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Abstract

Lower hybrid current drive has been offered as a means of improving con-

finement in the reversed field pinch by reducing tearing fluctuations. Mod-

eling suggests that a slow wave launched at 800 MHz and an n‖ of 7.8 will

penetrate to the region of maximum magnetic stochasticity and significantly

reduce core tearing mode activity.

The particular constraints of the Madison Symmetric Torus lead to the use

of a novel interdigital-line traveling wave antenna structure rather than the

traditional waveguide grill antenna. Several generations of this antenna

type have been constructed and installed in MST. Scattering parameters

have been measured and with the addition of external tuning, the antenna

suffers from less than −15 dB of reflection in most plasma conditions. The

latest generation antenna has achieved & 220 kW of applied power. Mea-

surements of the launch spectrum show a lower peak n‖ than was designed.

Subsequent modeling of the antenna geometry provides the reason and of-

fers a method to compensate without fabricating another antenna.

The launch spectrum displays good directivity, and the antenna operates
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well in a variety of plasma conditions. Coupling is compared to theory and

simulation and shows good qualitative agreement, though lack of good edge

density profiles limits the prospects for predictive capability. The use of a

plasma limiter has been shown to reduce the dependence of coupling on

the plasma density, and local gas puffing has been shown to maintain the

amount of loading even in low density or high confinement plasmas.

A hard x-ray survey of rf in standard MST plasmas shows a toroidal asym-

metry in the hard x-ray flux. Modeling indicates that this flux is consistent

with electrons being accelerated to high energies in the near-field of the

antenna. Analysis indicates that power losses to these electrons may be on

the order of several percent of the input power.
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Chapter 1

Introduction

1.1 The Motivation for RF in an RFP

Radio frequency waves have been an integral part of fusion research for decades. Rf

waves have been used to drive mega-amps of current, have heated plasmas to many

keV, or have simply been used as a non-perturbative diagnostic. Today the use of rf has

become indispensable in producing and controlling high-quality plasmas on many of

the large machines [1]. Despite its extensive use throughout the field, rf heating and/or

current drive has only recently been employed on the reversed field pinch (RFP). The

use of a novel antenna for launching lower hybrid waves into the RFP as well as the

coupling to and interaction with the plasma will be the focus of this work.

The reversed field pinch is normally compared to the much more well known toka-

mak configuration. Both are toroidal devices, with generally helical magnetic field lines.

The principal difference is that the RFP has a relatively weak toroidal field, where the
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main confining field is the poloidal field generated by the large toroidal plasma current.

This feature has made the RFP attractive as a reactor concept since it allows a high

engineering beta (the ratio of plasma pressure to the square of the field strength at

the coils), and it does not require the use of superconducting coils — a major cost

driver [2].

A conventional reversed field pinch plasma is formed by applying a toroidal electric

field in a weak toroidal field. After an initial unstable phase, the plasma relaxes into

a minimum energy state where the parallel normalized current density (λ ≡ J‖/B) is

nearly flat [3]. The parallel component of the generalized Ohm’s Law is:

E‖ + 〈ṽ × b̃〉‖ −
1

ne
〈̃j× b̃〉‖ + · · · = ηJ‖ (1.1)

where E‖ is the parallel component of the inductive electric field, η is the resistivity,

and J‖ is the parallel current density. The 〈ṽ×b̃〉 term is the MHD dynamo and 〈̃j×b̃〉

is the Hall dynamo term. A flat λ-profile requires substantial edge poloidal current not

provided by E‖, and it is the dynamo terms in (1.1) that provide that current and act

to reverse the edge toroidal field [4]. These terms are self-generated by large amplitude

magnetic fluctuations driven mostly by the current density gradient [5].

The reversal of the toroidal field gives a much different q profile (q ≡ rBz/RBθ)

than one would see in the tokamak. The q profile is a monotone decreasing function

of minor radius with an on-axis value of about 0.2 (for MST) and passes through zero

(the reversal surface) at the edge. A diagram of the RFP profile is shown in Figure 1.1.
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Figure 1.1: A typical reversed field pinch q profile and the locations of the (m,n)
resonance surfaces inside the reversal surface. The lines show representative island
widths at each resonance demonstrating the overlap. In this profile, the maximum q is
below 0.2 so the (1, 5) mode is not resonant.

The large magnetic fluctuations required to generate the dynamo (and the reversed

field pinch) at the same time have a deleterious effect on the plasma confinement.

The great majority of the fluctuating power is contained in modes with poloidal mode

number m = 1 and toroidal mode numbers n = 5 − 8. Comparisons between MHD

computations and experiment have established that these modes are core tearing fluc-

tuations described by resistive MHD [6]. Despite the fact that the fluctuation level is

around 1-2%, the closeness of the mode rational surfaces allows the magnetic islands

from adjacent surfaces to overlap and creates large regions of magnetic stochasicity.

This stochasticity allows rapid energy and particle transport and is a key issue for the

RFP as a fusion reactor.
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If the inductive electric field can be tailored so that the current density profile is

sufficiently flat to maintain the RFP configuration, then the dynamo terms supplying

the edge current are no longer needed. This can be accomplished by driving the toroidal

field winding to induce an additional poloidal electric field Eθ [7]. This technique,

known as pulsed poloidal (or parallel) current drive (PPCD) has been used successfully

on the Madison Symmetric Torus and other devices to reduce transport and improve

confinement by at least a factor of ten [8] and restore flux surfaces.

PPCD can be pictured as an auxiliary forcing term [9] which modifies the original

applied ohmic electric field and acts to replace the dynamo terms in (1.1):

E‖ = E‖orig
+
Fab̂

ne
= ηJ‖. (1.2)

Figure 1.2a shows a Gaussian-shaped ad hoc force and the resulting flattened λ-profile.

Figure 1.2b shows the results of the non-linear MHD code debs [10]. The core tearing

mode fluctuations are reduced by several orders of magnitude in response to the change

in the λ-profile.

While the forcing term in (1.2) is inductive when using PPCD, it need not be. Any

mechanism that can drive current at the proper location at the edge may be used.

It is here that using radio frequency waves to drive the current comes to mind since

the ad hoc forcing term is reminiscent of rf-current drive profiles. PPCD is inherently

transient and requires significantly altering the q profile. On the other hand, rf power

can be made steady state, a distinct advantage for reactor scenarios, and it can be used

under any plasma conditions in which the rf waves can couple and drive the appropriate
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from debs computation. The red dashed line is the reduction after profile modification.

amount of current. Additionally, because PPCD depends on the changing toroidal flux

to improve confinement and rf does not, physics experiments that benefit from stable

magnetic and current profiles will be possible using LHCD.

1.2 MST

The Madison Symmetric Torus (MST) is a reversed field pinch located on the campus

of the University of Wisconsin-Madison [13]. A diagram of MST is shown in Figure 1.3.

MST has a circular cross-section with a major radius of 1.5 m and a minor radius of 0.52

m. It has a close-fitting 5 cm thick conducting shell of aluminum which serves as the



6

Figure 1.3: Diagram of Madison Symmetric Torus. From [13].

vacuum vessel as well as the toroidal field coil. It is the characteristics of the vacuum

vessel that necessitates a non-standard antenna design for launching rf waves. The

plasma is limited by toroidal graphite limiters on the inboard and outboard midplane

that have a 1 cm radial extent.

Operating parameters for the machine are 200-600 kA toroidal current, with an

average edge field of ∼ 1.5 kG with 3 − 4 kG in the core for 400 kA plasmas. Typical

densities run 0.4− 2× 1013 cm−3 with deuterium as the standard operating gas. There

are several standard operating scenarios for MST. Unless otherwise specified, rf power

will be launched into 400 kA standard plasmas: the plasma flat-top will have an average

plasma current Ip = 400 kA, the line-average density will be 1×1013 cm−3, the reversal

parameter F will be −0.2, and the pinch parameter Θ ≃ 1.7. Here F and Θ are defined
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1 × 1013 cm−3.

as:

F =
Bφ (a)

〈Bφ〉
, Θ =

Bθ (a)

〈Bφ〉
(1.3)

where a is the minor radius of the machine and 〈〉 is the average over the poloidal

cross-section. Electron temperatures range from about 40 eV at the edge to 300 eV in

the core. Some typical profiles for this operating regime are shown in Figure 1.4.

The typical discharge is ∼80 ms in duration which includes about 30 ms of “flat-

top” regime where plasma current, field equilibrium and density can be held relatively

constant. Most rf-injection for our purposes takes place during the the flattop.
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1.3 RF Current Drive

The use of waves to drive current in toroidal plasmas has been known as early as the

1950’s. Energy and/or momentum can be transferred to particles from waves via the

Landau resonance:

ω − v · k = 0 (1.4)

where v is the particle velocity and ω and k are the wave frequency and wave number,

or by the cyclotron resonance,

ω − k‖v‖ − nΩ = 0, (1.5)

with Ω ≡ qB/m the cyclotron frequency and n is an integer. Early suggestions for

driving toroidal current in larger machines focused on transferring wave momentum to

slow electrons — for example by Alfvén waves — as it is more efficient to add energy

to slow rather than fast electrons [14]. Fisch [15] showed that using the lower-hybrid

wave, driving fast electrons (vφ‖
≫ vth, vφ = ω/k) can be just as efficient since the

collision frequency goes as 1/v3
φ‖

, the power required to maintain the current is much

less. In fact, because slow electrons suffer from trapping, much less current can be

driven when the trapped fraction is high.

Despite this potential problem, several early studies [16,17] explored the possibility

of using Alfvén waves to drive current in the reverse field pinch. Uchimoto et al [11]

showed that lower hybrid waves are ideally suited to drive poloidal current in the outer

region of the RFP. The use of this method will be a focus of this work.
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Before going into the specifics of the rf launch and propagation, it may be useful

to estimate the amount of power required to stabilize tearing modes and improve

confinement using rf rather than PPCD. The 3D non-linear MHD simulation showed

that to effect the changes in Figure 1.2a, 25% of the poloidal current should be driven

by auxillary, i.e. rf, sources. For typical RFP equilibria, the poloidal current can be

approximated by

Iθ =
3R

aΘ
Iφ (1.6)

where R/a is the aspect ratio. For an Iφ = 400 kA plasma, it will be necessary to drive

approximately 500 kA of current by rf to maintain an improved confinement mode.

To determine how much power is required to drive this current we need the current

drive efficiency:

η = jrf
‖ /p

rf (1.7)

where jrf
‖ is the rf-driven current density, and prf is the deposited rf power density.

A useful approximation can relate (1.7) to the total current and power. If we assume

that the LHCD occurs in a cylindrical shell between r1 and r2, then we have:

Irf
θ /P =

jrf
‖ 2πR (r2 − r1)

prf2πR (πr2
2 − πr2

1)
= η/ (2πrav) (1.8)

where rav = (r1 + r2) /2. The efficiency can also be written as:

η = 3.84 × 1019 Te

ne ln Λ
η̃, (1.9)

where ln Λ is the Coulomb logarithm, Te and ne are in units of keV and SI units, and
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η̃ is a dimensionless quantity that depends on Z, the trapping ratio and the ratio of

vφ‖
/vth and is plotted in Ehst [18].

Uchimoto estimates that a η̃ ≃ 10 can be achieved for MST parameters with a

resultant driven current of 0.5 A/W. Then we would expect to need approximately

1 MW of rf power for confinement improvement. In this calculation however, a Z of

1 was used. At the reversal surface, we might expect an effective Z of 3 or 4 to be

a better estimate. This has the effect of reducing the efficiency. Using the analytic

function given by Ehst for Z = 3, we have η̃ closer to 4. Using this value and the

plasma parameters where the power absorption is maximum, we have Irf
θ /P ≃ 0.24

A/W. For 0.25Iθ, we require ∼2.1 MW, a significant increase in the deposited power.

This analysis does not treat the high radial diffusion in standard RFP plasmas

which will reduce the initial efficiency of the injected power. To avoid this, it may

be necessary to use PPCD to achieve an initial improved confinement state before

applying rf power [19]. A better estimate of the driven current for a given input power

can be made with a Fokker-Planck solver such as cql3d [20]. While important to

determine the true size of a full power rf system, this calculation is not a focus of this

thesis. Instead, the emphasis will be on hardware limits of delivering the power.

1.4 Wave Propagation

The theory of lower hybrid wave propagation has been discussed by many authors,

so only an overview with details pertinent to LHRF on MST will be treated here.

Following the notation of Bonoli [21], we have for the wave equation in the geometric-
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optics approximation:

n× n× E + ǫ · E = 0, (1.10)

where E ∼ ei(k·x−ωt), n = kc/ω is the index of refraction, and ǫ is the cold plasma

dielectric tensor:

ǫ =









ǫ⊥ −iǫxy 0

iǫxy ǫ⊥ 0

0 0 ǫ||









. (1.11)

We have defined the parallel and perpendicular directions with respect to a static

background magnetic field B0, and the matrix elements can be derived using the single

particle equations of motion and Maxwell’s Laws [22].

The lower hybrid range of frequencies is generally defined as Ωci ≪ ω ≪ Ωce, where

Ωcj and ωpj ≡
√
nje2/mjǫ0 are the cyclotron and plasma frequencies respectively.

Using this approximation, the matrix elements of (1.11) are:

ǫ⊥ = 1 + ω2
pe/Ω

2
ce − ω2

pi/ω
2

ǫ|| = 1 − ω2
pe/ω

2 − ω2
pi/ω

2 (1.12)

ǫxy =
ω2

pe

ωΩce
.

From (1.10) and (1.11) we can form a dispersion relation D·E = 0 whose non-trivial

solution is

P0n
4
⊥ + P2n

2
⊥ + P4 = 0, (1.13)

where n⊥ is the perpendicular component of the index of refraction and the coefficients
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P0, P2, P4 are:

P0 = ǫ||

[(
n2
|| − ǫ⊥

)2 − ǫ2xy

]

P2 =
(
ǫ⊥ + ǫ||

) (
n2
|| − ǫ⊥

)
+ ǫ2xy (1.14)

P4 = ǫ⊥.

The expression (1.13) is quadratic in n2
⊥ whose solutions are

n2
⊥ =

−P2 ±
√

∆

2P4

, ∆ = P 2
2 − 4P0P4. (1.15)

For a fixed n||, (1.15) completes the description for the wave propagation into a cold

plasma and shows the two distinct branches for propagation: the “slow” and “fast”

corresponding to the positive and negative signs respectively. The slow wave branch

has a resonance condition (n⊥ → ∞) at P4 = ǫ⊥ = 0, which defines the lower hybrid

frequency,

ωlh =
ωpiΩce

√
Ω2

ce + ω2
pe

(1.16)

and a density, NLH , at which the slow wave will cease to propagate. It is the slow wave

branch that is generally associated with lower hybrid waves and is the branch that we

will use to launch waves into MST plasmas.

Figure 1.5 shows solutions of (1.15) for different values of n‖. If n‖ is greater

or equal to some critical value na as in the second and third panels of the Figure,

then the slow wave can propagate from its cutoff at NS all the way to the lower hybrid

resonance. If however, n‖ < na, then the slow wave will mode convert to the fast branch
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Figure 1.5: Slow and fast wave branches for different values of n‖ relative to na. NS

and NF are the slow and fast wave cutoffs. NLH is the density corresponding to the
lower hybrid resonance.

and propagate back out of the plasma. This accessibility condition na is defined by

requiring ∆ > 0 for all densities in (1.15) so the two modes do not coalesce.

The fast wave branch does not suffer from the lower hybrid resonance, and so it

may be useful in reactor scenarios as it can penetrate to arbitrarily high densities [23].

It has a distinct disadvantage relative to the slow wave, however: its cutoff NF is at a

higher density than NS and so must tunnel farther before it begins to propagate. In

MST this corresponds to ∼ 5 cm into the plasma, making the fast wave unusable for

launching waves.

The wave need not propagate to the lower hybrid resonance for heating or current

drive. The launched waves must only reach a location where the density and/or tem-

perature is high enough for efficient absorption (via Landau damping for example).

As discussed above, the presence of the lower hybrid resonance may be detrimental

for high density operation. Setting the pump frequency ω higher than ωlh at the tar-

get location will avoid this density limit. For tokamak plasmas with strong magnetic
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fields, this requires the wave frequency to be on the order of GHz for targets inside

mid-radius. For MST, the fields are much lower and the target density is also quite

low, so the minimum frequency required to avoid the density limit is also lower. As

long as the frequency is higher than about 550 MHz, the lower hybrid resonance moves

to densities that exceed the maximum that can be normally obtained in MST. Since

the current drive scenario for MST requires deposition at r/a ≃ 0.7 and at a density

of 0.7 × 1013 cm−3, the accessibility criterion is relaxed. We require only that we can

propagate to that point before the wave mode converts to the fast wave.

Because rf sources from Princeton Plasma Physics Laboratory were made available

to the project at no cost, 800 MHz was chosen as the operating frequency. This

frequency is high enough to avoid the density limit discussed above, but for MST edge

parameters of B0 = 1500 G in D2 gas, we require an n‖ ≃ 11.2 to reach the target

absorption region at ∼0.7 × 1013 cm−3 before converting to the fast wave.

The accessibility calculation has not taken into account the magnetic field gradient

or the toroidal geometry. The field increases as the density increases, which reduces

the required n‖. In a toroidal geometry, when launching from the inboard side, an

upshift occurs in the parallel refraction which also enables the wave to access deeper

regions of the plasma [24]. This allows a much lower launch n‖ than expected from the

slab model.

For a more accurate solution to the wave propagation, ray tracing can be used.

genray is a general ray tracing code for the calculation of wave propagation and ab-

sorption in a geometric optics approximation and accounts for realistic density and

magnetic field profiles as well as a toroidal geometry [25]. For a inboard launch, Fig-



15

Poloidal

1.0 1.2 1.4 1.6 1.8 2.0
R

-0.4

-0.2

0.0

0.2

0.4

Z

Toroidal

1.0 1.2 1.4 1.6 1.8 2.0
R

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

Figure 1.6: genray ray-tracing of LH wave into 400 kA standard plasmas. Rays are
launched in the co-current direction at n‖ of 6, 8, and 10 (blue, green, red).

ures 1.6 and 1.7 show the poloidal and toroidal wave propagation for an n‖ of 6, 8,

and 10 and −6, −8 and −10. The wave is followed until 99% of the power has been

absorbed. The ray tracing indicates that launching a wave with an n‖ ≃ 7.8 from the

lower inboard side of the machine will propagate into a region just inside the reversal

surface, where we require power deposition for fluctuation reduction.
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Figure 1.7: genray ray-tracing of LH wave into 400 kA standard plasmas. Rays are
launched in the counter-current direction at n‖ of −6, −8, and −10 (blue, green, red).

1.5 Summary and Thesis Outline

Inductive current drive has been used to great success in MST, with PPCD increasing

the energy confinement time by an order of magnitude. The use of lower hybrid current

drive as a steady-state technique is a natural extension of the program. An efficiency

calculation shows that 1-2 MW of rf power will be required to obtain PPCD-like con-

ditions. Ray tracing shows that an antenna structure capable of launching a slow wave

at 800 MHz and an n‖ ≃ 7.8 from the inboard side should allow for wave absorption

in the desired location.

The lower hybrid project on MST has been initially tasked with determining the

feasibility of using LHRF to drive enough current to improve confinement on par with

the transient technique of PPCD. With an estimate of the required power necessary to
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alter the current profile, the question turns to designing an antenna with the following

properties: it must launch a wave with the correct polarization along the magnetic

field, and it must have the required n‖ spectrum. It must also have a a geometry

which will satisfy the particular constraints of MST. Chapter 2 will show that an

antenna based on an interdigital-line will fulfill these requirements and describes the

constructed antenna with its diagnostics and transmission system. Additionally, the

power handling of the antenna design will be tested as a step towards determining the

full size of the rf system necessary for improved confinement.

No less important is characterizing the coupling of the interdigital-line antenna to

the plasma. Without good coupling, the antenna will not efficiently transfer power

to the plasma which increases the source power required for a current drive system.

Chapter 3 gives an overview of plasma coupling theory for a traveling wave antenna and

compares it to experiment and simulation. We show that the antenna is well loaded in

a variety of plasma conditions with the plasma density the most influential parameter

for antenna performance. The Chapter also discusses the use of an antenna limiter and

local gas puffing to externally control antenna coupling.

A powerful non-pertubative technique to measure the effects of injected rf waves

is the use of x-ray diagnostics. This work will make use of a set of hard x-ray detec-

tors in an attempt to measure any rf-induced fast electrons associated with current

drive. Chapter 4 will first describe the diagnostic and analysis method. While current

drive at the present power level cannot be confirmed with the hard x-ray diagnostic,

observations will be presented including a toroidal asymmetry in high energy x-ray

production. This asymmetry can be best explained by an interaction of bulk electrons
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with the near field of the antenna. Monte Carlo simulations will be performed to sup-

port this hypothesis, and an accounting will be done to confirm that the power loss to

these fast electrons is not significant. The results are summarized and possible future

work is described in Chapter 5.
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Chapter 2

The Lower Hybrid System on MST

The lower hybrid system on MST is comprised of all the hardware necessary for gen-

erating, transmitting, and launching lower hybrid waves. The unique constraints of

MST neccesitate a novel antenna design and will be the focus of this chapter. We will

begin with an in-depth look at the MST lower hybrid antenna, including its design

considerations, theory of operation and modeling. Next in the discussion will be the

backend power generation and transmission system. The diagnostics pertaining to the

operation of the antenna circuit are in this chapter while plasma diagnostics are dealt

with later. Lastly, measurements of the system without plasma are presented.

2.1 Antenna

The choice of design for the lower hybrid antenna is driven almost entirely by con-

straints. As described in §1.4, we must first and foremost have an antenna that can
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launch a slow wave at high enough n‖ to avoid an accessibility cutoff and an appropriate

frequency for absorption in the target region. These two constraints alone will force a

geometry of a size necessary to support a given wavelength and propagation constant.

Finally, while not a technical constraint, the laboratory was given the opportunity to

obtain rf sources in the UHF (pretuned to 800 MHz) at no cost.

The constraints posed by MST’s vacuum vessel are just as onerous. MST uses a

conducting shell for plasma stabilization so a porthole large enough to accommodate the

now-standard grill antenna [1] would cause unacceptably large field perturbations [2].

Second, the conducting shell is close-fitting to the plasma, so the radial extent of

the antenna must be small so as not to perturb the plasma and act as a limiter.

This extent is around 2 cm on the inboard side of the machine and less still on the

outboard side. Additionally, while the machine vacuum vessel is a clamshell and can be

disassembled for easier interior access [3], the time penalty for disassembly is too high

for demonstrating the antenna concept. Because of this and the porthole constraints,

the transverse dimensions of the antenna must be small enough to fit through the

largest porthole on MST — 11.43 cm in diameter.

These restrictions, taken together, lead to the choice of an interdigital-line trav-

eling wave antenna. This particular antenna design is novel for plasma applications,

but it has forebears. The stripline antenna [4] or Yagi-Uda array antenna [5] which

begat the modern ICRF strap antennas similarly use conductors phased to set up the

desired propagation constant. With these, however, each conductor is fed by its own

power generator. True traveling wave antennas such as the combline [6,7] and fishbone

antennas [8] are much closer cousins to the interdigital-line concept, though these an-
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tennas launch fast waves rather than slow waves and at much lower frequencies. The

remainder of the section will describe how an interdigital line operates as well as how

an antenna utilizing an interdigital line can satisfy the constraints imposed by MST.

2.1.1 The Interdigital Line

The interdigital circuit was developed in the 1950’s as an alternative to helix structures

in traveling-wave amplifiers [9]. In its most basic sense the combline or interdigital-

line structure uses a set of parallel resonators that are capacitively and/or inductively

coupled to propagate a wave down the structure. The combline has all its resonators

grounded on one end and open on the other while the interdigital line’s resonators are

interlaced with each end alternately grounded or open-circuited. It can be thought

of as a pair of comblines that are interleaved. A section of the circuit is shown in

Figure 2.1.

The line can be situated over a groundplane or alternatively between a set of

grounded planes so as to change the impedance of the circuit and for structural in-

tegrity. The MST antenna has a pair of grounded planes with an aperture cut in the

plasma-facing plane so that the fields on the structure can couple to the plasma. The

length and spacing of the conductors determines what operating frequency the struc-

ture can support and defines a dispersion relation. This dispersion relation stipulates

the phase advance and thus the propagation constant of the traveling wave.

To elucidate the theory of the antenna, we start with an idealized interdigital line.

We ignore the ends of the resonators for the moment and imagine those parallel con-

ductors — which we will also call rods or “fingers” — as semi-infinite in the y-direction.
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Figure 2.1: Schematic of an interdigital line shown here without a grounded frontplane.
Rods are L apart and h long.

Taking a single rod and the groundplane, we have a pair of conductors whose cross-

section is uniform. A wave traveling in the y-direction with no field components in that

direction satisfies Maxwell’s equations and can be classified as a TEM mode. (Since

the resonators are not of infinite length, these are actually quasi-TEM modes since

y-components become non-zero at the ends, but this can be neglected for the time
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being.) With Ey = Hy = 0, the wave satisfies the transverse Laplace equation:

∇2
t ϕ(x, z) = 0 (2.1)

where ∇2
t = ∂2/∂x2 + ∂2/∂z2 and ϕ(x, z) is the potential at a point (x, z) with respect

to the ground plane.

Given a mode of a single frequency ω and a propagation constant β = k = 2π/λ,

we have two waves for this mode, traveling at the speed of light, one traveling in the

+y direction and one traveling in the −y direction. The potential in three dimensions

can be written as

ϕ(x, y, z, t) = F (x, z)
(
Ae−iβy +Beiβy

)
e−iωt (2.2)

where ∇2
t F = 0. For the remainder of the section, we will look at only the variation

of the waves in the y direction, and the common factor e−iωt will be suppressed.

Bringing the ends of the rods back into the picture, we have each rod in the line

alternatively shorted on one end and open-circuited on the other. Designating Vm(y)

and Im(y) as the voltage and current on the m’th rod, this description corresponds to

the set of boundary conditions:

V2n

(
h

2

)

= V2n+1

(

−h
2

)

= 0 (2.3)

and

I2n

(

−h
2

)

= I2n+1

(
h

2

)

= 0 (2.4)
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where n ∈ Z.

If we have a wave propagating along the structure transverse to the conductors (in

the z-direction), and the periodicity of the boundary conditions is N (the boundary

conditions are repeated every N ’th rod), then N modes are required to satisfy the

constraints [10], and follows from Floquet’s theorem [11, 12]. For each of these modes

ν, the rod-to-rod phase advance is

θν = θ + 2πν/N, ν = 0, 1, 2, . . . , N − 1 (2.5)

where θ will be determined by a dispersion relation which we will derive. For the case

of the interdigital line, the periodicity is N = 2 since a “unit cell” contains a pair of

resonators. Applying (2.5), we need two different wave modes: one that propagates as

e−imθ and the other as e−im(θ+π) where z = mL, m ∈ Z.

The voltage on the m’th rod can be written as

Vm (y) = (A1 cos βy + A2 sin βy) e−im(θ+π)

+ (A3 cos βy + A4 sin βy) e−imθ (2.6)

and since the current is related to the voltage by the characteristic impedance Z of the

rod for each mode,

Im (y) =
i

Z (θ + π)
(−A1 sin βy + A2 cos βy) e−im(θ+π)

+
i

Z (θ)
(−A3 sin βy + A4 cos βy) e−imθ. (2.7)
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The characteristic impedance is a function of both the geometry of the interdigital line

(i.e. shapes of the conductors and distances between conductors) as well as the phase

advance between resonators. Applying the voltage boundary conditions (2.3) to (2.6)

eliminates A3 and A4. Then we have for A1 and A2:

A1 = −A4 tan

(

β
h

2

)

(2.8)

A2 = −A3 cot

(

β
h

2

)

. (2.9)

Applying the current constraints (2.4) to (2.7) yields two waves

Wave 1 : A2 = 0, tan2

(

β
h

2

)

=
Z (θ + π)

Z (θ)
(2.10)

Wave 2 : A1 = 0, cot2

(

β
h

2

)

=
Z (θ + π)

Z (θ)
(2.11)

which are in fact identical in that each has the same voltage and current distributions.

As this is the case, we arbitrarily choose A2 = 0. Then

tan2

(

β
h

2

)

=
Z (θ + π)

Z (θ)
(2.12)

is a dispersion relation between the (phase) length of the resonators and θ, the phase

advance of the zeroth mode.

Applying the complete set of boundary conditions we have for the voltage and
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current on each resonator:

Vm (y) = A cos (βy) e−im(θ+π) −A cot

(

β
h

2

)

sin (βy) e−imθ (2.13)

Im (y) = −A i

Z (θ + π)
sin (βy) e−im(θ+π) − A

i

Z (θ)
cot

(

β
h

2

)

cos (βy) e−imθ. (2.14)

Even without solving for the characteristic impedance of the line, one observation can

be made for the voltage and current near the center of the rods. Near the center, the

sin (βy) term is small and we have arg (V ) ∼ −m (θ + π) and arg (I) ∼ π/2−mθ. The

phase advance for the voltage and current from rod m to rod m+ 1 for a given value

of θ are

φV ≡ arg (Vm+1) − arg (Vm) = − (θ + π) (2.15)

φI ≡ arg (Im+1) − arg (Im) = −θ (2.16)

and are shown in Figure 2.2. An interesting result from this simple consideration is

that the voltage and current waves have opposite (but not necessarily equal) phase

velocities along the axis of the interdigital line, and for 0 ≤ θ < π the voltage — and

thus the electric field — travels backwards toward the end of the line being fed the

power.

Lastly we note that the because the characteristic impedance is invariant to the
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Figure 2.2: The phase advance of the voltage and current on the interdigital line for
values of θ. A positive [negative] phase advance corresponds to a backward [forward]
wave.

direction of the wave as well as to a phase addition of 2πn, we have:

Z (θ) = Z (−θ) = Z (θ + 2πn) (2.17)

Z (θ + π) = Z (θ − π) = Z (π − θ) . (2.18)

Equations (2.17) and (2.18) with the dispersion relation (2.12) imply that if we choose

θ = π/2, then Z (θ) = Z (θ + π) and then βh = π/2, or h = λ/4. So by choosing

the resonators to be one-quarter of a wavelength long, the phase advance is π/2 and is

independent of the impedance of the circuit. Plugging this θ in to (2.6) and (2.7), we
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have

Vm (y) = A
(
cos (βy) eimπ/2 − sin (βy) e−imπ/2

)
(2.19)

Im (y) = −A i

Z0

(
sin (βy) eimπ/2 + cos (βy) e−imπ/2

)
(2.20)

With θ = π/2, we see that for both the voltage and current each has two counter-

propagating waves moving at the same phase velocity. At the ends of the rods, these

waves have the same magnitude and a standing wave forms. At the center of the

rod where sin (βy) is small however, the cosine term dominates, and we see the same

behavior that we saw in Figure 2.2.

2.1.2 Impedance of the Interdigital Line

To find the characteristic impedance of the interdigital line and thus the solution to

the dispersion relation (2.12), we first calculate the electric field directly outside a

conductor with surface charge density σ using Gauss’ Law [13]:

E =
σ

ǫ
n̂ (2.21)

where ǫ is the permittivity of the dielectric medium and n̂ is the normal to the surface.

Since we have E = −∇ϕ, we can reformulate (2.21) as

∂ϕ

∂n
= −σ

ǫ
. (2.22)

The total (normalized) charge per unit length can be calculated by integrating
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(2.22) around the boundary of the conductor:

q = − ǫ

∫

Γ

∇ϕ · n̂, (2.23)

and then we can calculate the capacitance, C = q/V , where V is the voltage on a

resonator. The characteristic impedance of a uniform transmission line in TEM mode

is related to its shunt capacitance [14] by

Z0 =
η√

ǫr (C/ǫ)
(2.24)

where ǫr is relative dielectric constant, and η is the impedance of free space.

We still require the potential ϕ as a starting point. In this case we want to solve

Laplace’s equation for our geometry. The partial differential equation is difficult to

solve analytically except in very simple geometries, so we turn to finite element meth-

ods. See Appendix A for details.

For the problem, we require the geometry as well as the boundary conditions.

Two different general forms of the interdigital line have been examined: one where

the interdigital resonators are situated over a single ground plane and open on the

other side as in Figure 2.1 — the “open” type, and the other where the resonators

are sandwiched between a pair of grounded planes — the “closed” type. The addition

of a second ground plane in the closed type adds to the capacitance of an individual

resonator.

