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BEHAVIOR OF THE REVERSED FIELD PINCH WITH NONIDEAL
BOUNDARY CONDITIONS
Yung-Lung Ho

Under the supervision of Professor Stewart C. Prager

The linear and nonlinear magnetohydrodynamic stability of
current-driven modes are studied for a reversed field pinch with nonideal
boundary conditions. The plasma is bounded by a thin resistive shel]
surrounded by a vacuum region out to a radius at which a perfectly
conducting wall is situated. The distant wall and the thin shell problems
are studied by removing either the resistive shell or the conducting wall.

Linearly, growth rates of tearing modes and kink modes are
calculated by analytical solutions based on the modified Bessel function
model for the equilibrium. The effects of variation of the shell resistivity
and wall proximity on the growth rates are investigated. The modes that
may be important in different parameter regimes and with different
boundary conditions are identified. These results then help to guide the
nonlinear study, and also help to interpret the quasilinear aspect of the
nonlinear results.

The nonlinear behaviors are studied with a three-dimensional
magnetohydrodynamics code. The fluctuations generally rise with
increasing distance between the conducting wall and the plasma. The
enhanced fluctuation induced v x b electric field primarily oppose toroidal

current; hence, loop voltage must increase to sustain the constant. If the
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loop voltage is held constant, the current decreases and the plasma
evolves toward a nonreversed tokamak-like state. Quasilinear interaction
between modes typically associated with the dynamo action is identified as
the most probable nonlinear destabilization mechanism.

The helicity and energy balance properties of the simulation results
are discussed. The interruption of current density along field lines
intersecting the resistive shell is shown to lead to surface helicity leakage.
This effect is intimately tied to stability, as fluctuation induced v x b
electric field is necessary to transport the helicity to the surface. In this
manner, all aspects of helicity balance, i.e., injection, transport, and
dissipation, are considered self-consistently. The importance of the
helicity and energy dissipation by the mean components of the magnetic

field and current density is discussed.
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Chapter1
INTRODUCTION

1.1 MOTIVATION

The reversed field pinch (RFP) has been the subject of substantial
theoretical and éxperimental investigation for many years. Early
experiments on devices based on the pinch effect (in which the plasma is
compressed by the magnetic field generated by currents carried by the
plasma itself) were motivated by simplicity. Stability problems of these
early devices led eventually to the developments of the RFP and the
tokamak. Theoretically, it was noted early on that reversal of the toroidal
field (hence the name "reversed field" pinch) could stabilize the pinchl.
Since then, experiments have demonstrated spontaneous self-generation
and sustainment of such a reversed field by the plasma. The fascinating
mechanism behind this effect, called the "dynamo2" (in analogy to the
astrophysical and the geomagnetic dynamo3), motivated much of the
subsequent theoretical work. The majority of these works showed that
nonlinear interaction of magnetohydrodynamic (MHD) instabilities with
the equilibrium is sufficient to produce the dynamo effect,5.6,7.8;
however, kinetic effects have also been suggested as a possible cause®. The
complete solution may include a composite of the two effects. Our
investigation expands on the body of MHD theories.

Most RFP experiments and theories of the dynamo have, until

recently, included a highly conducting wall near the plasma surface. Such



a boundary .is necessary for linear MHD stabilityl0 (even with field
reversal), for the minimum energy "Taylor statell", and perhaps for the
dynamo. Generalizing the boundary condition is useful to elucidate the
essential physics ingredients of RFP sustainment. Moreover, the ability to
confine a plasma with a resistive boundary and/or a conducting wall that
is separated from the plasma surface is of great practical importance to the
operation of an RFP. The work presented here may also lead to a better
understanding of the dynamo effects occurring in nature, and nonlinear

behavior of MHD instabilities in general.

1.2, BRIEF DESCRIPTION OF A REVERSED FIELD PINCH

The RFP is an axisymmetric, toroidal magnetic fusion device similar
to the tokamak!2, and the spheromak!3. The plasma is confined by a
toroidal magnetic field and a poloidal magnetic field generated by toroidal
plasma currents. Although tokamaks have achieved the best parameters
for controlled thermonuclear fusion, the RFP is at a relatively early stage
of development, but potentially offers some practical advantages. Unlike
tokamaks, the ratio of the toroidal current to the toroidal magnetic field is
relatively high in an RFP. Stability is achieved mainly through strong
shear in the magnetic field, which appears to suffice even at relatively
high § (=plasma pressure/magnetic field energy density). These
differences may lead to a more efficient reactor in terms of heating, reactor
size, and utilization of the externally applied magnetic field.

The strong shear necessary for RFP stability is equivalent to the



condition that the toroidal field reverses sign. The poloidal current
hecessary to sustain the strong shear arises from a combination of
paramagneticl4, and dynarﬁo effects. However, the paramagnetic effect
alone cannot cause reversal; thus, dynamo action is essential for the
existence of the RFP state. The dynamo is most likely the dissipative
dynamical process by which the plasma relaxes towards the "Taylor
statell". Experimental RFP states are not fully relaxed, but are close
enough to exhibit much of the macroscopic features of the Taylor state
(which includes reversal). Although most of the fundamental topics are
still being scrutinized, several review articles exists and should be referred
to for additional background on the RFP15.16,17. As stated earlier, most of
the research (and hence literature) on RFP's to date include a close-fitting

perfectly conducting boundary.

1.3. THE BOUNDARY CONDITION PROBLEM / THESIS TOPIC

Next generation long pulse RFP experiments, such as the upcoming
ZT-H'8 (as well as a reactor) will operate with a shell that has a magnetic
field penetration time much shofter than the plasma lifetime. This "thin
shell problem" is now being experimentally studied in the OHTE19,
HBTX-1C20, and the Reversatron2! devices. In particular, experiments on
OHTE have demonstrated the possibility of operation with a resistive
shell. Of similar practical import is the determination of the required
proximity of the conducting wall to the plasma surface (the "distant wall

problem”). Experiments in HBTX-1B22 displayed an anomalous increase
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in the toroidal loop voltage, Vi, with the insertion of limiters. The rise in
V1, shortens the possible pulse length of the experiments. The new device
at Wisconsin (MST23) will also investigate this problem as one of its main

objectives.

1.4. RESEARCH APPROACH AND THESIS OUTLINE

We study both the thin shell and the distant wall problems using
resistive MHD models. The use of MHD models to describe macroscopic
phenomena in toroidal fusion devices is well-established. For the RFP,
MHD models have accountedl for the observed magnetic fluctuation
energy spectrum?4, and resistive MHD codes have successfully simulated
the RFP sustaining "dynamo"7.

The plasma in our model is bounded by a thin resistive shell at
minor radius r=a, which is itself surrounded by an outer perfectly
conducting wall at r=r,; a "vacuum" region of width r—a separates the
resistive shell and conducting wall. The thin shell problem and the
distant wall problem can both be studied by removing either the outer
conductor or the resistive shell. Similar physics dominates each case. The
resistive shell presumably affects only the time evolution, not the final
state.

In the absence of a large surrounding vacuum, cylindrical theories are
" adequatel> for RFP plasmas, and are typically used. We also use the
cylindrical approximation, but must additionally assume that, for the thin

shell problem, the outer conducting wall can be considered effectively



removed when r,, is large but does not yet approache the major radius R.
Otherwise, cylindrical vacuum solutions for the region a<r<r,, are
inadequate. This simplificatilon implies that cylindrical thin shell effects
are minimally affected by toroidicity. Possible thin shell instabilities that
exist only in the toroidal geometry, such as the tilt mode25, are not
considered in this thesis.

A force-free assumption is used throughout this thesis. It is valid for
low B plasmas, and is widely used in simulations of the "dynamo"’.
Moreover, since pressure-driven interchange modes are radially localized,
they should be relatively unaffected by boundary condition variations.

Both linear and nonlinear results are presented in this thesis. The
linear results (Chapter 2) illustrate detailed calculations of the influence of
the proximity and resistance of the boundary on stability and growth rates
for realistic equilibria. The goal is to estimate what modes might become
important as the boundary condition is varied. An accurate
determination of the growth rate, which is neither possible nor
meaningful since most instabilities tend to exist in a nonlinearly saturated
state in typical RFPs, is not sought. The linear instability regime results
are used for comparison with experiment and interpretation of nonlinear
computations.

A three-dimensional MHD code is used for the nonlinear
computations (Chapter 3). These calculations are necessary since the MHD
behavior of an RFP, indeed "dynamo" sustainment itself, is known to be

robustly nonlinear. The plasma generally evolves to state of enhanced



fluctuations with increasing conducting wall radius. The increased
amplitude of these modes yields. an increase in the induced electric field,
given by v X b. The electric field, which ordinarily produces the dynamo
effect with a close-fitting conducting boundary, reduces the toroidal
current as the amplitude increases. Thus, an increase in the applied VL is
necessary to maintain a constant toroidal current. In the absence of a
conducting wall (the thin-shell problem), these results cast doubt on
whether the plasma could be maintained in a steady state.

The principal destabilizing mechanism that prevents the instabilities
from nonlinearly saturating at a low amplitude is probably quasilinear
mode coupling of m=1,n< 0 modes. This is inferred from the result of
nonlinear simulations with only a single mode present (quasilinear
offect). We also investigate quasilinear effects of other nonideal boundary
modes. In general, all the modes are found to reduce the toroidal current.
Preliminary comparison with experimental results, and summaries of the
key nonlinear results are included in the summary and discussion section
at the end of Chapter 3.

In the final chapter (Chapter 4), we discuss the helicity balance
properties of our model. This is compared with other models of RFP
pehavior based on the helicity balance. Better understanding of the
helicity balance may lead to much simpler models of plasma behavior.

The physical mechanisms identified here should exist under realistic
experimental conditions. However, a comprehensive understanding of

how various elements of our results scales with the key parameters,



(plasma resisfivity, viscosity, current,...etc.,) will require the completion of
more thorough computational scans through the parameter space.
Nevertheless, we can gain significant insights through physical
considerations and scaling arguments based on the MHD equations. These
arguments, suggestions for experiments, and other possible future
endeavors will also be discussed in Chapter 4.

Finally, Chapter 5 briefly summarizes the major conclusions of this

research.
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Chapter 2
LINEAR STABILITY

2.L INTRODUCTION

In this chapter, we illustrate detailed results on the influence of the
proximity and resistance of the boundary on the stability of realistic
equilibria. The goal is to estimate which modes might become important
as the boundary condition is varied. The results are used for comparison
with experiment and interpretation of nonlinear computations.

In general, MHD unstable configurations cannot be fully stabilized by
introducing walls of finite electrical conductivity.2, However, evaluation
of growth rates is useful to assess whether a mode will arise during an
experimental lifetime. Much of the previous growth rate calculations
with a thin resistive shell employed skin-current pinch configurations3A.
Nonresonant modes (modes with -m/n # q(r) for 0 <r < a, where q is the
inverse of the field line pitch, m and n are poloidal and toroidal mode
numbers respectively) dependent on a conducting shell for stability were
shown to grow on the shell resistive time scale Ts = LoaA /Mg, where A is
the thickness of the shell, and ng is the shell resistivity. For modes weakly
dependent on 1, growth rates can be greater than ax 2/ Atg and the shell
thickness cannot be ignoredS. Resonant instabilities were included in a
study using the resistive high beta (B = 30% on axis) pitch-and-pressure
model (PPM)é and a thick shell approximation. Rotational effects were

studied in Refs. 1 and 7.
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In the presént calculation, we describe the equilibrium by the
force-free modified Bessel function model® (MBEFM). This model
approximates reasonably well the experimental profiles® and the final
states of force-free numerical simulations!0 with a conducting boundary.
Thus, for the purpose of comparison with both the experiments and
numerical results, the MBFM is an appropriate model to use as a starting
point when considerihg additional effects due to a resistive shell.

