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The physics questions this thesis addresses are:  Are fast ions confined in a 

stochastic magnetic field?  Is their confinement different from the bulk plasma and why?  

What is the impact of varying levels of magnetic stochasticity on fast ion confinement?  

How does the presence of a fast ion population affect the bulk plasma? 

Performing Neutral Beam Injection (NBI) with deuterium creates a population of 

20 keV ions in our deuterium plasma.  These fast ions collide and fuse with the 

background at a rate far greater than the background reaction rate.  The resultant neutron 

flux is detected and provides a method of estimating the confinement of the fast ion 

population.  The observed tens of milliseconds confinement time show that the fast ions 

are not being lost stochastically.   

Extensive simulation was done to understand both the character of magnetic 

stochasticity in Madison Symmetric Torus (MST) and also the confinement of fast ions in 

a stochastic magnetic field.  Large subsets of ion orbits were found to be not stochastic. 

Analytically, the mechanism for the confinement of fast ions was found to be that 

the guiding center drifts, which can be substantial, decouple the guiding center motion 

from the background stochastic field and result in good confinement. 
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 In addition, under certain plasma conditions, NBI current drive was measured and 

found to agree with analytical predictions.  One effect of the current drive was to alter the 

plasma equilibrium magnetic field such that an internally resonant tearing mode became 

non-resonant.  This beginning work illustrates the potential for NBI current drive in the 

Reversed-Field Pinch (RFP) as well as to study other aspects of plasma physics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

iii 

 

Acknowledgements 

 There is no question that my time in graduate school here has been the most 

exciting and rewarding of my life.  The opportunity to work and learn with the wonderful 

and brilliant people of the MST group, and also the other plasma groups on campus, have 

helped me grow as a person and as a new scientist. 

 The greatest debt of gratitude that I owe is of course to my mentor, Gennady 

Fiksel.  Gennady encouraged the utmost independence, while always being there to 

provide guidance.  In addition to the physics knowledge and other assistance that 

Gennady passed on to me, I recognized early on that one of the ways to better myself as a 

scientist would be to not just learn what Gennady had to teach, but to emulate and 

understand the keen and clear way in which he thinks about problems.  To the extent that 

I’ve been successful at this, the rewards in my work have been apparent, and it is 

something I hope to continue. 

 I was fortunate enough to come to a program that had Prof. Stewart Prager as a 

leader, and have him as my academic advisor.  He is one of the most open, patient and 

fair people here, and the success of the MST group under his stewardship reflects that. 

 Many others deserve more appreciation than I can offer here; my good friends 

Mike Davis, Fatima Ebrahimi, Yesenia Pumarada-Cruz, Mirella Cengher, for being loyal 

friends and making me laugh even when things were tough.  My office-mates Adam 

Bayliss and Dave Albers, who showed me it is possible to do physics even over loud 

discussions about dogs with gangsta rap playing in the background.  Long live the “MST 

Fencing Crew”; Max Wyman, Art Blair and myself.  Other scientists and friends that I’ve 



 

 

iv 

 

had the pleasure to laugh with and learn from, Jay Anderson, Ted Biewer, Rob 

O’Connell, Diane Demmers, John Sarff and John Wright. 

 I also want to thank Bill Zimmerman, without whom sometimes I believe MST 

would come to a grinding halt, a true teacher in the best sense of the word, and Peter 

Weix, whose job as safety officer is performed diligently and helped me to be more 

responsible, as well as physically intact at the end of my studies here. 

 Finally I want to dedicate my thesis to my mother, Mary, without whose love and 

support over the years I couldn’t have begun to achieve what I have.  She is the strongest 

person that I know, and I try to emulate her perseverance in all that I do. 

 To all of the above, and to the countless others deserving of thanks and 

recognition, I can only once again say thank you, and that I hope that life returns to you 

in good measure the kindness and gifts that you have given me. 

 

Benjamin F. Hudson II 

 

 

 

 

 

 

 



 

 

v 

 

Table of Contents 

Abstract……………………………………………………………………………….. i 

Acknowledgements……………………………………………………………………. iii 

Table of Contents………………………………………………………………….….. v 

List of Tables………………………………………………………………………….. ix 

List of Figures………………………………………………………………………… x 

 

1 Introduction 1 

1.1 Using Neutral Beam Injection to Study Fast Ion Confinement…….…. 1  

1.2 Importance of Fast Ion Confinement………………………………….. 4 

1.3 Overview of Thesis……………………………………………………. 5 

References…………………………………………………………………….. 7 

 

2 Review of Magnetic Stochasticity 8 

2.1 Introduction to The Reversed Field Pinch……………………………. 8 

2.2 Magnetic Island Formation and Stochasticity………………………… 10 

References…………………………………………………………………….. 14 

 

3 Simulation of Magnetic Field Line Diffusion in MST 15 

3.1 Field Line Tracing Code (MAL) …………………………………….. 15 

3.1.1 Equilibrium Reconstruction…………………………………... 16 



 

 

vi 

 

3.1.2 Radial Profiles of Tearing Modes…………………………….. 17 

3.1.3 Scaling to Experimental Quantities…………………………… 20 

3.1.4 Magnetic Diffusion Coefficient for Standard Plasmas……….. 22 

3.1.5 Magnetic Diffusion Coefficient for Reduced Fluctuations “PPCD”.. 30 

3.2 Comparison to Electron Heat Transport Experiment…………………. 34 

3.3 Connection between Field Line Diffusion and Fast Ion Diffusion…… 37 

3.4 Summary………………………………………………………………. 38 

References……………………………………………………………………... 39 

 

4 Fast Ion Confinement Experiment 40 

4.1 Injector Construction…………………………………………………. 41 

4.1.1 Plasma Source………………………………………………… 41 

4.1.2 Ion Optics……………………………………………………... 43 

4.1.3 Neutralization Chamber………………………………………. 44 

4.2 Neutral Beam Voltage and Current Diagnostics……………………… 46 

4.3 Optical Measurements of Beam Divergence………………………….. 48 

4.4 Calorimeter Measurements of Neutral Particle Flux into MST………. 50 

4.5 Estimate of Neutral Fraction via Charge-Exchange Light……………. 54 

4.6 Neutron Flux During NBI…………………………………………….. 57 

4.6.1 Neutron Detector Construction……………………………….. 58 

4.6.2 Measured Neutron Flux………………………………………. 60 

4.7  Estimate of Fast Ion Confinement Time……………………………… 62 

4.8  Fast Ion Confinement during A Sawtooth Crash …………………….. 65 



 

 

vii 

 

4.9  Fast Ion Confinement during PPCD………………………………….. 68 

4.10 Fast Ion Confinement during Counter – Injection……………………. 70 

4.11 Fast Ion Confinement during Radial Injection………………………... 74 

4.12 Summary……………………………………………………………… 75 

References…………………………………………………………………….. 77 

 

5 Simulation of Fast Ion Motion 78 

5.1 Prompt Losses………………………………………………………… 79 

5.2 Guiding Center Drifts………………………………………………… 83 

5.3 Fast Ion Safety Factor………………………………………………… 84 

5.4 Ion Guiding Center Islands…………………………………………… 87 

5.5 Explanation of Improved Fast Ion Confinement……………………… 90 

5.6 Effect of Toroidicity………………………………………………….. 91 

5.7 Test Particle Orbit Simulation………………………………………… 92 

5.8 Confinement of Fast Ions and Onset of Stochasticity………………… 95 

5.8.1 Near-Axis Co-Injected Ions…………………………………… 95 

5.8.2 Confinement Dependence on Ionization Position…………….. 103 

5.8.3 Island Trapping of Fast Ions…………………………………... 109 

5.9 Confinement of Counter – Injected Ions……………………………… 110 

5.10 Confinement Dependence on Magnetic Fluctuation Level………….… 113 

5.10.1 Confinement in High Fluctuations (Sawtooth Crashes)………. 114 

5.10.2 Confinement in Low Fluctuations (PPCD) …………………… 116 

5.11 Radial Injection………………………………………………………... 120 



 

 

viii 

 

5.12 Toroidal Simulation…………………………………………………... 124 

5.13 Summary……………………………………………………………… 129 

References…………………………………………………………………….. 130 

 

6 NBI Effect on Plasma 131 

6.1  NBI and Tearing Modes………………………………………………. 131 

6.2  NBI Heating Model…………………………………………………… 145 

6.3  Summary……………………………………………………………… 155 

References…………………………………………………………………….. 156 

 

7 Conclusions 157 

 

Appendices 

A Derivation of Islands for Magnetic Field Lines and Ion Guiding Centers…. 159 

B Derivation of Ion Guiding Center Safety Factor……………………... 166 

C Finite Difference Solution to The Radial Heat Equation……………... 169 

D A Users Guide to MAL / RIO………………………………………… 196 

 

 

 

 

 

 



 

 

ix 

 

 

List of Tables 

6.1 Resonance of m = 1 tearing fluctuations by toroidal mode number………….. 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

x 

 

List Of Figures 

 

2.1 Equilibrium magnetic fields in the RFP……………………………………… 10 

2.2 Equilibrium magnetic fields in MST…………………………………………. 12 

2.3 Magnetic safety factor and magnetic island widths…………………………... 12 

 

3.1 Radial magnetic mode amplitudes from DEBS………………………………. 19 

3.2 Radial magnetic eigenmodes from DEBS……………………………………. 19 

3.3 Spectrum of magnetic fluctuations measured at the vessel wall……………… 21 

3.4 Field line puncture plot from MAL …………………………………………... 23 

3.5 MAL calculation of magnetic field line diffusion coefficient………………... 23 

3.6 Single trajectory in 1-D line diffusion model………………………………... 26 

3.7 Dependence of diffusion coefficient on length in 1-D line diffusion model…. 27 

3.8 Magnetic diffusion coefficient vs. length from MAL………………………... 27 

3.9 Comparison of Rechester-Rosenbluth diffusion to MAL result……………… 30 

3.10 Magnetic mode amplitude reduction during PPCD…………………………... 32 

3.11 Safety factor for PPCD……………………………………………………….. 33 

3.12 Puncture plot for PPCD………………………………………………………. 33 

3.13 Magnetic diffusion coefficient in PPCD……………………………………... 34 

3.14 Comparison of electron heat diffusion in experiment and simulation (standard)…... 36 

3.15 Comparison of electron heat diffusion in experiment and simulation (PPCD) …….. 36 

3.16 Electron temperature during PPCD…………………………………………... 37 

 



 

 

xi 

 

4.1 Layout of neutral beam injector………………………………………………. 42 

4.2 Equilibrium fraction…………………………………………………………... 46 

4.3 Injector accelerating voltage vs. time………………………………………… 47 

4.4 Plasma current in injector vs. time…………………………………………… 47 

4.5 Ion beam current vs. time…………………………………………………….. 48 

4.6 Perpendicular viewing port…………………………………………………… 49 

4.7 Image of beam before entering vacuum vessel and beam density profile……. 50 

4.8 Calorimeter probe (overall) ………………………………………………….. 51 

4.9 Calorimeter probe (detector fins) …………………………………………….. 52 

4.10 Setup of beam emission experiment………………………………………….. 56 

4.11 Light from beam emission at tangency point…………………………………. 57 

4.12 Setup of neutron detector……………………………………………………... 59 

4.13 D-D fusion reaction rates……………………………………………………... 61 

4.14 Neutron flux during NBI…………………………………………………….... 62 

4.15 Calculation of fast ion confinement time……………………………………... 65 

4.16 Magnetic fluctuations during a sawtooth crash……………………………….. 67 

4.17 Neutron flux during a sawtooth crash………………………………………… 67 

4.18 Magnetic fluctuations during PPCD………………………………………….. 69 

4.19 Neutron flux during PPCD……………………………………………………. 69 

4.20 Neutron flux during NBI co and counter-injection…………………………… 71 

4.21 Comparison of fast ion confinement between co and counter injection……… 71 

4.22 Neutral density in 400 kA standard plasmas………………………………….. 73 

4.23 Charge exchange loss times for different neutral densities…………………… 73 



 

 

xii 

 

4.24 Neutron flux during radial NBI………………………………………………. 75 

 

5.1 Ionization of beam neutrals along the beam’s injection chord……………….. 81 

5.2 Distribution of co-injected fast ions in a toroidal system…………………….. 81 

5.3 Prompt losses for co and counter injection…………………………………… 83 

5.4 Comparison of ion guiding center safety factor with magnetic line safety factor…... 87 

5.5 Fast ion guiding center islands……………………………………………….. 90 

5.6 Density of plasma components used in particle orbit simulation…………….. 94 

5.7 Temperature of plasma components used in particle orbit simulation……….. 94 

5.8 Approximating injection into a cylindrical system…………………………... 96 

5.9 Fast ion guiding center motion in the absence of perturbations……………… 97 

5.10 Fast ion guiding center motion with perturbations…………………………… 97 

5.11 Island trapped fast ion (without Coulomb drag)……………………………… 99 

5.12 Fast ion slowing from 20 keV to 13 keV …………………………………….. 100 

5.13 Fast ion slowing from 20 keV to 7.5 keV ……………………………………. 101 

5.14 Fast ion slowing from 20 keV to 6 keV (transition to stochastic motion) …… 102 

5.15 Safety factor for fast ion starting at r/a = 0.4…………………………………. 104 

5.16 Confinement of fast ion starting at r/a = 0.4………………………………….. 104 

5.17 Safety factor for fast ion starting at r/a = 0.8…………………………………. 106 

5.18 Confinement of fast ion starting at r/a = 0.8………………………………….. 106 

5.19 Perpendicular gyro-radius for tangential injection……………………………. 108 

5.20 Validity of guiding center approximation vs. radial starting location………... 108 

5.21 Island trapped fast ions with Coulomb drag………………………………….. 110 



 

 

xiii 

 

5.22 Safety factor during counter-injection………………………………………... 111 

5.23 Fast ion guiding center motion during counter-injection…………………….. 113 

5.24 Fast ion guiding center motion during a sawtooth crash……………………... 115 

5.25 Guiding center safety factor during a sawtooth crash………………………... 116 

5.26 Guiding center safety factor during PPCD………………………………….... 117 

5.27 Fast ion guiding center motion during PPCD……………………………….... 117 

5.28 Energy lost from fast ion during standard fluctuations………………………. 119 

5.29 Energy lost from fast ion during PPCD………………………………………. 119 

5.30 Fast ion guiding center motion during radial injection (ion born at r/a = 0.2)………. 121 

5.31 Guiding center safety factor during radial injection………………………….. 121 

5.32 Fast ion guiding center motion during radial injection (ion born at r/a = 0.4)………. 122 

5.33 Dependence of ion guiding center safety factor on injection angle…………... 124 

5.34 Ion guiding center motion in a toroidal geometry (ion born at r/a = 0.1)….…. 127 

5.35 Ion guiding center motion in a toroidal geometry (ion born at r/a = 0.5)…….. 127 

5.36 Island trapping in a toroidal geometry………………………………………… 128 

5.37 Counter injection in a toroidal geometry……………………………………… 128 

 

6.1 Plasma conditions during injection into low-current ramp-down…………….. 132 

6.2 Parallel current profile parameters …………………………………………… 134 

6.3 Alpha model current profile reconstruction and on-axis safety factor……….. 134 

6.4 Tearing mode rotation and amplitude during NBI……………………………. 136 

6.5 Sharp effect of NBI on tearing mode rotation and amplitude………………… 137 

6.6 Tearing mode rotation and amplitude during a single no-beam shot…………. 138 



 

 

xiv 

 

6.7 Line integrated radial tearing mode amplitude………………………………. 142 

6.8 Neutron flux and fast ion confinement during NBI into low-current ramp-down…… 143 

6.9 Neutron flux during counter-injection into low-current ramp-down…………. 145 

6.10 Electron temperature during low-power NBI into standard plasma………….. 150 

6.11 Electron temperature during low-power NBI into low-current PPCD………... 151 

6.12 Electron temperature during high-power NBI into standard plasma…………. 151 

6.13 Temperature profiles during high-power NBI into low-current PPCD………. 153 

6.14 Electron temperature during high-power NBI into low-current PPCD………. 153 

6.15 Plasma ion temperature during high-power NBI into low-current PPCD…… 154 

6.16 Temperature profiles during high-power NBI into high-current PPCD……… 154 

  

A.1 Sheared slab magnetic field…………………………………………………... 160 

 

D.1 Coordinates in MAL/RIO…………………………………………………….. 211 

 

 

 

 

 

 



 

 

1 

 

1 Introduction 

The physics questions that motivate this work are:  Are the fast ions from neutral 

beam injection confined in the reversed field pinch (RFP) magnetic field?  Is their 

confinement different from the bulk plasma and why?  What is the impact of varying 

levels of magnetic stochasticity on fast ion confinement?  How does the presence of a fast 

ion population affect the bulk plasma? 

 While these are important goals for their own sakes, taken together they also 

address the question of feasibility of neutral beam injection (NBI) in the RFP.  This is as 

yet a quite open field of investigation and with the importance of neutral beams to 

tokamak physics and reactor scenarios; the issue of confinement of NBI ions is key.

 

 

1.1 Using Neutral Beam Injection to Study Fast Ion Physics 

 A brief review of selected work in the study of fast ion confinement is appropriate 

to present the context in which the work contained in this thesis was performed.  Some of 

the early theoretical work examined the role of particle drifts and finite Larmor radius 

effects for fast ions1,2 and they were found to usually improve their confinement relative 

to the bulk plasma. 

 Neutral beam injection, in addition to bootstrap current, is a source of non-

inductive current drive that was successfully measured3 in DIII-D.  While the two sources 

for a time were indistinguishable, later experiments4 were able to isolate the fast ion 

driven current profile.  The dependence of the NBI current profile on tearing modes was 
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also measured and the loss mechanism explained by a resonant interaction of the fast ion 

orbits and the magnetic perturbations. 

 The confinement of fast ions, in this case alpha particles that resulted from NBI, 

was studied extensively in TFTR.5  They were found to be confined even better than the 

bulk plasma over most of the plasma radius, but did have a layer of stochasticity where 

the ripple from the toroidal field coils would resonate with the particles motion.  

 In NSTX, the confinement of fast ions from NBI was studied6 for both short 

pulses of NBI, as we have on MST, and for a long injection period.  They employed three 

diagnostics; neutron detection, Faraday cup fast ion edge probe, and a neutral particle 

analyzer.  They found that the neutron flux was consistent with classical slowing down, 

and that confinement was good.  During sawtooth crashes, the neutron flux dropped 

rapidly, attributed to a loss of fast ions.  Fast ion confinement during sawtooth events is 

also considered in this thesis. 

 Also in the spherical tokamak a theoretical study was done7 that showed that fast 

ion orbits can be stochastic despite the underlying field having well-ordered flux 

surfaces.  This orbit stochasticity was due to a resonant interaction between bounce 

motion and gyro-motion.  This is one example of the ion orbit having a stark difference 

from the background field trajectories and the small gyro-radius plasma ions as well.  

This issue is central to this thesis, but explored in a stochastic magnetic field as opposed 

to an ordered one. 

 Experiments performed8 in the gas dynamic trap (GDT) found that the fast ion 

energy was also determined solely by classical slowing down, and that despite the 
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presence of micro-instabilities and the possibility of anomalous cross-field transport and 

pitch angle scattering into the loss cone, none of these losses were observed. 

 Other experiments, mostly in tokamaks, have shown sawtooth stabilization, 9 

driving of Alfvén waves10 and driving of instabilities (bump on tail).11  For performing 

these physics experiments, understanding fast ion confinement is important and good fast 

ion confinement is helpful if one is interested in more than transient effects. 

 In the reversed field pinch, we wish to add to the body of knowledge, but expand 

it to understand the effect of a stochastic magnetic field on fast ion confinement. 

The basic process of neutral beam injection is as follows.  We begin with a 

plasma source, held at a high potential.  Ions are drawn from the plasma and accelerated 

by electrically biased grids at a lower potential than the plasma source.  The shapes of 

these grids also serve to focus the ion current into a beam.  The ion beam becomes a 

neutral beam by passing through a neutral gas that provides the beam ions with electrons.  

The neutral beam then enters the plasma, unaffected by the strong magnetic fields until it 

again becomes ionized by losing electrons through atomic processes or collisions.  

Through Coulomb collisions the fast ion then slows down and transfers energy to the 

background plasma electrons and ions.  Fast ions can also be lost by interacting with 

background neutrals, becoming neutral themselves, which can result in them reaching the 

device wall or being re-ionized in a different part of the plasma. 

 There are many things to study about fast ions; this thesis is primarily concerned 

with confinement.  In addition, neutral beams are an intense source of directed 

momentum, and this could affect the plasma current and fluid flow.  Also, the high 
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energies of the fast ions from NBI are a source of heat to raise the plasmas temperature, 

which is key to fusion reactor scenarios. 

  

1.2 Importance of Fast Ion Confinement 

 If NBI is a source of fast particles that are responsible for the many effects listed 

above, then it stands to reason that good confinement is necessary to have anything other 

than a transient and minimal effect.  The most obvious way to characterize the role of 

confinement is to compare the timescales of the effects we wish to accomplish using 

NBI.  Using NBI to heat a plasma, one compares the energy confinement time of the bulk 

plasma to the fast ion energy loss time.  This will be discussed in more detail in Section 

2.2, 3.2 and 7.5 but here we can state that the energy confinement time for a typical MST 

plasma is ~1 ms., whereas the energy loss time of NBI ions (Efi = 20 keV, Te = 400 eV, ne 

= 1x1019 m-3) is around 17 ms.  This means the energy that the fast ions can transfer will 

leave much faster than it is put in.  When MST runs in what we call PPCD (Pulsed 

Parallel Current Drive),12 where the plasma current has been externally shaped, magnetic 

fluctuations are reduced a factor of 3 or more.  Consequently, the energy confinement 

time goes up a factor of ten (~10 ms) and the electron temperature increases to around 1 

keV.  At this electron temperature the fast ion energy loss time is around 50 ms.  This 

would give ~7% of the fast ions energy to the plasma in one energy confinement time, 

which is a small, but non-negligible fraction. 

Next we can consider the issue of particle confinement.  If the ions escape quickly 

then they won’t have time to deposit energy.  The particle confinement time of electrons 

and ions is also around 1 ms in MST.  The reason for this is that the magnetic fields in 
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MST are believed to be stochastic, so particle and energy diffusion are coupled strongly, 

and more importantly, velocity dependent.  For stochastically streaming fast ions, with 

large parallel velocities, the confinement time would be substantially shorter.  The 

particle diffusion for fast ions (that have about 100x the energy of plasma ions) would be 

10x faster than the bulk ions. 

 This question of fast ion confinement in the RFP has not been addressed, and is 

the main topic of this thesis.  What is the fast ion confinement?  If different than 

expected, why is it different?  How does it depend on fluctuations?  How does it depend 

on injection methods and other plasma parameters? 

 

1.3 Overview of Thesis 

 In Chapter 2 we will discuss magnetic stochasticity, which needs to be understood 

before even attempting to quantify the behavior of fast ions in the RFP.  The chapter 

begins with the results of prior work that determined the particle confinement time in 

MST.  It is then followed with an overview of the magnetic island structure in the RFP 

and how it leads to stochasticity, which explains the measured values of the particle 

confinement times in the MST core.   

Chapter 3 describes modeling of the stochastic magnetic field for the express 

reason of providing an accurate structure to do particle tracing in, but the analysis allows 

other useful results such as an estimate of the magnetic diffusion coefficient and electron 

heat transport. 

With a solid understanding of the test-bed for fast ion confinement studies, we 

turn to Chapter 4, which describes the experiment performed to measure the fast ion 
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confinement time.  An overview of the neutral beam is presented where we discuss the 

components of the injector and the sequencing of an injection pulse.  Independent 

measurements of key beam parameters, ion focusing, and neutral current into MST are 

discussed, as well as a description of the diagnostics and techniques used.  The chapter 

concludes with the experiment performed, the construction of a neutron detector (whose 

purpose will be explained), the results from the experiment, and an estimate of the 

confinement time of NBI fast ions.  We then go on to discuss experimental results for 

other initial conditions of fast ions, including low fluctuations (PPCD), high fluctuations 

(sawteeth), injection opposite (counter) to the plasma current and radial injection. 

We return to simulation in Chapter 5 in order to understand the observed 

experimental results detailed in Chapter 4.  To do this we perform simulation of fast ion 

trajectories in a stochastic magnetic field, and insofar as possible attempt to recreate the 

conditions of NBI.  Differences between particle trajectories and magnetic field line 

trajectories are discussed prior to presenting the simulation results.  The confinement of 

fast ions is characterized in a variety of injection scenarios and plasma conditions. 

 Chapter 6 discusses experimental results of looking at the effects of our neutral 

beam on other plasma features, in particular tearing mode amplitude and mode rotation 

and possible evidence of on-axis current drive.  Also, a computer model of heating from 

NBI was created that offers predictions of the degree of heating under varying plasma 

conditions and beam parameters. 
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2 Review of Magnetic Stochasticity 

Before addressing the problem of fast ion confinement in a magnetic field 

(stochastic or otherwise) we must first have a proper description of the magnetic field.  

We will begin in Section 2.1 with a brief description of the RFP with particular emphasis 

on the magnetic field structure.  In Section 2.2 we present a brief overview of magnetic 

stochasticity in the RFP as it is of central importance in understanding the confinement of 

particles of all gyro-radii. 

  

2.1 Introduction to The Reversed Field Pinch 

 The RFP is a toroidally axisymmetric plasma where a significant portion of the 

plasma current is self-generated, the so-called “RFP dynamo”.  The plasma is formed in 

the usual way, applying an electric field to a gas inside the vacuum vessel and 

introducing a source of startup electrons to assist in the ionization.  The poloidal and 

toroidal fields in this configuration are of the same order throughout most of the plasma 

volume, unlike the tokamak where the toroidal field is much larger than the poloidal 

field.  Also the toroidal field reverses in the plasma edge thus giving the RFP the 

“reversed” part of its name.  Fig. 2.1 shows the RFP equilibrium magnetic configuration. 

 We express the field line pitch as the ratio of the toroidal to poloidal transits.  This 

ratio is refered to as the “safety factor” or “q”.  Although referred to hereafter as the 
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“safety factor”, it is not used in the context of plasma stability, merely a convention to 

describe the field line pitch.  The expression for q, in the unshifted cylindrical 

approximation, is 

)(

)(
)(

0 rBR

rrB
rq

!

"
= .     (2.1) 

Here r is the distance from the magnetic axis, B!  is the toroidal magnetic field, R0 is the 

major radius and B" is the poloidal magnetic field.  The safety factor is monotonically 

decreasing over the plasma volume and passes through zero where B! reverses direction 

at the reversal surface. 

Magnetic islands can grow at locations where a radial magnetic perturbation 

characterized by a poloidal mode number, m, and a toroidal mode number, n, is 

perpendicular to the wave vector of the equilibrium magnetic field.  Mathematically we 

write this as 0=• Bk
rv

.  These resonant surfaces occur where q(r) is the ratio of those two 

mode numbers.  We can express this as 

n

m
rq =)(      (2.2) 

where m and n are again the integer mode numbers.  If the islands are sufficiently large, 

they can overlap and render the magnetic field strongly stochastic in the overlapped 

region.  Particles can then follow the broken and diffusive field lines quickly to the wall.  

This is the most serious problem with the RFP configuration and is a key concern when 

considering the effect of this stochastic field on NBI ions. 
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Figure 2.1 Equilibrium magnetic fields in the RFP.  The toroidal, B!   and poloidal, B" 

components are approximately equal in magnitude, and the toroidal field reverses near 

the wall. 

 

2.2 Magnetic Island Formation and Stochasticity  

It is understood that in the RFP, electrons follow magnetic field lines closely and 

these field lines are rarely on closed, nested flux surfaces.  Instead they follow stochastic 

paths over a large extent of the plasma radius.  This allows rapid transport of particles 

and energy out of the system.  In this section we will focus on what gives rise to a 

stochastic magnetic field and the quantification of stochasticity in terms of a diffusion 

coefficient.  This description provides background for upcoming field line simulations 

that are covered in Chapter 3. 

 An equilibrium magnetic field profile is shown in Figure 2.1 and the q-profile is 

in Figure 2.2.  However, the RFP is susceptible to unstable tearing modes, which form 
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magnetic islands at the mode rational surfaces.  The locations where q is a rational 

number are resonant with radial magnetic fluctuations with mode numbers m and n, and 

at these places, field lines reconnect and can form magnetic islands.  The size of the 

magnetic islands in a sheared-slab approximation (See Appendix A) is given as 

)(rq'n

r

)(B

b
~

4W
s

s

è

n1,

n1,

s
r

=     (2.3) 

where b
~

 is the radial magnetic field fluctuation of a given mode number (m = 1, n) and rs 

is the location of the associated rational surface.  Figure 2.3 shows the q-profile with the 

island widths for each resonant mode (m = 1, n = 6-32) overplotted. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

12 

 

 

Bpoloidal 

B0 

Btoroidal 

 

Figure 2.2 Equilibrium magnetic fields for a typical MST plasma.  The reversal 

surface occurs at around r/a = 0.82. 

 

 

Figure 2.3 – Safety factor (dashed) with magnetic island widths (solid horizontal lines) 

shown at the location of the rational surfaces.  Note the density of islands is high as q = 0 

is approached. 

m = 1, n=6 
n = 7 

n = 8 
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 When magnetic islands overlap, the orbits of field lines in the overlapped region 

become stochastic and field lines can wander randomly throughout the region.  A field 

line can be assumed to be getting a random “kick” as it tries to continue along it’s 

original trajectory.  This suggests a random walk model for which one can define5 a 

diffusion coefficient, D, according to 

( )

l

r

D
l 2
lim

2

!
=

"#
,    (2.4) 

where r!  is a radial step size or excursion, and l  is the length along the field line. 

 Cursory examination of this expression reveals that it is only valid if the radial 

excursion is allowed to increase without bound, with the additional constraint that 

lr <<! .  In our confined plasma devices, this is not the case and so a meaningful limit 

must be placed on the value of l.  This will be explored further in Section 3.1.4 when we 

discuss the results of simulation of a stochastic magnetic field and the criteria for arriving 

at the value of the magnetic diffusion coefficient. 

