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SHEAR ALFVEN WAVES IN TOXAMAXS
Cynthia Elizabeth Kieras
Under the supervision of Associate Professor Joha Andrew Tataronis

and Prefessor Keith RanZolph Symon

Shear Alfvén waves in an axisymmetriec rokazak are examined
within the Framework of the linearized ideal HD equations.
Properties of the shear Alfvén continuous spectrus are studied both
analytically and numerically. Implications of these results in
regards té low frequency ‘RF heating of toroidally confined plasmas
are discussed. The structure of the spatial singularities associated
with these waves is determined. A reduced set of ideal MHD equations
15 derived toe describe these waves in a very low beta plasnma.

Analytic expressions for the continuum are obtained by solving
a set of coupled differential eguations om each flux surface in an
expansion scheme in powers of the small inverse aspect ratie, £=a/R°,
vhere a and Ro are the miner and major radii, respectively, of the
toroid. To lowest order in €, the continuum §s given by an appropriate
generalization of its counterpart in an infinitely long, axially
periodic, cylindrically symmetric screw pinch. First order corrections
due to toroidicity induce a coupling of particular poloidal harmonics
about rational q surfaces, where g is the safety factor. The coupling
leads to the formatiom of gaps in the continuum. Depending on the
structure of the continuum near the gaps,-it way not be possible to

heat the plasma with certain oscillator freguencies and helicities.



Humerical solutions for the shear Alfvén contin§um of the
Tokapole II device at the University of Wisconsin - Madison are im
qualitative agreement with the predicgicns of the analytic model.
Additional effects due to finite aspect ratio, moncircular flux
surfaces and regiohs of high shear in the equilibriuz magnetie field
are evident in the numerical results.

The singular nature of the wavestructure is analyzed using a
generalized method of Frobenius. The perturbed velocity and magnetic
field components, aleng with the equilibrium quantities, are expanded
in power series about the flux surface on which the wave freguency is
equal to the local shear Alfvén rescnance frequency. The wavestructure
is shown to be always mon-sguare-integrable abosut these surfaces,
thereby leading support to the icdeal MHD zodel for low frequency

RF heating of tokamaks.
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CHAPTER 1
INTRODUCTION

For searly thirty years, sclenrists have been atiempting to
develep a vizble ceans to produce controllad thermonuclear fusion
rezctions in a deuterlum—tritium plasza and to harmess the released
energzy for cozzercial power p:oduction.' Such a scheme Is
particularly attractive because the fuel source s wirtually
{ipexhaustible. Progress towards this goal has been hindered by the
lack of an economic, technically feaslible means of hearing tha
plaszz to the high temperature range necessary for the osset of the
fusion reactions. Some success has been attained with BF heating
methods which attecpt to supply energy to the plasme via resonant
wave-particle interactioms at the lon cyclotron, electton cyclotron
or lower hybrid wave frequenciesl’z. A relatively unexplored yet
promising scheme for providing supplementary heating to a2
nmagnetically confined plasca involves the resonant excitation of
modes which 1ie within the shear Alfvén continuuw of ideal MMD
theory. Tataroais and Grossmannads® 2nd Hesegawa and Chen?6,47
originally demonstrated that because these modes exhibit spatlal,
non-sguare~integrable singularities at particular locations im an
inhomogenecus plasma, it may be possible to transfer energy
efficiently to the plasma via these wodes. Any small non—1ideal

plasna effects may then result in the thermalization of the wave

eneTgy .

Expericents designed to test the feasibiliry of this heating
scheme have been conducted on the Proto-Clec stellarater at the
University of Wisconsin-Madison®, the RO-2 S£Eilarator in Sukhumi fn
the U.S.S.R.B, oﬁ the Heliotron-D device in Kyoto, Japan7, and om
the linear theta pinch in Lausaane, Switzerland®, Evideace of
plaswa heating was observed in each experiment. Some Indication of
localized energy absorption was cobserved in the Proto-Cleo data,
vhile the plasma impedances measured on the Lausanne theta pinch

agree excellently with the theoretical predictions of Tataronis and

9

" Grossmann®. More recently, the technique 1s Deing tested In tokazsk

devices. Tnitial results from the TCA tokamak in Lausannelo, the
Tokapole i1 device at the University of Wisconsin—xadisonll, and the
Pretext tokazmak at the University of Texas—Austinlz have been very
encouraging.

The physical basis for the heating mechanisn may be understood
within the context of ldeal MHD theory13!1&. Shear Alfvén waves io
& hemogereous eguilibrium can propagate only at a slngle frequency,
wy=k Vy, where wy is the shear Alfvén resonance frequency, ky is the
magnitude of the component of the wavevector ¥ along the equ;librium
magnetic field and the Alfvén speed, V,, is equal to B/J;;;, where B
is the magnitude of B, p 1s the vacuum permeability and p is the
equilibrive mass density. However, tealistic plasma equilibria are
spatially inhomogeneous due to variations In the equiiibrium
magnetic field and plasma density. As a result, the fregquencies at

which shear Alfvén waves may be excited consist of a continucus



spectrum, the range of which is dgtermined by the eduilibrium. The
characteristic feature of a wave belonging te the continuous
spectrum Is that {ts Laplace transform is non;équare—integrabie at
locatfons in the plasma where the wave freguency is equal to the
local shear Alfvén resonance frequency- As a cousequence, the
corresponding physical perturbations experlence a localized
non-zero, time-averaged growth. This, in turn, lsmplies a localized
temporal growth of the plasma energy. Non-ideal znd/ot nonlinear
plasna effects presumably will 1izmir the growth of the perturbatlons
and thermalize the wave energy.

A correspondence may be established between the enexgy
absorption which can occur im an Inhomogeneous plasme due to the
singular nature of the lecalized Alfvén waves and the wave
absorption which can occur at the shear Alfvén resonance In an
tafinite hovogensous plasza lcbedded in 2 unidirectional equilibriwm
magnetic field, B. The dispersion relation for waves in the ideal

VED modeil® is glven by

e
(u2-x2v, 2cos ) [~ (7, 24757 ye2ulsv, 20 Bbcos?e] = 0 (1.1)

wvhere /Q;;?; is the sound speed,vs, the magnitude of the wave vector
is equal to k, the equilibrium £luld pressure is denoted by P, and
g ts the angle between ¥ and ¥. ‘three types of waves may propagate
according to Eg. {1.1). Shear Alfven waves satisfy the dispersion

relat{cn -

o2 - k27,2 cos? 0 = -k, -0 . (1.2)

The fast and slow magnetoacoustic waves satisfy the dispersion

relation

G- gt + g cos? 8= 0 . (1.3
Propagation of the shear Alfvén and slow waves 1s stroogly localized
about the field line on which the disturbance 1s initiated. This
1oecalization occurs because thesa two waves do not propagate im the
direction perpendicular to B, as can be seen by éetting 8=0 in

Eg. (1.2) and in the lov frequency solution of Egq. (1.3). The slow
wave is often referred to as the cusp wave, since its propagatiomn is
localized to a cone, the vertex of which trails behind the
wavefront. CumberbatchlB has showm that the cusp origlin is a polat
which moves along only on a particular fieid lise, and that the cusp
wave propagates unidlrectionally at the cusp speed , which 15 equal
to VAJTPO/(BI+?P°). Propagation of the fast wave 1s isotropic, as
can be seen by Inspection of the higher frequency solution of

Eq. {1.3). The structure of the wavefronts of the three MHD waves
at some instant In time after a point disturbance is excited at the
origin of the x-z Cartesian coordinate system is displayed in

Fig. 1.1. LocélizaEiOﬂ of the shear Alfvén and cusp waves results

{n the existence of resonances of these two waves. Wave abscrption



is possible at a resonance, which occurs when the wave vector ¥

becomes infinite. The dispersion diagram for the three MHD waves is
displayed in Fig. 1.2. Im this diagram, w is plotted versus kl’ the
component of the wavevector perpendicular te ¥, for a fixed value of

k Twa gesonances are evident in Fig. 1.2: the shear Alfvén

i
resonance 2t WS, and the cusp resconance at w=u.- These resonances
are broadened Into continuous spectra by variations of the
equilibriuz ragnetic field and/or plasza demsity in an inhomogeneous
equilibrium. The spatial structure of z wave excited at a frequency
which lies within either of these two centinucus spectra is
non-square—lntegrable about the regioas where the wave- frequency is
equal to the local shear Alfvén or cusp resonance frequency. Hence,
the sparial singularities prescnt in the izhomogeneous plasma occuT
at locations corresponding to the resonances present in a
hemogeneous equilitrium. This suggestsw‘ that energy absorption is
possible in the inbozogeneocus =ediun at the local ‘shear Alfvén and
Cusp resenances.

As was mentiomed 1n the preceding paragraphs, there exists a
definite connection between the continvous spectrunm of the ideal
MHD operator and the possibiiity of plasma heating. To make this
connection more explicit,conslder a linear differential operator,
L{x,w), where w Is a pataneter and x is the independent variable on
which L depends. Let 5 denote the particular space consisting ef
all functions upon which L way opevrate. The domain of L consists of

those functions, ug in the space §, for which Luz=f; belongs to 5,

1
}satisfies specified boundary conditions, aud has a continucus
derivative of the same order as those contained in L. The set of all

.such functiens, f,, form the raage of the operator, L. let the inner

product of any two functions in 5 be defined as
(Vil\?j> = g{d}( Vi* Vj (1'{5)

vhere the iategration is over the allowed range of the Independent
variable, x. The norm of a vector is defined in turns of its Imner

product with its cooplex conjugate as

vl = Sl o (1.5}

An operator, L, is a bounded operator if its domain is equal to the
space, S, and if for every function, u;, in its dozein, there exists

a finite constant, ¢, such that

“LuiH < ci]ui” . {1.6)

Otherwise, the operator, L, is unbounded. To deflne the spectrum of
the operator, L, one considers its inverse, i.e., 171, for all

values of w. Consider the eguation

L{x,wju = a . 1.7y

A necessary and sufficient conditicn that T..m.1 does mot exist 1s that



a noatrivial solution, g, of the correspoading homogeneous equation,
Lg=0, exists in the dowain of L. The function satisfying Lg=0 is an
eigenfunction -of L corresponding to the eigemvalue w. The set of
all such w’'s forms the discrete spectrun of L. If a nontrivial
solution to the homogeheous equation for a given w does not exist,
thes L™! does exist and the correspording u helongs to either the
resolvent spectrum of L or else to the continuous spectrum of L. If

the inverse of the operator, L, is bounded, l.e., if

<ulu> < lalrlay
G&lar Lalar

<ec (1.8)
where ¢ 1s some finite constant, then  belongs to the resolvent
spectren of L. If the Inverse Is an unbeunded operater, i.e.,
<l_la!L_1a)=<uilui> 15 unbounded, then the corresponding w belongs
to the continuous spectrum of L. The functienms, uy, corresponding to
the solutions, w, in the continuous spectrum of L ate
non-square~integrable and therefore are spatially singular.

The spatial singularities assoclated with the contimuous
spectrux may readily be connected with energy absorption in ideal
MHD theory. The Laplace transform of the system of linearized I{deal
¥FD equations may be written in the form (1.7), where w represents
the rode frequency, u represents the macroscopic fluid and magnetic
field perturbations, a contalins the initial conditions, and =

represents physlcal position in the equilitrium. Tataronis and

Crossmann3’4 and Hasegawa and Chenhé,h? origlnally demonstrated that
the linearizeﬂ ideal MHD equations admit solutions corresponding to
a continuous spectrum fa certain Inhowmogeneous equilibria. The
singularities inherent in thé Laplace transform of Eertain
components of the perturbed macroscopic guantities lead to 2 nonzere
time-averaged growth of these perturhations in locallized reglons in
the equilibrium. Since the fluid energy is proportional to the
square of the perturded fluid velocity, it likewise grows in time
when the fiuid is driven by an oscillater at a frequency belonging
to the continuous spéctrum. Any small non-ideal plasma effects may
then provide a mechanisz for the thermalization of the absorbed
eneTgy-

The iatroduction of inhomogensities into the plasca equilibrium
causes the shear Alfvén and cusp frequency spactra to spread out
into conzinuoug_sgectra. This can best dbe illustrated by
considering a relatively simple Inhezogeneous equilibriva, f1.e. an
Incorpressible, cylindrically symmetTic linear theta pinch with
equilibrius variations allowed 1a the radial direction only. The
ideal MHD equations describing perturbations of this plaswa with a
frequency w and a longitudinal wave vector ® reduce to a siangle,
gecond-order ordinary differential equaticn for éhe Laplace

transforz of the perturbed radial veloclty, Gr’ of the formls:

- 2 .
AR iy -Kap-o . : (1.9




In this equation, the coefficlent A fs defined as fellows,
A= p(n) o2y, : (1.10)

whare p{r)} is the equilibriuva rass density, wy 1s the local shear

Alivén wave frequency,

24 2
Y 2 _ k Bz {r)
A B p(T) ?

{1.11)
and B, is the equilibriua magnetic field strength. The singular
point of Eq. {1.9), i.e., A=0, identifies the shear Alfvén
continuous spectrum. Based on the method of Frobeniuslgnla, the
gzeceral solution to Egq. (1.9) may be written as

v, = clw,k) [elr,wiia(rr,) + (r-rdh(z,0) + pluklelr,w)]  (1.12D)

where g{r,w} and h{r,w} are analytie functions of r in some regloun

about the radius, r_, where m2=wA2(ro), and ¢(w,k), p(w,k) are

0!
functions determined by the source and the boundary conditions. For
aziwuthally symmetric perturbations, the corresponding scolution for

the Laplace transform of the perturbed axial velocity, Gz, 1s

proportional to

10

- e(uw,%)
[+ ]

. (1-13)

This behavior follows from the condition of Incompressibility, f.e.,
¥-3=0. Comparison of Egq. (1.13) to (1.12) reveals that, while the
perturbed radfal velocity is square—integrable, the perturbed axial
velocity is nom-square~Integrable. These wodes therefore belong to
the continuous spectrum of the ideal MHD equations. The constant,
e{w,k), 1s determined by the source of the perturbatioms, l.e., by
the external oscillator which is driving the plaswma boundary

sinusoidally at a frequency, w

o- 1t is thus proportional to the

Laplace transfors of the source, l.e.,

. (1.14)

The physical cormponents of the perturbed velocity are obtained by
taking the inverse Laplace transforz of Egs. (1.12)-(1.13), using
Eq. (1.14). Because the inverse Laplace tracsform involves an
integration over modes of the form Egs. {1.12)~{1.13), the physical
perturbations are, in general, not singular for finite time
{ntervals. When the source freguency lies is the continuous
spectrum of the equilibrium, then, abbut the surface where

ubzﬂwAz(ro), the perturbed axial velocitx, v,, behaves as



11

vz{r:ro,t) ~t sin wyt . (1.15)

Away froc the resomant surface, T#r,, the behavier of vz is fnstead

given as

vz{r?ro,t) ~ sin wat . ) (1.16)

The implication of Eqs. (1.15) and (1.16) is that the eneIgy fnput
to the Fluid from the external oscillater accumulates about the
surfaces, T, vhere the oscillator frequency eguals the loecal shear
Alfvén resonant frequency.

1n the ideal MPD model, the possibility of heating 2 plasma via
the rescnant excitation of shear Alfvén waves is therafore based on
the precise that these waves belong to the continucus spectrud of
the linearized ideal MHD operator amnd hence are characterized by
roa-squaTe-integradble singularities. The preseance of these
singularities Ieads to a localized growth in the wave energy-
viom-fdeal effects will presumably thermalize the_absorbed energy.

For equllibriz which are inhomogeneous in mere than one
direction, 1ike tokamaks and stellarators, identification of the
continuu= modes is comsideradly more complicated than in equilidria
which are inhomogeaneous Iin one dimension only. Pao?® and
Coedbloedll were the firsf to treat these problens in a tokamak
equilibriuva. By considering the MHD equations in srthogonal flux

coordinztes, Pao was ahle to show that the contlinua are specified on

12

each flux surface by the discrete spectra of a set of coupled
differential equations involving omly the operater B+9. Though the
eigenfrequencles are discrete on any particular Elux surface, they
agalin cover a continuous range of values as the flux surface is
varied from the magnetic axis to the plasma edge. imilar sets of
coupled differential equations for the continua have also been
considered by Tatareanls et 31.18:22, Fameiri35, and Havelri and
Hamner?3 for more general toreidal equilibria, such as stellarators.

In this thesis, properties of the i1deal MHD shear Alfvén wave
in an axisyemetric toroidal device, such as a tcokamak, wiil be
described. Anm analytic representation for the shear Alfvén wave
dispersion relation will be derived by directly solving the
continvum eigenvalue eguations usgng large aspect tatie expansions
for the eguilibriun quantities. Analvses of the results anticipated
in experiments on tokamaks have previously been based on expressions
for the continua which were derived using eylindrical models. Such
caleulations iwplicitly assumed that the toroidal nature of the
equilibrivm would not significantly alter the lccation, or even the
existence, of singular surfaces in the plasma for appropriate
oscillator freguencies and helicities. The analytic forms derived
in this thesis for the continuum will be uwsed to deoonstrate tha;
gaps appear in the continuvous spectTus On, and In the fmmediate
vicinity of, rational q surfaces, where q is the safety factor. The
gap formation can be attributed to the coupling of poloidal

harmonics by the periocdic variations in the equilibrium due to first
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order toroidicity corrections. Implications of the presence of
these gaps will be &iscussed. Numerlical representations of the
shear 41fvén continuum of the Tokapole TI devicel!»2% will be
obtained by a direct sclution of the exact continuum equations,
using a numerical solution?® of the Grad~Shafranov equation for the
Tokzpole 1Y equilibrium. These representations are in agreement
with the qualitative model obtained using the analytic dispersion
relation.

The shear Alfvéa wave structure in the vicinity of a resonant
surfzce, Gy will be analvzed using & generalization of the method
of Frobenfusl®>20,22, Ir will be shown that the spatial
singularities associated with the transform of the perturbed radial
velocity are always logarithnic if the equllibriuvam is symr-etric
about the midplane, or else are of the form {¢—¢0)1V, when the
equilibrium is not symzetric about the midplame. The parazeter, v,
can then be determined by certaln Integrals involving eguilibriuz
quantities. The corresponding behavior of the transforms of the
perturbed fluld veloclty components within the resonant surface is
always non-square—integrable. A cocparison with earlier results by
Paoll, Tataronis et 31.18’22, and Hameiridd will be presented.
Finally, since the current experimentslorllslz involving shear
Alfvén waves In axisymzetrgc devices all operate at very low
equilibrium plas:é pressures, a set of reduced ¥HD equations, valid

$n the very low Beta Iimit, will also bte derived and discussed.

14

This reduced set should provide z good description of these waves in
these experiments.

The ocutline, then, of this thesis 1s as follows. The basic
theory of shear Alfvén waves In toroidal systems Is presented in
Chapter 2. Analytic sclutioas fer the shear Alfvén continuum in &
large aspect ratio tokaczk are derived im Chapter 3, while the
numerical solutions are presented in Chapter 4. The analysis of the
mode structure in the vicinity of the resonant surfaces is developed
in Chapter 5. Chapter 6 contalns the derivation and discussion of
the set of reduced MHD equations valid in the limit of zero
equilibriun pressure. Results and suggestions for further reseérch
are sgagarized in Chapter 7. A number of appendices contalning
additional detalls onr some of the calculations in the main chapters

are also provided for the convenience of the reader.
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FAST WAVE

"CUSP"

The wavefronts formed by the three MRD waves are plotted

at some instant in time following their excitatiom by 2

source localized to the origin of am x-z coordimate /
s¥stem. The equilibrium nagretic field peints in the SLOW WAVE
x-direction. Note that propagation of the shear Alfvén

and cusp waves Is localized to a cone but the

propagation of the fast wave Is isotroplc.
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Figure 1.2

pispersion Diagram for the Three MED Waves

Splutions to the dispersion relation, Eq- (1.1},
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for the

three MHD waves are plotted for a fixad value of kl'

Note that the shear Alfvén and cusp waves exhibit

rescnances at uFRIVA and wk Ve, respectively.
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CRAPTER 2
THE MED DESCRIPTION OF SHEAR ALFVEN WAVES IN TCROIDAL EQUILIBRIA

According to fdeal MHD theory, a plasma may be heated with RF
power by excltation of the singular shear Alfvén wave. The
prediction of RF energy absorptlen via this wode is based on the
$dea that the Alfvén wave lies in the continuous spectrum of the
linearized ideal MHD equations and consequently exhibits spatially
non-square-Integrable singularitles at particular locations in an
inhozogeneous plasma. An implication of the singularity, ot
resonance, is that energy from an external source cam be transferred
to the Alfvén wave, and hence te the plasma. To deterzine whether
it is possible to utilize this heating schere on a piasma in a
particular equilibrivm configuration, it Is necessary to determine
first if the ideal MHD equations yleld a continuus for the chosen
equilibrium, i.e.,whether or not 1t is possible to satisfy all
appropriate boundary conditions with a mode in the coatinuum of the
equilibriuvs. If the chosen equilibriuvs 1is spatially inhomogeneous
fn one directiom only, then the coatinuous spectra and assoclated
wave structure may be obtained amalytically. For example, in the
eylindrical screw pinch, Fourler analysis in the directions of
syzmetry 8,z allows the MHD equatlonms to be reduced to a single

ordinary differential equation in the radial coordinate, r: 14

20
dr1 d , 2 5 4 Poy, »
g @ -ty — g () zey =0 (2.1)

In Eq. {2.1}, the dependent variable, Er, is the Laplace transforw
of the radia} component of the linearized fluid displacement, Z,

defired as
t P

ey = [ ard(E,e) .
o

The coefficients by, by, and by are defined as follows:

2 4
_1.28B p w B
b, = H[CR)RE 4+l P
© EYITIE S C
2 42
2B 3. 25 2.2 2822 %%
b = i(a- Pl oRyCRy PP P )
T w,T dr 'r TS A BT AC
-rD
bz —_—AC ]

where Bp and B, are the equilibrium azimuthal and longitudinal

magnetic fields and where
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2
A= —p{,uz -\‘-F'I‘
L2
2 z
B : -F
Cc= —ETPD + _..,]pmz + TPO —
p‘o

2
p = o2 + (T + ke
B

m
Fo= _ +
er kE,

The azimuthal and longitudinal mode numbers are m and k,
respectively, y is the tatle of specific heats, P, is the
equilibriuvm fluid pressure, p is the eguilibrium cess density, and
#, {s the vacuvus permeabiiity. The continua are specified
algebralcally by the singular points of the coefficients in the

radial equation. The shear Alfvén continuum in the screw pinch is

given by

Oy s 2.2)

22

Since the equilibrium quantities are functions of the radius, f,
Eq. (2.2) predicts a continuous tange of resonant frequencies
corresponding to § & r ¢ a, where a is the plrasma radfus, at which
the Alfvén wave propagates. For any freguency, o in this range,
the radial eigenfunction In a compressible plasma exhidits a
logarithric singularity at the resonant surface, Tys where

l"1:|2 = wAz(r

0)16,22.

The procedure for obtaining the continuous spectra amd for
determining the nature of the radial wave structure about the
resonant surfaces in an axisyemetrric tokamak is considerably more
complicated because there is one less degree of symmetry. Pao?? and
Coedbloed?l were the first to treat these problems. By considering
the MHD equations in orthogonal flux coordinates,Pao demonstrated
that the continua in an axisymcetrie tokanak are determined by the
eigenvalues of a set of coupled first order ordinary differential
equations om each flux surface. Though the eigenvalues are discrete
on any particular flux surface, they agaln cover a continuous range
of values as the flux surface is varied from the axis to the plasma
edge. For a given frequency, w,, in this range, t.he radial
eigenfunction can be shown to be singular at the resonant surface,
s where moz - “’Az(q"o)' Though Pao specified a criterion on the
solutions which implies that the spatial singularities in the radial
direction are logarithmic in nature, in fact this criterion is

satisfied absolutely only for compressible plasmas in an up-down

syszetrlic equilibrium. In this thesis, it will be shewn In
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Chapter 5 that the wave structure in the vicinity of a resonant
surface is always spatially singular In am axisvanetric tokanmak,
where the exact nature of the singularity depends cn the particular
characteristics of the equilibrium being considered.

