.
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Assuming the heating terms are included and a separate electron pressure equation is used, the total

volume integrated energy is

∂

∂t

〈〈
B2

2µ0
+
ρiv

2
i

2
+
ρev

2
e

2
+

1

Γ− 1

∂p

∂t

〉〉
= −

ˆ
dV∇ ·

(
E×B

µ0
+
minv

2

2
v + Πi · v +

Γpv

Γ− 1
− χn∇kBT

)
= −

ˆ
dS ·

(
E×B

µ0
+
minv

2

2
v + Πi · v +

Γ

Γ− 1
pv − χn∇kBT

)
=

ˆ
dS

(
EloopBθ
µ0

+ χnkB
∂T

∂r

)
.

For the last line, we have applied our conducting-wall, no-slip boundary conditions, and assumed cylindrical

geometry with a purely toroidal loop voltage. Energy enters the system through the loop voltage, and leaves

through thermal losses to the wall. For our system the heating terms are not included, and when energy is

dissipated through viscosity or resistivity, it leaves the system.
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F Gyroviscous Mathematica code

Our heuristic linear model considers the e�ect of nearly incompressible �ows represented by a steam function,

ṽ = b̂×∇φ̃, orders radial derivatives of φ̃ as ε−1, and makes Taylor expansions of the axisymmetric quantities

in x = r− rs, where |x| is of order ε. All other quantities, including the wavenumber k, are of order ε0. Thus

we may write

b̂ → b̂s + xb̂′s +
1

2
x2b̂′′s + ... (F.1)

k → ks + xk′s +
1

2
x2k′′s + ... (F.2)

1

rs
→ 1

rs
− x

r2
s

+
x2

r3
s

+ ... (F.3)

where the subscript s indicates evaluation at the resonant surface and k‖s = b̂s · ks = 0.

The calculation of the parallel gyroviscous torque, described in Sec. 11.2, has been performed both by

hand and with Mathematica. The Mathematica code is given here for reference. Comments are indicated as

(* Comment *), input to Mathematica is bold, and output is in regular font.
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Begin Mathematica 7.0 code

<< VectorAnalysis̀<< VectorAnalysis̀<< VectorAnalysis̀

SetCoordinates[Cylindrical[r, θ, z]]SetCoordinates[Cylindrical[r, θ, z]]SetCoordinates[Cylindrical[r, θ, z]]

Cylindrical[r, θ, z]

(* De�ne b_hat and k, expansion can be done later *)(* De�ne b_hat and k, expansion can be done later *)(* De�ne b_hat and k, expansion can be done later *)

b:={0,bp[r],bz[r]}b:={0,bp[r],bz[r]}b:={0,bp[r], bz[r]}

(* k includes the 1/r in kp implicitly through the 1/r in d/dφ terms, *)(* k includes the 1/r in kp implicitly through the 1/r in d/dφ terms, *)(* k includes the 1/r in kp implicitly through the 1/r in d/dφ terms, *)

(* thus the units of kz are 1/L and kp is dimensionless. *)(* thus the units of kz are 1/L and kp is dimensionless. *)(* thus the units of kz are 1/L and kp is dimensionless. *)

k:={0, kp, kz}k:={0, kp, kz}k:={0, kp, kz}

(* Perp direction *)(* Perp direction *)(* Perp direction *)

Perp:=Cross[b, {1, 0, 0}]Perp:=Cross[b, {1, 0, 0}]Perp:=Cross[b, {1, 0, 0}]

{0, bz[r],−bp[r]}

(* De�ne transform to kperp and kpar *)(* De�ne transform to kperp and kpar *)(* De�ne transform to kperp and kpar *)

KRules = {{kp→ r ∗ (bp[r] ∗ kpar[r] + bz[r] ∗ kperp[r]), kz→ (kpar[r] ∗ bz[r]− kperp[r] ∗ bp[r])}};KRules = {{kp→ r ∗ (bp[r] ∗ kpar[r] + bz[r] ∗ kperp[r]), kz→ (kpar[r] ∗ bz[r]− kperp[r] ∗ bp[r])}};KRules = {{kp→ r ∗ (bp[r] ∗ kpar[r] + bz[r] ∗ kperp[r]), kz→ (kpar[r] ∗ bz[r]− kperp[r] ∗ bp[r])}};

(* Stream function representation for v. *)(* Stream function representation for v. *)(* Stream function representation for v. *)

stream:=φ[r] ∗ Exp[I ∗ k.{r, θ, z}]stream:=φ[r] ∗ Exp[I ∗ k.{r, θ, z}]stream:=φ[r] ∗ Exp[I ∗ k.{r, θ, z}]

v = Cross[b,Grad[stream]];v = Cross[b,Grad[stream]];v = Cross[b,Grad[stream]];