 Rechester and Rosenbluth6 applied the idea of magnetic island overlap and 

stochasticity to describe electron heat transport.  The electron transport observed in the 

core of the RFP is well described by their formulation and provides a good picture of the 

effect of magnetic island overlap on plasma confinement. 
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3 Simulation of Magnetic Field Line Diffusion in MST 

 In Section 3.1 we discuss a field line tracing code that was developed for 

modeling the stochastic magnetic field in MST.  By using experimentally obtained data 

where possible, we attempt to closely approximate the real magnetic field.  The 

equilibrium fields can be reconstructed accurately by using an in-house code MSTFIT.1  

This code generates a plasma equilibrium that best satisfies constraints imposed on it by 

diagnostic data such as density, temperature, and edge magnetic fields.  A 3-D resistive 

MHD code DEBS2 is used to evolve a cylindrical plasma and determine the radial 

structure of the tearing modes that give rise to magnetic islands.  The eigenmodes are 

normalized to experimentally measured values at the plasma edge and used as input to the 

field line tracing code.  After integrating the resultant field line trajectories, we use the 

prescription in Eq. 2.4 and calculate the magnetic diffusion coefficient for various levels 

of magnetic perturbations.   

Section 3.2 compares the result to experimental inferences of the magnetic field 

diffusion coefficient.  Lastly we relate magnetic field line diffusion to our ultimate goal, 

describing the diffusion of fast ions. 

 

3.1 Field Line Tracing Code (MAL) [ MAgnetic Lines ] 

 MAL is a FORTRAN code which integrates along a given magnetic field line to 

solve for its trajectory.  The profiles for the equilibrium field are given at discrete points 

as a function of radius only.  The fluctuating fields are given as a spectrum in wavelength 

space poloidally and in real space radially and axially.  To smoothly integrate along a 

trajectory, an analytical expression is required.  This is obtained by doing a 9-term 
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Chebyshev fit to the equilibrium field and a 16-term Chebyshev fit to the perturbation 

modes.  Other techniques are used to handle the fits near the origin, but the overall 

agreement is within 2% of the input fields.  Sections 3.1.1 – 3.1.2 discuss specifically 

how the magnetic fields are computed. 

 

3.1.1 Equilibrium Reconstruction 

 To have the field line tracing represent the physical situation as closely as 

possible, we begin with a formulation for the toroidal and poloidal magnetic fields in a 

typical MST discharge.  Before proceeding it should be noted that unless otherwise 

stated, the plasma and machine parameters discussed and used in the simulation are: 

 Major radius: 1.5m 

 Minor radius: 0.5m 

 Plasma Current: 385kA 

 Edge poloidal magnetic field: 0.15T 

 Axis magnetic field: 0.4T 

  

The MSTFIT equilibrium reconstruction code uses available diagnostics as constraints to 

generate a best-fit equilibrium magnetic profile.  MST has a wide variety of diagnostics 

available to probe the plasma conditions and the magnetic field.  We employ Far 

InfraRed (FIR) interferometry3 to obtain information about the radial electron density 

profile, and FIR polarimetry to get the poloidal magnetic field.  A Motional Stark Effect 

(MSE) diagnostic4 is used to determine the on-axis toroidal field.  Multi-point Thomson 

scattering5 is used to determine the electron temperature.  Charge Exchange 
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Recombination Spectroscopy (CHERS)6 is used to determine impurity ion temperature, 

which when combined with the electron density measurements and a estimate7 of Zeff ( 

Zeff ~ 2), yields the plasma ion density.  The resultant radial profiles over a large 

ensemble of plasma shots result in the equilibrium fields shown in Fig. 2.2 with the safety 

factor shown in Fig. 2.3. 

 

3.1.2 Radial Profiles of Tearing Modes 

 As we have seen, the overlap of islands is dependent on the size of the 

fluctuations that define the island size.  This required an estimate of resonant perturbation 

at each rational surface.  Additionally, the entire radial profile of each mode is needed to 

accurately represent the overall magnetic field. 

 This is accomplished by making use of the DEBS code, which is a cylindrical 3-D 

resistive MHD solver.  The experimental plasma parameters are used as inputs and the 

system is allowed to evolve self-consistently.  The most serious constraint to this 

modeling is the question of the Lundquist number, which in experiment is, 
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a is the minor radius, taken to be a characteristic length for the system, and !  is the 

plasma resistivity, given by 
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In the simulation, as one tries to resolve ever-larger S, it requires increasing 

spatial and temporal resolution to capture the energy evolution of the magnetic field.  In 

practice, this means that a value of S = 104 takes a few hours to execute, while S = 106 

takes about 1.5 months.  We have one run at S = 106, and believe this to be a valid 

representation of the magnetic structure in a typical RFP discharge.  It captures 

experimentally observed behavior such as the dominance of the m = 1, n = 6 mode and 

more importantly sawtooth behavior.  These features are only resolved at large S, but are 

a ubiquitous feature of MST plasmas. 

The key results of the DEBS run are shown in Fig. 3.1 and Fig. 3.2.  Fig. 3.1 

shows the spectrum of magnetic modes and their amplitudes.  The convention in Fig. 3.1 

is that the core-resonant modes (inside the reversal surface) have negative n values.  The 

modes resonant outside the reversal surface have positive n values and are typically very 

small.  These modes are not included in the field line or particle tracing simulations as 

they would contribute very little and greatly increase the simulation time.  Fig. 3.2 shows 

the radial structure of the m = 1, n = 6-8 modes. These are global internally resonant 

tearing modes and their values at the rational surfaces partially determine the magnetic 

island width.  There are also m = 0 modes which are resonant at the reversal surface.  

These do not contribute much to the magnetic topology over most of the plasma radius; 

they render very few orbits stochastic, but are included in the simulation because they act 

as a non-negligible perturbation to the overall field line.  The m = 0 modes also couple to 

the m = 1 modes, but the localized nature of the eigenmode amplitudes tends to make this 

effect negligible.   
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Figure 3.1 Radial magnetic mode amplitudes from DEBS.  The internally resonant 

modes -6 to -32 are denoted by the shaded region.  The amplitude drops rapidly with 

increasing |n|.  The modes resonant outside reversal (positive n on this plot as DEBS 

takes negative values to be internally resonant modes) are even smaller and so can be 

safely neglected. 
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Figure 3.2 Radial magnetic perturbation eigenmodes from DEBS.  The m = 1 modes 

are global, with the n = 6 dominant in typical MST discharges. 
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3.1.3 Scaling to Experimental Quantities 

The magnetic profiles mentioned previously come from two sources, MSTFIT for 

the equilibrium fields, and DEBS for the radial eigenmodes.  The amplitude of the radial 

eigenmodes from DEBS are not necessarily representative of a typical magnetic field 

structure.  The modes in DEBS change in time as energy is transferred back and forth 

between them.  We do our best to pick a time in the simulation that most accurately 

represents a typical discharge, i.e., between sawtooth crashes.  To be more precise, we 

would like to take experimentally obtained fluctuation levels and scale the radial 

eigenmodes to those.  The problem is that we don’t measure ),,(
~

nmrb
r

so another 

method must be found.  

MST contains a toroidal array of 64 magnetic pickup coils that record the values 

of the edge magnetic fluctuations.  These allow Fourier decomposition into its respective 

modes as shown in Fig. 3.3.  These coils measure the toroidal (n) spectrum of the 

poloidal and toroidal magnetic fluctuations at the wall.  What remains is to determine 

which component to use for scaling the m = 0 and m = 1 modes in the MAL code. 

We use Ampere’s law, at the wall of MST, to analyze the spectral components of 

the measured magnetic fluctuations.  The radial component of Ampere’s law at the wall 

is given by 
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Figure 3.3 Spectrum of magnetic fluctuation amplitudes measured at the vessel wall.  

The poloidal component is dominantly m = 1 so we use this for scaling to the internal 

tearing modes. 

 

The poloidal fluctuation at the wall is then 
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If we set m = 0 in the above expression, we see that  0),0(
~

=nb! .  This means that the m 

= 0 component is purely represented by !b
~

.  For the m = 1 modes, we note that since 

0),0(
~

=nb! , ),1(
~

),(
~

nbnmb += !! .  Given that m = 0, 1 are the dominant poloidal mode 

numbers in MST, then we can use ),(
~

nmb!  to be our values for the m = 1 modes. 

In the field line tracing code then, we scale the m = 1 modes to the experimentally 

measured poloidal fluctuations and the m = 0 modes to the toroidal component.  The final 
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assumption made is that the radial magnetic field scales consistently with this analysis 

according to the relative values that were provided by the DEBS code. 

 Referring back to Fig. 3.3 we note that the n = 6, which is the innermost resonant 

mode, dominates.  However, modes 1-5 are not resonant, but still present as perturbation 

components.  This will be very important when we examine fast ion orbits in Chapter 5. 

 

3.1.4 Magnetic Diffusion Coefficient for Standard Plasmas 

MAL solves the field line equations, 
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==      (3.7) 

where !  is the poloidal angle, !  is the toroidal angle, r is the minor radial variable, R is 

the major radius.  Br is the radial magnetic field (in our case just the perturbation) 

while !B and !B  are the poloidal and toroidal magnetic fields (both equilibrium and 

perturbation), respectively.  The resultant trajectories can be visualized as Poincaré plots 

(Fig. 3.4).  These allow a visual assessment of the magnetic topology and clearly show 

the presence of good flux surfaces, magnetic islands, and regions of stochasticity.  

Quantitatively, the code also evaluates the following to arrive at a value for the magnetic 

diffusion coefficient (Fig. 3.5), Dm. 
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where r!  is the radial excursion, l!  is the field line length, and the brackets denote an 

average over a large number of realizations. 
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Field Line Puncture Plot 

 

Figure 3.4 Field line puncture plot by MAL.  The field lines are stochastic over most 

of the plasma radius, as expected.  The n = 6 islands are only partially overlapped, as well 

as the m = 0 islands (resonant at r/a = 0.84, q = 0) which remain due to truncation of the 

high-n m = 1 mode spectrum. 

 

 

Figure 3.5 MAL calculation of the magnetic diffusion coefficient.  The diffusion 

coefficient is rather constant over most of the plasma radius, but the values at r/a < 0.2 

and r/a > 0.8 are not valid there since the system is not diffusive in those regions. 
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 It is challenging to define a meaningful diffusion coefficient in such a system 

where the degree of stochasticity (randomness), which is inherently a function of the 

perturbation strength, varies with radius, but also where the very idea of diffusion is 

invalid (e.g. at the boundaries r = 0 (where we have an imposed mathematical regularity 

condition) and near the reversal surface).  While such a system defies any simple 

description, we can remove one aspect of uncertainty, namely the varying degree of 

stochasticity, and create a model that illustrates the effects of a bounded system on the 

calculation of a diffusion coefficient.  This is a fruitful analysis because as we will see, 

the model will replicate the full field line tracing simulation quite well. 

 We consider a 1-D random walk model in a bounded domain.  The trajectory that 

is followed is a small sinusoidal perturbation, in the x – y plane (representative of the 

spatial trajectory of a magnetic field line), 
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L

x
ny '( 2sin      (3.9) 

! is the amplitude of the perturbation, taken to be 0.01 m, n is the number of wavelengths 

in the system, akin to the toroidal mode number of a radial magnetic eigenmode and L is 

the length of the system, taken to be the toroidal circumference of MST or about 9.4 m. 

In addition, we impose upon the trajectory a probability of getting a random 

“kick” in the y (radial) direction (either inward or outward, equally likely) to simulate the 

stochasticity.  The probability was chosen such that after each step in the x  direction, it 

would have been kicked a radial distance of 

xDy !=! 2      (3.10) 
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with D being a diffusion coefficient of value 10-4 m (taken from the MAL result) and 

x! a step size in the x  direction.  A reflective boundary was placed such that if a radial 

step were to take it past the boundary it would instead be kicked in the opposite direction 

to the intended excursion.  A plot of one trajectory under these conditions is shown in 

Fig. 3.6.  As can be clearly seen the particle wanders in radius (only weakly affected by 

the underlying sinusoidal trajectory) and reflects off the boundaries as described above. 

 We now ensemble many trajectories this way and look at how the calculated 

diffusion coefficient varies with length and compare it to the specified diffusion 

coefficient which we used to determine the amplitude of the radial step.  The horizontal 

distance was expanded and the ensemble was performed over 1000 trajectories. 

 The result is shown in Fig. 3.7.  The sinusoidal field is shown in the red dash-dot 

line, and we can see that for short line lengths, the line closely follows the perturbation,   
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What this means is that the motion is considered to be ballistic, or linear with the 

imposed perturbation.  As additional kicks take the trajectory away from the original line, 

the calculated value for the diffusion coefficient saturates at the value shown as the 

straight blue dashed line in the figure.   
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   ( Diffusive regime )    (3.12) 

In this range the motion is considered to be purely diffusive as it has been altered from its 

ballistic path, but has not yet (on average) interacted with the boundary.  Finally, as the 

distance becomes even longer, additional reflections are included in determining the 

trajectories position and as such the radial excursion approaches some finite average,  
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Figure 3.6 A single trajectory in the 1-D diffusion model is shown.  The solid 

boundaries represent a reflecting wall that limits the vertical range of diffusion. 

 

whereas the length has no such bound.  This results in the decrease of the calculated 

diffusion coefficient that goes approximately as x!/1 . 
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 Similarly, we can consider the calculated value of the diffusion coefficient from 

MAL and see how it varies with length.  This is shown in Fig. 3.8 and is perhaps 

surprisingly close to the result from the simple model shown in Fig. 3.7, though the 

benefit of the agreement means that the understanding of the bounded diffusion and its 

role in the saturation of the value of the diffusion coefficient is sound. 

 

Reflecting boundary 

Reflecting boundary 
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Figure 3.7 Dependence of D vs. x!  in the 1-D diffusion model.  Initially the 

displacement is highly tied to the perturbation (shown in the red dash-dot line), then 

saturates to the imposed diffusion coefficient (shown in the blue dashed line), and finally 

decreases as 1 / x!  due to being bounded.  

 

Figure 3.8 Diffusion coefficient vs. length from MAL.  Just like in the simple model 

we see a linear (ballistic) region, a diffusive region and a bounded region.  The length 

scales at which the regions transition are quite close to what was shown in Fig. 3.7. 
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If the step size that we use to define our diffusion coefficient is much less than the 

electron mean free path, we can say that the diffusive transport is governed by the field 

line stochasticity rather than the Brownian motion that would result from particle 

collisions.  Rechester & Rosenbluth8 analyzed the heat transport resulting from electron 

diffusion along a stochoastic magnetic field in the collisionless regime and it can also be 

shown to be valid for our analysis as well.  When we estimate the electron mean free path 

in MST,   
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where 2/36
ln1091.2
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ee
Tnxí is the electron collision frequency, we see that 

MFP
ë  

exceeds the distance at which the field line diffusion saturates to 
M
D , which occurs after 

about 1 m.  Physically this means that transport due to following a diffusive magnetic 

field dominates over collisional Brownian motion. 

 We can also compare the calculated diffusion coefficient vs. that predicted by 

Rechester & Rosenbluth.  Rechester and Rosenbluth derive 
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with Lc being an “auto-correlation” length.  Physically, Lc represents the length over 

which two exponentially diverging field lines become decorrelated from each other and 

has been calculated9 to be 
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where 
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is the “overlap parameter” that characterizes how overlapped two adjacent islands are. 

For MST, where the islands are sufficiently overlapped, a reasonable value of S 

might be around 5, which would give an Lc of approximately 1 m.  Interestingly enough, 

this is approximately the step size, in the 1-D model of diffusion presented previously, 

where the field line motion transitions from ballistic to diffusive, which is what one 

would expect given the definition of the correlation length. 

The formula in Eqn. 3.15 can be better understood by considering the field line 

equation 
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If this is to describe a diffusive system then 
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and then we identify 
c
Ll ~2/! .  This analogy is only intended to elucidate how the 

radial magnetic perturbation plays the role of a random displacement. 

We use our estimates of the island size and positions to get a value for the 

diffusion coefficient by Rechester and Rosenbluth’s method, and compare with the field 

line tracing code.  The results are shown in Fig. 3.9.  We see that it overestimates the  
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Line Tracing 

R.R. 

 

Figure 3.9 Comparison of Rechester-Rosenbluth diffusion to MAL results.  

Agreement is fair in the mid radius, but R.R. overestimates where overlapping is weak, 

and underestimates where overlapping is strong. 

 

value where the field is not strongly overlapped, as would be expected, and 

underestimates it where are field is most stochastic.  Rechester and Rosenbluth formulate 

this expression in the limit of a large number of densely packed resonances.  In the mid 

radius, the island are overlapped, but not densely so; perhaps 2-3 islands at a given radial 

location.  Where the islands are more strongly overlapped, we have a truncated mode 

spectrum; we only go to n = 32.  There is also an m = 0 perturbation that can influence 

the trajectory.  The approximate agreement is encouraging though in light of the 

limitations due to the varying stochasticity and boundedness of the diffusive region. 

 

3.1.5 Magnetic Diffusion Coefficient in Reduced Fluctuations “PPCD” 

Since we went to great lengths to use realistic fluctuation levels for our standard 

plasma, we can examine the case where fluctuations are reduced.  In MST we inductively 
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drive current through application of a poloidal electric field to flatten the parallel current 

profile, and lessen the source of free energy available to drive instabilities.  This is known 

as Pulsed Parallel Current Drive “PPCD.”  By measuring the fluctuation levels during 

PPCD we can use different factors to scale the fields we use in the simulation, relative to 

the values we used in the standard discharge. 

We observe experimentally that the fluctuations decrease for many of the 

internally resonant modes.  The difference between standard fluctuations and PPCD is 

shown in Fig. 3.10.  For all but the most core-resonant modes, the reduction is a factor of 

about 4, and in some instances even greater. 

With smaller magnetic perturbations we expect less island overlap and a reduction 

of magnetic stochasticity in our simulations.  The q-profile with the islands overplotted is 

shown in Fig. 3.11, and indeed from this we expect much of the core to no longer be 

stochastic.  The q-profile is slightly different from the standard case; the application of 

the poloidal electric field drives the toroidal magnetic field more negative, resulting in 

lower edge value of q and an inward shift of the reversal surface.  The Poincaré plot for 

PPCD is shown in Fig. 3.12 and we see that the n = 6, 7 and 8 islands are now not 

overlapped and flux surfaces in the core have been restored.   

Before discussing the results from MAL regarding the Dm for PPCD plasmas, we 

must make a couple of caveats.  First, the DEBS eigenmodes are only for “standard”  
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Figure 3.10 Magnetic mode amplitude reduction during PPCD.  The mode amplitudes 

are observed to decrease up to a factor of 4 from the standard case. 

 

plasmas; there is currently no DEBS simulation of PPCD.  Secondly, all the caution that 

had to be applied to the estimate of Dm in the standard case is even more necessary here.  

As can be seen from the Poincaré section, the radial range of stochasticity is reduced, so 

the excursions are more tightly bounded.  Nevertheless, we can examine the code’s 

results in the same method as before and in Section 3.2 compare with experiment. 

The profile for the diffusion coefficient is shown in Figure 3.13.  We can see that 

it is small near the axis where we have restored flux surfaces.  While the field lines are 

highly perturbed due to the presence of islands, because the lines are unbroken the mean 

square deviation along a field line quickly approaches to zero; an perturbed but non-

stochastic field line is very much bounded, thus the “diffusion coefficient” goes from 

reflecting the linear motion quickly to the l/1  behavior, with no diffusive regime.  The 

value of Dm is highest where expected, and more importantly, where the field lines are 

stochastic.  The  
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Figure 3.11 Safety factor for PPCD.  The increased reversal during PPCD gets pushes 

the resonances inward, and lower levels of fluctuations reduce the stochasticity. 

 

 

Figure 3.12 Puncture plot for “PPCD”.  Intact islands appear at the n = 6,7,8 resonant 

surfaces. Only a thin band of stochasticity remains between 0.5 < r/a < 0.7. 
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Figure 3.13 Magnetic diffusion coefficient in PPCD (from MAL).  Diffusion is 

reduced about a factor of 100 where it would still be valid 0.5 < r/a <0.7. 

 

value of Dm is around 10-6 m., which is a factor of about 100 lower than the standard 

case.  The R.R. estimate, to the degree that it would be valid for PPCD, would predict 

only a factor of 10 decrease, since the diffusion coefficient roughly scales as the square of 

the fluctuation amplitudes. 

 

3.2 Comparison To Electron Heat Transport Experiment 

 Electrons have very small gyro-orbits because of their small mass, so we expect 

them to closely follow the field lines, stochastic or not.  Rechester and Rosenbluth further 

postulated that electron heat transport would be described by a diffusion coefficient 

teme
rDr v)()( =!      (3.20) 

with vte being the electron thermal velocity.  This can be seen by considering that 
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immediately identify as being a particle diffusion coefficient.  Since the electrons are 

assumed to be in a Maxwellian distribution, their parallel velocity along the field line is 

the thermal velocity.  In this analysis, the role of an ambipolar electric field, which 

restricts particle diffusion, but not heat diffusion, is ignored. 

If true, then the electron heat flux would be described by Fourier’s heat law, 

giving 

r

rT
rrnrQ e

eer
!

!
"=

)(
)()()( #     (3.21) 

where Q is the electron heat flux, ne is the electron density, !e is the electron diffusion 

coefficient, and Te is the electron temperature. 

 This was measured previously10 in MST and used to get a value for the electron 

heat diffusion coefficient.  Multiplying the results from MAL by the electron thermal 

velocity, we compare the simulation directly with experiment.  For standard plasmas we 

have good agreement as shown in Fig. 3.14.  The profile is flat in both cases with 

transport decreasing markedly near the reversal surface. 

 The PPCD case (Fig. 3.15) is interesting as agreement is only reached in the 

region where the comparison would be valid; where the magnetic field is stochastic.  The 

electron temperature profile is shown in Fig. 3.16.  Note that it is different than the 

standard Te profile as the reduced fluctuations result in hotter plasmas, and also the ability 

to support temperature gradients appears due to the loss of a fast radial heat equilibration 

mechanism. 
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Figure 3.14 Comparison of electron heat diffusion between experiment (blue) and 

computation (green).  Good agreement as found, including the presence of a transport 

barrier at the reversal surface. 

   

Figure 3.15 Comparison of electron heat diffusion between computation and 

experiment in PPCD.  The experiment (red) agrees well with the numerical value (blue) 

only in the region where the comparison would be valid. 
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Figure 3.16 Electron temperature during PPCD as measured with Thomson scattering.  

The improved confinement of PPCD plasmas results in a higher electron temperature. 

 

3.3 Connection between Field Line Diffusion and Fast Ion Diffusion 

 An interesting picture begins to emerge in that, thus far, having considered field 

line diffusion and electron diffusion, we have in essence studied the variation of particle 

confinement in the RFP as a function of gyro-radius.  Magnetic field lines represent the 

zero energy limit of particle motion and were shown to be stochastic and poorly confined, 

which was quantified by evaluating the magnetic diffusion coefficient. 

 The confinement of the smallest gyro-radius particles, electrons, was reviewed 

from past measurements and compared to recent simulation of magnetic field line 

diffusion.  The transport of electrons, again assuming no ambipolar electric field, was 

well described by flow along stochastic field lines. 

By simply scaling upward in energy, one might expect to get the answer for the 

degree of confinement of faster particles, however this may not be so.  The role of 
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particle drifts that are proportional to gyro-radius becomes important (Section 5.2).  As 

we will see, this confinement dependence on gyro-radius is an important physics result 

from this thesis.  Following chapters address the confinement of large gyro-radius 

particles both experimentally and theoretically. 

 

3.4 Summary 

The magnetic field is of central importance in understanding the orbits and 

subsequently the confinement of fast ions.  In the RFP, magnetic fields are not typically 

on nested surfaces, but rather, fill stochastic volumes, which makes an analytic 

description of particle orbits impossible.  A numerical approach was taken that captures 

important physics of the RFP magnetic field.  Field line tracing was done to characterize 

its diffusive nature and allow quantitative comparison with experiment.  A simple model 

was discussed that illustrated the consequences of a bounded stochastic system.  The heat 

transport of electrons in a stochastic magnetic field was previously measured, and the 

inferred magnetic diffusion was close to the field line simulation results.  Under reduced 

magnetic fluctuations, simulation and experiment were again compared and found to be 

in good agreement.  With a sufficient description of the magnetic fields, we can use the 

same environment as a foundation to simulate the motion of fast ions, which as we will 

see, have greatly different dynamics than the electrons whose transport was previously 

discussed. 
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4 Fast Ion Confinement Experiment 

 To study the question of fast ion confinement in the RFP, we used a tangential (to 

the magnetic axis) neutral beam injector, described in Section 4.1, as a tool to introduce a 

population of fast ions into the RFP plasma.  Typical waveforms and values of the beam 

current are discussed in Section 4.2.  These are the first in a series of diagnostics needed 

to quantify the number of beam ions we are introducing in the plasma.  In Section 4.3 we 

present a measurment of the divergence of the beam as it is focused to enter the vessel 

through a small diameter vacuum port.  Section 4.4 describes a calorimeter that was used 

successfully to measure the total beam current entering MST.   The neutral to ion fraction 

of the beam was measured with an experiment utilizing charge exchange emission and is 

presented in Section 4.5. 

 The results of the fast ion confinement experiment begin in Section 4.6 where the 

neutron emission from deuterium beam ions fusing with deuterium bulk plasma ions is 

measured.  Section 4.7 shows the procedure used to calculate the beam particle 

confinement time in a 400 kA standard RFP discharge, and is one of the key results in 

this thesis.  The confinement under varying levels of magnetic fluctuations is studied in 

Section 4.8 (increased magnetic fluctuations during a sawtooth crash) and Section 4.9 

(decreased magnetic fluctuations during PPCD).  The role of the beam injection vector 

relative to the background magnetic field is explored in Section 4.10 (poloidal magnetic 

field direction reversed) and Section 4.11 (radial injection). 
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4.1 Injector Construction 

 The neutral beam injector used on MST has three basic components, the plasma 

source (Section 4.1.1), ion accelerating and focusing grids (Section 4.1.2) and a 

neutralizing chamber (Section 4.1.3).  Each of these will be discussed in turn to give the 

reader an understanding of the neutral beam formation process. 

 

4.1.1 Plasma Source 

 Fig. 4.1 shows a schematic view of the plasma chamber1.  First we have a plasma 

emitter consisting of an arc source that creates a low-temperature plasma.  The plasma 

then expands into a small vacuum chamber, which is a cylindrical chamber of 

approximately 28 cm in diameter by 24 cm deep.  Along the perimeter of the expansion 

chamber is a multipole cusp field provided by an array of permanent magnets that 

provide additional focusing of the expanding plasma.  The expanding plasma acts as a 

divergent ion beam (charge balanced by electrons) that strikes a spherical electrode.  The 

electrode is gridded by the presense of small apertures that allow ions to pass through.  

Successive grids are at lower potentials, stripping the ions of their electrons and focusing 

the ions into a converging beam. 
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Figure 4.1 Layout of neutral beam injector.  The lower portion denotes what potential 

the components are held at to accelerate the ions and suppress electron current. 

 

An optical trigger starts the process 

 At –7.50 ms the magnetic isolation current turns on 

At –650 µs target valve and anode valve open 

 At –450 µs the cathode valve opens 

 At –400 µs the arc supply comes on 

 At –100 µs the high voltage turns on 

 At 0 µs the ignition spark occurs and the plasma forms 
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 Magnetic isolation – In the plasma emitter, to restrict the flow to the axial 

direction, an axial magnetic field is needed.  This is provided by a solenoidal current loop 

around the plasma chamber.  The current rise rate is about 1.3 A/ms, which for 7.5 ms of 

rise gives about 10 A in the coil. 

 Target Valve – Gas is puffed into the target chamber to provide sufficient neutral 

density for the accelerated ions to neutralize and become fast neutrals, which enter the 

plasma. 

 Anode Valve – Provides even fueling for the initial plasma formation 

 Cathode Valve – Provides fueling near the ignition spark where the plasma first 

forms. 

 Arc Supply – 300 V applied across the plasma chamber, draws a current of 960 A. 

 High Voltage – 20 kV Used to draw ion current from the plasma and into the 

acceleration grids. 

 Ignition – A 1 kV filament that emits electrons to start the initial cascade for 

plasma formation. 

  

4.1.2 Ion Optics 

 The expanding plasma source reaches a spherical electrode, which is perforated 

by small apertures to allow transmission.  There are three other grids, ~20 cm in 

diameter, at successively lower potentials, as shown in the electric potential plot in the 

lower section of Fig. 4.1, that draw ions off and focus them.  We have four grids; Source 

(G1), Gradient (G2), Suppression (G3), Reference (G4).  Between grids G1 and G2, there 

is a 3 kV drop that separates the ion and electrons from the plasma source.  Between grids 
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G2 and G3, the ion experiences an energy gain of approximately 17 kV and this is where 

it is most strongly focused and accelerated.  Between grids G3 and G4, we see from Fig. 

4.1 that the potential is negative, and this is to provide a potential hill to electrons further 

down the beam line.  Any free electrons would be accelerated towards the rear grids and 

interfere with the ion beam by either combining with a passing ion or affecting the space 

charge distribution between grids G1 and G2. 

 

4.1.3 Neutralization Chamber 

 The focused ion beam then passes through a chamber that has been puff filled 

with neutral gas.  The ion beam charge exchanges with the neutral gas and becomes the 

neutral beam that enters the plasma.  One important question is the efficiency of the 

process.  If there were too little gas in the chamber, the beam would be mostly ions 

entering MST.  If too much gas is used, scattering would become more pronounced and 

affect the focusing of the beam. 

 While an accelerated ion may become neutral, it may also once again be ionized 

through collisions and thus enter MST as an ion.  The equations that describe the 

processes in the target chamber are 
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where nf is the fast particle density, nT is the density of gas in the target chamber, the 

sigmas are the cross-sections for charge-exchange and impact ionization.  The 

superscripts (+ and 0) denote charge state.  The first term is the charge exchange between 

the fast particles and the background.  The second term is the contribution from impact 

ionization of fast neutrals.  Since the scattering cross section is much lower than the 

charge exchange or excitation cross sections, we can assume that for a modest sized 

target chamber that scattering will not play a strong role. 