Similar sets of coupled differential equations for the ideal
3D continua have also been cuns;dered by Tataronis, Talwmadge, and
Shohetls, Tataronls and Saiatzz, Hameliri 35, and Hameirl and
Harzerl3 for more gemeral toroidal equilibria. However, analytie
representatlons for the continuz in 2 toroldal aquilibrium were not
derived in any of these studles. In this thesis, analytic
representations, for the shear Alfvén continuum of a large aspect
ratic tokamak, which were obtained using the formallsm of Tatarcnis
et 31.18, will be derived.and discussed in Chapter 3.

Tatarcnis et a1.}B nave generalized Pao”s approach to Include
toroidal equilibrla with closed, nested f£lux surfaces, which may or
mazy not be axisysmetric. Their analysis is based on the usual

linearized equations of ideal MHD theory,

Lupd = L(BMB + (BB - Vo, (2.3)
Po Bo

18 = (2.0 - (Fe)F - BvF (2.4
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iwp = ~FeVP, - yB YV : (2.5)

where the total perturbed pressure is p¥* = p.+ ;-gfuo and y is the
ratio of specific heats. The equilibriua mass density, magnetic
field and pressure are denoted respectively by p, g and Pd’ while
the perturbed pressure, magnetile field and plasca veloclty are
denoted tespectively by p,B, and ¥. A riwe dependence of exp{iwt)
fas been assumed. Identificatlion of the continuous spectira Is
facilitated by transformation to gemeral flux coordinates &, 8, &

in which Equations (2.3)-{2.5) wmay be written in the following

formig:

> > > E >

ax

= FoX + UoY .

= s (2.6)
* > > > :

¥ Y =R, (2.7
1pbl = awl . 2.8
where
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o2
e
v3
£~ , T e X )
imbz
L 7]
Lo

and i, 5, % and % are matrices whose elements are linear
combinations of first derivatives with respect to & and § only, with
& appearing as parameter. Explicit forms for these matrices, valid
for an axisymoetric teroidal eguilibrive described by general flux
ecoordinates, are glven in Appendix B. The vectors ¥, B are expressed
in contravariant form in which vi = ¥evul, where ul = (¢,9,8)- A
formal solution to Egs. (2.5)-(2-8) is obtained by first solving

.
Eq. (2.7) for ¥,

1~ FLix (2.10)
»>

and then eliminating ¥ from Eg. (2.6) to obtain an equation which

can be solved for ¥. Adulssible solutions must be periodic in 8, &

{since the flux surlfaces are aested closed torl}, regular about the

magnetic axis, and must satisfy the appropriate contIauity
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conditions at the plasma-vacuum 1aterface?®. This procedure will

fail on a flux surface, ¢_, if, for a given w, the Inverse of % does

Q

- : >
not exIst. The condition for the nomexistence of i’l is that a
non-trivial vector £(d,8,¢) exists which is periodic in @ and & en

the surface, & and which satisfles

fogd

bl o d

c2=0 . (z.11)

Equation (2.11) 1s a system of linear partial differential equstions
in terms of the operator B.v, with &g and w appearing only as
paraceters. Conseguently, the system together with the periodie
boundary conditions maybe regarded as an elgenvalue problem on each
magnetic surface for the freguercies, w, and the vector Z. The sets
of frequencles so determined form the continucus specttun for the
equilibriuvm. The surface, dﬁ@b(uﬂ, is singular in the sense that
Eqs. {2.6), (2.7}, and (2.8) may possess singular sclutioms about
that surface18)20“23r254

An analysfis of the behavior of the wave functions about the
resonant surfaces, ¢,, yields the form of the singularities. A
generalizationls’20!22’35 of the method of Frobeniu519=36, which is
used ro solve an ordinary differential equation in the vicinity of a
singular point, such as Eq. (2.1}, may be constructed. The nature
of the'functions g and ; about z singular surface, ¢,, way be
determined by considering expansions of the following

forml8,22,23,35;
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06,9, = (600 [£00,8) + (4-0p)21(8,6) + +o2]
(2.12)

T(6,8,8) = (o) VHIEL(2,8) + (4mg)B1(8,8) + »o0]

where the coefficients fi{s,é) and gi(e,é} are periodic in 8, ¢ and
v {5 a constant. Upon substitution of these expresslons into

£, 8 Fana ?
Egs. (2.6) and (2.7}, expansion of the matrices X, ¥ and in
powers series in ¢ and abowt G5 (} = io + (¢—¢°}§1 + ser ate.}, and
the eguating of the coefficlents of like peowers of (3-¢,), a
hierarchy of equations for the functions f& and gi i{s obtained. The

equations which arise from the (&—éa)vﬁi and (¢-¢o)“ coefficients

are,

fordo=0 (2.13)
o=ty (2.14)
io < By = (gg'é;/v - %1) 2 - (2.15)

If Eq. (2.13) can be satisfied by a nom-trival vector which is

o

periodic in &, %, then tﬁe surface by 1s singular. W¥oreover, It

>
follows that io is a sicgular operator, since the Iavecrse %;1 does
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not exist. Hence, Eq. (2.15) is a singular equatioa for gl, which
can be solved only if the right~hand side satisfies a set of
compatibility condition527, to be described mere completely In

Chapter 4. These conditions are
3 3
<a‘il(i‘o-§o - videE> = 0 (2.16)

where <Z18> denotes the inmer product between the vectors & and ¥

%

over the singular surface, aund ﬁi, = 1,e+s,n, conprise the set of

i
>
basis vectors of the null space of fo. Expanding Eﬁ in terms of

Gi’s yields the followiqg eigzenvalye problem for the parameter, w:

Fd -0, (2.17)

where % and § ars matrices whose elements are given by

Ryq = <Sil%0-§o£6'j> (2.18)
and

e d -; +
§yq = <iglxlagp (2.19)

respectively. That the solution for v may be formulated as an
eigenvalue problem was not comsidered in previous
18,20,22,23,35

treatments The behavior of any possible spatial

singularities of the wave functions {s effectively determined by the
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values of v which satisfy this eigenvalue problem. If the implied
spatial singularitfes are non-square-integrable, then the councept of
RY energy absorption by the contlnuum is valid. However, 1f the
solutioas for v Indicate that g and ; do not exhibit
nou-square-integrable spatial singularities, then the modes do not
belong to 2 contlnuous spectrum and the possibllity of heating the
plasza by absorption in the continuum is questionnable. The
criterion given by Pao i1s equivalent to the one above when v = 0 1is
the only possible solution. In reference 22, Tataronls and Salat
i{ndicate that 1f v = 0 only, then it can be shown that gﬁnd ;
contain logarithmic singularities about the surface, ¢°. More
generally, if any sclution for v is v = 0, them it will be shown in
Chaprer 4 that logarithmic singularities in (¢4 ) are present in
soluticns for ; and ¥- For equilidria which are Inhewmogeneocus in
one direction only, the analog of Eg. (2.17) can be solved. For a
compressible plasma in a cylindrical screw pinch, v can be shown to
be egual to zerol?, while for an incompressible plasma in a
cylindrical screvw pinch, v can ke shown to be purely imaginaryzz.
In Chapter 3 of this thesis, v will be shown to be either zero or
imaginary for an axisyrmetrie, but otherwise arbitrary, tokamak
plaswa.

At this polnt, it is useful to examine in moTe detail the
solutions for the contiaua and asscclated spatial singularities in a
cylindrical screw pinch coafigura:ion5:13s14. In terms of

cylindrical coordinates {r,8,z), the linearized %D equations have
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the form of Egs. {(2.6)-{2.9), where & is replaced bf r, and the
toreidal ccordirate Is replaced by the axial coordinate, z. Because
of cylindrical symmetry, the eigenvalue équatioﬁé for the continuvum
frequencies, Eq- (2.11), hecome purely algebraic after a Fourler
decomposition in the poloidal angle, 8, is taken. The matrix, %, is

thus given by

2
(1 - Befuolgg B,Bg/s DD
By Thg By [T
(2.20)
BgB,/u 82/
8z’ #o DD 2 z! Bo~DD
*‘*‘—B‘*—‘—" —— —pl ‘{1 - ]_.
* By By i,

_ |3
vwhere D = BV = — + kB, mand k are the poleidal and axizl sode
. : 2 I
numbers, respectively, By = yP, + 31 Jug, and the vector Y now s

glven as
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{2.21)

Solving for the frequencies, wz, yields the shear Alfvén contiauvun,

where
=B
8 +k822)
T
B, (2-22)
[T

(2.233

Estimates for the shear Alfvén continuum fraguencies of a tokamak
which are based on Eq. (2.22) caonot yield particularly accurate
estimates since Eq- (2.22) is not a flux functiom fn 2 toroidal
equilibrium. The estimates are made by identlfying BB with the
polaidal magnetic field, B, with the toroidsl megnetic fleld, T with
the winor radius of the flux surface, and k withrn/RO, the magnitude
of the wvave vector in the toroidal direction. In a tokamak, these
functions all vary with the poloidal angle, 8. Tt becomes necessary

to introduce some ad hoc flux surface averages of these quantities
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in order to obtain some estimate for mg which is constant on a flux
surface. Even so, it Is still not clear a prior! that tke toroidal
nature of the problem will mot significantly alter the structure of
the shear Alfvéan continuun away from that predicted by the straight
cylindrical model. In this thesis, a strong distortion of the

cylindrical model predictions which oceurs about rational g surfzces

will be derived in Chapter 3 and its implications for experiments

discussed.

Tha radial structure of the shear &1{vén wave about the
resonant surface, T in a cowmpressible, cylindrically symmetric,
screw pinch plasma may now easily be shown to be logarithuic, using
the formalism developed in Eqs. (2.1€6)-(2.18). The results
obtained in this rethod are sguivalent to the results obtained by
aplying the method of Frobenius to Eq. (2.1)28 and to the results

obtained by direct application of Eg. (2-18)% 1% The analog, for

>
the cylindrical case, of the matrix 25 - 80 in Eq. {2.16) iIs:

, (2-28)

B
where A = ZL?E}(YPOIB*)B g;. Recause there are twe vectors in the

>
null space of ¥, for a given wi, namely,
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aln, ke ti{m8HE2) (2.25)

~Bg ) .

where a(us,k) is a comnstant, then the eigenvalue problem of

Eq. {2.17) for the parameter, v, is of order 2. Direct solution
yields v=0 as a double root, indicating the presence of a
logarithmlc singularity in v and p*. When the plasma is
incompressible, i.e. y+o, the spatial singularity is no longer
logarithmic. In this case, the shear Alfvén end cusp continua are
degenerate. There are now four vectors in the null space of §o; the

two as given in Eg. (2.25), and the following two,

By

e(m e fiETHREY (2.26)

where c{m,k) is a constaal.
One can readily verify that the radial behavior in the
{ncompressible screw pinch is characterized by an imaginary

exponent,

B 2
v :21(;)(;)[351‘%_:@}‘1 (z-27)
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mB
where £ = _¥E + kB,. In elither case, the cowpressible plasma or the

incompressible plasma, the radfal wave structure is singelar, though
the exact nature of the singularity depends on the case in question.
The corresponding behavior of the perturted poloidal amnd axial
velocities can be shown to be npon-square—lntegrable. In this
thesis, the effects of the breaking of symmetry, by toroldicity and
noncircularity of the plasma cross section, on the structure of the
Alfvén waves sbout a resonant surface in a tokamak will be
investigated.

The ideal MID continua for am axisyzwmetric tokazak and the
carresponding behavior of the wave function along the singular
surface are specified by the solution of rhe system of coupled
partlal differential equations in Eq- {2.11)- When the two angle
variables 8,% on the singular surface, ¢°, are chosen to be the
Hamada coordinates 8,F (see Appendix A for details), these equations

assume the form,

2 &> > ; »
Cugow YH(9) « Y(8,5) + Boe viR(e)s - 7] SY(8,8) =0, {2.28)

where § and § are matrices whose elements are functions only of 8 in
an axisycoetrie equilibrium, the differential operator B = V is
given by

o emed By =52 2 33 2 )
g9 (Bve)e+(3vg)ﬁ B + B R €2.29)

£l 8 BE
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where B2 and 83 are the contravariant components of the equilibrium

+
magnetic field, and the vector Y 1s now defined by,

w2 F-98

.

3 - - . (2.30)
- Fave

>

The eleczents of Y are the contravariant components of the perturbed
> -

velocity in the directions v8, VE. The matrices ® and ¥ are defined

as follows,

822 B23 3232 3233

fcoy = , feey-7- . @aD

-

Bx

B3z 833 LﬁsBz B3B3

where the terms, Z4i» are wetric tensor elements for the
equilibrium, and B, and By are covariant components af the

equilibrium magnetic field. The variable, B*T, is given by

8.l = 81201 +; V. S (2.32)
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where |B}] is the magnitude of the equilibrium fleld and By is the
total plasma beta. TIn an axisyometrie tckamak, the toroidal angle,
E, is ignorable and the watrices % and § are functions only of the
polotdal angle, 8. More generally, in a non—axisyemetrie device,
these matrices would also depend on -

To proceed further, it is particularly convenient to introduce
a transforcation27 from the Hapada coordinates {8,£) to {8,p}, where
g8 = q{¢)8 - § and g(¢) 1is the safety facter, 33(¢)/B2(¢). Recall
that im Hazada coordinates the magnetic 1ines of force are stralight
on each magretic surface and furthermore, 32 and B> are functions
anly of ¢- The coordinate 8 1s constant on a field line.
Conseguently, the partial differential operator #.v in teras of
these new coordinates becomes an ordinary differential operatoer

given by

goy =82 2 .
ol (2.3%)

Using Eg. (2.33) in Eq- (2.28) yields the following equaticn for

>
Y(6,8) in an axisymmetrie tokanzk,

+* 3 E 3 > -
)ﬁ(e) Y{9,B} +’Fa 6 [:t(e)a?a 8] - Y5, =0 , €2.34)

where the eigenvalue A is egual to
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BP9 : (2.35) In the next chapter, the lnverse aspect ratio, & = a/R,, is
“ - + >
(3%)? assuced to be small and the matrix slements of ¥ and & in Eq. {2.34)

are expanded In terms of g, with ;(B,B) in the form given by
These equations are a set of coupled Sturm-Liouville egquations and, Eq. (2.38). & perturbation solution of the resuiting eigenvalue
with periodic boundary conditions, comprise 2 self-adjolint system. . equations for the continuous spectra Is then devaloped.
[See Appendix B for proof of the self-ad jolntness.]

In the coordinates, &,B, toroidal periodicity Is satisfied by

1(8,8421) = ¥(8,8) (2.36)

where Increasing 8 by 2z at constant @ is equivalent to moviang once

around toroidally. Pololdal periodicity Is satisfled by

¥(8,3) = Y{(%#Ix,5+2nq) (2.37)

which corresponds to increasing 8 by 2r and then moving back

foroidally to the original physical position. Since the only
>

dependence on the coordinate R arises In the efgenvector Y, a

Fourfer decomposition of the equatlon in .the ignorable angle B is

perzitted in the following foram,

R .
X(8,8) = % 3y(0,8) ~ & eTIFRE() (2.28)
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CHAPTER 3
ANALYSIS OF THE CONTINLOES SPECTRA IN A LARGE ASPECT RATIO TOKAMAK

& description of the tdeal MHD continuous spectra in a large
aspect ratie tokamak provides an understanding of how toroidiciry
and/for noncircularity of the flux surface cross sections influence
the locaticn of the rescnant surfaces vhere localized heatling may
occur. In this chapter, 22t analytic medel for the continua is
obtained by solviang the eigenvalue eguations, Eq. {2.33), for a
generzl, axisyzmetric toksnak equilibriuva in 2 large aspect ratio

expansion schece. Toroidicity 1s treated explicitly as an oréer

E~3/Ro perturbation of zn lnfinitely long pericdic cylinder. Formal

perturbatien techniques of gquantum rechanics are used to derive
approximate éispgrsicn relations. A generalization of the method to
taclude effects of nonclreularity of the flux surface CToOss sections
follows readily from the caleulations. The small 1lnvarse aspect
ratic expansion schewe 1s devaloped in sectien 1, while the
dispersion relations are derived and discussed in sections 2 and 3.
Kumerical soluticas to the .exact equations will be presented in the

next chapter-

Section 1. The perturbation Expansion
in the limit of srail e, the magnetic fields and Tadial

coordinate of the tokamak are assuced to vary as

&0

By = Bro(l—-e r/a cos %}

BPT = Bp(1+s A rfa cos ) 3.1

R = R,{(1+e rfa cos ¥ .

where BPT is the poloidal field in the tokamak, BP 15 the poloidal
fleld at R = R, £ is a qu;ntity of order 130, a and R, are,
respectively, the zinor and major radii, x is a poloidal angle which
varies uniformly fre= 0 to 2n, and T is a radial coordinate peasured
from the wagnetic axis- The flux surfaces are raken to be circular
pnder the preceding assumptions, but the effects due to
pen-circularity will be discussed further on- wWith these
expansions, the setric tensor elements and equilibriuvm ragnetic
fielid couponants, which appear as elementis of the natrices § and iIv,
can be readily decomposed into terms of order g9, which describe an
ipfinitely long pericdic cylinder {screw pinch), and corrections of
order e+ and higher, which are due to toroidicity. The screw pinch
1imtt is obtained by helding the guantlties qRo = rg?ofép and &/Rg
fixed while allowing & * 0. In this manner, the rotational
transform and poleidal flux in the tokamak, which are defined on 2
length 27R,, evolve into the rotational transform per unit length
and the poloidal flux per unit length of an infinitely long cylinder
with periedicity length 2R, . In this linit, the poloidal Hamada

angle 8 differs from y by an amount of order g. in Eg. {3.1), the
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angle y may hence be replaced by 9 with an error of ordet e2 1n By,
+ >
SPT and R. The expansions of the elezents of ¥ and B are given as

follows:

2oy I ) + 0(e? 3.2)
227 r{lZeAaCOS) (&%)

2 r 2
gz3 = 21 e q Ry -5‘203 g+ 9(e%2

2 2rose+052
Ru+2ERDEC {(e™)

H

833

T T 2
By = er(1+2 eﬁscos 8y - 2 £ q R, By Ec:os 8+ 0(e%)

[+

T r 2
By = R By {142 g}LE cos 8) - 2 € ¢ Ry B.ro 3 cos B+ 0(e7)

B*T = Ba(1-2 ¢ .; B, cos 8) + 0(82)

vhere
2,5 2
~AB
By, KB,
By =T T
By -H!P
o

The ¢° terms correspond to a screw pineh deseribed by coordinates &,

g and z° & z/R,, where 2+R, is the periodiclity length of the

cylinder and qR, = rBTOISp is the rotaticnal transform.
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Using the expansions given in Eq. {3.1}, the matrices § and §
may be similarly separated into “unperturbed” parts containing the
~screw pinch™ terms plus small "perturbed” parts due to first order

toroidicity effects. This decomposition can be written as follows:

Fodosr oD : (3.3)
-0l = 3| & 3| 2
§‘”&Isﬁ(e)“a'elﬂ %+ ¢ B+ 0(7)

Since the operators §°, E*’, ﬁl, %1 are all Hermitlan, and siace
€ F-;i and € El represent ssall correstions te ﬁo and Ec’, it is
permissible teo use the formal perturbation technigues of gquantua
rechanics to solve the equatinns:”-. In applying the methbds, the
eigenvector ‘-I) is expanded in terms of any complete set of functioas.
It is generally most convenient to choose as this set the
eigenfunctions of the zeroth order, or unperturbed, system of
eguations. Thus, from Eq. {3.3), the basis functions, ESONM’ are

obtalned frem the following equatien,

1°},H§°-§°,m+§°-$°m=o s (3.%)

vhere M and N ave respectively poloidal and toroidal mode numbers
resulting from a Fourier decomposition with respect to 9§ and g, and
hom{ is the eigenvalue associated with this reduced problem.

Because Eq- (3.4) consists of 2 decoupled harmonic osclllator type
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equations, the solutions, 3%

s form a complete sel. Therefore, we

can expand the eigenvectors Im the tokamak, &, in terms of the screw

pinch elgenvectors, QONH’ as follows,

= W5y P =Ta, 3, ) (3.5)
3 a

Upon substituting this expansion for 2 into Eq. (2.34) and taking

inner products of the resulting expression with each of the ﬁpa’s,

an infinite set of equations for the coefficients a is obtalned.

this set of equatioms has a montrivial sclution 1f and only i1f the

deterninant of the ccefficients of the aa’s vanishes. Using

Eq. (3.4), this detercinant may be written in the formw

1,1

A ke<ai i L 00> e<allmant (83> .

det =0 {3.5)

el intiliay el !.ml-&.ll 2y
: H
It is this equation which determines the eigeavalue L. Notice that
the tenm; atrising frouw torcidal corrections are all of order g or
smaller. TIa the following sectlons, the eigenvalues for the
continuous spectra in a large aspect rtatio tokamak will be obtained

by assuning the fellewing expansidn for X in Eq. (3.6},

A=+ el + ot ‘ (3.7
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and systematically determining thg coefficients ki.'

Section Z. Solution of the Lowest Order Equaticns (Screw Pinch)

In this sectionr, the properties of the basls functions are
>
obtained by solving Eq. (3.4)}. Since the operators H%nd Eb of the
screw pinch are independent of 8, the appropriate choice for the

unperturbed eigenfunctions is

- HHN

%o -y e iNg 1(¥+Nq) 6 31\‘1{ s (3.8)
where mp is an arbitrary normalization, ?ﬁﬁ is the appropriate
vector, and the phase (M¥q)0 is chosen to satisfy poloildal and
toroidal periodicity requirements. Two distinect sclutions for 2e

are obtzined from Eq. (3.4}, corresponding to the shear Alfwédn

continuous spectrus,

2° = g, gt e p , (3.9)

and to the cusp, or slow wave, spectrum,

A° = reswg)?, Bt (3.10)

b ] g
-

where I 2 ; vy (1 + ; YBy)+ Im the incompressible limit, y » =,

the cusp and Alfvén spectra are degenerate and the vectors A ang f5
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are not uniquely specified by the £® equations. Further discussion
of this specilal case may be found in Chapter 5.

The unperturded elgenfunctions are orth&gonal to each cther
with respect to the zatrix §°. For the Alfvén wmodes, the condition

is given by

el e > = da3 fasdy, - Fo. o

2
B
T
= (2n) P Imyl RE 1+ -I;BT by S (3-11)
_ . .

A similar condition ray also be written for two cusp wodes. The
Alfvén and cusp meles are always orthegonal to each other in this

order. £gquation (3.11) is used to choose the normalization facter

Thag SO that
Al hiafa> = hey & - (3.12)

Though two distinct elgenvalues are obtained for the unperturbed
state, each eigenvalue Is at least two-fold degenerate. This double
degeneracy arises because the modes M,N and -M,-¥N are both linearly
independent solutions for the sane efigenvalue A° = (H+Nq)2, for any
value of g. Additional degeneracy will cccur between modes M,N and

M7 ,N" whenever
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aung)? = oraitg? . : . (3.13)

This condition, Eq. {3.13}, cam be satisfiedrexactly only on

rational surfaces, q = g_, slnce M, N, ¥”, and ¥~ are all integers.

r*
It isrvery nearly satisfied on the neighboring flux surfaces,
g =g, + &, for |8} << q..-

Note that conditionm (3.13) is written for degeneracy between
two different Alfvén modes or twe different cusp modes. Aside from
the special cases '=1 or M + Nq = 0, the cusp 2nd Alf{vén spectra

are, in general, distinct. It may, however, be possible to find

special values of I and q such that

= rr a2 13.18)

In this case, there would be a degeneracy between the Alfvén and
cusp modes. Since it 1s not Likely that such specizl cases would be
of experinental interest, they will not te considered in the
following discussions. Furthermore, since the experiments in
progress are investigating the Alfvén codes, the following sections
will deal explicirly only with the AlfvEn spectruwm. Analogous

expressions for the cusp spectra can be easlly derived.
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Section 3. First Order Corrections and Mode Coupling

The first order corrections te the shear Alfvén continucus

spectrum ariéing from toroidicity will mow be considered. In : laz . IH’aBIZ ’ 37
nondegenerate perturbation theory, the first and second order pfa Kao - AEO

corrections to the gth unperturbed eigenvalue are found fros

Eq. {3.6) in which all off-diagonal elements except those in the ath where the price signiffes that A hes been replaced by luo in the
tow and gth column are ignored. Solving the detercimant equatios term- In the case of degenerate or nearly degenerate elgemvalues,
then yields the expression 1.e., where lao het KBD, this solutfon for A  1is invalid because of

the resonant denominator in the second order correction, 1a2. This
> +
ig .12 3 difficulty can be traced to the fact that hecause both ¢a° and @BD
PR T ST S SR T ) _
a 8fa l“kso . are linearly independent functions leading to the same elgenvalue,

the correct zevoth order approxizaticms to the total eigenfunctions,

o . FAN - {3.1%)
x {'.\—?\ + e, 2 £ 0(g%)jern =0 , > > >
atl atl, ot $, are not @ao and &Bo but rather souwe particular linear
combinations of them. To obtain the correct linear cocbinations
where
' along with the first ovder correcticns to the elgenvalues, it is
) ' necessary to diaponalize the subrmatrix containing only those states
Hag = <3l + LMgS> . (3.16) ary e g only

belonging to the degenerate, or nearly degenerate, eigenvalueBl.