The thin-shell approximation is found to be appropriate here for
modes of interest. It is only violated for equilibrium profiles that are
unstable or nearly unstable to ideal modes in the presence of a close-fitting
conducting wall. For the MBEFM profiles used here, these modes do not
occur in the range of expermental interest.

The approach we use is to extend the A’ analysis of tearing modes11:12
to include a thin resistive shell and vacuum region between the shell and
a perfectly conducting wall. The basic equations and the equilibrium
model are described in Sec. 2.2. We also introduce an additional staircase
approximation that allows analytical solutions. ‘This also avoids the usual
numerical singularity problem at tearing surfaces. Similar
approximations have been used for stability analyses of tokamaks!3.
Results are presented in Sec. 23 and Sec. 2.4. Since m > 1 modes remain
stable regardless of the poundary condition for realistic equilibrium
profiles, we only present results for m = 0 and m=1. A summary of the
linear instability results and discussion of its experimental relevance are

included in Section 2.5.
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2.2, MODEL DESCRIPTION
a, Initial equilibrium

The equilibrium, depicted in Fig. 2.1, is that of a one-dimensional
cylinder in which the plasma surface at r =a is bounded by a resistive
shell. The shell is surrounded by a vacuum region which extends to
radius r =ry, at which a perfectly Conducting wall is situated. Our model
ignores resistivity away from tearing surfaces. This implies that magnetic
flux frozen into the plasma could not penetrate the resistive shell unless
we additionally take into account plasma resisitivity at the surfacet.5, For
this reason, an infinitessimally thin vacuum region is inserted between
the plasma and resistive shell as the simplest mean of simulating the high
edge resistivity present in experiments.

The plasma equilibrium considered is force-free and described by
V x B = AB, where B and X depend on radius r only. This A is taken to be a
spacial constant at & = 4, for r < ry, and decreases linearly to zero fromr =1,
to r = a [the so-called Modified Bessel Function Model, (MBFM)], as shown
in Fig. 2.1. The relationship between the breakpoint radius ry, and A, can
be determined from the relationship between the reversal parameter F
and the pinch parameter ®, where F = B,(a) /<B;>, © = By(a) /<B,>, By and
B, are the poloidal and axial equilibrium magnetic field, and < > denotes a
volume average. Using experimentally determined F-® curves8, this
model has the following properties:

(i) For Aya £2.4, the model is identical to the Bessel Function Model

(BEM) where A is constant out tor = a and © varies from 0 to 1.2.
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Fig. 2.1. Equilibrium model with Modified Bessel Function Model A
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(i) For 2.4 < A,a <~3.84, as A,a increases toward its maximum value,
F decreases to -1.223 and © increases to 2.546; rj, decreases linearly from
1, =aatija=24tor,=0.446a at Aod = 3.84.

(iii) For 3.84 <X,a <35, increasing Aya leads to increasing F and
decreasing © with r, decreasing linearly to zero at A,a = 5.

Although the above model includes Aja from 0 to 5, the typical
experimental steady-state parameter © is between 1.4 and 2.0, which
corresponds to Aya =2.75 to 3.4. Both the resistivity n and mass c‘lensity p

are assumed to be constant for simplicity.

b. Equations for growth rates and eigenfunctions

The equations used are de-dimensionalized by writing time in units
of the resistive diffusion time tg = a?1,/7, the magnetic induction in units
of the characteristic field B,, and r in terms of a. The equation for the

perturbed radial magnetic field, b,, within the plasma is14

2 2
1 m- k r . m 2kmA
(rbr)+ 2 22(b) s b,
m r m+kr
mBz'krBe
-uw——-f————l'bl;{), 2.1)

where k is the Fourier mode number in the z direction, f = (mBgy/r) + kB,,
and the prime =d/dr. Solutions on either side of a tearing resonant
surface (where f = 0) are matched by the jump condition11/15

[ by'/b, ] = (v/.55)5/451/2£-1/2, (2.2)

where [ ] denotes a jump across the surface, v is the growth rate, S = T /Ty,
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and 14¢ is the poloidal Alfvén transit time [= a(Lop)1/2/B,]. The plasma
solution is matched to the vacuum solution by replacing the resistive
shell with the jump condition4

[ /b ] =715 (2.3)
For the vacuum region outside the shell, we use the radial component of
the Bessel function solutions to the equation Vx b =0,

Equation (2.1) can be derived from the linear force-free condition,
jxB +Jxb=0(jand J are the perturbed and equilibrium current
densities), which neglects plasma inertia. The force-free assumption is
valid for modes with growth times much longer then the Alfvén time
(le., y«S in dimensionless units).

Equation (2.2) is based on the n3/5 scaling of tearing modes!2. It
implies the constant y approximation used in Ref. 12, large S, and y on the
order of S2/5. For resonant modes with stability characteristics dependent
on the presence of a conducting wall, a range of ordering schemes [n0
(resonant ideal modes), n1/3 (resistive kink modes),...] is possible
depending on the values of Ts and r, 111, We generally use tearing
ordering and then check for self-consistency.

The thin shell approximation used in Eq. (2.3} is valid for
A2+ (m/a)2]1/2 « 1 and y « an2/ 4Atg (see Appendix). Here, 4Atg /an?is
the characteristic L. / R decay time of radial inhomogeneities of induced
eddy currents in the slab limit (a » A). In this approximation, the eddy
current distribution in the shell is approximately constant with radius,

Although the use of the thin shell approximation and the neglect of
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inertia precludes the calculation of y for modes ideally (resonant or
nonresonant) unstable even with a close fitting conducting wall (y on the
order of 5 and weak resistive effects), Eq. (2.1) can be straight forwardly
used to identify these modes by the usual Newcomb method1”. Modes
that may become ideally unstable with a distant conducting wall (ry, > a) as
15 — 0 can be similary identified using Newcomb's method by setting 15 = 0
in the thin-shell matching condition (Eq. (2.3)]. However, for these modes,
as Iy, increases and tg decreases, Y would generally increase and begin to
approach S in our calculation; in which case, the calculated y becomes
invalid. Hence, Newcomb's method is not additionally needed, unless
one is interested in precisely when a mode becomes mathematically
defined as ideal. Physically, the crossover point is imprecise.

For modes near marginal stability, Eq.(2.2) (and many other
approximations) cannot be used to estimate y. This is not a problem since

these modes are, by definition, unimportant.

c. Staircase approximation

To facilitate solving Eq. (2.1) analytically, we introduce the step-like A
profile sﬁown in Fig. 2.2 to approximate the MBFM profile. The A’ term in
Eq. (2.1) can now be set to zero, and the solution satisfies V x by = A{ bj in
the ith step. Besides having well known solutionsl6, this configuration
can be easily modified to include multiple resistive shells and thick
vacuum layers inside the resistive shell.

One additional matching condition now becomes necessary at each of
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Fig. 2.2. Staircase approximation to the original model in Fig.1. All steps at
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the X profile discontinuities. By matching b,and by at the perturbed
surfaces4, using the continuity of by, and assuming incompressibility and
ideal motion [db/dt = V x (v x ﬁ)}, we obtain

[by/b ] = (Ais1-A) {(m/r)B, - kBg} /. (2.4)
Assumptions used for the derivation of Eq. (2.4) [incompressibility and
ideal motion (i.e., y» 1) away from tearing surfaces] were also utilized in
obtaining Eq. (2.2). Thus, for resonant modes the use of the step model
imposes no additional constraint beyond the necessity for it to be an
accurate representation of the original MBFM. The incompressible
assumption does not affect stability“. Moreover, for the relatively slow
growing modes in low B plasmas considered, the assumption should
minimally affect instability growth rates1l,

The infinite A' exerts strong influences on the stability properties of
modes resonant near each jump in A. This produces spurious localized
modes not present in continuous A models. Thus in the tapered A region,
the growth rate is calculated only for modes whose resonant surfaces are
located on the flat portion of each A step at the point of intersection with
the original MBFM profile (i.e., at circled points of Fig.2.2). The step
approximation essentially group all A’ effects within a step width into a
single jump. For the circled points, all the A’ influences that were on one
side of the resonant surface in the continous A model remain on that same
side after switching to the step model. Thus, not surprisingly, the least
amount of errors are introduced for these points. For m z 1, the staircase

model implies that the k spectrum of resonant modes become discretized.
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continuous A model is not restricted to y» 1 regimes. The staircase model
is similarly unrestricted, even though Eq. (2.4) is applicable only for vy » 1.
The reason is that y depeﬁds only on 1/tg for such modes. Hence
evaluation of the growth rate in terms of 1/ Ts can be done using any 1 we
choose, including ones for which Eq. (2.4) is valid, and the answer would

apply for all g.

2.3. RESULTS FORm =1

We will treat three types of modes that are likely of experimental
interest: resistive tearing modes resonant inside the reversal surface (+B,
tearing modes), tearing modes resonant outside the reversal surface (-B,
tearing modes) and external kink modes (resonant in vacuum). Stability
boundaries are indicated in the plots of Fig. 2.3, in which the shaded areas
are unstable. For purpose of discussion, the parameter space of Fig. 2.3 can
be divided into four regions [cf., Fig. 2.3(b)]. In the range of experimental
interest, regions (I), (II) and (III) correspond primarily to +B, tearing
modes, external kink modes and -B, tearing modes respectively. For each
region and corresponding mode type, we examine the dependence of
stability boundaries on conducting wall location [Figs. 2.3(a)~2.3(c)], and
the dependence of growth rates on the wall location and penetration time
s (Figs. 2.4-29). For the growth rate calculations, we include Aoa = 3.5
(®@ ~2.2) cases although typical experiments operate with lower ®. This
permits the behavior of the +B, tearing modes, which are stable at lower @

in our model but are present in experiments!8, to be examined.
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(Fig. 2.3 cont.)
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Fig.23. The m=1 stability diagram in parameter space Ao versus k/Ag
(= na/R), where X, is the value of A =] /B in the constant region (cf. Fig.
2.1) Unstable regions are shown shaded for the cases: (a) close-fitting
conducting wall, (b) 40% vacuum thickness [= (ry-a)/al, and (c) 1900%
vacuum (effectively no conducting wall). Figure 2.3(b) also identifies the
four regions discussed in the text. Resonant, nonresonant, and external

kink modes are indicated by horizontal, vertical and slanted lines,

respectively.
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Fig. 2.4. Growth rate versus k/ Ao (=na/R) for different shell penetration
times for m=1 modes. The growth rate is measured in units of resistive
diffusion time tg. Parameters held constant are Aoa =35, =22, F=-1,

S =104 andr,, = 20.
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Fig. 2.5. Growth rate versus na/R for different vacuum region thicknesses
for m =1 modes. Parameters held constant are Aoa = 3.5, =104, and
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Fig. 2.6. Growth rate versus na/R for different wail penetration times for
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a. Region I (+B, tearing modes)

The experimentally relevant modes in this region are localized
tearing modes resonant inside the reversal layer. Ideally unstable
(resonant and nonresonant) modes occur at Aoa >4 and are out of the
range of experimental interest. Hence, we do not separately identify the
resonant ideal modes in Fig. 2.3a. The resonant surfaces of all the unstable
modes are near ry, i.e., close to the region of spatially decreasing A.
Physically, a A which decreases with distance from a given resonant
surface reduces magnetic shear near the resonant surface. This is a strong
destabilizing factor in an RFP. As a group then, the modes that resonate
near the axis are destabilized by a peaked A profile. These modes and their
nonlinear behavior may also play a dominant role in the REP
"dynamo"19.20. A more complete description of the various effects which
determine stability, such as magnetic field compression and free energy
sources, can be found in Ref. 21,

As a result of the spatial localization (radially) of the perturbed fluid
velocity (a consequence of the relatively large toroidal mode number n)
and the distance of the resonant surfaces to the boundary, these tearing
modes are relatively independent of the boundary condition. This is
evident from Fig. 2.3(a)-Fig. 2.3(c) where the region of instability below
Aoa =3.5 remains essentially unchanged as the conducting wall is
removed. A weak dependence on the boundary condition is further
evident in the growth rate calculations shown in Figs. 2.4 and 2.5, where

these modes occur at na/R(=k/ Ao) =-4. The parameter k/A,, is expressed in
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terms of an equivalent toroidal mode number n and major radius R,
although the calculation does not assume toroidicity nor periodicity in the
2 direction. For Fig. 2.4, as tg changes from 1.0tg to .011R (at Ty = 20,5 = 104
and Aga =3.5), the growth rates increase only approximately 50%. In
Fig. 2.5, Tg was held at 01ty (or 100Tpe), and the conducting wall moved
from close fitting to essentially infinity (1900% vacuum). This caused a
similar 50% change in growth rates.