 This system of equations has an equilibrium value, which is determined 

experimentally to be the “equilibrium fraction” and is given by Eqn. 4.2.  The real value 

is a state where the two competing effects have balanced each other, and since the cross 

sections are velocity dependent, the equilbrium fraction is as well.  This is the steady 

state population ratio between the number of ions and neutrals.  It is often tabulated in 

atomic processes databases1 and is shown in Fig. 4.2.  For a deuterium beam passing 

through neutral deuterium, the value is given as ~87% neutral.  We measure this 

experimentally (Section 4.5) and attain very close agreement.   
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Figure 4.2 Equilibrium fraction.  The value for the deuterium beam at 20 keV is 

shown by the blue diamond (~87%) and the value for the hydrogen beam at 20 keV is 

shown by the black diamond (~80%). 

 

4.2 Neutral Beam Voltage and Current Diagnostics 

Fig. 4.3 shows a typical time trace for the accelerating voltage on the source grid.  

The plasma current is shown in Fig. 4.4 and is approximately 850 A.  The ion current is 

shown in Fig. 4.5 with the dashed line a typical value when using deuterium instead of 

hydrogen.  If we consider the Child-Langmuir law, 
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which governs the space-charge limited current (or the ion current flowing from the 

plasma to the source grid), we see that the current is inversely proportional to the square-

root of the particle mass, so would be about 40% higher for hydrogen vs. deuterium. 
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Figure 4.3 A typical time trace of the voltage on the Source grid (G1). 

 

 

Figure 4.4 The plasma current inside the arc discharge chamber. 
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Figure 4.5 Ion beam current as measured by a shunt resistor between G1 and G4.  

The solid curve is for hydrogen and the dashed is deuterium.  The small initial spike is 

electrical noise. 

 

There is a difference in the shape of the beam current traces, which we believe is due to 

the ion optics being optimized for hydrogen, although of course the heavier deuterium 

will affect the time response of the beam as well. 

 

4.3 Optical Measurement Of Beam Divergence 

 To quantify the degree of focusing of the neutral beam, which is needed to 

estimate the amount of neutral current into MST, we use a perpendicular port between the 

target chamber and the vacuum vessel as shown in Fig. 4.6. 
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Figure 4.6 Perpendicular port, 3.375” ID.  Used to view/access the neutral beam 

before it enters MST. 

 

H-alpha (or D-alpha) light has a wavelength of ~ 656 nm and this is in the visible 

spectrum.  A digital camera with a slow shutter speed was used to view the light profile 

across the beam cross section (Fig. 4.7 Left).  Using standard photo-analysis software we 

reconstructed the density profile of the beam.  The Gaussian shape of the profile is shown 

in Fig. 4.7 (Right) and by measuring the changes in the width of beam, we estimate the 

divergence to be about 0.02 radians.  This is close to the manufactured specifications. 
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Figure 4.7 Image of NBI taken with digital camera.  Abel inversion of light profile 

provides estimate of beam divergence. 

 

4.4 Calorimeter Measurement Of Neutral Particle Flux Into MST 

 While we can estimate the neutral current into MST from the ion current 

diagnostic (Fig. 4.5) and the equilibrium fraction (Fig. 4.2), the perpendicular port gives 

the opportunity to take a direct measurement of the beam properties just before it enters 

the vacuum vessel.  To do this, a calorimeter was constructed and is shown in Figs. 4.8 

and 4.9.  The basic principle of operation is that the particle flux (neutrals + ions) strike 

three copper fins, the kinetic energy being transferred to heat in the copper.  Each fin then 

experiences a temperature increase as it equilibrates through the relatively thin  
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Figure 4.8 Calorimeter probe.  Elevation (left) shows the probe housing, neck and 

cup.  Two-valve assembly to roughing line minimizes gas leakage into MST.  Beam-

facing view (right) shows copper fins and support ring (stainless steel)  
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Figure 4.9 Lee side of calorimeter probe.  Shows solder positions of thermocouples 

and copper shielding of thermocouple wires. 

 

thickness of the fin.  The temperature is monitored as a voltage by thermocouples on the 

lee side of the copper fins. 

 We first check the beam alignment by means of looking for symmetrical heating 

in all three fins.  Once we are convinced the beam is aligned, we consider the 

interpretation of the recorded temperature increase.  The physical dimensions and 

geometry of the copper plate were chosen to have the plates mostly isolated from each 

other thermodynamically.  The thinness of the copper was selected to give a reasonable 

temperature rise, as well as a fast time response as compared to any parallel heat 

Mechanical stop Copper shielding 

2 mm thick copper fins Support ring 

300 

3 cm. 

Thermocouple 
connections 
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conduction.  The thin junction point resists heat flowing from one fin to the other, in the 

event of asymmetrical heating.  As stated earlier, if we first align the beam, then there 

would be no heat transport from one fin to the other as there would be no temperature 

gradient between fins. 

 The temperature rise can be simply expressed as 

cvmc

Q
T

!
=!      (4.4) 

where cv is the specific heat of copper (0.383J/g*c) and mc is the mass of the copper fins 

(10.1g).  In SI units, the heat into the copper is, 
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where I is the beam current we want to measure, !  is the beam on time, and Vg is the 

accelerating voltage of the beam. 

The response of the thermocouple (Type J Iron/Constantan) is very linear over the 

ranges of temperatures that we limited ourselves to (20 C to 175 C).  The 

voltage/temperature ratio in this range is  

o
CmV /05.0=! .    (4.6) 

Combining Eqns. 4.4 - 4.6, we have a formula for the beam current as a function of the 

measured voltage response of the thermocouples, 
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In Eqn. 4.7 V!  is in millivolts and the leading factor of 4 comes from the fact that the 

fins only cover ! of total beam area. 
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 For 19 kV, and a beam time of 1.42 ms (see Section 4.5), we get Ib = 19 A 

through the radius encompassed by the fins.  Assuming a Gaussian profile, 
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With width r0 = 2.7 cm, (from light measurement) the total beam current would be 
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where a is the radius of the fins (3 cm).  The 0.9 in Eqn. 4.9 is because we only have 90% 

of the beam at full energy, the rest we neglect for simplicity. 

 However, current through the port is less than the total, so we also would like to 

know how much current is going into MST.  To calculate that, we use 4.9 again, but the 

leading factors becomes 
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where again a is the radius of the fins and b is the radius of the port (4.3 cm.).  As seen in 

Fig. 4.5, a rough average beam current (total) is around 28 A, which is in agreement with 

the previous measurement from the calorimeter (Eqn. 4.9).   

 

4.5 Estimate of Neutral Fraction Via Charge-Exchange Light 

 In Section 4.4 we established that about 25 A of total current is entering MST.  

We also have from Section 4.1.3 that the equilibrium fraction is 87% so we predict that 

there is 22 A of neutral current entering MST.  One way to check this is to use the fact 



 

 

55 

 

that the light emission is proportional to the ion + neutral density.  If we could separate 

the ions from the neutrals and take light measurements based on this then the ratio of the 

two light signals would indicate the neutral fraction. 

 In MST we can pulse the toroidal magnetic field with no plasma.  The ion 

component of the beam has a total Larmor radius of about 0.65 m in a 450 G field.  This 

is sufficient for the beam ions entering MST to be bent away from beam neutrals and 

strike the vessel wall.  We have vertical viewing ports that look through the poloidal 

cross section where the beam is approximately tangent to the magnetic axis.  By using 

photo-diodes on the central port to intercept the light emission from the beam, we can 

compare the beam density with and without ions and thus get the neutral fraction.  The 

setup is shown in Fig. 4.10. 

 A typical trace of the strongest signal is shown in Fig. 4.11.  It roughly conforms 

to the neutral beam current but if comparing the amplitudes of the beam off/on traces, one 

finds a ratio of 0.88.  This is in good agreement with the cited value of 0.87 for the 

equilibrium fraction of a hydrogen beam in neutral hydrogen. 
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Figure 4.10 Setup of beam/gas emission experiment.  The light from the beam is 

observed through a viewing window perpendicular to the beam chord.  The red circle on 

the box port denotes where the signal was maximum. 
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Figure 4.11 Light signal from photodiode during NBI (D2) into gas (no plasma).  The 

red trace is with no vacuum magnetic field, the black solid trace is with a background 

toroidal field of 450 G at the wall.  The red trace was cut short by a beam arc, but prior to 

that the ratio of the signals was steady. 

 

 

4.6 Neutron flux during NBI 

 When we inject the beam, the neutral atoms ionize and then interact with the 

background plasma through Coulomb collisions.  With injected deuterium however, 

fusion reactions between the beam and the background ions can occur.  This results in a 

significant neutron flux that can be directly related to the fast ion population.  The 

temporal behavior of the neutron flux is then related to the confinement of the fast ion 

population. 

 

Without field 
With field 
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4.6.1 Neutron Detector Construction 

 A drawing of the experimental setup is shown in Fig. 4.12.  The neutrons from 

beam/plasma interaction pass quite readily through the aluminum shell of MST.  They 

then enter the plastic scintillator within the neutron detector.  The neutrons undergo 

elastic collisions with hydrogen atoms, transferring energy to them.  The recoil protons 

then excite the phosphoring and scintillating material, which then radiate their energy in 

the form of photons.  The design of the detector was to have approximately 1 mean free 

path for the neutrons to interact in, and a reflective layer was placed around four sides of 

the 5” square scintillator, which had the effect of doubling the captured photon output. 

 This photon is captured by the photomultiplier tube (PMT) and converts the 

incoming light to a current pulse.  The amplification of the electron current by the 

photomultiplier tube then produces a voltage that is proportional to the incident neutron 

flux.  The scintillator is also sensitive to hard x-rays, which we shield out by putting a 

layer of lead around the scintillator and PMT. 
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Figure 4.12 Setup of neutron detector.  Fast ions fuse with the background plasma and 

the product neutrons are detected outside the vessel. 

 

 The neutron detector was calibrated with a small neutron source, giving a 

response of approximately 7x109 neutrons / second / Volt when the detector is in current 

mode.  The calibrated value also agreed well with the expected signal from the calculated 

fast ion fraction, taking into account estimates of ionization and the observable fraction of 

the total neutron flux out of the vacuum vessel.  By adjusting the gain in the apparatus, 

we can increase the sensitivity to measure neutron flux during normal plasma operations 

and thus get an indication of the plasma ion temperature.  This is beyond the scope of this 
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thesis, but illustrates that the neutron detector is a useful plasma diagnostic even beyond 

its use during NBI. 

4.6.2 Measured Neutron Flux 

 The D-D fusion reaction, 
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has a cross section2 shown in Fig. 4.13 which is extremely sensitive to the fast ions 

energy.  Also in Fig. 4.13 we contrast the reaction rate of the fast ions (20 keV) with the 

background plasma, and the plasma fusing with itself.  For a typical plasma temperature 

of 400eV, the reaction rate is approximately 10-31 m3/s, whereas the fast ion rate is about 

10-26 m3/s.  The expressions for the total neutron flux are given by 
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where in the top equation
DD!>< v"  is the maxwellian averaged reaction rate for an ion 

species with a thermal velocity of v and the plasma ion density is ni.  In the lower 

equation fiDD v!"  is the reaction rate for a fast ion to fuse with an essentially stationary 

background ion and the fast ion density is written as nfi.  Even though the fast ion density 

is (assuming all ions are confined perfectly) a factor of 100 lower than the background 

plasma, the disparity in the reaction rates more than compensates for this and as a result 

the neutron flux from fast ions fusing with the background is dominant over the 

background alone. 
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Figure 4.13 D-D fusion reaction rates.  The blue curve is the Maxwellian averaged 

rate, with the dashed line indicating our typical plasma temperature.  The red curve is for 

a test particle of the specified energy colliding with a deuterium at rest.  The disparity in 

the rates suggests a high signal to noise ratio for NBI neutrons. 

 

We observe that the neutron signal persists for tens of milliseconds after the 

injector is turned off.  Without doing any analysis, we see that this is a favorable result 

for fast ion confinement, but we will now model the neutron signal and get a quantitative 

estimate of the fast ion’s confinement time. 
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Figure 4.14 Neutron flux observed during NBI.  A linear growth during injection is 

followed by a slow decay.  The long timescale suggests favorable ion confinement. 

The neutron flux during NBI into a 400 kA standard plasma is shown in Fig. 4.14. We 

see that there is a linear rise during the beam on phase, followed by a decay of the 

neutron signal after the beam has turned off.  We should also note that the neutron flux 

seen before the signal is within the noise of the detector, as expected given the reaction 

rates seen in Fig. 4.13. 

 

4.7 Estimate Of Fast Ion Confinement Time 

 To extract the fast ion confinement time, we begin by writing the neutron flux 

from MST as 
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and also the evolution of the fast ion population as 
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where the fast ion quantities are denoted by ‘fi’ and the plasma ion density is given as ni.  

The proportionality is due to the reduction of the neutron signal by scattering from the 

vessel and its various components in the process of arriving at the detector, as well as the 

solid angle subtended by the detector itself. 

In the fast ion population equation (Eqn. 4.14), the source term represents the 

linear increase in time of the fast ion population during the injection phase, but the radial 

dependence is a function of the injection geometry and the ionization of the beam along 

the injection chord.  A loss term is included and characterized by fi! .  This loss time is an 

aggregate of all loss mechanisms in the system, of which the primary ones are CX (fast 

ions becoming neutrals), and stochastic losses.  All particle profiles are considered static, 

no particle diffusion is allowed.  For this analysis; the time dependence only comes in 

when considering the rate at which ions enter or leave the system.  The assumption of a 

static plasma ion profile is justified from the steady state condition.  The assumption of 

negligible fast ion radial evolution is addressed below. 

The energy dependence of a fast ion due to slowing on a background plasma3 is   
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The first term is energy loss to electrons and the second term is energy loss to ions of 

varying species.  For particles with energy greater than ~15 Te, the majority of the energy 

is given to electrons.  This is very much the case with our 20 keV beam going into a 400 

eV plasma.  In this case, the energy loss rate is inversely proportional to the fast ions 

mass, which is why hydrogen should be used for heating.   
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 To avoid confusion, a few remarks about the radial dependence in Eqns 4.13 and 

4.14 are in order.  While there is a definite radial structure to the fast ion population and 

the plasma ion population, we can assume that they do not change in time.  The relatively 

flat plasma ion density in the core (Section 5.7) mitigates the effect of any small-scale 

changes in the fast ion distribution.  A change in the radial distribution of the fast ions 

would in principle affect the intercepted neutron flux.  However, such a correction is very 

small considering that the distances involved render the change in solid angle to the 

detector to also be very small.  We then included the radial dependence in the equations 

for completeness, but it can easily be taken to be separable from the time variable, which 

is our interest. 

 Fig. 4.15 shows this modeling applied to the experimental curve of Fig. 4.14.  

Here we have three loss times; infinity (no losses), 20 ms, and 1 ms.  The 20 ms curve is 

the best agreement to the experimental curve.  The 1 ms curve greatly underestimates the 

observed signal4.  Furthermore, comparing the experimental curve to the infinite 

confinement time curve, we see that they are very close.  The decay in the signal is not 

due to particle loss, but rather the change in the D-D cross section as described by the fast 

ions classical slowing down rate given in Eqn. 4.15.  This is also important because it 

places an upper bound on the core neutral density.  This will be discussed more in 

Section 4.10. 
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Figure 4.15 Calculation of fast ion confinement time.  Perfect confinement (green) and 

slightly overestimates the experimental signal.  The 20 ms curve (red) is a good fit but 

slightly underestimates, and the simple stochastic ion estimate (blue) of 1 ms is clearly 

not applicable. 

  

4.8 Fast Ion Confinement During A Sawtooth Crash 

 We know that field line stochasticity, which scales with the magnetic fluctuations, 

impacts particle transport.  To examine the role of fluctuations on fast ion confinement, 

we can consider what happens during a “sawtooth crash”.  The temporal behavior of the 

magnetic fluctuations for a single mode is shown in Fig. 4.16.  Sawteeth, being 

ubiquitous in the experiment are easy to see in terms of the neutron signal.  Fig. 4.17 

shows a single beam shot, but this time a sawtooth crash occurs 2 ms after the beam is 
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off.  There is the characteristic slow decay then at the time of the crash there is a 50% 

drop in the signal.  After the sawtooth event, the slow decay again resumes. 

 The short duration of the sawtooth crash allows us to treat the fast ions energy as 

constant.  Therefore, the decrease in the neutron signal must be due to particle losses, 

rather than the reaction rate changing as a result of the ion slowing down.  The steepness 

of the drop makes a quantitative estimate of the confinement uncertain, but a best fit 

curve to the experimental signal results in a confinement time of ~0.4 ms.   

 In Fig. 4.15 we show the neutron signal for a five shot ensemble.  Approximately 

5 ms after the beam a small decrease in the signal is observed.  This is a sawtooth crash 

averaged into the plotted signal.  We cannot fit a curve to a portion of the signal that has 

sawteeth in them, because it would underestimate the confinement time. 
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Figure 4.16 Magnetic fluctuation amplitudes increase by a factor of three (or more) 

during a sawtooth crash. 

 

 

Figure 4.17 Neutron signal during a sawtooth crash.  The neutron flux decrease is 

commensurate with stochastic diffusion of fast ions in a high-fluctuation plasma. 
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4.9 Fast Ion Confinement During PPCD 

 We can also consider the effect of reduced fluctuations on fast ion confinement.  

The effect of PPCD on the magnetic fluctuations (as measured at the plasma edge) is 

shown in Fig. 4.18   Fig. 4.19 shows the neutron signal taken during a 400 kA PPCD 

shot.  We first note the decrease in neutron flux is slower than in the standard case, and 

could be due to good confinement.  However, the electron temperature in the standard 

case is about 350 eV whereas in the PPCD case it is about 800 eV.  The 3/2 dependence 

on the electron temperature in the slowing down time (Eqn. 4.15) shows that the fast ion 

loses energy at a much slower rate in the hotter plasma.  Using the temperature of 800 eV 

yields a minimum 30 ms confinement time as shown in Fig. 4.19.  The modest 

confinement improvement over the standard case suggests that further reducing 

fluctuations has a limited effect on confinement once the fast ions are largely non-

stochastic. 

 Even though the fast ion confinement time is not markedly improved, if NBI 

heating is desired, then the energy confinement time of the plasma must be as large as 

possible.  PPCD is very useful as it results in upwards of a ten-fold increase in energy 

confinement time5 and so would be integral in any heating experiment. 
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Figure 4.18 Magnetic fluctuation reduction during PPCD.  The fluctuations are 

reduced at least a factor of 3 during PPCD. 

 

Figure 4.19 NBI into PPCD.  The neutron signal during injection into PPCD (red) is 

shown with two decay curves for different values of the fast ion confinement time.  A 30 

ms confinement time (blue) makes a good lower bound.  The neutron signal for the 

standard case (black) is shown for comparison.  Infinite confinement is shown in green. 
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4.10 Fast Ion Confinement During Counter-Injection 

 Next we turn to confinement during NBI counter-injection.  To achieve counter-

injection, we reverse the polarity of the primary transformer windings.  This reverses the 

direction of the electric field and hence the plasma current.  We begin by considering the 

equilibrium changes that result from the reversal. 

 One motivation of doing co-injection is that it is favorable in terms of first-orbit 

losses.  Ions that are born near the edge are bent inward in the poloidal magnetic field.  

With counter-injection, the opposite is true; ions are bent towards the wall.  The effect 

(see Section 5.1) as shown in Fig. 5.3 is that the estimated ionization fraction goes from 

85% down to about 45%.   

 We can once again look at the neutron signal and compare directly with the co-

injection case.  Fig. 4.20 shows two curves overlaid, the neutron flux during co-injection 

(red) (from Fig. 4.15) and the neutron flux for counter-injection (blue).  The amplitude 

has the expected drop based on first orbit losses.  When we normalize the amplitudes, as 

shown in Fig. 6.21, we can directly compare of the confinement times.  We see that a 4 

ms confinement time best fits the counter-injection neutron signal.  This is interesting 

because it is a timescale significantly less than the co-injection case of 20 ms and also 

notably larger than the diffusive timescale of 1 ms. 
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Figure 4.20 NBI during counter-injection.  The resultant maximal neutron flux is 

decreased by about the expected amount based on first orbit losses. 

 

Figure 4.21 The same signals from Fig. 4.20 are normalized for comparison.  Loss 

times show that the counter-injected ions are less confined than the co-injection case.  

The 4 ms confinement time is approaching (though not at) the estimate for stochastic 

diffusion of fast ions. 

 

Co-Injection 
 
Counter-Injection 

 " = # 

 

 " = 20ms 

 
 " = 4ms 

Counter (blue) 
 
Co (red) 



 

 

72 

 

One possibility to explain this timescale, which is less than the 20 ms co-injection 

confinement time, is that the fast ion is diffusing from near-axis through most of the 

plasma radius, though not diffusive to the wall (See Section 5.9 for the simulation of 

counter-injection).  The ion encounters a larger neutral density when it is further out in 

radius, which increases the rate of CX, and directly translates to a loss of particles.  To 

calcuate the CX time, we must first know the neutral density throughout the plasma 

cross-section.  A previous measurment6 of the neutral density profile is shown in Fig. 

4.22. 

We can also consider the charge exchange losses during NBI into a standard 

plasma.  The 20 ms confinement time for co-injection implies a minimum CX time  

( )10 )v(v
!

= fifiCXCX n "#      (4.16) 

of 20 ms (if all losses were through that mechanism alone).  We can choose on-axis 

values from Fig. 4.22 within the experimental uncertainty.  Next, we utilize Eqn. 4.16 to 

calculate the charge-exchange time.  This puts an upper bound on the on-axis neutral 

density of 5x108 cm-3, which is an important restriction for this hard to measure quantity. 
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Figure 4.22 Neutral density in standard 400kA discharges.  Measured using FIR, 

Thomson scattering and MSTFIT reconstruction.  The nature of the Abel inversion of an 

edge-peaked profile leads to large uncertainty in core values. 

 

Figure 4.23 The charge-exchange loss times are plotted vs. energy for three different 

densities that correspond to the lower bound (red), best agreement (green) and upper 

bound (blue) of the axis value of the experimental curve shown in Fig. 4.22.  At the fast 

ion energy of 20 keV, the charge exchange time is nearly the same as the fast ion 

confinement time.  This puts an upper limit on the core neutral density of 5x108 cm-3. 
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4.11 Fast Ion Confinement During Radial Injection 

 Considering radial injection as opposed to tangential, the most obvious difference 

is the initial angle of the fast ions relative to the magnetic field.  With tangential injection, 

for most of the fast ions, there is a large component of the velocity parallel to the field, 

whereas with radial injection the initial velocity is perpendicular to the magnetic field.  

To achieve this, we make use of a diagnostic neutral beam that is part of the CHERS 

setup.  The beam’s parameters are: E = 20 keV, beam time = 3 ms, beam current = 1 A. 

Again we see a neutron signal very close to that observed with the tangential 

beam, yielding a confinement time of 18 ms.  This suggests that despite the fact that the 

ions are not born dominantly on-axis, a significant population of them must be well 

confined.  There is a small sawtooth that occurs at about 19 ms.  This reduces the fast ion 

population and so makes it difficult to compare with the confinement curve, but prior to 

the crash, the curve represented the data well.  The simulation for radial injection is 

discussed in Section 5.11. 
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Figure 4.24 Neutron flux during radial injection.  For a short pulse (~ 2.5 ms), 20 keV 

beam we again see the nearly the same confinement as with tangential injection (~18 ms).  

The drop in confinement at 19 ms and 21 ms are likely due to small internal sawteeth. 

The burst after 25 ms is from a sawtooth crash, and is likely a combination of plasma-

plasma (from higher Ti) and beam-plasma (increase in plasma ion density) interaction. 

 

4.12 Summary 

 The hardware components of the neutral beam have been presented and their 

functions and sequence of operation explained.  This laid the groundwork for 

understanding the injector and the physics of how a neutral beam injector works.  Various 

diagnostics are used to monitor beam performance during use.  Additional diagnostics 

and experimentals were performed to verify the theoretical assumptions about the beam 

current, beam profile, and neutralization fraction.  The actual experiment consisted of 

injecting 20 keV deuterium neutrals into a standard MST discharge and detecting the 

resultant neutron flux out of the vacuum vessel.  By analyzing the rate of change of the 
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neutron signal, a fast ion confinement time of at least 20 ms was inferred.  This 

demonstrates that the fast ion population is weakly affected by the underlying stochastic 

magnetic field.  This represents the first measurement of fast ion confinement in the RFP. 

 Repeating the experiment under reduced magnetic fluctuations showed that 

confinement is marginally improved (30 ms confinement time).  During a sawtooth crash, 

when magnetic fluctuations are large, we estimated a ~0.4 ms confinement time.  This 

agrees with estimates of stochastic losses of fast ions.  Counter-injection showed 

increased first-orbit losses as well as reduced confinement (4 ms confinement time).  This 

could be explained through increased charge exchange losses, though by no means is a 

definitive argument.  Radial injection showed good confinement (18 ms confinement 

time), similar to co-injection.  Finally, the fast ion confinement time sets an upper bound 

on the core neutral density, which due to the method of measurement is inherently very 

inaccurate in that region. 
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5 Simulation Of Fast Ion Motion 

In Chapter 2 we established an accurate description of a typical magnetic fields 

configuration in the RFP, and MST in particular.  The diffusion of the stochastic 

magnetic field lines and small gyro-radius particles, specificly electrons, was discussed.  

Now we are prepared to proceed with analyzing the orbits of large gyro-radius particles 

in this magnetic field in order to ascertain their expected degree of confinement or other 

important behavior.  This thesis is concerned with fast ions, such as those born of neutral 

beam injection, though in principle the analysis could apply equally to ions in the tail of a 

plasma ions distribution function. 

We begin the chapter in Section 5.1 by discussing prompt losses, which are ions 

that strike the vessel wall within a gyro-orbit. 

In Section 5.2 we begin with a discussion of guiding center drifts, which is 

important for large gyro-radius particles. 

Section 5.3 develops an analytical expression for the fast ions guiding center 

safety factor, which is very different than the thermal ions due to the presence of drifts. 

Fluctuations in the ion’s guiding center orbit lead to guiding center islands, in 

analogy to magnetic islands, and are the topic of Section 5.4.  The overlapping of these 

islands determines the confinement of the fast ion. 

Section 5.5 offers an explanation of the good confinement observed 

experimentally in Chapter 4, and is based on the analytical formulation given in the 

previous section. 

Section 5.6 discusses the effect of toroidicity and its role in fast ion motion. 
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Section 5.7 concerns the actual simulation of fast particles in a stochastic 

magnetic field as done by an exact motion code.  The code and plasma parameters used 

are discussed to set the background for the simulations in the following section. 

In Section 5.8 the simulation results are presented and discussed in the context of 

representative descriptions of the confinement of neutral beam ions.  A significant range 

of ions is shown to have regular orbits for typical injection energies.  The transition from 

regular orbits to stochastic orbits is presented and compared with the analytical treatment 

formulated in section 5.4. 

Section 5.9 examines simulation done in a counter-injection scenario.  The results 

are compared with the reduced confinement seen in experiment. 

The effects of varying levels of magnetic fluctuations are described in Section 

5.10, as these provide an approximation of fast ion confinement in PPCD and during a 

sawtooth crash. 

Radial injection is discussed in Section 5.11.  This is not done with the heating 

beam on MST, but is of some importance because it is done on other machines, notably 

TPE-RX.  There is some relevance for MST because we do have diagnostic neutral 

beams, which are oriented radially.  They serve another purpose besides the inclusion of 

fast ions into the system, but nevertheless the physics is worth a cursory examination. 

 

5.1 Prompt Losses 

 The neutral beam atoms entering the plasma are ionized by the plasma ions, 

primarily through charge-exchange, and also through impact ionization with the plasma 
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ions and electrons.  The absorption profile of fast neutrals becoming fast ions as it passes 

through the plasma is given by 
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where 
CX

! , 
Ii

!  and 
Ie

!  are the cross-sections for ionization due to charge-exchange, 

electron impact and ion impact, and the integral is done along an injection chord.   

The injection chord is approximated to be on the midplane and tangent to the 

magnetic axis.  A plot of the normalized beam neutral population along the injection 

chord is shown in Fig. 5.1.  The total ionization of the fast ions is around 95%.  Because 

of the injection geometry and the relatively low edge plasma ion density, most of the 

beam ionization occurs near the magnetic axis.  Doing particle tracing in the absense of 

fluctuations, and weighting the density of the fast ions according to the ionization rate 

results in the distribution of fast ions in a poloidal cross-section and is shown in Fig. 5.2.  

We will use this peaked distribution to justify near-axis ions as being the most typical fast 

ion orbit to analyze, though all radii are of interest. 

We first consider prompt losses of ions born near the vessel wall, where the 

magnetic field is mostly in the poloidal direction.  Depending on the ions path during the 

first gyro-orbit, it may or may not strike the vessel wall and be lost.  For co-injection the 

magnetic field tends to bend the ions inward and confine them; counter-injection does the 

opposite.   
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Figure 5.1 Fraction of beam neutrals along the injection chord.  The beam neutrals 

are ionized (primarily through charge-exchange) by the plasma ions.  At a plasma ion 

density of ~8x1018 m-3 this gives 95% ionization of the injected neutral beam atoms. 

 

Figure 5.2 Distribution of co-injected fast ions in a toroidal system.  The population 

is strongly peaked about the magnetic axis.  From this we will often take a “typical” orbit 

to begin at r/a = 0.2. 
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These prompt losses reduce the total number of fast ions that are within the plasma.  

Again, particle-tracing code easily determines if a fast ion will strike the vessel wall 

promptly.  The results of this calculation are shown in Fig. 5.3 (left) for co-injection and 

Fig. 5.3 (right) for counter-injection.  The attenuation of the beam neutrals is the same in 

both cases.  The fast ions are bent inward away from the wall by the poloidal magnetic 

field for the co-injection case.  Counter-injection causes the ions to be bent toward the 

wall by the poloidal magnetic field.  As a result, the total number of fast ions in the 

system is about half for counter-injection.  This provides us with a preferential injection 

scenario with respect to the background magnetic field. 
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Figure 5.3 Prompt losses for co-injection and counter-injection.  The ionization of the 

beam neutrals (red) results in fast ions (blue).  If an ion is born too close to the wall, its 

gyro-orbit may strike the wall and be lost, thus not contributing to the overall number of 

beam ions; the flat regions on the blue curves reflect this.  During counter-injection, NBI 

ions are bent outward in the poloidal magnetic field in the edge of MST and are more 

likely to be lost.  The result is that the total number of fast ions that can be confined is 

reduced by about a factor of two. 