In both of these cases, the ground planes are set to ϕ = 0 and the resonators are

set to a fixed voltage. The m’th resonator will be given a particular voltage depending
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Figure 2.3: The impedance of the interdigital line relative to the rod-to-rod phase
advance. Resonators are 2.38 mm in diameter, the distance from the center of the
resonator to the groundplane[s] is 5 mm, and the center-to-center resonator distance is
12 mm.

on the phase advance:

ϕrodm
= cos (mφ+ δ) , (2.25)

where φ is the phase difference between adjacent resonators and δ is an arbitrary

constant to avoid voltage nodes. Solving for ϕ using the finite element code, we can

apply (2.23) and (2.24) to calculate the impedance for a given phase advance. Figure 2.3

shows the results for both the closed and open interdigital models. From the inverse

relationship between impedance and capacitance, it is not surprising that the open

interdigital line has a higher overall impedance than the closed line. The data also

shows that the impedance is symmetric about φ = π and verifies that when φ = π/2,

then Z (θ) = Z (θ + π) as we calculated in the previous section. With the impedance

and the dispersion relation in (2.12), we can relate the phase advance to the length of
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Figure 2.4: The phase advance of the interdigital line relative to the normalized res-
onator length. The frequency dependence is given for h = 93.75 mm, one-quarter of
the vacuum wavelength at 800 MHz. The curves with negative gradients correspond
to the backwards-traveling (θ + π) mode.

the resonators normalized to the wavelength. This relation is shown in Figure 2.4.

2.1.3 Observations

The previous two sections show that for any non-zero phase advance from rod to rod,

the current and voltage waves (and thus the electric and magnetic field waves) prop-

agate down the structure (in the z-direction) in opposite directions. This conclusion

is a bit counter-intuitive, since it would seem to violate Maxwell’s laws. We started

the derivation with the assumptions that the structure propagates an electromagnetic

wave transverse to the parallel conductors (the rods) forming it and that the field can

be represented by TEM modes along those conductors. Walling [10] points out that

these assumptions are actually inconsistent. In fact, the energy flow down the structure

occurs only at the ends of the resonators rather than in the middle. Thus the “wave”
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Figure 2.5: The antenna as a transmission line circuit.

traveling down the center of the structure is only a wave in the sense that there is a

phase structure along the line that advances in time.

Despite that rod-to-rod energy transfer occurs at the ends of the rods, if the length

of the conductors is large relative to their rod-to-rod separation then most of the energy

stored in the fields will be in the region where the TEM approximation holds. In this

region — with sin (βy) ≪ 1 — the voltage, and thus the electric field, is large only in

the θ + π mode. The wave travels mostly in a single direction near the z-axis of the

interdigital line.

2.1.4 The Antenna Circuit

Given the theory of the interdigital line, we can now construct an antenna that can

launch a directional wave of 800 MHz at an n‖ ∼ 7.8 and satisfies the required geo-

metrical constraints. To actually perform a task, the antenna must also be connected

to and fed by a power generation system. The antenna and its power feeds can be

described as a transmission line circuit and is shown in Figure 2.5.

The interdigital line will be the launching section of the antenna. At an operating

frequency of 800 MHz, a quarter-wave antenna would require resonators to be 93.75
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mm long. 5 mm wide side rails like those in Figure 2.1 serve as attachment points for

the resonators. So that the open-circuited end of the resonator is in fact open, the

cavity formed between the side rails and groundplanes is wider than the resonators

are long, chosen to be 95 mm. With the addition of 3.175 mm thick boron nitride

cladding for protection, the antenna will still be narrow enough to fit through the

largest porthole on MST, a requirement for installation [15].

Because the physical antenna has side rails, an additional source of capacitance

exists that is not in the TEM model of the interdigital line. A finite element and

capacitance solver [16] was used to estimate the contribution to the self-capacitance

of the resonator from the side rail. With the additional capacitance, the length of the

resonator was changed to 92.1 mm to compensate and move the phase advance back

to π/2 [17].

Using an “open” interdigital line with a single ground plane as described in §2.1.2

will allow coupling of the fields on the line to the plasma. However, the open geometry

exposes the resonator-ends where the two counterpropagating modes form a standing

wave. Since we want to launch a directional wave, this is not ideal. On the other hand,

a “closed” geometry is useless as an antenna, since no power can be coupled. A hybrid

design that has an aperture cut into the ground plate proximate to the plasma that

covers the ends of the rods and exposes the center where sin (βy) ≪ 1 will give the

best directionality. The width of the aperture is chosen so that minimum ratio of the

two mode amplitudes that is seen by the plasma is about 4 :1.

The height of the antenna is only slightly less prescribed than its width. Its height

must be such that it does not protrude into the plasma, and it must not be too tall to
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fit through the circular porthole. A second consideration is that a large characteristic

impedance by definition keeps the voltage to current ratio high. Doing this will accom-

plish two goals. First, for a given input power the smaller current will reduce ohmic

heating — and possible melting — of the antenna conductors, especially the resonators

which will carry most of the current and have relatively small dimension. Second, a

large impedance will reduce the competition between the magnetic and electric fields

in coupling to the plasma. Ordinarily this would not be an issue, but since the voltage

and current waves move in the opposite directions, this becomes relevant. A cavity

height of 10 mm with resonator diameter of 2.38 mm will give an impedance of ∼100Ω

in the closed geometry.

To launch a wave at the required n||, we need to specify the propagation constant.

The phase velocity of a traveling wave on the line is

vφ =
ω

kz

=
ω L

θ mod π
. (2.26)

For the interdigital line, setting a particular kz amounts to prescribing the phase ad-

vance and spacing of the resonators. For 800 MHz and a target n|| of ∼7.8, a quarter-

wave antenna requires a rod spacing of 12 mm.

The material for the antenna body was chosen to be copper for its conductivity and

machinability. For the resonators, molybdenum is used instead of copper to minimize

sputtering from multipactor or plasma interaction. For the same reason, the front plane

of the antenna is faced by a thin sheet of molybdenum. Additionally, boron nitride

limiters are used to protect the antenna from general plasma interaction.
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Figure 2.6: The impedance matching section for port 1 of the MkIII antenna with the
frontplane removed. The characteristic impedance for the straps are approximately 35,
50, and 70 Ω. The attachment point of the feed to the large strap is 40 mm from the
shorted end. Note that the backplane is cut away to accommodate the transmission
line.

The generator and load and their associated transmission lines have a nominal

characteristic impedance of 50Ω, and as Figure 2.3 shows, the interdigital line itself

was chosen to have an impedance of over 100Ω. To prevent large reflections due to

the impedance mismatch we have a pair of impedance matching sections between the

coaxial feed line and interdigital line. A matching section consists of a set of res-

onators similar to the rods in the interdigital line, except that they are rectangular

“straps” to provide more surface area, increasing their capacitance and thus reducing

their characteristic impedance. Multiple straps are used in a similar fashion to the use

of multisection quarter-wave transformers where the impedance is stepped up geomet-

rically to increase the bandwidth [18]. The MkII antenna has a pair of straps, while the

MkIII antenna uses three to improve the match. A photograph of a MkIII matching

section is shown in Figure 2.6.
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The transition from the transmission line to the first section of the impedance trans-

former is accomplished by tapping the first or feed strap at the point on the resonator

where the voltage to current ratio of the backwards and forward waves (along the res-

onator) matches the characteristic impedance of the transmission line. In the case of

a isolated resonator, this point can be determined by matching the input impedance

equations of an open-circuit and short-circuited transmission line. A coupled resonator

— the second stage of the matching section — adds a complication. The necessity to

cut away part of the ground plane to accommodate a coaxial line with a diameter a

significant percentage of the resonator length makes the problem intractable without

using 3D modeling or trial-and-error.

One of the major advantages of the interdigital antenna concept is that it requires

only two (small) feed ports, dovetailing well with the limited port access of MST. The

feeds on either end of the antenna are coaxial transmission line. The inner conductor is

attached to the first matching strap while the outer conductor attaches to the grounded

backplane of the antenna. the MkII antenna used standard 7/8" coax feeds because

access was restricted to 11/4" diameter portholes. The MkIII antenna uses 15/8" coax

after gaining access to 2" portholes. The increase in feed size should allow an increase

of power handling above 300 kW. Since the antenna proper is under vacuum and the

transmission line is not, vacuum feedthroughs are required. Each of these are several

centimeters down the transmission line from the backplane.

A diagram of the MkIII antenna with the interdigital line, matching sections and

feeds is shown in Figure 2.7. In Figure 2.8, the antenna is shown as constructed on the

bench directly before installation. The upper three-quarters of the antenna including
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Figure 2.7: A semi-transparent drawing of
the MkIII antenna without limiter tiles.

Figure 2.8: Photograph of MkIII antenna
on the bench before installation.

the feed port #1 are behind a box port on MST and so sit under machine vacuum. Feed

port #2 does not, and so requires its own port flange to maintain vacuum integrity.

2.2 Antenna Modeling

While several packages and codes have been used to model different aspects of the an-

tenna including spice and rant3d [19], generally these have suffered from deficiencies

that prevent an adequate prediction of the overall performance of the antenna. Re-

cently, however, a pair of more sophisticated commercial software packages has shown

good agreement with experimental measurements.

CST’s Microwave StudioTM (MWS) is a general-purpose electromagnetic solver that
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uses the Finite Integration Technique (FIT), which solves the integral form of Maxwell’s

equations [20]. The package was acquired late in the design phase of the MkIII antenna,

and though it was used to configure the impedance matching sections, more full use of

the code was limited to a post-hoc verification of an already-fabricated antenna.

The solver numerically solves the equations within a finite domain and can use

multiple grid shapes, though for the present simulations, a hexahedral mesh is used.

Depending on the problem type, either transient, frequency domain, or eigenmode

solvers can be used. For the interdigital antenna, either the transient or frequency

domain solvers are appropriate. The transient solver uses central differences to calcu-

late the time derivatives and then does time stepping using the leap-frog scheme. The

frequency domain solver assumes ∂/∂t → iω and so only solves for discrete frequencies.

This solver is sufficient as our antenna is driven at a pure 800 MHz, and the antenna

is highly resonant. Since we are interested in the antenna’s bandpass characteristics,

however, and the transient solver returns the behavior over a broad frequency range

with little time penalty and allows open boundary conditions, we use the transient

solver.

To monitor the voltages and fields on the antenna a set of virtual diagnostics can

be used. The components of the electric and magnetic fields can be measured at a

specific coordinate, or the entire vector field at a specific frequency can be measured.

A voltage can be found by integrating along a prescribed path: in our case, the voltages

of interest include between neighboring resonators as well as between a resonator and

the antenna backplane. While current probes are not currently supported, a magnetic

field probe can act as a proxy at least for a current phase diagnostic. In addition to



42

Figure 2.9: Microwave Studio flat model of MkIII antenna.

these simple diagnostics, the loop diagnostics can be modeled to verify their operation.

While the fabricated version of the antenna has been modeled, for most applications,

a flattened version of the MkIII antenna is perfectly sufficient. A flat model has the

advantages of being much simpler to (virtually) instrument, characterize, and mesh.

For a given mesh density, a flat model simulation run takes approximately 4x less time.

The model used is shown in Figure 2.9.

At the time of this writing MWS could not satisfactorily handle a cold plasma

dielectric and so is limited to the vacuum solution. While this is an impediment to

modeling the antenna response and coupling in plasma, the modeling is still useful in

determining field strengths and the characteristics of the interdigital line.

COMSOL MultiphysicsTM is a 3D Finite Element solver with multiple modules

including an RF Module suitable for solving high frequency problems. Like Microwave

Studio, both time domain and frequency domain solvers are available in comsol,

though for this work, the frequency solver is used. Unlike Microwave Studio, comsol
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allows the user to define arbitrary expressions on edges, surfaces, or subdomains as

functions of x, y, and z. This capability will be used to model a cold plasma in front

of the antenna. Figure 2.10 shows the vacuum and plasma subdomains of the antenna

model that will be used.

The RF Module solves the general wave equation:

∇×
(

1

µ
∇× E

)

− k2
0

(

ǫr − j
σ

ω ǫ0

)

E = 0 (2.27)

where µ, ǫr, and σ can be scalar or tensor expressions. For our case, µ → 1, and ǫr

is set to be the standard cold plasma dielectric tensor from (1.11) in the subdomain

where we define the plasma. The conductivity is added as a damping term:

σ =
(
1 − (x/xub)

10)−1/2 − 1, (2.28)

where xub is the upper bound of the plasma subdomain. This damping is added to

prevent reflections off the boundaries of domain, which are stipulated as perfect con-

ductors.

The plasma model used will be a standard slab model, with B = ẑB cos θ+ŷB sin θ.

The density profile is a function only of the radial coordinate, x, and is defined as a

vacuum gap followed by a density step and then a linear density gradient. Formally:

ne (x) =







0 : x < ls

ne0
+ dne

dx
(x− ls) : x ≥ ls

(2.29)
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Figure 2.10: comsol model of flat MkIII antenna with vacuum subdomain in the
antenna cavity and feeds and the plasma subdomain in the aperture and above the
frontplane. The boundaries of the vacuum subdomain have the properties of copper or
molybdenum, and the boundaries of the plasma subdomain are perfectly conducting.

where ls is defined as the vacuum gap with ls = 0 at the face of the antenna. This

density profile is similar to those used with the swan code and others to model the

coupling of grill antennas [21, 22]. In this case we add the vacuum gap term ls to

connect the modeling to the Golant theory to be discussed in §3.1. The flat antenna

model from Microwave Studio is used as the comsol antenna, and similar voltage

probes between the resonators and backplane are used to measure the response of the

antenna to the plasma.

As an example, Figure 2.11 shows the electric field components at the antenna’s

midplane from a comsol simulation given a vacuum gap of 1 mm, a step of ne0
=

5 × 1010 cm−3 and a density gradient dn/dx = 1 × 1011 cm−4. Additional field plots

are shown in Appendix B.
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Figure 2.11: Electric field components on the antenna midplane from comsol sim-
ulation. A sketch of the antenna location is shown. Evident in the simulation are
the resonance cones as the wave propagates into the plasma, the interference pattern
caused by a small fraction of the power launched in the opposite direction, and the
damping of the wave along the antenna as it couples into the plasma.

2.3 RF Power Generation

A Varian-955A 50 kW CW klystron on extended loan from PPPL is used as the lower

hybrid system’s primary amplifier. Designed to operate at 27 kV and a beam current

of 8 A, the tube can be overdriven for high-power pulsed experiments to approximately

46 kV and 16 A. The klystron can be used within the frequency range of 694 to 850

MHz, but if tuned to deliver the gain required for > 250 kW output, the bandwidth is

reduced to ∼5 MHz of the chosen center frequency.
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As the site does not have the requisite HV infrastructure to power the klystron, a

pulse-forming network (PFN) was constructed to provide the necessary requirements.

A schematic of the high power PFN is shown in Figure 2.12. The PFN is designed

to deliver a square pulse of up to 50 kV to a 1000 Ω load for 30 ms. The nominal

load for the klystron is 3 kΩ, so 3 such klystrons can be pulsed with the network.

For the single klystron system, a recirculating water load doped with copper sulfate is

placed in parallel to match the PFN. The circuit is modular so that by adding paired

inductor/capacitor sections, the pulse length can be extended to 50 ms. The circuit is

charged to 100 kV using a Glassman 30 mA power supply. A thyristor stack [23] acts

as the switch to discharge the PFN. In the event of a reflection back from the load, a

diode stack protects the power supply. Diagnostics monitor the voltage and current,

and if more than ∼20 A of current are flowing to the klystron or if an arc is detected

in the klystron, a crowbar circuit is fired with a second thyristor stack.
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Figure 2.12: Schematic of pulse-forming network, power supply and klystron amplifier
for the Lower Hybrid system.
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Figure 2.13: Schematic of the rf transmitter circuit.

2.4 The Transmission System

A transmission system is required to transmit the power from the rf generator to the

antenna in MST. This system consists of the transmission line as well as its associ-

ated diagnostics and protection circuitry. The transmission system is illustrated in

Figure 2.13.

The transmission line run consists of a run of approximately 200 feet of 31/8" coaxial

transmission line up to and including the slug tuners. As alluded to in the previous sec-

tion, the final run depends on which antenna is being used. For the MkII antenna, the

31/8" line is reduced and 7/8" air-core HeliaxTM is used to match the vacuum feedthrough

size. This corrugated transmission-line has a nominal unpressurized peak power of 90

kW, though approximately 105 kW was achieved before uncontrollable arcing occurred

— most likely in this line rather than in the antenna or vacuum feedthrough. The MkIII

antenna uses 15/8" air-core Heliax rather than 7/8" for increased power handling. Be-

cause of the reduced bend radius for the larger line, additional 15/8" rigid coax plumbing
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is required for the final run beneath the machine vessel to the antenna on the lower

inboard side.

A 4-port transfer switch allows either end of the antenna to be fed power. Any

power not radiated to the plasma flows through the antenna to a dummy load. To

improve the impedance match from the 50 Ω transmission line to the antenna, two

pairs of λ/4 slug tuners — one pair for each feed direction — sit at the output ports

of the switch. An inner and outer DC break prior to the 4-port switch isolates the rf

power supply and the klystron vault from the MST machine area and vacuum vessel.

Any reflected power from the antenna is absorbed by a second dummy load by way of

a circulator, protecting the klystron.

The line is instrumented with a set of bidirectional couplers at the input and output

of the klystron to monitor the amplifier’s gain, and at the input and output of the

antenna to monitor its performance. Arc detection is implemented with a circuit

connected to the couplers at the input of the 4-port switch. If the ratio of reflected to

forward power on the line exceeds a set value the arc detector trips the PIN diode at

the output of the signal generator and shuts off power for 100µs.

2.5 Power and Phase Diagnostics

Measurements of the rf power sourced to the antenna, the power flowing through it,

and the power on the transmission lines are crucial for diagnosis of potential problems

as well as producing feedback on how well the experiment is working. Power mea-

surements on the transmission line are made using bidirectional couplers at the input
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of the klystron, the output of the klystron but before the circulator, in the machine

area cell directly before the 4-port switch leading to the antenna, and at the output

of the antenna prior to the high-power matching load. On the antenna itself power

measurements are made through 50Ω pickup loops embedded in the antenna backplane.

2.5.1 Bidirectional Couplers

The bidirectional coupler at the input of the klystron is a NardaTM coupler with ∼20dB

of attenuation. The couplers on the transmission line are slug-type JamproTM dual-

directional couplers. Attenuation and directionality for these couplers can be indepen-

dently adjusted. This type of coupler generally picks off about −60dB of the power in

the transmission line. A calibration procedure of this type of coupler can be found in

Appendix C.

2.5.2 Pickup Loops

Unlike in waveguide grills, where power and phase can be controlled and measurements

can be made for each individual waveguide to diagnose the loading on the antenna,

power flow along the traveling wave antenna is a function only of the microwave struc-

ture and plasma loading. In this case, power and phase sensors at various points along

the antenna are important for diagnosing antenna performance.

For the MkII and MkIII antennas, small pickup loops are embedded in the an-

tenna backplane underneath a resonator as shown in Figure 2.14a. The loop itself is

a length of the inner conductor (bent to shape) of semirigid coaxial cable whose outer
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conductor and dielectric has been stripped away. The conductor end is terminated

by a 50Ω surface-mount chip resistor soldered to the end of the loop housing, shown

diagrammatically in Figure 2.14b.

Figure 2.14: (a) A closeup of a couple of pickup loops embedded in the backplane of the
MkII antenna. Each is placed directly underneath a resonator along the long axis. (b)
A diagram of a pickup loop with antenna cross-section. Each loop is 50Ω terminated
for impedance matching with the power and phase electronics.

As the antenna design evolved, there was a certain evolution in the loop diagnostics

as well. The MkI antenna had no loop diagnostics. The MkII antenna had five loops

underneath the middle five rods of the antenna. The MkIII antenna possesses 20 loops,

one under each of the rods, and four offset from center underneath the straps of the

impedance-matching sections.

The loop is coupled capacitively and inductively to the resonator above it. The

amount of coupling is determined by the shape and location of the loop, the distance

from the resonator, the shape of the resonator and the shape of the cavity. Figure 2.15

shows Microwave Studio modeling results for the attenuation of the pickup loop with

respect to the height of the loop relative to the backplane. The loops as constructed
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Figure 2.15: Relative attenuation of pickup loop couplers vs. the height of loop relative
to the antenna backplane. Frequency is 800MHz. Zero height corresponds to the top
of the loop conductor flush with the backplane.

show 10-15 dB less attenuation than the modeling, but the modeling demonstrates that

a small change in loop height strongly affects the attenuation.

After the loops had been attached to antenna backplane during construction, a

calibration jig with a single resonator was used to measure the attenuation of each

loop relative to each other. Because of the coupling characteristics between resonators

on the interdigital line, an absolute power measurement for each resonator is difficult.

For investigating the power flow along the antenna, it is not strictly necessary; a

relative measurement is adequate.

A calibration jig for the loops during antenna construction was not used for the

MkII antenna. Instead a “pseudo-absolute” power calibration method is employed.

A network analyzer’s stimulus is applied to one antenna feed port with the other

properly terminated. The loop output (which is being calibrated) is attached to the

transmission port of the analyzer. In this way the attenuation of the loop can be
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measured directly. It has the advantage that a real power measurement can be made

relative to the input power of the antenna. The disadvantage is that any standing

wave on the antenna — which may or may not be present during regular operation

— is included in the calibration. ohmic losses in the structure also introduce a factor

estimated from antenna scattering parameters and removed from the measurement.

See Appendix C for more information.

2.5.3 Power and Phase Measurements

Power measurements on the MkII antenna used both HP 423B and HP8472B Schottky

crystal diode detectors [24]. These detectors offered good sensitivity, but an operating

range of only about 35 dB. Over most of this 35 dB, the output voltage is proportional

to the input power (in dBm), but to make use of the full range, some curve fitting is

required. As these are passive devices with output voltages on the order of mV, to

make full use of the digitizer, a 60 dB isolation amplifier is used to boost the signal.

The diode detectors are relatively easy to use, but have been found to be susceptible

to ambient rf noise. Additionally we want relative phase measurements for the loops

which the diodes cannot do. Double-balanced mixers can be easily configured to act as

phase detectors, but care must be taken to manage offsets. Instead of using both diodes

and phase detectors in concert, a single hardware module with software processing was

designed to get both amplitude and phase at significant cost savings.

Since directly digitizing the 800 MHz rf signal for the 40 ms of the experiment is cost

prohibitive, frequency down-conversion is employed to get a signal that can be analyzed.

Rather than being employed as a pure phase detector, ZP-2-S+ double-balanced mixers
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from Mini-Circuits are used to produce an IF at a low enough frequency to be easily

digitized. The down-conversion also preserves the phase, so the output signal can be

used for both amplitude and phase measurements.

The digitizers used to record the IF output are Joerger 16 channel TR modules with

100 kΩ input impedance. They can use internal or external clock rates up to 10MHz.

Each has 256k of memory per channel and 12 bits per sample. The voltage range is

±5 V. For the given pulse length of the experiment, a clock rate of 3MHz was chosen

for a 200kHz signal from the mixer’s IF. At 15 points per period, this gives fairly good

resolution to make amplitude and phase measurements on the few µs scale.

The ZP-2-S+ mixer requires a local oscillator (LO) power of +7 dBm, has a max-

imum rf input power of 50 mW and an IF conversion loss of ∼ 6.5 dB at 800 MHz.

The linear (in dB) region of the mixer however maxes out at ∼ −3 dBm. With the

conversion loss, the maximum usable IF output voltage is ∼ 1 mV. To make efficient

use of the resolution of the digitizer, we designed an amplifier to boost our signal into

the ±5 V range. The circuit is shown in Figure 2.16. The amplifier uses an AD826

op-amp in parallel mode to drive up to ±5 V at 50Ω load. A simple low pass filter

with 3 dB cutoff at 1.94 MHz acts to attenuate the RF, LO, and their harmonics. The

digitizer is isolated from the phase electronics by the use of a Mini-Circuits T1-6 1:1

rf transformer to prevent grounding issues. The rf signal (grounded at the machine

vacuum vessel) is isolated by a inner-outer DC block.

The system is composed of three sets of eight IF amplifiers whose local oscillators

are driven by a single signal generator at 800.2 MHz run through an RF amplifier and

then split 3×8 ways. As the amplifiers are laid out four per PCB with a shared power
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Figure 2.16: IF amplifier circuit. The output is isolated from the amplifier and it’s
power supply.

supply, there is some potential for cross-talk, but testing shows that with a neighboring

amplifier running full-out at 10V pk-pk, only ∼10mV of cross-talk is seen.

To obtain the amplitude of the rf signal, we have:

v(t) = A(t) cos (ω0 t+ θ(t)) , (2.30)

where ω0 is the modulating IF frequency and A(t) is the desired amplitude, then we

average the squared signal over the IF period,

〈v2(t)〉 =
1

T

∫ T

0

A2(t) cos2 (ω0 t+ θ(t)) dt. (2.31)

The integral is approximated by a low-pass filter created by the standard digital filter

routine from IDL with a cut-off at 10% of the Nyquist frequency (150kHz). Then as
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long as A(t) and θ(t) are slowly changing relative to ω0 then we have:

〈v2(t)〉 ≃ 1

2
A2(t) (2.32)

and finally,

A(t) ≃
√

2〈v2(t)〉. (2.33)

The resulting signal is then resampled down to 400 kHz to conserve storage space.

Figure 2.17 shows a sample of raw data with the processed signal superimposed. In

this sample an arc occurs which causes the source power to be interrupted for 100µs.

The demodulation technique produces an envelope that matches the amplitude with

excellent fidelity.

To obtain the phase of the signal, we follow Jiang [25]. Given a signal from one of

the loop couplers:

x[n] = A(n) cos [ω′
0n+ θ (n)] , n = 0, 1, 2, . . . , N − 1 (2.34)

where N is the signal length and ω′
0 = ω0∆t. Before continuing with the phase ex-

traction, the signal is bandpass-filtered around the IF frequency with a bandpass of

100 kHz, since fluctuations of interest will have frequencies less than this. To obtain a

complex signal, we take the discrete Fourier transform [26] of x[n]:

X[k] =
1

N

N−1∑

n=0

x[n] e−i2πkn/N (2.35)
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Figure 2.17: Raw signal of forward power from the power diagnostics with an arc
occurring at 17.39 ms. The processed amplitude follows the raw signal through the
arc.

We then define the sequence

X ′[k] =

{

X[k] : 0 ≤ k ≤ N

2
− 1

}

(2.36)

which effectively zeroes all the elements above the Nyquist frequency. This also makes

the inverse transform complex: x′[n] ∝ exp [iω′
0 + iθ (n)]. The same algorithm is ap-

plied to a reference signal, which in our case is the first loop coupler signal:

y[n] = B(n) cos [ω′
0n+ θr(n)] , n = 0, 1, 2, . . . , N − 1. (2.37)
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Figure 2.18: Measurement taken by the loop diagnostics in the antenna aperture. (a)
The normalized power averaged over 0.25 ms. The e-folding length of the power (LD)
along the antenna is fitted. (b) The phase along the antenna for two different shots (in
different feed directions) averaged over 0.25 ms.

Finally, we take the product of x′[n] and y′∗[n] to get

α[n] = x′[n] y′∗[n] = C(n) exp i [θ (n) − θr(n)] . (2.38)

The phase between the two signals can be found by taking the argument of (2.38):

φ (n) = θ (n) − θr(n) = tan−1 Im α[n]

Re α[n]
(2.39)

Figure 2.18a shows two examples of the power measurement along the antenna and

the fitted e-folding length of the power as it couples to the plasma. Figure 2.18b shows

the rod-to-rod phase measurement for both feed directions.
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2.6 Antenna Measurements in Air and Vacuum

The performance of the constructed antenna can be tested against theory by using a

combination of field probe measurements, the embedded power and phase diagnostics

and measurements of the antenna’s scattering parameters from microwave network

analysis.

Despite the complexity of the interdigital line itself, the antenna can be considered

a microwave device that has a set of ports that have a prescribed or induced voltage

and current. In the most general sense, the antenna is a three port network, with two

of the ports being the two coaxial feeds one serving as the input of the interdigital line

and the other serving as the output or “through” feed. The antenna aperture is the

third port [27], where the electrostatic slow wave is launched.

In air or vacuum however, an electrostatic wave cannot be launched, and so the

the antenna can be thought of as a two port device only. Any residual electromagnetic

radiation through the aperture can be treated as part of the losses in the device.

Scattering parameters are a simple way to characterize a microwave device. An

element of the scattering matrix S is defined as

Sij =
V −

i

V +
j

∣
∣
∣
∣
∣
V +

k
=0 for k 6=j

(2.40)

where Sij is the ratio of driving port j with V +
j and measuring the voltage V −

i coming

out of port i where all ports are terminated in matched loads [18]. Since power is

expressed as Pi = V 2
i /Zi, where Zi is the characteristic impedance of port i, then

as long as the impedances of the ports are the same, the scattering parameters can
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easily be expressed in terms of a ratio of powers, especially when working in units of

decibels [28] since:

10 log
P1

P2
dB = 20 log

V1

V2
dB. (2.41)

One of the initial uses for the interdigital line was for a microwave band-pass filter

[14,29]. As seen in Figure 2.4, the line only operates around a center frequency where

the phase advance is π/2 and the width of the passband (as opposed to the actual

bandwidth, the 3 dB point) corresponds to a phase advance of π around the center

point.

Figure 2.19 shows the scattering parameters as a function of frequency around the

passband of the antenna and measured at the four-port switch. Port 1 corresponds

to the inboard feed and port 2 to the outboard feed with respect to the machine

major radius. The response shows the passband expected in S21 and S12 which are

symmetric. The passband’s width is between what we expected from either the closed

or open interdigital line in Figure 2.4 which is credible for a hybrid line — one that is

closed but with an aperture. The loss of 2 dB at ∼800 MHz is taken to be the ohmic

losses in the antenna structure itself. This will be the power lost whether a wave is

launched or not.

The reflected power, S11 or S22 also shows characteristics of a filter in that outside

the passband, all input power is reflected. S11 and S22 are asymmetric which indicates

that most of the reflections in the antenna are occurring at the first impedance matching

section that is encountered by the input wave. To avoid throwing away power that could

be radiated to the plasma, the reflected power should be minimized. Unfortunately,
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Figure 2.19: Scattering parameters of the MkIII antenna in vacuum. The solid line is
the scattering parameter without external tuning. The red dotted line indicates the
change in Sxy with a set of quarter-wave slug tuners on the port feeds. S21 and S12 are
symmetric.
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port 1 shows that almost 10% of the input power at 800 MHz is reflected despite the

improved impedance matching section. Port 2 is much better at less than 1% reflected

power, but still much poorer than the design goal of ∼ −40 dB.

It is speculated that during the final fabrication step when the frontplane was

soldered to the antenna, the antenna cavity was slightly twisted with the resulting

effect to the reflection. To compensate for this, a pair of quarter-wave slugs are used to

externally tune the antenna. As a result, S11 approaches −20 dB at 800 MHz, which,

while not ideal, is sufficiently good for experiments.

While this section is primarily about vacuum and air measurements, the reflection

characteristics of the antenna are important enough that a result in plasma should

be reviewed. Figure 2.20 shows the probability distribution of an ensemble of S11

measurements taken for over 1600 shots. These comprise a variety of plasma conditions

for plasmas between 380 and 430 kA. While the variability is significant, it is clear the

S11 is consistently low with the peak of the distribution at −15.1 dB for port 1 and

−18.2 dB for port 2. The vast majority of the data sits below 5% reflection.

The attenuation of S21 and S12 was attributed to ohmic losses with the assertion

that no wave is launched by the wave in air or vacuum. To test this assertion, the

scattering parameters of five-element test antenna are measured both with an aperture

and again with a copper plate affixed to the frontplane, covering the aperture. The

results are shown in Figure 2.21. While quantitatively different in that the resonant

peaks are at different locations in S11, the magnitude of S21 at the center frequency is

very similar. This indicates that indeed no electromagnetic wave of significant power

is being launched by the antenna.
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Figure 2.20: The probability distribution of S11 over a wide range of plasma conditions
for both ports. The peak of port 1 is −15.1 dB. The peak of port 2 is −18.2 dB.

While the passband of the antenna is more or less in the correct location, and

the reflection coefficient indicates that power can be delivered to the antenna without

significant loss, field probe measurements can determine if a traveling wave with the

correct propagation constant is produced by the antenna. Before the MkIII antenna

was installed, a set of measurements were done on the bench to determine the n‖

spectrum (in air).

The index of diffraction n = kc/ω in vacuum (or to good approximation in air) can

be separated into components:

n2 = n2
x + n2

y + n2
z = 1 (2.42)

where nz ≃ 7.8 by the rod spacing and ny = 1 because of the nature of the TEM

mode along the resonator. Then to satisfy (2.42) we must have the radial component

nx ≃ 7.8 i. Plugging this result into the wave eikonal gives an exponentially decaying
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Figure 2.21: Scattering parameters of a 5-rod test antenna for an open aperture verses
the aperture closed by copper plate. The solid lines are the scattering parameters with
an open aperture. The dotted lines are S11 and S21 with no aperture.

wave in the radial direction corresponding to an evanescent wave. Despite the non-

propagation of the slow wave in air, a measurement of nz can be made if close enough

to the aperture.