(* Check v_r *)(* Check v_r *)(* Check v_r *)

Simplify[v[[1]] ∗ Exp[−I ∗ k.{r, θ, z}]//.KRules]Simplify[v[[1]] ∗ Exp[−I ∗ k.{r, θ, z}]//.KRules]Simplify[v[[1]] ∗ Exp[−I ∗ k.{r, θ, z}]//.KRules]{
−i
(
bp[r]2 + bz[r]2

)
kperp[r]φ[r]

}
(* Check v_perp *)(* Check v_perp *)(* Check v_perp *)

Simplify[Dot[Perp, v] ∗ Exp[−I ∗ k.{r, θ, z}]//.KRules]Simplify[Dot[Perp, v] ∗ Exp[−I ∗ k.{r, θ, z}]//.KRules]Simplify[Dot[Perp, v] ∗ Exp[−I ∗ k.{r, θ, z}]//.KRules]{(
bp[r]2 + bz[r]2

)
φ′[r]

}
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(* Mathematica does not have a cylindrical ∇(vector) operator built in. *)(* Mathematica does not have a cylindrical ∇(vector) operator built in. *)(* Mathematica does not have a cylindrical ∇(vector) operator built in. *)

(* We construct one, and the following is a quick check. *)(* We construct one, and the following is a quick check. *)(* We construct one, and the following is a quick check. *)

vt:={vr[r] ∗ Exp[I ∗ k.{r, θ, z}], vp[r] ∗ Exp[I ∗ k.{r, θ, z}], vz[r] ∗ Exp[I ∗ k.{r, θ, z}]}vt:={vr[r] ∗ Exp[I ∗ k.{r, θ, z}], vp[r] ∗ Exp[I ∗ k.{r, θ, z}], vz[r] ∗ Exp[I ∗ k.{r, θ, z}]}vt:={vr[r] ∗ Exp[I ∗ k.{r, θ, z}], vp[r] ∗ Exp[I ∗ k.{r, θ, z}], vz[r] ∗ Exp[I ∗ k.{r, θ, z}]}

TableForm[Simplify[(Transpose[{Grad[vt[[1]]],Grad[vt[[2]]],TableForm[Simplify[(Transpose[{Grad[vt[[1]]],Grad[vt[[2]]],TableForm[Simplify[(Transpose[{Grad[vt[[1]]],Grad[vt[[2]]],

Grad[vt[[3]]]}] + {{0, 0, 0}, {−vt[[2]]/r,+vt[[1]]/r, 0}, {0, 0, 0}}) ∗ Exp[−I ∗ k.{r, θ, z}]]]Grad[vt[[3]]]}] + {{0, 0, 0}, {−vt[[2]]/r,+vt[[1]]/r, 0}, {0, 0, 0}}) ∗ Exp[−I ∗ k.{r, θ, z}]]]Grad[vt[[3]]]}] + {{0, 0, 0}, {−vt[[2]]/r,+vt[[1]]/r, 0}, {0, 0, 0}}) ∗ Exp[−I ∗ k.{r, θ, z}]]]

vr′[r] vp′[r] vz′[r]

−vp[r]−ikpvr[r]
r

ikpvp[r]+vr[r]
r

ikpvz[r]
r

ikzvr[r] ikzvp[r] ikzvz[r]

(* Find the ∇v tensor with the stream function representation. *)(* Find the ∇v tensor with the stream function representation. *)(* Find the ∇v tensor with the stream function representation. *)

∇v = Transpose[{Grad[v[[1]]],Grad[v[[2]]],Grad[v[[3]]]}] + {{0, 0, 0}, {−v[[2]]/r, v[[1]]/r, 0}, {0, 0, 0}};∇v = Transpose[{Grad[v[[1]]],Grad[v[[2]]],Grad[v[[3]]]}] + {{0, 0, 0}, {−v[[2]]/r, v[[1]]/r, 0}, {0, 0, 0}};∇v = Transpose[{Grad[v[[1]]],Grad[v[[2]]],Grad[v[[3]]]}] + {{0, 0, 0}, {−v[[2]]/r, v[[1]]/r, 0}, {0, 0, 0}};

(* Compute the rate of strain tensor W. *)(* Compute the rate of strain tensor W. *)(* Compute the rate of strain tensor W. *)

W = ∇v + Transpose[∇v]− IdentityMatrix[3] ∗ 2 ∗Div[v]/3;W = ∇v + Transpose[∇v]− IdentityMatrix[3] ∗ 2 ∗Div[v]/3;W = ∇v + Transpose[∇v]− IdentityMatrix[3] ∗ 2 ∗Div[v]/3;