 

5.2 Guiding Center Drifts 

While our simulations follow the exact motion of the particle, it is more 

illuminating to consider instead the motion of the ions guiding center.  We will begin 

with a discussion of the ions guiding center (IGC) motion in a general magnetic field. 

The equation describing fast ion guiding center motion is given1 by 
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with 0, =
dt

Ed
E

v
r

.  The first term in Eqn 5.2 is the motion of the guiding center parallel to 

the magnetic field, the second term is the gradient drift and the third term is the curvature 

drift.  We can calculate the velocity contribution from drifts and compare it to the total 

particle velocity.  In addition, we can also estimate the magnitude of the BE

rr
!  drift for a 

typical ion to see if it is acceptable to neglect the role of the electric field and still have a 

suitable description of the guiding center motion.  First we have the particle velocity, 

which for a 20 keV deuterium ion is 
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The gradient and curvature drifts are of similar magnitude, so a typical value might be 
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The E X B drift velocity at r/a < 0.5 is no greater than 
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Therefore, we can neglect the effects of electric fields because the magnitude of the 

BE

rr
!  drift is at least a factor of 10 lower than the drifts from the magnetic field.   

 

5.3 Fast Ion Guiding Center Safety Factor 

 We assume that the guiding center motion is confined to an unperturbed flux 

surface, which is true to )1(! in !" , where !
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) .  Analogous to the expression 

for the safety factor of the magnetic field lines, we have 
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where again r is the minor radius variable and R is the dimension of the major 

radius; GC
v! and GC

v!  are the toroidal and poloidal guiding center velocities. 

Combining Eqns. 5.2 and 5.6 (see Appendix B) we arrive at the following 

expression for the guiding center safety factor 
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where Mq  is the magnetic field line safety factor.  In Eqn. 5.7 
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direction of the guiding centers velocity parallel or perpendicular to the magnetic field, 

and for our case has a value of 1.0 for co-injection and –1.0 for counter-injection.  The 

poloidal component of the magnetic field, normalized to the total field is given by !b .  

The gyro-radius for the total energy is ! .   The ratio of the perpendicular energy to the 

total energy divided by the cyclotron frequency is,
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dB

m

e
=!'  are the gyro-frequency and the radial derivative of the gyro-frequency, 

respectively. 

 The key thing to note about Eqn. 5.7 is that the guiding center does not have the 

same safety factor as the magnetic field lines.  The presence of gradient and curvature 

drifts, which are substantial for fast ions due to their gyro-radius, change the safety 

factor. 
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 Another observation is that the denominator in Eqn. 5.7 is resonant: the value of q 

would go to +/- infinity if the parallel velocity went to zero.  This is simply the magnetic 

mirroring that arises self-consistently from the transformation of the guiding center 

velocity equations. 

 We now consider a typical ion that might arise from neutral beam injection.  Fig. 

5.4 compares the safety factor for an ion born at r/a = 0.2, with 90% of its velocity 

directed parallel to the magnetic field.  The ions safety factor is significantly different 

from that of the field lines, and for the ion that is born at r/a = 0.2, it is about 1/5, as 

compared to the magnetic field, which is about 1/6.  While a seemingly unimportant fact, 

it is critical when one then considers the effect of resonances. 
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Figure 5.4 Comparison of ion guiding center safety factor (solid) with magnetic 

safety factor (dashed).  The effect of drifts on the ions guiding center shifts the safety 

factor away from the field lines (or low energy limit) case. 

 

5.4 Ion Guiding Center Islands 

 Unless otherwise stated, we are considering orbits in a cylindrical geometry.  As a 

result, in the cylindrical approximation, the guiding center drifts have only poloidal and 

toroidal components to them, not radial.  This is simply because both the magnetic 

gradient and curvature are only in the radial direction.  By ordering of the fast ion’s 

guiding center motion in Larmor radius, 
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we see that the ion’s guiding center does not follow the toroidal or poloidal components 

of the magnetic field, the deviation from the radial component is small.  The guiding 

center drifts due to the radial magnetic field are second order and are neglected. 

 The guiding center trajectory has a different helical pitch (as seen in the change of 

q) from the magnetic field lines, but we assume it responds to the same radial 

perturbations, since in the absence of drifts the particle would follow the field lines, and 

in the radial direction there are no guiding center drifts.  Therefore we expect that the 

orbit also has an analogous resonance condition.  Referring back to Fig. 5.4, the upward 

shift in the ions q-profile brings the 1/5 surface into resonance, whereas with the 

magnetic field, at about that location the 1/6 surface is in resonance.  While the field then 

responds to the 1/6 magnetic mode to form an island, the guiding center responds instead 

to the 1/5 radial velocity perturbation induced by the 1/5 magnetic mode.  We stated 

earlier that the parallel motion of the guiding center responds to the magnetic fluctuations 

in the radial direction.  Therefore, the relative radial perturbation in velocity is defined by 

the strength of the local magnetic modes.  The effect of a resonance though is key, and it 

is the 1/5 radial magnetic mode that is most responsible for the radial perturbation in the 

ion’s guiding center velocity.   

 In direct analogy with magnetic fields lines then, we can write the expression for 

the width of the resultant “ion guiding center islands” (see Appendix B for details).  We 

recall the magnetic island formula 
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and also note that 
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Since the correction to poloidal velocity of the ions guiding center is a few percent (Eqn. 

5.4), the part of Eqn. 5.10 in parentheses is of order unity.  Substituting this into the 

expression for the width of the ion guiding center islands we have 
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where all the relevant quantities are taken at the radial location where the guiding center 

motion is resonant.  This allows us to vastly simply calculations for estimates of the 

guiding center island size by not needing to calculate any perturbed velocity components, 

which are in fact an infinite sum over modes, even though “only” the leading dozen or so 

would be required to get an approximate expression. 

 The positions and widths of the ion guiding center islands are shown in Fig. 5.5.  

Here we see that the n = 5 island is present, but not overlapped with the n = 6 IGC island.  

There are regions of stochasticity in the phase space of the orbit, as seen in the 

overlapped areas at r/a > 0.4.  It should be stressed though that the IGC q-profile is for a 

specific value of initial radius and velocity, and that an ion starting further out in radius 

will have a very different q-profile and island overlap configuration. 
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Figure 5.5 Ion guiding center islands.  The solid q-profile and blue islands are for a 

20 keV deuterium ion starting at r/a = 0.2.  The field line q and associated islands below 

are shown for comparison.  There are no overlapped resonances at the ions start point so 

good confinement can be expected. 

 

5.5 Explanation of Improved Fast Ion Confinement 

We saw that the fast ion’s confinement is weakly affected very much by the 

stochastic magnetic field.  We calculated a confinement time far in excess of what it 

would have been were the orbits stochastic.  From the previous sections in this chapter, 

without doing any particle tracing simulations at all, we can apply the Chirikov overlap 

criterion to the guiding center islands.  For our test 20 keV ion, we see in Fig. 5.5 that the 

1/5 guiding center island, calculated from the above expressions, is not overlapped with 

the 1/6 guiding center island.  In this particular case then, we expect the fast ion to not be 

stochastic, even though the magnetic field, in the exact same location, is.  Given that the 

vast majority of our fast ions conform to this description, that is they are near the axis, we 



 

 

91 

 

expect that they would not be stochastic, and hence well confined.  This formulation can 

be tested numerically by doing exact motion simulation and is the subject of Sections 5.7 

- 5.11, but already agrees in a qualitative sense with the observed experimental results. 

 

5.6 Effect of Toroidicity 

We described at length the effects of drifts, gradient and curvature on the fast ions 

guiding center orbit.  In these formulations, we justified neglecting the effect of 

toroidicity, and using a cylindrical representation, but is that valid? 

Toroidal curvature creates variation of the curvature vector of the magnetic field 

lines in radius and poloidal angle, which introduces a poloidal component to the 

curvature vector.  This means that there is a small radial guiding center drift.  However, 

in practice, this is not important as it affects mainly ions that begin at a large value of the 

minor radius.  In any case, we can note that 
Poloidal

C
Toroidal

C
RR
rr

3! , which indicates that 

the poloidal curvature dominates the contribution to the drift velocities.  Some edge ions 

may drift into the wall before completing a few toroidal transits, but the non-stochastic 

orbits that don’t drift immediately into the wall remain well confined. 

The decrease in the toroidal field strength away from the toroidal axis also 

introduces another gradient drift.  For passing particles, which would be typical of near-

axis fast ions from NBI, the drift shifts the particles orbit radially from the magnetic axis.  

Using MST and typical beam ion parameters, we find a shift of arq 06.0)(2 || =! .  For 

trapped particles, typical of edge-born fast ions, they have banana orbits with a width of 

a
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"
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!"# for this case.  It is important to note that the 
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orbit widths are functions of q, and in the RFP q is a factor of 5 lower than in tokamaks in 

the core, and goes to zero at the reversal surface.  In tokamaks, the banana widths are 

typically larger than the ion gyro-radius and so govern neo-classical transport.  In the 

RFP, the reverse is true; the gyro-radius of 20 keV D ions at the edge is about 0.1a and 

the banana width is 0.1a or smaller.  We expect then that these toroidal effects have 

minimal impact on our orbit formulation. 

 

5.7 Test Particle Orbit Simulation 

We use a particle tracing code (RIO) to simulate the orbit of a fast ion in a 

stochastic magnetic field to ascertain and understand the degree and nature of the ion’s 

confinement.  The code simulates a time-independent background plasma and evolves the 

velocity of the fast ion as it loses energy to the plasma.  The setup of the code and 

description of the background plasma are also briefly discussed. 

After having a description of the stochastic magnetic field of the RFP and an 

analytical approximation of the guiding center motion of fast ions, we have the tools to 

understand the results of doing exact particle tracing to arrive at a more exact resolution 

of the confinement problem.  In addition to MAL, a code RIO was developed at the 

Budker Institute that solves the ion’s equation of motion in the same field geometry used 

as RIO.  Specifically, it solves the coupled differential equations: 
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where 
s
í , the slowing down frequency, is given2 by, 
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The code calculates both the ions motion and drag on the background plasma for 

electrons and an arbitrary number of ion species.  For our simulations, we use deuterium 

plasma ions and fully stripped carbon, which is the dominant impurity in MST.  We 

approximate all experimental profiles with the functional form: 
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where the values at r = 0 and r = a specify axis and wall quantities, respectively and 

alpha determines the flatness of the profile.  The electron temperature has been measured 

with Thomson scattering, electron density profile obtained with FIR interferometry.  The 

plots of the electron and deuterium ion densities and temperatures are shown in Fig. 5.6 

and 5.7 respectively.  To get the plasma ion density we use the previous estimate of Zeff 

(Zeff ~ 2) and the impurity (Carbon V) density. 
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Figure 5.6 Density of plasma components used in simulation.  Electron density (red) 

and deuterium ion density (blue). 

 

 

Figure 5.7 Temperature profiles of plasma components used in simulation.  Electron 

temperature (red) and deuterium ion temperature (blue). 
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While we can’t directly simulate tangential injection in a cylindrical geometry, we 

can approximate it by calculating the pitch angle of the fast ions relative to the injection 

chord.  This is shown schematically in Fig. 5.8.  The injector itself has an 8 degree 

downward tilt, but is neglected. 

 

5.8 Confinement Of Fast Ions And Onset Of Stochasticity 

 This section shows the results of the particle tracing simulation.  We begin by 

considering the most typical fast ion, that is, one near the axis.  Next we look at the 

confinement of ions born further out in radius.  Finally we conclude with a brief section 

on confinement of an ion born inside an intact ion guiding center island. 

 

5.8.1 Near-Axis Co-Injected Ions 

We begin this section by describing a near-axis, co-injected deuterium ion in the 

absence of magnetic fluctuations and no background plasma for the ion to slow down on.  

The purpose is to illustrate, in this simple case, the expected effect of the drifts discussed 

in section 5.2. 

Fig. 5.9 shows a plot of the guiding center position of a 20 keV deuterium ion 

injected nearly parallel to the magnetic field and in the same direction as the plasma 

current.  We can see clearly the periodicity of the orbit; ~5 poloidal transits for every 

toroidal transit, as expected from the q profile (Fig. 5.5). 

Next we include magnetic perturbations.  Fig. 5.10 shows a plot of the ion’s 

guiding center position overlaying a puncture plot of the background magnetic field.  

While the field is clearly stochastic, the ion shows a confined 1/5 character to its orbit.   
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Figure 5.8 Approximating toroidal injection into a cylindrical system.  The 

pitch angle of the ion with the equilibrium field is retained by varying the direction of 

injection relative to the axis of the cylinder. 

 

The fast ion is responding to the presence of an n = 5 perturbation, which forms an island 

in its phase space.  The ion’s guiding center is outside the separatrix of the n = 5 ion 

island and has a regular orbit, albeit highly perturbed by the nearby resonance.  By 

choosing a different toroidal angle for the ion start position with respect to the ion 

guiding center island we can place the guiding center inside the ion guiding center island. 
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Figure 5.9 Ion guiding center motion in absence of perturbations.  An ion born at r/a 

= 0.2 and plotted with poloidal angle vs. toroidal angle clearly shows the n = 5 character 

to be apparent despite the magnetic fields n = 6 character at the same location.  

 

 

Figure 5.10 Ion guiding center motion with perturbations superimposed on magnetic 

Poincaré map.  The guiding center feels a strong perturbation from the n = 5 ion island, 

but as expected, since the resonances are not overlapped in the location of the orbit, the 

trajectory is confined to a perturbed but unbroken surface. 
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Just like a magnetic field line inside the separatrix would trace out a closed orbit 

around the island’s O-point, a fast ion’s guiding center can also be constrained inside an 

ion island.  Fig. 5.11 shows an example of such an “island trapped” trajectory. 

We have now established a very important physics point.  There are at least some 

fast ions that will not be stochastic even when in a stochastic magnetic field.  However, if 

this is because of the guiding center drifts taking the ion trajectory away from the 

stochastic field lines, we might expect the ion orbit to only be regular for certain energies.  

Refering to Eqn. 5.7, the leading factor is the total energy gyro-radius, 
qB

mv
=! .  If we 

allow the ion to slow down on the prescribed plasma as per Eqn. 4.15, then at some 

energy, the orbit should become stochastic.   

Fig. 5.12 shows the same initial conditions as Fig. 5.10 but now with Coulomb 

collisions allowed to drag on the ion.  What is interesting about this situation is now the 

ion’s safety factor is explicitly a function of time, as the ion’s energy and gyro-radius are 

functions of time.  The guiding center safety factor is also shown for three different times 

in Figs. 5.12 - 5.14.  Phase one is the ions starting condition.  As the ion loses energy, its 

guiding center safety factor decreases, approaching that of the magnetic field lines, which 

is the zero energy limit of Eqn. 5.7.  At a certain energy (about 18 keV in this case), the 

q-profile has lowered enough that the n = 5 resonant surface moves inward past the 

position of the ions guiding center.  This is seen to result in a discrete jump in the guiding 

center position from one side of the n = 5 island to the other, whereupon the ion resumes 

its prior character of good confinement.  We do note that the n = 6 ion island is resonant, 

but initially much further out in radius.  However, as the ion loses energy, this 
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Figure 5.11 Island-trapped fast ion.  The phase of an ions starting location determines 

whether it is inside an island or outside. 
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Figure 5.12 A single fast ion slowing from 20 keV to 13 keV.  A 20 keV ion 

experiences good confinement in the vicinity of the n = 5 resonance, but makes a discrete 

jump when the ion island separatrix passes the guiding center position.  The upper left 

plot shows the magnetic q-profile (dashed), the fast ion guiding center q-profile (solid) 

and island widths for the ion guiding center (blue).  During the time the simulation spans 

in the plot the average guiding center position is shown with the vertical red line, and is 

in the neighborhood of the non-overlapped n = 5 island.  The upper right plot is the fast 

ion energy.  A puncture plot of the guiding center position is shown in the lower left, 

clearly revealing the n = 5 ion guiding center island.  The lower right plot shows the 

radial position of the ion guiding center vs. time, with a jump made at ~13 keV ( 7 ms ) 

due to the n = 5 resonance moving inward past the guiding center position. 
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Figure 5.13 A single fast ion slowing from 20 keV to 7.5 keV.  As seen in the upper 

left and lower right plots, the n = 5 goes out of resonance and confinement is still good 

since the overlapped resonances, n = 6+, have not yet reached the guiding center position.  

Also note the n = 6 character of the guiding center punctures (lower left) that agree with a 

strong n = 6 resonance perturbing the orbit. 
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Figure 5.14 A single fast ion slowing from 20 keV to 6 keV.  Once the overlapped ion 

islands reach the guiding center position, the orbit becomes stochastic.  The short 

diffusion time (lower right plot) of < 1 ms to go from r/a = 0.3 to r/a = 0.7 was predicted 

(Section 1.2) under the assumption that stochastic fast ions diffusing would be lost 

quickly due to their high parallel velocity. 

 

resonance moves inward as q decreases.  We see in Fig. 5.13 that the n = 6 island is 

partially overlapped, but the ion is not at the overlapped location, and so is not stochastic.  

Advancing in time, Fig. 5.14 shows that the ion’s guiding center position coincides with 

the edge of the overlapped n = 6 island and consequently, the orbit is stochastic, as easily 

seen in the large and random radial excursions within the area expected to be stochastic. 
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This sequence of plots shows that our assumptions about the ion’s motion were 

correct qualitatively and to a large extent, quantitatively.  More importantly, since the 

transition to stochasticity occurred after the ion lost 13 keV of its energy, good 

confinement can be expected over a robust range of energies and this is very promising 

when considering the effectiveness of NBI. 

 

5.8.2 Confinement Dependence on Ionization Position 

We perform simulations for ions that start at a variety of radii, varying the initial 

pitch angle in accordance with Fig. 5.8.  This allows us to examine the confinement of 

ions that would be born at different positions along the NBI injection chord.  The q-

profile for an ion starting at r/a = 0.4 is shown in Fig. 5.15 and the radial position shown 

in Fig. 5.16.  The orbits remains significantly confined, and when the energy reaches 11 

keV (as opposed to 7 keV in the r/a = 0.2 case) we see that the ion becomes stochastic. 

Considering one other initial position, r/a = 0.8, we see that the guiding center q-

profile in Fig. 5.17 is very different than the magnetic field q-profile.  This is due to 

magnetic mirroring.  Recall that the magnetic field is strongest at the axis, so if an ion is 

born with a small  
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Figure 5.15 Ion starting at r/a = 0.4.  Because the orbits are bent inward in co- 

injection, the IGC starts at r/a ~ 0.35.  Also note the discontinuity because of the 

mirroring condition. 

 

Figure 5.16 The ion is briefly confined, then becomes stochastic much earlier than the 

r/a = 0.2 case.  Less energy is needed to be lost for the overlapped guiding center islands 

to reach the ion guiding center position. 

IGC start 
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enough parallel energy, in theory, it would mirror if it had the ability to go from the weak 

field position to a stronger field position.  Orbit stochasticity provides a mechanism for 

transport, but the mirroring condition remains.  Mathematically, this can be seen in the 

denominator of Eqn. 5.17.  Since !µ  represents the perpendicular energy fraction, if it is 

1, then the denominator goes to zero.  This leads to an infinite IGC safety factor. 

Fig. 5.18 shows the radius vs. time plot for the r/a = 0.8 starting position.  The 

orbit is actually confined quite well, and this is due to the fact that the shear in the q-

profile due to mirror has rendered the island size very small.  It is worth noting that very 

few fast ions are born in these outer radii, and there are also prompt losses to contend 

with. 
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Figure 5.17 Ion starting at r/a = 0.8.  The very large perpendicular velocity makes the 

mirroring effect dominant, however, the extreme q-shear results in very small islands. 

 

 

Figure 5.18 The r/a = 0.8 ion displays good confinement.  Also the strong mirroring 

effect restricts the orbit to the low-field side of its initial position. 

 

IGC start 
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As a final note, the perpendicular gyro-radius, 
eB

m !
! =

v
" , (Fig. 5.19) has to be 

much smaller than the gradient scale length, 

1

1
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B

B
k , to have the first order 

approximation of the ions guiding center motion, that we used to get the fast ion safety 

factor, IGCq , be valid. However, !"k << 1 (Fig. 5.20) is not strongly satisfied at large 

initial radius; k and !"  both increase with r.  Also, mirroring invalidates the definition of 

q here since there are no more “poloidal” transits.  In simulation, the average magnetic 

moment is conserved, but the large gyro-radii at these locations and the effect of 

mirroring, result in highly irregular orbits that defy any simple analytical treatment. 
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Figure 5.19 Perpendicular gyro-radius for 20 keV deuterium ions in tangential 

injection.  On-axis, where injection is parallel, the value is zero and increases at larger 

radii due to more perpendicular velocity relative to the magnetic field as well as 

decreasing field strength. 

 

Figure 5.20 In the first order in gyro-radius expansion of guiding center velocity, the 

condition !"k << 1 must be satisfied.  We see that for on-axis ions where the variation in 

field strength in the radial direction, k , and the perpendicular gyro-radius, !" , are both 

small, this condition is satisfied.  Further out in radius, where both quantities increase, the 

validity of the expansion becomes less valid. 
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5.8.3 Island Trapping of Fast Ions 

 Before leaving the topic of co-injected fast ions into a standard plasma discharge, 

a few remarks about the interesting case of ions that are trapped in their own guiding 

center islands are in order.  When one considers any island, magnetic or ion, the island 

may be non-overlapped, partially overlapped, or completely overlapped.  If there is a 

portion that is not overlapped, the field lines (or trajectories) should experience good 

confinement.  If outside the separatrix, we say that it is on a flux surface, whereas if 

inside the separatrix it could be thought of as being on a flux tube with the winding 

number of the appropriate island. 

 Fig. 5.21 shows the puncture plot of a fast ions guiding center that started inside 

one of the daisy-chains of small islands that form naturally in any nonlinear resonant 

system.  As the position of the resonance moves in (from the ion losing energy) the 

islands move with it and drag the ion’s guiding center along.  Since it is inside the n = 6 

island, this island, as we can see from Fig. 3.4 and Fig. 5.5, is never completely 

overlapped. 

 Future work could entail looking for island-trapped ions, as they would be very 

localized.  Recent experiments with pellet injection suggest particles may be getting 

trapped in island structures in MST, as well as locally high temperatures routinely 

observed in islands via SXR tomography.  
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Figure 5.21 Fast ions can be dragged along in space with the changing positions of 

resonances.  If an island retains its structure as the ion loses energy and the ion is trapped 

inside it, confinement can be quite good. 

 

5.9 Confinement of Counter-Injected Ions 

 If we examine test particle confinement in counter-injection, we again first start 

with considering the q-profile.  In this case s|| is negative and so the shift in the ions q-

profile is down relative to the magnetic field.  Plotting the islands resulting from the 

standard perturbations, we see in Fig. 5.22 that the overlap is much more pronounced.  

This is because the radial density of the m = 1 resonant surfaces increases as q approaches 

zero. 
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Figure 5.22 Counter-injection moves the ion resonances inward, resulting in more 

dense rational surfaces.  Note that the overlapped region is further from the wall. 

 

 The observant reader would also notice that the ion islands are closer, and in 

general smaller, than their magnetic counterparts.  With co-injection the ion islands are in 

general smaller, but spaced further apart (Fig. 5.5).  While the island width is a function 

of several variables, all of which change from one radial location to the other, it is 

instructive to note the differences.  In co-injection, the resonant surfaces move out, and 

dr

rdqIGC )(
 generally increase in magnitude.  These effects tend to counteract each other.  

However, a fact that co-injection and counter-injection share is that the value of the 

magnetic mode at the ion resonance is less than the value at the magnetic resonance.  For 

example, in co-injection, the n = 6 magnetic mode is about 25 Gauss where it is resonant, 

but it is only 20 Gauss at the ions resonance.  The reason for this is that magnetic modes 

tend to peak at their resonant surfaces, which to state yet one more time, are not the same 

Ion start 

 
radius n=11 IGC 

start n=8 



 

 

112 

 

as where the ions are resonant.  With counter-injection the location of the ion resonant 

surfaces also move inward, which further decreases the island size.  However, as one can 

see from Fig. 5.22, the islands are still significantly overlapped and one would expect 

stochastic ion trajectories. 

 It should also be stated that since the orbits are bent outward in the poloidal 

magnetic field, that if the ion is born at r/a = 0.2, its guiding center is at a greater radius, 

where the overlap tends to be stronger.  Co-injection has the benefit of the opposite 

situation. 

 Once again, for our typical ion that starts at r/a = 0.2, we see in Fig. 5.23 that the 

orbit is indeed stochastic, as expected.  However, one small benefit of counter-injection is 

that since the q-profile is shifted down, the resonances move inward.  From the 

simulation it can be seen that while the orbit is stochastic, it does not get as close to the 

wall.  The limit on the radial motion of the stochastic orbit would reduce the possible 

charge-exchange losses since the neutral density is edge-peaked.  The simulation supports 

the hypothesis offered in Section 4.9, where the confinement was shown to be between 

the degree seen during co-injection and a sub-millisecond stochastic confinement time. 
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Figure 5.23 Position of IGC for counter-injection.  The ion starts at r/a = 0.2 and is 

almost immediately stochastic. 

 

5.10 Confinement Dependence On Magnetic Fluctuation Level 

MST provides a test-bed for understanding the role of magnetic fluctuations 

because of the sensitivity of the magnetic topology on them.  There are three basic levels 

of magnetic fluctuations available in common MST discharges.  Aside from the standard 

level, we can use current profile control “PPCD” which has the effect of reducing 

fluctuation levels roughly a factor of 3-5.  This was discussed in Section 3.1.5 when 

modeling magnetic stochasticity during PPCD. 

We also have MHD relaxation events, or “sawtooth crashes” where the magnetic 

mode activity increases typically about a factor of 3.  While PPCD is something we can 

control, the sawtooth crashes occur quasi-periodically and are natural phenomena for our 

RFP discharges.  As such, any NBI injection scenario will have to deal with them and so 

the confinement picture under these levels of fluctuations should be considered. 
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5.10.1  Confinement in High Fluctuations (Sawtooth Crashes) 

In the code, we can easily increase the amplitude of the magnetic modes by a 

factor of 3 to simulate a sawtooth crash.  Avoiding the repetition that would come from 

analyzing fast ions starting at every radii, we can just examine our ‘typical’ ion again at 

r/a = 0.2.  We see in Fig. 5.24 that it is confined for a short time, then immediately 

becomes stochastic and diffuses rapidly to the machine boundary.  This is not unexpected 

from the size of the n = 5 islands and agrees with our established picture of island overlap 

(Fig. 5.25) and the temporal dependence on the islands position.  The bottom frame in 

Fig. 5.24 shows the ripple in radius before the ion is lost.  It is significantly larger than in 

the standard perturbation case due to the larger n = 5 ion island. 

The island overlap picture shown in Fig. 5.25 suggests that even higher energy 

ions might have robust good confinement across a sawtooth crash.  For ions at energies 

such that q would be slightly less than 1/4, there would be a large radial range of regular 

orbits as the overlapped n = 5 resonance would be further out in radius.  The increase in 

island size during increased fluctuations would have to be larger to effect stochasticity on 

the centrally peaked fast ion population. 
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Figure 5.24 A 20 keV deuterium ion born at r/a = 0.2, but with magnetic fluctuations 

increased by a factor of three.  Initially the orbit is not stochastic, then at about 18 keV 

becomes stochastic and diffuses out to the wall in a few tenths of milliseconds.  This 

confinement time, once stochastic, is approximately what we see experimentally.  As can 

be seen in Fig. 5.25, initially, at r/a = 0.2, there is no overlapped ion island, and hence we 

expect the orbit in the simulation not to be stochastic until it loses some energy. 
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Figure 5.25 20 keV ion(solid black) (r/a = 0.2) and magnetic (dashed black) q-profiles 

and resonances with magnetic fluctuations increased x 3.  The n = 5 and n = 6 ion islands 

are overlapped and result in orbit stochasticity when the islands reach the position of the 

guiding center. 

 

5.11.2  Confinement in Low Fluctuations (PPCD) 

We can also lower the level of fluctuations to mimic PPCD.  Fig. 5.26 shows the 

ion q-profile and Fig. 5.27 shows the radial position vs. time of our standard ion in 

PPCD-like fluctuations.  Not surprisingly, the ion retains its excellent confinement. 

To get a rough handle on the impact of PPCD on fast ion confinement, we can 

characterize the confinement by looking at how much energy an ion deposits before 

becoming stochastic.  For this we simulated different cases of ions under PPCD and 

standard conditions and compared the average amount of energy deposited as a function 

of starting  



 

 

117 

 

 

Figure 5.26 Island widths for magnetic lines (lower) and IGC’s (upper)  Fluctuation 

levels reduced a factor of 3 to simulate PPCD-like conditions. 

 

 

Figure 5.27 Improved confinement at lower fluctuation levels.  The simulation ends 

before the ion is able to become stochastic. 
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radius.  Fig. 5.28 shows that on-axis ions under standard conditions deposited about 70% 

of their energy, while PPCD ions deposited just over 80% as seen in Fig. 5.29.  While 

fluctuations play the main role in when an ion becomes stochastic there are also subtle 

differences due to the fact that the equilibrium fields in PPCD are also different than in 

the standard case. 

 To avoid leaving the reader with the idea that PPCD is unimportant for NBI that 

is absolutely not the case.  While the fast ions may be confined nearly as well, the bulk 

plasma, which in any NBI heating scenario must be well confined, benefits enormously 

from the confinement improvement from PPCD.  This is discussed in detail in Section 

6.4. 
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Figure 5.28 Energy lost before becoming stochastic as a function of starting radius.  

The x-axis is distance along a central injection chord to show the strong localization of 

particles at low r/a. 

 

 

 

 

 

 

 

 

Figure 5.29 Energy absorption in “PPCD”.  The already good confinement of fast ions 

is little improved by going to lower fluctuations. 
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5.11 Radial Injection 

A heating beam certainly would not be used for radial injection for the simple 

reason that the chord through the plasma would be minimized.  This would result in poor 

absorption and quite possibly a problematic heat load at the beam footprint.  Current 

drive would be minimal because it would be reliant solely on drifts as the ions have no 

inherent parallel velocity.  Also the large perpendicular velocity, at all radii of ionization, 

would make first orbit losses severe, possibly causing localized heat load on the beam 

side of the vessel.  Nevertheless, we can query about the confinement properties because 

some RFP devices3 do have radial neutral beam injectors.  Also diagnostic neutral beams, 

while not used as a source of fast ions as a primary goal, do introduce them into the 

plasma. 