Although the Aqa >4 region was not scrutinized, in a way this region
may be more interesting; it contains both resonant and nonresonant
modes with growth rates that order from S0 (transport time scale) to 5

(ideal time scale), and resistive modes that may become ideal as tg—0.

b. Region 1I (external kinks)

These modes are resonant in the vacuum outside of the plasma.
They are unstable if the total toroidal flux inside the outer conducting wall
is negative, consistent with previous stability analysis22. Therefore,
without an outer conducting wall, the plasma would be kink unstable if B,
is reversed. Growth rate calculations are less pessimistic than calculations
performed with skin-current pinch modelsé5. From Figs. 2.4-2.8, the
external kink appears at 0 < na/R <~1. For all the cases shown, vy is less
than 1.7t

These modes depend strongly on the wall proximity and penetration
time tg of the resistive shell, as is evident from Figs. 2.4-2.7. Since they

are not resonant in the plasma and therefore y does not depend on 3
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(Fig. 2.8), growth rate calculations over wide ranges of boundary
conditions can be usefully presented in terms of 1/15. In Fig. 2.9, peak kink
growth rates (growth rate for the kink mode with the most unstable mode
number k) for each of the equilibrium configurations of L,a = 2.9, 3.2, and
3.5 are shown as a function of vacuum thickness, Instability is shown to
appear for vacuum thickness greater than about 40% of the plasma minor
radius if F=-1. For typical experimental F values, v is only on the order of
0.5t"1 and the modes are unstable only for vacuum width greater than
about 55% of plasma minor radius. In the limit of small tg, the unstable
kink modes become ideal modes, growing on the Alfvénic time scale.
These modes are strongly global with a radial displacement nearly
constant in radius. A simple test also showed that the kink growth rate
depends dominantly on global parameters such as F and @ rather than
details of the current profile. Growth rate calculations with two-step ?L'

profiles were similar to results with 20-step models.

¢. Region III {-B, tearing modes)

The modes in this region within the range 2.9 < A,a < 3.5 are localized
tearing modes resonant outside the reversal surface (with their velocity
eigenfunctions localized within this outer region). Despite their localized
nature, the m(;des show strong dependence on the conducting wall for
stability due to the proximity of the resonant surface to plasma boundary.
Figure 2.3(a) shows that these modes are completely stable with a

close-fitting conducting wall. In Figs. 2.4 - 2.8, they show up as the
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rightmost médes in the growth rate plots, and occur near na/R =3.5.
Figure 28 Shows a corﬁpariso_n of growth rates for three different S values
with the same boundary condition. The results can also serve as an
indicator of the depencence on boundary conditions. The growth rate y
enters both the tearing mode jump condition [Eq. (2.2)] and the shell jump
condition [Eq.(2.3)]. The growth rate of modes independent of the
boundary will contain the $2/5 scaling resulting from the jump condition
in Eq. (2.2), whereas the growth rate of modes strongly dependent upon
the boundary will be S independent, due to dominance of Eq. (2.3). Kink
modes in this figure are completely independent of S as indicated
previously, and the +B, tearing modes show a nearly 52/5 scaling, which
indicates a weak tg dependence. The -B, tearing modes, however, show an
S dependence somewhere in between the other two cases. This is also
illustrated in Fig. 2.10 where the peak edge tearing mode growth rate for
each equilibrium configuration is plotted against 5. Results show scalings
between S2/5 (dashed line) and SO (pure tg dependence).

Figures 2.5 and 2.7 show the dependence of the growth rate on the
vacuum region width. With weaker reversal, the -B, tearing modes have
higher k values. Since the vacuum fields decay more rapidly with radius
for shorter wavelength modes, such modes approach their maximum
growth rate with thinner vacuum region. Thus, the peak growth rates
occur at (ry,-a)/a ~ 20% for Aya = 3.2 cases, and at ~ 40% for Aja = 3.5 cases.

In Fig. 2.7, tearing instability growth rates are shown to exceed those

for kink modes (for S =104, A a = 3.2, tg = 100Tpg and over 20% vacuum
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Fig. 2.10. Growth rate versus S for different A,a for m = 1, -B; tearing
modes. The growth rate is expressed in units wall penetration time T
(= 100t5q for these cases) and is for the peak -B, instability in each case.
The dashed line shows a hypothetical case if the growth rate is equal
to $2/5 for comparison. For these cases, the conducting wall is far away

(r,, = 20).
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region). These modes are even more unstable for lower values of A,a as
shown in Fig. 2.10. The increased growth rates at lower values of on-axis
A, are caused by the increasing A profile edge gradient, as the equilibrium
becomes more BFM-like. Without an outer conducting wall and for
Ts = 10074, the Aya = 2.9 cases resemble resistive kinks more than tearing
modes, i.e., the plasma displacement is mainly outside the resonant
surface and an n1/3 scaling may be more appropriate. However, none of
the three Aya cases discussed above ever become ideally unstable for any g,
0 plasma resistivity at the resonant surface can never be ignored.
Interestingly, the proper ordering of v for the -B, mode, when Aoa =29, can
vary continuously from S-* o 52/3, depending on the boundary

conditions.

d. Region IV

Instabilities in this region occur in nonreversed and weakly reversed
field plasmas. The occurence of the nonreversed resonant modes can be
attributed to a pitch-minimum (as discussed in Ref. 22), which is a
manifestation of a flat l profile at low A,a and a edge vacuum region.
More generally, instabilities occur due to the weak shear and a distant
conducting wall. Aside from the unrealistic modes caused by the
BFM-like profile (discussed in Sec. 2.2.c) the most dangerous modes in this
region are those nearly resonant on axis?? [i.e., -1/n ~ q(r = 0)]. These kink
modes are typically associated with Tokamak q =1 limits; if a perjodic

boundary condition was imposed in the z direction and q(r =0) > 1, then in
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the low Aga Tokamak limit, no unstable mode would satisfy the
periodicity constraint. This is a well known result applicable to a wide
range of current profiles. Similar to the Aya >4 region discussed in
Sec. 2.3.a, instabilities in this region contain resonant ideal modes,
resistive kinks, kink modes, tearing modes, etc.. However, these modes
depend strongly on the boundary condition; the modes can change
character (e.g., resistive kink— tearing mode, stable—unstable) as the
boundary condition varies. Linear growth rate calculations will not be
included here since the instabilities only occur with reversal weaker than
what is seen in experiments. However, these modes can be nonlinearly
important if the plasma cannot sustain a deep enough reversal due to one

of the other modes discussed earlier.

2.4. RESULTS FORm =0

Stability boundaries for both close-fitting and far-removed conducting
wall cases are indicated in Fig.2.11, from which we see that unstable
modes occur only with B, reversed (i.e., resonant instabilities.). Thus, the
modes of greatest interest, and those treated here, are tearing instabilities.
In the range of experimental interest, low k modes are unstable even with
no vacuum region. Aside from this fact, the unstable modes exhibit a
similar sensitivity to the boundary conditions as in the -B, tearing modes
discussed in the m =1 section. The moderate dependence of these modes
on the boundary is illustrated in Figs. 2.12-2.14 which display a family of

growth rate curves for varying vacuum region thickness. Each figure is
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Fig. 2.12. Growth rate versus na/R for different vacuum region thicknesses
for m =0 modes. Parameters held constant are Apa =294, © =1.57,

F=-042, 1g/1g =100, and S = 104.
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Fig. 2.13. Growth rate versus na/R for different vacuum region thicknesses
for m = 0 modes. Parameters held constant are Aoa =327, ® =191,

F =-0.76, 7y /g = 100, and S = 104,
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Fig. 2.14. Growth rate versus na/R for different vacuum region thicknesses
for m =0 modes. Parameters held constant are Aoa =343, ® =2.12,

F=-0.95, 1g/t5 =100, and S = 104.
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Fig. 2.16. Growth rate versus na/R for different wall penetration times for

m = 0 modes. Parameters held constant are Aoa =3.27, 1, =20, and S = 104.
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for a different A,a value. The growth rate variations with 15 are similarly
displayed in Figs.2.15-2.17. Beyond tg/ts = 100 (the maximum value
shown), the growth rate does not change noticeably.

At the most unstable k values, these modes can become resistive
kinks (11/3 scaling) for large vacuum regions and small 5. For tg ~ 100t 74,
the transition occurs at ~ 10% vacuum region width for the Aga =2.94 case
and ~ 40% for the other two A,a cases. Without an outer conducting wall,
the transition points are at Tg/tg ~ 20 for A,a = 2.94 and tg/Tg ~ 100 for the
Aod = 3.43 and A,a = 3.27 cases. The somewhat arbitrary transition points
are estimated from examination of the radial structure of the
eigenfunctions and the magnitudes of the growth rates. The modes,
however, never become resonant ideally unstable for any tg, which is
similar to what was found for the m = 1, -B, tearing modes. Away from
the most unstable k values, other modes remain only tearing unstable.
For most of the parameter space investigated, the S2/5 ordering is
adequate. |

In general, m = 0 modes show less dependence on boundary condition
than the -B, tearing modes. This is clealy seen in Fig. 2.18 where growth
rates scales closer to $2/5 than results in Fig. 2.10. This indicates a weaker

15 dependence in the absence of the outer conducting wall.
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2.5, SUMMARY AND DISCUSSION
a. Summary

We have evaluated linear MHD stability to current driven modes for
RFP plasmas for an equilibrium which fits available experimental data
(the MBFM model) and for a variety of realistic boundary conditions.
However, to further aid interpretation of the code results in the following
chapter, we note pertinent features of linear stability based not only on the
MFBM, but also on more general equilibrium profiles. The more general
profiles are obtained by using relationships between rp, and Ao2 different
from the MFBM prescription.