An electrostatic probe was mounted perpendicular to the antenna face on a movable

jig that slides along the face of the antenna. For the measurements presented, the probe

tip was ∼5.4 mm above the antenna face. This orientation measures |Ex| rather than

the more proper |Ez|; however, the probe’s geometry is such that mounting parallel to

the antenna face would reduce the resolution and modeling shows that Ez differs from

Ex by a constant phase of π/2. A second probe was kept immobile and these probes
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Figure 2.22: Voltage and phase measurements for |Ex| above the antenna face and the
resulting n‖ spectrum for each port feed.

were attached to a vector voltmeter for a voltage and relative phase measurement.

The voltage and relative phase were measured along the antenna centerline at 1 mm

intervals.

Figure 2.22 shows the data as well as the spectra. The ripple in the magnitude is a

result of the fact that each wavelength is composed of a quartet of resonators, and close

to the antenna, the individual resonators become more resolved. The relative phasing

point-to-point is not constant, but slowly varying, most likely due a small standing

wave on the antenna.
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The lower panels in the Figure for each of the port feeds shows the n‖ spectrum in

air. The directivity in each launch direction is good with very little power launched in

the non-desired direction. The width of the main lobe is fairly broad, but is unavoidable

with only about 4 wavelengths over the length of the aperture. The peak locations are

n‖ = −6.92 and n‖ = 6.80 for ports 1 and 2 respectively and correspond to a mean

phase advance of ∼ 79◦. These are quite a bit lower than than the design value of

n‖ = ±7.81, and will allow the wave to propagate slightly deeper into the plasma

before being absorbed.

To explore this discrepancy, we turn to Microwave Studio for modeling of the three

dimensional problem. It is possible that the curved nature of the interdigital line is

causing the downshift in n‖, but initially we use the flat antenna model of Figure 2.9

and replicate the phase advance vs. frequency diagram of Figure 2.4.

Figure 2.23a shows the the phase dependence on frequency for the antenna with

the constructed rod length of 92.1 mm or 0.246λ. The center frequency where the

voltage and current waves both have a phase advance of π/2 is 785 MHz, 15 MHz

lower than expected. To check the model, the diagnostic loops on the physical antenna

are hooked up to a network analyzer and the relative phase advance of the voltage on

a resonator is measured over a frequency sweep. The dotted line of Figure 2.23a shows

the resulting curve which follows the modeled curve quite well, giving a slightly higher

center frequency of 788 MHz.

Figure 2.23b shows the same measurement except that the aperture has been re-

moved from the model giving a “closed” interdigital geometry. The width of the pass-

band is much narrower as is predicted from the theory, and the center frequency is 798
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Figure 2.23: Phase advance of flat antenna model as a function of frequency in the
passband. Solid lines are the phase advance of the voltage between each resonator
and grounded backplane. The dashed lines are the phase advance of the current on
each resonator. (a) Resonators at the designed 92.1 mm in length. The dotted line is
the phase advance of the power in vacuum as measured by the loop diagnostics in the
backplane of the constructed antenna. (b) Same as in (a) but with no aperture. (c)
Resonators of different lengths with repect to the vacuum wavelength.

MHz, much closer to the design value of 800 MHz. It is clear from this result that

presence of an aperture shifts the frequency down much farther than the 14 MHz that

was expected by the capacitive contribution from the side rail.

Figure 2.23c shows a modeling run with resonator lengths of 0.241λ, 0.243λ, and

0.25λ (90.37 mm, 91.13 mm, 93.73 mm) and an open aperture. For 0.243λ, the center

frequency has been shifted back up to ∼800 MHz as desired. From this, the modeling

indicates that the presence of the aperture can be compensated for by altering the

length of the resonators. For the present antenna, however, it is impossible to change

the resonator length without essentially rebuilding the antenna. In this case, the pump

frequency can be lowered to 788 MHz to give a phase advance of 0.25λ, and an n‖ = 8.0.
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This corresponds to a 1.5% change in the frequency, and genray modeling shows no

significant change in the location of deposited power for 800 MHz and an n‖ = 7.8.

The frequency shift will require retuning the klystron as its bandwidth is quite narrow,

but this is much less onerous than changing the resonator lengths.

2.7 Radiated Power

To estimate the power that will be radiated to the plasma, we first need to know the

power delivered to the antenna as well as the ohmic losses in the antenna. The inital

losses occur in the transmission line. The 31/8" transmission line from the klystron

amplifier to the antenna is not lossless, and for our run of ∼60 m, there is about 0.6

dB of loss, or about 13% of the output power of the klystron.

Ideally all the power delivered to the antenna is radiated to the plasma. However,

imperfect matching from the transmission line to the antenna and from the antenna

to the plasma will either result in reflected power, ohmic losses to the structure, or

since the the interdigital-line antenna is essentially a three port device, the power may

pass through the antenna into a matched load (defined as through power). How much

depends on the plasma parameters as reflected by the power e-folding length, but in

general — except in the most loaded conditions — this will be on the order of several

percent of the input power.

Refined construction techniques and external tuning have improved the structural

impedance matching to the point where reflected power is on the order of one percent,

and more involved modeling of the impedance matching sections may finally remove
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the need for external tuning with a next generation antenna. Plasma impedance mis-

matching as a contribution to the reflection coefficient has been shown to be small in

almost all plasma conditions.

The antenna is not a perfect conductor, so resistive losses are important, and in fact

contribute to the most loss in the overall power budget. As shown in Figure 2.19, even

with external tuning, S21 and S12 at 800 MHz in vacuum are measured to be −1.81

dB and −1.91 dB respectively for the MkIII antenna. Splitting the difference, only

∼ 65% of the input (forward) power makes it through the antenna. The remainder

is lost ohmically through heating the structure. This assumes that the antenna does

not radiate into vacuum, and is not precisely true as we will see in §5.2.3, though

experiments with the test antenna (see Figure 2.21) indicate that we can safely make

this approximation.

With the input power and ohmic losses in the antenna, we can now estimate the

radiated power. During plasma operation when the antenna is coupling well (and

therefore radiating), any power received at the output feed (through power) is certainly

not radiated. Additionally, any power reflected back to the input feed is also not

radiated. In the reflected power case, we must assume that as the reflected power

travels back toward the input feed, a percentage of its power will too be lost to the

structure. The most conservative estimate would be a reflection off the far end of

the antenna and then ∼1.85 dB loss as it travels back down the antenna. Practically

however, we may have multiple internal reflections anywhere on the structure, so the

loss may not be so significant.



70

Adding these losses we have for the radiated power:

Prad = 0.65Pforw − 1

0.65
Prefl − Pthru (2.43)

This estimate may also be conservative because if we assume that the ohmic loss in

the structure is more or less constant per unit length, then if the power is well coupled,

significant power will be radiated before it is lost to the structure.

For the highest power shot to date (Pforw ≃ 220 kW), the radiated power was

approximately 100 kW, a consequence of almost 40 kW of through power. The amount

of through power can be decreased by increasing the coupling (increasing the edge

density), but even for an ideal case, the maximum radiated power would be 140 kW.

To achieve the estimate of 2.1 MW for improved confinement, we would require 15

antennas: an impractical number. Increasing the maxmimum power input will reduce

this number, but without a corresponding increase in the current drive efficiency, it

may still be infeasible to implement an LHCD system on MST.

2.8 Summary

The interdigital-line antenna is in many ways ideally suited for MST. The thick con-

ducting wall prevents the use of the standard grill antenna, and is conducive to the

small feedthrough cross-section of the interdigital antenna. The naturally low profile of

the interdigital circuit is advantageous since the plasma is close-fitting to the vacuum

vessel. On the other hand, multiple antennas are expected to be needed for profile

modification.
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A power supply has been constructed and the Varian 955A klystron has been suc-

cessfully overdriven to 46 kV and 16 A to provide > 250 kW of output power. The

MkIII antenna has successfully handled 220 kW of input power in both feed directions

with . 4% reflection. A power accounting has been made, and we have determined

that more than 56% of the generated power is available to the plasma, which is on

par with other high power (higher frequency) experiments [30]. With this degree of

loss, many antennas will be required to achieve a power level necessary for improved

confinement operation, substantially increasing the size of the LH system.

Power and phase diagnostics embedded in the antenna backplane have shown in

vacuum and bench measurements that the constructed antenna can produce a n‖ spec-

trum with good directivity. The peak of the spectrum is lower than the design value

but still high enough to be accessible to the target absorption region. Theory and

modeling show that lowering the pump frequency by 1-2% can compensate for this if

needed without altering the geometry of the antenna.
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Chapter 3

Coupling and Antenna Performance

in Plasma

3.1 Coupling Theory

While wave propagation and absorption are best handled with ray-tracing and Fokker-

Planck codes such as GENRAY and CQL3D [1], the coupling of the wave from the

antenna to the plasma edge can, to first approximation, be handled analytically. For

this we follow Golant [2] given its applicability to traveling wave antennas.

For this analysis, we assume a slab-type geometry as shown in Figure 3.1. The

domain is divided into three regions: the slow wave structure, a vacuum region of

width ls, and the plasma. The plasma is modeled as a slab where the density varies

linearly in the radial direction x.
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Figure 3.1: Sketch of antenna/vacuum/plasma geometry in the Golant coupling
scheme. ls is the width of the vacuum gap. lc is the width of the opaque region.
u{s,c} ≡ ω l{s,c}/c are normalized lengths.

3.1.1 Wave Solutions in the Plasma Edge

At the extreme edge of the plasma, we assume that ω2
pe ≪ Ω2

ce. The limitations of this

assumption will be discussed later, but for any plasma with a vacuum region between

the antenna and plasma, there will be some region (however small) which satisfies this

condition. With this approximation, we have ǫ⊥ ≃ 1 and ǫ2xy ≪ 1. Then our solutions

to the dispersion relation (1.15) become

n2
⊥1 = −ǫ||

(
n2

z − 1
)
, n2

⊥2 = −
(
n2

z − 1
)
. (3.1)

At the plasma edge, the geometric-optics approximation is violated since the re-
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fractive index is small and changes rapidly, so we use the wave equation:

∇×∇×E − ω2

c2
ǫ · E = 0 (3.2)

where ǫ is the dielectric tensor from (1.11) and by Faraday’s law,

H = i
c

ω
∇× E (3.3)

is the corresponding magnetic field. For our slab geometry with the plasma varying

along x, our wave incident to the plasma can be written as:

E (x, z) = E (x) einz
ω
c

z. (3.4)

Plugging (3.4) into (3.2), we can derive a set of differential equations for the field

components,

E ′′
z − ǫ||

(
n2

z − 1
)
Ez − nzǫxyE

′
y = 0 (3.5)

E ′′
y −

[
(
n2

z − 1
)
−

ǫ2xy

n2
z − 1

]

Ey +
nzǫxy

n2
z − 1

E ′
z = 0 (3.6)

Ex =
iǫxy

n2
z − 1

Ey −
inz

n2
z − 1

E ′
z (3.7)

where we have made the substitution u = ωx/c and derivatives are also respect to u.

Writing (3.5) and (3.6) as

E ′′
z + n2

⊥1Ez + aE ′
y = 0, E ′′

y + n2
⊥2Ey + bE ′

z = 0, (3.8)
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we have a pair of coupled differential equations. If we assume a solution like E{x,y} =

C{x,y}e
R

λ du, with λ slowing varying then we can use Cramer’s Rule to solve for non-

trivial solutions. The solutions show that we can neglect the coupled terms if ab ≪

n2
⊥1 + n2

⊥2 which is the case if we use either ǫxy = 0, true in the vacuum gap between

the plasma and antenna, or ǫxy ≪ 1, true at the plasma edge. In either of these cases,

we can write (3.5) and (3.6) with (3.1) as

E ′′
z + n2

⊥1Ez = 0, n2
⊥1 = −ǫ||

(
n2

z − 1
)

(3.9)

E ′′
y + n2

⊥2Ey = 0, n2
⊥2 = −

(
n2

z − 1
)
. (3.10)

In vacuum this pair of waves corresponds to E (Ez 6= 0, Hz = 0) and H (Ez =

0, Hz 6= 0) waves respectively. In the plasma, they are the slow and fast waves as seen

from (3.1). Since the fast wave is evanescent far into the plasma, we concentrate on

the E wave.

The procedure will be to match the solution of (3.9) in the vacuum region — with

ǫ|| = 1 — to its solution at the plasma edge where

ǫ|| ≃ 1 −
ω2

pe

ω2
= 1 − x

lc
≡ 1 − u

uc
(3.11)

where uc ≡ ω lc/c and lc = [1/n dn/dx]−1
ω=ωpe

is the density gradient scale length. For

our simple linear density model lc corresponds to the width of the small evanescent

region that the wave must tunnel through to be accessible to the plasma interior.
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Using (3.11) in (3.9), we have

E ′′
z + γ (u− uc)Ez = 0 (3.12)

where γ = (n2
z − 1) /uc. The solutions to (3.12) are the Airy functions:

Ez (u) = A Ai
(

(−1)1/3 γ1/3 (u− uc)
)

+B Bi
(

(−1)1/3 γ1/3 (u− uc)
)

. (3.13)

These two solutions have opposite phase and group velocities. We choose the one that

corresponds to a wave propagating into the plasma — Ai (u).

3.1.2 Impedance Matching

To match solutions in the three regions, we use the wave impedance — the ratio of

transverse components Ez and Hy — at each interface:

Z = i
Ez

Hy
= −

(
n2

z − 1
) Ez

E ′
z

(3.14)

where i has been added to the definition of Z to simplify the math. ǫ|| > 0 in this

model fixes the scale length of the density gradient. For the pump frequency of 800

MHz, ǫ|| = 0 corresponds to a density of 7.94 × 109 cm−3. For a non-diverted machine

like MST with no well-defined separatrix, we may only find densities of this magnitude

behind a limiter. lc will then be on the order of fractions of a millimeter, and so

uc ≪ 1. With this, we expand Ai and Ai′ about uc = 0 using MathematicaTM and get
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the complex impedance at the vacuum/plasma interface:

Zp ≃
Γ

(
1
3

)

31/3Γ
(

2
3

) (−1)2/3 (
n2

z − 1
)2/3

u1/3
c . (3.15)

In the vacuum region our solution to (3.9) is not propagating and reduces to

Ez (u) = C e
√

n2
z−1u +D e−

√
n2

z−1u (3.16)

where C and D are constants. The wave impedance in this region is

Z = i
Ez

Hy

=
√

n2
z − 1

De−2
√

n2
z−1u + C

De−2
√

n2
z−1u − C

. (3.17)

To solve for C and D, we use the boundary conditions of the vacuum gap. At the

antenna/vacuum boundary u = −us (where us ≡ ω ls/c), and we have the impedance

Z = Zs with Zs a property of the antenna structure. At the vacuum/plasma boundary,

u = 0, we have Z = Zp. With these boundary conditions for (3.17) we obtain the

transcendental equation:

w = Zsus
1 + e−2w

1 − e−2w

[

1 − Zp
4use

−2w

w (1 − e−4w)

]

, w ≡
√

n2
z − 1 us (3.18)

for terms linear in Zp. (See Appendix D.1 for the derivation.) To solve this equation for

the parameter we care about, the normalized propagation constant nz of the antenna,

we apply perturbation theory.
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ls

plasma as metal

Figure 3.2: MWS flat model of the MkIII antenna with a perfectly conducting metal
at distance ls in front of the antenna aperture.

3.1.3 Exact Solution: nz0

Since (3.18) has terms linear in Zp, we expand around Zp = 0, which corresponds to

the plasma as a perfect conductor. Then we let our perturbation Zp 6= 0 be a correction

to the index of refraction:

nz = nz0
+ nz1

, (3.19)

where nz1
is the result of the perturbation. To find the exact solution, nz0

, we use Mi-

crowave Studio to simulate the response of an antenna model to a perfectly conducting

metal placed in front of the aperture as shown in Figure 3.2.

We expect that nz0
may change as a function of the conductor’s distance from

the antenna aperture, ls, so multiple modeling runs are required. The launched wave

spectrum of the model for a particular ls is gotten from synthetic voltage and field

diagnostics on the resonators in the same manner as in §2.1. For a realistic antenna
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Figure 3.3: Modeled dependence of nz0
as a function of ls. The fit is an exponential

with offset.

with aperture, the traveling wave does not have a single propagation constant, so the

major spectral peak is fit and its maximum is used for the value of nz0
.

Figure 3.3 shows the results of the modeling with a metal wall in front of the

aperture. As the wall moves closer to the aperture the propagation constant increases

until the limit of no aperture. Moving the wall away from the antenna approaches the

vacuum behavior within 10 mm. The behavior can be modeled by a simple exponential

decay with offset:

nz0
(ls) = e−(ls+ls0)/κ0 + nz∞ (3.20)

where α0 is the exact solution’s scale parameter and nz∞ is the value of the refractive

index for vacuum or when the metal is at infinity. Doing a fit of the simulations, we
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find ls0 ≃ 0.049 cm, κ0 ≃ 0.16 cm, and nz∞ ≃ 6.67.

This modeling can be checked against the physical antenna by reference to nz∞,

since we have for the MkIII antenna both bench measurements (in air) and vacuum

measurements of n‖ after the antenna was installed. The measurements in §2.6 gave

nz∞ ≃ −6.92 and nz∞ ≃ 6.80 for ports 1 and 2 respectively. These are both larger than

value for the flat antenna model, and furthermore have different values depending on

the port. This must be accounted for later when we compare the spectral response of

the antenna in plasma against theory, but for now we will simply note the disparity.

3.1.4 Perturbed Solution: nz1

Given the exact solution, nz0
, we let w = w0 + w1 where w1 = w1 (nz1

) and apply the

perturbation to (3.18). After some algebra and inverting w1 such that nz1
= nz1

(w1),

we have the first order term:

nz1
= −4

(
n2

z0
− 1

)1/2

nz0

Zp F (w0), (3.21)

where F is

F (w0) =
e−2w0

(1 − e−4w0)(1 − ν) + 4w0 e−2w0
, w0 =

√

n2
z0
− 1 us, ν =

n2
z0
− 1

n2
z0

1

Zs

∂Zs

∂nz

.

See Appendix D.2 for the details. If our antenna is constructed so that the spatial

period is smaller than a wavelength, which for our quarter-wave interdigital structure

is approximately true, then the antenna impedance Zs will slowly vary spatially as
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well. Then ν ∼ ∂Zs/∂nz ≈ 0, and we can calculate nz1
without knowing Zs.

Plugging (3.15) into (3.21), we have the perturbation:

nz1
≃ −4 (1.19)

(
1√
3
− i

) (
n2

z0
− 1

)7/6

nz0

(
ω lc
c

)1/3

F. (3.22)

The real part of nz1 is a correction to (the real) nz0
so the presence of plasma will shift

the launch spectrum. Taking the imaginary part α ≡ Im (nz1) gives us the decaying

part of E:

|E| ∼ e−(αω/c)z −→ lD ≡ c

ωα
(3.23)

where we define lD as the damping length of the field of the antenna. This parameter

will be used as a metric for the tightness of the coupling of the antenna field to the

plasma.

Up until now we have assumed a guide magnetic field parallel to the launched wave.

If instead of (3.4), we add a pitch to the field lines with respect to the antenna axis,

then our test solution is:

E (x, y, z) = E (x) ei ω
c
(nyy+nzz), (3.24)

where the pitch angle is φ = arctan (ny/nz0
). We will subsequently show that for pitch

angles available to MST, the modification to nz1 is insignificant. Therefore we simply
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state Golant’s result:

α = Im(nz1
) = 4(1.19)

(
n2

z0
− 1

)2/3 (
n2

z0
+ n2

y − 1
)3/2

nz0

(
n2

z0
+ 2n2

y − 1
)

(
ω lc
c

)1/3

G (w0) (3.25)

with

G (w0) ≃
e−2w0

(1 − e−4w0) + 4
n2

z0
−1

n2
z0

+2n2
y−1

w0 e−2w0

, w0 =
√

n2
z0

+ n2
y − 1 us

where we have already used the same approximation that ∂Zs/∂nz = 0 from above.

3.1.5 Damping Length and Launch Spectrum

The damping length defined by (3.23) is a measure of the decay of the electric field

strength as the wave travels down the antenna structure. This is equivalent to a

transfer of power from the fields on the structure to the fields in the plasma. As

power is transferred, there is an exponential falloff in the power along the antenna.

The steepness of the falloff depends on the degree of coupling to the plasma, and the

e-folding length of this decay we define as the power damping length LD. Since it is

the power rather than the field that is measured by the loop diagnostics embedded in

the back of the antenna, we will use LD rather than lD as our figure of merit.

The exponential decay of the power along the antenna will distort the launch spec-

trum; however, what is important for the correction to the n|| spectrum is decay of

the electric field, rather than the power. Since power is proportional to E2, the power
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damping length is one-half the field damping length. Using (3.23), we have

P ∼ |E|2 = E2
0 exp

(

−2
ω α

c
z
)

= E2
0 exp

(

− z

lD/2

)

∼ P0 exp

(

− z

LD

)

. (3.26)

To find the effect of damping, we calculate the n‖ spectrum by taking the discrete

Fourier transform of

E (z) = exp
(
ik‖z

)
exp

(

−z + d/2

lD

)

Θ (d/2 − z) Θ (d/2 + z) (3.27)

where d is the length of the antenna aperture, and the pair of Heaviside functions Θ

serve as the aperture function. One should note that because the DTFT is periodic, we

need to use the entire machine cross-section 2πa as the z domain. Both the aperture

and the damping tend to reduce the spatial extent of the wave and thus broaden the

peak of the spectrum. Figure 3.4 shows the calculated n|| spectrum for various power

damping lengths. The aperture length is 17.8 cm, so until the damping length becomes

. 30% of the aperture length, the launching spectrum does not become much more

distorted than for the spectrum with just an aperture.

The damping length is an indirect measure of the amount of power that is radiated

to the plasma. If the damping length is short relative to the aperture, then most of

the power will be radiated, but the launched spectrum will be broader than we want.

On the other hand, if the damping length is on the order of the aperture length, then

the spectrum will not significantly broaden, but we would lose over one third of the

input power to the dummy load at the through port rather than to the plasma. In this

respect, we have a “Goldilocks” situation: for maximum efficiency, we must have the
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Figure 3.4: Normalized launched power spectrum for different values of the power
damping length LD.

damping length neither too short nor too long.

Figure 3.5a shows the variation of the damping length LD for different values of ls

and dn/dx after plugging in the fitted nz0
from (3.20) into (3.21). As may be expected,

the damping length increases as the width of the vacuum gap increases, indicating

weaker coupling. The damping length is also proportional to the density gradient.

This behavior is counterintuitive as one would expect very diffuse plasmas to couple

more weakly than denser plasmas. However, if the amount of coupling is proportional

to the number of particles we have, decreasing dn/dx increases the number density

near the antenna. The shaded region in the plot shows the experimental domain with

respect to the parameters that will be presented in the following sections.

Figure 3.5b shows the damping length as a function of pitch angle and vacuum gap
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Figure 3.5: (a) Damping length as a function of vacuum gap and edge density gradi-
ent. The experimental constraints of the damping length are shown by the shaded
region. (b) Damping length as a function of vacuum gap and pitch angle with
dn/dx = 1 × 1012 cm−4. Note that the damping length here is the power damp-
ing length as opposed to the field damping length. |∆nz∞| ≤ 1 does not change the
solution curves significantly.

with dn/dx = 1012 cm−4. The change in damping for angles less than about π/4 is quite

small, although as φ → π/2, the damping length (for an infinite antenna) approaches

infinity. For almost all plasma configurations, the pitch angle is never greater than

∼ π/6, in which case we should be able to neglect the correction for pitch angle.

Using comsol, we can simulate the antenna response to a prescribed plasma and

then compare that to the analytical model. A slab model is used and is described in

§2.2. The magnetic field is chosen to be 1500 G and parallel to the long axis of the

antenna. The density profile parameters are ls, a step ne0
and the gradient dn/dx.

Eight different values of ls are used: -0.08128, 0, 0.1, 0.3, 0.5, 0.7, 1.1, and 1.5 cm,

where ls = 0 has been defined as before as the plasma-facing surface of the antenna
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frontplane. Figure 3.6a shows the results of the numerical model with different density

gradients and the density step ne0
set to zero so that it may be easily compared to the

Golant formulation. Unlike the Golant model, however, the vacuum damping length

due to ohmic loss of the antenna is accounted for, so dn/dx = 0 has a finite damping

length. Golant fails in this limit (lc → ∞) because of the previous assumption that lc

is small.

For a gradient of dn/dx = 1 × 1010 cm−4, very near the limit Golant’s applicabil-

ity, the comsol result shows the damping length very high, the opposite trend of the

Golant model. As the gradient increases the numerical model recovers the same trend

as the analytic model: the damping length increases as the gradient increases. This

loading behavior is also seen in numerical modeling of waveguide grills where the re-

flection coefficient is high at a low density [gradient] but then decreases to a minimum

where loading is best before increasing again as the density [gradient] is increased fur-

ther [3]. Figure 3.6b shows a similar set of modeling runs, but with ne0
= 5×1010 cm−3.

In this case, the density starts far enough above the evanescent region that the antenna

loading is high even at dn/dx = 0, and so the proportionality of damping to dn/dx is

the same as the analytic model.

For either of the numerical cases, the resulting damping length is much larger

than the corresponding analytical results for a given gradient. For the Golant model,

gradients of & 1012 cm−4 must be posited to bring the damping length up into the

experimental domain, while for the simulation, gradients much above that value will

pull the damping length out of the experimental domain.

A short aside must be made here to discuss reasonable edge density gradients.
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Figure 3.6: (a) Damping length as a function of vacuum gap and edge density gradient
from comsol modeling. ne0

= 0 cm−3. The experimental constraints of the damping
length are shown by the shaded region. (b) Same as (a) with ne0

= 5 × 1010 cm−3.

Probe measurements taken in 200 kA plasmas on the upper inboard side show density

gradients of 2.8×1011 cm−4 for plasmas with line-average densities of 1×1013 cm−3 [4].

Interferometry at 400 kA shows slightly higher gradients, on the order of 4 − 9 ×

1011 cm−4 depending on the location in the sawtooth cycle, but the outermost chord

is at r/a∼ 0.61 making the density inversion at the edge fairly unreliable. Using the

relation

lc =

[
1

ne

dne

dx

]−1

ǫ‖=0

(3.28)

discussed in §3.1.1, a gradient of 4 × 1011 cm−4 corresponds to lc ≃ 2 × 10−2 cm.

The analytic model then requires gradients too large for reasonable experimental

values while the range of gradients in the numerical simulation are reasonable and

reproduce damping lengths that are within the experimental domain. One could bring



91

the analytic model back into line with the experimental damping length by requiring

the vacuum gap, ls, be on the order of centimeters rather than millimeters, but this

conflicts with other experimental data that has density quite near the wall [4].

While the imaginary part of nz1
predicts the loading on the antenna, the real part

predicts the correction to the launch spectrum. Assuming ∂Zs/∂nz ≈ 0 as in the

derivation, F (w0) in (3.21) can be well approximated by

F (ls) ≃
1

8
√
n2

z0
− 1

c

ω

1

ls
, (3.29)

where we have expanded w0. With (3.29), we can more easily pick out the dependence

of ls on nz1
. The correction to the propagating (down the antenna) part of nz with the

real part of nz1
is:

Re (nz) = nz0
+ Re (nz1

)

≃ nz0
− 1.19

2
√

3

(
n2

z0
− 1

)2/3

nz0

(ω

c

)−2/3 l
1/3
c

ls
, (3.30)

where nz0
is again a function of ls and fitting parameters. Unlike (3.27) where reducing

the damping length narrows the extent of the field in configuration space which causes

the main lobe of the launch spectrum to broaden, this correction shifts the location of

the main lobe by the value of the second term in (3.30).

Figure 3.7a shows the variation of Re (nz) with respect to ls for different values

of dn/dx. An offset, ∆nz∞ , is added to nz0
to account for physical measurements as

outlined in §3.1.3. Figure 3.7b shows the peak n‖ of the spectrum for a set of comsol
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Figure 3.7: The propagating part of nz as a function of ls for different values of dn/dx.
The value of nz∞ from (3.20) has been shifted by an offset to reflect measured vacuum
spectra. The experimental constraints of the measured spectrum are shown by the
shaded region. (a) The analytic solution. (b) Numerical solution from comsol.

runs. The vacuum n‖ as predicted by comsol (with dn/dx = 0 and ne0
= 0) is ∼6.26,

lower still than Microwave Studio’s underestimate of the spectral peak. It was found

that lower mesh densities in the comsol model would produce a downward-shifted

peak. Because the impedance of the cavity is critical in determining the propagation

characteristics, this is not altogether surprising, and increasing the mesh density would

upshift the spectral peak to the apparent limit of 6.26 where improving the mesh

further had no effect. The cause of the final peak underestimate is unresolved. An

offset is again used to bring nz∞ to the experimentally measured value.

Once again the analytic model requires large density gradients to span the ex-

perimental domain while the numerical results are within the experimental domain for

reasonable values of the edge density gradient. A closer comparison to the experimental
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data will be done in §3.2.3. Notwithstanding the magnitude issue with the analytical

model, the functional dependence of the peak n‖ with respect to dn/dx is of the opposite

sense in the Golant model as opposed to the numerical model. The existing numerical

dataset sheds little light on this discrepancy except that at dn/dx = 1 × 1010 cm−4,

the spectral peak increases slightly relative to the vacuum solution: the same sense as

the analytical model.

3.1.6 Coupling to a Density Step Function

The magnitudes of the density gradients (1012 − 1015; cm−4) required for the Golant

model to be consistent with experiments correspond to lc < 10−2 cm. At these scale

lengths, the density rises quickly and the antenna essentially faces a conductive wall

rather than a diffuse plasma. In this case it may be instructive to model a density step,

ne0
, rather than a density gradient, with the height of the step serving as a proxy for

the magnitude of the gradient.

The density step should be larger than the critical density, ne|ǫ‖=0 so that the wave

actually propagates. In this case we can no longer assume that ǫ⊥ ≃ 1 or ǫ2xy ≪ 1 as

in §3.1.1 because our density will be such that ωpe > ω. Using the wave equation (3.2)

and (3.4), we have for our differential equations:

E ′′
z − ǫ||

ǫ⊥

(
n2

z − ǫ⊥
)
Ez − nz

ǫxy

ǫ⊥
E ′

y = 0 (3.31)

E ′′
y −

[
(
n2

z − ǫ⊥
)
−

ǫ2xy

n2
z − ǫ⊥

]

Ey +
nzǫxy

n2
z − ǫ⊥

E ′
z = 0. (3.32)
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Cramer’s rule is again used to eliminate the coupled terms. For MST parameters of

1500 G, 800 MHz, and nz = 7, the coupling can be neglected for densities . 2 ×

1012 cm−3, far above the cutoff density.

The perpendicular index of refraction for the slow wave is

n2
⊥ = − ǫ||

ǫ⊥

(
n2

z − ǫ⊥
)

(3.33)

which is a constant in the plasma because we assume a constant density and magnetic

field and positive since ǫ|| < 0 for ωpe > ω. Our differential equation for the slow wave

is then

E ′′
z + n2

⊥Ez = 0 (3.34)

which has the standard solution:

Ez (u) = Aein⊥u +Be−in⊥u. (3.35)

Because Be−in⊥u has its phase velocity in the −u direction and group velocity in the

+u direction, we set A = 0 and Ez = Be−in⊥u.

The vacuum solutions and matching conditions are identical to Golant’s treatment

with a density gradient. Only the plasma’s surface impedance has changed. For a

density step the impedance is

Zp = i
Ez

Hy
= −n

2
z − ǫ⊥
ǫ⊥

Ez

E ′
z

= −in
2
z − ǫ⊥
n⊥ǫ⊥

(3.36)
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where we have applied Faraday’s law to Hy. Expanding the n⊥ term, the impedance is

Zp = −i
√

n2
z − ǫ⊥√
ǫ⊥

(
ω2

pe

ω2
− 1

)−1/2

(3.37)

Applying Zp to (3.21), we have the correction to nz0
:

nz1
≃ 4 i

(
n2

z0
− 1

)1/2

nz0

√
n2

z0
− ǫ⊥√
ǫ⊥

(
ω2

pe

ω2
− 1

)−1/2

F (ls) (3.38)

where F is from §3.1.4. The equation (3.38) is interesting in that it is purely imaginary:

unlike the gradient case, there is no real correction to nz0
and so the peak of the launch

spectrum is fixed by the width of the vacuum gap only.