 Our r/a = 0.2 ion, radially injected now, is shown in Fig. 5.30.  We can see that 

the ion has superior confinement properties.  The ion q-profile shown in Fig. 5.31 gives 

us indication as to why this may be.  The large perpendicular velocity introduces 

mirroring, due to the radial gradient of the magnetic field.  As can be seen in Eqn. 5.7 and 

mentioned in Section 5.3, a large perpendicular velocity drives q singular and very far 

away from the magnetic profile.  Since the resonance widths are a function of q’, and q’ 

gets exceedingly large, the associated islands can be very small.  This reasoning has its 

limitations because it’s quite likely that the notion of rotational transforms in the vicinity 

of a mirroring point is ill posed, due to the interference of the ion motion from the 

mirroring condition, nevertheless, it seems a plausible explanation. 
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Figure 5.30  A radially injected fast ion can experience good confinement similar to co-

injection. 

 

 

Figure 5.31 There is a significant radial range where radially injected ions are not 

stochastic.  The lack of a curvature drift is offset by the increased gradient drift to 

maintain the shift in the safety factor. 
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Figure 5.32  Radial injection with the ion starting at r/a = 0.4 (outboard).  We see that it is 

stochastic right away.  Note that the guiding center can’t go further in than r/a = 0.2, this 

is due to mirroring. 

 

 Radial injection may benefit in many cases from q being large, but in reality the 

estimate of q from Eqn. 5.7 has a faulty assumption in it.  We assumed that the 

perpendicular energy was very nearly 100% because injection was perpendicular to the 

equilibrium field.  For the initial moment of ionization, this is the case, but the average 

perpendicular energy can be significantly less due to drifts, which will give the radially 

injected ion a parallel component to its velocity.  It should be noted that the shift in the 

ion q-profile in the simulation of radial injection is to increase q, thus giving some 

approximation of co-injection. 

 Since we’ve discussed co, counter, and now radial injection, it is worth asking 

what the effect of treating the injection angle as a continuum rather than a fixed value 

would be.  In other words, at what point does co-injection become counter-injection?  A 
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naïve answer would be just on the ‘counter-injection side’ of radial injection, however, 

we saw that pure radial injection looks very similar to co-injection, so this must not be 

the answer.  We can look at the value of q vs. injection angle, recalling that qco is greater 

than qmagnetic and qcounter is less than qmagnetic.  This experiment requires a judicious choice 

of starting radius.  If we choose a start too close to the axis, the ion will cross the 

geometric axis with its gyro-orbits and this would highly distort the value of q.  Also an 

orbit far out in radius would hit the wall as we approach perpendicular injection.  We also 

want to do this in the absence of perturbations to be able to average the value of q over a 

long timescale without having to worry about stochasticity.  Finally we will do this in a 

toroidal geometry, to have it be more representative.  Toroidal simulations of ions in a 

perturbed field are discussed in the next section.   

Fig. 5.33 shows q vs. injection angle for a near-axis ion.  At the extremes, we see 

the typical values of q for co and counter injection.  As we approach radial injection, 

angle = 0.0 on the plot, there is a discontinuity.  The discontinuity occurs when the 

poloidal motion of the guiding center goes to zero, which happens when the poloidal 

component of the ion parallel motion is counteracted by the poloidal component of the 

guiding center drifts.  In these instances, the ion has only toroidal motion and this is seen 

clearly in simulation.   

 If indeed there are good orbits when an ion is off-resonance from the magnetic 

field, as seen often in radial injection, perhaps the injection angle of –0.2 would result in 

many confined, albeit pathological, fast ion orbits.  If one had some flexibility in the 

horizontal tilt in a radial beam, this experiment could be performed. 
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Figure 5.33  Dependence of q on injection angle.  We start an ion at r/a =0.25 and vary 

the angle to go from co-injection to counter-injection.  There are large discontinuities 

where the injection approaches radial.  This is due to mirroring and q becoming ill-

defined. 

 

5.12 Toroidal Simulation 

 Here we wish to introduce a brief section on toroidal injection.  This is not given a 

full treatment for the following reasons.  First, the magnetic fields in the simulation are 

only quasi-toroidal.  They take the cylindrical magnetic fields and introduce a Shafranov 

shift, which then re-expresses the flux surfaces as nested circles.  The code does not solve 

the Grad-Shafranov equation self-consistently.  Secondly, the DEBS simulation is done 

in a cylindrical geometry, so the question of the radial eigenmode structure in a torus 

becomes pertinent.  Third, our analytical treatment of q, and the derivation of such from 

guiding center motion, is restricted to a cylindrical geometry.  Also, a toroidal field, with 
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the appropriate variation in field strength vs. poloidal angle, would necessitate taking a 

proper average of the ion guiding center motion and could not be expressed as an 

instantaneous value as we are able to do in a cylindrical system.  Nevertheless, armed 

with what we know from the cylindrical analysis, we can proceed. 

 Fig. 5.34 shows our standard 20 keV ion, r/a = 0.1, co-injected in a toroidal 

system.  Similar to the cylindrical case, the orbit is well confined, with a discrete jump 

where the dominant perturbation goes out of resonance as the ion loses energy.  In Figure 

5.35 we see an ion which starts at r/a = 0.5 and has a brief period of confinement, but 

then becomes stochastic. 

 Fig. 5.36 is interesting as it is the same simulation as Fig. 5.35 except that the 

starting position is moved 11.7 degrees toroidally.  This had the effect of putting the ion 

guiding center inside the n = 5 ion island.  As the ion loses energy, the resonance moves 

inward and the ion goes along with it.  At about 10 keV, the resonance that trapped the 

ion disappears, and the confinement improves further, shown by the tightness of the 

guiding center excursions.  It is now only feeling a perturbation from the next dominant 

mode, presumably n = 6, which is some radial distance away from the guiding centers 

location.  Finally Fig. 5.37 shows an example of counter-injection, r/a = 0.1, and as 

expected, the orbit is much more stochastic than the co-injection case, as previously 

shown in a cylindrical system. 

 The strong qualitative agreement between a cylindrical and a quasi-toroidal 

simulation allows one to trust the results of the cylindrical model as approximating the 

experiment, despite its limitations.  The most significant divergence between the 

cylindrical and toroidal orbits has to do with the mirroring condition.  With tangential 
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injection, this only occurs for particles that start closer to the edge of the device where 

their parallel velocity is quite small.  There is also the note that because of the toroidal 

curvature, it is possible to have radial drifts.  These lead to losses within a toroidal transit 

that didn’t occur in the cylindrical case; however, these are only for ions born near the 

edge and are expected to have little impact on the overall fast ion population, as most 

ions are bore close to the axis. 
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Figure 5.34   Ion at r/a = 0.1 in a toroidal simulation.  Good confinement as in the 

cylindrical case.  The double trace is from the Shafranov shift giving the orbit an 

asymmetrical location relative to the geometric axis.  

 

Figure 5.35  Ion at r/a = 0.5.  Brief period of confinement then stochasticity similar to 

the cylindrical case. 
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Figure 5.36   Example of ion trapping.  The same simulation as Fig. 5.29 except that 

the ion started at 11.7 degrees toroidally vs. 0.  This change in the phase relative to the 

perturbations put the guiding center inside an ion island. 

 

Figure 5.37 Guiding center orbit in counter-injection.  The orbit is immediately 

stochastic and quickly reaches the wall, as expected from cylindrical counter-injection. 
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5.13 Summary 

 We have utilized an exact motion particle tracing code to predict and characterize 

fast ion confinement in a stochastic magnetic field.  By considering the effect of 

curvature and gradient drifts on the ion guiding center, we saw analytically how this 

decouples the ion guiding motion from that of the underlying magnetic field.  This was 

firstly described in terms of the ion safety factor.  An analogy with magnetic islands was 

made to describe ion islands, and draw conclusions about its stochasticity based on 

overlap arguments. 

 This formulation was tested numerically and found to be valid, resulting in a 

broad parameter space of fast ion confinement.  The time-dependence of the ion guiding 

center motion was explicitly considered, and as expected after losing energy the ion 

approaches the safety factor of the magnetic field and becomes similarly stochastic. 

 The dependence of confinement on magnetic fluctuation levels was discussed 

with the expected degradation in a high fluctuation case, but little change in the reduced 

fluctuation scenario due to the already superior confinement. 

 Counter-injection was found to have poor confinement properties overall because 

of the increased density of rational surfaces over most of the plasma radius. 

 Finally a brief discussion of radial injection showed that in general the 

confinement is similar to co-injection, with some instances of excellent confinement due 

to the effect of mirroring.  The limitations of the concept of radial injection were also 

discussed as drift motions provide an average parallel component of velocity, which 

distorts the idealized picture. 
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6 NBI Effect on Plasma 

 Aside from the study of fast ion confinement, the main reason for performing NBI 

is to use it as a method of plasma control, be it for heating, current drive, instabilities, 

etc…  This chapter examines effects that have been observed on the bulk plasma, what 

can be predicted, and some extrapolative modeling with an eye towards a larger beam 

system sometime in the future. 

 

6.1 NBI and Tearing Modes 

 We can predict that given the short pulse and comparatively low total energy 

(relative to the Ohmic input power of MST) any changes from our particular neutral 

beam will be small.  To attempt to maximize the beam’s relative effect, we inject into low 

current plasma.  However, the high frequency (~ 4 ms) of sawtooth crashes at low plasma 

currents (~250 kA) makes the fast ion confinement very poor.  Also, with very short 

quiescent periods, it becomes more difficult to observe the NBI effect on a “steady-state” 

plasma condition.  As a compromise, injection was performed just after the plasma 

begins its ramp-down.  A typical plasma current waveform is shown in Fig. 6.1a as well 

as a typical beam window.  Figure 6.1b shows the loop voltage across the toroidal gap, 

which is one of the signals that are commonly used to diagnose sawteeth.  As can be 

seen, the sawtooth crashes are quite common but during the ramp-down, when the plasma 

is allowed to relax and there is no energy source to drive instabilities, we see that there 

are no crashes.  The trade-off that must be accepted is that the equilibrium is changing, as 

opposed to an ideal case that would be during the plasmas flat-top with no sawteeth, but 

the changes are small and on a much longer timescale than our NBI phase. 
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Figure 6.1 a) Top – Typical plasma current, the blue vertical lines denote the time when 

NBI is on.  b) Bottom – Toroidal gap voltage, clear sawtooth crashes during flat-top, but 

none during ramp-down.  The fluctuations at 46 ms are especially low. 

 

We also start with injecting neutral hydrogen into the plasma as opposed to 

deuterium as before.  The reason for this is that the slowing down time is half of what it is 

for deuterium (because of the mass ratio) and also because the fast ion current is a factor 

of 2  larger for the same beam current (because of the speed of hydrogen vs. deuterium 

at the same energy). 

The equilibrium magnetic field profile can be estimated from taking the measured 

fields at the edge and assuming a force-free, cylindrical model.  This is known as the 



 

 

133 

 

“alpha-model”.  In this simple reconstruction, a parallel current profile is assumed to be 

of a functional form  

( )!" )/(1|| arJ #$ ,     (6.1) 

where ! and !  are free parameters that are determined when one specifies the edge 

fields.  Also, after having determined the magnetic field profiles, this defines the q-profile 

as well. 

The reconstructed ! and !  are shown in Fig. 6.2.  We see that ! increases, as 

one might expect if adding to the current, which we are ostensibly doing during co-

injection.  In addition, !  decreases, steepening the current profile, as one might expect if 

we are only increasing current near the axis, again as we expect based on the fast ion 

deposition profile.  The parallel current profile according to Eqn. 6.1 is shown in Fig. 6.3, 

as well as the on-axis value of q, which will be important to the discussion shortly.  One 

simple way to see why q decreases is that if we are driving toroidal current, that would 

serve to increase !B , and hence drive q lower. 

Another observation was that the magnetic fluctuations at the edge changed in 

amplitude and rotation velocity during NBI and for some time thereafter.  In Chapter 3 

we used the toroidal magnetic pickup array to get the amplitudes of the fluctuations mode 

by mode.  The same array gives information on the rotation speed. 

In Fig. 6.4, an ensemble (~ 45 shots) taken with NBI (red) and without NBI 

(black) are shown for comparison.  The strongest change is in the poloidal component of 

the m = 1, n = 5 magnetic mode.  The amplitude (Fig. 6.4a) decreases about 2 Gauss, or 

10%, and most notably the rotation (Fig. 6.4c) decreases from 8 km/s to around 2 km/s.   
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Figure 6.2 Parallel current profile parameters during NBI ( red – beam on, black – 

beam off ).  The approximate profile becomes steeper and larger on-axis, consistent with 

our expectations with counter-NBI. 

 

 

Figure 6.3 The reconstructed current profile (left) ( red – beam on, black – beam off ) 

results in a value of the on-axis q (right) that clearly decreases during NBI.   
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The toroidal component, Figs. 6.4b and 6.4d, has no obvious change in amplitude, 

but the rotation, from being nominally locked, decreases by about 5 km/s.  This effect is 

not seen on any other modes in this type of shot.  We can also note that the effect is a 

maximum at the end of NBI and then persists for several milliseconds. 

Under slightly different conditions (q0 ~0.19, beam on at 44 ms vs 46 ms), the 

effect is even more pronounced, as shown in Fig. 6.5.  We see that the mode rotation 

quickly drops to zero, and additional beam ions do not further decrease it.  This strongly 

suggests that it is not a simple torque that is being applied to the plasma flow responsible 

for the mode rotation frequency.  The fact that the mode amplitude of the poloidal 

component decreases during the entire beam length, then gradually returns to its pre-

beam value, wheras the rotation responded much faster, is not understood.  Contrast this 

with the toroidal component that appears to have roughly the same temporal response as 

the poloidal component of the rotation. 

 

 



 

 

136 

 

 

Fig. 6.4  Plasma rotation and mode amplitude response to NBI.  During the NBI on (red) 

shots, the poloidal component of the m = 1, n = 5 fluctuation amplitude (Fig. 6.4a, upper 

left) decreases.  The toroidal component amplitude (Fig. 6.4b, upper right) appears 

unchanged.  The poloidal mode velocity (Fig. 6.4c, lower left) decreases sharply, and the 

toroidal rotation (Fig. 6.4d, lower right) also decreases.  The difference in component 

velocities is because both m = 0 and m = 1 contributions are rotating, presumably at 

different rates. 
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Figure 6.5 Another example under slightly different plasma conditions.  Here the 

mode quickly locks, well before the beam is done firing.  However, note that the 

amplitude of the poloidal component (upper left) does decrease until the beam goes off, 

then shows a gradual rise back to the pre-beam value. 

 

Fig. 6.6 shows the magnetic amplitude and rotation of the n = 5 mode, for a single 

plasma discharge instead of an ensemble.  We see that the rotation of the poloidal 

component intermittently jumps to ~20 km/s, and an associated increase in the mode  
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Figure 6.6 The amplitude and rotation signals for a single shot show that the mode is 

locking and unlocking, and when rotating the mode amplitude increase.  Remember that 

the amplitude contains all m values and so gives a clear contrast between the m = 0, n = 5 

and the m = 1, n = 5 components.  It also demonstrates that in an ensemble, the mode 

amplitude is the statistical average of the m = 0, n = 5  and m = 1, n = 5 contributions. 

 

amplitude is also observed.  The m = 0 modes are locked to the plasma wall, and hence 

their contribution to the magnetic signal results in a zero velocity.  This indicates that the 

m = 1, n = 5 mode is coming in and out of resonance, and when it is resonant, rotates at 

around 20 km/s, which is typical of the n = 6, 7, .. mode rotation.  This intermittance, 
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when averaged over an ensemble as previously shown, results in an average value of 

approximately 10 km/s.  This average rotation speed then is the probability weighted 

contribution of the m = 0, n = 5 and m = 1, n = 5 modes.  This point is important because 

it shows that the rotation and amplitude of the m = 1, n = 5 mode is not actually 

decreasing, it is simply less prevalent in the ensemble and thus the ensembled average 

rotation and amplitude approaches the non-resonant value. 

 This is very important; because in Fig 6.4 there is a linear decrease in rotation as 

the beam comes on, wheras in Fig 6.5 there is an immediate locking of the observed 

rotation.  The first conclusion is that the m = 1, n = 5 mode is marginally resonant.  When 

the mode is growing, it rotates at speed typical of the overall plasma rotation ~20 km/s, 

and the amplitude of the mode increases as well.  Secondly, the beam ions are affecting 

this resonance condition.  In the first case, Fig 6.4, a small number of beam ions aren’t 

enough to affect the probability of it being locked (non-resonant) but as the number 

grows with time it becomes more likely to lock, hence the average value of the rotation 

speed approaches zero.  In Fig. 6.5, where it locks immediately, the conclusion is that the 

mode is so close to being out of resonance, that very few beam ions are nessecary to take 

the mode out of resonance; hence we see the average rotation go quickly to zero. 

 However, this is predicated on the assumption that the m = 1, n = 5 mode is 

indeed marginally resonant.  To get an idea if this is the case, we can consider Ampere’s 

Law, evaluated at the vessel wall.  By performing the manipulation shown in Eqn. 6.2, 

we are able to evaluate what the “average m” of a given n number is, based on the 

polarization of the measured magnetic fields at the wall.  The values for several modes 

are shown in Table 6.1.  While the low-n modes, 1,2,3 are clearly m = 0, and the high-n 
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modes, 6,7,8.., are clearly m = 1, we see that the n = 5 is somewhere in between, which 

also suggests marginal resonance. 
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The rotation and mode amplitudes shown in Fig. 6.4 and Fig 6.5 were taken at the edge, 

but as we have seen, 
r
b
~

 has a radial structure to it.  The fast ions are also dominantly in 

the core, so we wish to know what the mode amplitude is at that radius.  We don’t have 

experimental radial profiles of 
r
b
~

 yet, but using FIR polarimetry we can measure the line-

intergrated 
r
b
~

 that we can take to be indicative of a core measurement (recall 
r
b
~

 is nearly 

zero at the wall).  Fig. 6.7 shows this measurement and reveals that indeed the n = 5 

mode has decreased in amplitude.  Additionally the n = 6 and possibly n = 4 modes have 

also decreased.  This is in contrast to what we see in the edge signals, and may be the 

result of nonlinear coupling with the m = 0 modes. 

 

 

 

 

 

 

 

 

 

 



 

 

141 

 

n V(b$ )(km/s)  V(b%)(km/s) b$ b% <m> m=1 resonant 

1 0  -12  1.5 6.5 0.08 No 
2 0  -12  1.0 7 0.10 No 
3 0  -10  0.6 6.5 0.09 No 
4 0  -10  1.8 6.5 0.35 ~No 
5 +10  0  2 6 0.55 Marginal 
6 +25  +20  5 12 0.83 Yes 
7 +15  +15  3.5 8.5 0.96 Yes 
8 +20  +12  2 7 0.76 Yes 
9 +15  +9  1.5 6 0.75 Yes 
10 +15  +8  1.3 5 0.86 Yes 

Table 6.1 Degree of resonance of the m = 1, n = 5 mode according to polarization of 

the measured magnetic fluctuations.  The first column is the toroidal mode number.  The 

second and third columns are the velocities of the toroidal and poloidal components of 

the mode.  The third and fourth columns are the amplitudes, and the fifth column is the 

value of the “average m” as computed according to Eq. 6.2.  The value of its “average m” 

does indeed lie between 0 (not resonant, most fluctuation due to m = 0 component) and 1 

(resonant, most fluctuation due to m = 1 component) 
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Figure 6.7 FIR polarimetry is used to get a line-integrated value of 
r
b
~

.  We see that 

there is a significant drop in the n = 5 amplitude, and interestingly also in the n = 6 and 

possibly n = 4.  No decrease in amplitude in any mode besides the n = 5 is observed on 

the edge signals. 

 

Next we can consider the observed timescale of the observed changes in rotation and 

amplitude.  The change in rotation persists from 46 ms (when the beam comes on) to 

approximately 50 ms, where the beam on/off cases have nearly become identical.  If this 

effect is due to modifying the current profile, then we should consider the confinement of 

the beam ions (which determines the number of charge carriers) and the velocity of beam 

ions (which changes through slowing down on the background plasma).  We have no way 

of measuring the confinement of the hydrogen beam ions, but if we assume that it is close 

to deuterium beam ions, we can utilize the neutron detection method to estimate a beam 

particle confinement time.  As shown in Fig. 6.8, the confinement is rather poor  
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Figure 6.8 Neutron flux during low-current ramp-down.  An electron temperature of 

200 eV is assumed.  The black curve (perfect confinement) and green curve (20 ms 

confinement time) are clearly not applicable.  The dark blue curve is a 1 ms confinement 

time, with the light blue range surrounding it corresponding to a 0.5 ms (lower) and 1.5 

ms (upper) confinement time.   

 

and modeling of the neutron signal results in a confinement time of around 1 ms.  This is 

of a reasonable timescale to explain the observed effect.  We can also note that the 

slowing down time for hydrogen ions at an electron temperature of 200 eV (the assumed 

electron temperature since we have no measurement for this data) is around 4 ms. 

 If we believe that the raising of the on-axis current during co-injection is 

responsible for making the m = 1, n = 5 mode less likely to be resonant, then performing 

counter-injection would be an interesting test.  In that case we would expect the parallel 

current to decrease on-axis, q to increase, and the mode more likely to be resonant and 

rotating, thus increasing the average value of the rotation speed.  The experiment was 



 

 

144 

 

performed, and there was no change in either the magnetic signals (fluctuation amplitude 

or rotation) or the alpha model signals, which would reflect a change in the axis current. 

 Why did we see nothing with counter-injection?  The fast ion density is 

approximately the same during counter-injection as co-injection, especially near the core 

where first-orbit losses are not occurring.  However, we know that the confinement in 

counter-injection is not as good as co-injection as shown in Section 4.10 and discussed in 

Section 5.9.  Again, the neutron flux for deuterium injection in co-injection was measured 

and the confinement was found to be extraordinarily bad.  As shown in Fig. 6.9 the 

neutron flux mimics the beam ion input current, which indicates that the loss time is 

exceedingly fast, much less than a millisecond, which would be indiciative of constant 

stochastic loss of the beam ions.  Neutrons can be produced by the beam striking the 

deuterium gas (deuterium ions in plasma + neutrals in plasma + layer of deuterium on the 

wall).  The poor confinement is likely why we saw no effect from the injection 

whatsoever. 
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Figure 6.9 Neutron flux during counter injection into low-current plasma ramp-down.  

The neutron signal (red) has nearly the same shape as the beam current (black).  This 

means the fast ions are being lost nearly as fast as they are being born.  Fast ion 

stochastisity is likely, but also very high first orbit losses. 

 

6.4 NBI Heating Model 

 During NBI, the electron temperature was measured by a multi-point Thomson 

scattering diagnostic and there was no measurable change.  We can then consider what 

kind of particle confinement (both plasma and fast ion) and beam parameters would be 

needed for measurable plasma heating. 

 First we address why we saw nothing with the beam we have.  The beam’s input 

power, 400 kW, is a small, but non-negligible fraction of the Ohmic input power of about 

2 MW.  However, the energy transfer between the beam ions and the plasma is not 

instantaneous.  We take the fast ion energy loss frequency (from Eqn. 4.15) to be ~ 60/s 

for deuterium (double that for hydrogen) and compare the maximum instantaneous 

heating from NBI vs. Ohmic power and find 
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therefore, we see no heating. 

 If we were to have a longer beam pulse, say 15 ms, and a larger beam current, say 

100 A, this would bring us to within a factor of ten of the Ohmic power, under the above 

estimate.  However, the long beam pulse means that all the energy is not instantly in the 

plasma, as one can assume so with the short pulse beam.  Also, the question of plasma 

confinement arises to complicate a heating estimate. 

 Since we have a stochastic magnetic field, the electron heat diffusion is 

proportional to the thermal velocity.  Moreover, since our fast ions preferentially heat the 

electrons, these heated electrons are able to diffuse more rapidly and become lost before 

equilibrating with the background ions.  Therefore, the question of NBI isn’t just a matter 

of the beam power, and fast ion confinement, but also of the plasma confinement itself.  

While a 0-D model (time only) of NBI heating is simple to implement, we note one other 

thing that is important.  The fast ion distribution isn’t global, it is very localized to the 

core region.  This means that the density of fast ions can be quite high and the heating 

very localized.  This could in theory lead to electron (or ion) temperature gradients that 

are assumed for our purposes here, to diffuse according to the heat equation.  The 

following model was written by the author and is intended to be a simple 1-D model to 

predict and understand the requirements for significant heating with neutral beams in a 

diffusive plasma. 

 To model these processes we need to solve the system of differential equations 

b

b
S

dt

dn
=      (6.4) 
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where 

bb
Tn ,   Beam density and energy 

ee
Tn ,   Electron density and temperature 

ii
Tn ,   Ion density and temperature 

E

b/!"   Energy loss rate of test particle (subscript b) with species alpha 

Equil

!"# /
  Energy equilibration rate of species alpha and beta 

!D   Radial heat diffusion coefficient of species alpha 

b
S   Beam source term 

!SS   Steady-state heating term for species alpha 

 As fast ions are born in the plasma, they of course begin to transfer energy to 

other particles.  However, as we know, the rate of energy transfer is an exponential 

process.  Therefore, especially for a long pulse neutral beam, the ions that came in at the 

end of the pulse are depositing energy at a different rate than the ones that came in at the 

beginning.  While we could ignore this for our present beam because of its short duration, 

in general this should be taken into account.  The entire fast ion population then is made 

of n different groups, which we call beamlets.  These are followed independently and 
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evolved in the system of equations, but do not interact with each other.  For most 

simulations we take n = 100 as being sufficient, less if considering a short pulse beam. 

 To advance the diffusive part of the equation we use the Crank-Nicholson 

method4 that is second-order accurate and numerically stable for an arbitrary timestep.  In 

radial coordinates then we have the following finite difference equation for the evolution 

of the temperature profile 
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where i is a radial position index, n is a time index, t!  is the timestep, r is the actual 

radial position and r!  is a radial step size. 

The Dirchelet boundary condition 

0=
Wall
T      (6.10) 

and the regularity condition at the axis 

0
)(
=

dr

rdT
Axis      (6.11) 

are sufficient to solve the diffusion equation across one timestep.  A full derivation of the 

finite difference equation and its solution method can be found in Appendix C. 

 Before going to the results of the code, some thought must be put towards what 

value of D to use.  For electrons, we can use the electron heat diffusion stated in Chapter 

2 of smD
e

/400
2

! .  For thermal ions, whose drift motion is not appreciable at their 

energies, we can again assume they move along stochastic field lines giving 

( ) ( )
ieieei
mTTmDD /! .  Ambipolar effects on particle transport are neglected. 
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 We can begin first with what the model predicts for a short pulse neutral beam.  

Figure 7.8 shows the on-axis electron temperature vs. time.  The sharp rise during the 

beam on time is due to the fact that the source of heat for the electrons is increasing 

linearly, and the electron heat hasn’t had time to diffuse.  When the beam turns off, both 

the energy source from the NBI decreases (due to slowing down of fast ions) and also the 

electron heat has time to diffuse outward, lowering the axis temperature.  The sharp drop 

at around 18 ms is where the fast ions are taken out of the equation as they reach the 

lower energy limit for the simulation.  While one might say that the model is at that point 

invalid, an interesting consideration is that if the fast ions were to become stochastic and 

lost (perhaps due to slowing as we have previously seen), the heating from them might 

have a very similar profile.  Of course, one would have to properly account for electron 

and ion heating during the sawtooth as well. 

 Heat diffusion is a very strong effect, and by improving the plasma confinement, 

we expect to be able to attain higher temperatures.  In Fig. 6.11 the diffusion coefficient 

for the electrons was lowered from 400 m2/s to 10 m2/s.   
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Figure 6.10  Electron temperature during NBI.  20 A, 20 kV, 1.5 ms of NBI results in 

very little heating.  The sharp drop at 18 ms is from beamlets being removed from the 

simulation due to thermalization. 

 

 If we were to have a more powerful heating beam, such as 50 kV, 100 A, 15 ms, 

then we can determine what sort of temperatures to expect in that case.  Figure 6.12 

shows the on-axis electron temperature during high-power NBI.  While possibly even 

measurable, the very modest heating is rather small considering the amount of NBI power 

being used.  The situation changes when “PPCD” plasmas are considered.  Again, we 

lower the electron heat diffusion coefficient to 10 m2/s.  The resultant profiles are shown 

in Fig. 6.13, with the electron (blue), plasma ion (green) vs. radius, at two points in time.  

The dashed lines are the initial temperature profiles, the solid lines are the profiles taken 

when the axis electron temperature is at a maximum.   

 Now the electron temperature has an increase of just over 200 eV, with the ions 

having a 20 eV change.  At these fast ion energies the vast majority of the  
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Figure 6.11  For “PPCD-like” confinement (electron heat diffusion a factor of 40 lower 

than standard, there is a significant improvement in the maximum temperature, but still 

overall very small. 

 

Figure 6.12  For a high power (50 keV, 100 A) long-pulse (15 ms) beam, under standard 

confinement, there is still only very small central heating. 
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energy is going into the electrons.  The initial electron temperature corresponds to a low-

current PPCD plasma, as the good confinement properties of PPCD result in higher 

plasma temperatures.  The spread of the electron (and ion) heating is plainly from the 

radial diffusion of the NBI deposited energy.  Fig. 6.14 and Fig. 6.15 show the evolution 

of the on-axis electron and ion temperature for this case.   

 Finally in Fig. 6.16 we show the result of increasing the electron temperature to 1 

keV and the ion temperature to 500 eV before NBI.  This approximates high-current 

PPCD.  Again, PPCD allows for measurable heating (~90 eV for the electrons), but the 

differential heating is smaller due to the fact that the higher electron temperature lowers 

the collision rate between the fast ions and the electrons. 
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Figure 6.13  Temperature profiles for high-power NBI into low current PPCD.  With 

good plasma confinement, significant heating is possible.  The effect of heat diffusion 

can be seen, as the electron heat has diffused out to where there is no direct heating of the 

electrons and ions from fast ions. 