(* Checks of W *)(* Checks of W *)(* Checks of W *)

Simplify[Tr[W ]]Simplify[Tr[W ]]Simplify[Tr[W ]]

0

W == Transpose[W ]W == Transpose[W ]W == Transpose[W ]

True

(* Compute bxW and Wxb *)(* Compute bxW and Wxb *)(* Compute bxW and Wxb *)

bxW = Inner[Times,LeviCivitaTensor[3], b,Plus, 2].W ;bxW = Inner[Times,LeviCivitaTensor[3], b,Plus, 2].W ;bxW = Inner[Times,LeviCivitaTensor[3], b,Plus, 2].W ;

Wxb = W.Transpose[Inner[Times,LeviCivitaTensor[3], b,Plus, 3]];Wxb = W.Transpose[Inner[Times,LeviCivitaTensor[3], b,Plus, 3]];Wxb = W.Transpose[Inner[Times,LeviCivitaTensor[3], b,Plus, 3]];

partPi1 = bxW.(IdentityMatrix[3] + 3 ∗Outer[Times, b, b]);partPi1 = bxW.(IdentityMatrix[3] + 3 ∗Outer[Times, b, b]);partPi1 = bxW.(IdentityMatrix[3] + 3 ∗Outer[Times, b, b]);

partPi2 = (IdentityMatrix[3] + 3 ∗Outer[Times, b, b]).Wxb;partPi2 = (IdentityMatrix[3] + 3 ∗Outer[Times, b, b]).Wxb;partPi2 = (IdentityMatrix[3] + 3 ∗Outer[Times, b, b]).Wxb;

(* Use the transpose property in the gyroviscous Π as a check *)(* Use the transpose property in the gyroviscous Π as a check *)(* Use the transpose property in the gyroviscous Π as a check *)

Simplify[Transpose[partPi1] + partPi2]Simplify[Transpose[partPi1] + partPi2]Simplify[Transpose[partPi1] + partPi2]

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}
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(* Assemble the Πgv tensor, here C[r] is the coe�cient, pi0/4ωci. *)(* Assemble the Πgv tensor, here C[r] is the coe�cient, pi0/4ωci. *)(* Assemble the Πgv tensor, here C[r] is the coe�cient, pi0/4ωci. *)

Π = C[r] ∗ (bxW−Wxb);Π = C[r] ∗ (bxW−Wxb);Π = C[r] ∗ (bxW−Wxb);

(* Check that the gyroviscous Π is traceless *)(* Check that the gyroviscous Π is traceless *)(* Check that the gyroviscous Π is traceless *)

Simplify[Tr[Π]]Simplify[Tr[Π]]Simplify[Tr[Π]]

0

(* We de�ne the cylindrical divergence of a tensor, and make a quick check *)(* We de�ne the cylindrical divergence of a tensor, and make a quick check *)(* We de�ne the cylindrical divergence of a tensor, and make a quick check *)

Πt:=Transpose[{{πrr[r], πpr[r], πzr[r]}, {πrp[r], πpp[r], πzp[r]}, {πrz[r], πpz[r], πzz[r]}} ∗ Exp[I ∗ k.{r, θ, z}]]Πt:=Transpose[{{πrr[r], πpr[r], πzr[r]}, {πrp[r], πpp[r], πzp[r]}, {πrz[r], πpz[r], πzz[r]}} ∗ Exp[I ∗ k.{r, θ, z}]]Πt:=Transpose[{{πrr[r], πpr[r], πzr[r]}, {πrp[r], πpp[r], πzp[r]}, {πrz[r], πpz[r], πzz[r]}} ∗ Exp[I ∗ k.{r, θ, z}]]

(* Check of the radial component *)(* Check of the radial component *)(* Check of the radial component *)

Simplify[(Div[Transpose[Πt][[1]]]−Πt[[2, 2]]/r) ∗ Exp[−I ∗ k.{r, θ, z}]]Simplify[(Div[Transpose[Πt][[1]]]−Πt[[2, 2]]/r) ∗ Exp[−I ∗ k.{r, θ, z}]]Simplify[(Div[Transpose[Πt][[1]]]−Πt[[2, 2]]/r) ∗ Exp[−I ∗ k.{r, θ, z}]]
−πpp[r]+ikpπpr[r]+πrr[r]+ikzrπzr[r]+rπrr′[r]

r

(* Check of the poloidal component *)(* Check of the poloidal component *)(* Check of the poloidal component *)