Figure 3.8a shows the damping length as a function of ls and ne0
and Figure 3.8b

shows some corresponding numerical results. The results mirror the analytical results

closely as would be expected if a large density gradient is essentially a step function.

The comsol results’ behavior are also similar to those shown in Figure 3.6a. A more

realistic model may be one similar to the density profile given by (2.29) and used by

the comsol numerical model, but the development of such an model analytically is

beyond the scope of this work.
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Figure 3.8: (a) Damping length as a function of vacuum gap and density step sizes.
The experimental constraints of the damping length are shown by the shaded region.
(b) comsol modeling of the same parameters. The density gradient dne/dx is set to
zero.

3.2 Experimental Antenna-Plasma Coupling

3.2.1 Coupling and Plasma Parameters

From the §3.1, it is clear — and unsurprising — that the magnitude of the terms in the

dielectric tensor have a considerable effect on the antenna response and its coupling

to the edge plasma. From the treatment of Golant, we initially examine three plasma

parameters and look at the variation of the antenna’s coupling with respect to them.

The primary metrics used to gauge the antenna behavior will be the damping length

and launch spectrum as measured by the loop diagnostics introduced in §2.5.3.

To explore the data from the experiment, we use composite analysis. Since we

expect that the antenna’s coupling is a function of many variables, and since in general
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MST’s plasmas are quite variable shot to shot as well as intra-shot, we must control for

each of these parameters as well as the performance of the antenna. The toolset for this

analysis is an outgrowth of J. Chapman’s sawtooth correlation code [5]; however, the

correlation routines themselves are not used. Because of this variability, large ensembles

of shots are required to determine the antenna’s response to plasma conditions.

At the outset of the analysis, a particular ensemble of shots is picked depending on

the experiment. For each shot a time range is selected, for example the nominal flat

top of the plasma current waveform. At this point a window size is chosen. Because

of the large variability in plasmas, a small window size is used. For these datasets, 0.1

or 0.25 ms is chosen. The data are then averaged over each window, and each of these

time slices is defined as an event. After this, the first cut is made. The first cut can be

with respect to any signal or set of signals, but this cut selects which data go into the

final dataset. For example, any time slice whose average rf input power is less than 50

W will be excluded from the dataset. With these data, any series of additional cuts

can be performed to constrain the dataset and isolate the parameter of interest.

We first compare the damping length of the antenna with respect to the pitch

angle of the background magnetic field. To calculate the pitch angle for MST, we find

the angle between the toroidal and poloidal fields at the wall. The toroidal field is

determined by Ampere’s law and a measurement of the currents flowing in the shell.

The field at the wall varies as 1/R, and is measured at R = 0.97R0. Then

Bφ =
0.97R0Bφ0

R
, (3.39)
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where R now is measured at the location of the [center of the] antenna: 1.16 m for

MkII and 1.12 m for MkIII. The poloidal field at a given poloidal angle θ is given by [6]

Bθ (a, θ) ≃ µ0Ip
2πa

[

1 +
a

R0

(

βp +
li
2
− 1

)

cos θ

]

(3.40)

where li is the normalized internal inductance (∼ 1.5) and βp ∼ 0.15. The pitch angle

relative to the antenna is then:

φ = arctan

(
Bφ

Bθ

)

+ 2.5◦ (3.41)

where we add 2.5◦ since the MkIII antenna itself is tilted with respect to the vertical.

The ensemble used is a set of 1801 shots collected from two years of experiments.

The cuts made to pare events are 350 < Ip < 450 kA with densities at 0.8 − 1.2 ×

1013 cm−3 and Pforw > 500 W. Figure 3.9a shows the measured damping length with

respect to the pitch angle.

As noted in §3.1, the treatment of Golant indicates that until the field pitch relative

to the antenna becomes on the order of φ ∼ π/4, the change in damping length is

insignificant. A visual inspection of the data do not indicate a trend strong enough

to contradict Golant and supports a weak dependence of LD on φ, but doing a formal

hypothesis testing for the (lack of) a trend is more problematic. As illustrated in

Figure 3.9b, despite the fairly loose constraints of the dataset, over 70% of the data

occurs between 3 degrees of pitch, which puts a large amount of weight to a fit in that

region. A much bigger obstacle is the fact that the data outside that region are not

normally distributed, failing a necessary condition to perform linear regression. At the
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Figure 3.9: (a) Damping length vs. the pitch angle of the magnetic field relative to the
antenna. (b) The event density with respect to the pitch angle.

minimum, more data across as many pitch angles as possible are necessary to perform

a rigorous analysis.

In §3.1, we made the assumptions ǫ⊥ ≃ 1 and ǫxy ≪ 1 in our derivation. Since

ǫ⊥ and ǫxy depend on Ωce and thus |B|, we can attempt to test these assumptions by

varying the magnitude of the edge field and measuring the coupling. |B| is calculated

by taking the norm of (3.39) and (3.40).

The same 1801 shot ensemble as before is used. The constraints applied to the

dataset are densities of 0.8 − 1.2 × 1013 cm−3 and Pforw > 500 W. Figure 3.10a shows

the damping with respect to |B|. At first glance, we see that the damping length for

the co-current phasing is fairly insensitive to the magnetic field. The behavior for the

counter-current phasing is more muddled.

This dataset has a similar problem as the pitch angle data. As seen in Figure 3.10b,
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Figure 3.10: (a) Damping length vs. the magnitude of the edge magnetic field. (b) The
event density with respect to the magnetic field.

a large majority of these data are between 1400−1600 gauss. This certainly skews the

weighting for a regression, but for these data, the necessary condition of normality is

satisfied. To compensate for the skewed weighting the data are binned with bin size

of 75 G. The error for each bin is given as σ/
√
N where N is the number of events in

each bin. This procedure reduces the number of degrees of freedom to ν = Nbins − 2,

but is an unavoidable tradeoff to compensate for the weighting.

The hypothesis tested is that the slope of the regression line is zero. Doing a

standard Student’s t-test, we reject the hypothesis for the counter-current phasing with

only 41% confidence and the co-current phasing with 64% confidence: a far cry from

the standard 95% level. Of course, the test requires the premise that the trend is linear

in the first place. In the case of the coupling terms in (3.5) and (3.6), ǫxy ∼ |B|−1 and

for the approximation leading to (3.1), ǫ⊥ ∼ |B|−2. As a test for sensitivity however,
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Figure 3.11: Damping length vs. line-average density.

we can be fairly confident that our approximations in §3.1 are alright.

The third parameter we will examine is the plasma’s line-averaged density. Since

lc is the density gradient scale length and LD ∼ l
−1/3
c , we might expect the damping

length to vary strongly as the density changes.

The same 1801 shot ensemble is again used for this dataset. The constraints on

this dataset are 380 < Ip < 420 kA, Pforw > 500 W, and the reversal parameter F is

restricted to between −0.22 and −0.18. Figure 3.11 shows how the damping length

varies relative to the density.

As expected, the coupling improves as the density increases, but the line-averaged

density itself is only an indirect measure of the “hidden” variables that actually impact

the damping length. From §3.1, we expect the vacuum gap ls and width of the opaque

region lc to be the quantities directly governing the coupling. Unfortunately, a direct
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measurement of either of these is difficult.

Given the local edge density we could infer both lc and ls. However, edge density

measurements on MST are problematic. MST, at the time of writing, has no dedicated

edge density diagnostic. At low currents insertable Langmuir probes can be used as

long as they are appropriately shielded from fast electrons. At higher currents, probes

are generally impractical.

Edge density was measured for the MkII antenna experiments, but for these data

the probe was located on the upper outboard side of the machine while the antenna

is located on the lower inboard side. Additionally, the probe tips were located at

1 cm in from the wall. Although for our purposes, the density a centimeter or so

from the wall is what we want, the porthole through which the probe is inserted will

distort the measurement. Nevertheless, we can use these measurements as a bridge to

motivate the use of the line-averaged density as a parameter of interest. Figure 3.12

shows the variation of edge density as measured by the Langmuir probe in 400 kA

standard plasmas. While the data must be taken with a large grain of salt for the

aforementioned reasons, it is clear that for MST operating densities, the edge density

— in an equilibrium sense — increases exponentially as a function of average density.

It is clear from Figure 3.11 that line-average density is at best a mediocre metric

for what is taking place in the edge. The variance of the damping length is quite

large at low densities and becomes smaller as the density increases. This is indicative

of an unaccounted for variable. As will be described in the next section, while the

equilibrium edge density may covary with the average density, the MHD relaxation

cycle causes the edge to vary independently as well.
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Figure 3.12: Edge density vs. line-average density for 400 kA plasmas. The edge density
is measured by Langmuir probe inserted 1 cm into the plasma.

Despite the missing variance there is, for some mean measure, quite good correlation

between average density and the antenna’s damping length. To motivate this, we look

again at the damping length’s dependence on lc and ls. With the approximation of

F (w0) in (3.29), we plug in to (3.22) and (3.23) to write the damping length as

LD =
1

1.19
nz0

(
n2

z0
− 1

)−2/3
( c

ω

)1/3

︸ ︷︷ ︸

K

l−1/3
c ls. (3.42)

where K is strictly a function of ls, though it has a very weak dependence.

As the density increases, the profile may steepen, increasing the edge density gra-

dient — and decreasing lc — while the plasma extent and the vacuum gap remains

constant. However, decreasing lc increases LD, which is the opposite sense of the den-
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sity covariance. On the other hand, we might expect that as the density increases, the

plasma edge is pushed farther out into the shadow of the limiters, thus decreasing the

width of the vacuum gap. In this case, we may see little change in the density gradient.

Taking the latter case to be true (in the equilibrium sense), and since we know that

ls is inversely proportional to 〈ne〉, we presume that ls is of the geometric form:

ls = a 〈ne〉b , (3.43)

where ne is in units of 1013 cm−3. Plugging into (3.42), and taking the log, we have

lnLD = ln
(
Kl−1/3

c

)
+ ln a + b ln 〈ne〉 (3.44)

which we can fit to the data in Figure 3.11. Unfortunately, we have three free parame-

ters in a, b, and lc giving a family of solutions, but the form in (3.43) does allow us to

constrain b. Using a weighted fit as before, we find that for both phasings, b ≃ −3/4,

demonstrating the inverse proportionality between density and ls.

3.2.2 Coupling and Sawteeth

The sawtooth cycle is a characteristic phenomenon of standard MST plasmas. The

sawtooth is an MHD relaxation event which drives edge current and generates toroidal

flux. The crash leads to a degradation in overall confinement from increased radial

transport [7]. For our purpose, the more important sawtooth effect is the increased

plasma-wall interaction. The injection of impurities into the edge and the associated
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Figure 3.13: (a) The antenna damping length relative to the sawtooth cycle in 400 kA
plasmas. (b) The density profile at the midplane for these plasmas. Zero milliseconds
corresponds to the sawtooth crash.

increase in edge density has the potential to affect the antenna’s coupling. If so, then

we should see the damping length covary with the sawtooth cycle.

The same ensemble as above is used. The line-averaged density is set between 0.8

and 1.2 × 1013 cm−3. The reversal parameter is between −0.22 and −0.18 and the

plasma current is fixed between 380 and 420 kA. Figure 3.13a shows how the damping

length varies relative to the sawtooth crash. Figure 3.13b shows an ensembled density

profile through the sawtooth as measured by the FIR interferometry diagnostic.

As hypothesized, the sawtooth cycle has a significant effect on the loading of the

antenna. At the crash the damping length drops by almost a factor of two even

as the line-averaged density remains constant. The density profile shows a peaked

profile leading up to the crash; the core flattens directly before the crash with the edge

density commensurately increasing. As Chapman [7] notes, it is observed that impurity

injection can happen just prior to the crash. The antenna follows this behavior with
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its damping length dropping before the crash as well.

The antenna has been observed — depending on its conditioning — to arc or at

least trip the arc detector at sawtooth crashes. This behavior has been interpreted

as a blob of charged particles entering the antenna cavity and drawing an arc. The

prerequisite for this occurrence is for the plasma edge to fill the vacuum gap and thus

increase the antenna-plasma coupling. As confinement improves after the crash, the

density profile begins peaking and the vacuum gap increases, bringing the damping

length up and the loading down.

The disparity in damping length between phasings is also apparent in the sawtooth

ensemble data. As in the case of line-averaged density, the difference between ports

shrinks as we expect the vacuum gap to shrink. In the case of the sawtooth crash,

equilibrium reconstruction shows that the last closed flux surface [LCFS] moves inward

by approximately 1 mm. The data hint that despite the design goal of the MkIII

antenna face to be better matched to the LCFS, during inter-sawtooth periods, it is

not.

3.2.3 Coupling and Launch Spectrum

Up to now, we have used the damping length as the metric for the antenna response to

plasma parameters. As noted in §3.1.5 however, the index of refraction should change

in response to the plasma as well. The coupling theory assumes an infinitely long

antenna with a pure propagation constant. To connect the theory to experiment we

define Re (nz) as the location of the peak of the main spectral lobe and hereafter refer

to this as nz.
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Figure 3.14: The measured n‖ spectral peak with respect to line-averaged density.
Green or black dots are individual events for counter- and co-current feed directions
respectively. Solid trendlines are simple linear fits. The dashed lines are fits assuming
a geometric model for ls(〈ne〉).

An ensemble of 946 shots in the port 1 launch direction and 1041 shots in the port 2

direction with constraints similar to those in §3.2.1 is used in this analysis. Figure 3.14

shows the position of the main measured spectral peak nz as a function of line-averaged

density 〈ne〉 for each launching direction. It should be noted that as |nz| decreases,

the spectrum tends to become quite distorted and the directivity becomes poor. For

this analysis, events with spectra with less than 40% of the power in the main lobe

are neglected. The results are not especially sensitive to this as using anything in the

range of 20-60% does not significantly change the result.

The binned data have a correlation coefficient of r2 ≃ 0.98 indicating that a linear

fit may be appropriate. Indeed, the slope of the fits for each launch direction are quite
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similar; evidence that despite the offset of ∼0.25 in nz between the two ports over the

entire density range, the equilibrium response to plasma is the same. On the other

hand, the unbinned data have an r2 . 0.3 so the majority of the variance in the data

cannot be explained by a linear fit. If we again make the assumption:

ls = a 〈ne〉b , (3.43)

then we can plug this into the equation (3.30) for Re (nz) and fit the ensembled data.

Unfortunately we have at the least four free parameters, nz0∞ , lc, a, and b, which

makes the fit fairly vacuous, but if we let nz0∞ be either 6.80 or 7.05 depending on the

port direction, and fix a = 1, then fit to the parameters lc and b, we get for port 1:

lc ≃ 0.007, b ≃ −0.018 and for port 2: lc ≃ 0.007, b ≃ −0.016.

The values for lc are very close, and are similarly close if we were to fix lc and vary

a instead. The values of b are also similar to each other, again demonstrating that the

coupling of the plasma to each port is much the same. The value of b however is more

problematic when evaluating the soundness of the hypothesis (3.43). Making the same

hypothesis for the damping length relative to the density in §3.2.1, we got b≃−3/4

which is a long way from b≃−0.017. The disparity indicates that the variation of the

coupling parameters with respect to the line-averaged density is more complicated than

a geometric dependence on ls. A good measurement of the local density may yield a

firmer connection between ne, lc, and ls, but at present the broad trends with respect

to 〈ne〉 must suffice.

Verifying the coupling theory with the experimental data is difficult not only be-
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cause of the difficulty in measuring either ls or lc but also because these two parameters

are essentially coupled free parameters. With data for nz and LD however, we can pro-

vide an additional constraint to the equations to eliminate one parameter and solve for

the other.

If we fix lc and then invert (3.30), we get ls as a function of nz:

ls = ls (nz, nz∞, lc) (3.45)

where we add the parameter nz0∞ — the vacuum nz0
— to compensate for the dispar-

ity between the modeling and the physical measurements. We initially choose ls (nz)

instead of ls (LD) because as is seen in Figure 3.7a, nz is multivalued over a range of

ls that is of potential interest.

Plugging (3.45) into the equation for LD (3.42), we have

LD = LD(nz, nz∞, lc) (3.46)

where we have eliminated ls. We can now compare this equation for different param-

eters to the experimental data. Figure 3.15 shows the the ensembled spectral data

plotted as a function of the damping length and (3.46) for different values of lc. Each

point in the Figure corresponds to a different realization of the density profile in front

of the antenna and the antenna’s response to that profile. Because of this, it makes

little sense to attempt a fit to the data. Instead, a family of curves is used to assess

the usefulness of the theory.

For density gradients on the order of the experiment, or the largest values of lc
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Figure 3.15: The measured n‖ spectral peak (black dots) vs. damping length for (a)
counter-current launch. and (b) co-current launch. Overlaid are the Golant theory
predictions. Each trace is parametrized by ls with a set nz∞ and for different values of
lc.

plotted, the theoretical curves tend to approach the edge of the lower bound (in terms

of n‖) of the experimental data. At small values of lc, the values of n‖ increase and

the curve turns over and can sample some of the phase space at high n‖ and low LD.

Qualitatively, the curves from the theory have the same shape as the experimental

data and depending on the density gradient can access all the experimental domain.

Quantitatively, to sample the low LD and high n‖ region of the domain, the gradients

must be much larger than expected from the experiment, so this comparison to the

data suffers the same problems as the analytical results in §3.1.5.

Figure 3.16 shows the results of the comsol modeling for four different density

steps and six gradients. The vacuum n‖ of ∼6.26 as described previously is corrected

by applying an offset to bring the vacuum solution in-line with experimental vacuum
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measurements.

For the smaller ne0
, the numerical models show remarkable agreement with the

experimental profile estimates. Only at ne0
= 1 × 1011cm−3 or at gradients above

1 × 1012 cm−4 do the simulations underestimate the data. At the shallower gradients

(1 × 1011 cm−4) and low ne0
, the peak |nz0

| becomes larger than nz0∞ as is required

by the experimental data in the lower-left corner of the graphs. The modeling and

the antenna response indicates that at least for some plasmas, the edge profile may be

much shallower than interferometry implies.
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Figure 3.16: The measured n‖ spectral peak (black dots) vs. damping length overlaid
by predictions from comsol with various density profiles. The profile shape consists
of a vacuum gap ls followed by a density step ne0

and a density gradient dn/dx. (a)
ne0

= 0cm−3, (b) ne0
= 1× 1010cm−3, (c) ne0

= 5× 1010cm−3, (d) ne0
= 1× 1011cm−3.

Each trace is offset by the difference between the vacuum nz0
predicted by comsol

(nz∞) and the measured bench value of 6.82.
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3.3 Controlling Antenna-Plasma Coupling

While changing overall plasma conditions to regulate the antenna-plasma coupling

is sufficient, it would be preferable to alter local parameters or change the antenna

geometry itself to affect the coupling. The Alcator C-Mod grill antenna’s radial position

can be moved relative to the LCFS although its limiters remain fixed [8]. The JET

grill and its limiters can also be moved, and in addition it has a gas puffing system to

change the local density [9]. MST’s antenna is fixed in place; however, the local limiter

can be changed and local gas puffing can be employed.

3.3.1 Antenna Limiter

Given the arcing problems of the MkI antenna [10], it was thought that plasma was

finding its way into the antenna waveguide cavity, thus causing the arcing. To remedy

this, a plasma limiter for the MkII antenna was implemented. The limiter is a set

of interlocking boron nitride tiles that are placed on top of the antenna frontplane as

shown in Fig. 3.17b. A small opening in the limiter above each resonator allows the

fringing fields to couple to the plasma edge.

The MkII antenna was installed with the limiter in place and its initial conditioning

and coupling experiments were performed with the limiter. Later, the limiter was

removed and the coupling experiment was repeated. An ensemble of 1121 shots without

limiter and 1018 shots with limiter were used in the composite analysis. Each shot was

subdivided into 0.1 ms windows, and only windows with at least 500 W of rf forward

power, 380 kA < Ip < 450 kA, and −0.22 < F < −0.18, were used.
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(a) (b)

Figure 3.17: The MkII antenna installed on MST. (a) Without front limiter. (b) With
front limiter installed.

Figure 3.18 shows the results of the experiments. Without the limiter, the damping

length relative to the density behaves quite similarly to the MkIII antenna in §3.2: the

coupling increases as density increases. On the other hand, coupling of the antenna

with the limiter in place as in Figure 3.18b shows almost no correlation with density.

More difficult to explain is the distinct difference in average damping length between

launching directions with the limiter in place. Unlike the MkIII antenna, the MkII

antenna is not raised off the machine wall to more closely match the plasma’s LCFS.

In this case with the Shafranov shift, the port 1 or counter-current drive direction is

farther away from the plasma that the port 2 direction. Given the variance of damping

length with respect to density it is counter-intuitive that port 1 appears more tightly
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Figure 3.18: The damping length with respect to the line-averaged density with (a) no
limiter (b) the limiter covering the aperture. Plasma conditions are 380− 450 kA and
F ≃ −0.2

coupled than when port 2 is driven.

The analysis of Golant may explain the discrepancy. As shown in Eq. 3.42, the

width of the vacuum gap is proportional to the damping length while the edge density

gradient (or our proxy of line-averaged density) is inversely proportional to the damping

length. In this case, the limiter may be serving to fix the width of the vacuum gap,

and the variation of the damping length between ports is due to the edge density.

A limited antenna is generally advantageous with respect to coupling behavior as

it would allow antenna operation over MST’s full range of densities. However, the

presence of the limiter kept the damping length high and prevented the achievement of

the best loading for port 2. Additionally, the presence of the limiter made conditioning

extremely difficult, and in fact the MkII antenna with the limiter never achieved more
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than ≃ 50 kW of input power. After the limiter was removed, conditioning was quite

fast and the antenna was able to handle the limit of the power supply at the time and

eventually over 100 kW.

3.3.2 Local Puffing Into Standard Plasmas

The antenna loading as seen in §3.2 has been found to be poorer in standard plasmas

when the density is low. Previous results with the LHCD grill antenna on JET [9, 11]

shows that coupling can be improved in ITB plasmas having very low edge densities

with gas puffing near the antenna. With these results in mind, we can attempt to

increase the local density in front of MST’s antenna with a similar system.

CD4 was used as the doping gas in the JET experiments to counteract deleterious

effects of D2 on the H- or ITB-mode. Our experiment used He as a doping gas to

calibrate the puff timing. A spectrometer set to view the HeI line was placed on an off-

axis chord across from the antenna to gauge when the doping gas entered the plasma.

Future experiments can change the gas in the manner of [11] as required.

A diagram of the local gassing system for the MkII antenna is shown in Figure 3.19.

A puff valve from the MST doping system is installed on the machine’s pumping duct

with a pipe conducting the doping gas up through a pumping duct hole near the

antenna. The pipe outlet is at the base of the antenna just below the port 2 feed.

To diagnose the effect of gassing near the antenna, we choose 240-280 kA plasmas

with densities at ∼ 0.5 × 1013 cm−3. The antenna has empirically coupled poorly with

plasmas of these parameters. A set of 24 shots without puffing and 15 shots with a

moderate amount of puffing (∼ 10 torr liters/s) were ensembled. The results of the
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Port 2 Feed

Figure 3.19: Location of local gas puffing source relative to the antenna.

experiment are shown in Figure 3.20. Edge density is measured by a triple Langmuir

probe inserted to 1 cm inside the wall, but the probe is located 30◦ away from the

antenna toroidally and is on the outboard side. As previously mentioned, it is at best

an indirect measurement of the density in front of the antenna.

At this low level of local puffing we see no significant change to the damping length

for a port 1 feed, with respect to either edge or line-averaged density. The damping

length for the port 2 feed does show a significant difference with local puffing becoming

shorter by about 2 cm. This dissimilarity is most likely due to the fact that the gas

injection pipe is much nearer the port 2 feed than the port 1 feed.

To increase the coupling for the port 1 feed, we increase the flow rate of the local
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Figure 3.20: Damping length vs. line-averaged and edge density with and without local
gassing. (a),(b): Port 1. (c),(d): Port 2.

gas injection. The results of the 4 shot ensemble are displayed in Figure 3.21. The

larger puff pushes the damping length below 10 cm. The Langmuir probe shows the

edge density to be about 25% higher with the local puff, but the line-averaged density

does not significantly change giving some confidence that coupling to standard plasmas

can be improved without altering overall plasma conditions.
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Figure 3.21: Port 1 damping length with puffing at high flow rate for (a) line-averaged
density and (b) edge density measured by a Langmuir probe.

3.3.3 Local Puffing Into PPCD

Coupling rf into improved confinement plasmas is a potentially more interesting and

important proposition than coupling into standard RFP plasmas. Since we expect

that a full power LH system would have the same effects as the current PPCD system

(increased confinement, temperatures, lower fluctuations), sustaining this regime with

rf requires that we can maintain good coupling to the plasma.

With a low-power system, we can test the coupling requirements by injecting power

into PPCD plasmas. A 500 kA discharge is shown in Figure 3.22. At 15 ms, 80 kW of

power is applied to the MkII antenna. PPCD has started at 12 ms with power applied

to the toroidal circuit, Bφ (a) increases and drives the pitch angle very high relative

to the antenna axis. At ∼ 19.5 ms, the Dα signal increases markedly, indicating the

transition out of the improved confinement regime.
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The effect on antenna performance is no less significant. During PPCD almost 30%

of the input power ends up as through power indicating that coupling is very weak. At

the transition out of PPCD, the coupling becomes much stronger and much more rf

power is radiated. The line-averaged density changes marginally or decreases so cannot

explain the increase in coupling. Looking at the density profiles in Figure 3.22b provides

the now-familiar explanation. At the transition out of PPCD, the edge density increases

at the expense of central peaking. In this case as well, we have a clear indication that

the edge profile is critical in determining the amount of antenna coupling.

Using local gassing with the same setup as in §3.3.2, we can attempt to change the

density profile (or at least the density) at the edge at the antenna. An ensemble of 105

400 kA PPCD discharges with 80 kW of injected rf power was used as a baseline for

the coupling experiment. Because of the shot-to-shot variation in PPCD quality and

timing, time windows within each shot were chosen for good rf power and good PPCD

and only these windows were used in the ensemble.

For local puffing, 20 and 65 shots are chosen for gas injection of ∼ 6.8T · L/s and

∼ 32T · L/s respectively. Figure 3.23 shows the results. In the improved confinement

regime without puffing, the damping length is 2 − 3 cm larger than in standard plas-

mas. At 6.8T · L/s, there is no change in port 1 coupling. Feeding port 2, we see a

small decrease in the damping length which can be ascribed to the location of the gas

conduction pipe just below the port 2 end. At 32T · L/s, the damping length signifi-

cantly decreases in both feed directions indicating much better coupling even in PPCD

plasmas.

A potential problem exists with local puffing during PPCD to improve antenna
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Figure 3.22: (a) Selected signals at a transition out of improved confinement. The
shaded region is during PPCD. (b) Radial density profiles about the transition. Each
is averaged over 0.5 ms.

coupling. It has been observed that edge fueling during PPCD tends to increase the

m = 0 mode and degrade confinement [12]. Local puffing (of He) in these experiments

to increase antenna coupling had no significant impact on the quality of plasmas. This

risk may increase for lower density plasmas or for stronger puffing. Despite this, local

gassing can be a potent tool to compensate for plasma conditions that normally cause

poor antenna coupling.
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Figure 3.23: Damping length of the MkII antenna during PPCD for three different
levels of puffing. (a) Port 1. (b) Port 2 nearer the local puffing source.

3.4 Summary

Coupling experiments in plasma demonstrate that the interdigital-line antenna design

performs well in high current standard plasmas. In lower current plasmas, where the

wave is inaccessible to the target absorption region, the antenna’s power handling be-

comes quite poor. In high current PPCD plasmas, the antenna is unloaded as evidenced

by an increase in the damping length. As with other lower hybrid experiments, plasma

density is shown to be the principal driver in antenna loading. Other experiments that

alter the edge magnetic field strength and pitch have no effect on coupling as expected.

With the use of a plasma limiter in front of the antenna, the amount of coupling

can be kept relatively constant, but with the serious drawback that conditioning to

high power becomes quite difficult. Using local gas puffing, the antenna loading can

be be maintained even in low density or higher confinement plasmas.
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In line with theoretical and numerical predictions, the density profile can shift the

peak of the n‖ spectrum, in some cases far enough down that the accessibility condition

may become an issue. Increasing the amount of loading on the antenna will cause the

damping length of the antenna to decrease and will broaden the launch spectrum.
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Chapter 4

X-Ray Observations

The acceleration of particles to suprathermal energies is a phenomenon which is preva-

lent over a broad range of plasmas including the magnetosphere and solar corona.

These fast particles can produce extensive radio and x-ray emission which can be used

as probes into these usually remote phenomena [1]. Laboratory plasmas, especially

those at the high temperatures used for fusion experiments, can also produce high lev-

els of x-ray flux [2]. In particular, rf waves in combination with the ohmic electric field

can pull out high energy electron tails, and the use of x-ray diagnostics has verified

their presence on many of the larger machines [3, 4].

On MST, soft x-ray tomography has been used to map magnetic islands [5] as well as

measure the core bulk electron temperature in PPCD plasmas [6]. At higher energies,

hard x-ray observations have been used to model the radial diffusion coefficient in

standard and PPCD plasmas [7]. This work will focus on the hard x-ray regime that is

loosely defined as photons with energies greater than 10 keV. While the measurement
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of the hard x-ray flux will be used primarily to verify the existence of rf-induced fast

electrons, it is also possible to calculate or at least to discuss other more interesting

quantities related to the x-ray flux. To motivate this discussion, a brief review of

bremsstrahlung is warranted.

4.1 Bremsstrahlung

In the energy regime of interest the primary x-ray production mechanism is electron-

ion bremsstrahlung: the process by which a photon is emitted when an electron is

decelerated in the field of an atomic nucleus. The probability of an electron interacting,

and emitting a photon, is:

P = nbσδ (4.1)

where nb is the bulk density, δ is the distance the electron travels over some time inter-

val, and σ = σ (p, k, Z, ...) is the cross-section of the bremsstrahlung interaction, p is the

momentum of the incident electron, k is the energy of the emitted photon and Z is the

atomic number of the nucleus. The cross-section is for thin targets, which are defined

as media in which the electron scattering and loss (as it travels through the media)

have a negligible effect on the angular distribution of the bremsstrahlung [8]. Magneti-

cally confined plasmas qualify as thin targets, and for the rest of this work “thin-target

bremsstrahlung” and “plasma bremsstrahlung” will be used interchangeably. If it takes

a time t for the incident particle to traverse δ, then we have an interaction rate,

ν ≡ dP

dt
= nb σ

δ

t
= nb σvf , (4.2)
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where vf is the velocity of the particle. To get a counting rate, we need the number of

incident particles Nf , so we have

dN

dt
= nb σNfvf . (4.3)

If instead we use a density of incident particles, then we have

dN

dt dV
= nb σnfvf . (4.4)

Discriminating the energy of the photon, and the solid angle into which it is emitted,

ǫ ≡ dN

dt dVdΩdk
= nb

dσ

dkdΩk

nfvf . (4.5)

where ǫ is defined as the emissivity and dσ/dkdΩk is the probability that the interaction

results in the emission of a photon of energy k and into a solid angle Ωk. Equation 4.5 is

good for a mono-energetic beam of incident electrons. If instead we have a distribution,

then

dN

dt dVdΩdk
= nb

∫
dσ (p, k, χ, Z)

dkdΩk

vff
(
p‖, p⊥

)
d3p (4.6)

where χ is the angle between the incident electron and emitted photon.

To relate (4.6) with our hard x-ray measurement, we let dV = dAdl and integrate

ǫ over l to get the x-ray flux,

φ ≡
∫

ǫ dl =
dN

dtdA dΩ dk
, (4.7)
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where l is along the line of sight of the detector.

In general, instead of the cross-section nb dσ/dk dΩk in (4.6), we have

ne
dσee

dkdΩk
+ Zeffne

dσei

dkdΩk
+
ni

ne

dσr

dkdΩk
(4.8)

where the first term is the cross section of electron-electron bremsstrahlung, the second

is electron-ion bremsstrahlung, and the third is the cross section of recombination

radiation. For electrons with relatively low energies (T0 ≪ 511 keV) and Zeff > 1 the

e-e cross-section is small relative to the e-i cross section [9] so we can neglect it. With

our detectors’ lower limit of ∼ 10 keV and impurities in MST with Z . 13, we can also

neglect the cross section from recombination [10].