 

Figure 6.14  High-power NBI into low-current PPCD.  The axis electron heating is a 

significant increase over the steady-state value. 

Electrons (initial) 

Electrons (when T is max. on axis) 

Ions (initial) 

Ions (when T is max. on axis) 
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Figure 6.15  The axis ion temperature profile for high power NBI into low-current PPCD. 

 

 

Figure 6.16  The profiles for high power NBI into high-current PPCD.  The heating is 

less than the low-current PPCD case because of the smaller collision rate of fast ions with 

electrons at these higher plasma temperatures. 

Electrons (initial) 

Electrons (when T is max. on axis) 

Ions (initial) 

Ions (when T is max. on axis) 
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6.3 Summary 

 Neutral beam injection into a low-current plasma during the ramp-down phase 

was performed to look for global changes in the plasma due to fast ions.  Evidence of 

current drive was observed, and likely restricted to the core.  Also measured was a 

change in the m = 1, n = 5 tearing mode amplitude and rotation.  Analysis of the mode’s 

resonant condition suggests that the fast ion current modifies the local current profile in 

such a way as to make the marginally resonant mode more likely to be non-resonant.  

This explains the observed decrease in amplitude and rotation.  The reverse case was not 

seen during a counter-injection experiment, and neutron flux measurements show that the 

confinement of the fast ions is likely far too poor for any significant effect. 

A 1-D model of NBI heating has been written and results for many injection 

scenarios and levels of injection power were shown.  With a high-power heating beam 

into PPCD-like plasmas, increases of central electron temperatures of 100-200 eV are 

possible.  While a stronger beam source is necessary, the study shows that good plasma 

confinement remains the strongest requirement for efficient use of NBI from a heating 

point of view. 
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7 Conclusions 

 The foremost physics result presented in this thesis is that fast ions in a stochastic 

magnetic field can have confinement superior to that of the background plasma.  Small 

gyro-radius particle transport in a stochastic magnetic field is understood through the 

well-known Rechester-Rosenbluth model.  The substantial drift velocities of larger gyro-

radius particles decouple the orbits from the stochastic magnetic field and can result in 

good confinement. 

  The experiment performed used NBI as a source of fast ions and measured the 

resultant neutron flux from the fast ions fusing with the background plasma ions.  The 

neutron flux provides a measure of the fast ion population and as such the temporal 

response of the neutron signal allowed us to infer a confinement time of the fast ions.  

The model used to describe the neutron flux assumed that the energy loss of the fast ions 

was purely due to Coulomb collisions with the background plasma.  A fast ion 

confinement time of 20 ms was found to describe the observed neutron flux.  This 

suggests that the fast ion orbits are not stochastic even though the background plasma is 

believed to be so. 

 Further experiments were performed to study the confinement of fast ions under 

varying conditions.  Under low magnetic fluctuations, present during PPCD, the 

confinement time improved to 30 ms.  During a sawtooth crash, when magnetic 

fluctuations are larger, a confinement time of 0.4 ms was estimated, consistent with 

stochastic losses of fast ions.  Reversing the direction of injection relative to the plasma 

current, or counter-injection, was performed and the confinement time in this case was 4 

ms.  It is believed that the counter-injection confinement time is due to a hybrid of good 
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confinement of fast ions and increased charge-exchange losses.  Finally radial injection 

was performed and the confinement time found to be 18 ms, similar to that of co-

injection. 

 Numerical simulation of particle orbits in a stochastic magnetic field strongly 

supported the observed experimental results.  By simulating the magnetic field, both 

equilibrium and perturbation, we quantified the magnetic stochasticity in terms of a 

magnetic diffusion coefficient, whose value was found to be ~10-4 m.  The magnetic 

diffusion was consistent with previous measurements of electron heat transport and 

agreed with the Rechester-Rosenbluth formulation.  However, for fast ions in the same 

stochastic magnetic field, their orbits were not stochastic under the conditions that 

approximate the experiment.  By varying the magnetic fluctuation and injection geometry 

as described previously, we observed confinement properties that agreed with the 

experimental results. 

 Analytical study of fast ion orbits was done by solving the guiding center 

equation of motion in the RFP magnetic field.  The significant drifts of large gyro-radius 

particles were found to take the guiding center motion out of resonance with the velocity 

fluctuations imposed by the background magnetic field.  In analogy to the overlap of 

magnetic islands, the lack of ion guiding center island overlap was found to be the 

explanation of the improved confinement observed both experimentally and numerically. 

 NBI current drive was measured in some low-current plasmas and agreed with 

analytical predictions.  Observed changes in magnetic mode rotation and amplitude were 

also measured, and the presence of NBI current drive under these conditions serves as a 

possible explanation. 
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Appendix A   

Derivation Of Magnetic And Guiding Center Islands 

This Appendix describes how the presence of a perturbation in a trajectory’s 

phase space can lead to what are typically known as islands.  These islands, which when 

converted to real space structures, when overlapped lead to stochastic orbits.  This is 

important for magnetic field lines because particles moving along field lines are poorly 

confined in a stochastic magnetic field.  It is also important for particles in and of 

themselves, which can exhibit resonances with regard to a perturbing force, and can 

become stochastic. 

We will begin with a treatment of magnetic field lines, in a sheared slab 

approximation, and then repeat the treatment for ion guiding centers, noting differences 

where they occur.  The formulation in the context of field lines is quite general as it is a 

mapping, and so is as good as any other mapping one might choose for illustration.  The 

drift approximation for guiding centers is another example of a mapping, with the low-

energy limit recovering the field line result.  When going to higher energies, the guiding 

center motion and the field line motion become decoupled, but it is still a mapping, 

undergoing a transformation via drift contributions. 
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Figure A.1 Sheared slab magnetic field.  We let the resonant surface be at x = 0, and 

the strength of the toroidal field be zero at x = 0.  The gradient of the axial field is then 

shown schematically by the length of the arrows. 

 

  The sheared field is the toroidal component, which we will take to be in the axial 

or z, direction.  We will also impose a perturbation in the radial direction.  The field in 

this ‘sheared’ cylindrical geometry is then 

zxByBxzBzxB zyx
ˆ)(ˆˆ)(),( ++=    (A.1) 

and the field line equation (in the x,z plane) are 
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Assume the x-component is the result of a magnetic perturbation of the form 
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To have the same form as the sheared slab model we let x = r – rs such that x = 0 

at our resonant surface and z is now the axial direction.  We will also Taylor expand Bz 

since this assumes we are close to the resonant surface ( )0b =•
rr

k  

...
)(

0)0(
0

++!=
=x

z

z

dx

xdB
xxB     (A.4) 

Rearranging the field line equation (A.2) we have 
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Integrating (A.5) we get 
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There are three classes of lines that this equation can trace out.  Open lines which 

do not cross x = 0, but are perturbed.  Closed field lines which are not allowed to make 

periodic transits due to being turned back quickly by the perturbation.  Finally, there is 

the special field line that separates these, which is known as the separatrix and defines a 

“magnetic island”. 

Evaluating at x = 0, z = 0, which is on the separatrix line, we can solve for the 

constant, giving 
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This gives the radial displacement of the separatrix as a function of z. 

The maximum excursion of this line in x is the half width of the magnetic island. 
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To write (Eqn. A.9) in the usual form we take the radial (x in the sheared-slab model) 

derivative of Eqn. 2.1 at the rational surface, 
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Substituting this into (A.9) we find the well-known island width formula in a cylindrical 

screw-pinch. 
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In the event that adjacent magnetic islands overlap, there is a bifurcation in the 

allowed solutions for the field line.  The overlapped resonances lead to what is known as 

“strong stochasticity”, c.f. Chirkov, which is of a global character (the combined width of 

the overlapped resonances) and is what is responsible for the commonly known 

stochasticity in many magnetic confinement configurations. 

 At this point we turn our attention to the resonances for ion guiding centers.  In 

Appendix B we present the equation of motion of the ion guiding center, to first order in 

Larmor radius.  The components of this motion are used below in the derivation, so it is 

implicitly a first order calculation.  As above, the magnetic field perturbation is taken to 

be first order in some smallness parameter, which we commonly take to be the 

experimentally realized magnetic fluctuation level. 

 So now we begin again with the equations of motion, which for an ion guiding 

center, in the x-z plane, can be written as: 
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where )v,v,(vv
zyx

=
r

and the subscript x has replaced r in the cylindrical representation 

to connect with the sheared slab formulation. 

 In a cylindrical geometry, there are no radial drifts.  This is because the curvature 

vector is purely in the radial direction, and the gradients in magnetic field strength are 

also just in the radial direction.  This permits the approximation that the guiding centers 

radial velocity is just its parallel velocity along the radially perturbed magnetic field.  
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Expand around the resonant surface ( 0v =•
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We then have for the equation of motion in the x-z plane 
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Again integrating and taking the maximum value, we find 
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So the half-width of the ion guiding center island is given by: 
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This is the half-width for the size of the ion guiding center island separatrix.  To further 

refine the expression and put it into quantities we are already familiar with, we begin by 

writing the derivative of q, for the ion guiding center, evaluated at the resonant surface, as 
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which when put into Eqn. A.17, gives 
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We could stop at this point and have a very good estimation of the width of the ion 

guiding center resonances, however, in practice, one can make another approximation 

that puts Eqn. A.19 into a much more useful form. 

Under the assumption that the contribution to the guiding centers velocity is small 

relative to the total velocity, we approximate 
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then we arrive at  
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this expression for the half width of the ion guiding is convenient because it is in terms of 

quantities that are well known.  The field amplitudes are known quantities, and the radial 

derivative of the ion guiding center safety factor can be calculated from the expression 

given in 5.7.  The last assumption introduces only a slight error into the estimate, of 

which a typical value for an r/a = 0.2 fast ion is 
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 It is also important to note that the ion motion is acting in accordance with the 

magnetic perturbation but taken at the resonant drift surfaces defined by the guiding 
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center’s rotational transform.  Intuitively this makes sense as the location of the 

resonances are determined by the guiding centers motion, and the presence of a 

perturbation is a general condition.  Another thing to note is that a given magnetic mode 

has a radial structure to it, which for 
r
b
~

, tends to be peaked near its resonant surface.  The 

corresponding resonant drift surface is in a different location, so the strength of the 

perturbation is subsequently less.  This has the general effect of an ion island being 

smaller than their magnetic counterparts, though this is not a rigid statement because of 

other contributions, such as resonant surface location, and q-shear. 

For both field lines and ion guiding centers, the approximations made in the 

various quantities fall well within the error in using the sheared slab formulation itself, 

and have been found to be sufficiently accurate for describing the degree of resonance 

overlap in either the magnetic or ion guiding center system.  This approach has been 

verified by comparing Poincaré sections of the ion guiding centers to the analytical result, 

and using the island overlap criterion to predict and explain the onset of fast ion 

stochasticity.  
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Appendix B 

Derivation of Ion Guiding Center Safety Factor 

 

 The derivation of the safety factor in 5.7 is not a straightforward calculation, even 

when done in a cylindrical geometry.  The equation is of central importance in 

understanding both qualitatively and quantitatively, the results of this thesis; that fast ions 

have different resonant conditions than the background magnetic field. 

 The result was first worked out by Y. Tsidulko in a 2002 internal draft report, 

though presented only in the final form shown in Eqn. 5.7.  The full derivation is worked 

out below, including the expansion of the guiding center safety factor to first order in 

Larmor radius. 

We begin by writing down the equation of the ion guiding center motion 
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Additional useful expressions 
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The guiding center rotational transform, in a cylindrical geometry with no 

Shafranfov shift, can be written as: 
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We can now take the toroidal and poloidal components of the given velocity expression 

in Eqn. B.10.  We do this term-by-term and find for 
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Similarly for the theta component we find: 
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Now we can use these expressions to solve for the guiding center qGC.  Using Eqn. B.18 

and Eqn. B.19, we do a Taylor expansion in gyro-radius, about the guiding center. 
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Where the primes denote first derivatives in ! .  
0
q  is the magnetic q which is valid for 

infinitely small Larmor radii. 

For brevity we write !"= µ# 1 . 
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Multiplying out term by term we find a great deal of cancellation 
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which when replaced back into the expansion we finally arrive at 
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Appendix C  

Finite Difference Solution To The Radial Heat Equation 

 If we wish to account for stochastic heat diffusion during neutral beam injection, 

we need to solve the radial heat equation.  The method of finite differences is a natural 

way to do this, as our advancement of the energy profiles due to collisions between 

species (electrons, thermal ions and fast ions) is done explicitly and is discretized by 

using numerical loops. 

 First we can write down a differential equation for T 
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where D is the diffusion coefficient (units l2 / t) and T is the temperature.  The radial 

component of the Laplacian is simply 
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Therefore, we begin by writing the finite-difference expressions for the two derivative 

terms.  We also state that the notation used in this Appendix is that time indices will be 

given as n and spatial indices as j. 

The first derivative in time can be written as 
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While either is valid for small enough timestep t! , we will use second form later on.  

Similarly, the spatial first derivative term can be written as 
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where x!  is the discreteness of the spatial grid. 

This leaves only one term (the second derivative term in the Laplacian) to be evaluated.  

To determine the finite difference expression for that, we do a Taylor expansion of T(r) 

about a small spatial displacement. 
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Solving for the second derivative term, and inserting the expression for the first 

derivative ( C.2) we have 
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Putting Eqn. C.4 and Eqn. C6 together we can write the heat equation in both explicit 

(depends only on the current or previous time or spatial steps) and implicit (depends on 

future time or spatial steps) form. 
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 (Implicit) (C.8) 

At this point, we combine Eqn. C.7 and Eqn. C.8 and take the average.  This is the Crank-

Nicholson method.  Doing so, we arrive at 
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This gives a system of equations and we want to solve for the future time (n+1) and three 

spatial coordinates (j-1, j, j+1).  We will use matrix methods to solve it, but in order to 

put into a useful form we do the following. 

We need to organize Eqn. C.9 into present and future timesteps.  Start by defining 
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Now we can group Eqn. C.10 according to j-elements 
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Notice the coefficients of each term are labeled a, b, c, etc…  This shorthand will come in 

very handy soon.  Now finally we can write the matrix that we want to solve. 
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where J represents the last index of the spatial index j. 

We can now address the boundary conditions.  The first boundary condition is a Dirchelet 

condition that the T is zero at the wall. 
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It should be noted that even though we specify the temperature to be zero at the wall, in 

practice the model doesn’t evolve this point to avoid “divide by zero” errors.  The radial 

grid runs from r = 0+ x!  to a - x! . 

The second boundary condition is the regularity condition that the derivative 

across the origin is zero 
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This boundary condition is tough to implement into the matrix equation because the 

matrix is expressed in terms of the actual values, not their derivatives. 

The regularity condition written in the form of finite differences (at j = 0) is 
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This equation is unsettling because it uses an index of (-1) in order to evaluate the 

boundary condition.  It needs to know what the point on the ‘other side’ of r = 0 is doing.  

Since we don’t have that point, we have to eliminate those two indices from our matrix 

equation.  Equation C.11 with j = 0 is 
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but we note that c = -f and a = -d. 

Eliminating d and f, we find 
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In Eqn. C.17 we see that n
aT

1!  will cancel out and we can solve for 1

0

+n
T which will allow 

us to evolve the axis point at the future time in terms of known spatial quantities. 

nnnn
T
b

e
TT

b

ac
T 01

1

1

1

0 )( ++!
"

#
$
%

& +
'= ++    (C.18) 

Or in terms of our original constant 
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and regrouping according to future and present times 
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Now we can specify the first elements of the diagonal and superdiagonal (the diagonal to 

the right of the main diagonal).  This gives the full matrix as 
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where !=g . 

To solve this matrix one employs the Thomas algorithm which solves a matrix of 

the form: A x = B, if A is tridiagonal.  We note that B is a fully determined matrix; it is 

based on the known temperature profile. 

The solution to C.21 at each timestep advances the diffusion of the temperature 

profile, which is then modified at each radial location according to energy exchange with 

the background plasma and fast ions. 
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Additional notes on heating model 

 1) Because the fast ion density is modeled as an exponential, at mid-radii and 

beyond the density quickly approaches zero.  This is a source of instability and is 

addressed by setting a cutoff radius at which the fast ions do not interact with the plasma.  

This radius is typically taken to be where the density has fallen by a factor of 100 from 

the axis density. 

 2) The Coulomb drag model used is only valid when the fast ions are much more 

energetic than the background plasma.  For a long simulation they are capable of 

thermalizing, which results in extremely high collision frequencies and is also a source of 

numerical instability. 

 3) The code also calculates the neutron flux from both fast ions fusing with 

thermal ions, and the thermal ions fusing with each other.   
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The entire NBI heating code, written in IDL 6.2, is below. 

 

;******************************************************** 
;*                                                       
;*  NBI Heating Model  nbi_heating_model.pro             
;*                                                       
;******************************************************** 
;Written: 6/16/2006     Ben Hudson 
; 
;Purpose: 
;   Description of arbitrary length neutral beam 
;injection effects on plasma temperature. 
; 
;Features: 
;   Arbitary radial profiles for plasma density and temperature 
;   Beam ions treated as short-pulse beamlets that evolve independently. 
;   Radial diffusion of temperature profiles. 
; 
;Method: 
;   *The steady-state source terms to the plasma are found that would 
;offset diffusion and equilibration between speices, thus sustaining 
;the specified profile in the absence of NBI. 
;   *Diffusion of the electron and ion temperature profiles are 
;calculated (not applied). 
;   *The beamlets are introduced as a source term and energy transfer 
;is calculated (not applied) for NBI->electrons and NBI->ions. 
;   *Energy transfer is calculated (not applied) for electrons->ions 
;   *Energy transfer of all components are applied. 
;   *Additional calculates made for evolved profile (neutron flux, etc.) 
;   *Advance to next time-step. 
; 
;Advancement scheme: 
;   The diffusion calculations are done with the radial heat equation 
;written in finite differences.  The Crank-Nicholson method is used 
;for stability of the algorithm. 
;   The advancement of the energy transfer equations is by definition 
;explicit, so a simple time-step advancement is used for that. 
; 
;Full documentation available in Appendix C of Hudson thesis, 2006 
;***********************************************************************
* 
 
pro nbi_heating_model 
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;Graphical interface 
set_plot,'ps' 
!p.font = 1.0 
device,/color 
device,xoffset = 0.5,/inches 
device,yoffset = 0.5,/inches 
device,xsize = 5,/inches 
device,ysize = 4,/inches 
loadct,39 
 
;**** System and simulation dimensions **** 
 
    a = 0.5  ; radius (m) 
    rmajor = 1.5    ;Major radius of MST 
 
    t_max = 10.0e-3  ;Max time (s) 
 
    dt = 1.0e-6       ;Time step (s)  (10-6 optimum) 
    dr = 1.0e-3        ;Radial grid resolution  (10-3 optimum) 
 
    nt = t_max/dt    ;Number of time steps in simulation 
    nr = a/dr   ;Number of radial positions 
 
    t = findgen(nt)*dt  ;Array for time values 
    r = (findgen(nr)+.5)*dr ;Array for radial values 
 
    nobeam = 0.0   ;set to 0 to have a beam 
    stepbeam = 0.0   ;set to 0 to have realistic beam shape 
    nodiffusion = 0.0 ;set to 0 to enable radial diffusion 
    noions = 0.0    ;set to 0 to have ions as well as electrons 
    noelectrons = 0.0   ;set to 0 to have electrons 
    k_loss = 0.0  ;set to 0 for no loss times, set to 1 for loss times. Either use this or the 
diffusion 
 
    plotprofiles = 1 
    n_profiles = 10     ;Number of radial profiles to plot. Split evenly among simulation 
time. 
 
 
;******************************************* 
 
;*** Physical constants (SI) 
ec = 1.6e-19    ;Electron charge 
m_p = 1.67e-27  ;Proton mass 
m_e = 9.1e-31   ;Electron mass 
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;*** Define plasma and beam constants *** 
 
;---- Diffusion coefficients 
d_m = 8e-4  ;m 
chi_e = make_array(nr,value = 400.0,/double)     ;m^2/s  400m^2/s (Ted)  10m^2/s PPCD 
chi_d = make_array(nr,value = 6.0,/double) 
 
;---- Beam parameters ---- 
z_b = 1.0     ;Beam ion charge 
mu_b = 1.0      ;beam ion mass / proton mass   2.0 for deuterium 
m_b = mu_b*m_p  ;Mass of beam ion 
 
beam_time = 1.5e-3   ;Beam on duration (s) 
beam_current = 20.0     ;Beam current (Amps) 
 
n_beamlets = 20.0   ;Number of small beam pulses that compose the entire injection 
period. 
 
 
alpha = 3.7379  ;D2 400ka 
;alpha = 3.59    ;H 200ka 
t_b0 = 2e4   ;Beam ion energy 
 
   ;Final beam axis density based on 30 amps of beam current for 1.5ms 
n_b0 = 3.168e17*beam_current/30.0*beam_time/1.5e-3  ;20kev 
;n_b0 = 3.168e17*beam_current/30.0*beam_time/1.5e-3*.53/.80  ;50kev 
 
 
n_b = n_b0*exp(-(2.0*r/a*alpha)^2) 
num_fi = int_tabulated(r,2.0*!pi*1.5*2*!pi*r*n_b) 
 
; We don't need (and maybe shouldn't have) fast ions in the mid to outer radii so 
;set those to zero.  Also this helps prevent the low plasma edge temperatures from 
;thermalizing the fast ions and invalidating the model. 
res = where(n_b le .01*n_b0) 
cutoff = res[0] 
 
if stepbeam eq 1 then n_b = make_array(nr,value = n_b0) 
 
 
w_b = t_b0*n_b 
t_b = w_b/n_b 
 
tau_b = 20e-3   ;Fast ion confinement time in seconds 
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;---- Electrons ---- 
z_e = 1.0      ;Electron z (duh) 
mu_e = 1.0       ;Electron mass to electron mass (mega-duh, but these keeps the notation 
consistent) 
m_e = mu_e*m_e 
 
t_e0 = 400.0       ;Axis electron temperature (eV) 
n_e0 = 1.0e19     ;Axis electron density (m^-3) 
 
n_e = n_e0*(1.0-(r/a)^2)    ;Electron density profile 
t_e = t_e0*(1.0-(r/a)^2)    ;Electron temperature profile 
w_e = 1.5*t_e*n_e      ;Value of Electron energy density 
 
tau_e = .001    ; Electron energy loss time (not used in diffusion model) 
 
;------------------- 
 
;---- Ions (see electrons above for description of parameters) ---- 
z_d = 1.0 
mu_d = 2.0 
m_d = mu_d*m_p 
 
t_d0 = 200.0 
n_d0 = 1.0e19 
 
n_d = n_d0*(1.0-(r/a)^2) 
t_d = t_d0*(1.0-(r/a)^2) 
 
w_d = 1.5*t_d*n_d 
 
tau_d = .001 
;------------------- 
 
;- Other constants - 
lambda_be = 15.0 
lambda_bd = 15.0 
lambda_de = 15.0 
;------------------- 
 
;********************************************** 
; 
; Preliminary calculations 
; 
;********************************************** 
 
;Differential volume elements (each radius is a toroidal shell) 
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;Used for neutron flux calculation 
d_volume = r*0.0 
for i = 0, nr-1 do begin 
    if i eq 0 then d_volume[i] = 2.0*!pi^2*rmajor*r[0]^2 
    if i gt 0 then d_volume[i] = 2.0*!pi^2*rmajor*(r[i]^2 - r[i-1]^2) 
endfor 
 
total_neutron_flux = make_array(nt,value = 0.0,/double) 
thermal_neutron_flux = make_array(nt,value = 0.0,/double) 
 
 
;**** Initial profiles (used to find steady state heat sources) **** 
 
 
n_b_initial = n_b 
w_b_initial = w_b 
t_b_initial = w_b/n_b   ;The beam doesn't have a 'Temperature'. This refers to the mean 
energy. 
 
w_e_initial = w_e 
w_d_initial = w_d 
 
;********************************* 
 
 
;***** Time arrays for data ***** 
beam_str = {t_b:dblarr(nr),n_b:dblarr(nr)} 
beam = replicate(beam_str,nt+1) 
 
electrons_str = {t_e:dblarr(nr),n_e:dblarr(nr)} 
electrons = replicate(electrons_str,nt+1) 
 
deuterium_str = {t_d:dblarr(nr),n_d:dblarr(nr)} 
deuterium = replicate(deuterium_str,nt+1) 
 
neutrons_str = {n:dblarr(nr)} 
neutrons = replicate(neutrons_str,nt+1) 
 
;********************************** 
 
;*** Structures to hold current beamlet information 
beamlet_str = {t_b:t_b,n_b:n_b/n_beamlets,w_b:w_b/n_beamlets} 
beamlet = replicate(beamlet_str,n_beamlets) 
 
;******************************** 
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    ;Initial conditions 
    beam[0].t_b = t_b 
    beam[0].n_b = n_b 
    electrons[0].t_e = t_e 
    electrons[0].n_e = n_e 
    deuterium[0].t_d = t_d 
    deuterium[0].n_d = n_d 
 
 
    if plotprofiles eq 1 then begin 
        plot,r,t_b,title ='Temperature profiles (eV)',yr = [0,6e2],/nodata 
        oplot,r,t_b,color = 0,thick = 2 
        oplot,r,t_e,color = 54,thick = 2 
        oplot,r,t_d,color = 150,thick = 2 
    endif 
 
    t_e_axis = dblarr(nt) 
    t_e_axis[0] = w_e[0]/n_e[0]/1.5 
 
    ; Define or reset diffusion arrays 
    s_e_diffusion = r*0.0 
    s_d_diffusion = r*0.0 
 
 
    w_b_axis = make_array(nt) 
    t_d_axis = make_array(nt) 
 
    ;Arrays to hold contributions to the energy profile, used to diagnose. 
    s0 = make_array(nt) 
    s1 = s0 
    s2 = s0 
    s3 = s0 
    s4 = s0 
    s5 = s0 
 
 
;************************************************* 
; 
;   Beginning of time loop:  index = k 
; 
;------------------------------------- 
; 
;   Important note: We start at t=0, but we assume that the first beamlet is alread in 
;the plasma.  If we started at t=0 with no beam and evolved the profiles, there would 
;be no change anyway because the steady-state terms would prevent it.  This saves one 
step, 
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;but also allows the use of the beam equations without having to build in an extra check 
;just for t=0. 
; 
;************************************************* 
    for k = 0l,nt -1 do begin 
    if ((k*dt mod 1e-3) eq 0) then print,string(k*dt*1e3)+'ms' 
 
    if nodiffusion eq 1 then goto,skipdiffusion 
 
    ;  Calculate the advancement of the electron and ion energy profiles due to radial 
    ;diffusion. 
    ;  Sol_w_X is the advanced solution, which is stored for later use, but also for t=0 
    ;is used to find the steady-state source term for this mechanism. 
    sol_w_e = diffuse_profile(r,t_e,chi_e,dt,dr)*n_e*1.5 
    sol_w_d = diffuse_profile(r,t_d,chi_d,dt,dr)*n_d*1.5 
 
 
    ;Calculate steady state heat terms to cancel diffusion 
    if k eq 0 then begin 
 
       print,'steady state heat found' 
       ; If it was allowed to diffuse away, what would it look like after 1 time step? 
 
 
       oplot,r,sol_w_e/n_e/1.5,color = 54,line = 4  ;electrons 
       oplot,r,sol_w_d/n_d/1.5,color = 153,line = 4 ;Deuterium 
 
       ;steady state diffusion source term 
        s_e_diffusion = w_e_initial - sol_w_e 
        s_d_diffusion = w_d_initial - sol_w_d 
 
    endif 
 
    skipdiffusion: 
 
 
    ;Initialize and reset arrays for the energy transfer from beamlets to electrons and ions 
    d_w_e_beamlets = dblarr(nr)*0.0 
    d_w_d_beamlets = dblarr(nr)*0.0 
 
    ;Calculate the number of beamlets currently being evolved. 
    current_beamlets = fix(t[k]/beam_time*n_beamlets)+1.0 
 
    ;If past the beam-on time, do not add anymore beamlets 
    if current_beamlets ge n_beamlets then current_beamlets = n_beamlets 
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    flux = 0.0 ;Initialize the value of the neutron flux for this timestep. 
 