By setting the quantity in the first parentheses equal to zerc and From the discussion in Section 2, it is clear that first order

using the method of successive approximation, the first and sacond corrections to the shear Alfvén continuous spectrum will arlse only
>

r ; . L] °
otder corrections to the unperturted elgenvalue, iao’ say be found from termss, Haﬁ’ In which both elgenvectors, éa and 53 , correspond

be to shear Alfven eigenfunctions. Using the solutions for these
to

elgenvectors from Eq. (3.9) in Eq. (3.16), the matrix elewents, HGB’

are gliven by
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Hop = 5(208y By IAhg® & Cgigd} - (3-18)

From this expressien, it is clear that ia first order, the effect of
toroidicity is to couple degenerate, or nearly degenerate, modes
with the sawe toroidal mode mumbers but with poleidal wave nunbers
differing by one. It is zlso clear that if there were no
degeneracies in the unperturbed solutions, the first order
corrections, as givea in Eq. (3.17), would &l vzanish. BHad higher
harmcﬂics of cos 9, for exanple, ces p8, been retained earlier to
model the effects of noncircularity, then degenerate modes with

N° =~ K and ¥ = M * p wvould also have been coupled in this order.
-The condirions on ¥,N zad M ,¥” for coupling im first order wounld
then be uvritten as

M+ Ng = (3-19)

23

where the + sign holds for 3" = M - p and the - sign holds for
¥ = M + p. The significznce of this expression will be discussed
further ou.

Let us pow exazine In more detail the mode coupling. Consider
¢4rst the case when the screw pinch modes ave doubly degenerate,
f.e., M,N and -M,~N beleng to the sase eigenvalue A%, From

Eqs. (3.6}, {3.18), the submatrix deterzining A is then of the form
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. ' (3.20)

0 A = A0y, -x

5o clearly, Al = 0 and these wmodes do not couple In first order.
Hence, the correction to the unperturbed eigenvalues for these
states Is of second order Iim g.

Consider now two modes M,N and M-1,N which satisfy Eq. {3.1%9)
with p = 1 exactly on a particular raticnzl surface, 9., and
approximately on neighboring flux surfaces, g = 9, + §, where
18l << lg.1. From Eg. (3.9), 1t follows that 3% = é.

medes -M,-N and -M#1,-W beloug to the same degensrate eigenvalue,

Though the

A%, it is net necessary to include thex In the matrix that is to be
diagonalized since, frow Eg. (3.20), they are not comnected by the
perturbtaticn to the rodes M,N and M-1,%W. The first order
corrections to the elgenvalues for the modes M,N and M~1,N can be

found by diagonalizing the follewing matrix:

- 10 T 40 .
A l}:}‘! . Ex (2 + AN AM"! + (¥rng)]
» - (3.2}
r [+ - o
+ - + (M2 -
85 {2 A) {1 ANM [4 +‘vq)] A }‘N,H—l

with the result
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[+ [+
k_lmf“”tn,m—x
- i

L /32y - a8 2 2(5y? 2 (3048 . 3.22
£y MOy = Mg, F ART(T(2 + A0 (3.22)

1
o 5 =
Iin the case of exact degeneracy, R§M B RR,M*I = and q 4, so

Eg. {3.22) reduces to

A (L £ 2602 F A = AR £ ed) - (3.23)

When the modes are nearly degenerate, Eq. (3.22) may be written im

the form

A= (uEg)? & NPT

:; /(2::5)21% 52(.2)2(24-:&)2(.\:+::qr+:;5)2 , €3.24)

thereby deconstrating that A depeands gquadratically on § when the
modes are very nearly degenerate. This is the case when the
splitting due to the perturbatioen, g;(2+A)(M+qu+NS), is larger than
the splitting of the gnperturbed eigenvalues, ¥22. When the
splitting due to the.perturbation is smaller than the splitting of
the unperturbed eigenvalues, Egs. (3.22) and {3.24) show that the

solutions for A are the unperturbed elgenvalues plus corrections of
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0(52)- This is true because the two wodes are no longer
approximately degenerate. Upon following the above procedure for

the modes -¥,-N and -M+l, -N, the eigenvalues are agaln feound to be

given by Eqs. (3.22)-(3.24). BEence, the effect of toroidicity has

been to reduce the degeneracy of the eigenvalue from & to 2.

Figure 3.1 displays the behavior of the perturbed and
unperturbted eigenvalues over a range of q about 4.. Solid lines
indicate the unperturbed spectrum, while the dotted lines indicate
the first order corrections. The first order corrections are

sigrnificant In a range 5T = . about Q- In this range, the

)
Z
splitting due to the perturbation is larger than or comparatle to
the splitting between the unperturbed, nearly degenerate levels.
Kote that the effect of toroidicity Is to create a2 gap in the
spectrua around the flux surface, G- This gap, which arises due to
poloidal coupling of degenerate modes, 1s znalogous to the gap which
appears in the encrgy specttum of an eleciren In a perliedic crystal
lattice. The gaps in the electron energy spectrum occur because
Bragg reflection of a travelling electron wave off the crystal
lattice results In standing electron waves which are locallized
either in the "well™ between the ions or else at the top of the
"well™ near the lous. ¥For the Alfvén waves, the gap appears because
the periodic variation 1n the magunetic field causes poloidal mode
coupling yhich results in waves which are lecalized In regions of

good or bad curvature. This can be shown eipiicitiy by solving for
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the unperturbed wave functionms, &°. For A = A%(1+:A), the wave is

two-fold degenerate and is given by

Z -~ FlNE LMY B FL 8/2 Gy g2 F O, (3.25)

while for % = 3%(1-ga), the function is given by

$ ~ o TING (21{MNq) 0,1 8/2 os /2 T . (3.26)

The wave with the higher frequency is localized in the good
curvature reglon at § = =, where the field strength is increased by
the perturbation. The wave with the lower freguency is localized on
the outside of the torus, & = U, whers the curvature is dad and the
field strength is decreased by the perturbation.

By inverting Eq. (2.33} to cbtalm w? and using the results of
the perturbation calculations, the shear Alfveén continuum iIs given

approximately by

rn22
W T B anngy?1+0¢e?y) (3.27)
Bop

on the Flux surfaces for which no poloidal coupling cccurs, and by

242
2= E raiga? #5287 £ ) .(fzm)2+cz&2€z‘f s eyt b (3.28)
A oo T 7 3

o
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on and in the vicinity of a ratfonal flux surface, q., ou which
poloidal coupling does occur. These expresslons have been evaluated
for the Tokapole IT experiment, using a nuneficai equilidrive code?3
to obtain the equilibrium field parameters, and a model density
profile which agrees with the experimental profile within the
accuracy bounds of the measurecentsll, The calculated q profile for
the device 1s shown in Figure 4.2. An Internal separatrix is
located at the peak of the profile around r I 8 cm. Experimental
values for the toroidal field on axis and the plasma curTent were
used in calculating the equilidrium. The numerical equilibrium
agrees well with experimentally measured equilibria. When
evaluating the perturbed spectrum with Tg. (3.28), the parameter g
was set equal to 0.16 in order te rodel the tokarmzk~like portion of
the discharge and the paraceter A was set equal To ~1. The Alfvén
continuun for modes with ¥ = -1 -2 and ¥ = 1 are displayed in Figure
3.3. Again, solid lines depict the unpzrturbed eizenfrequencies,
with the toroidzl cotrrections indicated by dotred lines. The two
erossing polnts In the unperturbesd speclrul occur on the raticnal
surface q_ = 3.
r 7z

Toroidicity strengly affects the nature of the contiruuw near
these degeneracy points. For the innmer crossing, toroldiciry
effectively eliminates any resonance possibllity within the
spearatrix for a frequency equal to that of the unperturbed crossing
poiots. TFor the outer crossing, torcidicity splits the degenerate

resenance so the lecation of the —2,1 resonance iz shifted inwards
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while the location of the -1, resonance is shifted outwards. Away
from the points of degeneracy, the continua are unaffected by the
perturbation.

The results in Flgures 3.1 and 3.3, obtained with the
perturtation analysis given above, provide a qualitative picture of
the shear Alfvén continucus spectrum for Teokapole II. A more
accurate description of the spectrum requires a nucerical evalvation
of Eq. (2-34). The results of these computations are described Ia

the next chapter.

Filgure 3.1 Coupling of the (-1,1) and (-2,1) Modes 2t g=3/2 Surface

The behavior of the pertuthed {e+++} and
unperturbed {(————- Y eigenvalues for the modes {-1,1) and
{~2,1} in the vicinity of the ratiomnal surface, qr=3/2,

on which they couple, is displayed.
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Shear Alfvén Continuum Frequencies vs. ¥inor Radius

on Midplane

for the Tokapole IT Device

the shear Alfvén wave resonant frequencies,
corresponding to the eigenvalues in Flg. 3.1, are
plotted vs. minor radius on midplane for the Tokapole II
equilibrium given in Fig. 4.1. The solid lines deplct
the lowest order solutions, Eq. (2.27), while the dotted
lirnes indfcate the first order corrections, Eq. (2.28),

arising frorw toroldlcity.
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CHAPTER 4

NIMERICAL STUDY OF THE SHEAR ALFVEN CONTINUOUS SPECTRUM

OF THE TOKAPOLE II DEVICE

Radio freguency heating of a tokazak plasna by means of
resonant excitation of shear Alfvén waves is currently being
attenpted on the Tokapole II devicell at the University of
wisconsin-Madison and on other tokamaksl1®,12,

The Tokapole II device?® is a swall tokamzk which features an
{nternal separatrix and a natural, four-null poloidal divertor. The
separatrix and divertor regions are formed by the presence of four
internal conducting tings, situated near the corners of the square
vacuum vessel, which are driven inductively aleng with the plasma to
form the "PDX—type™ equilibriuvm. The major radlus of the device is
0.5 m and one side of the vacuum vessel measures 0.44 p In length.
Within the scpafatrix is the tokazmszk charnel of the discharge, which
measures 8-10 cm In minor radius, carrlies a total current of about
20 kA in these experiments, and is characterized by flux surface
eross sections which become fincreasingly nonciteular with radial
distance away from the maganetic axis. Typically, the toroidal field
on axis is about 0.4 tesla. A& numerical solution for the
equilibrium, which is generated from the Tokapole II equilibrium

code, TOPEC,25 and which is consistent with experimentzally measured

equilibriz, i{s displayed in Fig. 4.%.
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According to ideal MHD theory, the shear Alfvén wave may
exhibit spatial singularitvies at particular locatfions in an
intormopeneous plasma where the oscillatoer fréquency zatches the
local frequency of a mode belonging o the shear Alfvén coantinuum of
the ecuilibriuz. On the Tokapole II device, the spatial location of
the rescrances and the assocliated poloidal and toroidal mode
structure are being determined exparimentally using wmagnetic pickup
coilsil. 1a order td correlate the experimental findings with the
thteoretical description, it Is necessary to solve the Ideal MHD
equaticons In axisymoetric toroidal geometry for the shear Alfvén
continvum. An anzlytic model has been developed in the previcus
chapters which incorporates effects due to toroidicity and/or
nencitcularity of the plasma cross section by utilizing a large
aspeet ratio, circular cross sectica expaasion scheme. A
description hasad on this =odel indicates that the shear Alfvéa
continuum Is given approximately by the “screw pinch” dispersion
relation except in the vicinity of certain rational g surfaces,
where ;oupling of poloidal harmonics results in the forrzatiom of
gaps in the continvum. In this chapter, numerical sclations for
shear Alfvén continuum im a Tokapole II equilibrium, which have been
previously presented 1lm part at the 1981 A.P.S. meeting In New
York3? 2ad at the Third Aanual Joint Grenoble-Varenna International
Symposium on Eeating in Toroidal Plasmas In Grenoble ia 198234, are
summarized. The numerical soluticns are in gqualltative agreement

with the description obtained from the analytic zmodel except in the
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: region close to the intermal separatrix, which defines the edge of

the tokamak channel in the device. This reglon is characterized by
extremely high shear and highly noncircular £lux surfaces and hence
is effectively out of the regime of validity of the analytic study.

In section 1, the system of equations which deterwmines the
eontinuuzm im a tokamak and the nuszerical procedure chosen to solve
the system are described. Nuoerical results are presented and

discussed in sectiomn 2.

Section 1. Numerical Procedure

In an axisymmpetric coréidal equilibrium, where there 1is only
one degree of symmetry, the 1deal MHD ccntinua are speclfied by the
eigenvalues of a set of coupled ordinary differential egquations,
Eg. {2-113}, which are to be solved on each flux surface. Using the
formalism of Tataronis et 21.18,22 ;04 choosing as coordinates the
Hacada coordinates ¢, 8, and § = q8 - a29’ where & is the poloidal
flux divided by 2n, 8 and £ are the poloidal and toroidal angles,
respectively, and q is the safety facter, the eigenvalve equations
may be coaveniently written 1n the form given in Eq. (2.34):

2

Aoy - o8 + 2

“:’(e)a (e 0
361 5 [R(0)55 5} - 19,8 -

The eigenvalue, A, Is related to the continuum frequency, Q, by

Eg. (2.35):
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whera p, is the vacuum permeability, p is the plasma density, and

B2 z 22(¢)} = B - V5. The eigenvector, ¥, contains the surface

componeats of the perturbed fluid velocity,

Feva
¥(8,8) = . (&.1)

JevE

In this representation, the Tequirements of poloidal and toroidal

periodicity of the eigenfunctions are given by Zgq. (2.37),

¥(8,8) = Y(&+2x,8+2nq)

and Eg. {(2.36) ,

(e, p2x) = (8,8 .

respectively.

A totally real represeatation for the eigenvector Y 1s more
suitable for numerfcal computations than the complex one which was
atilized i{n the previcus chapters. For a fixed toroidal mode

aurber, N, the vector, T, can be represented as
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?(0,p) = X(8) cos KB + £(8) sin N.B , ' (&.2)

vhere consideration of a single value of N is permissibdle because of
axisymrmetry of the device. Substitution of thils expression inte

Eq. (2.35) indicates that & and € each satisfy equatlons of the form
{2.358) with ¥ replaced by either % or ¢. However, substitution of
this form into the boundary conditicas, Eq. (2.35) and (2.36),
indicates that & and € are connected by specific phase relations,

namely,

Z(er2m) = 2(8) cos 2a¥g — &(8) sin 2:Mg
E(s42x) = r.{s) cos 2xfg - C7(9) sin ZxNq

(4.3
g(ot2n) = 2(8) sin 2a¥q + C(8) cos Zx¥g

E7(8+2z) = X7(8) sin 2mNq + £°(8) cos Z=%q

where the prime denotes differentiation with respect to 8 at
censtant ¢ and R, and the facters Iavolving 2:x¥g arise from the
phase shifts accumulated as the wave moves along the fleid lipe.
Had the use of the coomplex representation been chosen, i1t would have
been found that the real and imaginary portlions of the vector would

have satisfied the same equations as the vectors ¥ and € above.
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Evaluation of the coefficient matrices g and § is fFacilitated

by the use of the Takapole 11 eguiiibrium code.25 Ovtput from the

B s

>
equilibriuc code is used to calculate the elements of ¥ and ¥ as

functions of B on each flux surface, using the code MATRIX (see

+ >
Appendix D}. The elexents of ¥ and ® are given by Eg. {2.31):

822 823 ByBy B3B3

Fey = Foy = & -

232 €33 B3Bz  B3%3

where Bij are the metric tensor elements in the surface, By 1s the
1th covariant compenent of the equilibrinzm magnatic field, and

By = 1312(1+;78m), where |B] is the magnitude of the equilibrium
zagnetic field, y is the ratio of specific heats, and 8  is the
total plasma beta-

Mumerical solutions for the eigenvalues, X, and the associated
wazvestructures, T, are obtained by a variation3* of the mathod of
Stodola and Vianellolg, using the code FREQ {see Appendix D}. 1In
this method, an iteration scheme Is developed in which
approximations to the elgenvalue, 11, and elgenfunction, Yi_ after 1
iterations are glvea as

? B 3.
X % . ?i + 6@'¢,5 §(9) % - Yi - § Yi—l (&.4)

© B¢, B

66
and
i
OISR eY) 5.5
with
T
S0 . dandpt 1'§‘Y1—1

s (4.%)
4dsdsYTi.§-?i :

and whetre ?? 15 the transpose of ¥,. At each fterztiom, four
linearly independent solutions to the howogeneous eguation for §i+i
and one particular solution to the Inhomogeneous eguation are
generated. Linear cocbinations of these are them chosen for both X
znd C using the phase relatiomns In Eq. (4.3).

The success of the zethod depends on providing a good initial
guess to the elgenvalue. For the shear Alfvén eigenvalues, the
fnitial guesses are obtained using the analytic model. The
fteration scheme is then designed to converge o the eigenvalue
which 1s closest to the Initial guess. Convergence is obtained

after 1 iterations when the parameter, eps, defined by

_ faf-gf1-1)]
eps = W » . (4.7)
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fs less then or equal to & specified tolerance level. Tor the
solutions presented in this thesis, the tolerance is typically set
at 1072 and convergence is vsually achieved after a very small
nurber of iteratioms, <% 5. TFor the cases in which the elgenvaluves
corresponding to differsnt shear Alfvén modes closely approach each
other, wore iteratiomns, omn the order of 50, are requlred before a
convargent solution {s obtalned.

Numerical difficulties are encountered on flux surfaces which
f{e within one centimeter in minor radius of the Iinternal separatrix
of the Tokapole 1I equilibrium. The numerical solution for the
equilibrium which has been used In these calculations is displayed
in Fig. 4.1 while the corresponding g rrofile Is shown in Fig. 4-2.
Note the extreme shear which is present at the edge of the central
tokasak chancel, between r = 7 em and © = 8§ cm. Because of this
extrece shear, many closely spaced wodes with different poloidal and
roroidal mode numbers are praseat in this rezion, rendering
convergence difficult. Similar probless would also have heen
encounterad 1f a variatlional approach, using a Galerkin method,27
for example, had been chosen instead. In that case, a large nucber
of terms in a finite elewment expansion would probably have to be
kept in order te obtzin a good deseription of the continuum in this
high shear region. The wethod used in this study does yield
convergent solutioms im this region. THowvever, because of the
complicated mode structure, it is difficult to detercmine to which

branch of the continuum each solution belongs.
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Section 2. ¥unerfcal Results

The equatlons for the continuum, Egqs. (2.38), are solved using
a numerical sclution for the Tokapole 1T equilibrium, which is
depicted in Fig. 4.1. The tokamak channel has a ainor radius of
about 8 cm, with the magnetic axis sitvated at a oajor radius of
about 351.5 cm. The total plasza current is 20 kA and the wagnetic
field on axis is 5 kG, in agreement with experimentally measured
paraceters. A density profile which agrees gualitatively with
experirental measurezents has been constructed and is displayed in
Fig. 4.3.

By cocparing Figs. 4.4 and 4.5, nunerical solutiens for the
shear Alfven eigenvaiues may be compared te the corresponding screw
pinch™ medel solutions, {.e., to the zeroth order im g selutions of
the analytic model. Poleidal mode numbers of ¥ = 1-5 with a
toroidal mode numter of ¥ = -Z are displayed in these figures.
Poloidal mode numters for the numerical solutions have been
deternined by exa—mining the wave structure of each solution aleng a
poloidal field line. 7Yt is observed that the poloidal structure of
each branch varles in a continuous smanmer as the separatrix is
approached. Modulation of the equilibrium due to toroidicity causes
the coupling of the (3,-2) mode to the {2,-2) wmode at a minor radius
of ¥ Z 4 cd, corresponding to q = 1.25, as predicted by the analytie
theory. Tﬁis coupling results in the formation of a gap in the

continuum, as can be scen by comparisen with the corresponding
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solutions In Fig. 4.5. An enlarged view of this mode coupling s
provided in Fig. 4.6. The poicidal structure of the (3,~2) meode as
the coupling surface is approached from the center of rhe tokamak
channel 1s shown sequentially In Figs. 4.7-4.9, while the
corrzspending poloidal structure for the (2,-2) mode is shown
sequentially in Figs. &.10-4.12. .Thg effect of the coupling 1s to
cause the (3,-2} mode to become increasingly peaked on the inside of
the torus and the (2,-2) wmode to become increasingly peaked on the
cutside of the torus. At the coupling surface, r Z 4 ca, the two
wodes exhibit similar structure but are 180° out of phase with each
other, as predicted by the analvtic meodel.

By comparing Tig. 4.4 with Fig. 4.5, it can be seen that the
(4,-2) mode s significantly altered fros the screw pinch soclution
aexr the separztrix.  The difference is atrributed to the strong
mode coupling which occurs in this region.

The shear Alfvdn coatinvua frequancies, corresponding to the
eigenvalues shown in Fig. 4.4, are displayed in Fig. 4.13. The
effect of the gap formation at r Z & cm has been to remove the
possitility of heating throughout most of the tokamak channel with a
frequency of abtout 0.5 MHz.

The behavior of modes with N = -1 and M = 0-4 {s exaxzined in
Figs. 4.14-4.24. Nounmerical sclutlions for the efgenvalues are given
in Fig. 4.14 while the corresponding "screw pinch™ solutiens are
glven in Fig. 4.15. The (1,-1) mode couples to the (2,-1) mode

argund the surface v X 6.5 ecm, or ¢ = 1.5. The poloidal wave
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structure for these two modes fs given iIn Figs. 4.18-4.20,
respectiveiy,_for r 6, 6.5, and 7 cm. The observed behavior is in
agreewent with the analytic model. Figures 4.16 and 4.17 display
the pololdal wave structure for the M = “0" and M = 1 modes,
respectively. The M = “0" mode contalns & strong medulation by an
M = 1 component, probably due to the M = 1 modulaticn of the
equilibrivm by toroidicity. The observed differences in the radial
structure of the eligenvalues near the separatrix can be artributed
to strong mode couplings in the regiom. Finally, the shear Alfvén
continvum frequencies, correspending to the eigenvalues iIn

fg. 4.14, are displayed in Fig. 4.24.

Results of the nucerical solutions for the shear Alfvén
coatinuun in the tokamak region of the Tokapole 1T device are in
qualitative agreement with results from am analytic rodel developed
previously. Strong mode coupling induced by extreze shéar and
noncircularity of the plasma cross section In the region near the
separatrix significantly alters the cagnitude and behavior of the
ceotinuum eigenvalues in the tegion, 2s can be seen by cecparing
Fig. 4.4 to Fig. 4.5 and Fig. &4.14 to Fig. 4.15. 1n addit{ion, for
flux surfaces which are located closer ta the separatrix than to the

magnetic axls, f.e., for r 2 4 cm, additional shifts in magnlitudes

‘of the eigenvalues occur due to finite aspect ratio and

noncirecularity of the plasma cross sections. These shifts arve in
agreement with the aralytic medel. According to perturbation theotry

calculations, as given in Eq. (3.17), the second order corTections
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Figure 4.5 Shear Alfvén Eigenvalues in the Screw Pinch

Appreoximetion vs. Minor Radius on Midplane
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The "screw pinch” model predictions for the modes shown

in Fig. 4.4 are displayed.
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Figure 6 Coupling of the {3,-2) and (2.,-2) Modes at the

g Z 1.25 Surface
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An enlarged view of the coupling between the (3,~2) and

{2,-2) modes of Fig. 4.4 is given, 2long with the “serew

pinch™ model predictions for these modes.
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FIGURE 4.8

Figure 4.9
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Poleidal Structure of the (3,-2) Mode at the

Coupling Surface, r=4.03 cm

The eigenfunction corresponding to the eigznvalue in
Fig. 4.6 at the top of the gap at rI4.0) em is displaved
vs. the relative distance along a poloidal field line on
the coupling surface. Note that the efgenfunction is
peaked on the inside of the torus and is 180C out of

phase with the eigenfunction (shown ia Fig. 4.12)

corresponding to the bottom of the gap.
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Poloidal Structure of the (2,-2) Mode at r=1.53 cm

RELATIVE DIST.