Modes with poloidal mode number, m, greater than one are stable.
Modes with large axial wave number magnitude, |k!, are radially
localized. Hence, they are less influenced by the conducting wall, unless
they are resonant near the boundary. For m=1, n<0 modes then,
reliance on the conducting wall for stability is generally weaker for the
© > 1.4 modes in comparsion to the lower © cases. This is due to the
greater distances of the resonant surfaces from the boundary for the lower
values of q, and the corresponding shift of the spectrum toward higher
|k1. For the modes within the ® > 1.4 range, dependence of the spectrum
on q is not so easily generalized, since details of the current profile (hence
q profile) become important for these relatively localized modes. In the
range © ~ 1.4 to 1.95 (which roughly corresponds to the experimental
operating range), at all conducting wall positions, both stable and unstable

(to the m = 1, k < 0 modes) equilibria can be found. The stable equilibria
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tend to havé as flat or flatter A profiles than the MBFM; incontrast, the
unstable equlibria tend to be more peaked in A. For a plasma marginally
stable to the m =1, n<0 modes this indicates that taking away the
conducting wall can be compensated by an increase in equilibrium
magnetic shear, i.e., the plasma can remain marginally stable in this
crucial © range. For ® below 1.4, stable profiles, not considering hollow A
profiles, exist only with a conducting wall nearby (unless q(r) > 1, which is
the Tokamak region). The m =1, k > 0 external kink modes (which are
global and nonresonant) strongly depend on the boundary. These modes
are unstable if the perfectly conducting wall encloses negative toroidal
flux. Without a wall, these modes are unstable if B, is reversed. The
growth rate increases with the depth of reversal and with 1/1g. Thus,
profiles that are stable to the m =1, n < 0 modes at @ > 1.4 may be unstable
to the n> 0 external kinks. For the equilibria studied, m =0 modes
(driven by A-gradients at the edge) are unstable in reversed plasmas with
growth rates moderately sensitive to the boundary conditions. Similarly,
m=1, k>1 tearing modes resonant in the reversed B, region are also
driven by A-gradients at the edge, and are moderately sensitive to the
boundary. These modes, however, are only unstable without a

close-fitting conducting wall.

b. Discussion
As noted earlier, the MFBM may introduce inaccuracies for localized

modes which depend upon details of the A profile (particularly at the edge
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for low © cases). Modes localized to the edge region may be additionally
influenced by the high edge resistivity present in experiments, but ignored
in the calculation (away from the resonant surface). In this sense, we rank
the reliability of the results for different modes, in order of decreasing
applicability to experiment as: +B, tearing modes and external kinks, m = 0
tearing modes, -B, tearing modes. Moreover, we can expect plasma
rotation (assuming sub-Alfvénic flow) relative to the resistive shell to
have a larger stabilizing effect on the m =0 and -B, tearing modes than on
the kink and the +B, tearing modes. This is obvious for the +B, tearing
modes due to the weaker boundéry condition dependence of its growth
rate. For the external kink, it was shown in Ref. 1 that the modes lock to
the wall, requiring near-Alfvénic velocity for significant reduction in its
growth rate. The m =0 and -B, tearing modes however, can be stabilized
since a mode cannot lock to both the wall and the resonant resistive layer.
With the above caveats in mind, we apply our results to specific
experimental examples, namely the OHTE and MST devices. For OHTE,
assuming S = 104, 1 = 3 msec, © ~ 1.72, F ~-0.58 (A,a = 3.1), we consider
four different shell conditions: tg = = (perfectly conducting wall), T4 = 60ms
(original aluminum shell), T5 =3 ms (thin brass shell?3), tg = 0.25ms
(stainless-steel of same thickness as the brass case). For each case, we list in
TABLE 2.1 the shortest calculated growth time for the different modes.
We see that the m = 0 mode is unstable in all cases. The external kink and
-B, tearing mode onset with. the brass shell. However, the external kink

mode might not grow to visibility within the plasma lifetime (~ 10-15ms).
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Furthermore, if the reversal is somehow shallower (IF| smaller), growth
‘may be yet slower. This might explain why the external kinks are not seen
in the OHTE experiments24,

In the upcoming MST experiment, the "vacuum” region between the
plasma and wall (5 cm thick aluminum) will be varied by the use of
movable toroidal limiters. Growth-time predictions for various vacuum
thickness are shown in TABLE 2.2. As the vacuum region is increased, the
growth rate of the m = 0 tearing mode increases slowly and the m =1, -B,
tearing modes become unstable at about 10% vacuum. Both modes have
growth-times in the range 0.1tg to 0.01tg, which is probably
sub-millisecond. When the vacuum region thickness reaches about 60%,
the m =1 external kinks become unstable, and grow on the Alfvén
time-scale.

For all modes, increasing r,, beyond 2a has a negligible effect on the
growth rate; therefore, toroidicity should have minimal effects on these
results as long as R/a > 2.

Finally, we note that the stability analysis used here is more tolerant
of errors than shooting methods (not including the matrix shooting
technique?5). We solve for the growth rates for a variety of boundary
conditions, profiles, and mode numbers, then indicate the marginal
stability (zero growth rate) lines with a contour plot. In contrast, shooting
methods tend to solve for the conducting wall locations at which a
configuration is marginally stable to a given mode. The difficulty arises

near the singular surface where errors are easily introduced due to the A'/f
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TABLE 2.1. Growth times for OHTE-sized plasmas.

Wall m=1 - m=1 m=1 m=0
material +B, tearing external kink -B, tearing tearing
n=0-6 n=18-36  n=0-27
ideal (tg = o) marginally stable stable stable ~0.05 msec

Al(tg =60 msec) marginally stable ~76 msec  ~6.4msec ~0.05 msec
Brass (ts =3 msec) marginally stable ~3.8msec  ~0.34 msec ~0.05 msec

Stainless-steel marginally stable ~0.32msec  ~0.04 msec ~0.02 msec
(tg = 0.25 msec)

TABLE 2.2. Growth times for MST.

vacuum  m=1 m=1 m==1 m=()
thickness +B, tearing external kink -B, tearing  tearing
1% marginally stable stable stable ~TR/60
5% marginally stable stable stable ~tr/110
10% marginally stable stable ~tr/64 ‘”TR/ 150
40% marginally stable stable ~tR/ 220 ~tR /300

>60%  marginally stable Unstable-Alfvénic ~tR/220 ~TR/ 300
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term in Eq.(2.1). Since many modes are weakly dependent on the
boundary condition, small errors incurred while shooting across the
singular surface results in a large discrepency in the conducting wall
location. In our analysis, small errors in the field solution near the
resonant surface results in a small error in the calculated growth rate.
This does not change the contour of marginal modes significantly, since
small errors in ¥ cannot change the stability of neighboring nonmarginal

modes.
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Chapter 3
NONLINEAR BEHAVIOR

3.1. INTRODUCTION

In this chapter we present computational results on the effect of a
nonideal boundary on nonlinear resistive MHD evolution. Although the
+B,, instabilities (possible dynamo modes) are, in linear theory, minimally
affected by boundary condition variations, nonlinear behavior couples all
the modes and allows the modes to modify the equilibrium and hence
affect the loop voltage. Thus, it is difficult to predict a priori the effect of
the boundary variation on the “dynamo” from the earlier linear results.
Also, all equilibria with resistive boundary conditions are linearly
unstable to long wavelength kink modes. Such modes should be more
difficult to nonlinearly saturate than localized tearing modes. The
increasing instability of tearing modes resonant near the surface when the
A profile becomes more BFM-like also complicates the standard Taylor
relaxation model. This should not be surprising since the helicity utilized
in the Taylor model is undefined with a resistive boundary 1. To
understand the roles played by nonlinear mode coupling, quasilinear
modification of the equilibrium, and the applied VL coupled with
resistive diffusion of the equilibrium, it is necessary to investigate the
nonlinear behavior of the RFP with the nonideal boundary conditions.
Since current computational capabilities do not yet permit us to use

realistic parameters in our simulation (S, R/ a,...etc.), our goal is to include
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enough physics in our model to identify the key physical mechanisms that
influence the plasma as the boundary is varied.

The techniques of numerical MHD modeling are well established and
no further elaboration is needed (for examples, see Refs. 2, 3, and 4). As for
the RFP, several three dimensional codes already exist that solve the
force-free MHD equations® with a perfectly conducting boundary. For our
investigation, we chose to modify one of the existing 3D codes® to include
the new boundary conditions and necessary diagnostics. The code was also
suitably tailored to the architecture of the Cray-II computers at the
National Magnetic Fusion Energy Computing Center to permit faster
execution of the large amount of computations necessary.

Section 3.2 briefly describes the code, the imposed boundary
conditions, and some benchmark results. The reasons behind the choices
of the key simulation parameters are also summarized. Results of the
multiple helicity simulations are presented in Sec. 3.3. We first depict
pertinent features of a sustained RFP plasma with a close-fitting perfectly
conducting wall. These features, including the "dynamo”, are monitored
as the boundary conditions are varied. Plasma evolution with both the
constant loop voltage and constant current constraints are investigated,
each with varying boundary conditions. These runs are generally
initialized with equilibrium profile and fluctuation spectra from the
sustained close-fitting conducting wall state. To help understand the
multiple helicity results, in Sec. 3.4 we present results of quasilinear

calculations; specifically, the interaction of a single mode with the
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equilibrium with varying boundary conditions is investigated. Each of a
few selected modes is allowed to nonlinearly interact with an equilibrium
chosen to be linearly unstable to the mode. Finally, we make preliminary
comparisons with experiments, and summarize the key nonlinear results

in Sec. 3.5.

3.2. CODE DESCRIPTION
a. MHD equations and algorithms

The initial value code solves the full, compressible MHD equations
for a force-free, cylindrical plasma, periodic in the z direction (with
periodicity 2xR). The dimensionless equations advanced are

dAr/0t =SV x By -, (3.1
and

oVr/ot =-S5V VVp +5JrX B + VY2V, (3.2)
where a vector with the subscript T denotes a total vector [i.e., the mean
(m =n =0), and all the spatially fluctuating (m or n = 0) components are
included]. The field At is the vector potential, where V x A7 = By, and we
choose the gauge dAr/ot = -ET. The units of t, B, S, and r are the same as
in Chapter 2. Vg is the velocity in units the Alfvén velocity, and
Jr =V x By. The resistivity n is measured in units of on axis resistivity Mg v
(=v,TR /a2, where'V, is the characteristic viscosity) measures the ratio of the
viscous damping time to TR. AS is customary in simulations of this type,
the plasma density (in units of the characteristic density pg) is not evolved;

the effect of density fluctuations on modal evolutions should be small.
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Both viscosity and mass density are assume spatially constant. The
nonlinear advective term, -5V - VVq, is usually ignorable in close-fitting
conducting wall runs. With- a resistive shell, the small V1 assumption
may not hold as the fluctuation level increases; hence, we include the
advective term.