    ;--------------------------------- 
    ;  Beamlet loop.  index: j 
    ;  ------------------ 
    ;  Each beamlet will have a different energy. This evolves the energy transfer from 
each 
    ;beamlet to the background plasma. 
    ;--------------------------------- 
    for j = 0,current_beamlets-1 do begin 
        d_w_b = dblarr(nr)*0.0 ;Initialize the change in the beamlets energy 
 
    ;Load the information for the current beamlet into convienient variable names. 
    w_b = beamlet[j].w_b 
    n_b = beamlet[j].n_b 
    t_b = beamlet[j].t_b 
 
    ;Calculate velocities 
    v_b = sqrt(2.0*t_b*ec/m_b) 
    v_e = sqrt(2.0*t_e*ec/m_e) 
    v_d = sqrt(2.0*t_d*ec/m_d) 
 
    t_e = w_e/n_e/1.5 
    t_d = w_d/n_e/1.5 
 
    ;Beam loss to electrons 
    nu_b_e = nu_e(m_b,m_e,v_b,t_e,z_b,z_e,lambda_be,n_e) 
    d_w_b_e = -nu_b_e*w_b*dt 
 
    if nobeam eq 1 then d_w_b_e[*] = 0.0 
    if noelectrons eq 1 then d_w_b_e[*] = 0.0 
 
 
    ;Beam loss to deuterium 
    nu_b_d = nu_e(m_b,m_d,v_b,t_d,z_b,z_d,lambda_bd,n_d) 
    d_w_b_d = -nu_b_d*w_b*dt 
 
    ;Apply radial cutoff for fast ions 
    ;Set values outside the cutoff to zero.  This automatically sets the beam energy 
    ;loss at these points to zero. 
    d_w_b_e[cutoff:*] = 0.0 
    d_w_b_d[cutoff:*] = 0.0 
 
    ;We don't want to evolve the beam energy below 15*Te.  This would require a kinetic 
    ;description, and also ion collision frequencies blow up as energy gets very small. 
    count = 0.0 
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    res = where(t_b le 15.0*t_e,count) 
    if count gt 0 then begin 
       ;print,'Fast ion approaching thermal, simulation halted' 
       d_w_b_e[res] = 0.0 
       d_w_b_d[res] = 0.0 
       ;stop 
    endif 
 
    ;------------------------------------------------ 
    ; Checks for keys that will turn off certain effects of beamlets, electrons or ions. 
    ;------------------------------------------------ 
    if nobeam eq 1 then d_w_b_d[*] = 0.0 
    if noions eq 1 then d_w_b_d[*] = 0.0 
 
 
    if nobeam eq 1 then d_w_b_d[*] = 0.0d 
    if nobeam eq 1 then d_w_b_e[*] = 0.0d 
 
 
    if noions eq 1 then d_w_b_d[*] = 0.0d 
    if noions eq 1 then d_w_e_d[*] = 0.0d 
 
 
    if noelectrons eq 1 then d_w_b_e[*] = 0.0d 
    if noelectrons eq 1 then d_w_e_d[*] = 0.0d 
 
    ;The change in the energy density of the beamlet 
    d_w_b = d_w_b_e + d_w_b_d 
 
    ;Advance beamlets energy density. 
    beamlet[j].w_b += d_w_b 
 
 
    ; Checks for the integrity of the run.  If an unphysical result is being 
    ;advanced this will stop the code. 
    count = 0.0 
    res = where(beamlet[j].w_b le 0.0,count) 
    if count gt 0 then stop 
 
    res = where(nu_b_e le 0.0,count) 
    if count gt 0 then stop 
 
    res = where(nu_b_d le 0.0,count) 
    if count gt 0 then stop 
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    d_w_e_beamlets += -d_w_b_e ;Energy to electrons from beamlets 
    d_w_d_beamlets += -d_w_b_d  ;Energy to ions from beamlets 
 
    ; handle loss of beamlet particles 
    beamlet[j].n_b -= beamlet[j].n_b/tau_b*dt 
    beamlet[j].w_b -= beamlet[j].w_b/tau_b*dt 
 
    ;Note: this recovers the beam 'energy', since it has no 'temperature' 
    beamlet[j].t_b = beamlet[j].w_b/beamlet[j].n_b 
 
    ;Build up the on-axis value for the beams energy density 
    w_b_axis[k] += beamlet[j].w_b[0] 
 
    flux += neutron_flux(beamlet[j].n_b,beamlet[j].t_b,m_b,n_d,d_volume) 
    endfor ;j loop (beamlet loop) 
 
    total_neutron_flux[k] = flux 
 
    ;Electron and ion energy transfer. The change in the electrons energy density is 
transfered to the 
    ;ions. 
 
    nu_e_d = 1.8e-19*sqrt(m_e*1e3)*z_e^2*z_d^2*(n_d*1e-
6)*lambda_de*sqrt(m_d*1e3)/((m_e*1e3)*(t_d) + (m_d*1e3)*(t_e))^1.5 
    d_w_e_d = 2.0*nu_e_d*(t_d - t_e)*n_e*dt 
 
    ;----------------------------------------- 
    ; Check for additional keys that eliminate energy transfers. 
    ;----------------------------------------- 
    if noions eq 1 then d_w_e_d[*] = 0.0 
    if noelectrons eq 1 then d_w_e_d[*] = 0.0 
 
 
;Diagnostics 
goto,skipshit 
    print,'beam terms' 
    print,'dwbe',d_w_b_e[0] 
    print,'dwbd',d_w_b_d[0] 
    ;print,'dweb',d_w_e_b[0] 
    ;print,'dwdb',d_w_d_b[0] 
    ;print,'beam total',d_w_b_e[0]+d_w_b_d[0]-d_w_e_b[0]-d_w_d_b[0] 
    print,'' 
    print,'electron terms' 
    ;print,'dweb',d_w_e_b[0] 
    print,'dwed',d_w_e_d[0] 
    ;print,'dwbe',d_w_b_e[0] 
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    ;print,'dwde',d_w_d_e[0] 
    ;print,'beam total',d_w_e_b[0]+d_w_e_d[0]-d_w_b_e[0]-d_w_d_e[0] 
    print,'' 
;    print,ggg 
skipshit: 
 
 
    ; Assigns the steady state heat source for electrons and deuterium 
    if k eq 0 then begin 
       s_e = -d_w_e_d + 1.0/tau_e*w_e*dt*k_loss 
       s_d = d_w_e_d + 1.0/tau_d*w_d*dt*k_loss 
    endif 
 
 
    ;Energy transfer change to electrons 
    ;  k_loss enables a constant loss rate instead of diffusion. 
    d_w_e = d_w_e_beamlets + d_w_e_d + s_e - 1.0/tau_e*w_e*dt*k_loss 
    if noelectrons eq 1 then d_w_e[*] = 0.0 
 
    ; Source terms for diagnostic purposes. 
    s0[k] = d_w_e_beamlets[0]/n_e[0]/1.5 
    s1[k] = d_w_e_d[0]/n_e[0]/1.5 
    s2[k] = s_e[0]/n_e[0]/1.5 
    if nodiffusion eq 0 then s3[k] = s_e_diffusion[0]/n_e[0]/1.5 
    if nodiffusion eq 0 then s4[k] = (sol_w_e[0]-w_e[0])/n_e[0]/1.5 
    s5[k] = 1.0/tau_e*w_e[0]*dt*k_loss/n_e[0]/1.5 
 
 
    ;Energy transfer change to deuterium 
    d_w_d = d_w_d_beamlets - d_w_e_d + s_d - 1.0/tau_d*w_d*dt*k_loss 
    if noions eq 1 then d_w_d[*] = 0.0 
 
;************************************************** 
; 
; Apply calculated changes (source + diffusion + transfer) to profiles 
; 
;************************************************** 
 
 
    ; Adjust electron profile 
    if nodiffusion eq 1.0 then w_e = w_e + d_w_e 
    if nodiffusion eq 0.0 then w_e = sol_w_e + d_w_e + s_e_diffusion 
 
    ; Adjust deuterium profile 
    if nodiffusion eq 1.0 then w_d = w_d + d_w_d 
    if nodiffusion eq 0.0 then w_d = sol_w_d + d_w_d + s_d_diffusion 
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    ; Calculate temperatures based on new profiles 
    t_e = w_e/n_e/1.5 
    t_d = w_d/n_d/1.5 
 
    ;Store present profiles in structures. 
    if k lt nt-1 then begin 
        electrons[k+1].t_e = t_e 
        electrons[k+1].n_e = n_e 
        deuterium[k+1].t_d = t_d 
        deuterium[k+1].n_d = n_d 
    endif 
 
 
    ;Plotting routines 
    inds = fix(findgen(n_profiles)/(n_profiles-1.0)*n_elements(t)) 
    inds[n_profiles-1] = nt-1 
       res = where(k eq inds,count) 
       ;print,inds,k 
       ;print,res,count 
       ;print,jlkj 
 
    if ((count gt 0) and (plotprofiles eq 1)) then begin 
 
        oplot,r,t_e,color = 50 
        oplot,r,t_d,color = 150 
 
        t_bb = t_b*0.0 
        for i = 0,current_beamlets-1 do begin 
           t_bb += beamlet[i].t_b/current_beamlets 
        endfor 
 
       mycolor = 0  ;Black for beam traces when beam is on, red if beam is off 
        if t[k] gt beam_time then mycolor = 254 
 
        oplot,r,t_bb/100.0,color = mycolor 
;print,'printed' 
    endif 
 
    ;Diagnostics 
    goto,skip_diag 
    if k eq 0 then plot,r,nu_e_b,yr = [-20,200],/nodata,title = 'collision frequencies (red = 
beam,blue = e-,green = d+) 
    oplot,r,nu_b_e,color = 254 
    oplot,r,nu_b_d,color = 254,line = 3 
    oplot,r,nu_e_b,color = 50 
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    oplot,r,nu_e_d,color = 50,line = 3 
    oplot,r,nu_d_b,color = 150 
    oplot,r,nu_d_e,color = 150,line = 3 
 
 
    ;skip_diag: 
    print,'Axis colision frequencies,energy transfer rates' 
    print,'nu_b_e',nu_b_e[0],d_w_b_e[0] 
    print,'nu_b_d',nu_b_d[0],d_w_b_d[0] 
    ;print,'nu_e_b',nu_e_b[0],d_w_e_b[0] 
    print,'nu_e_d',nu_e_d[0],d_w_e_d[0] 
    ;print,'nu_d_b',nu_d_b[0],d_w_d_b[0] 
    ;print,'nu_d_e',nu_d_e[0],d_w_d_e[0] 
    print,'**************************' 
    print,ggg 
    skip_diag: 
 
    ;Save axis values for plotting 
    t_e_axis[k] = t_e[0] 
    t_d_axis[k] = t_d[0] 
 
    endfor  ;of time loop k 
 
    ;******************************************** 
    ; 
    ; Output and plotting routines 
    ; 
    ;******************************************** 
 
    plot,t,w_b_axis,title = 'Axis beam ion energy density' 
 
    print,'Te,Td,Eb (r=0) final=',t_e[0],t_d[0],t_b[0] 
    print,'Axis diffusion coefficients (e-,d+):',chi_e[0],chi_d[0] 
 
    t_max = max(t_e_axis) 
    ind = where(t_e_axis eq max(t_e_axis)) 
    inde = ind 
    time_max = dt*ind[0] 
    mytitle = 'Max Te(r=0) = '+string(t_max)+ '  at t='+string(time_max) 
    mytitle = '' 
    myr = [min(t_e_axis),(max(t_e_axis)-min(t_e_axis))*1.1 + min(t_e_axis)] 
    plot,t*1e3,t_e_axis,title = mytitle,xtitle = 'Time (ms)',ytitle = 'T!Le!N(r=0) eV',yr = 
myr,ystyle = 1,/nodata,charsize = 1.3 
    oplot,t*1e3,t_e_axis,thick = 2,color = 254 
 
    t_max = max(t_d_axis) 
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    ind = where(t_d_axis eq max(t_d_axis)) 
    indd = ind 
    time_max = dt*ind[0] 
    mytitle = 'Max Td(r=0) = '+string(max(t_d_axis))+ '  at t='+string(time_max) 
    mytitle = '' 
    myr = [min(t_d_axis),(max(t_d_axis)-min(t_d_axis))*1.1 + min(t_d_axis)] 
    plot,t*1e3,t_d_axis,title = mytitle,xtitle = 'Time (ms)',ytitle = 'T!Ld!N(r=0) eV',yr = 
myr,ystyle = 1,/nodata,charsize = 1.3 
    oplot,t*1e3,t_d_axis,thick = 2,color = 54 
 
 
    ;plot,t,t_e_axis,ytitle = 'Axis Temperature (eV)',xtitle = 'Time(ms)',sub = 'Electrons 
(red), Ions (blue)',thick = 2, charsize = 1.1,/nodata 
    ;oplot,t,t_d_axis,color = 54 
 
 
    plot,r,electrons[inde].t_e-electrons[0].t_e,title = 'delta t_e (where t_e(r=0) is 
max)',xtitle = 'r(m)' 
    plot,r,deuterium[indd].t_d-deuterium[0].t_d,title = 'delta t_d (where t_d(r=0) is 
max)',xtitle = 'r(m)' 
 
    print,'radial cutoff=',r[cutoff] 
 
    goto,skip_temps 
    plot,r,beam[0].t_b, title = 'temps',/nodata,/ylog,yrange = [50,2.5e4],ystyle = 1 
    oplot,r,beam[0].t_b,color = 254 
    oplot,r,electrons[0].t_e,color = 50 
    oplot,r,deuterium[0].t_d,color = 150 
    for i = 0,nt-1 do begin 
       oplot,r,beam[i].t_b,color = 254 
        oplot,r,electrons[i].t_e,color = 50 
        oplot,r,deuterium[i].t_d,color = 150 
        print,i,beam[i].t_b[0] 
    endfor 
    skip_temps: 
 
    goto,skip_density 
    plot,r,beam[0].n_b, title = 'density',/nodata,/ylog,yr = [1e15,1e20],ystyle = 1 
    oplot,r,beam[0].n_b,color = 254 
    oplot,r,electrons[0].n_e,color = 50 
    oplot,r,deuterium[0].n_d,color = 150 
    for i = 0,nt-1 do begin 
        oplot,r,beam[i].n_b,color = 254 
        oplot,r,electrons[i].n_e,color = 50 
        oplot,r,deuterium[i].n_d,color = 150 
    endfor 
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    skip_density: 
 
 
    for i = 0l,nt-1 do begin 
 
 
       sigma_v = 2.33e-14/(deuterium[i].t_d/1e3)^(.66)*exp(-
18.76/(deuterium[i].t_d/1e3)^(.33))*1e-6  ;m^3/s 
 
       dd_rate = 0.5*sigma_v*(deuterium[i].n_d)^2*d_volume 
       dd_total = total(dd_rate) 
       thermal_neutron_flux[i] = dd_total 
 
    endfor 
 
    plot,t,thermal_neutron_flux,xtitle = 'Time (s)',title = 'Thermal neutron flux per second' 
 
    plot,t,total_neutron_flux,xtitle = 'Time (s)',title = 'Total neutron flux per second' 
 
    plot,t,s0,title = 'dTe from beamlets s0',xtitle = 'Time (s)' 
    plot,t,s1,title = 'dTe from ions s1',xtitle = 'Time (s)' 
    plot,t,s2,title = 'dTe thermal source s2',xtitle = 'Time (s)' 
    if nodiffusion eq 0 then plot,t,s3,title = 'dTe diffusion source s3',xtitle = 'Time (s)' 
    if nodiffusion eq 0 then plot,t,s4,title = 'dTefrom diffusion s4',xtitle = 'Time (s)' 
    if k_loss eq 1 then plot,t,s5,title = 'dTe from losses s5 (not used if diffusion 
present)',xtitle = 'Time (s)' 
    plot,t,s0+s1+s2+s3+s4-s5,title = 'dTe sum',xtitle = 'Time (s)' 
 
 
    myend: 
    device,/close 
end 
 
 
 
;************************************** 
; 
; Function get_x 
; 
; --------------------- 
; 
; Purpose: 
;Compute the value of 'x' used in NRL p. 32 
; 
; Inputs: 
;m_beta - mass of background particles (grams) 
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;v_alpha - velocity of test particle (cm/s) 
;t_beta - temperature of background particles (eV) 
;************************************** 
function get_x,m_beta,v_alpha,t_beta 
 
    return,m_beta*v_alpha^2/(2.0*1.6e-12*t_beta) 
 
end 
 
 
;************************************** 
; 
; Function get_psi 
; 
; --------------------- 
; 
; Purpose: 
;Compute the value of 'psi' used in NRL p. 32 
; 
; Inputs: 
;x - return value from function get_x 
;************************************** 
function get_psi,x 
 
    psi = dblarr(n_elements(x)) 
    for i = 0,n_elements(x)-1 do begin 
        if x[i] ge 10.0 then psi[i] = 1.0 else $ 
           psi[i] = -2.0/sqrt(!pi)*sqrt(x[i])*exp(-x[i]) + Errorf(sqrt(x[i])) 
    endfor 
 
    return,psi 
end 
 
;************************************** 
; 
; Function get_dpsi 
; 
; --------------------- 
; 
; Purpose: 
;Compute the value of dpsi/dx used in NRL p. 32 
; 
; Inputs: 
;x - return value from function get_x 
;************************************** 
function get_dpsi,x 
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    dpsi = dblarr(n_elements(x)) 
    for i = 0,n_elements(x)-1 do begin 
        if x[i] ge 10.0 then dpsi[i] = 0.0 else $ 
            dpsi[i] = 2.0/sqrt(!pi)*exp(-x[i])*sqrt(x[i]) 
    endfor 
 
    return,dpsi 
end 
 
 
;************************************** 
; 
; Function nu_e 
; 
; --------------------- 
; 
; Purpose: 
;Compute the energy loss frequency for a test particle. 
;From NRL p. 32 
; 
; Inputs: 
;m_alpha_in - mass of test particle (kg) 
;m_beta_in - mass of field particle (kg) 
;v_alpha_in - velocity of test particle (m/s) 
;t_beta_in - temperature of field particles (eV) 
;z_alpha_in - charge of test particle (in units of e) 
;z_beta_in - charge of field particle (in units of e) 
;lambda_ab_in - lambda of the field and test particles 
;n_beta_in - density of the field particles (m^-3) 
; 
;Most of the program is done in SI units, but the formulas 
;for NRL are in CGS, so it is easier to used converted values 
;to plug into the formulas directly. 
; 
;IDL is 'pass by value' so the values sent to the function remain 
;unchanged; they don't need to be converted back to SI. 
;************************************** 
function 
nu_e,m_alpha_in,m_beta_in,v_alpha_in,t_beta_in,z_alpha_in,z_beta_in,lambda_ab_in,n_
beta_in 
 
    ; Convert to CGS 
    m_alpha = m_alpha_in*1e3 
    m_beta = m_beta_in*1e3 
    v_alpha = v_alpha_in*1e2 
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    z_alpha = z_alpha_in 
    z_beta = z_beta_in 
    lambda_ab = lambda_ab_in 
    n_beta = n_beta_in/1e6 
    m_p_cgs = 1.67e-24 
    a_alpha = m_alpha/m_p_cgs 
 
    ec_cgs = 4.8032e-10     ;Electron charge in cgs units 
 
    f = ec_cgs/m_p_cgs 
 
    ;nu0_old = 4.0*!pi*z_alpha^2*z_beta^2*lambda_ab*n_beta/((m_alpha*v_alpha)^2 * 
v_alpha)*ec_cgs^4 
 
nu0 = 4.0*!pi*z_alpha^2*z_beta^2*lambda_ab*n_beta/((a_alpha*v_alpha)^2 * 
v_alpha)*ec_cgs^2*f^2 
;print,a_alpha 
;print,nu0_old 
;print,nu0 
;print,ggg 
    t_beta = t_beta_in 
 
    x = get_x(m_beta,v_alpha,t_beta) 
 
    psi = get_psi(x) 
    dpsi = get_dpsi(x) 
 
    nue = 2.0*(m_alpha/m_beta*psi - dpsi)*nu0 
 
if finite(nue[0]) eq 0 then begin 
print,'malpha',m_alpha 
print,'mbeta',m_beta 
print,'valpha',v_alpha[0] 
;print,'vbeta',v_beta[0] 
print,'zalpha',z_alpha 
print,'zbeta',z_beta 
print,'lambda',lambda_ab[0] 
print,'nbeta',n_beta[0] 
print,'tbeta',t_beta[0] 
print,'nu0',nu0[0] 
print,'x',x[0] 
print,'psi',psi[0] 
print,'dpsi',dpsi[0] 
print,'nue',nue[0] 
 
print,ggg 
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endif 
 
    return,nue 
end 
 
;************************************** 
; 
; Function neutron_flux 
; 
; --------------------- 
; 
; Purpose: 
;Compute the total neutron flux from D-D reactions of 
;fast ions with the background plasma from the vessel. 
; 
; Inputs: 
;n_fast - fast ion density (m^-3) 
;e_fast - energy of fast ion (eV) 
;m_fast - fast ion mass (kg) 
;n_plasma_ions - density of plasma ions in d_vol 
;d_vol - the volume sent to the function (m^-3), typically a differential shell 
; 
;************************************** 
function neutron_flux,n_fast,e_fast,m_fast,n_plasma_ions,d_vol 
 
    ; Constants 
    a1 = 47.88 
    a2 = 482.0 
    a3 = 3.08e-4 
    a4 = 1.177 
    a5 = 0.0 
 
    ;Electron charge (just so it doesn't have to be passed) 
    ec = 1.67e-19 
    energy = e_fast 
 
    velocity = sqrt(2.0*energy*ec/m_fast) 
 
 
    ;Cross section in m^2 
    sigma = (a5 + ((a4 - a3*(energy/1e3))^2 + 1.0)^(-1.0) * 
a2)/((energy/1e3)*(exp(a1*(energy/1e3)^(-0.5)) - 1.0)) * 1e-28 
 
    dd_rate = 0.5*sigma*velocity*n_fast*n_plasma_ions*d_vol 
    dd_total = total(dd_rate) 
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    return,dd_total 
end 
 
 
;******************* 
;diffuse_profile 
; 
;Purpose: given a 1-D profile this uses the Crank-Nickolsen method 
;to advance the solution to the radial diffusion equation: 
;du/dt = D(1/r*du/dr + d2u/dr2) 
; 
;The heat equation can be written in finite elements as: 
;  Ax = b 
; 
;where the LHS is the time-step n+1 and the RHS is time-step n (or the current step). 
;A is tridiagonal and consists of points in space around point i (i-1,i,i+1). 
; 
;Special care is required for the origin where the BC is that du/dr = 0 
; 
;Refer to hudson thesis for full documentation and derivation of the finite 
;element representation. 
; 
;inputs: 
;   r     -- radial array variable 
;   u     -- profile 
;   d     -- diffusion coefficient 
;   dt    -- time step 
;   dr    -- radial step 
;************************** 
function diffuse_profile,r,u,d,dt,dr 
 
nr = n_elements(r) 
rhs = make_array(nr)    ;Right hand side of matrix equation 
 
 
alpha = d*dt/dr^2 
 
 
sub = make_array(nr) 
main = make_array(nr) 
super = make_array(nr) 
 
for j = 0,nr-1 do begin 
    sub[j] = (-alpha[j]/2.0 + alpha[j]/4.0*dr/r[j])  
 
    main[j] = (1.0 + alpha[j]) 
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    super[j] = (-alpha[j]/2.0 - alpha[j]/4.0*dr/r[j]) 
 
endfor 
 
 
;Advance the solution one time-step 
    for i = 1, nr - 2 do begin 
 
       rhs[i] = (alpha[i]/2.0 - alpha[i]*dr/4.0/r[i])*u[i-1] + $ 
           (1.0 - alpha[i])* u[i] + $ 
           (alpha[i]/2.0 + alpha[i]*dr/4.0/r[i])*u[i+1]  ;original 
    endfor 
 
    ;Boundary condition that the profiles are zero at the final radius point 
    ;not strictly correct.  Needs to be made generalized. 
    rhs[nr-1] = 0.0 
 
 
    ;The boundary condition that the derivative of the profile is zero 
    ;at r=0 can be written as: 
    rhs[0] = (1.0 - alpha[0])*u[0] + alpha[0]*u[1]    ;Origin point 
 
    ;Coefficients for the initial conditions 
    super[0] = -alpha[0] 
    main[0] = (1.0 + alpha[0]) 
 
    u = trisol(sub,main,super,rhs) 
 
 
return,u 
 
end 
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Appendix D  A Users Guide To MAL / RIO 
 

 The FORTRAN code MAL (MAgnetic Lines) and RIO (Random Ion Orbits) was 

written in 2002 by Yuri Tsidulko at the Budker Institute of Nuclear Physics.  It’s purpose 

is to be able to track particles in the stochastic magnetic field of MST in order to 

determine the magnetic confinement properties of neutral beam injected ions.  The code 

makes use of the output of the DEBS MHD code, which provides the magnetic 

perturbation eigenmodes in a periodic cylinder.  We will go through the steps done in 

setting up MAL for use in tracing the magnetic field lines and then expand into RIO 

which one can consider an enhancement of the basic MAL code. 

 The DEBS modes are given in a 3-D k-space array, which is then FFT’d to 

become an array in periodic cylindrical coordinates (r, ! , z).  Once this is done, in order 

to have an analytical expression for the equations of the magnetic field lines, a 

polynomial fit is done (16 term Chebyshev fit for the perturbation modes).  The 

equilibrium field is also fit the same way (typically 9 terms).   

 The code that does the expansion and fitting is called ‘fex.exe’.  The file 

‘fexin.fex’ is a text file that specifies the fitting parameters (terms in Chebyshev 

polynomial, how many perturbation modes to include, etc.)  There is also a file 

‘config.fex’ that is used to specify filenames for the DEBS data, typically ‘bzmean.dat’, 

‘btmean.dat’, ‘brturb.dat’, ‘btturb.dat’, ‘bzturb.dat’, as well as the output filenames for 

the fex code itself.  When ‘fex.exe’ is run, it generates a file; typically named ‘fex64.fex’ 

(fex = Fourier EXpansion) that contains the polynomial fits to the DEBS data. 

 The next step is to go to the MAL code.  Here we begin by editing ‘config.mal’ 

which is another text file that specifies which ‘.fex’ file to use, this would be the 
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‘fex64.fex’ file.  It also specifies filenames for the output of the MAL code.  MAL can 

generate the following files: 

mal_##.rep  (A report file that contains final values of the field line tracing) 

mal_##_**.res  (An output file with the actual data from the field line tracing) 

The ## specifies a run number, typically 01, 02, etc.. and the ** specifies the mapping of 

the field line data desired.  These will be explained in more detail in the following 

section.  The code below is an actual config file, which is identical for both MAL and 

RIO.  The code itself is in bold, with comments in normal text. 

 

$$$$$$$$$$$$$$$$$$ Description of CONFIG.***  $$$$$$$$$$$$$$$$$$$$$$$$ 
       Program ***.   Version 4.02 
  BACKSPASE for addit. write: 1            Position of rewrite index  ! 
 Value of the rewrite index is important for output files only. 
 Rewrite index = 0 means open output file as "NEW", 
   in VMS it results increasing file version number. 
 Rewrite index = 1 means open output file as "UNKNOWN", 
   in VMS it results overwriting the existent file. 
 
Field_modes:  mean and perturbation modes expansion:  field64.fex     0 
 
Map##_in:  input parameters for prog. RIO     :rio##in.rio            0 
Map##_rep: report                             :rio##.rep              1 
Map##_***: output results for sections        :rio##***.res           1 
 ## means automatically generated number from 01 to 99 
*** means automatically suffix: Tim, The, Rad, Phi, ThP, RaP, PhP. 
 They can be indicated explicitly, for example: 
Map01_in:  input parameters for prog. RIO    :rioAAin.rio             0 
Map01_rep: report                            :rioAA.rep               1 
Map01_The: output results for theta sections :rio_The.res             1 
Map01_Phi: output results for phi sections   :rio_Phi.res             1 
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 The main file to edit is the input file, ‘mal_in.mal’.  The best way to explain how 

to make use of the code is to go through the input file line by line and notate what each 

line does.  So as to be as clear as possible, the text of the actual file will be in bold. 

      Programm MAL.   Version 4.02 
This is first position for value of parameter =>! 
 
Nfil: number of input files                    = 1.000000000000000D+000 

   Number of input files to use in run. 
If multiple runs are desired, an input file must be made for each.  
This parameter must be set to the number of input files in each input 
file. 
 
K_def_rep: key for report default parameters   = 1.000000000000000D+000 
   If set to 0, some parameters will not be shown in the .rep file. 
Excludes some values from the final report. 
 
****************** Geometry and magnetic field parameters ***** 
Ktor: geometry key                             = 0.000000000000000D+000 
   KTOR=0 means cylindrical, KTOR=1 means toroidal 
K_geom:  key for use "fex" geometry parameters = 0.000000000000000D+000 
   0 = Use Ktor, Rad_a, Rad_R, Shaf_shift from this file 
   1 = use default parameters 
 
eps:  perturbation factor(epsilon)             = 0.000000000000000D-001 
   Coefficient which multiplies the radial field.  Can be replaced with 
   gauge values below 

This factor multiplies the DEBS eigenmodes by a specific number.  If the modes were 
pre-scaled to the desired absolute values, it could be used as an overall amplification 
factor. 

Rad_a: minor radius a [cm]                     = 5.200000000000000D+001 
Rad_R: major radius R [cm]                     = 1.500000000000000D+002 
Shaf_shift: Shafranov shift [cm]               = 0.000000000000000D+000 

The Shafranov shift assumes a shifted circle model.  The Grad-Shafranov equation is not 
actually solved as there is no plasma pressure in this code. 

Time_s: time when field is calculated [s]      = 1.000000000000000D-003 

This parameter doesn’t do anything. It is here to specify a start time in the event that the 
code eventually includes time-varying fields. 

 
================ Gauge magnetic field ==================== 
K_dim_ga: key what component should be gauged  = 1.000000000000000D+000 
 K_dim_ga < 1 means no renormalization 
        K_dim_ga = 1,2,3 means B_the,rad,phi 
        K_dim_ga > 3 means |B| 
The gauge key specifies what component of the magnetic field to use to 
specify the actual value of the field magnitude.  We typically scale it 
to the poloidal magnetic field as that defines a plasma current. 
Gauge_Tim: time of gauge                       = 0.000000000000000D+000 
Gauge_The: theta/pi position of gauge point    = 0.000000000000000D+000 
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Gauge_Rad: radial position/a of gauge point    = 1.000000000000000D+000 
Gauge_Phi: phi/pi position of gauge point      = 0.000000000000000D+000 

These specify the location of the gauge point.  We typically use the wall value. 

 
B_The_ga_mean: mean B_the [G] at gauge point   = 1.503000000000000D+003 

The value in Gauss of the field at the gauge point.  It scales both the poloidal and toroidal 
fields accordingly. 

;K_All_pert_ga: Component to gauge pert. fields= 3.000000000000000D+000 

This key can be used to scale the perturbation fields to a given component. We don’t use 
this because we scale the m = 0 and m = 1 modes to different components. 

**************** Parameters for map sections definition *************** 

Here we define where to record the field line position.  It can be done at a given poloidal 
angle (this is what we use for a typical puncture plot, to get an r-z) or less commonly a 
toroidal angle or radial value. 

A length mapping records the position at a given length along a field lines trajectory.  
This can be useful for seeing how a field line diffuses. 

Len_sect:  step for length/a map               = 5.000000000000000D+006 

Length at which the coordinate of the field line is recorded.  This is ALWAYS calculated 
so if it isn't desired, set it to a large value. 