To calculate dσ/dk dΩ, or integrating over the angle between electron and photon,

dσ/dk, we use formulas 2BN or 3BN from Koch and Motz [8]. These formulas are

derived from the relativistic Sommerfeld-Maue wave functions using the Born approx-

imation. The Born approximation cross-section formulas are in general valid for initial

and final electron energies that both satisfy:

2πZ

137β
≪ 1, (4.9)

where Z is the atomic number of the ion and β is the fraction of the speed of light of the

electron. For 50 and 10 keV electrons, this corresponds to 0.310 and 0.795 respectively

for Z of 3. This isn’t very good, but moving to non-relativistic equations is no better

as they cannot predict potentially important effects like beaming. Instead the Elwert
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Figure 4.1: Relavistic electron-ion bremsstrahlung cross-sections for the resultant pho-
ton energy. The lines represent different incident electron kinetic energies T0.

correction can be applied [8]:

β0 {1 − exp [−(2πZ/137β0]}
β {1 − exp [−(2πZ/137β]} (4.10)

where β0 and β are respectively the initial and final velocities of the electron. For

lower energies this gives cross-sections with errors less than 10%. Figure 4.1 shows

cross-sections dσ/dk with the Elwert correction for Z = 3.5.

For plasmas, the Born cross-sections are appropriate since the plasma is “thin” in

terms of collisionality. As we will discuss in the next sections, data indicate that some

fast electrons are hitting solid targets, namely the antenna. In general, the thick-target

formulas are obtained from the thin-target cross-sections by calculating the electron

energy loss with target depth as it scatters off atomic electrons [11]. The procedure
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is to integrate along the electron path up to the photon energy k — since the photon

cannot have an energy greater than the incident electron — using an expression for the

electron stopping power to find the intensity [12]. When combined with corrections for

characteristic radiation, these sophisticated methods compare well with experiment,

but only after some semi-empirical fiddling.

The non-relativistic semiclassical formula due to Kramers is often used and com-

pares favorably to the more sophisticated formulations [13]. Because of this and its

simplicity, we will use it here. The Kramers’ formula is:

Ik = KZ (T0 − k) , (4.11)

where Ik is the intensity (in ergs/s/sr/mA/keV) at the photon energy k and T0 the

incident electron kinetic energy, both in keV. Z is the atomic number, and K is a con-

stant. K has been evaluated to 27.6/4π, but has been found to have some dependence

on T0 [13]. Unlike thin targets, this formula predicts that a mono-energetic beam of

electrons hitting a thick target will yield an x-ray intensity with a linear repsonse. Both

the Kramers’ formula and the more sophisticated formulations discussed in [11] have

integrated out the angular dependence.

To relate (4.11) to the measured flux (4.7), we convert units from mA of incident

current (carried by electrons) to a counting rate of incident electrons, and ergs to

emitted photons (where the energy is carried by each photon). Then

φ = Ik
1

k
10−10 1

A

dNf

dt
(4.12)
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where dNf/dt is the number of fast electrons per second incident on an area of size A.

Finally, for a density of fast electrons:

φ = Ik
1

k
10−10nfvf . (4.13)

Lastly it should be noted that the Z in the bremsstrahlung formulas is not the

charge of the ion, but instead the atomic number (and can be applied to neutrals).

Because the cross-section goes as Z2 (with the Elwert correction, the proportionality

is ∼Z2.09), the flux is also proportional to Z2 or just Z for the thick-target formulas.

We can define an effective atomic number:

Zeff =

∑
Zjnj

∑
nj

(4.14)

which can be used for Z. This modification can become important in the cold plasma

edge where we may have high impurity influx and either high neutral pressures or

non-fully-stripped ions. In this case Zeff & Z+
eff where the latter is the effective ionic

charge. Because either of these quantities is so poorly known in MST plasmas, this is

mostly a distinction without a difference, but unless noted, we refer to the the effective

atomic number.

4.2 The Hard X-Ray Diagnostic

The hard x-ray (HXR) diagnostics on MST consist of a set of single channel CdZnTe

crystal detectors manufactured by eV ProductsTM and also a 16-channel detector (also
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by eV Products) of CdZnTe crystals arranged in a linear array. The detectors are rated

to be sensitive to photons in the 10-250 keV range. As the detectors were designed

for medical applications rather than fusion applications, they needed to be structurally

modified to reduce noise issues. Despite this, the practical lower limit for the multi-

channel detector is ∼12 keV.

Each type of detector records single x-ray events and discriminates photon energy

by pulse height. The multi-channel detector has on-board shaping that delivers an

asymmetrical bipolar pulse whose width is about 1µs. The single channel detectors

use shaping electronics that create a Gaussian pulse whose extent is over 2µs. The

pulse width gives the maximum counting rate the detector can sustain before x-ray

pileup makes it difficult to get accurate counting statistics and energy resolution [14].

The detector events are directly digitized at 10MHz and 12 bits of resolution. The

height and thus the energy of the Gaussian-shaped pulses is determined by locating

a peak above the noise floor and then performing a Gaussian fit on the pulse. The

bipolar pulse’s energy is found by taking the maximum voltage of the upper lobe and

subtracting the noise floor. The voltage amplitude for each fit is calibrated against the

peaks of an 241Am standard source.

The single channel detectors are 10×10×2 mm giving a surface area of 1 cm2. Each

channel of the multichannel detector is 6.9×3.2×3.2 mm; however, for the experiments

to be discussed, the set of channels is operated as a single detector with total surface

area of 3.5 cm2. The detectors are shown in Fig. 4.2. A CdZnTe crystal thickness

of & 2 mm is sufficient for a stopping efficiency of ≃ 100% for x-rays below about 50

keV [4]. As will be shown, most HXR production in standard plasma with and without
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Figure 4.2: Hard x-ray detectors used for measuring emission from rf injection. The
detector on the left is the single channel detector with the CdZnTe crystal hidden by
the Mylar film. The multi-channel detector on the right with access cover removed.

rf is below this energy, so detector efficiency will be ignored for purposes of calculating

the absolute flux.

The detectors are movable and can be mounted at any open porthole on the ma-

chine. The single channel detectors for the most part were mounted on a set of “radial”

chords as shown in Fig. 4.3a and will hereafter be referred to as the radial array. The

multichannel detector was mounted at several toroidal locations, but the line-of-sight

always looked through the magnetic axis of the plasma. The detector positions are

shown in Figure 4.3b.

To ensure that the detectors were correctly collimated, i.e. not picking up HXR

emission from plasma we weren’t looking at, the detectors were encased in lead with

an appropriate aperture as the initial collimator. Generally small apertures are used to

reduce the flux to avoid saturating the detectors. For the low fluxes encountered here,

large apertures (which cannot be approximated as pinholes) must be used. Calculation

of the etendue for the detectors is discussed in Appendix E.

Since the x-ray energies of most interest are in the 10-50 keV range, the detector

window becomes critical. For aluminum and borosilicate glass, the materials of which



134

Reversal Surface

-40

-20

0

20

40

Impact Parameter [cm]

(a) (b)

Figure 4.3: (a) Chord locations for HXR radial array. The middle 13 chords of the
array are at the same toroidal location as the MkII antenna (150◦T) shown on the
lower inboard side. The outer 4 chords from inboard to outboard are at 156T, 144T,
154T, and 146T. The array is +60◦T from the MkIII antenna. Shown are equilibrium
flux surfaces, with the dashed line the q = 0 surface. The impact parameter (in cm) is
measured from the magnetic axis. (b) Viewing angles of toroidal survey with the MkII
and MkIII antennas shown at 150T and 90T respectively. Viewing angles are 30T+15P,
60T+105P, 90T-22.5P, 105T+75P, 120T+75P, and 150T+67.5P. All toroidal positions
except that at 150T use the multichannel detector.

our windows are made, the flux attenuation becomes quite significant at the lower

energies. The attenuation law for gamma rays is

I/I0 = e−(µ/ρ)ρx (4.15)

where x is the thickness of the absorber, µ is the linear attenuation coefficient which

depends on the energy of the photon, ρ is the density of the absorber [14]. The quantity
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(µ/ρ) is called the mass attenuation coefficient and is tabulated for various materials

and energies [15]. Figure 4.4 shows the attenuation of aluminum and borosilicate

glass for the thicknesses of our windows. While much more transparent than lead, the

attenuation must still be accounted for at the lower energies in order to get an accurate

emission rate.
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Figure 4.4: Attenuation of x-ray windows used for rf measurements. The aluminum
windows used for the single channel detectors are 0.016” thick. The borosilicate glass
used by the multichannel detector is 0.105” thick. The attenuation of 0.016” of lead is
included for reference.

Despite the pains taken to prevent noise pickup, some steps must be taken in

the pre-analysis phase to reject events resulting from a noisy environment. For the

Gaussian-shaped events of the single channel detectors, the Gaussian fitting routine

rejects noise that it cannot fit and the relatively wide and slowly varying shape with

respect to the digitizer rate means that fast transients are less likely to be interpreted
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as real x-rays.

Noise rejection for the bipolar shaping of the multichannel detector is more com-

plicated. The faster response time gives more immunity to event pileup, but that and

the more complicated shape, especially for x-rays at low energies, makes distinguishing

between transients and true events difficult. The first try at filtering rejected an event

as noise if the ratio between the magnitude of the first and second peak was outside

the range of 1.0-3.0.

Though automated, this procedure was quickly determined to be insufficient, so

a system of accepting or rejecting by hand each event was put in its place. Though

tedious, it had the advantage of good, though not perfect, accuracy. For the x-ray

fluxes that present power levels of rf produce, the number of events per shot is — in

general — acceptably low to make manual filtering a just-workable solution.

Some operating modes and detector positioning give flux levels that make a man-

ual filtering scheme impractical. An optimized backpropagating neural network was

developed [16] to filter events automatically. The network was trained using previously

manually filtered data. Though not quite as accurate as manual filtering, overall false

positives and false negatives are in the area of a couple percent with most of the errors

occurring with the lowest and highest energy events.

An aside on the error analysis is warranted. Since the etendue of the detector and

possibly the transmission coefficient may change for different shots, to get an estimate

of the total error, we must have appropriate Poisson statistics for an individual energy

bin for each shot. The problem arises that for many bins, and especially for the higher

energies, there are simply no counts for a particular shot. If that is the case, then the
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Poisson error is
√
n→ 0 ± 0 counts.

To mitigate this issue, we note that if we know the rate at which events happen,

then multiply that rate by an amount of time, the result will be Poisson [17]. Given

a set of N shots, we divide each time series into bins and use a bin if it satisfies our

criteria (rf power, density, etc.). X-rays are then counted for all time bins for each shot

and each energy bin. cik is the result where i indexes an individual shot and k indexes

an energy bin. Then we sum over all shots:

Ck =
N∑

i

cik. (4.16)

To get an estimate for the counting rate Λk for x-rays of a given energy, we count up

all the time bins we used to get τ the total time. The counting rate is then Λk = Ck/τ .

With this we have the variance for an individual shot: σ2
ik = Λjti where ti is the sum

of time bins in the i’th shot. It should be noted that this does not completely solve the

problem since some energy bins will have no counts over the entire ensemble of shots.

Thus the rate is unknowable with the information we have. To ease computation in

this situation we arbitrarily assign Ck = 0.5 counts to avoid divide by zero problems

in the error propagation.

Once, we have an error estimate, we can proceed to calculate the flux. The counting

rate per shot is

λik = cik/ti. (4.17)

However, we are viewing the plasma through a window, and thus we must divide by
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the window’s transmission coefficient Tik:

λ′ik = λik/Tik (4.18)

which is the counting rate that we would see if the window weren’t there. Finally, we

divide by the width of the energy bin ∆kk (in eV) as well as the etendue Gi of the

detector for this shot to get the flux as a function of shot and energy

φik =
λ′ik

∆kkGi

. (4.19)

σφik, the error in the flux as a function of shot and energy is determined by standard

error propagation from the error in the counting rate, σik, as well as the errors in

transmission coefficient and etendue, σT ik and σGi
respectively. Then the flux and its

error can be found by calculating the weighted average:

φk =

∑
φik/σ

2
φik

∑
1/σ2

φik

, σ2
φk =

1
∑

1/σ2
φik

, (4.20)

where all variables are averaged over the shot.

4.3 Experimental Observations

With the available set of hard x-ray diagnostics, we now turn to a set of experiments

that attempt to gauge the plasma’s response to launching lower hybrid waves. In some

operating regimes, MST is an excellent testbed for observing rf-induced x-rays. In
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standard and non-reversed plasmas up to ∼ 450 kA — which will be the case for the

remainder of the Chapter — there is almost no background x-ray emission unless the

plasmas are very diffuse: 〈ne〉 . 0.8 × 1013 cm−3. For low-density plasmas, the edge

plasma can become decoupled and form a very non-Maxwellian distribution which can

spawn many fast electrons and high-energy photons. While of interest in its own right,

this background will pollute the lower hybrid hard x-ray spectrum and can be difficult

to subtract. As a result, the following experiments are done with line-averaged densities

≥ 1 × 1013 cm−3.

It is typical in antenna analysis to divide the overall field of the antenna into three

regions: the near field, the Fresnel region, and the far field [18]. It will be convenient

to separate these experiments into two main categories: those observations of x-rays

in the far field and those in the near field. While there are various definitions of what

constitutes which region, most are only reasonable for free-space antennas launching

an electromagnetic wave. We will use the definition of Karpman [19] where the near

field will be defined as distances from the antenna that are small in comparison to the

wavelength of the radiated wave. The wavelength of the launched wave changes rapidly

as it penetrates, but looking at results of ray-tracing, we can make the approximation

λ ∼ 1 cm. The far field will be at distances much farther away from the antenna than

that.

4.3.1 The Far Field

Early hard x-ray experiments using the MkII antenna at ∼ 80 kW showed no x-ray

production at toroidal angles off the antenna (at 150T), and only a hint when the
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Figure 4.5: Toroidal survey of HXR flux for both launch directions with 160 kW of
input power. The plasmas are standard 400 kA with densities 1.0 − 1.5 × 1013 cm−3

The detector chords look through the magnetic axis.

viewing chord at 150T was not looking at the near field. With the increase in power

handling capability of the MkIII antenna, a new survey was performed at the multiple

toroidal locations shown in Figure 4.3b. For rf input powers above about 100 kW, we

start to see x-ray emission at toroidal angles not in-line with the antenna.

Due to the low overall counting rate, a large ensemble of shots was used for each

toroidal location and was subject to the analysis method of §4.2. Even so, the poor

statistics of the background spectrum makes the magnitudes in the higher energies

higher than they might be. For this ensemble the MkIII antenna was operated at 160

kW input power in 400 kA standard plasmas. Only events away from sawteeth with

average densities between 1− 1.5× 1013 cm−3 were used and Figure 4.5 shows the flux

for different x-ray energies at toroidal angles up to 60◦ away from the antenna.

There is a marked toroidal asymmetry. For the port 1 or counter-current drive
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launch direction, the flux over about 40◦ is fairly flat with the flux dropping down to

just above background levels at 60◦ away from the antenna, but with the flux level at

+60◦ higher at all energies than at −60◦. The co-current drive direction, port 2, shows

a slightly different toroidal shape. The flux falls off faster than in the counter-current

direction, and there appears to be an asymmetry about the antenna location where the

flux at all energies is at a lower level at +30◦ and +60◦ than at −30◦ and −60◦ relative

to the antenna. The peak flux in the co-current direction is also higher by almost an

order of magnitude than the counter-current launch. In both feed directions, however,

measurements taken 90◦ away show x-ray production at the background level.

While Bφ is small relative to a typical tokamak, it is not zero. As shown in Fig-

ure 3.9b, standard plasmas — with a reversal parameter of F ≃ −0.2 — have a field

line pitch of about −7◦ with respect to the antenna. This pitch might itself lead to the

asymmetry seen in the flux produced by a co-current launch. To explore this, another

experiment was done with non-reversed plasmas. These plasmas have the safety factor

go to zero at the edge of the plasma (F = 0). With the antenna slightly tilted, the

pitch angle (with respect to the antenna) is actually about +2.5◦. Results are shown

in Figure 4.6.

Unfortunately, data is not available at ±60◦, but some comments can be made in

comparing the flux to that of the standard reversed case. Overall, the differences are

quite small, despite the significant change in the q-profile. The flux as a function of

toroidal angle stays relatively constant in the counter-current direction while the flux

in the co-current direction loses some of the asymmetry about 0◦.

The fact that the flux has a dependence on the toroidal angle is not particularly
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Figure 4.6: Toroidal survey of HXR flux for both launch directions with 160 kW of
input power. The plasmas are non-reversed 400 kA with density 1.0− 1.5× 1013 cm−3.
The detector chords look through the magnetic axis.

surprising in plasmas with low energy confinement since fast electrons are lost quickly.

What is surprising is that the toroidal dependence does not seem to change as a function

of photon (and by inference electron) energy.

One normally expects that injected rf power Landau damps on electrons in the

absorption region after which the ohmic electric field pulls the now-decoupled electrons

into a high energy tail in the distribution. Anderson et al. [20] have calculated that

the parallel electric field in standard 400 kA plasmas to be on the order of 0.5 V/m.

Assuming a generous 4 keV starting energy from Landau damping, for the tail electrons

to reach energies high enough to produce hard x-rays in the 40 keV region (which we

see), electrons would need to travel over 70 kilometers, generally making many toroidal

transits. If this were the case, then to first order we should see similar x-ray flux for

comparable viewing chords at any toroidal angle.
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Figure 4.7: Radial survey of HXR flux 60◦ away from the MkIII antenna.

Since this is not the case, either the mechanism for producing the fast electrons (and

high energy x-rays) is not by way of the ohmic field, or there is a structure (for example

near the q = 0 surface where the field lines are purely poloidal) that allows electrons to

gain high energies without circumnavigating the vessel. The latter hypothesis must also

account for similar observations in both the reversed and non-reversed configurations.

A radial survey of the hard x-ray flux may be instructive in determining if absorption

of the LH wave is taking place at the predicted radial location. Because only thirteen

detectors were available for the seventeen chordal views and the count rate was so low

(the detectors are 60◦ away from the MkIII antenna), an ensemble of shots with the

same constraints as the toroidal survey is used. The data are shown in Figure 4.7. As

seen from the toroidal survey, far from the antenna, the flux is just above background

and leads to poor statistics especially at energies above 20 keV. Despite this issue,

several observations can be made.

The radial profile is quite flat across the majority of the plasma cross-section. If
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one takes the x-ray emissivity to be a function of the poloidal flux, ψ, then a flat flux

profile corresponds to an thin annulus of current from fast electrons at a radial location

outside the viewing region. This observation supports the conclusion that the antenna

is launching a wave that propagates and deposits it’s power at the edge rather than

the core.

The outermost viewing chord at x = +38.1 cm shows an order of magnitude more

flux than the rest of the chords for the counter-current drive launch, and a smaller

but significant uptick in the co-current launch direction. Equilibrium reconstruction

shows that this particular chord is more or less tangent to the reversal surface for these

plasmas. The initial assessment is that this chord is looking precisely at the annulus

of current that produces the flat profile over the rest of the cross-section.

In the toroidal survey the flux in the co-current direction is higher than in the

counter-current direction so it is peculiar that the outermost viewing chord should

have its flux juxtaposed in magnitude. Ray-tracing and Fokker-Planck modeling [21]

shows that counter-driven current is absorbed deeper into the plasma than co-driven

current. If the absorption region for the counter-driven current coincided with the

outermost viewing chord then we might expect the higher x-ray flux while the detector

missed the co-driven current farther out radially.

While the current can be considered a flux function, the x-ray emissivity is not

by virtue of the phenomenon of relativistic beaming of the x-rays. At higher energies

the bremsstrahlung cross-section dσ/dkdΩk is higher in the direction of the incident

electron. Figure 4.8 shows the asymmetry for an incident 50 keV electron. The ratio of

forward to backward cross-sections is fairly constant across the emitted photon energies.
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This effect will be particularly pronounced in the RFP where poloidal viewing chords

can be almost tangent to field lines (especially at the reversal surface) [22]. The electron

direction for standard MST plasma is up on the outboard side so electrons are moving

toward outboard detectors and away from inboard detectors.

The innermost chords at x = −50.8 cm and −45.7 cm are farther out than the +38

cm chord (in terms of ψN ), and they see no similar uptick. Either the fast electron

current sheet is narrow enough that the these chords completely miss it or the beaming

effect is strong enough to account for the difference. For counter-current launch, this

ratio between the +38 and −45 chords – around the same ψN — is about 50:1. This is

much larger than would be expected for beaming unless the incident electron energies

were hundreds of keV. Since we have no evidence of x-rays above ∼ 80 keV, this is

unlikely.

The peaking on the outboard chord is not only an rf effect. In plasmas without

injected rf power, this chord also sees above-average fluxes as shown in Figure 4.9. The

condition for thermal electrons to runaway is [23]

Ec =
4πnee

3

Te

(

ln Λ + ln

(
4πnee

3 ln Λ

TeE‖

))

, (4.21)

where the onset of runaway production occurs at E‖/Ec ∼ 3%. Standard MST plasmas

have parameters very close to this 3%. As expected from (4.21), the magnitude of the

flux is highly dependent on the plasma density. At higher densities, the flux is so scant

that a large ensemble of shots is required to assemble a spectrum.

The observations of both the apparent production of an rf-induced fast electron
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Figure 4.9: Radial survey of background
HXR flux in 400 kA standard plasmas
with line-averaged densities 0.5 − 0.8 ×
1013 cm−3.

current sheet (or at least a region of high emissivity in the edge) and the toroidal

asymmetry we see are difficult to reconcile. If the lower hybrid wave absorbs just inside

the reversal surface, some class of superthermal electrons (via Landau damping) will

be resonant with a drift velocity. This class might be localized to a particular toroidal

angle while they are accelerated by the ohmic field. While possible, all the various drifts

must be finely balanced even as the the particle’s parallel velocity increases (causing

a certain change in the curvature drift). Since an electron will need tens of kilometers

to accelerate to 40 keV, this scenario is unlikely.

There is another possibility in the same category as the reversal surface trapping

that should at least be mentioned. The perpendicular velocity rather than the parallel
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velocity could be the driver of the high energy x-ray flux. If Landau damping drives

the parallel energy up to ∼4 keV and then parallel and perpendicular diffusion moves

the electron higher into perpendicular velocity space, it will slow below the Landau

resonance. A second pass through the absorption region and another round of diffusion

will allow the electron to move yet higher in velocity space. Can this cycle get the fast

electrons to E⊥ & 40 keV?

Figure 4.10 shows the distribution function from the results of CQL3D modeling

of 100 kW of co-current drive. While there is a significant spread in perpendicular

velocity space, the contours show clearly that for perpendicular energies at all close

to approaching the measured flux energies, the parallel energies by themselves would

be easily sufficient to obtain those same fluxes. So this mechanism cannot explain the

toroidal asymmetry in x-ray flux.

Lastly we look at the shape of the HXR spectra. Figure 4.11a shows the background

spectra for three different density ranges seen from the +38 cm radial x-ray chord.

Figure 4.11b shows the spectra from the same chord, but with 160 kW of rf power

in high density plasmas (1 − 1.5 × 1013 cm−3). Qualitatively there appears to be a

“kink” at 30 keV, so a two-temperature fit to the tail can be used to characterize

the spectrum [2, 24]. For the background spectra, the “characteristic” temperature

increases slightly as the density increases. The higher energy tail falls off roughly half

as quickly for each density, though the statistics are quite poor for the high density

spectrum.

The rf spectra whose density corresponds to the triangles in Figure 4.11a shows a

much steeper falloff in the spectrum for each of the launch directions than the back-
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Figure 4.10: Distribution function from CQL3D at r/a=0.8, near the absorption region
for 100kW of rf power and Dρ = 1m2/s

ground at a similar density. Both of the characteristic temperatures are about half as

large as the background temperatures. The magnitudes for co-current and counter-

current launch are similar indicating that the x-ray production mechanism is probably

also the same. The disparity between the background and rf spectra however suggests

a differently-shaped fast electron distribution and thus the mechanism for producing

that distribution might also be different.

We certainly expect the origin of the fast electrons — either background or rf-

induced — to be different: the background electrons will either be thermal or “fast”

where fast in this context means drifted but still less than 1 keV [23]. The rf-induced

electrons are normally boosted by Landau damping to the phase velocity of the wave

at absorption: 2-4 keV. In either case the background ohmic field takes over and pulls
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Figure 4.11: Hard x-ray spectra detector chord at x = 38.1 cm. (a) Background spectra
for three different density ranges (×1013cm−3) (b) Spectra for MkIII antenna in both
launch directions. Density is 1 − 1.5 × 1013cm−3. Fits are 12-30 keV and 30-80 keV,
with the characteristic temperature corresponding to the e-folding length.

the tail out to high energies. CQL3D modeling predicts that while a clear knee at the

Landau resonance is seen, above about 14 keV, the only difference in the shape of the

spectra is in the magnitude.

4.3.2 The Near Field

As noted in the previous section, while low power experiments found no discernible rf-

induced x-ray flux at toroidal angles away from the antenna location, the radial array

at 150T — at the same angle as the MkII antenna — observed significant flux. When

the MkII antenna is operating, the array’s viewing chords intersect the near field zone

of the antenna.

An ensemble of shots at 400 kA and line-average densities between 1−1.5×1013 cm−3
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Figure 4.12: Hard x-ray flux from a set of radial chords looking at the MkII antenna.
The peak flux is centered at the port being fed power.

were used with the MkII antenna operating at ∼ 90 kW input power. The radial

measurements of x-ray flux are shown in Figure 4.12 for both launching directions. A

sketch of the antenna is superimposed where the viewing chords would intersect it.

The results are dramatic. The chords that intersect the antenna face (on-antenna

chords) show much more flux than the chords that do not (off-antenna chords). The

peak flux for either launching direction (∼106 cm−2sr−1s−1eV−1 at 12-16 keV) is more

than 3 orders of magnitude higher than any off-antenna chord. Moreover, this peak

flux is also much larger than the flux seen by all (off-antenna) chords when the MkIII

antenna is operating at almost double the input power.

Also clear from the Figure is the fact that the location of the peak flux depends

significantly on the launching direction. The peak appears to be centered nearest the

end of the antenna from which the power is being fed. It should be noted that since
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the power is presumably being coupled to the plasma and damped as the wave travels

down the antenna, the feed end will possess the most power.

With the amount of flux available from the on-antenna chords in the radial survey

it becomes feasible to attempt a confinement time measurement of these fast electrons

that are (presumably) generating the observed high energy x-rays. Such a measurement

is not practical for the toroidal survey since the flux is simply too low.

To measure the confinement time of fast electrons generated by the LH antenna,

the input power was square-wave modulated with a period of 2 ms. A set of 60 shots in

standard plasmas was ensembled and the x-ray counts were binned with a 5 µs width

relative to the rising and falling edges of the rf modulation. The modulation is not

perfect, so the edges also have a width of about 5 µs. A typical modulated shot is

shown in Figure 4.13.

Figure 4.14 shows the ensembled falling edge of the rf modulation while Figure 4.15

shows the ensemble of the rising edge and the associated x-ray flux at the rf power

transition. These data are from the viewing chord at −35.6 cm and a co-current

launch. Both Figures show that to within the width of the transition, the x-ray flux

appears and ceases immediately with the application or cessation of rf power.

By (4.3) or (4.13), we assume that the x-ray flux is proportional to some popula-

tion of fast electrons nf in the volume of our viewing chord. Constructing a simple

continuity equation for the fast electrons, we have

∂nf

∂t
≃ −∇ · (nfu) − νs nf + Sohmic (t) + Srf(t) (4.22)
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Figure 4.13: Modulation of the rf input power and the typical hard x-ray flux of a
detector looking at the face of the MkII antenna.

where the first term on the right is the flux of particles entering or leaving the viewing

volume, the second is the collision term where τs = 1/νs is the slowing down time

for the fast electrons, Sohmic is the source term representing electrons accelerated into

the fast population by the ohmic electric field and Srf is the source term for other

rf-induced effects on the electrons include Landau damping. For our purposes, given

the fact that the diagnostics are sensitive to x-rays above ∼10 keV, we will define those

electrons with energies above 10 keV as fast electrons.
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Figure 4.14: Hard x-ray flux relative to the turn off of rf modulation.

Taking the rf turn-off experiment first, we have at toff > 0, Srf → 0. For an

equilibrium background field, Sohmic is constant; however, we will assume for now that

the accelerating field cannot significantly inhibit the losses and show a posteriori that

this is the case. Then losses by particle flux out of the viewing volume as well as losses

due to fast electrons slowing down can be aggregated to first order as

∂nf

∂t
∼ −νfnf , toff > 0 (4.23)

where τf = 1/νf is the characteristic confinement time for these fast electrons. Consid-

ering the rate of decay of the x-ray flux, we can estimate the fast electron confinement

time is on the order of 5 µs. For 10 keV electrons, the slowing down time is about 5

ms, so on the time scale of interest, the electrons are collisionless, and all the loss is

due to particle flux out of the viewing region (and presumably the plasma).
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Figure 4.15: Hard x-ray flux relative to the turn on of rf modulation.

For the rf turn-on experiment, the x-ray flux (and presumably the fast electron)

growth rate is also on the order of 5 µs. For a Landau damped electron starting at (a

quite generous) 4.6 keV, at ∼0.5 V/m, accelerating to 10.5 keV would require 0.25 ms

and 16.7 keV would take almost 0.4 ms. (For a thermal electron the required time is

0.65 and 0.8 ms.) Then even if Srf provided the Landau damping, the Sohmic source

cannot contribute anything to the population (and cannot inhibit the losses either).

Srf must then solely generate the fast electron population. Considering that the

decay time τf is also on the order 5 µs, then the source must accelerate electrons (either

thermal or possibly Landau damped) up to 20-50 keV in at most that time.

4.3.3 Antenna Interaction

The mechanism for the production of high velocity electrons in front of the antenna

(and away from it) as observed in the previous sections must in some way be explained.
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The question of the bremsstrahlung process itself is a slightly different one. Conserva-

tion of energy requires that any fast electron colliding with a (cold) ion must have a

kinetic energy greater than the photon produced, so observation of high energy photons

requires an mechanism for yet higher energy electrons. There are two possibilities for

the background nuclei: bulk plasmas ions directly in front of the antenna, and/or the

lattice nuclei of the antenna itself. The observations from Figure 4.12 illustrating the

difference between on-antenna and off-antenna x-ray emission suggest that the antenna

may be acting as a target for fast electrons.

MST has a set of eight 2” ports directly opposite the MkIII antenna at 90T. Having

been previously used as Thomson scattering viewing windows, a set of quartz lenses

on these ports had already been installed. Mounting a CCD camera at the focal point

of a subset of these lenses allows a good closeup view of the antenna.

A Dalstar CA-D1 CCD camera with 128×128 resolution and exposure time of 1.276

ms was used to capture the images. Figure 4.16 shows a set of frames captured by the

CCD camera during a pair of high power rf pulses. It was noted that there appeared to

be damage to the antenna face at the port 2 end near the aperture. Further inspection

showed that a manufacturing defect of the molybdenum PFC had allowed it to slip

down the antenna face exposing the copper frontplane.

The exposed copper appears to have been eaten away, presumably by the impact

of high energy particles. Indeed, the lower sequence of images of Fig. 4.16 shows light

from the the exposed copper region saturating the camera when 160 kW of power is

applied to the port 2 antenna feed.

The upper sequence shows the antenna interaction near the port 1 feed when 195
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Figure 4.16: CCD camera view of the MkIII antenna showing fast electron interaction
with antenna prior to correcting the molybdenum front cover. Each frame has an
exposure time of 1.28 ms.

kW of power is applied to port 1. There is visible interaction at the upper right-hand

edge of the aperture, but unlike port 2 side there is no exposed copper to sputter.

Interaction with the antenna is visible only at the feed end of the antenna. For

example, looking at the port 2 end of the aperture with power is fed at port 1 shows no

apparent brightening, even with the copper exposed. This observation is a verification

that the (backwards) phase velocity of the ohmic field pulls out the fast electron tail

in the phase velocity direction.
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As an aside, the sequences also reveal the pitch angle of the guide field relative

to the antenna. The electrons being accelerated into the aperture are following the

field lines such that most of the apparent interaction occurs on the upper-right and

lower-left edges of the aperture.

4.3.4 Discussion

The visible interaction with the antenna is further evidence that the cause of the large

on-antenna flux is from fast electrons hitting the antenna itself rather than interacting

with plasma ions directly in front of the antenna. Assume for the moment the alternate

hypothesis: it is the plasma rather than the antenna. Starting then with (4.4) and

taking the differential with respect to the energy of the emitted photon, we have

ǫ ≡ dN

dt dVdΩ dk
=

1

4π
nb
dσ

dk
nfvf , (4.24)

where we have integrated over the angle between the incident electron and emitted

photon, and we have assumed isotropic emission.