The algorithm is finite differenced radially and pseudo-spectrally
(linear terms are treated in Fourier space” but nonlinear terms are treated
in real space) in the other two dimensions. This allows easy
implementation of the linear operators in implicit algorithms, while the
use of the fast Fourier transform élgorithm allows rapid transformation to
real space, where nonlinear terms are straightforwardly handled. The
implementation of the semi-implicit algorithm89 (described below) is
similarly simplified. -

The semi-implicit algorithm removes the severe time step
restrictions imposed by the shear and compressional Alfvén waves, thus
pérmitting longer time scale nonlinear phenomena to be economically
tracked. This problem is encountered whenever simulating systems in
which phenomena occur with large time scale differences. It is intuitive
that to faithfully track a phenomenon changing on the characteristic time
scale 8t (~ 1 Alfvén wave period for our problem), one cannot use time
steps larger than &t. Using explicit algorithms, the systematic errors which
occur by using too large a time step represent a source of free energy that
drives linear numerical instabilities. For the Alfvén wave, the restriction

on the allowed time step is just At <A/ V4|, where V4 is the Alfvén
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wave velocity, and A is the numeric grid size (presumably the shortest
wavelength mode that can exist in the simulation). Implicit algorithms
allow a given Alfvén wave to be accurately simulated if At « 8t. When At
approaches or exceeds 3t, the dispersion relationship of the Alfvén wave
always changes sufficiently to ensure numerical stability For these cases,
longer time scale phenomena (including longer period Alfvén waves) are
still accurately tracked. Unfortunately, a full implicit treatment of Eqgs. 3.1
and 3.2 is extremely cumbersome (except for the nJp and vV2V terms,
which do not give rise to the Alfvén waves) in multidimensional codes.
The essence of the semi-implicit'scheme is to identify and treat implicitly
only the essential components of the terms that can give rise to numerical
instabilities. A detailed description of this method can be found in Refs. 6
and 9.

b. Boundary conditions

The boundary conditions at r = a, unless otherwise specified, are as
follows. The plasma is bounded by a thin resistive shell and an outer
perfectly conducting wall combination similar to the linear model. Each
Fourier harmonic of the vacuum fields, between the resistive shell and
conducting wall, is calculated analytically (the standard modified Bessel
function solutions to the scalar Laplacian in cylindrical coordinates) and
matched to the plasma solution by the thin shell jump condition
[b,'] = t5 db;/at, which is equivalent to Eq. (2.3). Using this, as opposed to

the ideal boundary condition, requires no additional computing while
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advancing the equations. E,(r = a) is just the applied electric field, and
Eg(r = a) is generally 0, i.e., the toroidal flux is held constant by assumption.
With viscosity, the velocity boundary condition can be freely imposed as
long as the radial velocity component is negativeb. We choose the
nonsymmetric components of the velocity (v) to vanish at r = a, as is
appropriate for a viscous plasma, so that the boundary condition does not
affect the "dynamo" which depends on v x b. The equilibrium velocity is
given by Vg=V_=0, and Vi =-EzBy/SB2. The nonzero V, represents an
adiabatic compression of the plasma column. It is required by Ohm's law
for an electric-field-driven equilibrium to exist in steady state in the
absence of pressure and fluctuations so as not to developing a narrow
viscous layer at the wall. This is evident from Egs. 3.1 and 3.2 since the
inward Poynting flux must be non-zero to balance the resistive
dissipation, which implies a nonzero JxBif Vp = 0. We assume that the
radial current density also vanishes, as is appropriate if the resistive wall is
insulated from the plasma, which is often the case experimentally.
Moreover, the magnetic shielding properties of the resistive shell can be
shown to be independent of the radial current density at the boundary (see

Appendix).

¢. Key simulation parameters
In the plasma the resistivity is taken to vary radially as
N=(1+9(r/a)3%)2. The large and sharply rising edge resistivity is not only

realistic, but also helps to prevent the formation of sharp velocity
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boundary laye‘rs by suppressing unbalanced forces from SJt x Br. The
magnetic Lundquist number, S, is typically 6x103. The viscous term vV2v
is included in the equation of motion principally for nonlinear numerical
stability, although physically, v of O(1) is probably justified!0. We typically
set v at 2.5 with 127 radial grid points; this is, empirically, the lowest value
that can be tolerated for the radial grid size, 5, and @ values used (higher 5
and © cases generally require a larger v to radial grid size ratio) while
maintaining numerical stabilityl0. The aspect ratio R/a is taken to be 2.5.

Linear benchmark computations agree with analytic (inviscid) linear
calculations, except that highly Iécalized modes, and modes resonant
outside the reversal surface (-B, modes), are damped in the computation.
The discrepancy is due to differences in viscosity, edge resistivity, and
velocity boundary condition. Experimentally, we expect similar damping
effects.

The linear benchmark results are also used as an initial guide in
choosing the proper combination of numerical resolution (radial,
poloidal, and axial), S, v, R/a, and the 7 profile. Since using
experimentally realistic values of S, v, and R/a would require an
impracticably large code, reasonable compromises are made. The final
choices are based on known numerical results, current theoretical
understandings, experimental evidence, and available computing
resources (several hundred hours of Cray computer time have been used
for this research so far). Some of the considerations are as follows. The

aspect ratio should be as realistic as possible so that distances between
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resonant surfaces of the dynamo modes approximate those in
experiments, thus ensuring that the nonlinear coupling between modes is
adequately modeled. The rdnges of m and n included in the code must be
wide enough so that the most important modes coupled by the dynamo
modes1! are included. Since the typical m =1 dynamo mode spectrum
peaks near na/R ~ -2 to -3, m up to 2 and -na/R up to at least 6 (usually
more) are needed. Possible resistive shell modes should also be included.
With these considerations and linear results as guides, numerical
experiments are then carried out for fine tuning. The final considerations
are that F-© relationship and magnetic fluctuation spectrum with a
close-fitting conducting wall should approximate experimental
measurements. This would indicate that initial equilibrium profile and
stability characteristics are close to being realistic; these are presumed to be
the most important factors influencing the plasma as the boundary is
varied. In general, we find maximizing S and minimizing v (to a degree)
to be important in this respect.

Clearly, the parameters chosen based on the above considerations
may not be adequate for all boundary conditions. It does, however, allow
us to identify the key physical mechanisms influencing the plasma when
the boundary conditions have not deviated strongly from the ideal, or for
an initial period of time after a significant boundary variation. These
mechanisms should remain, in varying degree, even when the boundary
condition deviates strongly from the ideal. We also monitor evidence

that indicates when some parameters may not be adequate. For example,
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when both m = 1 and m = 2 modes are of significant amplitude, it indicates
that the directly coupled m = 3 and additional m = 1 modes may need to be
added in the simulation. These considerations, possible effects of 5 and v
scaling, and other variables that may influence scaling to realistic

parameter regime will be further discussed at the end of this chapter.

3.3. MULTIPLE HELICITY RESULTS

For these runs, we generally employ 3 modes poloidally (m =0 to 2),
43 modes axially (n =-21 to 21), and 127 points radially. In Sec. 3.3.a, we
present pertinent features of a sustained RFP plasma with a close-fitting
perfectly conducting wall. This case is used to compare with results of thin
shell and distant wall simulations presented in Secs. 3.3.b, 3.3.c and 3.3.d.
The equilibrium and fluctuation spectra from the close-fitting conducting

wall state are also used to initialize the nonideal boundary runs.

a. Steady state with a close-fitting perfectly conducthg wall

The ideal boundary RFP state is generated by running the code with a
conducting wall boundary condition until a dynamo-sustained
quasi-steady state is reached. Figure 3.1 shows the mean magnetic field
and q profiles for a @ ~ 1.592 and F ~ -0.08 case. The parallel component of
the mean electric field, E; | = E-B/ | B1, is composed of the ohmic part, ]|,
and the fluctuation-induced electric field Ef = -S<vxb>, ,-B/ IB! (e, E| | -
Ef =n]J; ), where < >4 , denotes an average over 6 and z (Fig. 3.2). Near a

steady state, V x E ~ 0 (i.e., Eg ~ 0 and E, is nearly a spatial constant); hence,
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FIG. 3.1. Mean axial and poloidal magnetic field profiles (a), and q profiles

(b) of the mean magnetic fields for the steady state close-fitting conducting
wall case (©~1.59, F~-.08); mean components are averaged over the 8 and z
directions. The magnetic fields are in units of characteristic field strength

By,
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Fig. 3.2. Parallel electric field profiles for the ©~1.59, F~-.08 steady state
close-fitting conducting wall case. The total electric field, E| |, is composed
of the ohmic, 1]}, and the fluctuation induced Ef components. Here 7 is
in units of the characteristic resistivity n,, and J is a nondimensional

current (J = aV x B).
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E is everywhere nearly equal to the applied toroidal electric field, and E |  is
just the applied E;|. Clearly, E|, and Ef determine J{, which in turn
determines stability and the level of dynamo activity present in a
force-free RFP. Hence, the sustained RFP state, even with nonideal
boundary conditions, can be described based on the variations of Ef and the
applied E, |.

From the radial profiles of the fields (Fig. 3.2), we see that the applied
E|y drives the plasma towards a state unstable to the m = 1, n < 0 modes.
The E is of a shape to create a peaked A profile, and by itself (i.e., if Ef=0),
cannot produce a reversed field plasma (a well known factl2). The
presence of Ef is necessary for reversal since E| | reduces the J| | (necessary
for reversal) in the reversed field region (Fig 3.2).

The E¢, which not surprisingly is generated primarily by m=1,n <0
modes, is seen in Fig, 3.2 to flatten ) by current reduction near the center
and enhancement near the edge. This generates reversal ("dynamo") and
a more stable profile. The net flattening of the A profile by Eg is seen in
Fig. 3.3, which compares the steady state A profiles of simulations with and
without Ef. The case without E¢ is obtained by running the code with all
fluctuations suppressed, but with the same toroidal electric field as the case
with Ef. The mode saturation is a balance between the quasilinear
stabilization (as well as nonlinear coupling to stable modes!3) of the E¢,
and the destabilization by the applied E .

For this conducting wall case, 30% of the V1, is "anomalous”, i.e., E¢ ~

0.3E;| atr =0 (see Fig. 3.2). We note, without showing, that B, is nearly
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Fig. 3.3. The A (=]/B) profiles for two different cases; one from the dynamo
sustained steady state RFP (©~1.59, F~-.08), the other obtained from a case
with fluctuations artificially suppressed. Both cases have the same applied

electric field.
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reversed for the case without Ey, i.e., substantial steady state poloidal
current exists (as can be inferred from the A profile as well) due to the
force-free condition when an equilibrium diffusive flow is permitted to
compress slowlyl2 (the "paramagnetic" effect). This effect should not be
ignored when considering the effect of the applied electric field.

More specifically, the effect of Ef depends on the relative strength of
the positive (Ef > 0) and the negative portion (Ef<0) of Ef. The Ef< 0
increases J| |, which is stabilizing to m =1, n < 0 modes by the increased
shear (with sufficient shear, equilibria at ® =159 can be stabletoallm =1,
n < 0 modes even without a conducting wall), and translates into deeper
reversal for a given ©. The J|| increase is in both the toroidal (both
positive and negative) and the poloidal direction (Fig. 3.1); thus, Ef < 0
produces the "dynamo" effect, and can also lower Vi, if a constant toroidal
current constraint is imposed. On the other hand, E¢ > 0 reducess J;|. The
effect is to enhance V7, if the current is held constant; the enhanced Vi,
prevents the Ef > 0 from reducing current, but weakens shear by reducing
J11 in the reversed field region.

For the close-fitting conducting wall case, the overall effect of Ej
appears to lower Vi,. The case without E¢ has © = 1.55, thus implyi_r}g that
if both cases have the same ©, the case without Ef will have higﬂer VL.
This does not violate energy conservation since the low level fluctuations
with a close-fitting conducting wall dissipate only small amounts of
energy; this dissipation is easily accounted for by the slightly higher mean

field ohmic dissipation (due to current prdfile differences) of the case



67

without fluctuations.

Given the discussions above, it is clear that if the E¢ profile can be
arbitrarily tailored (not a self-consistent case), one would choose to
maximize Ef<0 and minimize Ef>0. The m=1, n<1 modes would
saturate at lower amplitudes, and Vi, would also be lowered in
comparison with the self-consistent case. Although this is purely
hypothetical, it does suggest that artificial poloidal current drive schemes
(e.g., neutral beam current drive) could have large beneficial effects in
lowering fluctuations from the m =1, n < 0 modes, and lowering V..