Simplify[(Div[Transpose[Πt][[2]]] + Πt[[2, 1]]/r) ∗ Exp[−I ∗ k.{r, θ, z}]]Simplify[(Div[Transpose[Πt][[2]]] + Πt[[2, 1]]/r) ∗ Exp[−I ∗ k.{r, θ, z}]]Simplify[(Div[Transpose[Πt][[2]]] + Πt[[2, 1]]/r) ∗ Exp[−I ∗ k.{r, θ, z}]]
ikpπpp[r]+πpr[r]+πrp[r]+ikzrπzp[r]+rπrp′[r]

r

(* Check of the axial component *)(* Check of the axial component *)(* Check of the axial component *)

Simplify[(Div[Transpose[Πt][[3]]]) ∗ Exp[−I ∗ k.{r, θ, z}]]Simplify[(Div[Transpose[Πt][[3]]]) ∗ Exp[−I ∗ k.{r, θ, z}]]Simplify[(Div[Transpose[Πt][[3]]]) ∗ Exp[−I ∗ k.{r, θ, z}]]
ikpπpz[r]+πrz[r]+ikzrπzz[r]+rπrz′[r]

r

(* Compute −∇ ·Π. This is still the unreduced expression. *)(* Compute −∇ ·Π. This is still the unreduced expression. *)(* Compute −∇ ·Π. This is still the unreduced expression. *)

DivΠ = −{Div[Transpose[Π][[1]]]−Π[[2, 2]]/r,Div[Transpose[Π][[2]]] + Π[[2, 1]]/r,Div[Transpose[Π][[3]]]};DivΠ = −{Div[Transpose[Π][[1]]]−Π[[2, 2]]/r,Div[Transpose[Π][[2]]] + Π[[2, 1]]/r,Div[Transpose[Π][[3]]]};DivΠ = −{Div[Transpose[Π][[1]]]−Π[[2, 2]]/r,Div[Transpose[Π][[2]]] + Π[[2, 1]]/r,Div[Transpose[Π][[3]]]};

(* We now expand bp[r], bz[r], C[r], kperp[r], kpar[r] and r by x = r − rs where x ∼ ε << 1. *)(* We now expand bp[r], bz[r], C[r], kperp[r], kpar[r] and r by x = r − rs where x ∼ ε << 1. *)(* We now expand bp[r], bz[r], C[r], kperp[r], kpar[r] and r by x = r − rs where x ∼ ε << 1. *)

bpt[x_]:=bp0 + bp1 ∗ x+ bp2/2 ∗ x∧2 +O[ε]∧3bpt[x_]:=bp0 + bp1 ∗ x+ bp2/2 ∗ x∧2 +O[ε]∧3bpt[x_]:=bp0 + bp1 ∗ x+ bp2/2 ∗ x∧2 +O[ε]∧3

bzt[x_]:=bz0 + bz1 ∗ x+ bz2/2 ∗ x∧2 +O[ε]∧3bzt[x_]:=bz0 + bz1 ∗ x+ bz2/2 ∗ x∧2 +O[ε]∧3bzt[x_]:=bz0 + bz1 ∗ x+ bz2/2 ∗ x∧2 +O[ε]∧3

Ct[x_]:=C0 + C1 ∗ x+ C2/2 ∗ x∧2 +O[ε]∧3Ct[x_]:=C0 + C1 ∗ x+ C2/2 ∗ x∧2 +O[ε]∧3Ct[x_]:=C0 + C1 ∗ x+ C2/2 ∗ x∧2 +O[ε]∧3

kperpt[x_]:=kperp0 + kperp1 ∗ x+ kperp2/2 ∗ x∧2 +O[ε]∧3kperpt[x_]:=kperp0 + kperp1 ∗ x+ kperp2/2 ∗ x∧2 +O[ε]∧3kperpt[x_]:=kperp0 + kperp1 ∗ x+ kperp2/2 ∗ x∧2 +O[ε]∧3

(* kpar0=0 by de�nition. *)(* kpar0=0 by de�nition. *)(* kpar0=0 by de�nition. *)

kpart[x_]:=kpar1 ∗ x+ kpar2/2 ∗ x∧2 +O[ε]∧3kpart[x_]:=kpar1 ∗ x+ kpar2/2 ∗ x∧2 +O[ε]∧3kpart[x_]:=kpar1 ∗ x+ kpar2/2 ∗ x∧2 +O[ε]∧3