A
Hyan

E ALONG POLOIDAL FIELD LINE

FIGRE 4.9

The efgenfunction correspeonding to the {2,-2) mode in
Fig. 4.6 1s displayed vs. the relative distance along a
poleidal field line for a minor radiuvs on nidplane of
1.53 cm. The mode is relarively unaffected by the

coupling which cccurs around r=4.03 cno-
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Figure &.11 Poloidal Structure of the {2,-2% Mode at v=2.53 cm

The eigenfunction corresponding to the (2,-2) mode in

NORMALIZED EFGENFUNCTION IN ARB, UNITS

Fig. 4.6 is displaved vs. the relative distance along a
poloidal field line for a =minor radius on nidplane of
2.53 cm. Modulation of the mode amplitude due to
coupling to the (3,-2) wode is evident on the inside of

the torus.

RELATIVE DISTANCE ALONG POLOIDAL FIELD LINE

FIGRE 4,10
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Figure &.12 Poloidal Structure of the (2,-2) Mode at the Coupling

RELATIVE DISTANCE ALCNG POLOIDAL FIELD LINE

FIGURE 4.1

Surface, r=4.03 em

The eigenfunciion corresponding to the eigenvalue in
Fig-. 4.6 at the bottom of the gap at r=5.03 co Is
displayed vs. the relative distance along a poloidal
field line on the coupling surface. ¥ote that the
eigenfunction is peaked on the outside of the torus and
that it fs 180° out of phase with the eigenfunction

(shown in Fig. &.9) corresponding to the top of the

Bap-
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M2 = -2
R =405
COUPLING SURFACE

JAS

0.

RELATIVE DISTANCE ALONG POLOIDAL FIELD LINE
FIGURE 4.12

Figure &.13
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Shear Alfvén Continuum Frequencies vs. Minor Radius

on Midplane
The shear Alfvén continuuz frequencies corresponding to

the modes displaved in Fig. 4.4 are shown.
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Figure &.14

98

Shear Alfvén Eigenvalues vs. Minor Radius
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FIGURE 4.13

The eigenvalues corresponding to the modes
M=4,3,2,1,0 and ¥ = -1 in the analvtic model are
displayed. Mode coupling has occurred at T Z 6.53 cm

between the (2,~1) and {1,-1) modes.
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Figure 4.15 Shear Alfvén Eigenvalues in the S5c¢
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rew Pinch

Approximation vs.

The screw pinch medel predictions for

{n Fig. &.14 are displayed.

Minor Radius on Midplanme

the codes shown
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Figure 4.16 M=0 Eigenfunctions vs. Relative Distance

Along Poloidal Field Line

the elgenfunction correspending to the M=0, ¥=-1 mode
is displayed for three different minor radil. Tote the

modulation of the code caused by the 1/R dependence of

the equilibrium fields.
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Flgure 4.17 W=l Eigenfunctions vs. Relative Distance Along

Pololdal Field Line

RELATIVE DISTANCE ALONG POLCIDAL FEELD LINE

FIGURE £.16

The eigenfunction corresponding to the M=1l, W=-1 mode

is displayed for a minor radivs of r=2.53 cm.
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Figure 4.18
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RELATIVE DISTANCE ALCNG POLOIDAL FIELD LINE
FICURE 4.1/

The eigenfunction ceorresponding to the {1,-1% mode in
Fig. 4.14 is displayed vs. the relztive distance along
a poloidal fileld line for a alnor radius on cidplane of
=6.03 cm. Modulation of the wave amplitude due to
coupling to the (2,-1) mode is evident on the inside of

the torus.
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Poloidal Structure of the {i,-1) Mode at the Coupling

RELATIVE DISTANCE ALONG POLOIDAL FIELD LINE

FIGURE 4.18

Surface, r=6.53 cm

The eigenfunction corresponding to the bottom of the
gap at r=6.53 cm is displayed vs. the relative distance
along a poleidal field line close to the coupling
surface. XNote that the mode 1s peaked on the outslde

of the torus.
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RELATIVE DISTANCE AL

NG

POLOIDAL FIELD LINE
FIGLRE 4.19

The eigenfuncticn corresponding to the mode which has 3
{1,-1) character near the magnetic axls {s displayed
vs. relative distance zlong a poloidal field line at
r=7.03 em. A large M=2 cocponant is present in the
mode, due to the coupling to the (2,-2) mode around

r=6.53 cm-
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RELATIVE DISTANCE ALCNG POLOIDAL FIELD LINE
FIGLRE 4,20

The elgenfunction correspording to the meode which has a
(2,-1) chavacter near the magnetic axis is displaved
vs. relative distance along a2 poloidal field Iine
£=6.03 ¢cm. Significant coupling to the (1,-1) oode is

already evident at this radius.
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w2 -1
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Figure 4.22
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RELATIVE DISTANCE ALONG PCLOIDAL FIELD LINE

FIGURE 4.21

Coupling Surface, r™=6.33 cm

The eigenfunction corresponding to the top of the gap
at r=6.%3 co 1s displayed vs. the relative distance
along a poloidal fleld line close %o the coupling
surface. ¥Yote that the mode 1s pezked on the inside of

the torus.
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Poloidal Structure of the (2,-1) Mode at r=7.03 em

0.5

RELATIVE DISTAMCE ALONG POLOIDAL FIELD LINE

FIGRE 4,22

The eigenfunction correspondiag to the mode which has a
(2,~1) character near the magnetic axis is displayed
vs. the relative distance along a poloidal field line
at r=7.03 cm. A large ¥-1 compoment is preseat in the
mode, due to the coupling to the (1,~1} mode around
r=6.53 cm. The sharpness of the outer peaks in the
eigenfunction is attributed to the distortion of the

flux sutface uear the poloidal field mulls.
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Figure 4.24

Shear Alfvén Coutinuvum Frequencies vs. Minor Radius

on Midplane
The shear Alfvén continuunm frequencies coryesponding to

the modes displayved in Fig. 4.15 are shown.
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CHAPTER 5
ANALYSIS OF THE WAVE STRUCTURE ABOUT THE RESOVANT SURFACRS

The theory of RF energy absorptiom in a plasca via the resonasnt
excitation of the singular shear Alfvén wave is predicated on two
key concepts. The first 1s that the ideal MFD equations for am
inhomogeneous equilib:iumradmit solutions for the shear Alfvén wave
which are characterized by a contiauvous specirus. Iin the previous
two chapters, the presence and structure of the shear Alfvén
continuum ir an axisysmetric tokamak has been investigated
analytically, using large aspect ratio exéansien scheres, and
numerically, by directly solving for the continuux in a Tokapole 11
equilibrium. The second concept Is that the wave structure
assoclated with a mode In the continuum is nonﬁSquaré-integrable
about the surfzces where resonznce between the external oscillator
and the local shear Alfvén wave 1s achieved. The rate at which
energy is absorbed by the jocallzed Alfvén wave is determined by the
nature of the spatial singularity of the radizl component of the
plaswa ve}ocity3’brié. In a straight cyiindrical screw pinch
configuration, the radial structure has been shown to be either a

-
logarithmic or else of the form (r—ro)1v according to whether the
plasnz motlon is compressible or incoapressiblezz. In toroidal
geometry, the nature of singuiarity is deteroined by the solvability
condlitions on 2 singular system of inhomogenzous equatlons, as

discussed inm Chapter 2. The solvability conditions are exanined in
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this chapter to determine the spatial form of shear Alfvén wave
about the resonant surfaces in axlsymretric tokawmak geometry.
Effects due to plasma compressibility/incompfessibi1ity and of
vp—down syametry/fasysaetry of the eguilibrium with respect to
reflection about the midplane are deduced. Results are compared to

previous analyses by PanlD, Eameirid>, and Tataronis and $alar?2,

Section 1. Radial Structure of ¥aves and Solvability Conditicns

The linearized ideal MHD equations for am axisymmetric tokamak
.may be written In the following convenilent fotm, given in Chapter 1

and Appendix B:

@iw
&1y

RS S (5.1

N

LI X (5.2

> +
In this system, X and Y are vectors with elezents defined by the

expressions,

X = (5.3)

122
and
v2
“»
= » (5.4)
v3

I > -+ - -
and ¥, &, &, % are matrix differential cperators. The patrix ¥ is

>
self-adjoint and the elements of ¥ and 5 are related in the

following manuner,

+
®i1 = =Cz1 Ky2 = €11
(5.5}

+ &
K21 = —Cp2 Koz = €12

In E£q. {5.5), the superscript + denotes the adjoint of the operator.

Resonant surfaces, ¢_, and consequently the continua are

0,
-
jdentified 1f the f{nverse of the ratrix ¥ does not exist, f.e., if a

>
nontrivial vector Y exists which satisfles the relation

P.y-0 (5.6)

and the perfiodic boundary conditions specified im Eq. {2.363-{2.37).
+* e d
The behavior of solutions for X and Y about the resomant surface,

dy, may be obtained using a generalizaticn of the method of
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) Froben1u518'19’20)22135, wherein ; and ; are expressed by a power
series in {4~¢_)V. The parameter v is deternined as a solvability
condition on the resulting hierarchy of equaﬁions; Following the
discussions In Chapter 2, appropriste forms for the expansion are

the following,

> r
X = V(a8 + #F(9,8) + +o]
, (5.7

.
T = oM 0,p) + 20,8 + -]

vhere © ¥ ¢~¢, and the coefficients fi(e,s) and §i(8,5) satisfy the
periodicity conditions given in Egs. (2.36)-(2.37). TUpon

substitution of these expres

jons Inte Egs. (5.1)-(5.2}), expansion

+

s
>
of the matrices X, €, znd § in powsr series with respect to r iIn

>+ >
the form X=§+r§1+---

, and eguating coefficients of like powers of r,
a hierarchy of eguatiscns for the fuactiens fi and §i is obtained.
One equation, Tq. (5.8), arises froz the oréder rvl coefficients of
Eq. {5.2), while two egquations, Eg. (5.3)-(5.10), arise from the

order t¥ coefficients of Eq. (5.1) and (5.2) respectively:

3
To " & =0 : (5-8)

o, =& . o (5.9
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Vi, - 2 - <~§°.%n—v§1>-§o . (5.10)
Equation (5.9) has already been incorporated into Eg. (3.10}).

The set of eguations in Eq. (5.8} is recognized as consisting
of the coatinuun eigenvalue equations whlch have béen solved Iin the
preceding chaptérs. Examinatioﬁ of Egqs. (2.31 and (2.34), in which
the explieit form of the continuum equations is given, reveals that
Eq. (5.8) cowprise a set of coupled Sturm~Liouville equations in
which 21l coefficients in the matrices are real. It has been
previously proven by Tataronis et a1l.18 that the eigenvalues of
Egs. {5.8) ave all real and nonnegative. Since all quentities
appearing in Fg- (5.8) are real and the boundary conditions in
Eq. (2.36)-(2:37) are periodicity conditions, the corresponding
orthonormal characteristic functions may be chosen to be purely
real. Let x, be the eigenvalue which corresponds to the frequency
of the external pscillztor and let éi where £ = 1, wseaen, be the

linearly independent eigeavectors with elgenvalue, A , f.e.,

Tolhe) = Wy = 0 i =1, see, n - (5.11}

The vectors, 31, form the basis for the null space of y,. Floguet
theory will be used later on in this chapter to deterrine the
aumber, n, of linearly independent efigenfunctions, ¥,, which satisfy

Eq. (5.11) along with the boundary conditions {2.36)-(2.37).
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Because the system of Eq. (5.8} consists of twe coupled, second
ordet differential equations, there can be at most four linearly
independent vecltors ﬁi in the null space of %; for a glven
eigemvalue, A . A general solution for the function go
Acorres;onding to the eigenvalue A, can be expressed as a linear
-co:Bination of the n independent vectors ﬁ}, narely,
g, - 13‘:1 a ¥ - (5.12)
The first term, fo, in the expansiorn of the wvector ; is
provided by Tq- (5.9)- Fote that ¥ is specified in terrs of the as
yer undeternined parameter, v. 1If it is found that v=0, then
£g. (5.9) does not defirne ?o &ut rather provides a constrzint on §6,
na=ely that §° must also be null vecter of the operater 80.

»
Exzmination of the elements of €, as given in Appendix B in

!
Egs. (B.53) to (E.55), reveals that §t is bighly unlikely that 2,
will also be a null vector of the operator, E. It is therefore
reasangble to conclude that the series expansion as assuned In
£q. (5.7) is not valid when v=0, and, as wiil be shown later, am
alternate expaasion invelving the logarithm of (¢—¢0) pust be
chosen.

Equation {5.10) consists of a set of inhomogeneous differential
equatlons for the function gl, involving the singular operator,
;0()ﬂ), and the unknown parameter, v. Equatfonm (5.8) izplies that

>
fo(xo) 13 a singular operater. Therefore, the Inhomegeneous tetrm
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must satisfy certaln solvabiliry conditions27, to be discussed inm
the following paragraphs, inm order for solutions for gl to exist.
The parameter, v, is chosen in order that these solvablility
conditions are satisfied.

The solvability conditions on Eq. (5.10) are readily obtalned
by first substituting the expension, Eq. (5-12), for §° and then
taking the inner product of the resvlting expressioas with each of
the null vectors, di’ of y,- Since each of the 3i’s is also In the

"
null space of the operator iz, it follows that

@ 1Ep = 0 (5.1
WitiglEl

for all vectors, $i, in the null space of y,- The inner product of
the irhocogeneous term in Eg. (3.10) with each of the ﬁi's oust

therafore satisfy the conditicns,

A aj[<$1|§°-<i:ol3j> —v<-:>i|§1h:-'j>] =0 , (5-14)
j .

in order for a solution to Eg. (5.10) to exist. The n equations,
Eg. {5.14), in the n unXknowns, ay, comprise a set of elgenvalue
equations which provide the values of v for which solutions of the
form (5.7) may be found for Eq. (5.1)-(5.2). By defining matrices R

3
and 5 such ‘that

33 :
Ryg = <FpiRg-C ld 2 (5-15)
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and
3
Sg = Fyigleyp {5.16)

then the n equations of Eg. (5.14) may be written wore succinctly as

3 3
[Rovs} » 2 =0 . {5.17)

The vector a is defined as follows:

a1

F . . (5.18)

In the case where there is only ome vector im the null space of the

>
operator, fo(;\o), thenn =1, go ™ 1‘51, and the form of the

solvability conditions used by Tataronls et 21.22 §5 recovered:

<§5§§; NS

o - v§1|§0> =0 . (5.1%)

For this case, Eq. (5.19} can be readily solved for the parameter wv:
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<§0|§;-§°|§°>

v . (5.20)

(go'%1126>

Hovever, when there is pore than one linearly independent vecter in
the null space of %0(10), then the allowed values of v must satisfy
simultaneously equatlons of the form (5.19), with §b replaced by
appropriate pairs of the ﬁi’s- These eguations are generated by
expanding §B in Eq. {(5-10) in terms of the Gi’s, according to

Eq. (5.12), and subsequently taking the inner product of the
resulting expression with each of the ﬁi’s. An example of this
procedure iz given In the analysis of the screw pinch in Chapter 2.
These conditions, of course, are just those glven in the elgenvalue
equations (5.17). The paraneter, v, is now determined by requiring
the deterwinant of the coefficients for the §i’5 to vanish., If n
distinct values for v are found, then m distinet sets of ai’s are
also determined, up to a nornalization constant which is set by
boundary conditions at the plasma edge. If some of the values for v
are degenerate, then the cerrect chefce for the corresponding a;"s
may be set by the higher order equations in the hierarchy in the
power series expansion in (éréo)- In general, the denominatoer in
Eq. {5.20) will be real and nenzero, since %1 is a self-adjoint
operator consisting of a sus of terms, which yield nonzereo

expectation values with g .
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The self-adjointness of %1 is readily estabiished by taking the
partial derivative with respect toe 3 of the elements of %, as glven
in Appendix B ia Eqs. (B.533—(B.533), evaluating the result at =y,
using the self-adjolntness of %o' %1 is then expressed as the

following sum of self-zdjolnt matrices,

dz22  dEo3
+ + T ¢
2 3ln 2
= e “&;E _ ot owg
+=dg 832 dg33
oy o k=g,
N
(5.21)
By Mqyp
3 & o4 s
+ 2 -
55 o 33
2%y 21
3 ¥ | =,
where gO:mA2(¢D} and the elzzents Nij arve defined in Eq. (2.31).

Equilidria of experimental interest bave nonzerc deasity and
zagnetlic field gradients. Frem the explicit expressions for gij'and
5131 as given {n Eg- (2.31) and Appendix A, one can see that the
expectation value of go with the terms of %1 will not necessarily be
equal to zero. It s reasonzble to conclude that <§°2§1i§6) will be
aonzero and real for cases of physical significance.

> +
The preceding solut{on mathod for X and Y will fafl £f v = 0 as

previosusly mentioned. This occurs when

<31§§ . 3 [F>=0 . (5.22)

13¢

Self-consistent expansions for ; and ; are found if legarithzie
singularities in (¢~¢,} are Included in the power series
expansion522 of ; and ;, In analogy with results from the method of
Frobenlus for a single second order differential equation with a
regular singular point19’39- The appropriate expansions for g and ;

are now given by

X = [2,(8,8) + T2(0,8) + ++-] Rav + a[2,(9,8) + 8 (8,8) + +-+](5.23)
and

+ B0,
v=0 L+ [£,(9,8) + £®;(8,8) % +--] snr

+ alP,(8,8) + t5(9,8) + »ee) . {5.24)

> >
where d; and si are nonsingular components of X and Y; fi, go and 31
-
are analytic vectors associated with the singular hehavior of X and
-
¥, and the constant ¢ Is deterrined by the boundary conditions at

the plasma edge. The lowest order terms, of order L detercine the

1’

> S
dominant behavior of X and Y in the limit Gyt

%o(lo) - B (a,p) =0 (5.25)

and



135

with d = (Nnnzz-xuz)"l. and

g - . (5.43)

>
The sukmatrices, §, appearing In the matrix §; ave defined as

follows:

3. . (5.44)

e

The superseript "T" im Eg. {5.42) denotes the tramspose of the
-
zatrix. Any solution, V(8), of Eg. (5.41) may be writtea in terss

>
of its initial conditions, V{0), as

T3 = Foy - VO (5.45)

where ;(9} is the fundacental matrix for the system. The four
colucns of the fundarental matrix consist of the four linearly
independent solutlons to Eq- (5-41) which are forwed by direct

integration of Eg. {5.41), starting with the Initial conditions,

+> > > > >
P(O) = [V1(0) V2(0) V3{0) V4(0)] = I (5.48)

where T is the identity matrix. The determinant of ;(9), by
construction, Is just the Wronskian, W, of the solutiomns. By
differeatiating the Wronsklan with respect to theta and using

Eq. (5.41), it is easy to show that W(g) is related te ¥(0) by the

following expression 39,

W(e) = W(0) exp {f trace(§4-§)de} = W0y =1 (5.47).

Using the explicit forms for §£ and % as given in
Egs. (5.42)-{5.43), it is trivial to show that the trace of §&.§
vanishes. Thus, the Vronskian is always equal to its value at =0,
nazely, W{3)=W(0)=1.

In accordance with Floguet theory>0:37:23, there 15 at least

>
one solutiom, V(8), such that

V(er2z) = p¥(8) - (5.48)

where p is called the Floquet parameter. For the continuum

>
equations, the solution, V(8), will satisfy the perlodicity
constraints, Eq. (2.36)~(2.37), 1f, for toroidal mode aumbers,

¥ >0,

o = el?ma , ' (5.49)



while, for toroidal mode numbers N < O,

o= o~ 1ZnNg

By using Fgs. {5.45) and (5.56), the Floquet paraceter, p, is

determined by the condition

set]F@m)-pI] = 0
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{5.50)

(5.51)

Now, for Hamlltonian systems, such as Eq. (5.41), it is shown in

Append
5 |
EEIR:

> >
where Vi and Vj are any two solutlons to Eg. (5.41) and
*> > >
- sy T
<V1'§a -V T doasvyt §Q - vy

1t then follows, using Tgs. {5.4%) and (5.52}, that

ix

>

<y

E that the fellowing Invariant exists:

+

> +> > % »>
<v1(0)l§,;, o W (0)r = V1(2Zm) 18y ¢ V(Zn)>

hence,

> % >
= p1ox<V1(0) 15, » (0>

(5.525:“' a

(5-53)

(5.54)
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(piﬁk-1)<§1(o)|§4 - Gk(0)> =0 . (5.55)

N

Since the Vi”s form a linearly Independent basis, it Is not possible
> *

for <V1]§£ . Vk> to vanish for all values of k. Bence, if o is a

solution to Eg. (5.51}, then so is pil, and one may conclude
p1P203Pg = 1 (5-56)

Furthermore, %(Zn) is composed of totally real elements, since

F(O) = I and the elexents of § ate all real. Thus, if p is a
solution, then p *, the complex conjugate of p, 1s also a solution.
From these facts, the following possibilities arise for the four

solutions, p!

1) g = 1 for ail k
11y Il #1 for ail k (5.57)
114y lppl =1 for all k

iv) fpp =1 for k = 1,2  and Ipl #1  for k = 3,4

The first two possibilities, (1) and (ii), yield solutlons for p
which cannot satisfy the periodiéity constraiants in

Eqs. (5.493-{5.50). Periodic solutions may be obtained as
particular cases of both {1i1) and {iv). Diagrams in the conplex-p

plane of these particular cases are provided in Figs. 5.la-5.lc.
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Figures 5.1a and 5.1b depict the pessible solutions for the pk‘s
vhich lead to only one pair of p”s which satisfy the periodicit'y
constraints. One wember of the pair, p, satisfies the periedicity
constraint, Eg. (5.49), for toroidal mode mumber N > 0, while the
other zewher, p,, satisfies the periodicity comstraint, £g. {5.50},
for ¥ ¢ 0. Figure 5.lc indicates the solutions when two degenerate
paits of p"s cccur such that py = p; satisf-y Eg- {5.49) for N > ¢
while py = pg satisfies Eq. (5.50) for ¥ € 0. Hence, for a given 3,
there £s elither one solutlon for p which yields a periodic
eigenfunction, or else there is a double solution for p, in which
case Floguet theory guarantess that there exists at least one
pericdic elgenfunction corresponding to the double root.

Vhen a doubly degenerate solution for p satisfies the
appropriate periodiéity condition, Fq. (5.49) or Eg. (5.530), then
the nucber of linzarly independent periodic solutions for ; is
deterzined by the tank of the mxm matrix, {E(Zz)—pd’l), vhere py is
the double voot for the Floguet parameter37 and the order of the
matrix Iis @ = 4. If s dencotes the rank of the matrix, then there
are n = m - s linearly independent eigenvectors which ceorrespend to
the solution p = py and hence which satisfy the periodicity
requirements. If the rank of the matrix is s = 3 then there is
a = 1 periodfc solution while 1f the rank of the matrix is s = 2,

then there are 5 = 2 1linearly Independent periodic solutions in @,

B.
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To summarize, the dimension of the null space of %-o{lo) is
derermined by the number, n, of linearly independent vectors, -d'-‘
which satisfy the continuum equations and the appropriate pololdal
and toroidal periodicity requirements. 3By writing the continuum
equations as z Hamiltonlan systez of four coupled first order
differential equstions and comsidering the elgenvalues, o, of the
fundamental watrix, 5(9), for the systec evaluated at B = 2y, thea
the existence and nuwber of linearly iIndependent periodic solutions
are determined by the values of the Floguet parameters, Py, and the
rank of the corresponding wmattices, (;(Zn)*pki). Ie peneral, the
fundamental matrix must be generated numerically, so the remalning
quantities described must also be computed numerically.