To distinguish the effects of various modes, in Fig. 3.4(a) we plot the
contribution to Ef of different spectral bands. The dominance of the m = 1,
n <0 modes is illustrated here, and in Fig. 3.5 where magnetic energy
spectra are shown. Unlike the linear calculations, it is difficult to classify
the mode type of the largest mode (from Fig. 3.5, m, n = 1, -5). Figure 3.6
shows the helical flux plot for the m/n = -1/5 helicity. The presence of the
1, -5 magnetic island is clearly seen, suggesting a tearing mode. However,
the radial flow pattern which is large at all radii and vanishes only atr=a
suggests a kink (the m =1, n=-5 v and b profiles are shown in Fig. 3.7).
From Ref. 11, it was shown that this mode can be nonresonant during the
linear phase of its evolution, then becomes resonant via the second
reconnection process!l. The mode could also be initially resonant, then
remove that resonance via a standard reconnection before starting the
second reconnection. For now, it is not necessary to distinguish the

individual mode types; thus, we will refer to the m = 1, n < 0 modes at
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FIG. 3.4 Contributions to Eg of the case shown in Fig. 3.2 from different
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Fig. 3.5 Magnetic energy spectra of the steady state ©~1.59, F--.08
close-fitting conducting wall case. For each poloidal mode number (m =0,

1, 2}, the full axial mode energy spectrum is shown.



FIG. 3.6. The helical flux plot for the m/n = -1/5 helicity.
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FIG. 3.7 The b and v profiles of the 1, -5 mode for the © = 1.59 close-fitting

conducting wall case at one axial position. The solid and the dashed lines
represent the real and the imaginary components respectively; thus, phase

information can be inferred from these figures.
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® > 1.4 only as "dynamo" modes. The m,n=1,-5 and 1,-7 mode
contributions are shown in Fig. 3.4(b). From this figure, it seems that the
dynamo mode's contributions to Ef can be accounted for by a few long
wavelength modes (n=-5 and -7 in this case). In general, the 1,-5
contribution is large at this aspect ratio, but it is not clear which of the
higher Inl mode (n ~ -6 to -10) contribution will be largest at any given
time in a quasi-steady state. The In! spectrum can also depend on @,
boundary conditions, v, the i profile, etc.

The m = 0 contribution to Ef changes sign across the reversal surface;
it reduces J| ; inside (but near) the reversal surface, but increases J| | outside
the reversal surface. This should steepen the A gradient for modes
resonant or nearly resonant near the axis; hence, m =0 modes are
quasilinearly destabilizing to the dynamo modes. However, the overall
effect of the m =0 modes, with a close-fitting conducting wall, is weakly
stabilizing. Simulations with the m =0 modes removed and © held
constant yields slight increases in the perturbation magnetic energy and
kinetic energy. Thus, the stabilizing nonlinear mode coupling is probably
stronger than quasilinear destabilization. Nonlinear mode coupling
through m = 0 modes is stabilizing by cascading energy to smaller scale,
stable, more dissipative modes!3. This is evident from the m =0
broadening of the m = 1 spectrum [see Fig. 3.8(a)]l. The broadened
spectrum, in turn, more efficiently cascades energy to m=1 modes.
Without the m =0 modes, the m =1 spectrum can only be broadened by

coupling with m =2 modes, and the mode competition process (i.e.,
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Fig. 3.8. Comparison of the m = 1 mode spectra between two close-fitting
conducting wall cases (a): one with m =0 modes intact, the other without

m =0 modes. The A profile for the case without m = 0 modes is shown in

(b).



74

destabilization of one m =1 mode by another through quasilinear
modification of the mean field). However, coupling of m =1 modes
through m =2 as an intermédiary is weak since m = 2 mode amplitudes
are small, and the mode competition process is not as efficient in
broadening the mode spectrum as nonlinear mode coupling!3. The mode
competition process principally determines the distribution of energy
among the few dominant dynamo modes; hence, it plays a large role in
shaping Ef. A more precise comparison of the nonlinear and quasilinear
effects may be impossible since the nonlinearly modified m =1 spectrum
tends to alter quasilinear interactions involving m =1 modes. The two
effects are necessarily convoluted. Fortunately, the clear dominance of the
m =1, n ~-51t0-7 modes is not altered by the m = 0 presence, as shown in
Fig. 3.8(a) Thus, qualitatively, the key quasilinear interaction between the
dynamo mode and the applied electric field is unaffected by nonlinear
mode coupling to the m = 0 modes.

As for the cause of the m =0 perturbations, both quasilinear and
nonlinear interaction with the dynamo modes can be important. The
dynamo modes generate reversal (a requirement for the m = 0 modes to be
unstable), and quasilinearly steepen the equilibrium A gradient near the
edge, causing the m = 0 modes to be linearly unstable [cf., Fig. 3.8(b})]. In
addition, the dynamo modes can drive the m =0 perturbations by
nonlinear mode coupling!3, Both causes, however, require the presence
of substantial dynamo modes; thus, m =0 modes can help saturate, but are

unlikely to affect the stability of unstable m =1 modes. Consequently, the
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m =1 spectrum can be broadened but not noticeably shifted by the m =0
presence. (However, m =0 modes may stabilize some modes more than
others.) |

Given the discussion in this section, it would appear that a fully
relaxed Taylor state (A = constant) cannot be a steady state in typical RFP ®
ranges. The Ef and its dynamo effect could exist only if the dynamo modes
remain slightly unstable in steady state. This is not the case for the Taylor

state.

b. Thin-shell simulation with constant current

If the conducting wall is removed (to a radius of 10a) to treat the "thin
shell problem”, the fluctuating magnetic and kinetic energy increase by
about one and two orders of magnitude respectively. They appear to reach
a pléteau in about a shell time for tg = 0.1tg, as shown in Fig. 3.9. The ®
value (the normalized current) is held constant at 1.592. The n spectrum
of m =1 fluctuations remains similar to the initial state, peaking at n ~ -5
(Fig. 3.10). The loop voltage, Fig. 3.9, also increases with ime (~ factor of 5
in one 1g), but develops giant excursions near the end of the computation
(at t ~1.2%g). This is not surprising in view of the parallel electric field
profiles shown in Fig. 3.11. The E¢ component is now about seven times
the resistive term (]| |). Thus, modest variations in v or b can, via Ohm's
law, induce large current changes unless V[, adjusts accordingly. To
balance the current reduction of E¢ (constant current constraint), Vi is now

highly anomalous.
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10-1L 200

FIG. 3.9. Constant @ evolution (initialized with a close-fitting conducting
wall steady state) with a thin shell: total radial magnetic energy
(Wiy=[0.5(b, /B,)2 d3(x/a), where By, is the characteristic field strength), total
kinetic energy (W, , same units as W), and loop voltage

[VL = 2R /a)E,(r=a)] versus time.



FIG. 3.10 Comparison of m=1 magnetic energy spectra at two different

times of the thin-shell constant ® case shown in Fig. 3.9.
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FIG. 3.11 Parallel electric field profiles at t=0.91 for the constant © thin
shell run in Fig. 3.9.
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The dynamo modes, from quasilinear effects, are more strongly
affected by the boundary than the linear theory implies. This is due
mainly to an enhanced Egf that is mostly in the Ef >0 region (Fig. 3.11),
which is the opposite of our preferred hypothetical case. The enhanced E|
mainly balanced Eg¢ >0 over most the minor radius, leaving the J| | profile
relatively unchanged. The enhanced edge current drive of Ef < 0 deepens
reversal somewhat, so that the reversal parameter F (= Bz(a)/<Bz>)
evolves from -0.08 to -0.15. The increase in shear, however, is insufficient
to compensate for the loss of the conducting wall stabilization. The
dynamo modes, |Efl, and VL, thus grow to a large amplitude.

In Fig. 3.12(a) we plot the contribution of different spectral bands to Ef.
The large m = 0 contribution is mainly in a direction to reduce J| in the
periphery; thus, m =0 modes increasingly destabilize the dynamo modes
quasilinearly. However, the overall effect of m =0 modes is strongly
stabilizing; removal of m =0 modes yields a twenty-fold increase in V.
Thus, nonlinear mode coupling is probably the dominant stabilizing
influence. The dynamo mode's contributions to Eg is again dominated by
only a few modes [the n =-5 and -7 modes are shown in Fig. 3.12(b)]. The
ovolution of the n = -5 contribution is similar to that of the entire Ef,
becoming primarily current reducing.

We generally do not observe large m=1,n>0 external kinks, as
perhaps expected from linear theory. However, preliminary runs at
higher ® values, which produced deeper reversal, do indicate larger n>0

kinks. They may also appear in the low © runs if the computations



FIG. 3.12 Contributions to Eg of the case shown in Fig. 3.11 from different
spectral bands (a), and contributions from onlythem,n=1,-5and1,-7

modes (b).
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proceeded longer, but they are clearly not the most important modes.
Single helicity results show that these modes also reduce J;|. Since these
modes only exist with reversal, i.e., dynamo action required, their
quasilinear interaction with the equilibrium is not expected to exceed that

of the dynamo modes.

¢. Thin-shell simulation with constant loop voltage

If the loop voltage is held constant for the initial conditions used
above, @ decreases in time as expected. Early in time the growth of
fluctuations deepens reversal. However, by t = 0.5t (with tg = 0.1tg) © has
decreased to 1.37 and reversal is lost as the central current reduction
overwhelms the edge current drive. After this time the m =1 mode
spectrum evolves through a sequence of modal growth, saturation and
decay as lower Inl modes become unstable as shown in Fig. 3.13. The
dominant m =1 mode shifts from n =-5 to n =-1 as q rises to order unity
at all radii (cf., Fig. 3.14). As the symmetric part of the profile evolves, the
dominant modes generally correspond to those that are linearly unstable
(i.e., quasilinear interaction is sufficient to explain the behavior of the
plasma here). The evolution of the plasma slows down after the m =1,
n =-2 mode becomes dominant. To shorten the run, after t ~ 0.1tg, which
corresponds to the beginning of Fig. 3.13(b) time traces, Tt was changed to
02 TR

The plasma current does not smoothly decay; it tends to step down as

shown in Fig. 3.15. The hesitations in current decay may indicate existence
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FIG. 3.14 The q profile at t = 0.295 of the constant V[, thin-shell case.
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FIG. 3.15 Plasma current (I5) evolution in the constant V7, thin-shell case.

The current is just © <Jz>.
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of narrow stable windows of operation in the nonreversed q <1 regime
[ultra low q (ULQ) tokamak!4/15], or may simply be due to a time delay
during transitions between dominant modes. This case warrants
additional investigation in the future.

Interestingly, when Vg, is held at ~ 5 times the initial close-fitting
conducting wall state with the plasma initialized from the t ~ 0.9 1R state of
the constant @ thin-shell run, reversal was lost anyway (tg = .01tg). This
indicates that steady state operation with a thin-shell may not be possible

even with high loop voltage.

d. Distant conducting wall simulation with constant current

Although the distant wall and the thin shell problems are classified
as distinct, the same physics determines their behavior. When the
conducting wall is placed close to the plasma boundary, the fluctuations
and Vi, saturate at lower amplitude than in the constant ® thin-shell
simulations. To track the dependence of V1, on the wall position, r,,, we
expand the wall slowly during some runs. The total electric field is in a
relative quasi-steady state during the simulation (deviations of the total
electric field from a curl-free steady state is much smaller than the
amplitude of the electric field). Individual modal behavior for the
dominant modes is also relatively quiescent, i.e., 3/9t~0. Hence, the
boundary condition, Eq. (1), is independent of g and this case is relevant to
the experimental situation of a plasma separated from the wall by limiters.