invr[x_]:=1/rs− x/rs∧2 + x∧2/rs∧3 +O[ε]∧3invr[x_]:=1/rs− x/rs∧2 + x∧2/rs∧3 +O[ε]∧3invr[x_]:=1/rs− x/rs∧2 + x∧2/rs∧3 +O[ε]∧3
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TayorExp = {{bp[r]→ bpt[ε ∗ x],bp′[r]→ bpt′[ε ∗ x],bp�[r]→ bpt�[ε ∗ x],TayorExp = {{bp[r]→ bpt[ε ∗ x],bp′[r]→ bpt′[ε ∗ x],bp�[r]→ bpt�[ε ∗ x],TayorExp = {{bp[r]→ bpt[ε ∗ x],bp′[r]→ bpt′[ε ∗ x], bp�[r]→ bpt�[ε ∗ x],

bz[r]→ bzt[ε ∗ x],bz′[r]→ bzt′[ε ∗ x],bz�[r]→ bzt�[ε ∗ x],bz[r]→ bzt[ε ∗ x],bz′[r]→ bzt′[ε ∗ x],bz�[r]→ bzt�[ε ∗ x],bz[r]→ bzt[ε ∗ x], bz′[r]→ bzt′[ε ∗ x],bz�[r]→ bzt�[ε ∗ x],

C[r]→ Ct[ε ∗ x], C ′[r]→ Ct′[ε ∗ x], C�[r]→ Ct�[ε ∗ x],C[r]→ Ct[ε ∗ x], C ′[r]→ Ct′[ε ∗ x], C�[r]→ Ct�[ε ∗ x],C[r]→ Ct[ε ∗ x], C ′[r]→ Ct′[ε ∗ x], C�[r]→ Ct�[ε ∗ x],

kperp[r]→ kperpt[ε ∗ x], kperp′[r]→ kperpt′[ε ∗ x], kperp�[r]→ kperpt�[ε ∗ x],kperp[r]→ kperpt[ε ∗ x], kperp′[r]→ kperpt′[ε ∗ x], kperp�[r]→ kperpt�[ε ∗ x],kperp[r]→ kperpt[ε ∗ x], kperp′[r]→ kperpt′[ε ∗ x], kperp�[r]→ kperpt�[ε ∗ x],

kpar[r]→ kpart[ε ∗ x], kpar′[r]→ kpart′[ε ∗ x], kpar�[r]→ kpart�[ε ∗ x]}};kpar[r]→ kpart[ε ∗ x], kpar′[r]→ kpart′[ε ∗ x], kpar�[r]→ kpart�[ε ∗ x]}};kpar[r]→ kpart[ε ∗ x], kpar′[r]→ kpart′[ε ∗ x], kpar�[r]→ kpart�[ε ∗ x]}};

ROrdering = {{r → 1/rinv, rinv→ invr[ε ∗ x]}};ROrdering = {{r → 1/rinv, rinv→ invr[ε ∗ x]}};ROrdering = {{r → 1/rinv, rinv→ invr[ε ∗ x]}};

(* Rules for the ordering *)(* Rules for the ordering *)(* Rules for the ordering *)

PhiOrdering = {{φ[r]→ φo, φ′[r]→ dφo/ε, φ�[r]→ ddφo/ε∧2, φ� '[r]→ dddφo/ε∧3, φ� � [r]→ ddddφo/ε∧4}};PhiOrdering = {{φ[r]→ φo, φ′[r]→ dφo/ε, φ�[r]→ ddφo/ε∧2, φ� '[r]→ dddφo/ε∧3, φ� � [r]→ ddddφo/ε∧4}};PhiOrdering = {{φ[r]→ φo, φ′[r]→ dφo/ε, φ�[r]→ ddφo/ε∧2, φ� '[r]→ dddφo/ε∧3, φ� � [r]→ ddddφo/ε∧4}};

AllRules = Join[KRules,PhiOrdering,TayorExp,ROrdering, 2];AllRules = Join[KRules,PhiOrdering,TayorExp,ROrdering, 2];AllRules = Join[KRules,PhiOrdering,TayorExp,ROrdering, 2];

(* Use 1− b2z + b2p = d|b|/dr = 0 to simplify. *)(* Use 1− b2z + b2p = d|b|/dr = 0 to simplify. *)(* Use 1− b2z + b2p = d|b|/dr = 0 to simplify. *)

BRules = {{bz0→ Sqrt[1− bp0∧2], bz1→ −bp0 ∗ bp1/bz0}};BRules = {{bz0→ Sqrt[1− bp0∧2],bz1→ −bp0 ∗ bp1/bz0}};BRules = {{bz0→ Sqrt[1− bp0∧2], bz1→ −bp0 ∗ bp1/bz0}};

(* Apply the ordering to the radial force *)(* Apply the ordering to the radial force *)(* Apply the ordering to the radial force *)