The procedure described thus far in this section has been
applied, in a modified form, to determine the number of linearly
independent periodic vectors which fors the basis for the null space
of %o for a given frequency in a Tokapolie Il equilibrium. Because
the avallable numerical subroutines which determine the rank of a
matrix require that all elements of the =matrix be real, it was
desirable to reformulate the preceding equations so that the
pericdicity conditions take the form p = %I rather than
p = exp(+i2sNg). When a complex. form of the boundary conditions is
used, the elements of the solutiom vectors may alse be complex. If
the boundary conditions are expressed as real quantities, the
corresponding solutfon vectors will also be real quantities, since

the coefficients in the differential equations are real. By
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delaving the Fourier decozpesition in the toroidal direction and by
using the Famada coordinates 8, &, the continuum equations may be

written in s form similar to Eq. (5.1) but with B% replaced by
¢ 3
53

3
vector, V{@,E) is taken in terms of sin (¥z) and cos (NE) as

- >
+ q_a%) and V(8) by V{8,E}. A Fourier decounposition of the

\t(a,r,) = %(8) cos ¥g + &(8) sin W& . (5.58)

The resulting eighth order ¥emiltonlan system is given by

a -
w52 =% %8 -2, (5.39)
where
-4
Z = . (5-60)
¢
- 7
§4 qu§4
§8 - _ , (5.61)
—I-’qgg. %[a

142

>
and where 35 15 defined analogously ta § , as in Eg. (3.43). The
recainder of the analysis may now be applied to Eq. (5.5%), but with

the poloidal pericdicity conditicn appropriate to the coordinates

(B:E), i‘e‘)

F(s+za) = 2(8) - (5.62)

The deslired Floquet paraneter signalling periodicity is now p = 1.
Since, in effect, a linear combinatlon of the functions eI¥E and
e~ iNE hag been fntroduced to use £g. (5.58), a solution p =1 is
always at least a double root. When, _in the cooplex representation
p = exp(+i2=¥q) is a pair of sinple roots, then the corresponding
solution for p in the real represeatation is p = 1 as a double root.
Similarly, when p = exp(*iZ=iq) is a pair of double roots in the
complex representation, then p = 1 is a quadruple degenerate root In
the real represeatation. If p = 1 is a double root, them twa real
periodic solutions fer Z are found, while if p=11is a quadruple
roct, then either two or four real linearly Indepandent pericdic
solutions for g exist. 1In the latrer case, the number of linearly
periodic functions may again be determined by the rank of the matrix
{;(2::}—;:1], where p = 1 for the real Tepresentation.

in all cascs considered for the shear Alfvén centinuum
frequencies in the Tokapole II device, only two periodic, real
linearly independent vectors of the form Eq. (5.58) were found for

any glven frequency. Since such a numerical search cannobt ever be
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entirely complete, ome cannot necessarlly rule out the possibllity
‘that four teal, linearly independent periodic vectors zay exist for
some freguency not yet considered. However, spch a freguency would
be cut of the range of experimental Interest, so its possible
existence will not be conte:blated further. 1In regards to the two
real periodic solultions whﬁch were fournd, one is an even function of
the conmbination 8,f while the other is an odd function of the
cozbination 8,E. This occurs because the Tokapole II.equilibrium
has been idealized to be symmetric with respect to reflection about
the midplane. The coefficients In the continuum equations are thus
even functions of 8 and the continuun equations are invariant under
the simultaneous transformaticn 9+8 and E+E. As a result, both an
even functionm, with respect to 8,§, and an odd function can satisfy
the equations for the saze eigenfrequency. 1If the chosen
ecuilibrium is not assuzed te be up-down syomettic, then it is
likely that an even code and an odd mode with the same wave numbers
would not share a conmon eigenfreguency, since each would see a

differeat average structure of the equilibrium magnetic field.

Section 3. Applications te a Finfte Pressure, Compressibie Plasma in

an Axisymmetric Tokanak Equilibriuvm

The plasmas is actual experiments:involving shear Alfvdn wave
heating will undoubtably have soue small degree of non—axisyomety
and reflectfon asymcetry about the midplane due to the finite size

of colls, nonuniforsities 1in materials, preseace of divertor
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_regions, etc. In this sectionm, the spatial wave structure of a

: shear Alfvé€n continuum mode in a finite pressure, corpressible,

E axisymmetric toksmak plasma with and without reflection symmetry

; about the midplane will be determined. The effect of

, incompressibility will be considerad In Secticn 4 of this chapter

Ewhile the effect of zero plasma beta will be e%azined in Chapter.s.
Effects due to non—axisymmetry are outside the scope of the preseat

lstudy.

. Following the formal developments of sections 1 and 2 of this
chapter, the wave structure sbout the resonant surface is
characterized by the exponent, v, which appears 1m a generalized
Frobenius-type expansicn of the vecters ; and %, as in Eg. {5-7).
The hierachy of equations, which results by corbining the expansions
in Eq- (5.7) with power series expansions for the matrices g, E, %
and g in Eq. (5.1)-(5.2), may be solved consistantly to 2ll orders
if the expoment, v, is chosen to satisfy the cozpatibility
conditions as expressed iz Eg. (5.17), (5.153)-(5.16). The order of
the elgenvalue problem, Eq- (53.17), for v is set by the dimension of
rthe sull space of the matrix %o‘ By choosing a complex
representation fer the vectors g and ;, the dicenslon of the null
space of %o {5 one, as discussed at the end of the previous sectiom.

Hence, the expoment, v, is determined simply by Eq. (5.20}, f.e.,
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v

AR

where g;, the single vector in the null space of %, is written as

2,00.8) = X(@)el¥P (5.63)

for a toroidal mode number ¥ ¢ 0. The denoninater of Eq. (5%.20) is
always a real guantity, since %]_ is self-adjoint, and does not
vanish (unless quantitles such as dplte and amA/a¢ vanish
identicaily in the plasma--z situwation clearly not of experimental

interest). The nurevator in Eq. (5.20) is alwzys either pure

>
>
h

+
.. : . 3% L3
imaglnary or zero because o: the symzmetry in the matrtix 2 K, v Coe

. .
From Eg. (5.5}, the matrix F is anti-Hermitian, i.e.,

L (5.65)
Xow, by letting
T = <§°{§I§O> (5.65)
and since

B _ + 1 F - . (5.66)
™ = <G I gy = - GGIFIEY T
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it follows immediately that T 1s pure imaginary or zero.
The parameter, v, 1s thus shown to be either pure imaginary or
zero for this plasma. The corresponding wave functions exhibit

non-square—integrable singularities of the form

>
¥ ~ LIl 00,5 (5-67)
if v is pure irmaginary, or else of the form

he.d .
+ £
Y = ?"‘ + 8 for + af (5.68)

if vw= 0.

1f the egquilibriwn under consideration exhibits up-down
reflection sysmetry about the midplane, f.e., [B(8)] = |B(-&)],
etc., then the coefficients in the watrix, g, also exhibit a
definfze parity, elither even or odd, with respect to the polcidal
angle, 8. Using the explicit forms for the elements of 5, extracted
from Appendix B, it 1s possible to show that the integrals resulting
from the fnner product in the numerater of Eq. (5.20) all vaanish,
hence v = 0. Detalls of this calculation are provided in Appendix
F. The resulr Is that for a finite pressure, compressible plasma in
an axisyometric¢, up-down symmetric tokamak, the nature of the
spatial singularities about thé resonant surfaces Iin the conponents

+ : >
of X are logarithmic ia (¢~d¢,), while those of Y are of the form
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(¢*¢O)‘l- If any degree of up-down asymetry 1s alinwed, then, in
general, the form of the singularities may change to E ~ (¢—¢0)15VE
and v~ {¢*¢o)iiV§—1, depending om the actual value assuzed by the
paramater, v.

A comparison of the results for a fimite pressure, corpressible
plasma in an axisymmetric, up-down symmetric tokamak with those
given in Chapter 2 for a finirte pressure, conpressible plasma In a
cylindrical screw ploch indicates that the toreidal nature of the
equilibrivn does not influence the nasture of the spatial
singularities of the shear Alfvén wave about the resonant surfaces
ia a conpressible plasma. (This conclusion does mot follow for an
incompressibhle plasma, as will be discussed in the next section.j
The pricary effect of toreidicity in a finite pressure, compressible
plasma is to introduce periocdic, up—down sy=metric variations in the
poloidal direction which influence the nature of the continua but
pot the nature of the spatial singularitles. Other up—down
syometric, periodic variations of the equilibrium (resulting in
noncircular flux surfaces that are elliptical, ete.) likewise will
fnfluence the nature of the continua but aot the spatial structure
of the waves about the resonant surfaces. Coanversely, these resulfs
fmply that the singulatities associated with the shear Alfvén wave
in & finite pressure, compressible plasmz in a cylindrical screw
pinch with noneirecular, up-dowm symmetric flux surfaces are the same
in form as if the equilibirum was completely cylindrically

symmettic. 1t is only when up-down asymcetric varlations iz the
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peloidal direction are introduced that the nature of the spatial
singularities wmay be altered from that characterizing the up-down
symmetyic case.

According to the results??Z

summarized in Chapter 2, the shear
Al fvén continuum and the cusp continuum are depenerate in an
incompressible, eylindrically syzmetric screw pinch. As a result of
this degeneracy, the spatial singularities assoclzted with the
perturbed radial fluid velocity of a continuum mode are no lenger
logarithmic but are of the form (r—ro)i'VI. Mathematically, this
arises because the order of the eigenvalue problem for the axponent
has been doubled and the off~diagonal terms in the matrix are
nonzere, leading to a value for v which is imaginary. 1In the next
section, shear Alfvén waves in an incompressible, fin{te pressure
tokamak plaséa will be examined to determine if the shear Alfvén and
cusp continua ave degenerate or distinct, and to determine the
nature of the spatial singularities which pay be associated with the

modes.

Section 4. Application to Incompressible, Finite Fressure Plasma in

an Axisymmetric Tokamnak

The equations which determine the continuocus spectra in an
axisymmetric tokemak, Eq. {2.34), siwmpiify in the Iincompressible
plasza 1limit, when y+e, resulting in E*_1+0. Ta this limit, the

continuum equations reduce to
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1. '-’ 8 'a ¥ =
Lﬁ(e) T(8,8) + o !sﬁfe) 5% IB - ¥(g,8) =0 , (5.69)

wheTe %(9) contains the matric tensor elements in the flux surface,
which are defined in Eq. (2.31). 1In the cylindrically-symrmetric
incorpressible screw pinch limit of Eg. (5.69}, discussed in

Chapter 2, the zatrix § is independent éf the theta and is diagonal,
{ndicating the the shear Alfvén and cusp continua are nutually
degenerate. As a result of this degeneracy, the character of the
spatizl structure of the perturbed radial velocity associated with
the shear Alfvén wave is modifled from logarithmie, in a
compressible plasza, to (rwrc)i'“' in an incompressible plasma. The
theta dependence of E, which arises in a tokamzk because of the
toroifzl naturz of the equilibrium, couples the two equations Iin

Eq. {5.69) and presumably elirinates the depeneracy between the
shear Alfvén and cusp modes which occurs in the inceompressible
cylindrically-sycoetric screw pinch. This implies that ia an
inconpressible, axisyszetric, up-down syrmetric tekamak the two
continua remain distinct and the anazlysis of the spatial
wavestructure given In the preceding sections of this chapter for a
compressible tokamak plasma rewains valid. Specifically, the
perturbed radial velocities associated with the distinct shear
Alfve€n and cusp continua in an {ncompressible, axlsymmetric, up—dewan
symmetric tokacak, exhibir logarithnic singularities about the

resopant surfaces.
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To demonstrate, nonrigorously, that the two coﬁtinua are
distinet in the incorpressidtle limit of an axisymmetric tokamak,
approximate forms for the two continua, based on the large aspect
ratio expansion techniques of Chapter 3, will be developed in the
reralinder of this section. A move rigorous precf would entail
establishing the convergence of the resulting series expansions for
wAz and wcz'

Proceeding as in Chapter 3, the ratrix g is expanded in powers
of the small inverse aspect, &, using Fq. (3.2)-{3.3), and only

first order In g terms, arising from toroidicity, are retained. By

Y
expanding A and Y in power series in e as

n= 0+ al + 82 + .onn

(5.70)

+ > + +
Y=Y°+ EYl 4 Ez')'l F ss0a

and substituting the expznsions into Eq. {5.69), the follawing

hierarchy of equations results:

P >

(A\CE+T% ¥ =0 . (5.71)
> 1 +> +

oede + 2oy . Y, = oot + 8 . T, - Ao . Y, (5.72)
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- » > -»> > )
efedoy L1, - ~00REY LYy -l L E -2 T 57
where
> E >
t=%!33(e)_%15»—42°+ e3l . {5.74)

Again, as in Chapter 3, since § and E are hermitian operatoers, $C
are .3[“, )}1, E", and El. Thus, formal perturbation techuiques may be
used to solve for A, ; order by order.

The lowest order equations, Eg. (5.71), are equivalent Lo those
describing an incomprassible, cylindrically-symzetric screw pinch
plasza. Following the developments in Chapter 2, the shear Alfvén
ard cusp coatinua sre degenzrate in this limit and are defined by

18y = (el (5.75)

where M and 1 are the poloidal and toroidal mode nunbers,
respectively. Op most surfzces and for most cheices of M,N each

eligenvalue, Eq. (5.75), is doudbly degenerate with the following two

1inearly indepandent eigenvecters,
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+ 1] ioew ~i¥B
“M._’Imf{(}]ei{ Na)o e

s (5.78)
> 1 Pl g o -
T = M+Ng)e iNp
H "ﬁﬁ;He s
where the pormali{zations have been chosen so
oy i luy™> = vyl 0w> = gy : (5.77)
and where it follows
CQid®lv> =0 . (5.78)

The additional degeneracies which arise because the cozbirztion

e I{MTRq}E INg

yields two more limearly independent vectors of the form fS.TG) have
been fgnored. This is justified because these additionzl sclutions
are never coupled to the sclutions in Egs. (5.76) by poleidal
variations in the equilibrium. However, on certain raticnal q
sutfaces for particular choices of M and N, additional nonignorable
degeneracles, of the type discussed exteasively in Chapter- 3, occur

when
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My < (>:+::q)2 = Ay ™ (M'+}iq}2 . (3.79)

The conditions which M, ¥", ¥ and q =must satisfy axe glven in

Egs. ¢3.13) and (3.19)}. Theses wodes, (¥,N)} and (M*l,N) are coupled
in first order by the toroidicity-induced variations of the
equilibrivum. In additioes to the twe vecltors given in Eq- {3.76)},
rwo more linearly Independent vectors of the ferm Eq. (4.76), but
with ¥ replaced by ¥”, also give rise to the zeroth order
efigenvalue, Eq. (5.75). FHence, for these cases, the zeroth order
sclution is four-fold degenerate.

First order correcticons to both the doubly degenerate and
four-fold dezenerate lowesst order eizenvalues may be readily
calcuiated by writieg ;0 as zn arbitrary linear coazbination of the
dercnerate elgeavecters, substituting in Eq. (3.72), and coasidering
the set of eguations which arise by subsequently takiag the inmer
product of Eg. (3.72) with each of the linearly indepeﬁdent
depenerate elgenvectors. Alternatively, the Flrst order corrections
zay be deternined by using the equivalent formulation developed in
Chapter 2 in sections 1 and 3. The elements, HGB’ which appear in
the perturbation matrix, Eq- (3.6), are defined in Eq. {3.16).

Using the vectors i, By Yy ¥y~, as defined in Eq. (5.76) and
identifying §1 and %i by expaunding Egq. (5.69), the elements, EGB of

interest are given Dy
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<uM181|uM») = Az hy
qR,
<o, 1 1] _hi 1
i8S vy > = E = <oyl B luy > (5.80)
1 b3
oy vy-> = h
p: M 3 Tt
qR,
wvhers
>
ml 2 g, Hl+ £t (5.81)
and

=
I+
HE

a2 (/[ emi? - oresgd? & ) | Sys oy By ,x -(5-82)

In the case where the shear Alfvén and cusp wodes are only
doubly degenerate Ln the lowest order, then the two Independent
vectors are given in Eq. (5.76). Since M7 = M for these modes, the

first order tevms, HGB’ all varish as can be seen by Imspecticn of

© Eg. (5.80). As a consequence, the first order corrvections to the

eigenvalue all vanish and these modes remain degenerate after first

order toroldal effects are Included. 1t will be necessary to apply
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second order degenerate perturbation metheds, later on In this
saction, to demonstrate that toroidicity can remove the degeneracy
in higher oxders.

When the modes iy, s Hyags Vyi1s are all degererate in lowest
order (where the appropriate cholee, M™ =M + lor¥ =M-1,
consistent with the conditions in Egs. (3.13), (3.1%), has been
made}, then, from Eq. (5.80), the off-diagonal elements in the
fourth order perturbationm matrix which deternines Al for these nodes

" are nenzero. Four distinet solutions for 3l of the fora

AL = & Al 5.83)

are found, where Wy aad Wy are functicns of the equilibriun
guantities such that ¥; > ¥, > 0 always. The first ovcer toroidal
coupling which occurs between these wodes corpletely Teroves the
degeneracy, resulting ia two distinct shear Alfvdn~tyre modes and
two distinct cusp-type modes, which can te identified by their
polarization.

Though first order toroidal coupling does not occur dbetween the
two modes, Eq. {5.76), corresponding to an eigenfrequency, }%N,
which fs doubly degenerate in the zeroth order approximation, it
will now be shown that by including the second order toroldal
couplings, which occur betwéen the two degenerate modes and all

other modes of the system, the degenerate solution Is resolved into

two distinct, mondegenerate waves. Oune could procead by using
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Eg. (5.80) and‘retaining, in the perturbation matrix, Eq. {3.6), all
zeroth order elements, all first order elements on the wmaim
diagonal, and only those off-dlagonal first Arder elezents, Haﬂ’
which fnvolve eithef of the two degenerate elgenvectors in
£q. (5.76}. However, It is more expedient to proceed in the
following mannerho, since the resulting equation for 1l is of a
lower order than the one which would be obtained by utilizing
Eq- (3.6).
>
The zeroth order solutlion for Y, is written as linear

combination of the independent vectors in Eg. (5.76)},

>

Yo = ayuy + by - (5.86)

Because the first order corcactions to Aﬂu vauish, ay and by are not

deter=ined by the first ordsr equatioms. The first order
> >
correcticns, Yl, to the solution for Y may be expanded In terms of
>
the complete set of eigenvezlors, Y4, which are defined by
Eq. (5.71) with x% = AJ,.. [Equation (5.71} consist of two,
uncoupled harmonic oscillator type equations, for which it is well

known that the solutions forz a complete set of orthornormal

>
functions.] The expansion for Yl is written as
T = E’ ap b o ’ {5.85)

vhere the prime indicates that the terms Lfnvelving 3H and 3& have
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been deleted. This omissicn is permissible since, ﬁy Eq. (5.71), an
- ES .
arbirrary addition of Y, te ¥; in Eq. (5.72) will not alter the
-
solutions of Eq. (5.72). The arbitrary addition of Y, is chosen so

+ >
T, s orthogonal to Y. Substitution of Eqs. (5.85)-(3.85) into

Eq- {3.72) yields solutions for ai in terws of ay and by:

1 (aklﬂliuM>aM+<¢k|H1]v}pr
a k = ° o >
Mo A

(5.88)

when the imner product of Egq. (3.72) with Ek is tzten. Finally, by
substituting expansions (5.8563-(5.85) iato Eg. (5.73) and again
taking Inner products with QH and GH' the folleowing palr of two
coupled algebraic eigenvalue eguations for Aas bH’ and 12 is

derived:

Pl“;\

. =0 (5.87)

B2 Py - 2 by
where

1 2
Kyl (5.89)

Plsi‘t P

hae M
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CoglBH 90 <or B vy
Py = g‘ — (5.89)
M M
[<a u wmp 12
g = RS S {5.90)
PR Vel Y

From Eq. (5.87}, it is easy to see that degemeracy will be removed
by the second order correctioens, lz, if thers is at least one other
vector, 3k, belonging to a different zeroth order eigenvalue,

NSO # Ap”, sueh that

Codullao # 0 and  Cyylulino 40 . (5.91)

According to Eq. (5.80), four vectors, Eﬁzl and Gﬁtl’ belanging to
the eigenvalues 1gi1,x- exist which satisfy Eg. (5.91), so the
degeneracy 1s broken in thls order.

to sumparize, them, the spatfal singularities assoclated with
the continuum wodes in an incompressible, axisyocetric tokamak
plassa are the same as those assoclated with the coantfinuuo medes in
a compressible, axisymmetric tokamak. This comcluslon fellows
because In each iastance, distinct solutions for the modes are found

which ray be analyzed as shown in sections 1-3 of this chapter. For
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an up—down symmetric equiliyrium thé radial velocity perturbations
exhibit logarithaic singularities about the resonant surfaces, where
the wave frequency catches that of a mode inrthe continuous specira.
For an up—down asvmzetric equilibrium, the radial velocity
perturbations vary as (¢“$D)i[Vf about the resonant surfzces, where
v is defined in Eq. (5.7). These results for the Iincompressible
tokazak plasma differ from those of an incompressible, cylindrically
syzsetrie screw pinch plasca primarily because the toroidal nature
of the eguilibrium precludeé the occurence of the degeneracies
present between the shear Alfvén and cusp waves In a straight
cylindrical serew pinch equilibrium. The radial velocity
perturbations in a eylindrically-symmetrie, incoapressible screw
plnch plasma have been showm 22 Lo vary as (rwro)i!V] about the
resonant surfaces, Tor Based on the znalysis In this chapter, one
may Infer that {f an up-down symmetric poloidal perturbation (such
as ellipticity) is preseat in a incompressible straight screw pinch
plzsza, then mode coupling will resolve the degensracy between the
shear Alfvén aad cusp continua, thereby recovering the logarithmic
behavior of the radial veloecity perturbation, ?r,Apresent if the
plasza is compressible. THowever, If an asyametric perturbation of
the equilibriuvm is present, even though the shear Alfvén and cusp
modes will be nondegenerate, the spatial behavior of Ve will, in
general, be of the form (r—ro)il“l, rather thaa logarithmic. TIn any
case, for either the rokazak or screw pinch plasma, the spatial

wavestructure Is non-square—integrable because the velocity
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perturbaticns within the flux surface vary as 1/(¢—¢0) or else as
(drqb)iIV!"l, according to whether the radial perturbations are
logarithmic or of the form (¢r¢o}ilVI, respectively.

The conclusions obtained thus far in this chapter will be

coopared in the next section with the results obrained in eariier

studies. In Chapter 6, the spatlal wavestructure of the conticuun
modes present in a low beta tokacak will be analyzed and also proven

to be non—square-integrable.