From Fig. 3.16 (tg = .01 for the case shown, but 15 = .002 and 0.1 cases



86

200

120

l
3% 15% 27% 39% 51%

Vacuum Thickness, %(r,,-a)/a

40
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behaved similarly), we see that V7, rises with r,,, increasing dramatically
beyond r, ~1.33a, at which point oscillations in Vi, onset. These
oscillations tend to affect only the edge electric field and current density,
helping to keep the total current constant. Figure 3.17 shows the electric
field profiles at ry, = 1.15a; the rise of the current reducing part of E¢ can
already be seen.

At higher ® values the rise in VL, is more dramatic. At© =173, VL
rises by 50% as r,, increases from a to 1.05a (cf., Fig. 3.16). This is to be
expected since at higher © values VL and its destabilizing influence is
necessarily higher to start with. The necessity for Ef to be effective in
increasing shear is similarly greater. From the earlier results at lower @,

this implies a greater reliance on the conducting wall for stability.

3.4, QUASILINEAR CALCULATIONS

These calculations are performed to help identify the role of the
quasilinear interaction in the various nonideal boundary effects discussed
earlier. The quasilinear effects that are self-induced by a single mode will
now be investigated. Since Ef principally consists of only a few modes, one
might expect quasilinear behavior to mimic the fully nonlinear runs.
This is not the case.

The simulations are performed by initializing the runs with a single
mode. The nonlinear MHD equations guarantee that modes with other
helicity will not be generated. By choosing the spectrum of modes possible

in the code judiciously, other modes of the same helicity can also be
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Fig. 3.17 Parallel electric field profiles for a vacuum region thickness of

15% for the ® = 1.592 distant wall case.
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eliminated, leaving only one mode evolving in time.

a. Dominant dynamo mode

For this calculation, the equilibrium is initialized with the case
without Ef (nonreversed) which was discussed in Sec. 3.3a. A small m =1,
n = -1 perturbation is added and allowed to grow. The aspect ratio R/a is
0.5, i.e., the plasma column is shortened by a factor of 5 as compared with
‘ the multiple helicity runs; hence, the 1, -1 mode is equivalent to the 1, -5
mode of earlier discussions. The small aspect ratio reduces the size of the
code. This is not permitted for the multiple helicity runs since the spacing
between resonant radii, and hence the interaction of these modes, is
altered. The initial boundary conditions take a close-fitting conducting
wall and hold © at ~ 1.55. Subsequently, after the 1, -1 mode has grown‘
and saturated, the conducting wall radius is slowly expanded. The
quasilinear run is more dynamic near the origin (due to an equilibrium
which is highly unstable to the 1,-1 mode resonant near the origin);
hence, v is raised to 4 for numerical stability. The nonlinear velocity
advection is suppressed to prevent the nonlinear generation of other
modes; this term shows strong mode coupling near the origin and can
grow other modes from numerical noise through coupling with the
dynamic 1, -1 mode.

The initial evolution with a close-fitting conducting wall suggests the
mode is a resistive kink. The linear growth rate is of O(52/3), and the

initial reconnection process can be seen in Figs. 3.18(a) and (c) where the
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FIG. 3.18 Quasilinear evolution of the 1, -1 mode with R/a = 0.5 and
close-fitting conducting wall: (a), (c), and (e) show helical flux plots at three
different phases of the evolution; (b), (d), and (e) show the corresponding
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magnetic axis is expelled as the 1, -1 island reconnects to the center. The
on axjs radial magnetic field perturbations [by(r=0)] corresponding to the
helical flux plots of Figs. 3.18(a) and (b) are = .005 and .01 respectively. This
aspect of the mode evolution is fairly standard. Afterwards, the mode
continues to grow (with the same growth rate) as a nonresonant kink, and
then finally saturates with radial magnetic energy about one order of
magnitude larger than when the island reconnected. Not surprisingly,
without nonlinear stabilization, the magnitude of by (~.025 at r =0) is
larger than in the multiple helicity case (~.017 at r=0). No second
reconnection is seen in this case [Fig. 3.18(e}]; thus, the 1,-5 island seen in
Fig. 3.6 probably reconnected from multiple helicity effects. The Eg profiles
corresponding to each of the helical flux plots of Fig. 3.18 is shown in Figs.
3.18(b), (d), and (f). The E¢ initially drives J;| on axis, becoming
current-reducing as the mode evolves into a kink. Although the final
state is a kink, Ef changes sign across the minor radius (which tends to
flatten A near the region where E¢ crosses 0) as the nearly divergence-free
flow resistively diffuses through the helically distorted steady state
magnetic field. The distortion‘of the flow field from the boundary (v = 0)
probably leads to the change in sign of Eg.

As the conducting wall radius is slowly expanded, the 1, -1 kink
grows, but saturates at ry, ~ 1.2a with only a factor of 3 increase in the radial
magnetic energy (Fig. 3.19). This is due to a Ef profile which does not
become primarily J;-reducing (Fig. 3.20), unlike the Ef or even just the

1, -5 contribution to Ef of multiple helicity runs, Consequently, the Vy_ is



92

!

t

1 0'4 i | I ! ] | 1 I !
0 24 60 96 120

%(ry-a)/a

Fig. 3.19 Quasilinear evolution of the 1,-1 mode in a distant wall
simulation. The mode energy is seen to saturate for vacuum regions

larger than about 10%.
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Fig. 3.20 The E¢ profile due to the satuated 1, -1 mode for r,, = 2.2 (vacuum

region of 120%).
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minimally affected even with I'w at 2.2a. This result strongly suggests that
an unstable Ef profile (or_1e which primarily reduces J, 1) is a result of
quasilinear interactions (i.e., mode competition) between dynamo modes,
which also suggests that aspect ratio effects may be large. Unlike the single
mode evolution, the growth of the dynamo modes as a group do not
modify the equilibrium so as to seek the stable state linearly predicted to
exist for these modes. More detailed understanding of the dynamics of
mode interaction is hecessary to understand this behavior. Interestingly,
the toroidal field self-reverses when the vacuum region reaches ~ 20%
(Fig. 3.21); thus, dynamo action fequires only a single helical mode given a

large enough vacuum region.

b. ULQ tokamak kinks

In an earlier section (Sec. 3.3.c), we suggested that multiple-helicity,
constant Vi, thin-shell evolution is composed of a sequence of quasilinear
single mode evolutions. This is more clearly illustrated in this section
where only a single ULQ tokamak mode is permitted to exist, and interact
with the mean field. As an example, we show the evolution of the m,ns=
1, -2 mode with R/a = 2.

Since this mode is basically a global kink, details of the current
profile, S, 7 profile, etc. are not crucial to its evolution. We choose
Ts = .02Tg, S =3 x 103, 63 radial grid points, and 1 = (1 + 9r18)2, The initial q
and X profile are chosen to be unstable to the 1,-2 mode (Fig. 3.22). This

state is not a resistive steady state; hence, artificial Eg and E, are applied to



FIG. 3.21 The evolution of the reversal parameter F for the quasilinear 1, -1

mode distant wall simulation.

g5



2.8 C ‘
2; Initial
ra
s
- (a)
oL 1 1 L L 1 L 1 1 1
5
B J
g
2 Initial
- (b)
0 " a

FIG. 3.22 Comparison of the initial and final A (a) and q (b) profiles of the
mean field for a quasilinear simulation. The change in the q and the A
profiles is due to the growth and saturation of a single mode

(m=1,n=-2).
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counter resistive diffusion of the mean field. This ensures that the
evolution of the mean field is due only to quasilinear interaction with the
1, -2 mode.

Figure 3.22 compares the q and A profiles of the initial and final state
of the simulation. The final state is a helical steady state containing a
saturated 1,-2 kink. The 1, -2 kink saturates when q is raised to ~ 0.5 at all
radii (by suppressing A). This state is unstable to the 1, -1 kink, which
would raise the q to ~ 1 at all radii if it is permitted to exist. This scenario
confirms the earlier assertion that quasilinear effects determine constant

Vi, thin-shell behavior.

c. n > 0 external kink

Although our results do not show a strong m=1, n>0 kink,
preliminary simulations at higher @16 and experimental results!7 indicate
that these modes may be important. As described earlier, these modes are
more unstable with deeper reversal and large r,,. In this section, we
investigate the quasilinear behavior of the 1, 1 kink at R/a = 2.

For this case, we choose 15 /Tg = 1/15 and initial q and A profiles as
shown in Fig. 3.23. The relatively deep reversal ensures that the 1,1 kink
is unstable. Other parameters are the same as were used for the ULQ kink
simulation. Artificial Eg and E, are also applied to prevent resistive
diffusion of thé chosen mean field.

The final q and A profiles are shown in Fig. 3.23, where they are

compared with the initial profiles. The n > 0 kinks clearly reduces J| (see
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FIG. 3.23 Comparison of the initial and final q and A profiles of the mean

field for a quasilinear simulation; only them =1, n = 1 mode is present.
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A profile corhparison), which removes reversal (see final q profile) and
allows the kink to self stabilize. Thus, the presence of the n > 0 kinks can
be expected to enhance the Vi, if the total current is held constant. The
anti-reversal effect is also expected to be quasilinearly destabilizing to the

dynamo modes.

3.5. SUMMARY AND DISCUSSION
a. Preliminary comparison with experimental results

Experimental results on both the thin-shell and the distant wall
problems have been reported reéently. This section briefly summarizes
the results of initial comparisons of theory and experiments.
Qualitatively, our results reproduce many of the key features of the
experiments; however, interesting disagreements are also seen.

For the distant wall cases (HBTX1B experiments!8), we note the
following agreements. The magnitiude of the V[ rise seen in the
experiments (up to ~ 3 times the original level with) with varying
boundary condition (insertion of limiters and tiles) can be accounted for in
our model with vaccum region thickness between 0 and roughly 40% at
® = 1.59. Unfortunetly, we do not yet know the exact @ values in
experiments. If it is higher than 1.59, than the numerical results requires
less than 40% vacuum width to triple theVy. In addition, the F-0
relationship is roughly unaltered as the Vp, rises. This has important
implication for the helicity and energy balance, which are described in

Chap. 4 below. A more quantitative comparison is difficult since neither
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experiments and simulations can determine the edge vacuum width
accurétely; the enhanced edge transport (expected, but not modeled)
presumably has a large effeét on the effective vacuum width in both the
experiments and the simulations.

For the thin-shell cases (OHTE!9, HBTX1C17 experiments), the
experiments observed enhanced magnetic fluctuations, deeper reversal,
and greatly enhanced Vi as in the simulations. In particular, large
dynamo modes (m =1, na/R ~ 2) are observed. Disagreements are found,
however, in the presence of the n >0 external kinks in experiments
(discussed earlier), and in the temporal behavior. The experiments
generally observe m = 1 modes growing at less than half the rates (in units
of 1/t) of our results. Moreover, the OHTE experiments displayed
oscillatory type behavior; sometimes, the MHD modes grow, phase lock
(slinky mode), appear to self-stabilize and disappear, and then grow again.