DivΠt = (Simplify[ε∧3 ∗DivΠ[[1]] ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;DivΠt = (Simplify[ε∧3 ∗DivΠ[[1]] ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;DivΠt = (Simplify[ε∧3 ∗DivΠ[[1]] ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;

radDivΠpoly = Coe�cientList[DivΠt, ε];radDivΠpoly = Coe�cientList[DivΠt, ε];radDivΠpoly = Coe�cientList[DivΠt, ε];

(* Radial O(ε−3) gyroviscous force *)(* Radial O(ε−3) gyroviscous force *)(* Radial O(ε−3) gyroviscous force *)

Simplify[radDivΠpoly[[1, 1]]//.BRules]Simplify[radDivΠpoly[[1, 1]]//.BRules]Simplify[radDivΠpoly[[1, 1]]//.BRules]

{2C0dddφo}

(* Radial O(ε−2) gyroviscous force *)(* Radial O(ε−2) gyroviscous force *)(* Radial O(ε−2) gyroviscous force *)

Simplify[radDivΠpoly[[1, 2]]//.BRules]Simplify[radDivΠpoly[[1, 2]]//.BRules]Simplify[radDivΠpoly[[1, 2]]//.BRules]{
2(C0ddφo+C1rs(ddφo+dddφox))

rs

}

(* Apply the ordering to the perpendicular force *)(* Apply the ordering to the perpendicular force *)(* Apply the ordering to the perpendicular force *)

DivΠt = (Simplify[ε∧3 ∗ ({0,bz0,−bp0}.DivΠ) ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;DivΠt = (Simplify[ε∧3 ∗ ({0,bz0,−bp0}.DivΠ) ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;DivΠt = (Simplify[ε∧3 ∗ ({0,bz0,−bp0}.DivΠ) ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;

perpDivΠpoly = Coe�cientList[DivΠt, ε];perpDivΠpoly = Coe�cientList[DivΠt, ε];perpDivΠpoly = Coe�cientList[DivΠt, ε];

(* Perpendicular O(ε−3) gyroviscous force *)(* Perpendicular O(ε−3) gyroviscous force *)(* Perpendicular O(ε−3) gyroviscous force *)

Simplify[perpDivΠpoly[[1, 1]]//.BRules]Simplify[perpDivΠpoly[[1, 1]]//.BRules]Simplify[perpDivΠpoly[[1, 1]]//.BRules]

{0}
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(* Perpendicular O(ε−2) gyroviscous force *)(* Perpendicular O(ε−2) gyroviscous force *)(* Perpendicular O(ε−2) gyroviscous force *)

Simplify[perpDivΠpoly[[1, 2]]//.BRules]Simplify[perpDivΠpoly[[1, 2]]//.BRules]Simplify[perpDivΠpoly[[1, 2]]//.BRules]

{2iC0ddφokperp0}

(* Perpendicular O(ε−1) gyroviscous force *)(* Perpendicular O(ε−1) gyroviscous force *)(* Perpendicular O(ε−1) gyroviscous force *)

Simplify[perpDivΠpoly[[1, 3]]//.BRules]Simplify[perpDivΠpoly[[1, 3]]//.BRules]Simplify[perpDivΠpoly[[1, 3]]//.BRules]{
2i(C1kperp0rs(2dφo+ddφox)+C0((1+bp02)dφokperp0+ddφokperp1rsx))

rs

}

(* Apply the ordering to the parallel force *)(* Apply the ordering to the parallel force *)(* Apply the ordering to the parallel force *)

DivΠt = (Simplify[ε∧3 ∗ (b.DivΠ) ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;DivΠt = (Simplify[ε∧3 ∗ (b.DivΠ) ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;DivΠt = (Simplify[ε∧3 ∗ (b.DivΠ) ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧3;

parDivΠpoly = Coe�cientList[DivΠt, ε];parDivΠpoly = Coe�cientList[DivΠt, ε];parDivΠpoly = Coe�cientList[DivΠt, ε];

(* Parallel O(ε−3) gyroviscous force *)(* Parallel O(ε−3) gyroviscous force *)(* Parallel O(ε−3) gyroviscous force *)

Simplify[parDivΠpoly[[1, 1]]//.BRules]Simplify[parDivΠpoly[[1, 1]]//.BRules]Simplify[parDivΠpoly[[1, 1]]//.BRules]

{0}

(* Parallel O(ε−2) gyroviscous force *)(* Parallel O(ε−2) gyroviscous force *)(* Parallel O(ε−2) gyroviscous force *)

Simplify[parDivΠpoly[[1, 2]]//.BRules]Simplify[parDivΠpoly[[1, 2]]//.BRules]Simplify[parDivΠpoly[[1, 2]]//.BRules]