Section 5. Comparison with Farlfer Studies

The spatiasl structure of the continwvuxz nodes In the vicinity of
the resonant surfaces has been previously exazined for toroidal
equilibria by severzl authors, including Paozo, Tataronis, Talmadge,
and Shohetls, Tataronis and Salatzz, and Wameiri3®, Different
generalizaticns of the method of Frobenius were developed in each of
these earlier studies. TIn this chapter, Egqs. {5.7)}-(5.13) are bhased
on the forzalism developed by Tataronis and Salat?? in their
treatment of general toroidal equilibria. Fowever, the formulation
of the solvability conditions as an elgenvalue problex for the
parameter, v, in BEq. (5.14)~(5.17) of this thesls, clarifies the
solution method given for v ir the work by Tataronis and Salat. 1In
addition, in this chapter, the solvability conditions were evaiuated
and shown to always yleld nmen-squarve~integrable singularities in the
wavestructure of a continuum mode about a resonant surface in an

axisymmetric toroidal equiiibrium.
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A somevhat different geheralized method of Frobenius was
employed by P2020 ip his study of the continuum modes in an
axisymretrie tokamak. Ee- wrote the linearized ideal MHD equations
{n a form simflar to that used In £g9. (5.1)-{5-2) but chose
orthogonal flux cocrdinates {(4,%,8) and considered the set of four
coupled first order differential equations which ave equivalent te

£q. (5.2). By writing

Wl =2 = MO EGOHTE) + ooe)
fupt = 5 = AT [T {uiten,(8) ¢ vas]

by = A(D){byaltrbsln) + oo 3= 6.x
uy -V X’(_f)[“jo(l)"’rujl(x) + oo} §o= 9,x

where T = &~ Ggy 7j and uj are the jth couponents of the perturbed

magnetic fleld and fluid velocity respectively, A" is the derivative

of A\ with respect to ¢, and by assuming

3y +0 a8 T 0
he derived = solvablility condirion on the system of equations which

detemiﬁes the function A(r). This condition {Eq. 43 in Pac”s

paper), may be written 1m the form

1T R S
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where A and G are Integrals over the poleidal angle .1 of products of
equilibrium quantities and the functions Egs T bji- and ujt for
{ = 0,1. Io this expression, A is anslogous in form to the elements

- +
of ® and ¢ to the elements of 8, defined In Eq. (5.15)-(5.16) of

_ this chapter. Using Pao”s equatfons and stated assumptions, the

integral G may be shown to be real and, for cases of experimental

tnterest, nounegative. The integral A may be showan to be equal to

r

2 .
A= § -é I"ogo*-aofo*] »

: {nstead of zere, as Pao stated. Clearly, A is asither zero or purely

imaginary. It is definitely equal to zero only I1f the equilibrive
" s up-down symmetric. FHence, though Pao concludes In his work that
the singularities associated with the continuuzm modes are

logarithmie, {n fact they may be of the form

3 - clr—ic( + e,

where Ig is the value of the integral A. This is consisteat with the
analysis completed in this chapter.

Hemeiri33 also has considered the nature of the singularities
gasoclated with the continuum modes in a compressible plasms iz a
_getneral, nonsyamettie, static equilibrium. Though he states that it

.

‘can be shown that the singularities are always logarithmic, he does
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oot provide the details of his analysis. His statewent, however,
appears to be contradicted by the analysis preseated in this chapter
for an axisysmetric but ofherwise nonsymmetric compressible tokasak
plasza. It is possible that his vesult is valld only If the
equilibrivo jacks any sort of symmetry.

. 1n sucwmary, the result that the wavestructure associated with a
mode in the continuue of an axisymmetric but otherwise arbltrary
torofdal equilibrium is always non—square-integrable Is consistent
«ith earlier analyses. In additiom, because the medes have been
shown to be pon—square—integrable, it may be possibtle to heat the
plaspa via the resonant excitation of these modes, in accordance

with the ideal ¥HD model of shear Alfvén wave heating.

FIGURE 5.1 Solutions for the Floguet Parapeter in the Cozplex

Plane
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CHAPTER 6
THE LOW BETA MODEL

The equations which describe the continua in an axisymmeteic
torcidal geowetry are 8 cozplicated set of two coupled second order
differential equations which involve only the operator B « ¥V and
which are solved in each flux surfacel®:20,2Z, Theqe equations have
been solved, in the preceding chapters for tckamak geometry
analytically in the large aspect ratio limft and nuserically for a
finite aspect ratio, noﬁcircular cross section tekamak. The purpose
of this chapter is to demonstrate how this complicated set of
equations, together with the eguations which determine the
linearized plasma velocity and nagnetic field, may be cons Iderably
simplified in the limit of very low plasma beta. In particular, if
the equilibrium pressure, P, 1s set equal fo zero in the ideal MHD
equations, then the cusp continuum, which describes podes with
" TPomsz where ”Az is the square of shear Alfvén continuum
frequency, is reduced to 2 single poiat w = U fn the spectrum aad
hence is effectively eliminated frow the set of equations which
describes the continua. A& single second order differential
equation, which describes the shear Alfvén continuum, survives im
the limit P, = 0. A second advantége of this model {5 the matrix
elements, which appear in Eqs. (2.17)-(2.1%) in the analysis of the
radial structure of the waves about the rescnant surfaces, also

simplify consfderably. Since the current experiments are expected
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to operate with very low beta plasmas, this single equation may

provide 2 good representation of the continuum modes for these

experioents.

in this chapter, the equations which determine the shear Alfvén

cont Inoun and the associated magnetic field and £fluid velocity

perturbations in the ltmit of zero plasma beta are derived, and the

soluticns for the wave structure about the rescnant surfaces are

discussed. The lfnearized equations of Ideal MHD theory, Eqs. (2.3}

to {2.5), form the basis for the analysis. The equilibrium

pressure, P, snd magnetic fleld, B, are related through the MED

equilibrive condition,
e, =3 xE

vhere I, the eguilfbriza current demsity, fs related to 2 by

7 xE= p°3. YWhen the plasza beta, B = Pof(lﬁlleQO), is

(6.1}

sufficiently s=all, Egs. (2.3)-(2.3), {6.1) may de simpliffed by

neglecting effects due to the egquilibrium pressure, Po. In the

1imit P, = 0O, the equation of state, Eq. (2.5), reduces to
p-0
2nd, hence, the total perturbed pressure, p*, becomes simply

p2 - t . ffuu.

(6.2)

(6-3)
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The MHD equilibrium condition reduces .to

I xE=0 : (6-4)

so the equilibrium current is everywhere parallel teo the equilibriua
magnetic field. TUsing this feature and the dot product of B with
the momentuz balance equation, Eq. (2.3), it is easy to show that
the perturbed fluid velocity is everywhere perpendiculat té the

equilibriun magnetic fleld,

FeeB8=0 - (6.5}

Similarly, from the dot product of § with the Mawxwell egquation,
Eq. (2.4}, a relationship between p* and ¥, which will be used

further on, car be derived,

fopopt = = ¥ o IR (6.6)

where 8] is the magnitude of the equilibrium magnetic field. This
condition relates the divergence of the perturbed veloclty to the
total perturbed pressure and essentially replaces information lost
when Po was set equal to zero In Eq. (2.3).

Th; equilibria consfdered here consist of closed, simply nested
£lux surfaces fn an axisymmetric, toroidal conffguration with both

polofdal and toroidal magnetic fields. For coordinates, a
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convenient cholce 1s orthogonal flux coordinates, (¢, X, &) where &
is the poloidal flux divided by 2=, 4§ is the toroldal angle which
varies uniformly from O to 2x in one circult about the major axis of
symmetry, and y is & poloidal angle which varies fros 0 to 2% in one
circuit zbout the cinor axis of svmmetry. The angle y 1s chosen so
&, X, & form a right—handed orthogonal coordinate system. {See

Appendix A.) In this system, the Jacoblan, j, is given by

P

dinig 3 By 2 oinf 1 o
= -2° B, o~ [ - . 6.7
5 a¢h’ B (EP} 5 gp_z Yo sz ? (6.7)

wvhere the last ter= involving P, is nepligidle in the lizit Py = C.

The gradieant oparator is glven by

5 3
= trm (6.8}

where R is the distance to a poimt on the flux surface as measured
radially from the major axis of symmetry, dzp = 1y Bp dy is a
differential length elemeat along the poloidal magnetie £ield, and
$, §, % are unit vectors. Derivatives of the unit vectors with
respect to the coordinates, which are needed to complete the
derivation outlined in this section, are listed in Appendix C.
fecsuse B + ¥4 = 0, the operator B » ¥, which appears in Eqs. (2.3)

and (2.4), tavelves only derivatives within a flux surface,
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R - ]
B+vV=8 x5 (6.9)

Axisymmetry of the system leads to the fact that the quantity

£ = RBy is a flux function. TIn the following peragraphs, 1t w{1l be
convenient to use the varlables vi = RSPV¢, which 15 the
d¢-contravariant compenent of ¥, and vy = gv¢, which is the
$~covariant component of ¥, Instead of vy and v,.

To proceed further with the reduction of Egs. (2.3)-(2.9),
{6.1) to a systea in which the continuus is clearly evident, {t is
particularly advantageous to use Eqs. (£.5) and (6.3), which
resulted from rthe zero beta approxization, in place of the
2 cooponents of the Maxwell equation, Eq. (2.4), and the rormentun

balance eguation, Eq. (2.3). 1In this way, a differentiazl equation

for Vo is replaced by

-Bp

vy = XE, vy (6.10)

and a differential equaticn for b is replaced by

X
by = (pop*-Brby)/Bp - (6.11)

It is at this point, wheu the zero teta aproximations are used to
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elizinate two derivatives from the set of equatfons, thereby
reducing the order of the system by two, that a sode, nazely, the
cusp continuun, is excluded from consideratién. This is not
surprising, since, according ts the theory for equilibria which are

inhomogeneous in only one direction, the cusp continuum is given by

2_ Y8 2 .
u " 73 tlhy where wy 1s the shear Alfvén coantinuvum. Clearly,
“hen, P, = 0, f.e., §= 0, the cusp continuum cellapses to a single

peint, wﬁ = 0.

The 4 component of the Maxwell eguation can be written as

S (6.12)

vielding b¢ in terms of vl. The only derivatives of perturbed
guantities with respeet to ¢ that appear in the systes are in the

& cozponent of the momentuam balance equation, Eq. (2.3},

‘ap*=_ir 2.1 722 2 +3-V1 B‘-VI
e e L rZp,2 W]

(6.13)

ain( JoBp) 31n(uBp/R)
2 —-—-————ad’ UOP* + 2 BTb¢ T

and, froa Eq. (6.6),
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vt 1 am(iolsl?y  uugpt
B¢ 3 15]2
B
s 3 £]BI2 1 ?V3
IsjZ 3% 3 R%5,2 g2 B8 (6.14)

To arrive at Egs. (6.13) and (6.14), Egs. (6.10)—(6.12) and the

following expressiomn for V «% in this coordinzte systeam have been

used:

ver=l 2esvhy v, 20Xy

1
3; = T - {6.15)

: : " - 1
An equation for b¢ in terws of v', p*, and ¥3 is obtained from the 3
component of the Maxwell equation, where, again, use is made of

Eqs. (6.6), (6.10)-(6.12),

2, 2
_: B°B 2
i
Rby = = z g.q( 3l v)+iy Baf ya Fof
w g} RZBPZ w

1 ¢
8 rist?’ 8|2

X L(6.16)

Finally, an equation for vy in tercs of VI, p* 15 found from the

§-component of Eq. (2.3}, with v

1 1 b¢,b¢ eliminated in faver of vy,

vi, p* as before:
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2. 2 :
R°B i1 dp*
%QWZVB + -9l ? 5. il 55 vall = fewg %
B R%Bp
Pt am(x2181%)y 1 (6.17)
—inf B .V[W] £3 V[—T v ]

This eeuaticn contains the shear Alfvén continuum and may be written

coaveniently as

Luwvy-= B(p*,v0) (6.18)
where the definitioms of L and g follow readily by comparison with

Eg. (£.17).

The structure of the system of eguaticns in the zero beta limic
has now been established. The fundanental variables are <t and p*.
Their spetial structure is obtained for a glven w by specifying
appropriate boundary values for thew on the magnetic axis and then
integrating Eqs. (6.13) and (6.14) across flux surfaces. To perfora

the integration over § one must flirst eliminate ‘o¢ and vq in favor

of wl, p* by inverting Eg. (£.18) to obtain

- .19
vy = L 1g(?*,V1) s (6.19)

where 17! is the faverse operator of L, and then solving Eq. (6.16}

for b, = b¢(v1 p%). Once vi, p* have been obtained on a flux
@ ’ .
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surface, the remaining perturbed gquantities, Vi b¢, Vy bx, and b@
are obtained from Egs. (6.19), (6.16), (6.10), (6.11), and (6.12)
respectively. However, 1f a nontrivial solution exists for the

equation,

25 2
2 ™3 512
Lvy = poow'vy + B » Fleess 8 o v vwll=0 , {6.20)
(B3 REBPE

subject te the boundary condition that vy be periodic im y and 4,
then the iaverse operator, L"l, does aot exist. The set of
frequencies which satisfies Eq. {6.20) defines the shear Alfvén
continuun for the system. Though the values are discrete on any
particular flux ‘;surface, they sweep out a centinuous range of
frequencizs as the flux surface i{s varied. For freguencies which -
lie in the continuum, the systenm of equatfons may be solved
everywhere only Iif the inhomogeneous term in Eq. (6.18) satisfies
certzin conditions analcgous to the ones discussad 1s Chapter 5 for
the more general, finite prressure systea.

The system of reduced MHD equations which have been derived in
thils section may be readily written in a form amalogous te that
developed In Chapter 2 for the more general, finlte pressure system,
Eqs. (2.6)-(2.8), (2.11), and (2.16)-(2-19). 1In particular,

Eqs. {6.18) and (6.13), which involve the derivative across fiux

surfaces and are analegous to Eq. (2.6) may be written as
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avs ¢ 1 + * + {6.21)
-5 T it GV + apa{diyde c1{d,xivs .
and
R P x4 (6.22)
-5 " 2 GV ay2{&, )P cy (&, x)vy .

respectively. Equatiocn (6.12} for b¢ is identical to Eg. (2.8).

The Inhomogeneous set of coupled differential equations which relate
the perturbed velocities and magnetle fields in the surface to these
perpendicular to the flux surface, Egq. (2.7}, is replaced by a
single, seccnd order inhomogenoous differential equation,

Eqg- (6.18), for v4

Lvy = 3{9*,v1) s (6.18)
two algebraic eguations for Ve and b¢, Eqs. (6.10) and (6.113, and a
differential equation for b@’ Eq. (6.18), vhich Is trivizlly solved
once Vi, vl, and p* are known oa the flux surface. The
corresponding set of coupled differential equations which cooprise
the eigenvalue prodlem for the contlouz in a finite pressure
axisvemetric tokamak, Eqs. (2.131} and (2.27), are now replaced by a
stagle second order differential equation for the shear Alfvén

continuun, Eq. {6.20),.
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L{uw?,4)vs = 0 ' {6.20)

this equation 15 of the Sturc-liouville form and is self-adjolnt
with periodic boundary conditions. Tt may therefore be readily
analyzed usiné the techaigues devaloped in the previous chapters for
the wmore ggneral system. In particslar, a large aspect rvatio
expansion sclution of the continuum eguation in the zero pressure
limit yields the sase scolutions for the shear Alfvén.comtinuum as
were derived for the finite pressure case in Chapter 3.

The behavior of the mode structure about the resonant surface,
4,, where Eg. (6.20), is satisfied, may be studied by assuwing
serfes expansions in (4m¢;), analogous to Eq- (2.12). Expanding vl,

p*, vy In this vacner and using Egqs. (6.18}, (6.21), (6-22} yields

1

Lovg = € (6.23)
1 G & _1 ,. 1

Lovl = 3 8 vy ¥ Hvo N (6.24)

vhere G and B, which depend only on the equilibrium magnetic fleld

and contain no derivatives, are glven by

1812 e[, 2 aa’ 1812
RZ5,2 PRy T 8 8%

G =

= G(l;)ne% {6.25)
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and -

2p 2 2
R™Ep 2oy R:3i 1

<] 2
2 = 2y ou4Eey . (6.26)
3@[409” 'TETT' Eig;z

Tecavse of Eg. (6.23), Eq.- (6.28) is singular and hence may be

soived if and only if

G 3 1y = = .
<ui{; = +Hvp>=90 1=1, «..mn , (6.27)

where the uy are the {ndependent basis functiecns of the null space
¥

of Ly+ In the zero pressure limiz, in the complex representation,

41 =1, and the hasls function 15 given as

- apeln (6.28)

where n is the toroidal mode auwmber. This form follows from the

Ziscusslons in Chapter 4. The paramerer, v, Is thus given by

(u[G{ip)é%;u)
(6.29)

A 1 £
Again, as In Chapter &, the denominator can be showa to be purely

real, while nunerator is given by
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1nddylulZa(y) . €6.30)

In an up~down symmetric equilibrium, the function & is odd and,
cleariy, 1012 1s even, $0 v = O and the logarithamic singularity is
recovered. This is not sarprising since the logarithmic singularity
is present in an wp-down syumetric, flnire pressure, compressibdble
tokamak plaswa and the main effect of taking the zerc pressure limit
is to eliminate any possible coupling betwzen a shear Alfvén wave
and a cusp wave. If the equilibrium is net up~down syzmetric, the
parameter v Is, in general, imaginary, so again,
non~square~integrable spatial singularities are present in the
solutions.

in conclusion, a system of reduced MHD equations which may be
ugseful for predicting the d;namics of low beta axisyooetric toroidal
configuratioas has been derived by formally ailowing the plasma
pressure to approach zero. In this limit, the order of the systenm
of linearized partial differeantial equations 1s lovered, and the
shear Alfvéon continuum 1ls specified by a single second-order
ordinary differential equatica ipvolving the operator, g-v.
Moreover, the cusp continuun is reduced to a single point, mg = 0.
The continuum equation obtalned In the zero beta limit is forwally
equivalent to Eq. (40) in Ref. 12_when Yy 1s set equal o zero in
that equation. In Ref. 13 , the eguations which describe the
continuous spectra of a eylindrical equiiibrium with axial and

azimuthal symmetry have been derived by an approach similar to the
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one used in this chapter. 1In elther therpresent study or Ref. 13,
differential equations are replaced by alpebraic expressionms,
thereby reducing the order of the system. However, in the case of
the cyiinder, the algebraic expressioﬁs are the result of a Fourler
analysis in the directions of symmetry, while in the toroidal case,
tte algebralc expressiens are the resulr of allowing the plasna beta
to forcally approach zero. Becszuse of the additional degree of
symzetry afforded by the circular cross section of the cylindrical
equilibri;m, the differential eguation, which corresponds to the
shear Afivé€n continuum equation im a low beta tckamak, is replaced
by an algebraic dispersion relatiem. The shear Alfvén continuun of
a low fota cylindrical equilifbrium with an arbitrary noncircular
cross szztion may be studied using Eq. {(6.20) of thls chapter by
setting R equal to a constant and identifying ¢ with an a#ial
coordi=ate z. A similar egustion has been derived for the special
case of a low-pressure cylindrical plasma column with an elliptical

cross sectlon by Dewar et al.%2
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CHAPTER 7
CONCLUSTONS

Shear Alfvén waves in an axisymmetric toroidal equilibrium,
such as a tokamak or compact torus, have been exanined ia this
thesis, within the framework of the linearized ideal MED equatioms,
to determine their suitability for use in the low freguency RF
heating scheme suggested first by Tataronls and Grosszanads%.  The
shear Alfvén and cusp continua of ideal MHD thecry have been
analyzed in an axisyozetric eguilibrium using the for=alism of
Tataronis, et al.l8, By solving a set of coupled differential
equations for the eigenvalues on each flux surface, the continuous
spectra are obtained 25 a functicn of vadius for particular mode
nunbers. Analytic expressions for the continua have beea obtained
by solving the eigenvalus equations In an expansion scheme in powers
of swall inverse aspsct ratio g = a/Ro.

Te lowest order inm g, the continua are glven by the appropriate
generzlization of their counterparts in a perlodic, infinitely long
screw pinch. In the screw pinch, the shear Alfvén continuun 1Is
given by Eq. (2.2), while in the tokamak, to the lowest order, the

corresponding expression is

2 . (up2aad)?

(7.1}
Bop

wa
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Cortespondence between the two Is established when k - éi and in the
-]

liﬁit e=0, 82 » Bp/r and BS + Bro/Ry- Similar expressions may be
written for the cusp coutinuum. The eigenvalues for each spectra on
2 flux surface are at least two—fold degenerate with multiple
degeneracy possible on rational surfaces.

First order correcticns due to torsidicity have been calculated
explicitly and are given in Eqs. (3.27)-{3.28) for the Alfvén
continuum. The effect of toroidicity Is to couple different
poloidal modes on and very close to rational surfaces for which the
unperturbed modes are degensrate. If perturbations due to
noncircularity of the flux surfaces had been treated explicitly,
then additional coupling of modes on the rationzl surfaces would

have been found. The criterica which deter=ines vhether wmodes N

and ¥ = M + 1,% will couple on the ratiomal surface, 4., is given

in Lgs- (3.13), (3.19). The effect of the perturbation is {important

over a range ian radius corresponding to range in q of
A A :
9@ g <q $g,+ 253 where A is given in Egs. (3.22)-{3.23). The
behavior of the spectrum in the vicialty of g is displayed 1n
ig. 3.1 and specified analyeically 1n Eqs. (3.22)-(3.24). Further
avay from the surface, s the corrections to the spectra are second

order in g, so Eg. {3.9) is a good approximation to the spectra.

These results apply to the coupling of different Alfvén modes or to

the coupling of differeat cusp modes-
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An analogy may be drawn between the effect on the continuous
spectra by the perlodic varlfations in the equilibrium field
structure due to toroidicity and/or non-circularity, and the effect
on the emergy spectrum of an electron in z one-~dicensional crystal
by the periodic wodulation of the potentfal by the foms in the
crystal tattice®l. The allowed wave numbers, k, for an electron in

a crystal consisting of XN Identical cells of length a, are

n = n no=0,%]1,32, ees . (7.

Gaps appear in the electron enargy spectrum for wave numbers equal
te :p ;, where p is an integer. TFor these wave nuzbhers, the
travelling electron waves Brazgg reflect off the crystal planes and
interfere to form standing waves localized either in the potentlal
wall between the.ions or at the top of the potentilal well near the
ions. In the case of the shear Alfvdn continuum, zaps appear in the
Specttum on ratlonal surfaces vhen the periodic variazion of the
equilibrium flelds Induces coupling of the modes M,N ro M#p,W.
Since the field lines are closed on rational surfaces, an integral
nunber of wavelengths must be egual to the total length of the field
line. On a ratfonal surface, Gy = 1/}, where 1 and j are Integers,
and the total poloidal angle covered by a field line before it
¢loses on itself once Is equal to 2nj. This closure of the fleld

line implies that the wode nunbers M,N must satisfy
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Mg, = f;, for D= 0,41, e . (7.3

¥ote that the combination ¥+Nq is analogous to the electron
wavevector, k, while the total length of the field line and the
aunber of poloidal turas It completes are analogous to the crystal
length, L, consisting of N cells of length a. When the equilibrium
fields vary as cos g8, coupling occurs on and near the surface, Qr,
between modes which satisfy the condition H+qu = +pf2. The nodes
M, ¥ and ¥+p,N have the sare frequency, W o~ A~ (M+qu}2, but equal

and opposite poleidal phases,
expfi{(MFhq )81 = expl (Mg )8l . {7.4>

Bence, these wodes Interfere to forz standing waves which are
lccalized either in regions of increased field strength, on.the
{nside of the torus for p = 1, or in regloas of decreased fileld
streng:h, on the outside of the torus for p = 1. Similar ;nalogies
have been noted by others®2745 1n related problens iavolving
perlodic perturbatioas of the equilibrium fields. The presence of
gaps 1n the specirua could have important igplications in heating
fusion plaswas with shear Alfvén waves. Dépending on the stfucture
of the unperturbed continua near the location of coupling, the
formation of the gaps may elther recove the possibility of heating

with particular frequency and mode nucbers, or else may result in
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the existence of two rescnant surfaces separated from each other by
distances on the order of 1 cm.

Though this effect of gap formatiom In the continuous spectra
has been derived explicifly in 2 small Inverse aspect ratio
expansion scheme, the results of the numerical solutions for the
shear Alfvén continuum in the tokamak reglon of the Tokapole II
device are in qualitative agreecent with the predicticns of the
analytic model. However, additicnal effects due to finlte aspact
ratio, noncircular fiux surfaces and regions of high shear near the
separatrices are evident in the nunerical results in Fig. 4.4-5.24.
Strong mode coupling induced by extreme shear and noncircularity of
the plaswta cross section in the region near the separatrix alters
the magnitude and behavier of the ceatiavun eizeavalues in the
reglon, as can be seen by covparing Fig. &.4 to Fig: 4.5 and
Fig. 4.14 to Fig. 4.15. For flux suriaces which are located closer
to the separatrix than to the magnetic axis, l.e., for v 2 4 c¢m,
additional shifts in the rzgnitudes of the elgenvalues occur due to
finite aspect ratic and noncircularity of the plasmz cross secticns.
Because of these differences, the numerical solutions provide a more
quantitatively accurate fracework for correlation of theory with
experiment than do the screw pinch model solutioms.