Max_Len_step: max intermediate length/a step   = 1.000000000000000D-000 

A value used for precision calculations.  Only important if B is 
   nearly a straight line.   
K_Len_sect: key for map usage                  = 0.000000000000000D+000 

        K_Len_sect=0 means don't save the map 
        K_Len_sect=1 means use the map, don't demand precise hitting at 
                     grid coordinates 
        K_Len_sect=2 means use the map, demand precise hitting at 
                     grid coordinates 
 
The_sect_b: begin theta/pi (poloidal angle) for= 0.000000000000000D-000 
    map on toroidal plane. 
The_sect_e: end theta/pi position for section  = 2.000000000000000D-000 
N_The_sect: # of subdivisions between _b & _e  = 1.000000000000000D+000 
K_The_sect: key for map usage                  = 2.000000000000000D+000 
 
Rad_sect_b: begin r/a for radial sectioning    = 0.000000000000000D-000 
Rad_sect_e: end r/a for radial sectioning      = 1.000000000000000D-000 
N_Rad_sect: # of subdivisions between _b & _e  = 1.000000000000000D+000 
K_Rad_sect: key for section edge hitting       = 0.000000000000000D+000 
 
Phi_sect_b: begin phi/pi (toroidal angle) for  = 0.000000000000000D-000 
          map on poloidal plane 
Phi_sect_e: end phi/pi for phi map             = 2.000000000000000D-000 
N_Phi_sect: # of subdivisions between _b & _e  = 1.000000000000000D+000 
K_Phi_sect: key for map usage                  = 0.000000000000000D+000 
 
**** Edge usages create stopping conditions for each line *********** 
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As the comments say, these create stopping conditions for each line, however more often 
we simply don’t use these, and set a number of data points to record instead.  This is to 
avoid getting extremely large files and having some lines be sparsely represented. 

K_Len_edg: key for length edges usage          = 0.000000000000000D+000 
   0 = don't use edge limits, 1 = do use edge limits 
Len_min: min length edge                       = 0.000000000000000D+000 
Len_max: max length edge                       = 6.190000000000000D+005 
 
K_The_edg: key for theta edges usage           = 0.000000000000000D+000 
The_min: min theta/pi edge                     = 0.000000000000000D+000 
The_max: max theta/pi edge                     = 1.000000000000000D+010 
 
K_Rad_edg: key for radial edges usage          = 0.000000000000000D+000 
Rad_min: min radial edge                       = 0.000000000000000D+000 
Rad_max: max radial edge                       = 6.000000000000000D-001 
 
K_Phi_edg: key for phi edges usage             = 0.000000000000000D+000 
Phi_min: min phi/pi edge                       = 0.000000000000000D+000 
Phi_max: max phi/pi edge                       = 1.000000000000000D+010 
 
****************** Parameters for start points definition ***** 

For multiple trajectories (see Ntraj below) we need to define the starting points for each.  
The values are evenly divided between starting and ending points, inclusive.  Ex. 1 traj = 
start point, 2 trajs = start point, end point, 3 trajs = start, mid, end, and so on… 

The_f: theta/pi (poloid.angle) for first traj. = 0.000000000000000D-000 
The_l: theta/pi    for last trajectory         = 2.000000000000000D+000 
 
Rad_f: r/a for first trajectory                = 1.000000000000000D-002 
Rad_l: r/a for last trajectory                 = 9.900000000000000D-001 
 
Phi_f: phi/pi (toroid.angle) for first traj.   = 0.000000000000000D-000 
Phi_l: phi/pi     for last trajectory          = 2.000000000000000D-000 
 
****************** Number of trajectories and points  ***** 
Ntraj: number of trajectories                  = 1.000000000000000D+002 

These specify the number of points on a giving mapping.  This is what is typically used to 
get an equal representation of each field line. 

Npo_Len: max number of points on length map    = 0.000000000000000D+008 

   creates  *len.res, map at values of l 

Npo_The: max number of points on toroid.map    = 4.000000000000000D+003 

   creates  *the.res, map on toroidal plane 

Npo_Rad: max number of points on radial map    = 0.000000000000000D+001 

   creates  *rad.res, map on r=constant surface 

Npo_Phi: max number of points on poloid.map    = 0.000000000000000D+002 

   creates  *phi.res, map on poloidal plane 

K_sum: K_sum=1 means save sum map              = 0.000000000000000D+000 

   creates  *sum.res, has all mapping coordinates in it 

 
****************** Parameters for line diffusion calculation ***** 
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MAL calculates the magnetic field line diffusion coefficient.  It can be done vs. radius or 
normalized poloidal flux, but the report file shows the result vs. both area measures so it 

is not important which one is chosen. It should be noted that D is given as ( ) ( )lr !! /
2

.  

We typically consider it to be ( ) ( )lrD !!= 2/
2

 so we divide the code result by 2. 

N_rad_diff: number of gradations in radial     = 5.000000000000000D+001 

   section for diff.coef. calculation.  Shows D in different radial sections 

T_diff_min: min delta length/a                 = 1.000000000000000D+000 

   If D is calculated with r, not flux, then ( ) ( )N2
2*T_diff_min*/)( arND !=  

     N is given in .rep files where D is reported. 

K_rA_diff: key of radial measure for diffusion = 1.000000000000000D+000 

     KRADIF=0   means measure is \t rad 

     KRADIF=1   means measure is equilibrium A_ph (poloidal flux) 

 
****************** Result parameters **************** 

The following data is saved in the .res files for each mapping. If fewer parameters are 
desired they can be excluded here.  The calculation of the Lyapanov exponent can also be 
disabled, though in practice calculating it doesn’t greatly slow the execution time. 

Ncolumn: number of columns in result files     = 6.00000000000000D+000 

        colunmns:         1  -   point number 

                          2  -   x/a line position 

                          3  -   y/a line position 

                         4  -   z/a line position 

                  5  -   l/a line length 

                          6  -   sigma *a   Lyapunov exponent 

K_Lyap: 1 means calc. Lyapunov exp.            = 1.000000000000000D+000 
 
****************** Debuging and scheme parameters **************** 
K_out: 1 means output numer.results on screen  = 0.000000000000000D+000 
 
RelPre: relative precision for equ.solv.       = 1.000000000000000D-008 
AbsPre: absolute precision for equ.solv.       = 2.000000000000000D-012 

The precision has been benchmarked on speed vs. accuracy and these seem to be optimal 
settings. 

tr_min: minimal radius value                   = 4.000000000000000D-010 

Prevents calculations at r = 0 

tau_min: minimal value of tau                  = 1.000000000000000D-001 
Kj_r: radial mean current key                  = 1.000000000000000D+000 

   KJR=0 means no radial current, KJR=1 means non-zero j_r 

The magnetic field should be divergence free, however, numerical error makes this 
impossible.  If this key is set to 0, it forces the field to have J = 0 at the wall, and 
consequently everywhere else to have a small divergence.  If the wall current is allowed 
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to vary, the field can be made divergence free everywhere except at the wall.  This is the 
preferred state. 

 
k_A_B_R: key to choose field                   = 0.000000000000000D+000 

        KABR=0 means calculate magnetic field lines 

        KABR<0 means calculate vector potential lines 

        KABR>0 means calculate current density lines 

 

--------------------- Gauge Amplitudes by mode ------------------------ 
---------------- mode #1 ------------------- 

N_The_gaug_01: theta number of the mode        = 0.000000000000000D+000 
N_Phi_gaug_01: phi number of the mode          = 1.000000000000000D+000 

Each perturbation mode (only one shown here) is specified by its m (theta) and n (phi) 
mode number.   

B_The_gaug_01: B_the [G] of mode at ga.point   = 7.937000000000000D+000 

The value of the equilibrium field was specified above, so scaling here with the 
B_The_gaug_01 key sets the absolute perturbation strength. The specification of the 
component is misleading. The actual component is specified below, this is just the 
amplitude of that component. 

K_ampli_ga_01: key for gauge amplitude         = 1.000000000000000D+000 

        K_ampli_ga_##<0 means gauge mode amplitude in the gauge point 

        K_ampli_ga_##>0 means gauge max mode amplitude on the surface 

        K_ampli_ga_##=0 means scale it with epsilon instead 

        |K_..._ga_##|=1 means gauge if the mode is in *.fex file 

        |K_..._ga_##|=2 means gauge, stop code if mode is not in *.fex 

        |K_..._ga_##|=3 means multiply gauged amplitude by epsilon 

K__pert_ga_01: key what comp. should be gauged = 3.000000000000000D+000 

The components are specified the same as the equilibrium field gauge, here it is set to be 
scaled to phi. 

 

 

 

The two output files ‘mal_##.rep’ and ‘mal_##_***.res’ are rather self explanatory, the 

‘rep’ (report) file contains summaries of the input values as well as the data for the final 

values of the field line (length, angle traversed, final coordinates, etc..) and the diffusion 

coefficient profiles.  The ‘res’ (results) file has the data from the mapping in columns 

specified by Ncolumns (point, x, y, z, etc…). 
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Now we move onto the RIO code.  The file ‘config.rio’ is the same as 

‘config.mal’; it specifies the perturbation file for the magnetic fields (usually ‘fex64.fex’) 

and the desired output filenames. 

The input file ‘rio##in.rio’ is mostly the same as the MAL input file, but with the 

following additions.  Again, we will write a whole input file in and add comments to the 

bold text. 

 

 
       Program RIO.   Version 4.02 
 
First position for the value of the parameter=> ! 
 
Nfil: number of input files                    = 1.000000000000000D+000 
   
K_def_rep: key for report default parameters   = 1.000000000000000D+000 

   If set to 0, the omitted parameters will not be shown in the *.rep file. 

 
****************** Geometry and magnetic field parameters ***** 
K_geom: key for take geometry param.from file  = 1.000000000000000D+000 

   1 = use parameters Ktor, Rad_r and Shaf_shift from *.fex file 

   0 = use these parameters from this file 

 
Ktor: geometry key                             = 1.000000000000000D+000 

   KTOR=0 means cylindrical, KTOR=1 means toroidal 

 
eps:  perturbation factor  epsilon             = 3.000000000000000D-001 
Rad_a: minor radius a [cm]                     = 5.200000000000000D+001 
Rad_R: major radius [cm]                       = 1.500000000000000D+002 
Shaf_shift: Shafranfov shift [cm]              = 5.000000000000000D+000 
 
================ Gauge magnetic field ==================== 
K_dim_ga: key what component should be gauged  = 1.000000000000000D+000 

 K_dim_ga < 1 means no renormalization 

        K_dim_ga = 1,2,3 means B_the,rad,phi 

        K_dim_ga > 3 means |B| 

Gauge_Tim: time of gauge point                 = 0.000000000000000D+000 
Gauge_The: theta/pi position of gauge point    = 0.000000000000000D+000 
Gauge_Rad: radial position/a of gauge point    = 1.000000000000000D+000 
Gauge_Phi: phi/pi position of gauge point      = 0.000000000000000D+000 
 
B__ga_mean: mean B__ [G] in the gauge point    = 1.500000000000000D+003 

;B_The_ga_mean: (synonym to "B__ga_mean") 
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;B_theta_wall: (synonym to "B__ga_mean") 

 
------------- gauge perturbations --------------------- 
K_All_pert_ga: key what comp. should be gauged = 1.000000000000000D+000 

   for all perturbations except those, which have K__pert_ga_## indicated. 

        K_All_pert_ga < 1 means no renormalization 

        K_All_pert_ga = 1,2,3 means B_the,rad,phi 

        K_All_pert_ga > 3 means |B| 

  If "K_All_pert_ga" is omitted then "K_dim_ga" works for perturbations. 

 
****************** Parameters for sections definition ***** 
Tim_sect:  step for time map [s]               = 1.000000000000000D-000 

   Time at which the coordinate of ion is recorded in the corresponding 

 *.res file.  This is ALWAYS calculated so if it isn't desired, 

 set it to a large value. 

 
Max_Tim_step: max internal time step * Om_B0   = 2.000000000000000D+000 

   A value used for precision calculations.  Only important if the motion nearly a straight 
line. 

 
K_Tim_sect: key for map usage                  = 2.000000000000000D+000 

        K_Tim_sect=0 means don't use the map 

        K_Tim_sect=1 means use the map, don't demand precise hitting 

        K_Tim_sect=2 means demand precise hitting 

        These keys are the same for all maps 

 
The_sect_b: begin angle/pi (pol.) for theta map= 0.000000000000000D-000  
 
The_sect_e: end theta/pi pos. for sectioning   = 2.000000000000000D-000 
N_The_sect: # of subdivisions between _b & _e  = 2.000000000000000D+000 
K_The_sect: key for map usage                  = 2.000000000000000D+000 
 
Rad_sect_b:  begin r/a for radial sectioning   = 0.000000000000000D-000 
Rad_sect_e:  end r/a for radial sectioning     = 8.000000000000000D-001 
N_Rad_sect: # of subdivisions between _b & _e  = 1.000000000000000D+000 
K_Rad_sect: key for section edge hitting       = 2.000000000000000D+000 
 
Phi_sect_b: begin angle/pi (tor.) for phi map  = 0.000000000000000D-000 
Phi_sect_e: end phi/pi for phi map             = 2.000000000000000D-000 
N_Phi_sect: # of subdivisions between _b & _e  = 2.000000000000000D+000 
K_Phi_sect: key for map usage                  = 2.000000000000000D+000 
 

The momentum maps below are the same as any other map, they specify start and end 
values for recording the coordinates at a given ion momentum. 

ThP_sect_b: begin for theta momentum sectioning= 0.000000000000000D-000 
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ThP_sect_e: end   for theta momentum sectioning= 1.000000000000000D-000 
N_ThP_sect: # of subdivisions between _b & _e  = 0.000000000000000D+006 
K_ThP_sect: key for map usage                  = 0.000000000000000D+000 
 
RaP_sect_b: begin for radial momentum section  = 0.000000000000000D-000 
RaP_sect_e: end for radial momentum section    = 1.000000000000000D-000 
N_RaP_sect: # of subdivisions between _b & _e  = 0.000000000000000D+006 
K_RaP_sect: key for map usage                  = 0.000000000000000D+000 
 
PhP_sect_b: begin for phi momentum             = 0.000000000000000D-000 
PhP_sect_e: end for phi momentum               = 1.000000000000000D-000 
N_PhP_sect: # of subdivisions between _b & _e  = 0.000000000000000D+006 
K_PhP_sect: key for map usage                  = 0.000000000000000D+000 
 
K_Tim_edg: key for time edges usage            = 2.000000000000000D+000 

        Tim_edg=0 no use min,max 

        Tim_edg=1 use min 

        Tim_edg=2 use max 

        Tim_edg=3 use min and max 

Tim_min: min time [s] edge                     = 0.000000000000000D+000 
Tim_max: max time [s] edge                     = 2.000000000000000D-005 
 
K_The_edg: key for theta edges usage           = 0.000000000000000D+000 
The_min: min theta/pi edge                     = 0.000000000000000D+000 
The_max: max theta/pi edge                     = 1.000000000000000D+010 
K_The_f_edg: key for theta edges first usage   = 0.000000000000000D+000 
The_f_min: min theta/pi edge before first entry= 0.000000000000000D+000 
The_f_max: max theta/pi edge before first entry= 1.000000000000000D+010 
The_f_min and The_f_max have to be in the {The_min,The_max} range 
 
K_Rad_edg: key for radial edges usage          = 2.000000000000000D+000 
Rad_min: min radial edge/a                     = 0.000000000000000D+000 
Rad_max: max radial edge/a                     = 1.000000000000000D-000 
K_Rad_f_edg: key for radial edges first usage  = 2.000000000000000D+000 
Rad_f_min: min radial edge/a before first entry= 0.000000000000000D+000 
Rad_f_max: max radial edge/a before first entry= 1.000000000000000D+000 
 
K_Phi_edg: key for phi edges usage             = 0.000000000000000D+000 
Phi_min: min phi/pi edge                       = 0.000000000000000D+000 
Phi_max: max phi/pi edge                       = 1.000000000000000D+010 
K_Phi_f_edg: key for phi edges first usage     = 0.000000000000000D+000 
Phi_f_min: min phi/pi edge before first entry  = 0.000000000000000D+000 
Phi_f_max: max phi/pi edge before first entry  = 1.000000000000000D+010 
 
K_ThP_edg: key for theta momentum edges usage  = 0.000000000000000D+000 
ThP_min: min theta momentum edge               = 0.000000000000000D+000 
ThP_max: max theta momentum edge               = 1.000000000000000D+010 
K_ThP_f_edg: key for theta mom.edges 1st use   = 0.000000000000000D+000 
ThP_f_min: min theta mom.edge before 1st entry = 0.000000000000000D+000 
ThP_f_max: max theta mom.edge before 1st entry = 1.000000000000000D+010 
 
K_RaP_edg: key for radial momentum edges usage = 0.000000000000000D+000 
RaP_min: min radial momentum edge              = 0.000000000000000D+000 
RaP_max: max radial momentum edge              = 1.000000000000000D+010 
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K_RaP_f_edg: key for rad. mom.edges 1st usage  = 0.000000000000000D+000 
RaP_f_min: min rad. mom.edge before 1st entry  = 0.000000000000000D+000 
RaP_f_max: max rad. mom.edge before 1st entry  = 1.000000000000000D+010 
 
K_PhP_edg: key for phi momentum edges usage    = 0.000000000000000D+000 
PhP_min: min phi momentum edge                 = 0.000000000000000D+000 
PhP_max: max phi momentum edge                 = 1.000000000000000D+010 
K_PhP_f_edg: key for phi mom.edges 1st usage   = 0.000000000000000D+000 
PhP_f_min: min phi mom.edge before 1st entry   = 0.000000000000000D+000 
PhP_f_max: max phi mom.edge before 1st entry   = 1.000000000000000D+010 
 
****************************************************** 
K_rio/ion: key for rio/ion regime switching    = 1.000000000000000D+000 

   0 = Uses rio settings -- Beam injection 

   1 = Uses ion settings -- Single particle tracing 

 
****************** Parameters for start points position (RIO/ION) ***** 
****************** Injector geometry parameters ************ 

The code can simulate a beam port and inject a stream of particles according to a 
specified distribution.  See comments after the file description for discussion on this. 

W_The_Pl: inject. plate width[cm] in theta dir.= 3.000000000000000D+000 
W_Phi_Pl: inject. plate width [cm] in phi dir. = 3.000000000000000D+000 
K_edge_Pl: injection plate edge key            = 0.000000000000000D+000 

        K_edge_Pl=0 means Gaussian distribution 

        K_edge_Pl=1 means homogeneous distribution with sharp edge 

K_form_Pl: injection plate form key            = 0.000000000000000D+000 

        K_form_Pl=0 means elliptical form 

        K_form_Pl=1 means rectangular form 

   Only used if K_edge_Pl = 1 

Rot_Pl: inject. plate rotation angle/pi        = 0.000000000000000D+000 
Pit_Pl: inject. plate pitch angle/pi           = 1.000000000000000D-003 
Azi_Pl: inject. plate azimuthal angle/pi       = 0.000000000000000D-000 
 
The_Pl: inject. plate center theta/pi position = 0.000000000000000D-000 
Phi_Pl: inject. plate center phi/pi position   = 0.000000000000000D-000 
Rad_Pl: inject. plate center radial/a position = 1.000000000000000D-001 
 
D_The_V: beam veloc. angle/pi width(theta dir.)= 5.300000000000000D-002 
D_Phi_V: beam veloc. angle/pi width(phi dir.)  = 5.300000000000000D-002 
Rot_V: beam rotation angle/pi                  = 0.000000000000000D+000 
Pit_V: beam pitch angle/pi                     = 1.000000000000000D-003 
Azi_V: beam azimuthal angle/pi                 = 0.000000000000000D-000 
 
****************** Fast ion parameters  ***** 
E_ev: ion mean energy [ev]                     = 1.200000000000000D+004 

For single particle mode all ions are at this energy.  For beam mode this is the mean 
energy 

DE_ev: ion energy dispersion [ev]              = 5.000000000000000D+000 

Dispersion only used in beam mode 
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R_E_fin: ratio of final en. to mean/start ene. = 9.700000000000000D-001 

An important limit to stop the simulation at a certain energy.  We typically stop a 
trajectory at 15*Te 

 
A___F: atom weight number of Fast ion          = 1.000000000000000D+000 
Znu_F: nuclear charge number of Fast ion       = 1.000000000000000D+000 
Z___F: start charge number of Fast ion         = 1.000000000000000D+000 
Exc_F: start excitation index of Fast ion      = 0.000000000000000D+000 
K_trans: key allows ion transformation         = 1.000000000000000D+000 

        Charge exchange 

        K_trans=0 means no transformation is allowed 

        K_trans=1 means neutral => ion transformation is allowed 

        K_trans=2 means neutral <= ion transformation is allowed 

        K_trans=3 means neutral <=> ion transformations are allowed 

 
K_drag: key allows ion drag                    = 1.000000000000000D+000 
 
****************** Parameters for ION regime ***** 
Tim_f:  start time for first.traj. [s]         = 0.000000000000000D-000 
Tim_l:  start time for last trajectory [s]     = 0.000000000000000D-000 
 
The_f:  theta/pi (poloid.angle) for first.t.   = 0.000000000000000D-000 
The_l:   theta/pi    for last trajectory       = 0.000000000000000D-000 
 
Rad_f: r/a for first trajectory                = 3.000000000000000D-001 
Rad_l: r/a for last trajectory                 = 3.000000000000000D-001 
 
Phi_f: phi/pi (toroid.angle) for first traj.   = 0.000000000000000D-001 
Phi_l: phi/pi     for last trajectory          = 1.600000000000000D-000 
 
*********** Fast ion parameters for ION regime ***** 
E_ev_f: ion start energy [ev] for first traj.  = 2.000000000000000D+004 
E_ev_l: ion start energy [ev] for last traj.   = 2.000000000000000D+004 
 
Pitch_f: start pitch angle/pi for first traj.  = 0.000000000000000D-001 
Pitch_l: start pitch angle/pi for last traj.   = 0.000000000000000D-001 
 
Azimu_f: start azimuth. angle/pi for 1st traj. = 0.000000000000000D-001 
Azimu_l: start azimuth. angle/pi for last traj.= 0.000000000000000D-001 
 
****************** Plasma parameters  ******************* 
T_e_axi: axis electron temperature [ev]        = 3.000000000000000D+002 
T_e_wal: wall electron temperature [ev]        = 0.000000000000000D+002 
s_T_e: electron temperature exponent           = 5.000000000000000D+000 
 
N_sort_i: number of plasma ion sorts           = 2.000000000000000D+000 
 
  Hydrogen ions: 
A_i_____01: atom weight number of plasma ion   = 1.000000000000000D+000 
Znu_i___01: nuclear charge number of plasma ion= 1.000000000000000D+000 
Z_i_____01: charge number of plasma ion        = 1.000000000000000D+000 
Exc_i___01: excitation index of plasma ion     = 0.000000000000000D+000 
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T_i_axi_01: axis ion temperature [ev]          = 2.000000000000000D+002 
T_i_wal_01: wall ion temperature [ev]          = 0.000000000000000D+002 
s_T_i___01: ion temperature exponent           = 5.000000000000000D+000 
n_i_axi_01: axis plasma ion density [cm^{-3}]  = 2.000000000000000D+013 
n_i_wal_01: wall plasma ion density [cm^{-3}]  = 0.000000000000000D+013 
s_n_i___01: ion density exponent               = 1.400000000000000D+001 
 
  Hydrogen neutrals: 
A_i_____02: atom weight number of plasma ion   = 1.000000000000000D+000 
Znu_i___02: nuclear charge number of plasma ion= 1.000000000000000D+000 
Z_i_____02: charge number of plasma ion        = 0.000000000000000D+000 
Exc_i___02: excitation index of plasma ion     = 0.000000000000000D+000 
T_i_axi_02: axis ion temperature [ev]          = 2.000000000000000D+002 
T_i_wal_02: wall ion temperature [ev]          = 0.000000000000000D+002 
s_T_i___02: ion temperature exponent           = 5.000000000000000D+000 
n_i_axi_02: axis plasma ion density [cm^{-3}]  = 1.000000000000000D+010 
n_i_wal_02: wall plasma ion density [cm^{-3}]  = 2.000000000000000D+013 
s_n_i___02: ion density exponent               =-5.000000000000000D+000 
 

Radial electric field parameters (not implemented yet) 

U_axis: potential at axis [ev]                 = 0.000000000000000D-000 
s_U: potential exponent                        = 5.000000000000000D+000 
dA_ph_min: min.rel.scale of depen. on A_ph     = 1.000000000000000D-002 
           for time dependent case 
K_eq_surf: key for surface measure value       = 1.000000000000000D+000 

        K_eq_surf=0 means measure is radii 

        K_eq_surf=1 means measure is Aph*rho 

****************** Number of trajectories and points  ***** 
Ntraj: number of trajectories                  = 1.000000000000000D+000 
 
Npo_Tim: max number of points on time map      = 2.000000000000000D+001 
Npo_The: max number of points on theta map     = 2.000000000000000D+002 
Npo_Rad: max number of points on radial map    = 2.000000000000000D+001 
Npo_Phi: max number of points on phi map       = 3.000000000000000D+000 
Npo_ThP: max number of points on theta mom. map= 1.000000000000000D+006 
Npo_RaP: max num. of points on radial mom. map = 1.000000000000000D+006 
Npo_PhP: max number of points on phi mom. map  = 1.000000000000000D+006 
K_sum: K_sum=1 means save sum map              = 1.000000000000000D+000 
 
****** Parameters for ion diffusion and current drive calculation ***** 

The diffusion coefficient for both the particles and their guiding centers are calculated 
according to the parameters below.  As with the magnetic field line diffusion coefficient 
they are saved in the .rep file. 

N_rad_diff: number of gradations in radial     = 4.000000000000000D+000 

    Section for diff.coef. calculation.  Breaks the cross section into 

    N sections and calculates diff.coef. within each. 

Rad_diff_02: is 2d  position r/a of gradation  = 1.000000000000000D-001 
Rad_diff_06: is 6th position r/a of gradation  = 4.000000000000000D-001 

Omitted boundaries are set automatically proportional to the area. 

 
T_diff_min: min delta time*om_ci               = 1.000000000000000D-000 
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   If D is calculated with time, not theta, then ( ) ( )N2
2*T_diff_min*/)( arND !=  

     N is given in .rep files where D is reported. 

 
The_diff_min: min.Theta/pi step for diff. calc.= 1.000000000000000D-001 

    Sets a reasonable value of an angular 'step' for diffusion 

 

  There are two ways of calculating diffusion coefficients. 

  1) D = ("delta r")^2 / "delta t" 

  2) D = ("delta flux")^2 / "delta theta" 

K_rA_diff: key of radial measure for diffusion = 1.000000000000000D+000 

     KrAdiff=0   means the numerator is measured in r 

     KrAdiff=1   means the numerator is measured in normalized 

                   poloidal flux (A_ph*rho) 

K_TThe_diff: key of "time" measure for diff.   = 1.000000000000000D+000 

     KTThediff=0   means the denominator is measured in time 

     KTThediff=1   means the denominator is measured in Theta 

 

K_cur_drive: key for current drive calculation = 1.000000000000000D+000 
 
****************** Result parameters **************** 
Ncolumn: number of columns in result files     = 1.30000000000000D+001 

        columns:        1  -   point number 

                         2  -   x/a ion position 

                         3  -   y/a ion position 

                         4  -   z/a ion position 

                         5  -   t time [s] 

                         6  -   sigma *a   Lyapanov exponent 

                         7  -   ion energy [ev] 

                         8  -   ion velocity pitch angle/pi 

                         9  -   ion velocity azimuth angle/pi 

                        10  -   x/a guiding center position 

                        11  -   y/a guiding center position 

                        12  -   z/a guiding center position 

                        13  -   mu adiabatic invariant 

 

K_Lyap: 1 means calc. Lyapanov exp.            = 0.000000000000000D+000 
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****************** Debugging and scheme parameters **************** 
K_out: 1 means output numer.results on screen  = 1.000000000000000D+000 
 
RelPre: relative precision for equ.solv.       = 2.000000000000000D-009 
AbsPre: absolute precision for equ.solv.       = 4.000000000000000D-012 
 
tr_min: minimal radius value                   = 2.000000000000000D-008 
tau_min: minimal value of tau                  = 1.000000000000000D-001 
 
Kj_r: radial mean current key                  = 1.000000000000000D+000 
   KJR=0 means no radial current, KJR=1 means non-zero j_r 
 

 
------- mode #1 ------------------- 
K__pert_ga_01: key what comp. should be gauged = 1.000000000000000D+000 

  If "K__pert_ga_##" is omitted then "K_All_pert_ga" is used. 

        K__pert_ga_## < 1 means no renormalization 

        K__pert_ga_## = 1,2,3 means B_the,rad,phi 

        K__pert_ga_## > 3 means |B| 

N_The_gaug_01: theta number of the mode        = 1.000000000000000D+000 
N_Phi_gaug_01: phi number of the mode          = 7.000000000000000D+000 
B__pert_ga_01: B__ [G] of the mode in ga.point = 3.300000000000000D+001 

;B_The_gaug_01: (synonym to "B__pert_ga_01") 

K_ampli_ga_01: key for gauge amplitude         = 1.000000000000000D+000 

 K_ampli_ga_##<0 means gauge mode amplitude in the gauge point 

 K_ampli_ga_##>0 means gauge maximal mode amplitude on the surface 

 K_ampli_ga_##=0 means scale it with epsilon instead 

 |K_..._ga_##|=1 means gauge if the mode is present in *.fex file 

 |K_..._ga_##|=2 means gauge, stop code if the mode not present 

K_phase_ga_01: key for gauge phase             = 0.000000000000000D+000 
The_max_ga_01: theta/pi pos. of max of the mode= 0.000000000000000D+000 
Phi_max_ga_01: phi/pi pos. of max of the mode  = 0.000000000000000D+000 

 (maximum of the same sign as "B_The_ga_##") 
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Figure D.1 Coorindates in MAL/RIO.  An important thing to note is that “y” and “! ” 

are oppositely directed. 

 

A final word about the “beam mode” of the above input file is in order.  What it 

does is after specifying a port location, beam density distribution, port width, etc.  It 

randomly assigns a value of starting position, direction and energy to each particle 

according to what was specified, and each particle is then tracked individually.  While a 

very powerful and accurate tool for specifying a full injection scheme, unfortunately its 

use is almost always prohibitive.  A single ion orbit can take several days to run on a fast 

server.  To do a full beam simulation, with enough single orbits to be meaningful would 

take months.  This is why we concentrated on single particle orbits at representative 

positions and injection vectors.  Also, with the beam simulation option, given the inherent 
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randomness of a distribution, a large number of trajectories would have to be followed in 

order to be sure that the result wasn’t anomalous. 

 Finally I’d like to extend a special thank you to Yuri Tsidulko, who without 

developing MAL / RIO, his patience in teaching me how to use this code, and his support 

throughout the debugging process, my thesis would have taken on a much different 

character. 

 

 