{0}

(* Compute the unreduced −b̂ · ∇ ×∇ ·Πgv. *)(* Compute the unreduced −b̂ · ∇ ×∇ ·Πgv. *)(* Compute the unreduced −b̂ · ∇ ×∇ ·Πgv. *)

ParCurlDivΠ = b.Curl[DivΠ];ParCurlDivΠ = b.Curl[DivΠ];ParCurlDivΠ = b.Curl[DivΠ];

(* Apply the ordering. *)(* Apply the ordering. *)(* Apply the ordering. *)

ParCurlDivΠt = (Simplify[ε∧3 ∗ ParCurlDivΠ ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧2;ParCurlDivΠt = (Simplify[ε∧3 ∗ ParCurlDivΠ ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧2;ParCurlDivΠt = (Simplify[ε∧3 ∗ ParCurlDivΠ ∗ Exp[−I ∗ k.{r, θ, z}]]//.AllRules) +O[ε]∧2;

ParCurlDivΠpoly = Coe�cientList[ParCurlDivΠt, ε];ParCurlDivΠpoly = Coe�cientList[ParCurlDivΠt, ε];ParCurlDivΠpoly = Coe�cientList[ParCurlDivΠt, ε];

(* O(ε−3) parallel gyroviscous torque *)(* O(ε−3) parallel gyroviscous torque *)(* O(ε−3) parallel gyroviscous torque *)

Simplify[ParCurlDivΠpoly[[1, 1]]//.BRules]Simplify[ParCurlDivΠpoly[[1, 1]]//.BRules]Simplify[ParCurlDivΠpoly[[1, 1]]//.BRules]

{0}

(* O(ε−2) parallel gyroviscous torque *)(* O(ε−2) parallel gyroviscous torque *)(* O(ε−2) parallel gyroviscous torque *)

Simplify[ParCurlDivΠpoly[[1, 2]]//.BRules]Simplify[ParCurlDivΠpoly[[1, 2]]//.BRules]Simplify[ParCurlDivΠpoly[[1, 2]]//.BRules]{
2iddφokperp0(bp02C0+2C1rs)

rs

}
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G Dynamo emf component derivation

Given a Fourier expansion or perturbed quantities in the poloidal and toroidal directions,

Ã (r, θ, φ) = Ã0 (r) +
∞∑
n=1

(
Ã0,n (r) einφ + Ã∗0,n (r) e−inφ

)
+
∞∑
m=1

∞∑
n=−∞

(
Ãm,n (r) eimθ+inφ + Ã∗m,n (r) e−imθ−inφ

)
(G.1)

where φ = z/R, the �ux surface average of the product of two �uctuating quantities
〈
ÃB̃
〉
may be written

in terms of the complex coe�cients of the expansion as

〈
ÃB̃
〉

=
1

(2π)
2

ˆ
ÃB̃dθdφ = Ã0B̃0 +

∞∑
n=1

(
Ã∗0,nB̃0,n + Ã0,nB̃

∗
0,n

)
+
∞∑
m=1

∞∑
n=−∞

(
Ã∗m,nB̃m,n + Ãm,nB̃

∗
m,n

)
. (G.2)

Measurements of the dominant contribution to dynamo emf often involve a single set of mode numbers at a

radial location. For example, in the core, the m = 1, n = 6 mode is typically dominant, and these are the

mode numbers of the �uctuating quantities measured by Ding et al. We now assume the mode numbers are

speci�ed, drop the m,n subscript and de�ne the operator

〈
Ã, B̃

〉
= Ã∗B̃ + ÃB̃∗ = 2<Ã<B̃ + 2=Ã=B̃ . (G.3)

Thus mean-�eld contributions from a quadratic product are present if and only if both the perturbed coef-

�cients with identical mode numbers are non-zero and not 90◦ out of phase in the complex plane. The 〈 , 〉

operator has the following useful properties:

•
〈
iÃ, Ã

〉
= 0

•
〈
Ã, B̃

〉
=
〈
B̃, Ã

〉
•
〈
Ã+ B̃, C̃

〉
=
〈
Ã, C̃

〉
+
〈
B̃, C̃

〉
•
〈
RÃ, B̃

〉
=
〈
Ã, RB̃

〉
= R

〈
Ã, B̃

〉
where R is a real number

•
〈
iÃ, B̃

〉
= −

〈
Ã, iB̃

〉
•
〈
∂Ã/∂r, B̃

〉
+
〈
Ã, ∂B̃/∂r

〉
= ∂

〈
Ã, B̃

〉
/∂r
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We expand the Hall dynamo emf in terms of the poloidal and toroidal components similar to Ding et al. in