The ideal MHD theory of plasma heating via the resonant
exclitation of shear ALfvédn continuum waves is based on the Idea that
these waves are characterized by non—squé}e—integrable spatial

singularities at partfcular locations in the plasma. As a tesult of
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these singularities, the physical amplitude of exclted waves grows
in time, leading to a growth of the total plasma energyhalﬁ at the
resonant surface. 1In Chapter 5, the spatfal structure of the ideal
MED stear Alfvén wave in an axisymmetric but otherwise axrhitrary
tokarzk eguilibriuz has been shown to be always
anon-sguare-integrable, thereby lending support te the ideal MHD
model for low frequency BF heating of tokamaks. The spatial
structure was analvzed usiung a generalized wethod of Frobenius In
which the perturbed velocity and magnetic field components, along
with the equilibrius quantities, were expanded in power saries about
=4, where 4, is the resonant surface at which w2 =w§(¢o)- The
expansions, gziven in Eq. {3.7), involve an arbi;rarj exponent, v,
which is deterzined ®v tequiving that the resulting hlerarchy of
equations, Zqs. (5-8)-(3.10), be self-consistent zud conpletely
solvable to all-orﬁers in (&*bo). These consistoncy conditieons are
descrited in Egs. (5.13)3-(3.20).

For an axisyrmetrie tokanmak, the exponent, v, was shoun to be
either purely imaginary or zero. If the equilibriuvm i{s up—down
symmetric with respect to reflectlon about the m{dplane, then v has
been shown to be equal to zero, using parlty arguments. When v = Q,
it is necessary to assume alternate expansions for the perturbed
fields which favolve the In(d~d, ), as glven explicitly in
Egs. (5-23)-(5.24). This result is independent of the plasma
pressure or conprossibility; it depends solely om the reflection

syrmetry atout the sidplane exhiblited by the equilibrium. In
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contrast, previcus anzlyses for a cylindrically symmetric screw
pinch22 have indicated that the singularities of the perturbed
radizl velpelity are logarithale if the plasmé 1s cocpressible but
are of the form (¢,¢o)i1v! if the plasma is Incozpressible. The
change in the spatial character of the singularities In the screw
pinch as the plasma is changed from compressible to incompressible
is due directly to the degeneracy which occurs between the shear
Alfven aad ecusp continua in this limit. In the tokarmak, however,
even In the inco:pressible linit, the shear Alfvén and cusp continua
remain distinct due to torcidal effects and the spatial
sinpularities of the perturbed radial velocity remain logarithmic as
long as the equilibrium Is up—down syazetric. When the equilibriua
is allowed to possess some degree of up~down asyumetry, the
integrals which determine v must be evaluated for the particular
equilitrien in guestion. TIn general, v will be purely imazinary for
2 reflection asymzmetric equilibriusm, though it may be possible to
find particular exarples in which v {s once agaln equal to zerc.

These results generalize and are consistent with the earlier
conclusions of Pac?0. 1In addition, these results may be used to
infer that if an up—down symmetric poloifdal variatlon Is applied to
4 eylindrical screw pinch then the singularities in the perturbed
radial velocity will be logarithmic for both a cocpressible and
fncompressible plasra. This follows because the poloidal variations
will remove the degeneracy between the sh;ar Alfvén and cusp

continua which occurs for an Incompressible plassa when the
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equilibriuvm is cylindrically symmetric. If am up-down asymmetric
poloidal variation fs applied to the cylindrical screw pinch, then
the spatial structure will, ia genera'I, be altered from logarithnic
to (ara;o)“\’!, as in the tokamak.

Numerical solutioms.for the shear Alfvdn continuum of a typical
Tokapole IT equilibrium are being used i=m the interpretation of the
shear alfve€n wave excitatlon and heating studies currently underway
on the devicell, Though a detailed comparlscn between the
experizentally observed and theoretically deterained resonance
tocations has not yet been completed due to the difficalt nature of
the experimental procedures, there exists a good qualitative
agreszent between the observations and the predicticns of the model.
In particular, resonances In the perturbed poloidal magnetic field
have teen observed at the locations where the freguency of the
extzraal osclllator is approximately equal to the local shear Alfvéo
contimn= frequency, as determined nuserically. A wore detailed
corpariscn will be possible when 2 cosplete set of measurements of
the resonance locztions and poloidal and teroidal mode nucbers is
obtaired.

Currently, all of the ongolng shear Alfvén wave heating
experiments om tokamaks are conducted with very jow beta plasmas.
With this in mind, a reduced set of ideal MHD equations has been
derived in Chapter 6 by taking the limlt where the equilibrium
pressure, P, is set equal to zero. In this 1imit, the cusp

continnun, which scales as ?o“’f\’ i{s reduced to 2 single point,
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w_ = 0, in the spectrus. As a result, a single second order
ordinary differential equation, Eq. (6.20), which describes the

' shear Alfvén continuun replaces the two coupled second order
differential equations, Eq- {2.11}, which describe the shear Alfvén
“and cusp continua in 2 finite pressure plaSmi. An added benefit Is
that the coefficient matrices, 1_4:, é, and g in Egs. (2.6)-(2.7), zlso
simplify considerably to the forzs given in Egs. {6.13)-(6.17).

This reduced set of equations, valid in the limit Po + 0, is easier .
to analyze than the more general set, valid for finite P plasmas..
It should also provide a good representation of the shear Alfvén
waves in the current experizents.

A pumber of important gquestions concerning the effectiveness of
s'néar Alfvén wvave resonance heating scheres in torcidal devices
remain to be answered. One such question concerns the effects of
nonzxisyometry on the existence of continuum modes and on the
possibility of heating a plasma via the resomant excitaticn of these
modes. Since all tokamaks are nonaxisvaretric te some extent, due
te the finife size of the torecidal field c¢oils, etc., and slace
advanced concepts devices may include the use of helical windings
which destroy axlsymmetry, the theory of the shear Alfvén wave
heating in a nonaxisysmetric toreldal device must be developed more

fully before the effectiveness of this particular heatirg for these

devices can be established.
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A calculation of the heating rates (or, alternately, of the
plasna impedances) 1a toroidal devices is needed to evaluate the
efficlency of thls heating scheme in comparison to that of other
zethods such as electron cyclotrom resonsnce heating, fom cyclotron
resonance heating, lower hybrid wave heating, ete. Tn the context
of the ideal M¥D model, this can be accerplished for an axisyumetric
toroidal geometry by using the results contained in this thesis and
by generalizing the cethods used by Tatactonis and Graossman in their
arslysis for a cylindrical screw piach plas:;a!"”‘. However, kinetic
effects are 1ikely to be significant in the reglons about the
resorant surfaces, where scale lengths of the perturbations appreach
the size of the ion Larmor radlus. Early studies by Hasegava and
chen®9,47 ipdicate that the inclusion of kinetic effects allows for
a more conplete description of the thernalizatlons cmechanisms
snvolved in the precess. More vecently, Ress, Chen, and E—fah.:jan‘!“s
have included nurercus kinetic effects in thelr estizmations of
plasza impedances in 3 cylindrical plassa equilibrium. A fuliy
kiretic treatment of the sheat Alfwén wave in an zxisymmetric
toroidal geometty has yet to be developed.

A final, more encompassing, questlon concerns the effects that
the excitarion of these modes night have on the energy confinegent
tires of the discharge. Measuremeats of the confinement times
during these experiments have yielded mixed results, with some
experiments indicating 2 degradation of conflnement? and others

indieating an enhancement of confinement™ 7. The tulk of the
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theoretical analyses thus far has been based on linearized ideal MHD
and kinetic theories. An example of how a linear kinetie
irteraction between a shear Alfvén-wave and another mode of the
plasma caa lead teo a degradation of confinenent has bheen studied by
Tsang, Sigzmar and Vhirson® 9. However, it Is possible that nonlinear
interaction of the shear Alfvén wave with other waves in the system
may cause more serious problems with the stabllicy of the discharge
or may lead to very poor heating efficlencies. More effort is
needed in 21l these areas before the advantages and disadvantages of
a heating scherme hased on the resonant excitation of the shear

Alfvén wave may be zccurately assessed.
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© APPENDIX A range from O to 1 or 2Zm, depending on one”s preference. The angle 'R

{5 fdentical te the usual azimuthal angle & of cyllindrical
COCRDINATE SYSTEHS FOR AXISTMMETRIC TOKAMAK EQUILIBRIA

coordinates if the z—axis of the cylindrical system lies along the

Three coordinate systems which are particularly well-suited for major axls of symsetry of the totus. The angle y is chosen so that
problsns dealing with axisyzmetric tokamak equilibria will be 4, 1, & form a right-handed orthegonal coordinate system.
described in this appendix. The cethods presented are infornal, A second option Is 2 modiffed versfon of orthogonal flux
with an emphasis on the construction of such coordinate systems. coordinates in which the magnetic lines of force appear as stralght
After a brief review of genéral acn-orthogonal curvilinear 1ines in the two coordinates which span a magnetic surface®®. 1In
coordinates, a sequence of two coordinate transformations will be these coordinates the magnetic field is given sizply in the form

applied to -the faniliar orthogonal flux coordinate system. The

first transformation will result in a systez in vhich the magaetic £=Vaxvz , (A.1)

iines of force appear as straight lines in two of the coordinates.

The szeond transformation will yield cne possitle set of Hanada

. s where can be a function of ¢ and &.
coordinzres for a tokarmak-like eguilibrium. 8 v X

An Hazrmada coordinate system50_57 iz a viable, albelt scoewhat
complicated, option in which both the magnetic field and current

density lines of force appear as straight 1llnes. The Jacoblan fo
The study of physical processes in variocus magnetic fleld ¥ . PR N b

A . . these coordinates is then either & constant or else a function only
configurations is often sizmplified if the governing equations are

. " - of ¢, depending on the particular choice for these coordinates.
expressed In coordimates which are, in some sense, the “ratural

Equations written in Hamada coordinates often have the most simple
choice for the configuration. One common set for axisymmetric

appearance, since all gecmetrical effects are contalned In the
toroidal systems is orthogonal flux coordinates?3,38,61, 1In this PP ? g

wetric tensor elements d of i
system, the poloidal magnetic field flux, &, contained between the » gij- instead of appearing explicitly in the

‘equations.
eagnetic axis and a particular wagnetlc surface, serves as a

radial-type coordinate. Poloidal and toroldal angles on each

surface are then denoted typlically by y and &, vespectively, and can
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Section A.l Review of ¥on—orthogonal Curvilinear Coordinate Systens

Though non-orthogonal curvilinear coordinate systexs are
significantly more complicated than carteslan coordinate systems,
there are some similarities between the twod3,59-62, Ler ul, uZ, w3
be the threa ccordinates ia the non—orthogonal system corresponding
te x, ¥, z in cartesian coordinates. The basis vectors for

cartesizn coordinates are given in terms of the differential

positicen vector,

. 2F Y4 af, "
fsi2e €§dx + Eidy + Eidz = fdx + Jdy + Wdz . (A.1.1)

Sizilarly, the hasis veclors &; for the goneral system may also be

defined ia terzs of dR:

E 4
0z = ;E%dui - eadd . (4.1.2)
2u

In cartasian coordinates, the basis vectors are also unit vectors.
In the general system, this is not the case. Although the basis
vectors inm a cartesian system are mutually orthegonal, in a general
system they generally are not. However, a set of vectors, called
the reclprocal basis vecfors, may be constructed in the general

system to be orthogonal to the set of basis vectors. Reclprocal
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basis vectors are demoted by &1 and are defined through the
following relation:

&l - ey - sty . (A.1.3)

This relation fixes the normalization of the reciprocal basis
vectors and requires el o be perpendicular to the plane formed by

éj and €. It follows that the reciprocal basis vectors may be

expressed fo terms of the basis vectors as

el = %éj x & and/or &y = jéj x &% {(A.1.4)

where j is the Jacoblan for the systea,
3= &y » (éjxek) (A-1.5)

and is the appropriate normalization factor, In accordance with
Eq. {4.1.3).

Recall that the Jaco®bian 1Is the volume contained by the
parallelepiped formed by the set of basis vectors. It 1s thus the
appropriate factor to appear Im the differential volume element of

the system:

dz = affy « (dBpxdly) = sdulduZdu® . L (A.1.6)
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* An expression which may be used to define the gradient of a

scalar quantity, &, in 2 general curvilinear systen,

dp = df ~ V2 (A.1.7)

may also be used to derive a wore useful expression for the
reciprocal basis vectors, el. If, as the scalar @, one of the

general coordinates,ui is taken, then,

dul = R« wi = (gaety o owd . (A.1.8)
Hence,
e » 7l = 83y L (a.1.9)

s0 ?uj may be 1dentified with the jth reciprocal basis vectlor:

el = wd . . (A.1.10)

Geometrical effects arising from the nature of the coordinate

system are contained neatly in the elewents of the metric tensor,

gij, for the system. The metric temsor elements may be latreduced

by considering the square of a differential arc length in the

system:

as? = ary . oty = (epat) o (guaudy =gy gelend . (A.1.11)
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From its definition, the metric tensor is obvicusly syzmetric. TFor
cartesian coordinates, the retric tensor ls the identity tensor.
The determinant of thé metric tensor, denoted by g, may be shown to
be equal to the square of the Jacobiasm for the systeam- This follows
by cowbining the definition of the Jacobian, Eg- (4.1.5), with the

definition of the basis vectors, Eq. {A.1.2), and a bit of algebra:
_ 52
g = det(gg ) = ] - (A.1.12)

A reciprecal metric tensor, gij, zay be similarly defined from the

reciprocal basis vectors, el

gld =&l 23 - (A.1.13)

By inserting Eq. (A.l.4) inte the definitica for gij, the elemeats
of the reclprocal metric tensor may be expressed In terms of the

elenents for the metric tensor;
0
4 Ecij R (A.1.14)

where Gy ¢ is the ich, 3P minor of Bj -
Vectors in the general coerdinste system may be writtea im

terns of either the basis or veciprocal basls vectors:

L= ate, - aet (A.1.15)
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The contravariant components of &, namely Al, ate found by taking

the dot product of X with reciprocal basis vector, &l similarly,

the covariant components of &, f.e., A;, are found by taking the dot

product of & with the basis vector, &,.

The contravariant

components are related to the covariant components via the metric

tensor or reciprocal metric tensor:

Ay = 3ijAj , al = gijAj

(A.1.16)

These relations are easily verified by taking the dot product of

Eq. {4.1.15) with ¢, and ed, respectively.

A variety of vector operations and identiries may be written in

covariant and/or contravariant componeats in a general system. This

review of general mon-orthogonal curvilinear coerdinate systems ends

with a partial sux

« g = Al
3= als

[Xxg]i = ..];.

’g

(2811 = /g

i
= A;B

1jk
£ J AJBk

EijkAjBk

azry of thea:

(A.1.17)

(A.1.18)

{A.1.19)

/E du
vig = L Af% (vg g1d 2%y
— du du
’g

(et =alye g+ 8 oval - Bly . 2-2 . w!

r.gaal 3
u
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(A.1.20)

(A.1.21}

(A.1.22)

(A.1.23)

(4.1.28)

{A.1.25)

Recall that /g = ] = Jacoblan, and glJk is the permutation teasor.
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Section A-2 Orthogonal Flux'Coordinates

An axisyssetric tcokamak equilibrioe is most frequently
described by orthogonal flux coordinéteé [ ¢53!53:61 {see Figure
&.1). Each zagnetic surface is labelled by a radial-iike
coordinate, ¢, which is generally taken to be proporticonal te the
tetal p016i531 wmagnetic flux, wpol, contained between it and the

magnetic axis:

1 1 1
= = . 2= dcF + ¥ A2.1
¢ = w7 Ypol z?rspoldg PERRY: [és3 7 ¢ )

om each flux surface, the distance around toroidally is

weasured by the anglé +, which varies uniformly fros 0 to 2x in one
complete circult arcund the =major axis. The toroidal angle, &,
corresponds to the anglz coordirate & of cylindrical ecordinates, R,
8, z, if the z axis liss zlong the zajor axis of symmetry. All
equilibriun gquantities are Independent of the angle &.

A poloidal angle, x, is chosen con each Flux surface such that
&, 3, & form a right-handed orthegonal system. In one complete
eircuit around the minot axis, y varies from O to 2.

We will assume that the equilibrium has been found by selving
the Grad~Shafranov equation in cylindrical coordinates. By

considering the amount of polofdal flux, d¢p, contained between two

filux surfaces separated by a differential amount, d4r, we find that
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V¢ = €1 = RB_g
P {A.2.2)
In cylindrical cootrdinates it is well known that
=3 _ a3
v = 5 € . (4.2.3)
from the relations Iin Sections A.1, one can show that the
Jacobian for this systen, jo, is given by
wl
o = VE o+ (VyxTs) . (4.2.4)
This way be solved for ¥y, the reamalning reciprecal basis vector:
2 - = -1
& v (jogp) 2 . {4.2.5)

411 metric tensor elements wmay now be readily computed.
In principle, the Jacoblan may be found by solving the
following differential equatlion, derived froc the eguilibrius

cendition:

) 3 3 Br.o
St do = 2t By - 28, 1 Mluge) - (B;] B M - (A28

where £ = RBy and Bp = p/(B%/Zpﬂ). In practice iz 1is almost never
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necessary to solve explicitly for jD, since most operatlions

lavolving dy and J  may be treated in terms of dgp instead:
ar, = 1o Bp &x - ‘ (A.2.7)
There are four tore flux surface quantiries, in addirion to the

poloidal flux and pressure, which will be of use In the following

sections. The toroidal magnetic flux, &z is one guantity:
1 3
4t = f it - B = { é1% - Tu . (A.2.8)
'Stor zﬁ) !

The two current fluxes, toroidal current flux, Ig, and poloidal

curvent flux, I?, are each fiux surface functicns:
. - _ 1 2 A.2.9
’ip(;,}zfspolds-3v,2_n_f513-‘?u » ( 3

It = fs o af - F = 7_1_3 [ded o wd (A.2.10)

where uz, u3 are poloidal and toroidal angles. 4 final flux

quantity Is the voluze, V, contained withia a flux surface:

v« [dz . {A.2.11)
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.In this system, the contravariant compenents of B and J are not

Filux svrface quantities:

Bl=f.vp=0 B2=B.v=_. 33"E-V¢=_R_ . (A.2.1D)
o
3 3
i - ¢ 12 = P 3 . _E .
5 P (5.2.13)

Using the contravariant cowponents of #, the zagnetic field may de

conveniently written as

B = -9 x Vo + IV . (A.2.14)

Recall that in a true flux coordinate systemn, the magnetic Fleld is

given in the form

B = 7z x VB - ’ (A.2.15)

Cozparison of (A.2.13) with (A.2.16) indicates that orthogonal flux
coordinates are not true flux coordinates. The coordinate
transformation of the next section will result 1n a true flux

coordinate system.
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Section A.3 True Flux Coordinates

Consider the form for the magnetic fiel& given in Eq. {A.2.15).
If the function, g, L5 taken to be the coordinate, &, then field
lines on a ¢ = constant surface are deserited hy 8 = constant. The
fynction, B, corresponds to a particular conbination of the x, &
ccorfinates. This particular combination may be used to define rwo
te coordinates on a surface ln which the magnetic field lines
zppezr straight.

Trow the divergence of § im orthogonal flux coordirnates,

7 T = b{ 2z 8 33
2 a—x-jo?}*'a“é(jo) ,

2 _ . %8 3 _ 2B 3.
1837 = T and jOB B s (A.3.2)
then, since ‘.32 and 83 are periodic in x, %, the general form for 8
is
B = AL4)y + C{ads + M&x.8) (A.3.3)

whera % 1s an arbitrary periodic function of %, &. The functlons

A4(4) and C{¢) may be determined from equilibrium quantities.
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Consider the amount of flux, dd, contained between flux surfaces ¢

and & + 44
1 27 27, =
deor = 5= J'i:’"-dcbqu femay 5 d¢3633 = e AL - (A.3.4)

The coefficient, A{d), is seen to be equal to the safety factor,

d
q{¢)y = _d:;j In a siwilar way, by considering the accunt of poloidal
flux contained between the surfaces ¢ and ¢+rdd, the coefficient,

C{4¢), is found to be equal to —l:
1 x
dopo1 * o= [EI¥ae [ZRay [F7des B? = —duy, C(o) - (8.3.5)

Thus far, the function B has been determined up to an arbltrary
periodic function of y, 3 and ¢. The arbitrary function will now be
absorbed Into the coordinate, y, resulting in a new pcleidal

coordinate, El. ilet
A
8y = g +§ and &1 = ¢ . {A.3.6)
In the new coordinates 8, 3;, the function 8 becomes
B=g8; - ¢ ’ (A.3.7})

and the magnetic field is seen to be given by Egq. (A.2.15). Note
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that the field lines on a given flux surface are glven by

-g ; constant and appear as straight lines in the coordinates 8y, ¢.
$ome more understanding of the new coordinates is gained by

calculating the function A. To accowplish this, combine

Eq. (A.2.12) with Eg. (A.3.2):

a8 3_, BT _ a8

jpt=1=- R R . T (4.3.8)

By now inserting Egq. (A.3.3} for 3, we find

35 . g ana .y T _ q - (A.3.9) _
EE X oK .

Integration of these results then yields

Ay, 8) = £1 el gy (A.3.10)

Rerurning now to Eg. (A.3.8), the new poloidal angle, #;, is given

by

8 = (A.3.11)

Kt

i
i;‘gz

and is related to the safety factor, g, since an alternate

definition of g is
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{A.s.iz;;

In transforming from y ta 8p, the poloidal coordinate has been
modified in such a way that the magnetic field limes in a flux
surface appear as straight lines im the two coordinates which span
the surface; Similar modification of 4§ could have been performed
instead.

Surprisingly, the Jacoblan, jl’ for this new system i{s more
readily calculated than the Jacobian for the previous system. Frowm

an expression analagous to Eq. (A.2.4),

-1

h] = T = {(79%xV$) (A.3.13)
combined with Egq. (3.11), the pew Jacobiaan Is found to be:
4, = R/ . (4.3.14)

Since two of the coordinates have been unchanged by the
transformation, namely, ¢ and &, the reciprocal basis vectors

corresponding to them alsc recained unchkanged. Hence, we have:

el = vy = RE,S (A.3.15)
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&= =T1{as . : (A.3.16)

The remaining reciprocal basls vector may be found by taking the

gradient of ETq. (A.3.11):

93 ey
. - vy . (4.3.17)
1 ¥ ¥ ox X

Ve
By taking appropriate dot products, the reciprocal metric tensor

eledents may be formed:

29
11 o ¢nz 32 12 . (1 2 13, 5
g (xE,) g \-rd,)(“p) g

(A.3.18)

23 L g 33 .

38 e 1
22 1y2 2 . (%f1y2
L P RB +
g (aq;} (RB,) ‘axp} g I3 =

Two derivatives of 8 oust next be calculated. One of thea follows

easily from Eq. (A.3.11):

26

[y

£

g1 (4.3.19)
q Bp RZ

A

The other one, it seems, must be evaluated numerically, using the

following corplicated expression
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38, 3£, ,drp 1 , £ dtp 14 _amk ~
: = [ o fEAR T TP . o0 .3,
-1 EMHB_ z qIB 2[a¢ a¢] (4-3-20)
. p R p R
where, from sectiom A.2,
dinig BInB B .,
= P 3 Ty2 3&nf
—— = =2___ T = 2B -— in( - } - . 23,
% 5 Bp 5g 1(koP) (Bp’ 5 (A-3.21)

Though one could now calculate the metric tensor elements using
the preceding expressicns for s13 and the analogue of Tg. (4.1.14),
it is instructive to take an alternate azpproach. From section A.2
and the results thus far of this section, the magnetic field 3 and

current J are given by:

B

1 T 1

3’=_r2+_f3=._e2+_“ &, (A.3.22)
To R

I
Ty

= (e
T T

3 & + &y, {A-3.23)

where I, and Iy are basis vectors im the orthogeonal flux coordinate
system. These two egquatlions may be solved for e2 angd é3 in terms of

known quantities:
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.9 R ) A.3.24)
¢ = £y (

3, Br
&4 = £3 . ' (4.3.25)

Kote that the third basis vector has recained unchanged by the
coordinate transformation. However, the seccnd basis vector is now
ouitiplied by a factor depending on ¢ and . These two equations

now yield three cetric tensor elements, using Eq. {(A.1.14):

2R3 2

822 % ——— g23 = 0
T

g33 = RZ - (4.3.26)

The three recaining retriec tensor elements are now =ost readlly
caleulated from the reciprocal metric tensor elements:
2 : —al

q° 12 - .
A R TR £3=0 . (4.3.27)

BT BT

In elosing, note that in transforming te Erue flux coordinates,
we have transformed from an orthogonal coordinate system to one

which has two basis vectors which are not orthogonal, i.e.,

& » 23 F0 but & ey =&z -83-0 . (A.3.28)
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The transformatlon to Hamada coordinates, in the next section, will
leave us with a completely non—orthogonal coordinate system.