If we then take dV = dAdl and integrate ǫ over l assuming that the emmisivity is

constant in a certain region of width ∆l and zero everywhere else, then we have

φ (k) ≡ dN

dt dA dΩ dk
=

∫

ǫ (k, l) dl ≃ ∆l
∑

ǫ (k, l) = ∆l ǫ (k) (4.25)
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where φ is the measured x-ray flux. Combining (4.24) and (4.25),

1

∆l
φ =

1

4π
nb
dσ

dk
nfvf . (4.26)

For the sake of argument, we will choose ∆l ≃ 1 cm, nb = 1× 1012 cm−3, Zeff = 6, and

for the incident electrons a monoenergetic beam with T0 = 15 keV. The last two are

likely too large and too small respectively, so these choices will underestimate the fast

electron population required. For the flux, we choose the peak measured value of 106

at 14 keV. Evaluating the cross-section and plugging in,

1

1
106 ≃ 1

4π

(
1012

) (
4 · 10−28

)
nf

(
7.1 · 109

)
, (4.27)

yields a required fast electron density of nf = 4.4 × 1012 cm−3. A fast density on the

order of the bulk density — which is an underestimate — is simply unrealistic.

What if instead the x-ray emission were from thick-target bremsstrahlung? The

viewing chord at −35.6 cm looks onto the antenna face with two-thirds of its spot is

the molybdenum of the antenna frontplane and one-third looks through the aperture

into the antenna cavity. The backplane is silvered, but we will assume that our x-ray

emission is from the molybdenum frontplane.

While the characteristic radiation for most of the materials in MST occurs beneath

the instrumental threshold of the hard x-ray detectors, the Kα and Kβ transitions for

molybdenum are at 17.4 and 19.7 keV respectively [25]: well within the sensitivity of

the diagnostic. One would expect to see these peaks easily, but we do not. However,

experiments by Chervenak [13] have shown that the angle of incidence and emission
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matter a great deal in the production of line radiation. For shallow incident angles,

which we might expect from our geometry, Chervenak found that the molybdenum

characteristic radiation was completely absent.

With this concern allayed, we combine (4.11) and (4.13),

φ =
27.6

4π
Z (T0 − k)

1

k
10−10nfvf . (4.28)

For molybdenum Z = 42. Evaluating as before,

106 ≃ 27.6

4π
(42) (15 − 14)

1

14
10−10 nf

(
7.1 · 109

)
(4.29)

gives a density of nf = 2 × 105 cm−3, a much more plausible value. For the thick-

target formulas, using T0 = 15 keV overestimates the fast electron population, since

the observations show incident electrons beyond 30 keV.

Repeating the exercise for off-antenna viewing chords and assuming plasma bremsstrahlung,

we get fast electron densities 4 to 5 orders of magnitude smaller than the bulk (plasma)

density. These numbers are not implausible; we may not need to invoke thick-target

bremsstrahlung with the wall to explain the magnitude of the flux. Without know-

ing the source and mechanism for fast electron acceleration, however, it is difficult to

evaluate the relative probablility.

By inspection of the data we can come to the conclusion that wave absorption by

Landau damping and acceleration of the progenitor electrons by the ohmic field cannot

by themselves explain the x-ray emission at the line-of-sight of the face of the MkII

antenna and the apparent lack of confinement by these same electrons. While the
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background spectra hint that it is at least possible to confine some fast electrons long

enough to attain high energies, the toroidal asymmetry in the far field and difference

in spectral shape indicates that the ohmic field is not the primary mechanism for

acceleration of these electrons up to and beyond 50 keV.

The apparent rejection of the aforementioned parallel ohmic field mechanism means

that more unorthodox processes must be considered. Mechanisms for fast electron

and/or x-ray production from something other than an electric field should at least be

mentioned. These are beta decay, internal excitation of ions or atoms, emission fol-

lowing beta decay, annihilation, nuclear reactions, and line radiation following internal

excitation [14]. Many of these can be discarded out of hand because they generate

electrons or photons only away from the observation range or at narrow energy spec-

tra. The rest can be eliminated by noting that the x-rays observed are apparently

rf-induced, and for the [small] power injected, we cannot expect the rates of any of

these mechanisms to change in any discernible degree. Fast electrons as a result of

rf-induced fields are then what is required to explain the observations.

As mentioned in §4.3.2, the rf source Srf must generate some part of the fast electron

population directly. It happens that the antenna itself — or the electric fields directly

in front of the antenna — may be sufficient to generate our fast electrons. These more

or less thermal electrons in the plasma edge must be accelerated to energies in excess of

40 keV in a single pass through the antenna fields. Then they will either undergo thick

target bremsstrahlung when they impact the antenna structure, with the resulting high

x-ray flux and the visible antenna interaction, or will be confined long enough by the

guide field for bremsstrahlung to occur seen by detectors toroidally off the antenna.
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4.4 Antenna Field Modeling

The problem of interaction of plasma electrons with lower hybrid antennas has been

discussed in the context of high heat loads and damage to divertor and first wall

components in TdeV and Tore Supra [26–28]. In particular, Goniche et al. found that

with near-antenna fields of 5 kV/cm, electrons could achieve energies as high as 3 keV.

As seen in Figure 4.12, even at relatively low power levels, high hard x-ray fluxes

with energies greater than 30 keV are seen which implies that the interdigital-line an-

tenna near field must somehow be capable of accelerating electrons to the minimum 30

keV — well beyond what the waveguide-grill antenna modeling suggests is achievable.

The two cases are not directly analogous, however. Typical peak n‖ spectra for

the tokamak models range from 2.0 − 3.3 whereas the MST antennas have n‖ ∼ 7.

Since electrostatic Landau damping is essentially the process by which the electrons

are accelerated, the MST antenna should be more efficient than the fast wave antennas

which must rely on high n‖ sidebands with little power to do the accelerating. The

structure of the near-fields for the MST antennas are also substantially different than

the waveguide grill with substantial power in the Ey fringing fields at the edge of

the aperture. The question of whether these distinctions are enough to explain the

observations is the focus of this section. To determine if the fields on the antenna are

responsible for the x-ray flux seen by the HXR detectors, the fields must be able to

accelerate electrons to energies at least as high as the photons presumed to be the

result of bremsstrahlung.
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4.4.1 1D Potential Well Model

The simplest model of the antenna field is a one dimensional sinusoidal potential as a

traveling wave with wave number k and frequency ω. If we assume a monochromatic

spectrum, then our electric field looks like (3.27), but for the simple model can be

described as

E (z) = E0 sin (kz − ωt+ δ) , (4.30)

and the potential: V (z) =
∫
E dz. The magnitude of the electric field E0 is obtained

from numerical modeling (with a flat antenna model) by either Microwave Studio or

comsol. For 85 kW of input power 2 mm in front of the antenna, the vacuum model

shows fields up to 4.5 kV/cm. Plasma models show even higher fields are possible,

above 6 kV/cm. For the following calculation we shall use a E0 = 5 kV/cm.

As we have more or less definite boundaries with the aperture of the antenna, we

can arbitrarily choose at what phase δ the test particle enters the field potential to

obtain an upper limit on the energy gain of the test particle.

The first step is to Lorentz boost the electron entering the antenna field into the

rest frame of the traveling wave:

v′i =
v − vφ

1 − vvφ/c2
(4.31)

where vφ = ω/k is the phase velocity of the wave. At the same time we have to boost

the electric field into the moving frame as well. The magnitude of the E ′
z component is

equal to Ez and since we are concerned only about the z component, we have E ′
0 = E0.



163

The wave itself is a function of z and t so we have:

E ′(z) = E0 sin
(

k γ (z′ + vφt
′) − ωγ

(

t′ +
vφ

c2
z′

)

+ δ
)

= E0 sin
(

k γ
(

z′ + S
SS

ω

k
t′
)

− ωγ
(

SSt
′ +

ω

k2c2
kz′

)

+ δ
)

= E0 sin
(
kz′γ − kz′γβ2 + δ

)

= E0 sin
(
γ−1kz′ + δ

)
.

(4.32)

The wave becomes a standing wave as intended, and we see that the wave number

is transformed as k′ = γ−1k, though for the phase velocity of the wave, vφ ≃4.54× 107

m/s or 0.15c, this is a small modification.

Now integrating to find the amplitude of the potential,

V ′
0 =

E0

k′
=
E0γ

k
=
E0γ

k0n‖

= E0
1

k0

(
n2
‖ − 1

)−1/2
(4.33)

where k0 = ω/c ≃ 0.1675 cm−1 is the vacuum wave number, and we have made the

standard substitution n‖ = kc/ω. As (4.33) makes clear, the lower our launch spectral

peak, the larger the potential. The data from Chapter 3 show that depending on the

feed, n‖ varies mostly between 6 and 7. We shall use a value of n‖ = 6.6 for this

calculation giving V ′
0 ≃ 4.6 kV.

The initial kinetic energy in the moving frame is T ′
i = (γ′i − 1)mec

2. Suppose, in

our first case, that T ′
i > 2eV ′

0 . The potential then cannot stop the electron (in the

wave’s frame) no matter what phase the particle enters the field and can only increase
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its energy by a maximum of 2eV ′
0 . In this case, T ′

f = T ′
i + 2eV ′

0 and so

v′f = c
√

1 − 1/γ2, γ =
T ′

f

mec2
+ 1. (4.34)

Finally we must transform back to the lab frame:

vf =
v′f + vφ

1 + v′fvφ/c2
. (4.35)

For an electron entering the field moving in the same direction as the phase velocity,

it can achieve energies of more than 45 keV, but only if it initially had a kinetic energy

above 30 keV which is exceedingly unlikely in 40 eV edge plasmas. On the other hand,

an electron moving in the opposite direction can start at a more reasonable 375 eV

(but still quite far out in the tail of the Maxwellian) and will achieve 4.3 keV, a much

larger relative energy gain. Either is apparently useless in achieving the the energies

required to produce the bremsstrahlung observed.

If we take a second case, T ′
i < 2eV ′

0 , then there is enough energy in the wave to bring

the electron to a stop in the wave frame. To get maximum energy in this case, we let

the electron come to a stop at the very top of the potential well. Here v′ = 0. Then the

drop through the entire potential gives the electron a kinetic energy of 2eV ′
0 for a final

velocity of v′f = 5.6 × 107 m/s as calculated by (4.34). For electrons initially traveling

opposite to vφ, gaining maximum energy means that the electron will be “reflected”

off the wave back to the direction it entered the wave field.

Transforming back using (4.35), the final velocity in the lab frame is 9.9× 107 m/s

or a kinetic energy of 30.2 keV. This is remarkable since the electron can be essentially
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at rest in the lab frame to achieve these energies and in times on the order of a wave

period. This mechanism could explain a large amount of the x-ray flux that we see,

and indeed the transition in Figure 4.11 between the higher and lower flux regimes

occurs at ∼30 keV.

Still there is x-ray flux, albeit on much lower levels, out to 50 keV and beyond. Some

numerical models show fields in front of the antenna to be higher than our stipulated

E0 = 5 keV, and the higher fields could produce the higher energy x-rays, or another

mechanism must be present.

4.4.2 Gyromotion Model

The one-dimensional traveling wave model is unmagnetized. In the edge we have a

guide field which adds gyromotion to the mix. In the previous sections much attention

was placed on the parallel velocities of the fast electrons, because of the standard

focus on Landau damping and the parallel ohmic electric field. High perpendicular

velocities can be just as important: for bremsstrahlung, in the view of the cold ion, an

incident electron with a high v‖ or a high v⊥ amount to the same thing. Certainly the

bremsstrahlung cross-section will be unlike what we expect for purely parallel electrons,

but will not change the energy of the emitted photon.

There are three hypotheses we will consider. The first is that thermal electrons

coming into the antenna’s near field are boosted (in their perpendicular velocities)

through the relativistic Doppler-shifted cyclotron resonance [29]

ω − k‖v‖ −
nΩ

γ
= 0 (4.36)
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where Ω ≡ ωce. The n = 0 case corresponds to the one-dimensional model in the

previous section. When n = ±1, we have the Doppler-shifted frequency seen by the

electron moving at v‖ equal to its own gyrofrequency.

Solving (4.36) for the antenna parameters and the cyclotron frequency at 1500 G,

4.2 GHz, we get two solutions for v‖: 1.93×108 and −1.41×108 m/s. These correspond

to kinetic energies of 157 keV and 68 keV respectively. Clearly we would not require a

resonance condition if the necessary incident energies are already sufficient to produce

the bremsstrahlung we observe. Thus we can discard Doppler-shifted resonance as the

primary acceleration mechanism.

For resonances at higher harmonics, the fields must have spatial variation in the

perpendicular direction [30]. One case of such variation occurs not when the wave itself

changes, but when the direction of the parallel field changes. If we add a slight tilt to

the guide field — as is the case for the physical antenna — then the gyromotion can

interact with the spatial variation of the traveling wave. Figure 4.17 gives a picture of

an electron with gyromotion interacting with the antenna field.

To characterize this case, we take the change in energy for an electron subject to a

Lorentz force. Ignoring motion in the parallel direction,

dW⊥

dt
=

d

dt

mv2
⊥

2
= mv⊥ · dv⊥

dt
= q v⊥ · (E⊥ + v × B) = q v⊥ · E⊥ (4.37)

Rotating the coordinate system so that ẑ → b̂ and assuming for the moment that our
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Figure 4.17: Diagram of tilted-field gyromotion model. The guide field is at an angle θ
with respect to the long axis of the antenna, giving a perpendicular spatial variation.
Not to scale.

perpendicular field is only in the x̂-direction, we have:

E⊥ = x̂Ex cos (k⊥y − ωt) = x̂Ex cos (k0 sin θ y − ωt) (4.38)

where θ is the angle between the guide field and the long axis of the antenna. The

gyromotion in the y-direction is

y = ρL cos (Ωcet+ φ) (4.39)

where ρL = mev⊥/|q|B is the Larmor radius. Plugging (4.38) and (4.39) into (4.37)
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with v⊥ = x̂ΩρL cos (Ωt+ φ), we get

dW⊥

dt
= qExΩρL cos (k0 sin θ ρL cos (Ωt+ φ) − ωt) cos (Ωt+ φ) (4.40)

= qExΩρLRe

[
∞∑

n=−∞

Jn (k0 sin θ ρL) ein(Ωt+φ−π/2)−iωt

]

Re
[
ei(Ωt+φ)

]
, (4.41)

where (4.41) is found by applying Jacobi’s expansion [31]. Then when ω = (n+ 1) Ω

there will be an increase in W⊥ proportional to Jn (k0 sin θ ρL) cos ((n+ 1)φ− nπ/2) on

average. For the MST antenna parameters, however, the resonance condition cannot

be satisfied since the the gyrofrequency is larger than the pump frequency.

While the variation of (4.38) cannot satisfy our requirements, the tilt of the guide

field is not the only source of spatial variation in the perpendicular direction. By

virtue of being a physical device, the wave field has a finite extent and its boundary

constitutes a spatial variation. The transition between the antenna aperture where

the electric field is high and the grounded frontplane where the field is zero provides

a gradient that will provide a mechanism to pump energy into electrons entering the

region. A sketch of the model is shown in Figure 4.18.

We can model the gradient at the aperture edge as a plateau (in front of the aperture

itself) with an linear falloff down to zero field on the frontplane. The falloff will have

a scale length λa that is on the order of one millimeter. Neglecting Ey, we have the

perpendicular field at the aperture edge:

E⊥

∣
∣
∣
∣
edge

= x̂Ex

(

−y − y0

λa

)

cos
(
k‖z − ωt

)
(4.42)
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Figure 4.18: Diagram of gradient gyromotion model. The fields fall off at the edge of
the antenna aperture. Not to scale.

with y = y0 + ρL cos (Ωt+ φ). Using the same perpendicular velocity as above with

(4.37), the change in energy is

dW⊥

dt
≃ eExΩ

ρ2
L

λa
cos2 (Ωt+ φ) cos

(
k‖z − ωt

)
. (4.43)

Since the gyroradius is a function of v⊥, it is also a function of W⊥ so (4.43) is strictly

a differential equation. If the gyroradius does not change too much over one orbit, we

can neglect the time dependence or use an iterative method to find the energy gain.

For illustration, we assume that the electron is moving at a parallel velocity v‖ = vφ,

the phase velocity of the wave, and enters the fields at the correct phase, then the

rightmost cosine term goes to unity. The equation is then non-negative, and energy

will be pumped into the electron. Integrating over a gyro-orbit:

∫ 2π/Ω

0

dW⊥

dt
dt = ∆W⊥ = eEx

ρ2
L

λa

π (4.44)
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is the kinetic energy gain of the electron in the gradient over one orbit. For Ex = 2.92

kV/cm, λa = 1.3 mm, B0 = 1500 G, and an initial v⊥ = 4 × 106 m/s (45 eV), the

electron gains ∼16.2 eV per orbit. This corresponds to 68 keV in 1µs, enough to satisfy

our observations, but we know that as the perpendicular energy goes up, the Larmor

radius increases and makes the pumping more efficient. Using the result of (4.44), we

find v⊥ and ρL and then iterate. If the electron remains in the gradient, it will achieve

100 keV in about 6 ns. For v‖ ≃ vφ = 3.87 × 107 m/s, the electron will travel 23 cm,

on the order of the length of the aperture.

While the initial phase and velocity are contrived to obtain a sufficient energy, the

model succeeds in accelerating an electron well in excess of what is required for the

highest energy x-rays observed. That said, the mechanism must at the same time

accelerate the electron to the required parallel velocity to make the example above

work. Also because the force is unidirectional, the electron will quickly drift out of the

gradient.

This model is still quite simple as it doesn’t take into account several features of

the physical picture. The field tilt of the second case must be accounted for since it will

serve to prevent the electron from coasting along the aperture edge where the gradient is

strongest. The polarization drift mentioned above must also be included. The antenna

not only has Ez and Ex components, but also develops a strong Ey component at

the aperture edges — right where we expect most if not all of the v⊥ pumping to

occur. Depending on the phase of the wave when the electron enters, Ey could provide

additional pumping. These additions make calculations to find the maximum energy

gain complicated enough that a “brute force” method becomes more practical.
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4.4.3 3D Full Fields Model

At this point, it becomes more efficient to solve the full Newton-Lorentz equations of

motion. For this we develop an Antenna Lorentz Field (alf) code that takes a set of

test particles in some initial velocity distribution and follows them through the fields

in front of the antenna. As before, we make the assumption that at the plasma edge

we have a very diffuse, low temperature, quasineutral plasma with collision rates much

slower than the antenna interaction time. Our equations of motion for an individual

test electron are:

dp

dt
= q (E + v × B) (4.45)

dx

dt
= v (4.46)

where using the momentum p = γmv in (4.45) allows us to use the relativistic formu-

lation. To solve this system of equations we use the leap-frog method as outlined by

Birdsall and Langdon [32],

un+1/2 − un−1/2

∆t
=

q

m

(

En +
un+1/2 − un−1/2

2γn
×Bn

)

(4.47)

xn+1 − xn

∆t
= vn+1/2 =

un+1/2

γn+1/2
(4.48)

where u ≡ γv, the relativistic momentum divided by the mass, γ can be formulated

as γ2 = 1 + u2/c2, and the time tn = n∆t.

For the relativistic calculation, it is easier to use the method by Boris [33] and
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separate the E and B fields completely by letting

un±1/2 = u± ± qE∆t

2m
. (4.49)

Then using (4.49) we can rewrite (4.47) as:

u+ − u−

∆t
=

q

2γnm
(u+ − u−) × Bn. (4.50)

Using (4.50), u+, and thus un+1/2 can be recovered given u−. An implementation of

this method can be found in Appendix F.

For this model we use a slab geometry, so the antenna is flat, and the static magnetic

field is parallel to the antenna face. Like the experiment, the guide field can be pitched

at an angle relative to the antenna axis. The default guide field strength was chosen

to be 1500 G, within a couple of percent of typical edge fields for 400 kA standard

plasmas.

The antenna fields E = E (x, t) and B = B (x, t) are obtained from the afore-

mentioned comsol simulation of fields — in vacuum or plasma — in front of the

antenna. The outputs of the model are actually the complex fields with a harmonic

time dependence. Then for example, the electric field is:

E (x, t) = ReE (x) cos (ω0t+ δ) − ImE (x) sin (ω0t+ δ) (4.51)

where ω0 is the pump frequency and δ is the phase at t = 0. The phase angle is chosen

at random. The plasma model used in the following runs is cold with a vacuum gap of
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1 mm, a density step of 5 × 1010 cm−3 and a density gradient of 1 × 1011 cm−4.

Our simulation domain is a three-dimensional box above the antenna. The E and

B fields are imported from the comsol run on a 477×105×46 grid, with 1.0 mm

spacing. To retrieve the fields at a particular point (x, y, z) within the domain, we use

a three-dimensional tricubic interpolation routine [34].

Each run consisted of at least 10000 particles and a time step of 2 × 10−12 s, Each

particle was followed for one million steps, but stopped if the particle moved outside

the force field and was determined not to return.

The initial parallel and perpendicular velocities of the particle are chosen from

Maxwellian tail distributions. If desired, one-sided distributions can be used to explore

the relationship between the directions of the parallel velocity, gyromotion, and the

pump wave phase velocity. The tail distribution is cut off below 1 eV to increase the

interaction with the pump fields. It was found that many very low velocity electrons

never made it to the aperture where the highest fields and the most interaction took

place in the simulation time. For the following simulations, a 40 eV distribution was

used.

For the starting position of the particle, a plane normal to the field line is chosen,

and a rectangular region on this plane is defined by choosing all field lines that intersect

the plane and antenna aperture. The particle’s position on this region is chosen from

a uniform distribution and then translated to the face of the simulation domain as the

fields outside the domain are zero. Figure 4.19 shows the starting positions for a pair

of runs. The starting positions can be further constrained to pick out certain spatial

gradients.
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(a)

x

y

z

(b)

Figure 4.19: Starting positions of electrons for a simulation run. The antenna face and
aperture are shown along with the simulation domain (box). Dimensions are not to
scale. (a) Field line pitch of 8◦ and a negative temperature distribution. (b) Field line
pitch of 12◦ and a positive temperature distribution.

The first result of the code is to verify the 1D potential model of §4.4.1. Though

the fields used in alf are 3D vector fields, the code can be configured to scale field

components independently. For comparison to the 1D model, the perpendicular fields

Ex and Ey are set to zero, the pitch angle is set to zero so the guide field is parallel

with the antenna axis, and the strength of the Ez field is scaled to 85 kW of input

power as in the modulation experiment of §4.3.2. The spatial distribution is set for the

electrons to start 1-2 mm above the antenna face. The results for both vacuum and

plasma are shown in Figure 4.20.

As we expected from the 1D model, a tail is pulled out in the direction of the

phase velocity of the wave. With no perpendicular components of the field or pitch to

the guide field, the energy in the perpendicular direction does not change. The peak
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(a) (b)

Figure 4.20: Results of near field modeling reproducing 1D potential well model. Here
the perpendicular fields Ex and Ey are set to zero. The geometry corresponds to a port
1 feed. Units of velocity and kinetic energy are shown. (a) The initial velocity distri-
bution (top) and the response from vacuum fields (bottom). (b) Similar distributions
with the antenna fields in the presence of plasma with a 1 mm vacuum gap. The black
lines indicate the trapped/passing boundaries.

energy of the tail for the vacuum field is ∼25 keV but no more. For the plasma the tail

achieves only about ∼ 15 keV due to the fact that the plasma causes damping of the

electric field while the vacuum field does not. Either result corroborates the prediction

that the parallel component of the field is not enough to drive electrons to energies

expected to produce the observed HXR flux.

The 2D gyromotion hypothesis can now be checked by restoring the perpendicular

field components. Figure 4.21 shows the final velocity distribution with the plasma

case for a field pitch of 0◦ and 180◦, corresponding to co- and counter-current launch.
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(a) (b)

Figure 4.21: Results of near field modeling with all field components for the plasma case
with 1 mm vacuum gap. (a) The final velocity distribution for geometry corresponding
to a port 1 or counter-current launch. (b) The final velocity distribution for a port 2
or co-current launch.

These runs start the initial electrons between 1 and 5 mm above the frontplane. With

all field components, a parallel tail is pulled out in the direction of the phase velocity

as expected, though barely to 10 keV in the co-current direction. More importantly,

we see the formation of a perpendicular tail that extends above 50 keV.

The fraction of the distribution greater than 10 keV is 0.09% and 0.04% respectively,

which is on the order of what is needed to produce the magnitude of off-antenna flux as

discussed in §4.3.4. The results then predict that thermal edge electrons entering the

antenna field are accelerated to high perpendicular velocities. Some fraction of these

fast electrons hit the antenna and produce the the x-ray emission seen in Figure 4.12.

The rest leave the antenna region and contribute either heavily or entirely to the flux

seen in the far field.
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To check if superthermal parallel velocities are required to produce high perpendic-

ular velocities, a pair of runs were performed with the Ez field components set to zero.

Other parameters of the simulation are the same as previously stated. The results of

the runs are shown in Figure 4.22. Without the parallel electric field, no tail in the

parallel direction develops. On the other hand, an extremely large perpendicular tail

is seen with 0.88% and 0.23% of the final distibutions for the vacuum and plasma cases

respectively attaining energies greater than 20 keV. Moreover, the tail extends to 80

keV in the plasma case and above 100 keV in the vacuum case. This perpendicular

tail is seen without requiring that the parallel velocity be on the order of the phase

velocity as was premised in §4.4.2, and apparently avoids drifting out of the gradient

via the polarization drift. Both Ex and Ey components are not required, either alone

can pull out a perpendicular tail, but not one as robust.

Several caveats must be mentioned. The simulations discussed have no field pitch,

which is present for standard plasmas. No plasma cases with a non-zero field pitch

were available, but alf runs with pitch using vacuum fields show the perpendicular

tail remaining, though with the high energy electrons having even less parallel velocity.

Secondly, the model uses a flat antenna and fields for a slab plasma instead of the

physical curved antenna. Nominally, however, the antenna is constructed so that its

face matches the flux surfaces. Lastly, the comsol model has an anomalously low n‖

spectrum which cannot be compensated as was done in Chapter 3. This will produce

a faster phase velocity than we would see in the experiment. The consequences of this

are uncertain.
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(a) (b)

Figure 4.22: Results of near field modeling verifying 2D gradient gyromotion model.
Here the parallel fields Ez is set to zero. The geometry corresponds to a port 1 feed. (a)
The final velocity distribution with vacuum fields. (b) The final velocity distribution
for antenna fields in the presence of plasma with a 1 mm vacuum gap.

4.4.4 Trapped Fast Particles

Figure 4.21 shows that almost all of the electrons above 10 keV, that is those that can

contribute to the hard x-ray flux, are trapped. With a trapping condition, a multi-pass

acceleration of fast electrons in the antenna field becomes a real possibility. Multiple

passes through the near field allow for electrons with an already high v⊥ to be boosted

to higher energies. The definition for trapping [35] is

v‖
v⊥

<

(
Bmax

B0
− 1

)1/2

, (4.52)

where B0 is the field at the location where the fast particle is born. For our particular

case this will be at the poloidal angle of either antenna aperture edge. The poloidal
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Figure 4.23: The banana orbit of a trapped particle produced by the antenna near field
projected onto a single toroidal angle. The particle is born at the antenna aperture
moving in the +b̂ direction. The banana width is not to scale.

dependence of the magnetic field in the RFP is similar to that of a tokamak with the

maximum |B| on the inboard side at θ = ±π. Figure 4.23 shows a sketch of a banana

orbit for a particular particle exiting the antenna near field. Since the magnetic moment

µ = mv2
⊥/2B is conserved, the smallest possible orbit will still take the particle back

to the poloidal angle where it was “born”. To determine B0 at the antenna aperture,

we use (3.39) and (3.40) for Bz (θ) and Bθ (θ). Because the inboard feed of the antenna

is nearer Bmax, the mirror ratio for electrons born on the inboard side will be smaller

than for those born on the outboard feed. It is this effect that makes the trapping cone

asymmetric in Figure 4.21.

To determine if a trapped particle will make a second pass through the antenna

near field (without making a full toroidal transit), we must calculate the toroidal drift

of the electron as it completes a single banana orbit. The significant particle drifts are
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the curvature drift

vR =
1

2

v2
‖

B Ωce

1

r

(

Bz θ̂ −Bθ ẑ
)

, (4.53)

the grad-B drift

v∇B =
1

2

v2
⊥

B2 Ωce

(
Bz

r

∂B

∂θ
r̂ − Bz

∂B

∂r
θ̂ +Bθ

∂B

∂r
ẑ

)

, (4.54)

and the E×B drift:

vE =
E ×B

B2
, (4.55)

where E is the ambipolar electric field. Equilibrium reconstruction and simple trans-

port analysis are used to calculate the parameters for each of these drifts. The toroidal

component of all these drifts is in the negative toroidal direction. There are two dif-

ferent cases to consider for trapped electrons. The first case is an electron that is born

on the inboard side traveling in the −b̂ direction. The inboard aperture edge of the

MkIII antenna is at −142.9◦: quite close to Bmax. Highly trapped electrons — those

with very high v⊥ — will almost immediately turn around back into the antenna field.

However, at the turning point, their parallel velocity is lowest, and they will spend

quite a bit of time in this region.

The second case is an electron born at the outboard edge of the aperture (−122.9◦

for MkIII). It will then complete the majority of a banana orbit before reentering the

antenna near field. In both cases, all three drifts are acting on the electron as it makes

its transit. The antenna aperture has a toroidal extent of 3 cm, so if the electron drifts

more than 3 cm in its single (fraction of the) banana orbit, it will not be able to make
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a second pass over the antenna.

The distance that the electron will drift over ∆θ = θ1 − θ0 via the grad-B drift is

s∇B = 2

∫ t1

t0

v∇B dt = 2

∫ θ1

θ0

v∇B(θ)

v‖(θ)
r dθ (4.56)

where the factor of two is for the reciprocal transit back from the turning point. Similar

expressions can be derived for sR and sE. To solve for s, we require v‖(θ) as well as

the location of the turning points. By conservation of energy and the invariance of µ,

we have

1

2
mv2

‖ = W − µB (4.57)

where W is the total (relativistic) energy of the electron. θ1 is found by setting v‖ = 0

and θ0 is at the pertinent aperture edge.

Figure 4.24 shows the toroidal drift as a function of E⊥ for a electron with E‖ =

+1 eV which corresponds to an electron born on the outboard side of the antenna and

traveling toward the outboard side. As expected for electrons with such small v‖/v⊥,

the curvature drift contributes little. For electrons with low perpendicular velocities,

making v∇B small, the E×B drift compensates since the bounce period will be longer.

This class of electron will then always drift too far to be able to pass over the aperture

on its return trip.

Figure 4.25a shows the total toroidal drifts for the outboard transit for a set of

different parallel energies. It is clear from the curves that electrons produced by the

antenna near field and travel in the +b̂ direction will never make a second pass back

through the antenna field without circumnavigating the machine. Figure 4.25b on the
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Figure 4.24: Toroidal drifts during a banana orbit for a given initial perpendicular
energy. The initial parallel energy is 1 eV and the electron is born on the outboard
side of the antenna. The transit path is antenna to turning point to antenna.

other hand shows electrons with initial v‖ < 0 and so will transit their banana orbit

on the inboard side. Because the antenna is on the inboard side of the machine, these

electrons have much less distance to travel before reaching the turning point and will

have much less time to drift. The difference between the drifts for initially positive

and negative velocity electrons is stark. Almost all of the inboard trapped electrons

produced by the antenna field will get a second pass through the field as they cannot

drift far enough to avoid the aperture.

We now can see how trapping further distorts the velocity distribution for a second

pass through the antenna field. The final velocity distributions of the alf runs illus-

trated in Figure 4.21 are used as the initial distribution. Any electrons with v‖ > 0
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Figure 4.25: Total toroidal drift during a banana transit for a given initial perpen-
dicular energy and for several initial parallel energies. The transit path is antenna to
turning point to antenna. The lower E⊥ cutoff on each of the curves is due to the
trapped/passing boundary. (a) The electron is born and transits on the outboard side.
(b) The electron is born and transits on the inboard side.

(outboard transit) are discarded per the previous analysis. Electrons with v‖ < 0 and

within the trapped boundary are kept, but since they will reenter the antenna field

after bouncing, their parallel velocity is reversed. Finally, any electrons whose trajec-

tory intersected the antenna frontplane are eliminated as they cannot participate in a

second pass. Figure 4.26 shows these initial and the final distributions after an alf

run for co- and counter-current drive phasings.

As expected, the fraction of electrons at high energies increases after a second pass.

On the other hand, the second pass distribution appears to produce fewer of the the very

highest energy electrons. The average parallel speed at E⊥ & 20 keV increases relative

to the single-pass case making it more likely that higher energy electrons (producing
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(a) (b)

Figure 4.26: alf results for second-pass acceleration for a plasma model with 1 mm
vacuum gap. The input distribution is that trapped fraction which bounces off the
inboard turning point. The black lines indicate the trapped/passing boundaries. (a)
Co-current drive phasing. (b) Counter-current drive phasing.

hard x-rays) will become untrapped.