Ref. [25], where the divergence of B constraint,

∇ · B̃ =
1

r

∂

∂r

(
rB̃r

)
+
im

r
B̃θ +

in

R
B̃z = 0 , (G.4)

is used extensively. Their derivation incorrectly assumes
〈
iÃ, B̃

〉
=
〈
Ã, iB̃

〉
,
〈
iÃ′, Ã

〉
=
〈
iÃ′′, Ã

〉
= 0, and

has an arithmetic mistake, all of which are corrected here. This expansion yields

µ0

〈
J̃× B̃

〉
θ

= µ0

〈
J̃φ, B̃r

〉
− µ0

〈
J̃r, B̃z

〉
=

〈
1

r

∂

∂r

(
rB̃θ

)
− im

r
B̃r, B̃r

〉
−
〈
im

r
B̃z −

in

R
B̃θ, B̃z

〉
=

〈
1

r

∂

∂r

(
rB̃θ

)
, B̃r

〉
+

〈
in

R
B̃θ, B̃z

〉
=

〈
B̃r,

1

r

∂

∂r

(
rB̃θ

)〉
−
〈
B̃θ,

in

R
B̃z

〉
=

〈
B̃r,

1

r

∂

∂r

(
rB̃θ

)〉
+

〈
B̃θ,

1

r

∂

∂r

(
rB̃r

)〉
=

(
2

r
+

∂

∂r

)〈
B̃r, B̃θ

〉
, (G.5)

which agrees with the expression in Ref. [16], and

µ0

〈
J̃× B̃

〉
z

= µ0

〈
J̃r, B̃θ

〉
− µ0

〈
J̃θ, B̃r

〉
=

〈
im

r
B̃z −

in

R
B̃θ, B̃θ

〉
−
〈
in

R
B̃r − B̃′z, B̃r

〉
=

〈
im

r

R

in

(
−1

r

∂

∂r

(
rB̃r

))
, B̃θ

〉
−
〈
R

in

∂

∂r

(
1

r

∂

∂r

(
rB̃r

)
+
im

r
B̃θ

)
, B̃r

〉
= −Rm

rn

〈
1

r

∂

∂r

(
rB̃r

)
, B̃θ

〉
+
R

n

〈
i
∂

∂r

(
1

r

∂

∂r

(
rB̃r

))
, B̃r

〉
− Rm

n

〈
∂

∂r

(
B̃θ
r

)
, B̃r

〉

= −Rm
rn

(〈
1

r

∂

∂r

(
rB̃r

)
, B̃θ

〉
+

〈
1

r

∂

∂r

(
rB̃θ

)
, B̃r

〉
− 2

r

〈
B̃θ, B̃r

〉)
+
R

n

〈
i

(
B̃′r
r

+ B̃′′r

)
, B̃r

〉

= −Rm
rn

∂

∂r

〈
B̃r, B̃θ

〉
+
R

n

(〈
iB̃′r
r
, B̃r

〉
+
〈
iB̃′′r , B̃r

〉)
. (G.6)
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As the parallel component is of particular interest, we project these components to �nd

µ0

〈
J̃× B̃

〉
‖

=
B0θ

B0
µ0

〈
J̃× B̃

〉
θ

+
B0z

B0
µ0

〈
J̃× B̃

〉
z

=
B0θ

B0

[
2

r
+

(
1− B0z

B0θ

Rm

rn

)
∂

∂r

]〈
B̃r, B̃θ

〉
+
B0z

B0

R

n

〈
i

r

∂

∂r

(
rB̃′r

)
, B̃r

〉
. (G.7)

Alternatively, the axial Hall dynamo contribution may be more conveniently written in terms of B̃z instead

of B̃θ, as this formulation avoids contributions from B̃′′r :

µ0

〈
J̃× B̃

〉
z

= µ0

〈
J̃r, B̃θ

〉
− µ0

〈
J̃θ, B̃r

〉
=

〈
im

r
B̃z −

in

R
B̃θ, B̃θ

〉
−
〈
in

R
B̃r − B̃′z, B̃r

〉
=

〈
im

r
B̃z,−

r

im

(
in

R
B̃z +

1

r

∂

∂r

(
rB̃r

))〉
+
〈
B̃′z, B̃r

〉
=

〈
B̃z,

1

r

∂

∂r

(
rB̃r

)〉
+
〈
B̃′z, B̃r

〉
=

(
1

r
+

∂

∂r

)〈
B̃r, B̃z

〉
.
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H Supplemental multi-helicity plots
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Figure 56: Rational surface location by mode versus time for our two-�uid computation.

Figure 57: Mean axial �ow speed as a function of time and radius for the two-�uid computation.
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Figure 58: Mean poloidal �ow speed as a function of time and radius for the two-�uid computation.
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