Section A.4 Famada Coordinates

There i1s still a bit of arbitrariness remaining in the
transforcation described in the preceding section. 1Im particular,
if G 1s an arbitrary functlon of ¢ which Is also periedic in 8, %

then the coordinate transformation

9= 8y + G(4,0,0)
(A.4.1)

E= ¢+ q6(4,01,0)

results in 2 new coordinate system in vwhich the magnetic f£ield lines
still appear as straight lines in the two coordinates which span #he
flux surface. This 1Is verified by inserting Eg. (4.4.1) into the
following expression for B f;om section &.3 (see Egqs. A-.2.14 and

A-3.7)

T B - Ve x W(q9-8) = Vo x qs-L) . (Aa.4.2)

The arbitrariness represented by the function G may be utilized
to transform te a system in which the Jacoblan is, at most, &
function of ¢ and the curreant lines, in addition to the magnetic

field Ilines, appear as straight lines In the two coordinates, @, &,



211

which spas a flux surface. -This is accomplished by uslag the

definition of the Jacobian in terms of reciprocal basis vectors:

1 1
2= Vg e (TOXVE) = + 8.9 . (A.4.3)
3 &+ ( £} 1

Solving-for G, we find that it is determinad by a magnetic

differential equation:

g« VG . (A.5.4)
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Kewcomb63 and others?! have derivad two necessary and

sufficient conditions that equatioms of the fomm:

g .79=5 (4.4.53)

have solutfons for G which are single-valued. The two conditiens

are

I$+d¢5d7 =0 (A.5.6)

and

ﬁf- o . (A.4.7)
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The first condition is trivially satfsfied for Eq. (4.4.8)

t_1 = (489 Lsgoange - [4HdS aag -0 .
I 5 ?}d-c 4 3uaade g Fietade (4.4.8)

Application of the second condition results in the
spacificattion of the Jacobian for this Havada coordinate system, as

shown in the following:

garl_lgar 1 g do L oL ggy = 27N (A.4.9)
FI OITFEH g T O

Note that we are coansidering a field line which closes on Itself
after ¥ circults around toroidally. Trom the requirement of current
closure, which 1s known to be satisfled in axisysmetric toroidal

devices with a longitudinal current and p” = g%, recall’l that

1 ,dr_ av
- c_f_B_ “a (4.4.10)

Tpon combining Eqs. (A-4.9) aad (A.4.10}, the Jacobian is found to

be

1@V _. 1 av

1= [
TR¥&, (242 T

. (A 4.11)

It s indeed a function only of &, as was assuned in Eq. {A.4.9).
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Since this construction depends on p” # 0, these coordinates
ma§ be constructed in any simply nested configuratlon, up to but not
including the separatrix. Ideal MHD theory requires that p” = 0 on
the separatrix. Presumably, these coordinates may be constructed in
each such area of a device like Tokapole II. .

The function ¢ is found by solving the equaticn

dé
3-vc=~}“f_+i?f pol £ 1 (A.6.12)
1 e 3 o av q 2

Because the tight hand side is independent of ¢ and because G must
be perlodic in 8; and %, them G can be a function only of ¢ and Bp-
Though Egq. (A.4.12) could now te {ntegrated to find G(¢,8y}, 1t is
zore ceonvenlent to first recognize that Sl = 91(¢,X) and hence to

find G{¢,y) from the following eguation:

. - “pol _ £ 1
T v ¥6(4,y) p,&,c(@ 1p) ,2"'““&\;— iz (4.4.13)

The Tesulting expression for G, using Eq. (A.3.11), is

dip

G(4, 2p) = .j [ -8 - . (A.46.14)

Explicit definitions of the Ramada coardinates 8, £ in terms of
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orthogonal flux coordinates &, ¥, ¢ are readily obtained from
Eqs. (A.5.1) and (A.%4.14):

1 i34
g=_ (2 (A.4.15)

3 B

P
dip 1

£=o+q8-f [ P._ . (A.6.186)

Thess expressions for § and E will be used later om to calculate
metric tensor elements.
-+ .
Comparing Eq. (A.4.2) for B to £g. (4.2.13), it 1s clear that
Hamada coordinates are a variety ef true flux coordinates. Next, wer
note that the contravariant cocponents of B are now all flux surface

quantities:

Qdpo1  dror

= 27;{0, Tl T] - (4.17)

The current densities may now be showm teo be sinilar in form to
the magnetlic fleld. 1In particular, the currents may be written in

the form

T = 2470 % v{{yqtif p°1}g} - ' (A.4.18)
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with contravarlant compenents

deol dItor)

—r A . (A.4.19)

T = 23{0,

To prove this, we will proceed by analogy with section A.3. First,
from the fact that the current is divergénceless, we may define a

function w such that

15}

v.1-= %(332) + ,o%(jﬁ) - %('%g} + 'éaE{Fé] =0 (4.4.20)
where, in general,

w= ap(g)2 + b{E + w(6,6,%) (A.5.21)
with &, a functlien of ¢ which is perloedic in 8, £, to be deterzined

corsistently with the remalnder of the coovdinate syste=. Foliowing
the developzeat of Eqs. (A.3.43 and {A.3.5), but using instead the

torcidal and poloidal current fluxes, we £ind:
a1

tor
ay () R (A.&.22)
! é'pcl
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dT
b - pol
1(¢) Coiel . (4.4.23)
PO
Hence, 32 and 33 are given by
dI =~ d
3% = gq POl 8% “¥pol (A.24)
TV BE T AV '
at ~ dd
13- 9 tor | 2@ ““pol
oA T EE e (8.4.25)
The equilibrium condition on ¥p demands that .
¢I d1
- = ar32p3_73:2y pol _ tor .
Bp {9 = F{JB-I7B%) Zx{q_ﬁ_ _dv—] -2 e . (A.4.26)

The functionm w is thus deterzined by another magnetic differential

equation. From the conditlons oa its solution we find that

(A.5.27)

and hence

B.vi=0 . (A.4.28)
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Ic‘is therefore permissible'and convenient to choose T = 0, thus
completing the proof.

Using the methods developed in the previous sections, the basis
and reciprocal basis vectors and metric and reciprocal metric tensor
elerents can be readily expressed inm terms of the orthogomal flux
- goordinate systes, &, ¥, ¢- Reciprocal basis vectors are obtained

from Eqs. (A.2.2), {A.6.13), (A.4.16):

el = 7o = RB g (A.5.29)
2 bl 1
e?are g+ A.4.30
et R ¢ )
3. 2E 1 2. _ss 1
&+ = R3 & + Rég—3f + = A.4.31
b Pt TI0 g ¢ )
p

whers 4, §, and % ave the apprépriate unit vectors. Derivativés
with respect to ¢ must be ev%luated nuzerically. Aéprcpriate dot
products among Eqs. (A.4.19)~ (A.4.31) then yield all the reciprocal
metric tensor elements. FElements of thé metric temnsor may be formed
using the reciprocal metric tensor and the analogue of Eq-

(A.1.14):

TR ’ (A.4.32)
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Alternately, they may be found by first constructing the basis
vectors from the reciprocal basis vectors and then applying
Eg. (A.1.11). The basis vectors are listed below:
1 28, 3E 3821 Bz
&y = - (2238 + [20 25RO >-1) - R AL
1t (Pt [ 5 ) - Rl (A.4.33)
: £ 1
g = 3Bog+ ER—{l-Rz<—2>)6 (4.4.35)
R
&3 = R (A.4.35)
dip 1
1 q ‘5Bp Ei
> = e . . {A.4.36)
22 3 ax, .
-“"B_

Finally, by taking the dot product of the wagnetic field with

Eq. (A.4.35), it is easy to see that the resulting covariant
component of the magnetic field, B;, 1s also a flux surface

quantity:

By = § « &3 = Ragpd= F(&IE - ) (A.4.37)
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per=eability, and y is the ratio of speciffe heats. After much

aléebra, the preceding set of eguations may be written as follows,

using peneral flux coordinates (ul,uz,u3), such that R«7ul=0,

covarfznt and contravariant tensor notatlom, and assuming a time

dependence of eluwt:

5 _ts 32

In Egs-{B.5)~(B.7), the oparater D is defined as

D= 3.7

-

the vectors % and Y are defined as

N vl
- 1u$*
and
v
. v
i sub?

(B-5)

(3.6)

(B.7)

(3.8)

{8.9)

(B.10)
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3 2
c

and the matrices A ,

k< 3
s ¥ and K contain differential operators with
respect to the coordinates (uz,ua) which span the flux surfazee. The
compenents of these matrices are listed below. The notaticn chosen

defines J as the Jacobilan, BM és the total plaswma berta,

PO
VA (3.11)
IB I/Zpo
By as
B = 13120145 v8y) . (B.12)

and uses the convention that a differentfzl operator such as
b, 3/2u? or 8/dud acts om all terzs to its right that it multiplies,
unless it is enclosed in parentheses. FEence, for exazple, in

Eq.{B.14) for Ay4, the term DE; means
DBI = 31D + (DBI) {8.13)

wvhile the term (DBI) weans that D acts only on By. 1In additiom,
when a differentlal operator acting on a variable is written in

fractional form, for example,

O8km
au?
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then the differentiation is ‘wnderstood to apply only to the terz in

the nuzerator, i.e., g in the above exacple. The Einstein

gummation coavention on repeated Indices 1s also understood.

1 o OBk
AL = B*B2 -
HoE { aul
~1
A2 = =
ES

o8
-1 BkBm__}—;E - (DBy) + ByD ] -

c
11 By e

€y = e
12 5y 3

(08y) +ByD ] - °
du

L 2
a1 = ow’ry) *PenD * I—-
du

)

au2

{B.14)

(B-15)

{B.16)

(B.18)

(B.19)

Cr1

Caz

i1

x13

X14

X1

2

= pw 812

" 2

* pu B3

~p - 385 _ B Ll

du By du’
—8283

= b
By

= -1

=0

.o 3 53[ Bkamagkm
u? By aui

mf? - (DBy) + By |

~ (DBy) + ByD ]
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{5.20)

(8.21)

(B.22)

(8.23)

(B.24)

(B.25)

(8.26)



X2z

- X23

124

x31

X32

X33

X34

Xal

3
L - B B3
( By

2
pw 822

Dw2823

o

T2z

(B.27)

(B.28)

(B.29)

(B.30)

(8.31)

{B.32)

{3.33)

(8.34)

X42

¥43

Xi4

2
PW B33
Dg32
D33

2 2 dgr.
3B + i[ BkBm K3
i
du

EEE + Efr Bksmff§:
wal  Ea ol

~(DBy) + B;D ]

- (PBy) + ByD 1
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(B.35)

(B.36}

(B.37)

{B.38)

(E.39)

(3.40)

(B.41)
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a8 3
2 2 1
Ky; = ~pu'8z; =~ De21l — [— - gi_%3 1 (B.42)
bul auz
Rap = o (3.43)
&u
. 2 3By
Ru1 = —pw'E3l ~ PE3ID - ?TD (B.44)
141
Eyp = i’_g (B.45)
B

The preceding systen of eguations may be written in 2 form more
suitable to btoth analvtical and nucarical computatiens if Hamada
coordinates sre chesen aad if 12 and b3 are eliminated from the
equations for the vectors ; and ;. Afrer some tedious but
strzightforward algebra, the linearized ideal MHD equations for a=n
axisywoetric toroidal eguilibriuc described by the Hamada
coordinates given In Appendix A are glven below. Equations (B.456)
to (B.49) are to be solved for vl, p*, v2 and V3.

>
% fiad

&

‘4

(B.46)
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I 1. -
Y = KX (B.47)

1]
> v
= * (B.45)

fwp

- o )
> v
Y =

w3

L i (B.49)

The remaining perturbed quantites, bl, bz, b3, are given explicitly
*

in terms of vl, P, vz, v by Eqs.(B.50)~(8.52) below:

I _ 1
iwb™ = Dv {B.50)

2 . 2 3 1 *
1ud® = x33v© + yapv’ - Kypvh - Kyp(lwp) (B.51)

3 .- 2 . 3 b3 *
Lub” = x5 v" + oxepv” — Kgyvo - Kgpliwpd - (8.52)

E I S > .
> x> +
The matrices A, €, y and K are defined as follows in Egs.(B.33) to
{B.68):
B4R
2 272

Xi1 = pwEpz + Bev( 2p - ERN) : .
il 22 22 " B (B.53)



2 ByE3
x1g = puleysy + B-9C £23 - 5 )BT = a;

xp2 = pulEzy *+ Be7C £33 -

The matrix operater,

assuaption of perlodic boundary conditions by writing 1t im the form

used in £q.(2.34), Ll.e.,

>
= x(e) + 3,

22

3
X

and considering vectors Y and Z which sztisfy the boundary

conditions of Tq.(2.36)-(2.37).

in the forz

> g
Y(8,B) = F(2e

with the vector ?(8) satisfying the boundary condition

(e +2m = ¥

i &

.

e

ES
>

3
23

iZﬂNq.

>

B+B
33t
By

>

By considering the integral, I, vhere

-+

+
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(B.54)

(B.55)

¥ » can be shown to be self-adjoint under the

The vectors Y and Z =ay be written

E
1 = $dedg ?{e,s)*- [ x(e)-z(e,ﬂ) 1

and Integrating by parts twice, one finds

1w gasas [ y(8):¥a,m* Tice,: .

3

3

>
3
Aence, ¢ = i+ so x 1s self-adjoint.

The remalning matrices, K, C, and A are listed below:

>
-

2 331 %32
¥ = - - Dgy,D +
i1 pw 812 812 [— —mzr]n + Dg., .
2ul aut 23
B dz B
+ 020 34252 - os) 140 L%
Bs dut *
) By
By, =2, -n”
12— 5
2 38, asd
Ko = — - _
21 = Tew 1y ~ Deysh - — D + Dgy
aut 3 aul

and
'c!ul
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{B.56}

{B.57}



Ep2

€1 =

€y =

Caz

+
Kij

Ay

B Y B.B
+ b O[BBRT - (pBy) 1+ At P
By au1 Ba

.+
= K33
denctes the adjoint cperator to Kij‘

BB 1
-1 {akﬁm__wif.— (oBy) ]+ B0 - 3o
B aut : ul
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(B.58)

(B.ng

{B.60)

(B.61)

{B-62)

(B.63)

(B.64)

1
Ay = —
12 )
aBI .agl
Aqy = pngll + bgy0 +r__§n - B3 In
du aul

u

Bz k agkm 313
‘ﬂg;[ B smfé - - @B 1- D_E;ED

B Iz
Ayy = D = L B2 - (By) ]
B, B, ol
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{B.63)

(B.66)

(B.67)
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-- APPENDIX C
8 3¢ _ g
In this appendix, expresslons for the derivatives of the unit B By (C.7)
vectors &, §, and $ with respect to ¢, %, 4, In an orthogonzl flux
coordinate system, are provided for the convenience of the reader.
38 _ 3R dinBy
3= RBp o 6 R % ¢C.8)
& ad dip
AL -1 Mn(BT/BP) ©.1
T KBy oEp 2 '
ad 3y .
— = RB '3 B .2
5 A p) 2 (c.2)
3% oR o, .
= R3 C.3
1 dan{B/8p) .
o T e (C.4)
B4 Bp dlp
2% <]
=2 = —-RB, .= .
5 P aq,(joBP} ¢ €-5)
?inB
2% T
= -R C.6
= o _ (€.8)
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* APPENDIX D
SHEAR ALFVEN WAVE CONTINUUM CODES

A series of Ehree nucerical codes are used to generate
solution; Zor the shear Alfvén wave continuum of the Tokapole II
dewice. All three codes Tun on the Cray-1 cowmputers of the MFE
netvork. Recent versions of each code are available from the
author, user number 1457. With relatively minor modifications, the
codas can be adapted for use with any other tokamak. The following
codes were used to geaerate the numerical solutioms presented in

Chapter 3 of this thesis:

+EQCPAY This versien of the MHD equilibrium code, TOPECES was
written originally by M. Phillips to solve the
Grad-Shafranov eguation for the Tokapole IX device. The
input to the code is specified in a file TCXIN, which
allcws the user to speclfy the magnetic field strength cn
axis, the total plasma current, and the positions of the
four internal rimgs which are driven inductively to form
the divertor regionm of the discharge. Output files from
the code Include TOXKFLUZX, BPFIELD, and BTFIELD, which
specify the poloidal pagrnetic flux, and the poleoidal and
toroldal magnetic field strengths, respectifely, on an
(89,45) arzay covering the lower half of the Tokapole 11
cross section.

HATRIX  This code generates the matrices § and §
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vhich are needed to solve the continuum equatiens,
Eq. (2.33). Flux surface quantities are zlsc calculated.
Input to the code includes the files TOKFLUX, BPFIFLD, and
BIFIELD. Output files include:
EQUIM - contains elerments of g
EQUIN =~ contalns elezents of §
BP - cantains poloidal magnetic field
values on a flux surface
FLUXES — contain the flux surface quantities
FREQ This code sblves the continuuam equations, Eg. {2.33),
accordiag to the methods outlined in Chapter 4. It uses the
cutput files from the code MATRIX and the output file TOKFLUX
from the code TEQCRAY. A nodel density profile for the
Tokapole 1Y discharge Is incorporated into the code. The user
interactively specifies the approxiczte poloidal and toroidal
mode nuzbers desired and up to three different flux surfaces
for which the poloidal structure of the wave will be supplied
in the output file FUNC. Shear Alfvén elpenvalues and
eigenfrequencies in Mhz are eutput In the Flles EIGEN and
OMEGA, respectively. These files also contain the eigenvalues
and eigenfrequencles corresponding to the approximate
dispersion relaticn, Eg. (3.9), an estimate for the relative
error In each elgenvalue, and the number of iterations

requited for convergence.
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- APPENDIX E
AN INVARTAXT OF BAMILTONIAN SYSTEMS

In Chaﬁter 5, the nuzher of iinearly independent periodic
s;lutions to the continuum ecuations for a given elgemvalue was
determined by transforzing thg continuum equations into an
eguivalent Faziltonian form and using the results of Floguet theory-
A particular invariant, Eq. (4.53) formed by solutlons of the
Eamiltonian system, Eqﬁ (&.41), was used to derive Eq. (6.53). The
existence of this particular invariant for any Hamiltonmian system
has been dedonstrated by Courant and Snyder38. in this appendix,
their proaf for a second order system, 1s reproduced for the

conveniznce of the reader.

LE.T (E-1)

+»
where § varies from O to 2x, the matrix g 1s defined as
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F- (E.2)

and the matrix % is treal and symmetric, i.e.,

g - & (E.3)

where ﬁT is the traaspose of the wmatrix %, Fror Eq. (E.2) it is

easy to verify that

§ . §- = -1 (E.4)

where 1 is the identity matrix, and that

Frod.r . (E.5)

The inner product of any twe solutfons of Eq. (E.1) is defined as

fol iows
< - dae¥,t . vy : (E.6)

where + denotes the complex conjugate of the transpose. Using the
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definition Eq- {E.6), the existence of the {nvariant can be readily

verified. -

d
Io <vi;§j-vj> =0 . (E.11}
Consider the derivative with respect to § of the lnner product ’

->
of vector solution. ¥ with the product §-'\7’j, i.e.,
i This result is obvicusly generaiizable to higher order Hamiltenian

systems-

A

. @ o
=a_e<vii§ o - (E.7)

Using the distributicnal property of the derivative over the vector

procduct in Eq. (E.7), one finds

“f;%izif*nd}?- (E-8)
»j 3 ?§> .

Incergorating Zqs. (E-1) and (E.4) into (E.8) now yields

A = <§-§-vil§-'»’j> - <v"il§-:‘j> (E.9)

In fact, however, A = O, since

<§-§4'i§§-vj> - dil(ét-%}“;-g-?? = <¢i{§T-§T-§-‘i’j>

P AED ST , (E.10)

where tgs. {£.3} and (E.3) have beern used. Thus, any two solutions,
Vi and Vj, to the Hamlltonian system (E.1), may be used to construct

an invariant of the systerm which satisfies
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+-APPEXDIX F
SUPPLEMENT TO CHAPTER 5

tn Chepter 5, it is stated that the following expectation

2,518 ' _ (F.1)

wheve gc 15 defined in Egs.(5.8) and (5.63), vanlshes identically
=~ the tokamak equilibrium pessesses reflection symmetry zbout the

~hat this is true will be demonstrated in this appendix,

vsizg parity argurents. For brevity”s sake, only a few terzs

2TITE iF

in Eq.(F-1) will be treated explicitly., Similar

zz-sifsrations, however, apply in the evaluation of the reraining

When the equilibrium is symmetric with respect to reflection
at-:v the pidplane, equilibriud quantitlfes such as g_ij(g) are even
2~ & while derivatives of these quantities with respect to §, i.e.,
2g,./28 , ate odd in 9. In a similar fashien, the vector 2(9) is

rized by certain parity properties. It was shown in

n
r
T
1)
n
]
[
®

Chzzter 5 that im an up-down symmetrle equilibrivm, two real,

periodic, Iineariy independent solutions for é‘o — one even with

A

eszect to 8,8 and one odd with respect to 8,8 — can be found for a

+2= elzenfrequency. These twe solutlons may be written as

"
[
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?1.: 2(3)coskp + &(8)sin¥
(F.2)

o= 2(8)cosNa ~ A(§)sindia
where a(8)=2(-8) and &{8)=-Z(~8). By taking linear cowbinations of

these two solutions, the vector §°, as given in Egq.{5.63), may be

written as

g, = 20!V = (2(e) - 1&( e L (¥.3)

The parity preperties of go are thus given in terms of the evea and

odd functioms, #{8) and &(2), respectivelyr.

4

The elements of the matris, F, are given below:

- + _ -+
Fi1 = XK1z ~ KyoKgg
o+ + o+
Fiy = Ky1Kzp — Kya¥pp * ~Fpy (F.4)
+ +
Faz = Kz1Kp2 ~ KagFa; :

where the elements of g are gives in Appendix B in Eqs-{B-56)-(3.59)

and the superscripts ~+7 denmotes the adjoint. In the remalnder of
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this appendix, only the follewlng two terms, present in F ;. will be

evaluated explicitly:

g

_— 232 12 3 43 2,22 rd
= -(B LR St T A
' { }rTe FEREE] ( }ae‘aa

] -
F.5)
312351 {
2 > .
where BYZB+¥3 is a flux function in Asmada coordinates. By
expanding the differentials In Eq.{F.%), the expression for T

reduces to the following:

2
812, %12 a2
P R

T = (352 . (F.6)

in zz up-dewn sycrcetric equllibriums, azglgiaez is an even functicn
of § while 2g,,/29 is 2n odd funciion of 2. Combining £q.(F-4) with
the Zorz, £g-{5.63), for §O yields ome tern of the expectation value

of £q.(F.1), namzly,

I = &2 AT(8) T(8) A(®) (F.7)

where A; is the upper component of the vector &, the asterick
denotes the complex comjugate, and the integratiom ovex the angle 8
has already been performed. By integrating the seceond term in T{#)

by perts and using the pericdicity condition,
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R{et2q) = Acoyemilng o : (F.5)

to cancel the surface term, the integral I reduces to:

* 2
BA] d781p B4

1= 888 g —— 55 . (F-9

One can now easily show that this integral vanishes identically in
an up-down symmetric tckamak by substituting Eq.{F.3) for Al and
recognizing that the total integral of an even periodic funetion
muitiplied by an odd periodic function is equal to zerc. In a
similar fashion, the remaining teras in Egq.(F.1) can all be shown te
vanish in a tokacak possessing reflection syzmetry about the

midplane.
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