Inspection of the final distributions reveals that multi-pass acceleration may explain

the observation from the toroidal survey that the hard x-ray flux at the antenna angle

is almost an order of magnitude higher for the co-current phasing than for the counter-

current phasing. The single-pass simulation shows a higher fraction of fast electrons for

the counter-current phasing, opposite of what the observations show. The second-pass

simulation on the other hand shows the fast electron fraction higher for the co-current

phasing — in line with the observations.

The negative toroidal drift for these trapped electrons also serves to nicely explain
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the observation of left/right HXR asymmetry about the antenna. Figure 4.5 showed

that x-ray production was higher at toroidal angles φ < φantenna than for φ > φantenna

for both phasings. Since all the trapped (fast) electrons will drift to smaller toroidal

angles, the higher fast electron population there should result in higher x-ray flux,

which is what is observed. In fact, this mechanism presents the problem of producing

any flux at all at angles φ > φantenna. Clearly, enough passing (but still fast) electrons

must be created to produce the observed high energy x-rays. It should be noted that as

plasma conditions evolve, the equilibrium changes in ways that can significantly change

the trapping ratio. Looking at (3.40) for example, if βp increases, then the mirror ratio

will decrease thus freeing electrons that were previously trapped.

4.5 Power Losses

As outlined in §2.7, a substantial percentage of the power available from the klystron is

not radiated to the plasma, and this reduces the efficiency of the system. Even power

radiated by the antenna may not be absorbed in the target region which will further

reduce the efficiency. Assuming the modeling is correct, fast electron generation by

the antenna near field functions as a loss mechanism. Power dumped into far-edge

electrons which are subsequently lost do nothing for driving current just inside the

reversal surface.

As noted in the previous section, viewing the antenna in the visible shows enough

antenna interaction — presumably by fast electrons — to give an conspicuous afterglow.

Goniche, et al [28] used IR cameras to calculate the absolute heat flux incident on the
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antenna limiters and magnetically connected surfaces of Tore Supra and TdeV. Without

an IR diagnostic on MST, we can only look at the hard x-ray flux and attempt to back

out a figure of merit for the losses into edge electrons.

There are two possible loss channels for these near-field accelerated electrons. First,

fast electrons could be immediately lost by impacting the antenna structure itself,

producing x-rays by thick-target bremsstrahlung. Second, the fast electrons could

simply follow the background magnetic field away from the antenna to be lost to the

toroidal limiter or wall by radial diffusion.

4.5.1 Losses to the Antenna Limiter

We start with the first loss channel. In §4.3.4, we used the magnitude of the observed

x-ray flux to corroborate our hypothesis that on-antenna flux must be the result of

thick-target bremsstrahlung. We refine that analysis here to estimate the losses as well

as to check the alf modeling. Starting with the equation for x-ray flux from a thick

target, we modify (4.28) for an electron distribution function:

φ (k) =
27.6

4π
Z 10−10

∫ ∞

k

(T0 (v) − k)
1

k
f(v) v d3v, (4.58)

where the kinetic energy T0 is a function of v and the integral only contributes to the

flux for electron energies above k.

The fast electron distribution f(v) will be defined as

nf =

∫ ∞

vf0

f(v) d3v, (4.59)
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Figure 4.27: 1D energy probability distribution for alf model. Inset shows location of
vf0

where final probability exceeds the initial probability.

where vf0
is a cutoff velocity that separates the distribution of interest from the bulk.

This cutoff velocity can be specified in several different ways. An initial Maxwellian

distribution will necessarily become distorted as a fast tail develops. We could then

define vf0
as the location in velocity space where the distorted distribution probability

first becomes larger than the initial Maxwellian. Figure 4.27 shows the initial and final

distribution from the alf model in terms of kinetic energy. The inset plot shows that

vf0
= 7.02×106 m/s corresponding to 140 eV. More practically, we can define a nobs

f to

be those electrons in the distribution whose energies are higher than the instrumental

cutoff of our hard x-ray detectors (∼12 keV). This will be the population required to

produce the x-ray flux that we see. Lastly, we can define an nf to be that part of

the distorted distribution that does not interact with the bulk. This definition is more

ambiguous, and so we will not deal with it.

The output of the alf model as well as a monoenergetic beam is a discrete set of
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particles. The distribution function can be approximated as a sum over the N particles’

location in velocity space:

f (v) =
nf

N

N∑

i

δ (vx − vxi
) δ (vy − vyi

) δ (vz − vzi
) (4.60)

=
nf

N

N∑

i

1

2πv⊥
δ (v⊥ − v⊥i

) δ
(
v‖ − v‖i

)
(4.61)

=
nf

N

N∑

i

1

4πv2
δ (v − vi) , (4.62)

with the last two equations derived by general coordinate transformations [36]. Plug-

ging (4.62) into (4.58), we have

φ (k) =
27.6

4π
Z 10−10nf

N

N∑

i=1

(T0 (vi) − k)
1

k
δ (v − vi) vi Θ (vi − vk) (4.63)

where vk corresponds to the velocity of an electron with an energy k. nf in (4.63) is

determined by normalizing φ against the integrated flux measured on a viewing chord.

Figure 4.28 shows the hard x-ray spectra from the alf model and a 50 keV beam

normalized against the flux on the radial chord at −35.6 cm. The data are from the

experiment shown in Figure 4.12.

The Figure shows clearly that the monoenergetic beam overestimates the flux for

all energies above 20 keV. This isn’t surprising since we expect that electrons of that

energy will be rare. Much more surprising is that the flux calculated from the numerical

model is a worse predictor with significant flux past 90 keV. The thick-target formulas

are quite sensitive to very high energy electrons. Removing the electrons above 54 keV
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Figure 4.28: Modeled and observed hard x-ray spectra for thick-target bremsstrahlung.
The measured flux is with a counter-current launch for a on-antenna viewing chord at
−35.6 cm. The modeled spectra are normalized to the observed integrated flux above
12 keV.

(5% of nobs
f ), shows significantly better agreement with the observed flux, though still

quite a bit higher from 30-40 keV.

This result shows that alf is overproducing high energy electrons. The final distri-

bution is for all electrons at the end of 106 steps wherever they are in the computation

domain, not just the ones that hit the aperture. The electric field domain also starts

1 mm above the aperture, so the code is accounting for field interactions very close to

the antenna (or inside the cavity). Adding these fields and including a more accurate

aperture bounding function may limit the fraction of high energy electrons, but in the

end it is easier to find loss mechanisms for fast electrons than a production mechanism.
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50 keV Beam alf alf < 54 keV

nf (cm−3) 7.9 × 102 2.7 × 106 6.5 × 106

nobs
f (cm−3) 7.9 × 102 3.9 × 103 8.8 × 103

Qf (W/cm−2) 78 120 270

Qobs
f (W/cm−2) 78 14 24

Table 4.1: Modeled fast electron density and heat flux for HXR spectra for thick-target
bremsstrahlung looking at the antenna face.

The sensitivity of the spectra to a very small number of electrons means that a good

match to the observed flux would be very difficult in any case.

Table 4.1 gives the values of the fast electron densities required to normalize the

calculated flux to measurements. It is remarkable that such a small density is required

to produce the observed flux. The last two rows of the table are the results for the

heat flux onto the antenna face. The heat flux Qf from the fast electron population is

Q
(obs)
f =

∫ ∞

vf0

T0 (v) vf(v) d3v (4.64)

where we have Qf or Qobs
f depending on the value of vf0

. As expected from the low

density, Qf is quite small. Comparing to the radiated power for the experiment, ∼55

kW and a spot size for the detector on the antenna face of approximately 10 cm2, the

power lost to that area with the truncated alf result is 2.7 kW. This is for all electrons

faster than a Maxwellian, essentially extrapolated from the observed flux above 12 keV.

Using Qobs
f instead, we have a loss of 240 W.

Table 4.2 shows the heat flux for the three models for each of the 5 detector chords
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alf < 54 keV 50 keV Beam

Chord Qf (W/cm−2) Qobs
f (W/cm−2) Qf (W/cm−2)

−35.6 cm 270 24 78

−30.5 cm 67 5.8 19

−25.4 cm 23 2.0 6.8

−20.3 cm 3.2 0.27 0.90

−15.2 cm 0.35 0.03 0.10

Table 4.2: Heat flux estimates from on-antenna detector chords for counter-current
launch with 85 kW of input power. For the beam, Qf = Qobs

f .

intersecting the antenna face. The spot size for the chords becomes slightly larger

going outboard since larger apertures were used, but as an estimate, we will use the

same 10 cm2 as the spot area. Then we have 3.6 kW or 320 W of power lost for 85 kW

of input power.

There is at least one reason to believe that Qf may be lower than the value presented

in the Tables. The large gyroradius of high (perpendicular) energy electrons (3 mm at

20 keV) allows them to more easily hit the antenna even if their guiding center is deeper

in the plasma. Because of this, the higher energy electrons will be overrepresented.

From the middle column of Table 4.1, we see that nobs
f /nf = 0.0014. Looking at the

actual distribution of particles intersecting the antenna frontplane in the simulation,

the fraction is 0.063, almost 2 orders of magnitude greater. We then expect Qobs
f to be

closer to the actual flux lost to the antenna face.
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4.5.2 Losses to Edge Fast Electrons

From the modeling we expect that only a minority of electrons entering the antenna

near-field will hit the antenna limiter and be lost. The rest of the now-distorted

distribution will continue to follow the guide field out of the antenna region. We propose

that electrons accelerated sufficiently by the antenna field will cease to significantly

interact with the rest of the plasma (with the exception of bremsstrahlung). This

population is collisionless and sufficiently near the plasma edge that most will be lost

to the toroidal limiter or wall. Even if not lost immediately, this power is unavailable

to Landau damp at the target absorption region.

As the fast electrons pass through the bulk plasma, we have bremsstrahlung, and

we use the Born cross-sections to estimate the flux from the modeled distributions. To

begin we take (4.6) and (4.7) and replace vf by its expression in terms of momentum.

Then we have an expression for the x-ray flux:

φ (k) =

∫

dl nb

∫

k

dσ (p, k, χ, Zeff)

dkdΩk

c p
√

p2 + 1
f

(
p‖, p⊥

)
d3p. (4.65)

The integral for dl is calculated by assuming the emissivity is constant in a plasma

slice ∆l and zero elsewhere as in (4.25). The distribution is a sum of delta functions

from (4.61). Integrating, we then have

φ (k) = ∆l nb c
nf

N

N∑

i=1

dσ (pi, k, χ, Zeff)

dkdΩk

pi
√

p2
i + 1

Θ (pi − pk) . (4.66)

The dependence of (4.66) on the parallel and perpendicular components occurs in the
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Figure 4.29: Local coordinate system (p̂, k̂, b̂) for bremsstrahlung. The vectors corre-
spond to the momentum of the incident electron ~p, the energy or momentum of the
emitted photon ~k (which is also the detector direction d̂), and the local magnetic field
diction b̂.

angle between the incident electron and emitted photon, χ, which is given by the

expression

χ = cos−1

(
p⊥ cosϕ sin θd + p‖ cos θd

p

)

, (4.67)

where θd is the angle between the photon and the magnetic field, and ϕ = tan−1 py/px

the phase of the gyromotion. The local coordinate system and important angles are

shown in Figure 4.29. The phase ϕ is not known as it is the ignorable coordinate, so

we treat it as a uniform random variable. For the i’th particle, we take M particles

with the same p‖ and p⊥ and pick a random ϕ ∈ [0, π] (π rather than 2π since ϕ is

symmetric). Then instead of N particles in our distribution, we have M×N .

To compare the modeled to observed flux, we choose a representative hard x-ray

spectrum from the detector at +15.2 cm. In this case we choose spectra resulting from a

co-current launch since our off-antenna radial chords are situated on the outboard side,
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Figure 4.30: Modeled and observed hard x-ray spectra for plasma bremsstrahlung. The
measured flux is with a co-current launch for the off-antenna viewing chord at +15.2
cm. The modeled spectra are normalized to the observed integrated flux above 12 keV.

the direction we expect most of the fast electrons to travel coming out of the antenna

region. The modeling results are normalized as before to the integrated flux above

the instrumental floor (12 keV). The results are compared to the observed spectra in

Figure 4.3. The results shown are for a bulk density of nb = 1 × 1012, a ∆l = 1 cm,

and Zeff = 6, values reasonable for the edge plasma where impurities are expected to

be high.

The 50 keV beam once again produces spectra far larger than the observed flux.

Using a 35 keV beam instead removes flux at energies larger than 35 keV, but does not

reduce the overall flux. The alf result on the other hand shows much better agreement

with the observed flux than it did the thick-target results. Without truncating the
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highest energy electrons, there is still a substantial tail at higher energies that are not

seen in the data. If we truncate the alf results at 38 keV, then the agreement with

the observed spectra is quite good.

The simple Kramers formulation for thick-target bremsstrahlung requires only the

normalization to the observed flux to find nf since we’ve assumed that the target is

molybdenum. The thin-target formulas have three additional free variables: nb, ∆l,

and Zeff . The effective atomic number is inside the integral, but the flux is directly

proportional to nb and ∆l. Qf and nf then are inversely proportional to nb and ∆l.

Table 4.3 shows the corresponding fast electron density and heat flux for the models

shown in Figure 4.30. Also shown for reference are those quantities for Zeff = 4. Clear

at the outset are that the fast electron densities required to achieve a commensurate

flux are far higher than for a solid target. Since for this model, the distributions are the

same as in the previous section, the heat flux will also be much higher. In particular,

for the alf result truncated to 38 keV, closest to the observed spectra, the heat flux

from just the observed part of the spectrum is Qobs
f = 11 kW/cm2.

For the total power lost to these electrons, we take one dimension to be the width

of the antenna aperture — 3 cm, then the area through which the electron population

flows is 3×∆l = 3 cm2 (so ∆l drops out from from power loss formula). This yields a

power loss of over 30 kW from the observed population for 85 kW of input power (∼55

kW radiated). The other models discussed give comparable losses. This incredible

result — if accepted — is extremely serious with respect to the prospect of driving

sufficient current at the reversal surface.

The primary reason to take pause before accepting this result is to examine Qf
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50 keV Beam alf alf < 54 keV alf < 38 keV

nf (cm−3) 1.2 × 108 3.0 × 1011 3.1 × 1011 3.3 × 1011

nobs
f (cm−3) 1.2 × 108 4.1 × 108 4.2 × 108 4.5 × 108

Z
ef

f
=

6

Qf (W/cm−2) 1.2 × 104 1.7 × 105 1.7 × 105 1.9 × 105

Qobs
f (W/cm−2) 1.2 × 104 1.0 × 104 1.0 × 104 1.1 × 104

nf (cm−3) 2.8 × 108 7.9 × 1011 8.7 × 1011 8.7 × 1011

nobs
f (cm−3) 2.8 × 108 1.1 × 109 1.2 × 109 1.2 × 109

Z
ef

f
=

4

Qf (W/cm−2) 2.7 × 104 4.3 × 105 4.7 × 105 4.7 × 105

Qobs
f (W/cm−2) 2.7 × 104 2.5 × 104 2.8 × 104 2.8 × 104

Table 4.3: Modeled fast electron density and heat flux for HXR spectra from plasma
bremsstrahlung.

rather than Qobs
f . The alf simulations show over 150 kW/cm2 when accounting for

the electrons in nf — far in excess of the total power available. This point serves to

illustrate the fact that the alf code may not be sophisticated enough to predict the

velocity distribution at the low end. If the model is not remotely correct in the lower

energy domain, however, then it is difficult to trust the results in the higher energy

domain. It is troubling enough that reducing Zeff to a still reasonable value of 4 gives

power losses in the observed energies on the order of the radiated power.

The hard x-ray observations must still be explained. Instead of bremsstrahlung

from electron-ion collisions in the plasma, we still have the possibility that we are

seeing high energy electrons from the antenna field that hit the vessel wall. In this case

we must again use the thick-target formulas with a Z = 13 for aluminum. Using (4.63)

and normalizing with respect to the flux from the x-ray spectra seen at +15.2 cm, we
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Figure 4.31: Modeled and observed hard x-ray spectra for thick-target bremsstrahlung
assuming the target is the aluminum wall. The measured flux is for a co-current launch
at +15.2 cm. The modeled spectra are normalized to the observed integrated flux above
12 keV.

have results shown in Figure 4.31. Again we have poor agreement for the alf model

and beam distributions since the observed flux drops rapidly past 35 keV. Using the

alf model truncated to 37 keV, however gives excellent agreement, better than for the

plasma bremsstrahlung.

Table 4.4 shows the required fast electron densities and the resulting heat flux. In

any of the cases, the necessary fast electron density is minuscule relative to the that

for the plasma bremsstrahlung case. The truncated alf simulation gives a total fast

density nf of 3000 cm−3 and an nobs
f = 3.8 cm−3. It should be mentioned that for the

wall interaction scenario, the densities quoted are only for those electrons that actually
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reach the wall. For every one of these, there may be a larger density (but not large

enough to contribute significantly to the x-ray flux from plasma bremsstrahlung) that

hits the toroidal limiter out of our field of view.

There are a couple possible mechanisms for this small density of electrons to reach

the wall behind a 1 cm toroidal limiter. First, as was discussed in §4.4.4, these electrons

are trapped which means that their transit time around the machine may be quite slow

depending on the parallel velocity. In particular at the turning points, v‖ → 0. The

perpendicular velocity is still quite high and so the collision frequency is low, but

averaged over the larger unseen fast electron density, there may be enough collisions

to knock the small number of electrons into the wall.

Second, most of the x-ray diagnostics look across into portholes where a substantial

Br error field can develop. A porthole can produce a local error field on the order of

10% of |B| [37]. This effect combined with the stochastic field at the plasma edge may

be enough to push enough fast electrons to the wall. Because of the high perpendicular

energies of the electrons, either mechanism need only get the electron part way to the

wall since the large gyroradius of the electrons will get it the rest of the way.

Because we do not see the part of the population hitting the toroidal limiter, esti-

mating the power loss from these electrons is more difficult. If we assume that these

electrons do not have a high enough density to contibute significantly to the flux by

plasma bremsstrahlung, then we may downgrade our density estimate from Table 4.3

by a couple orders of magnitude and use those estimates. The power losses are then

on the order of kilowatts rather than tens or hundreds of kilowatts.
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50 keV Beam 37 keV Beam alf alf < 37 keV

nf (cm−3) 0.169 0.38 585 2.98 × 103

nobs
f (cm−3) 0.169 0.38 0.84 3.8

Qf (W/cm−2) 0.017 0.024 0.025 0.122

Qobs
f (W/cm−2) 0.017 0.024 2.8 × 10−3 8.56 × 10−3

Table 4.4: Modeled fast electron density and heat flux for numerical HXR thick-target
spectra for an aluminum target (the vessel wall) at +15.2 cm.

4.6 Summary

Applying power to the lower hybrid antennas in MST produces some puzzling x-ray

phenomena. Observations in the antenna far field show an unexpected toroidal asym-

metry in the x-ray flux and would seem to dismiss the standard mechanism for produc-

ing fast electrons — the ohmic electric field. More exotic scenarios such as localization

by drift resonance are rejected by seeing the same asymmetry in non-reversed plasmas.

A radial survey shows a flat profile, indicating that x-ray emission is occurring in the

edge of the plasma. Emission from the outermost viewing chord shows very high flux

(with and without rf) and is not yet fully explained.

Hard x-ray measurements of the near field of the antenna shows very high flux in-

dicative of fast electrons striking the molybdenum limiter covering the antenna front-

plane. Numerical modeling supports the hypothesis that gradients in the rf electric

fields at the antenna face are pulling out a high energy perpendicular tail in the distri-

bution. Some fraction of these are lost to the antenna structure while the rest follow

the stochastic field out of the near field zone and are eventually lost. It is these fast
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electrons that give rise to the x-rays seen in the far field. Most of the fast electrons are

found to be trapped which explains a left/right asymmetry in the HXR flux about the

antenna as well as the flux asymmetry between the antenna phasings.

Calculating the expected bremsstrahlung from a set of test distributions shows that

the power lost from antenna interaction may be on the order of several percent of the

total radiated power. This loss is important, but not critical for overall operation of the

antenna. The far field spectra are most likely from these antenna-field fast electrons

striking the vessel wall, and the power lost to these is insignificant.
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Chapter 5

Conclusions

5.1 Results

The major results of this thesis are as follows:

A high power interdigital-line antenna has been constructed, installed, and exten-

sively operated in MST. This antenna has achieved & 220 kW of applied power with

over 100 kW radiated to the plasma despite unexceptional antenna coupling. With

external tuning, the reflection coefficient averages −15.1 dB and −18.2 dB for ports

1 and 2 respectively. More extensive modeling of the impedance matching sections in

the antenna design phase and better construction technique may reduce the reflection

further still.

Measurement of the vacuum n‖ spectrum shows excellent directivity for each of the

antenna phasings. The peak of the spectrum is 6.80 and −6.92 for the co- and counter-

current phasings respectively, lower than the design value of n‖ = 7.8. Antenna theory
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and modeling show that the capacitive contribution of the aperture was overlooked

in the antenna design phase. Lowering the pump frequency from 800 MHz to 788

MHz can compensate for this oversight without requiring extensive modification of the

antenna geometry.

Coupling experiments demonstrate that an interdigital-line antenna performs well in

high current standard plasmas and is unloaded in high current PPCD plasmas. A high

percentage of the available power can be coupled to the plasma without significantly

distorting the n‖ spectrum. Plasma density is shown to be the key parameter with

respect to antenna loading, while magnetic field and pitch have no significant effect:

in-line with theoretical expectations.

Changes in plasma loading are shown to shift of the peak of the n‖ spectrum,

in some cases far enough to potentially make the accessibility of the wave an issue.

Experimental measurements of the damping length and spectrum are compared to

analytical and numerical models with the numerical model showing good qualitative

agreement.

A plasma limiter placed in front of the antenna aperture has been used successfully

to minimize the variability in the antenna loading but with the drawback that it be-

comes difficult to condition to high power. Local gas puffing has been used to maintain

good coupling in low density and PPCD plasmas where in general coupling is poor.

Hard x-ray flux associated with LHRF has been observed in MST. Unfortunately,

the present lack of reliable Fokker-Planck modeling of standard plasmas prevents an

estimate of any current drive at present power levels. The observed x-ray flux has

a toroidal asymmetry with emission localized about the antenna location, and a dis-
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cernible left/right asymmetry relative to the toroidal antenna angle, as well as an

almost order of magnitude difference in flux between antenna phasings. Additionally a

large flux at the antenna face is observed. The toroidal asymmetry and high energy of

the flux tends to reject the standard mechanism for producing fast electrons: Landau

damping with ohmic field acceleration.

Numerical modeling with a Monte Carlo code and power balance accounting support

the hypothesis that gradients in the rf electric fields near the antenna face pull out a

high energy perpendicular tail in the velocity distribution. The tail is found to be

trapped which allows for multi-pass acceleration of electrons in the antenna near-field.

This tail and trapping can explain the asymmetries in the x-ray observations as well as

the high flux from the antenna face: thick-target bremsstrahlung with the molybdenum

antenna limiter. Power loss from these fast electrons is calculated to be several percent

of total radiated power.

5.2 Future Work and Prospects

As always, interesting (or even uninteresting) results invariably lead to new questions

and experiments that may answer those questions.

5.2.1 Power Handling Limits

As discussed in Chapter 1, it may require 1-2 MW of rf power to accomplish the goal of

the program, namely reducing tearing mode fluctuations to levels comparable to that

of PPCD. Additional cql3d modeling will be required improve this estimate. Based
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on the size of the power feeds and radial antenna profile, there is a distinct power limit

for a single antenna that is much less than the total power required. The exact power

limit is a complicated function of the feed size, the ambient pressure, and magnetic

field strength [1]. A full production system then will require multiple separate antennas

to achieve the required power.

A certain incident in October of 2008 may have considerable bearing on the power

limits or overall feasibility of the MST lower hybrid antenna design. In the middle of

October an unrecoverable arc occurred at an input power of ∼ 170 kW. Subsequent

to this incident, the antenna was unable to be conditioned beyond 140 kW, and in

fact the power handling slowly degraded. An in-situ inspection of the antenna at

the first available machine vent found what appeared to be a small flake of unknown

composition had nestled into a loop diagnostic slot in a vertical orientation. A photo

of the debris is shown in Figure 5.1. Unfortunately this debris was not recovered for

analysis, but if the flake was in any respect conductive, it could easily be the cause of

the conditioning issues.

After the debris was discovered, the antenna was removed from the machine for

further inspection. It was found that serious arcing had occurred in both feeds between

the vacuum feedthroughs and the primary impedance matching section. The largest

impedance matching strap of port 1 also showed extensive arcing. Representative

photographs are shown in Figure 5.2.

It is unclear at this time the precise cause of the arcing in the feedthroughs, in

particular the whether the entirety of this arcing happens after the flake settled into

the antenna cavity. It is probable that once the flake began an arc, the high VSWR
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Loop

Loop Slot

Flake

Figure 5.1: MkIII antenna on the bench looking at the center of the aperture. Inset
shows an in-situ inspection of the antenna and a small flake of unknown composition.

from the reflection exceeded the breakdown voltage at the feed. Once arc residue

formed in this region, arcing only became more likely. On the other hand it may be

that the original high power experiments at > 200 kW was the initial cause of the

arcing. If this is the case, then we may be approaching or are at the power limit of the

the antenna design.

To more fully test this, an additional klystron and an 3 dB Hybrid to be used as a

combiner have been acquired. The added source power should be enough to determine

if the ∼220 kW level attained so far is the upper limit of the launching structure.

5.2.2 PPCD

PPCD with LHRF is a topic that has seen preliminary work, but a more complete

understanding is required. Since we expect that a successful rf experiment, i.e. fluctua-

tion reduction, will result in improved confinement, it is necessary that the antenna can

operate with temperature and density profiles similar to that of PPCD. Additionally,
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(a) (b) (c)

Figure 5.2: Arcing problems in MkIII antenna feedthroughs. (a) Arcing on port 1 feed
connector. (b) Arcing on port 2 feed connector. (c) Arcing on port 1 outer feed and
first strap of impedance matching section.

with standard plasma confinement being so poor, PPCD itself probably will need to

be applied before rf power is injected [2]. Previous experiments as outlined in §3.3.3

were performed with the MkII antenna and its limited loop diagnostics. The MkIII

antenna, with its extended set of diagnostics will be able to measure any changes in

the launching spectrum.

Unlike in standard plasmas, Fokker-Planck modeling has been fairly successful in

PPCD with not unreasonable predictions of the x-ray flux. Though the magnitude

and variability of the background emission in PPCD is an issue, better confinement

gives the x-ray diagnostic a better chance to get an estimate for LH current drive. A

diagnostic in the soft x-ray regime may also have better luck looking for the Landau

resonance rather than the secondary effect of ohmic acceleration.

5.2.3 Parametric Decay and Scattering

Nonlinear three-wave interaction with rf injection has been reported in a wide variety

of rf experiments at different frequencies [3–8]. Many decay channels exist for the lower
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hybrid frequency regime, but two in particular may be of interest for MST: that of the

decay of the pump wave into a lower hybrid wave and ion cyclotron quasi-mode and

also the decay of the pump wave into a pair of lower hybrid waves.

The ion cyclotron quasi-mode decay mode has ω ≃ nΩci, n an integer. The lower

hybrid wave associated with this mode will follow selection rules and have ω ≃ ω0 ±

nΩci, where ω0 is the pump frequency. For the low field of MST, fci is on the order

of 1 MHz instead of the tens of MHz on tokamaks. The lower hybrid-lower hybrid

decay channel has the requirement that ω0 ≥ 2ωLH . For MST operating conditions

this requirement is never violated.

Additionally, experiments on ASDEX [9] demonstrate that scattering off of density

fluctuations in the edge plasma can broaden the injected rf frequency as well as having

a detrimental effect on current drive efficiency. Since the fluctuation level in MST

standard plasmas is 20-40% [10], scattering may be a good candidate for a power loss

mechanism.

Preliminary evidence for parametric decay and/or scattering was collected by the

use of an electrostatic rf probe with an impedance of 50Ω similar to the type of probe

used by Pinsker [3]. The probe was inserted into the plasma edge 2 cm from the

machine wall at the same toroidal angle as the antenna and 90◦ poloidally displaced.

The co-current drive (positive) phasing was used in 400 kA standard plasmas with

ne ≃ 1 × 1013 cm−3. Ray tracing shows that a wave with positive antenna phasing

passes very close poloidally to the probe tip as it descends radially to the absorption

region.

The probe output was isolated using an inner and outer DC break and was split into
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a pair of spectrum analyzers. Both were set to manual sweep at the center frequency.

The first analyzer was used as a reference with its center frequency fixed at 800 MHz.

The second analyzer’s center frequency was set to the frequency of interest. Both have

a bandwidth of 1 MHz. While this resolution might be just enough to resolve individual

peaks from ion cyclotron quasi-modes, these experiments were designed to do a broad

survey, with prospects of more detailed (and efficient) experiments in the future.

In vacuum, we find that the antenna does indeed launch some sort of EM wave as

the electrostatic probe picks up signal when as little as 20 kW of power is applied to

the antenna. Moving the probe from flush with the wall (x = 0 cm) to x = +2 cm,

increases the signal at 800 MHz by almost 10 dB. The second and third harmonic of

the 800 MHz pump wave are also present, although the peak at 2400 MHz is down

more than 30 dB from the primary peak and the peak at 1600 MHz is down more than

50 dB. The widths of these peaks is on the order of the bandwidth resolution of the

spectrum analyzer down to its detection threshold.

Figure 5.3 shows the results of a frequency scan from 10 MHz past the third har-

monic on the pump frequency. The peaks at each of the harmonics show significant

broadening relative to the vacuum width as seen in the ASDEX scattering experiment.

The power on the low frequency side of the pump is much greater than that on the

high frequency side. This result is in agreement with other LH experiments, though

the power in the high side of the pump doesn’t drop as abruptly in this experiment.

Figure 5.4b shows the response of the electrostatic probe as the rf power is de-

creased. The low-frequency side of the peak initially falls off faster than the peak

magnitude consistent with the falloff of the PDI ion-cyclotron sidebands in the ATC
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Figure 5.3: Frequency response of 50Ω electrostatic probe for two different rf radiated
powers and a case with no rf.

experiment [4]. At lower powers however, the broadness of the peak does not decrease,

indicating another mechanism for the peak width. Figure 5.4a shows the response at

low frequencies. Although the spectral power increases when rf power is applied, there

is still significant power from 30-100 MHz without rf.

The preliminary experiment presented here shows tantalizing hints of a parametric

decay and/or scattering mechanism in MST plasmas. More in-depth experiments at

higher frequency resolution and higher rf power are warranted.
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Figure 5.4: (a) Close-up of low frequency spectrum with and without rf. (b) Spectrum
around 800 MHz pump frequency for different levels of rf power.
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Appendix A

Finite Element Antenna Analysis

To calculate the characteristic impedance of our interdigital line, we need to solve for

the potential. The general form of Poisson’s equation (for our coordinate system) is

−∆ϕ(x, z) = f (x, z) (A.1)

in some domain Ω. This partial differential equation is difficult to solve analytically

except in very simple geometries even for trivial functions of f , so we turn to finite

element methods. The FreeFem++ code [1] is used to solve (A.1). This package

does not solve the PDE directly, but instead uses the “weak” or variational form of the

equation. The variational form of Poisson’s equation is

∫

Ω

∇ϕ · ∇w =

∫

Ω

fw ∀w ∈ X (A.2)
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which minimizes an “energy” functional I(w) to solve for ϕ. Here w is any function in

the appropriate vector space X , a subspace of the Sobolev space H1(Ω). In the case

at hand, we want to solve for the potential (2.2) which satifies Laplace’s equation, so

f = 0 in (A.2). We also must specify the boundary conditions Γ = ∂Ω which will be

non-homogeneous Dirichlet type. The ground planes will be set to ϕ = 0 while the

boundary of the m’th resonator will be given a particular voltage depending on the

phase advance:

ϕrodm
= ϕ0 cos (mφ+ δ) . (A.3)

Once we have the potential, the charge per unit length can be found by integrating

around the boudary of a resonator:

q = − ǫ

∫

Γ

∇ϕ · n̂, (2.23)

and then using the standard definition of capacitance, C = q/ϕ, the characteristic

impedance of a uniform transmission line in TEM mode is related to its shunt capaci-

tance [2] by

Z0 =
η√

ǫr (C/ǫ)
(2.24)

where ǫr is relative dielectric constant, and η is the impedance of free space.

With these boundary conditions, Figure A.1 shows the mesh used in the calculation.

A seven-element interdigital line of circular conductors are sandwiched between pair

of ground planes. The rod spacings and diameters correspond to the physical antenna

geometry. Figure A.4 shows the resulting potential of the calculation for different
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Figure A.1: FEM mesh for “closed” boundaries where the interdigital elements are
between a pair of ground planes.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure A.2: FreeFem++ finite element solution for the potential ϕ for a seven element
interdigital line sandwiched between two ground plane. (a)-(l) The phasing between
resonators in 30◦ increments starting at φ = 0◦.

phasings between the conductors.

Figure A.3 shows the mesh for a similar model except that one of the ground planes

has been replaced by an “open” boundary, or in this case the ground has been moved

far away to simulate infinity. Figure A.4 shows the results for four different values of

φ.

Seven conductor elements are used to minimize the effects of using a finite inter-

digital line, and the impedance is calculated from the center conductor. It should be

noted that this is a two-dimensional problem and that interdigital is used in a loose

sense as the voltage on each “rod” is applied externally and not with respect to the

boundary conditions (2.3) and (2.4).
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Figure A.3: FEM mesh for “mixed” boundary where one side is a grounded plane and
the other is open — far away from the resonators.

The following program calculates the potential for a set of circular conductors (our
interdigital line) that are sandwiched between a pair of grounded planes. A prescribed
voltage, modulated by a phase shift, is applied to the conductors.

/*********************************************************************

Copyright (C) 2009 - M.C. Kaufman

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
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(a)

(b)

(c)

(d)

Figure A.4: FreeFem++ finite element solution for the potential ϕ for a seven ele-
ment interdigital line with a single ground plane and an “open” boundary. The phase
between resonators is (a) φ = 30◦ (b) φ = 60◦ (c) φ = 90◦ (d) φ = 120◦.

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

**********************************************************************/

// interdigital line (double ground planes)

// border enumeration

int G=98;

int INF=99;

// mesh density

int nm = -25;

int ni = -10;

int ng = -40;

real m;

/* use cristal terms for geometry

*

* c = center-center
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* b = cavity height

* d = rod diameter

* s = side-side (s = c-d)

*/

real c = 12;

real d = 2.38;

real b = 10;

real s = c - d;

real iwid = 140;

real ihei = 50;

real[int] V0(7);

int n = 35;

real start = 10;

real offset = 0.04;

real[int] th(n), Z0(n);

real q0, c0;

real eps0 = 1.0;

real eta = 376.7;

// conductor borders defining the geometry

border LN3(t=0,2*pi) {

m=-3; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LN2(t=0,2*pi) {

m=-2; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LN1(t=0,2*pi) {

m=-1; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border L0(t=0,2*pi) {

m=0; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LP1(t=0,2*pi) {

m=1; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LP2(t=0,2*pi) {

m=2; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);
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}

border LP3(t=0,2*pi) {

m=3; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border G1(t=-0.7,-1) { x = iwid/2 * t; y = 0; label=G; } // bottom

border G2(t=0.7,-0.7) { x = iwid/2 * t; y = 0; label=G; } // bottom

border G3(t=1,0.7) { x = iwid/2 * t; y = 0; label=G; } // bottom

border G4(t=-1,-0.7) { x = iwid/2 * t; y = b; label=G; } // top

border G5(t=-0.7,0.7) { x = iwid/2 * t; y = b; label=G; } // top

border G6(t=0.7,1) { x = iwid/2 * t; y = b; label=G; } // top

border B1(t=0,1) { y = b * t; x = -iwid/2; label=INF; } // left

border B2(t=1,0) { y = b * t; x = iwid/2; label=INF; } // right

plot(B1(ni) + B2(ni) +

G1(ni/3) + G2(ng*2) + G3(ni/3) +

G4(ni/3) + G5(ng*2) + G6(ni/3) +

LN3(nm) + LN2(nm) + LN1(nm) + L0(nm) +

LP1(nm) + LP2(nm) + LP3(nm),

bb=[[-iwid*0.6,0],[iwid*0.6,b*0.1]], wait = 0);

// finite-elements mesh

mesh Th = buildmesh(B1(ni) + B2(ni) +

G1(ng / 3) + G2(ng * 2) + G3(ng / 3) +

G4(ng / 3) + G5(ng * 2) + G6(ng / 3) +

LN3(nm) + LN2(nm) + LN1(nm) + L0(nm) +

LP1(nm) + LP2(nm) + LP3(nm));

plot(Th, wait=1, ps = "ps/fem_mesh_closed.ps");

fespace Vh(Th,P2); // P2 conforming triangular FEM

Vh phi, ww, f=0;

for (int i = 0; i < n; i++) {

// phase shift

th[i] = (start + i*10) * pi/180;
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// voltage on resonating conductors

for (int j = 0; j < 7; j++) {

V0[j] = cos(j * th[i] + offset);

}

// weak or variational form of Laplace’s equation plus borders

solve P(phi, ww) = int2d(Th)(dx(phi) * dx(ww) + dy(phi) * dy(ww))

- int2d(Th)(f * ww)

+ on(INF, phi = 0)

+ on(G, phi = 0)

+ on(LN3, phi = V0[0])

+ on(LN2, phi = V0[1])

+ on(LN1, phi = V0[2])

+ on(L0, phi = V0[3])

+ on(LP1, phi = V0[4])

+ on(LP2, phi = V0[5])

+ on(LP3, phi = V0[6]);

// integrate over the L0 boundary to get the charge per unit length

q0 = int1d(Th,L0)(eps0 * (dx(phi) * N.x + dy(phi) * N.y));

// get the characteristic impedance for the i’th phase shift

Z0[i] = eta / q0 * V0[3];

cout << "ZO(" << (th[i] * 180/pi) << ") = " << Z0[i] << endl;

// output the potential as a function of (x,y)

plot(phi, fill = 1, nbiso = 150, value = 0,

bb = [[-iwid*0.51,0],[iwid*0.51,1.0]],

wait = 0, ps = "ps/fem_pot_" + th[i]*180/pi + "_closed.ps");

}

// print out results

cout << "=================================================" << endl;

cout << "s = " << s << endl;

cout << "d = " << d << endl;

cout << "c = " << c << endl;

cout << "b = " << b << endl << endl;
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cout << " ph = [";

for (int i = 0; i < n; i++) {

cout << (th[i] * 180/pi);

if (i < n-1) cout << ", ";

}

cout << "]" << endl;

cout << " Z = [";

for (int i = 0; i < n; i++) {

cout << Z0[i];

if (i < n-1) cout << ", ";

}

cout << "]" << endl;

cout << "=================================================" << endl;

Th following program calculates the potential for a set of circular conductors (our

interdigital line) with a single ground plane on one side and an “open” boundary else-

where. A prescribed voltage, modulated by a phase shift, is applied to the conductors.

/*********************************************************************

Copyright (C) 2009 - M.C. Kaufman

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
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MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

**********************************************************************/

// interdigital line with an "open" boundary (single ground plane),

// cylindrical resonators.

// border enumeration

int G=98;

int INF=99;

// mesh density

int nm = -30;

int ni = -10;

int ng = -40;

real m;

/* use cristal terms for geometry

*

* c = center-center

* b = cavity height

* d = rod diameter

* s = side-side (s = c-d)

*/

real c = 12;

real d = 2.38;

real b = 10;

real s = c - d;

real iwid = 140;

real ihei = 50;

real[int] V0(7);

int n = 35;

real start = 10;

real offset = 0.04;

real[int] th(n), Z0(n);
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real q0, c0;

real eps0 = 1.0;

real eta = 376.7;

// conductor borders defining the geometry

border LN3(t=0,2*pi) {

m=-3; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LN2(t=0,2*pi) {

m=-2; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LN1(t=0,2*pi) {

m=-1; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border L0(t=0,2*pi) {

m=0; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LP1(t=0,2*pi) {

m=1; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LP2(t=0,2*pi) {

m=2; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border LP3(t=0,2*pi) {

m=3; x = m*c + d/2 * cos(t); y = b/2 + d/2 * sin(t);

}

border G3(t=1,0.7) { x = iwid/2 * t; y = 0; label=G; } // bottom

border G2(t=0.7,-0.7) { x = iwid/2 * t; y = 0; label=G; } // bottom

border G1(t=-0.7,-1) { x = iwid/2 * t; y = 0; label=G; } // bottom

border B1(t=0,1) { y = ihei * t; x = -iwid/2; label=INF; } // left

border B2(t=1,0) { y = ihei * t; x = iwid/2; label=INF; } // right

border B3(t=-1,1) { x = iwid/2 * t; y = ihei; label=INF; } // top

plot(B1(ni) + B2(ni) + B3(ni) +

G1(ni/3) + G2(ng*2) + G3(ni/3) +

LN3(nm) + LN2(nm) + LN1(nm) + L0(nm) +
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LP1(nm) + LP2(nm)+LP3(nm),

bb=[[-iwid*1.0,0],[iwid*1.0,ihei*0.2]], wait = 0);

// finite-elements mesh

mesh Th = buildmesh(B1(ni) + B2(ni) + B3(ni) +

G1(ng/3) + G2(ng*2) + G3(ng/3) +

LN3(nm) + LN2(nm) + LN1(nm) + L0(nm) +

LP1(nm) + LP2(nm) + LP3(nm));

plot(Th, wait=0, ps="ps/fem_mesh_open.ps");

fespace Vh(Th,P2); // P2 conforming triangular FEM

Vh phi, ww, f=0, g=0, v=0, ex, ey;

for (int i = 0; i < n; i++) {

// phase shift

th[i] = (start + i*10) * pi/180;

// voltage on resonating conductors

for (int j = 0; j < 7; j++) {

V0[j] = cos(j * th[i] + offset);

}

// weak or variational form of Laplace’s equation plus borders

solve P(phi,ww) = int2d(Th)(dx(phi) * dx(ww) + dy(phi) * dy(ww))

- int2d(Th)(f * ww)

+ on(INF, phi = 0)

+ on(G, phi = 0)

+ on(LN3, phi = V0[0])

+ on(LN2, phi = V0[1])

+ on(LN1, phi = V0[2])

+ on(L0, phi = V0[3])

+ on(LP1, phi = V0[4])

+ on(LP2, phi = V0[5])

+ on(LP3, phi = V0[6]);

// integrate over the L0 boundary to get the charge per unit length

q0 = int1d(Th,L0)(eps0 * (dx(phi) * N.x + dy(phi) * N.y));
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// get the characteristic impedance for the i’th phase shift

Z0[i] = eta / q0 * V0[3];

cout << "ZO(" << (th[i] * 180/pi) << ") = " << Z0[i] << endl;

// output the potential as a function of (x,y)

plot(phi, fill = 1, nbiso = 100, value = 0,

bb = [[-iwid*0.51,ihei*0.2],[iwid*0.51,ihei*0.3]],

wait = 0, ps="ps/fem_pot_" + th[i]*180/pi + "_open.ps");

}

// print out results

cout << "=================================================" << endl;

cout << "s = " << s << endl;

cout << "d = " << d << endl;

cout << "c = " << c << endl;

cout << "b = " << b << endl << endl;

cout << " ph = [";

for (int i = 0; i < n; i++) {

cout << (th[i] * 180/pi);

if (i < n-1) cout << ", ";

}

cout << "]" << endl;

cout << " Z = [";

for (int i = 0; i < n; i++) {

cout << Z0[i];

if (i < n-1) cout << ", ";

}

cout << "]" << endl;

cout << "=================================================" << endl;
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Appendix B

Antenna Fields

CST Microwave StudioTM is used to simulate the electric and magnetic fields on a

flat model of the MkIII antenna in vacuum. The following fields are normalized to 1

sqrt(W) peak power of at the input port of the model. To recover the vacuum fields,

the magnitude should be multiplied by
√

2Pin where Pin is the average input power

(not the radiated power) in watts.

comsol is used to simulate the same antenna fields but in the presence of plasma.

The shape of the density profile is given in §2.2. The fields shown here have a vacuum

gap of 1 mm, a density step of ne0
= 5 × 1010 cm−3, a density gradient dn/dx =

1 × 1011 cm−4 and a guide field of 1500 G. The comsol fields are normalized to 1 W

of average power at the input port.
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Figure B.1: Ex component of antenna vacuum field 2 mm in front of the antenna. The
rectangle is the extent of the aperture on the antenna face.
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Figure B.2: Ey component of antenna vacuum field 2 mm in front of the antenna.
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Figure B.3: Ez component of antenna vacuum field 2 mm in front of the antenna.
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Figure B.4: Hx component of antenna vacuum field 2 mm in front of the antenna.
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Figure B.5: Hy component of antenna vacuum field 2 mm in front of the antenna.
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Figure B.6: Hz component of antenna vacuum field 2 mm in front of the antenna.
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Figure B.7: Ex component of antenna field in the presence of plasma. The field shown
is 2 mm in front of the antenna. The rectangle is the extent of the aperture on the
antenna face.
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Figure B.8: Ey component of antenna field in the presence of plasma. The field shown
is 2 mm in front of the antenna. The rectangle is the extent of the aperture on the
antenna face.
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Figure B.9: Ez component of antenna field in the presence of plasma. The field shown
is 2 mm in front of the antenna. The rectangle is the extent of the aperture on the
antenna face.
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Figure B.10: Hx component of antenna field in the presence of plasma. The field shown
is 2 mm in front of the antenna. The rectangle is the extent of the aperture on the
antenna face.
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Figure B.11: Hy component of antenna field in the presence of plasma. The field shown
is 2 mm in front of the antenna. The rectangle is the extent of the aperture on the
antenna face.
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Figure B.12: Hz component of antenna field in the presence of plasma. The field shown
is 2 mm in front of the antenna. The rectangle is the extent of the aperture on the
antenna face.
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Appendix C

Calibration of Power Couplers

C.1 Calibration of Coaxial Directional Couplers

Unlike low-power directional couplers, the JamproTM RCID-302-F dual directional cou-

plers attached to the transmission line can be adjusted for directionality and desired

attenuation. A diagram of the device is shown in Figure C.1. A diagram of a direc-

tional coupler is shown in Figure C.2. The coupler is a slug with a loop inserted into

a stub on the transmission line. The slug on each stub has a pair of ports attached to

either end of the loop. These are the coupled and isolated ports for the coupler. One

of the two couplers on the Jampro will be used for the forward power measurement

and the other for the reflected power measurement.

To calibrate, the coupler section is removed from the rest of the transmission line.

For the forward power calibration, choose one of the two couplers (arbitrary). The

reflection (stimulus) port of a network analyzer is attached to the input port of the
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Figure C.1: Dual directional couplers at-
tached to 31/8” transmission line section.

Figure C.2: Block diagram of a direc-
tional coupler.

coupler. The transmission port of the analyzer if attached to the coupled port on

the stub of the transmission line. The through port of the coupler (the output of

the transmission line) is attached to a signal generator. The ports of the network

analyzer and the output of the signal generator should be impedance-matched to the

transmission line, 50Ω. The isolated port is terminated as well. To sum up, the ports

of the couplers are connected to:

Port 1: Input The reflection (stimulus) port of the network analyzer.

Port 2: Through The output port of the signal generator.

Port 3: Coupled The transmission port of the network analyzer.

Port 4: Isolated Terminated with matched (50Ω) load.

The setup is shown in Figure C.3.

The signal generator and the network analyzer stimulus are set to CW at the

frequency of interest—in our case 800 MHz; network analyzer’s stimulus acts as the
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Figure C.3: The setup for calibrating Jampro dual directional couplers. The R port
on the network analyzer is the stimulus port.

forward-traveling wave, the signal generator acts as the reflected wave. (Note: this

procedure requires the output port of the signal generator to be able to handle the

output power of the network analyzer and also to act as a matched load.)

To set the attenuation, first zero the signal generator power. Then the slug holding

the coupler is slid in or out of its housing while noting the power received at the

transmission port of the network analyzer. The Jampro couplers have a usable range

of 35 − 70dB attenuation.

With a target attenuation, the object now is to increase the directivity and isolation.

On a practical level, we would like the coupled power to be entirely insensitive to

power reflected from port 2, the through port. The directivity is tuned by rotating the
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coupler’s slug to sample more or less of the reflected wave in the transmission line. As

it is difficult to minimize the power sampled from the reflected wave by rotating the

slug without inadvertently changing the insertion depth of the slug as well, a couple

of tricks can be used. A signal generator with the capability of performing a power

sweep can be used to sweep from low reflected power up to 100% of the forward power.

(This sweep time should be faster than the sweep time of the network analyzer.) The

response of the coupled port from the reflected power sweep should be minimized.

Unfortunately, this is not enough as the swept reflected power will be at a particular

phase relative to the forward power. Since reflections farther down the line will in

general be at arbitrary phases, we need to sweep the phase of the reflected power and

minimize the amplitude of the coupled response. Take the signal generator out of sweep

mode and set the power output equal to the forward power for 100% reflection (the

worst case). The signal generator and the network analyzer should be phase locked,

and the signal generator’s frequency should be offset from the analyzer’s stimulus by

a Hertz or two. This acts as a phase oscillation between the forward and reflected

waves in the transmission line. If the coupler is not absolutely directive, then when the

forward and reflected waves constructively interfere, the power received at the coupler

will increase. Better directivity is achieved by minimizing the beat amplitude while

maintaining the overall desired attenuation level. Figure C.4 shows sample output

while performing the calibration for a target attenuation of −60 dB. The power and

phase sweeps can be iterated to provide the best isolation.

As an optional first step, a spectrum analyzer can be attached to the isolated port

with the through port terminated, and the power output at the CW frequency can be
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Figure C.4: Sample output for calibration of dual directional couplers. Reflected power
is beating with the forward power by virtue of a small frequency offset. Successive
rotations of the coupling slug will minimize the coupling of the reflected wave.

minimized by rotating the slug. This will result in the slug being more or less in the

correct position before fine tuning.

Lastly, it should be noted that with the use of an electrostatic shield over the loop

on the slug, one may be able to increase the directivity.
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Appendix D

Derivation of Index of Refraction

D.1 Derivation of Equation 3.18

We start with the equation for Ez in the vacuum region from §3.1:

Ez (u) = C e
√

n2
z−1u +D e−

√
n2

z−1u (3.16)

with the characteristic impedance,

Z = i
Ez

Hy
=

√

n2
z − 1

De−2
√

n2
z−1u + C

De−2
√

n2
z−1u − C

. (3.17)

where C and D are to be determined by the boundary conditions. Let ξ ≡
√

n2
z − 1,

then multiplying by the right-side denominator, we have

ξ
(
De−2ξu − C

)
= Z

(
De−2ξu + C

)
. (D.1)
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Collecting constants,

De−2ξu (ξ − Z) = −C (Z + ξ) , (D.2)

and applying the first boundary condition Z = Zp at u = 0:

D = −C (ξ + Zp) (ξ − Zp)
−1 . (D.3)

With the presumption that Zp is small and that Zp/ξ ≪ 1, we keep only the terms

linear in Zp:

D ≃ −C (1 + 2Zp/ξ) (D.4)

to eliminate one constant. Applying the second boundary condition Z = Zs at u = −us,

Zs = ξ
D + Ce−2ξus

D − Ce−2ξus
. (D.5)

Substituting (D.4),

Zs = ξ
−C (1 + 2Zp/ξ) + Ce−2ξus

−C (1 + 2Zp/ξ) − Ce−2ξus
. (D.6)

Dividing out the −C’s and rearranging terms,

Zs = ξ

(
1 − e−2ξus

)
+ 2Zp/ξ

(1 + e−2ξus) + 2Zp/ξ
. (D.7)

Now we have defined w ≡ ξus, so substituting where appropriate and bringing w to

the left side, we have

w = Zsus
(1 + e−2w) + 2Zpus/w

(1 − e−2w) + 2Zpus/w
. (D.8)
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Pulling out the terms in paratheses,

w = Zsus
1 + e−2w

1 − e−2w

[

1 +
2Zpus/w

1 + e−2w

] [

1 +
2Zpus/w

1 − e−2w

]−1

. (D.9)

If Z ≪ ξ, then Z ≪ ξ (1 − e−2w), so we can again approximate:

w ≃ Zsus
1 + e−2w

1 − e−2w

[

1 +
2Zpus/w

1 + e−2w

] [

1 − 2Zpus/w

1 − e−2w

]

(D.10)

w ≃ Zsus
1 + e−2w

1 − e−2w

[

1 +
2Zpus/w

1 + e−2w
− 2Zpus/w

1 − e−2w
+

XXXXXXXXXXXX

4Z2
pu

2
s/w

2

(1 + e−2w) (1 − e−2w)

]

(D.11)

where we neglect the product of two small terms. Collecting the second and third

terms in (D.11),

w ≃ Zsus
1 + e−2w

1 − e−2w

[

1 +
2Zpus/w (1 − e−2w) − 2Zpus/w (1 + e−2w)

(1 + e−2w) (1 − e−2w)

]

(D.12)

and finally cancelling terms and rearranging,

w = Zsus
1 + e−2w

1 − e−2w

[

1 − Zp
4use

−2w

w (1 − e−4w)

]

(3.18)

which is the transcendental equation from §3.1.2.



250

D.2 Derivation of Equation 3.21

We can apply the perturbation nz = nz0
+ nz1

to our variable w,

w =
√

n2
z − 1us =

√

(nz0
+ nz1

)2 − 1us (D.13)

=
√

n2
z0
− 1

[

1 +
2nz0

√
n2

z0
− 1

nz1
+

Z
Z

Z
Z

ZZ

n2
z1

√
n2

z0
− 1

]1/2

us (D.14)

≃
√

n2
z0
− 1 us

︸ ︷︷ ︸

w0

+
nz0

√
n2

z0
− 1

nz1
us

︸ ︷︷ ︸

w1

(D.15)

Given the exact solution, nz0
, we now rewrite (3.18) as

w = K1(w) + ZpK2(w) . (D.16)

We let w = w0 + w1 where w1 is determined from (D.15). Expanding, we have:

w0 + w1 = K1(w0) +
∂K1

∂w

∣
∣
∣
∣
w0

w1 + ZpK2(w0) +
HHHHHHH

Zp
∂K2

∂w

∣
∣
∣
∣
w0

w1 (D.17)

where the last term is neglected as the product of two small parameters. The non-

perturbed solution has w1 = Zp = 0, so we have

w0 = K1(w0) = Zsus
1 + e−2w

1 − e−2w
. (D.18)
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The perturbation is then

w1 =
∂K1

∂w

∣
∣
∣
∣
w0

w1 + ZpK2(w0) . (D.19)

Collecting terms and dividing,

w1 = Zp
K2(w0)

1 − ∂K1

∂w

∣
∣
w0

(D.20)

Working with the denominator,

1 − ∂K1

∂w

∣
∣
∣
∣
w0

= 1 − ∂

∂w

[

Zsus
1 + e−2w

1 − e−2w

]

w0

(D.21)

= 1 +

[
2e−2wZsus

1 − e−2w
+

2e−2w (1 + e−2w)Zsus

(1 − e−2w)2 − 1 + e−2w

1 − e−2w
us
∂Zs

∂w

]

w0

(D.22)

and then inverting (D.18), substituting for usZs, and canceling terms, the denominator

is

1 − ∂K1

∂w

∣
∣
∣
∣
w0

= 1 +
2w0e

−2w0

1 + e−2w0
+

2w0e
−2w0

1 − e−2w0
− w0

1

Zs

∂Zs

∂w
(D.23)

and collecting the second and third terms,

1 − ∂K1

∂w

∣
∣
∣
∣
w0

= 1 +
4w0e

−2w0

1 − e−4w0
− w0

1

Zs

∂Zs

∂w
. (D.24)
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Plugging this term and K2(w0) back into (D.20), we have

w1 =
XXXXXXXXZsus

1 + e−2w0

1 − e−2w0

[ −Zp4use
−2w0

HHw0 (1 − e−4w0)

]
1

1 + 4w0e−2w0

1−e−4w0
− w0

1
Zs

∂Zs

∂w

(D.25)

w1 = −Zp
4use

−2w0

1 − e−4w0

1

1 + 4w0e−2w0

1−e−4w0
− w0

1
Zs

∂Zs

∂w

(D.26)

nz0
√
n2

z0
− 1

nz1
us = −4Zpus

e−2w0

(1 − e−4w0)
(

1 − w0
1

Zs

∂Zs

∂w

)

+ 4w0e−2w0

, (D.27)

where we have used the substitution from (D.18) and replaced w1 by the expansion

from (D.15). Finally, we recast the term with derivative in the previous equation by

applying the chain rule:

w0
1

Zs

∂Zs

∂w
= w0

1

Zs

∂Zs

∂nz

[
∂w

∂nz

]−1

= w0
1

Zs

∂Zs

∂nz

[

nz0
√
n2

z0
− 1

us

]−1

(D.28)

and using the definition w0 ≡
√
n2

z0
− 1us, we have

ν ≡ w0
1

Zs

∂Zs

∂w
=
n2

z0
− 1

n2
z0

1

Zs

∂Zs

∂nz
. (D.29)

Plugging (D.29) into (D.27) and rearranging we arrive at

nz1
= −4

(
n2

z0
− 1

)1/2

nz0

Zp F (w0), F =
e−2w0

(1 − e−4w0)(1 − ν) + 4w0 e−2w0
(3.21)

which is Golant’s Equation 43.
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Appendix E

Calculation of Etendue

To calculate an absolute x-ray flux, we need to know the the etendue G = AΩ where A

is the projected area of the detector. Fig. E.1 shows the typical geometry of a detector

and plasma volume element with a small “pinhole” aperture. Assuming the area of the

Figure E.1: Geometry for basic etendue calculation with pinhole aperture.

aperture area Aap is small relative to d, then

Ω =
Aap

d2
(E.1)
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and

G =
AapAd

d2
(E.2)

This assumes that the aperture is small enough so that the projected area of the

detector changes little with respect to the position of dV . In many instances this

approximation is good enough. For the case of the HXR detectors on MST, we cannot

make this assumption. We must use a more rigorous definition of etendue.

Fig. E.2 shows the more general situation where we have two surfaces, and we

choose one to be the detector and the other to be the radiator. Then,

Given: a, b: 2 surfaces.

dSa, dSb: infinitesimal surfaces elements on a, b

~r: a chord connecting the centroids of dSa, dSb (d ≡ |~r|)

n̂a, n̂b: normals of dSa, dSb

αa, αb: the angles between ~r and n̂a, n̂b respectively

Figure E.2: Sketch of two surfaces a and b for which we calculate the etendue.



255

then the infinitesimal solid angles of dSb as seen from dSa and vice versa are:

dΩa =
dSb cosαb

d2
, dΩb =

dSa cosαa

d2
(E.3)

and the differential etendue is:

d2G = dSa cosαadΩa = dSb cosαbdΩb =
dSadSb cosαa cosαb

d2
. (E.4)

and finally,

G =

∫

d2G. (E.5)

By the principle of conservation of throughput (etendue) [3], the actual receiving

surface need not be used in the calculation. Any intermediate surface — of any shape

— can be picked. Since our detector surfaces are flat, without loss of generality, we will

pick a flat surface in the plasma that is parallel to the detector surface. Also without

loss of generality, we can rotate the coordinate system so that n̂a, n̂b || ẑ.

Then let a and b be in the planes z = za, z = zb respectively, then we have

z0 = za − zb so,

cosαa =
z0
d
, cosαb =

z0
d

(E.6)

and the differential etendue is

d2G =
dSadSbz

2
0

d4
(E.7)

This is not the end of the story because surfaces a and b are not in free space.

Instead there are one or more apertures in the intervening space which can occlude
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part (or all) of the other surface.

When this is the case, we can only add parts of the integral where the ray between

dSa and dSb intersects an aperture, otherwise radiation from one differential area patch

could not reach the other. Specifically after approximating the integral as a sum:

G ≃
∑

i

∑

j

z2
0

d4
ij

∆Sai
∆Sbj

apertures
∏

k

δk
vis (~xi, ~xj) (E.8)

where δk
vis (~xi, ~xj) is 1 if a ray ~r between dSa and dSb, at ~xi, ~xj respectively, ~r = ~xi−~xj ,

is within the boundary of the k’th aperture and 0 otherwise.

A small program was written to solve E.8 with an arbitrary set of rectangular and

circular apertures. Error in the location and dimensions of the detector and apertures

can be taken into account using Monte Carlo methods. A pair of examples are shown

in Figure E.3.
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Figure E.3: Models of boxport x-ray detector mount with porthole and multichannel
detector mount on standard porthole for etendue calculation. The apertures of the
mounts are shown as the black circles. The red portions of one mesh are visible from
some part of the other mesh.
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Appendix F

Relativistic Particle Mover

The leap-frog method as outlined by Birdsall and Langdon [4] is:

un+1/2 − un−1/2

∆t
=

q

m

(

En +
un+1/2 − un−1/2

2γn
× Bn

)

(4.47)

xn+1 − xn

∆t
= vn+1/2 =

un+1/2

γn+1/2
(4.48)

where u ≡ γv, γ2 = 1 + u2/c2, and tn = n∆t.

To solve (4.47) we use the method by Boris [5] and separate the E and B fields

completely by letting

un±1/2 = u± ± qE∆t

2m
(4.49)

with

u+ − u−

∆t
=

q

2γnm
(u+ − u−) × Bn. (4.50)

The procedure is thus: given un−1/2 as the starting velocity, we use (4.49) to get u−.
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We then need to solve (4.50) for u+. For this we use a trick, define u′ perpendicular

to u+ − u− and Bn:

u′ = u− + u− × t (F.1)

where

t =
q∆t

2γnm
Bn (F.2)

Then

u+ = u− + u′ × s (F.3)

where s = 2t/(1 + t2). Once we have u+, use (4.49) to get un+1/2 and then (4.48) to

get the position and velocity at the next timestep, xn+1, vn+1/2.

One thing to note is the fact that the starting velocity is un−1/2 with the starting

fields En and Bn. In our case, the particle starts outside the force-field so un−1/2 = un.

If this is not the case, then another method must be used to take the first step.

The C function below does the heavy lifting for the particle mover by advancing an

electron under the influence of electric and magnetic fields one timestep:

/**********************************************************************

Copyright (C) 2008 - M.C. Kaufman

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included
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in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

***********************************************************************/

/**********************************************************************

Boris’ method to separate B and E fields. Relativistic formulation.

Implementation uses an intermediate vector to perform the rotation.

Accomplishes one timestep.

inputs:

particle’s current position and time: x[3], t

fields at x[3], t: E[3], B[3] (volts/meter and telsa respectively)

timestep: timestep

relatistic velocity: u[3] ( = gamma * v)

outputs:

new position: x[3]

new velocity: v[3]

new relatistic velocity: u[3]

new time: t

***********************************************************************/

static void step_boris_rel(double timestep, double E[3], double B[3],

double x[3], double u[3], double v[3],

double *t)

{

const double c2 = 9e16; /* speed of light squared */

const double q2m = -1.75884e11; /* charge to mass ratio */

double up[3], um[3]; /* u+ and u- */

double tt, T[3], s[3], uprime[3]; /* for the v x B rotation */

double gammainv; /* inverse of gamma factor */

double u2; /* intermediate variable */

double alpha = 0.5 * q2m * timestep; /* scale factor */
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/* step 0: scale fields appropriately */

E[0] *= alpha;

E[1] *= alpha;

E[2] *= alpha;

B[0] *= alpha;

B[1] *= alpha;

B[2] *= alpha;

/* step 1: get u- from u(t-delta t/2) which is the u from last step

* by adding half the electric field contribution */

um[0] = u[0] + E[0];

um[1] = u[1] + E[1];

um[2] = u[2] + E[2];

/* step 2: calculate u+ using uprime, T and s */

u2 = um[0] * um[0] + um[1] * um[1] + um[2] * um[2];

gammainv = sqrt(c2 / (c2 + u2));

T[0] = B[0] * gammainv;

T[1] = B[1] * gammainv;

T[2] = B[2] * gammainv;

tt = 2.0 / (T[0] * T[0] + T[1] * T[1] + T[2] * T[2] + 1.0);

s[0] = T[0] * tt;

s[1] = T[1] * tt;

s[2] = T[2] * tt;

uprime[0] = um[0] + um[1] * T[2] - um[2] * T[1];

uprime[1] = um[1] + um[2] * T[0] - um[0] * T[2];

uprime[2] = um[2] + um[0] * T[1] - um[1] * T[0];

up[0] = um[0] + uprime[1] * s[2] - uprime[2] * s[1];

up[1] = um[1] + uprime[2] * s[0] - uprime[0] * s[2];

up[2] = um[2] + uprime[0] * s[1] - uprime[1] * s[0];

/* step 3: get u(t + delta t/2) by adding the other half of the E-field */

u[0] = up[0] + E[0];

u[1] = up[1] + E[1];

u[2] = up[2] + E[2];
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/* step 4: get v(t + delta t) */

u2 = u[0]*u[0] + u[1]*u[1] + u[2]*u[2];

gammainv = sqrt(c2 / (c2 + u2));

v[0] = u[0] * gammainv;

v[1] = u[1] * gammainv;

v[2] = u[2] * gammainv;

/* step 5: get x(t + delta t) */

x[0] += v[0] * timestep;

x[1] += v[1] * timestep;

x[2] += v[2] * timestep;

*t += timestep;

}
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