This behavior is probably due to transport!9 or non-MHD effects20,

b. Summary

In conclusion, the conducting wall is a key element in the nonlinear
MHD evolution of the RFP. It is well-known that with a close-fitting
conducting wall, the internally resonant m =1 modes, through their v x b
effect, drive current in the edge to sustain reversal; the effect flattens the
M=]/B) profile while increasing shear, which has a stabilizing effect on the
modes. This fluctuation-induced electric field, along with nonlinear

stabilization via mode coupling, is balanced by the applied electric field
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which has the destabilizing effect of peaking A. Removal of the wall
disturbs this balance; the m = 1 modes grow, suppress the central current
and thereby require an enhanced loop voltage to maintain the current.
The increase in the v x b electric field, combined with the rising V1.,
produces little increase in shear for self-stabilization of the m = 1 modes.
Thus, m =1 modes and VL grow to a large amplitude. While direct
nonlinear mode coupling is stabilizing, the principal destabilizing
mechanism appears to be quasilinear mode coupling between dynamo
modes (i.e., dynamo mode-mean field-dynamo mode interaction). If VL
is held constant, current falls as the plasma evolves toward a nonreversed
state. Below © = 1.4 (weakly reversed toroidal field), the global (thus
strongly boundary condition dependent and difficult to self-stabilize) ULQ
kinks continue to reduce the current density until q rises to ~1. The
plasma evolves through a sequencé of quasilinear ULQ kinks (m =1,
n=-3, to -2 to -1); each mode quasilinearly reduces and flattens the current,
raises q, and self-stabilizes before another (lower In |) mode takes over.
These effects, to varying extent, occur with either a resistive or distant
boundary. The anomalous loop voltage present in some RFP experiments
with limiter insertion may result from such MHD effects. Many general
features of thin-shell experiments can also be explained by the present
model. Ironically, the conducting wall serves the useful purpose of

preventing the dynamo modes from becoming too robust.
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Chapter 4
DISCUSSION

4.1 HELICITY AND ENERGY BALANCE

Since the early work by Taylor!, who minimized magnetic energy
with a constant helicity constraint and predicted the RFP state, a class of
theoretical MHD models has been developed which is based on helicity
and energy conservation lawsl. Underlying this apparent enthusiasm is
the model's inherent simplicity. Proper understanding and utilization of
these models, aside from the obvious benefit of simplicity, may lead to
novel ideas for plasma stabilization, and sustainment (e.g., F-©@
pumping?).

The following sections discuss the helicity and energy balance
properties of the numerical distant wall results (helicity is undefined
without a conducting wall). We compare our evaluations with
assumptions of helicity and energy balance properties used in other
models of anomalous V3. The implications of our results as compared to
the Taylor relaxation theory are also discussed. A helicity based model of
nonideal boundary RFP behavior is beyond the scope of this thesis. Our
goal is simply to point out some of the complications that need to be

considered in such a model.
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a. Helicity bélance

The standard gauge invariant helicity is defined as?
r

w
I, r
K={ ApBdT-0,0," @)
r=0

where the second term is a product of the toroidal flux enclosed by the
conducting wall and the poloidal flux linked by the toroidal flux. Near
steady state, dK/dt ~ 0, we obtain the conservation relationship

VL®, =0 Bd3r+/nj - bddr+ [ qe-bddr, 4.2)
where @, is the toroidal flux in the plasma, the first two integrals extend
over the plasma volume, and the last integral covers the volume external
to the plasma. This relationship can be interpreted as the helicity injected
into the plasma Kinp = VLD,) by external circuits balanced against the
plasma dissipation 4] nJ- B d3r + ,[n)' - b d3r), and dissipation from
fluctuation electric fields external to the plasma (fext e- b d3r). Moreover,
the component of the external electric field which has V x e # 0 does not
dissipate helicity (see Appendix); hence, the .[ext e-b d3r term can be
converted to a surface integral, and interpreted as surface fluctuation
losses (i.e., Jox &+ b d3r = fext Vy - b d3r =[5 xb - ds, and the helicity loss is
entirely electrostatic).

From the Ohm's law as applied to the parallel mean field in near
steady state, we obtain

VL, =[nJ-Bd3r+/EB dr. (4.3)

This relationship can also be obtained by balancing the helicity of the
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mean fields, Kp,, where Km is defined as in Eq. 4.1 except that only the
mean components A and B are used®. Comparing Egs. 4.3 and 4.2, we
further interpret the terms thus: the injected helicity first goes into K,,; the
mean field dissipates an amount equal to I nJ - B d3r, while the fluctuation
extract the remainder (an amount equal to | E¢ B d3r); the amount
extracted by the fluctuations is both dissipated (by nj - b) in the plasma, as
well as lost through the surface (fuy e - b d3r).

The terms appearing in Egs. 4.2 and 4.3 are numerically evaluated,
and listed in Table 4.1; the parameters are @ =~ 1.59, rw/a=1,1.15 and 1.455,
and ® =173, r,/a= 1, and 1.05 for the cases shown. The fluctuation
surface potential (for the [oy; e - b d3r term) is evaluated by using the
condition of continuity of electric fields parallel to the surface, then
subtracting the V x e # 0 component. Not surprisingly, K and K, are
roughly conserved as they must be. Equations 4.2 and 4.3 cannot be
satisfied exactly due to the slab approximations used for the thin-shell
boundary condition (affecting the fext e - b d3r term), and since the plasma
is not in a perfect steady state.

Most notably, TABLE 4.1 shows that helicity dissipation in the plasma
(the fnJ- B d3rand | 7j - b d3r terms) increases negligibly with enhanced
fluctuations. The increased helicity input to K., is extracted by an
enhanced | E¢ B d3r (consistent with Chap. 2 results) and lost through the
surface. The same conservation properties can be applied to experiments.
Since the experimental mean field profiles remain about the same (F-@

relationship ~ same) with rising V|, the experimental .f Ef B d3r
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TABLE 4.1. Evaluation of the terms appearing in the helicity balance

equations (Egs. 4.2 and 4.3) for different distant wall cases.

®, %Vacuum VP, [nJ.-Bdr J B¢ B d3r [nj-bds Joxee - b d3r

1592, 0% 245 24.9 0.6 0.5 0
1592, 15% 329 25.1 7.6 14 11.3
1.592, 45% 13.6 255 17.3 26 16.9
1.73, 0% 32.7 33.7 0.7 0.8 0
1.73, 5% 482 37 9.7 27 12

TABLE 4.1. Evaluation of the terms appearing in the energy balance
equations (Egs. 4.4 and 4.5) for different distant wall cases.

©, %Vacuum VI [nedd  [-s<vx b>g . -Jd3r | nj2 d3r
1.592, 0% 78.1 72.9 8.2 5.9
1.592, 15% 104.8 70.6 32.3 20.3
1.592, 45% 138.7 68.2 68.1 31.3
1.73, 0% 113.3 100.3 16 114

1.73, 5% 166.8 103.4 58.9 32.5
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(and hence Ef) must also be enhanced (assuming the Ohm's law of Eq. 3.1
is reasonably complete).

Given the apparent importance of the surface term, it becomes
necessary to have a physical interpretation of its presence. In our model,
this term comes from the capacitive charge separation across the
insulating layer on the inside surface of the thin-shell. The charge
polarization is induced by fluctuating electric fields at the surface. The
electric field produced by the charges self consistently keeps j. = 0 on the
plasma surface, while maintaining continuity of eg and e,. In most
instances, continuity of j, implies a discontinuity in e, (ie., surface charge)
whenever materials of different current carrying properties are in contact.
The entire picture can be interpreted as follows. Since the presence of the
vacuum region causes instability, and current flow must be interrupted
somewhere when perturbed magnetic fields enter a vacuum region
(implying surface helicity loss), vacuum induced instability implies
surface helicity leakage and vice versa. Not surprisingly then, E¢ extracts
just the amount of helicity to supply the surface loss. In this vein, it may
be instructive to think of B¢ as a helicity transport mechanism as suggested
in Ref. 3.

Whether a different boundary condition (e.g., jr # 0) would affect our
results also becomes a valid concern, and should be investigated. For now,
we argue heuristically that our results should remain the same. First of
all, stability should be unaffected since the stabilizing effect of the shell

depends on its magnetic field shielding properties (the thin shell boundary
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condition, Eq. 2.3, is still valid). Moreovér, since jp = 0 on the outer surface
of the thin-shell (regardless of the inner surface boundary condition),
currents along field lines must still be interrupted somehow when
perturbed magnetic fields penetrate the surface. The potential drop, which
used to be across the insulating layer, can simply be redistributed with the
same overall helicity dissipation (in this case, some charges would appear
on the outer surface of the thin-shell). Thus, with stability unaffected and
the channel of surface helicity outflow open (one should imply the other

anyway), the overall picture cannot change.

b. Magnetic energy balance

Conserving the total and mean field magnetic energy near steady
state, we obtain two equations similar to 4.2 and 4.3:

VLI=[n)2dr +[nj2 dr + Dy, (4.4)
and

ViI=/nR2dr+[-S<vxbsg, Jdir, @.5)
where 1 is the nondimensional current [=2nBg(r=a)]. By analogy to the
helicity balance equations, the fluctuations extract magnetic energy (in
amount = | -S<v x b>g,;+Jd3r) from the mean field; this energy is
converted to kinetic energy (the Dy term), and feeds ohmic dissipation
(Mj2). The external circuit supplies magnetic energy (Winp=Vp, I) to balance
the mean field loses.

The various terms in Egs. 4.4 and 4.5 are evaluated for the distant

wall cases and shown in TABLE. 4.2. The most interesting observation is
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that roughly half of the increased Winp from the enhanced Vi, is
converted to kinetic energy, consistent with the equilibration of kinetic
and magnetic energy for rising‘fluctuations as seen in Chap. 2 (Fig. 3.9).
This energy is presumably viscously dissipated since the total energy must
be conserved, although the viscous loss is currently not directly evaluated.
Thus, viscosity is seen to play an important role in energy conservation
(even though it was included primarily for numerical reasons). The
anomalously high ion temperature seen in experiments may arise from
such viscous heating. This topic is being investigated currently. The key
issues addressed are: the roles pla‘yed by small scale versus large scale
fluctuations; the scaling of dissipation with v; the effect of modifications to
the viscous term [e.g., addition of aV(V-v) term]. The findings will be

presented elsewhere.

¢. Taylor relaxation process

In this section, we discuss the implications of the above results for the
Taylor minimum energy state (described by V x B = AB, where A is a spatial
constant, and is specified for a given @). In Taylor's theory, a plasma
isolated from external influences by a conducting wall is presumed to seek
a minimum energy state while preserving the total magnetic helicity.
This occurs since resistive instabilities dissipate energy faster than helicity.
References 6, and 7 should be consulted for possible dynamical
explanations beyond simple scale length arguments Mj2 ~nd2b2»nj- b ~

n8-1b2? for small scale (scale length ~ &) fluctuations]. Quantitatively, the
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numerical results demonstrate this behavior; in TABLEs 4.1 and 4.2,
nj2/mj- b is at least 10 in all cases (even greater if Dy included), while the
typical ratio of total magnetic energy to helicity (ignoring the OyD, term,
which implies the absence of gaps in the conducting wall) ratio is ~ © (not
shown). Thus, if the plasma is initially unstable, the inevitable fast time
scale relaxation towards a lower energy state due to instabilities can be
understood by Taylor's theory.

Experimental RFPs, however, are affected by external circuits through
injection of Winp and K. Fora given ©, Winp/ Kinp = 20. In steady state,
these inputs must be dissipated at the rates injected (Eqgs. 4.2 and 4.4), ie.,
the resistive dissipation of helicity and energy of the mean field (slow time
scale diffusion) cannot be ignored. Hence, it is reasonable to expect that a
more complete minimum energy theory would include additional
constraints based on Egs. 4.2 and 4.4.

We first consider the steady state close-fitting conducting wall case
(surface helicity losses = 0). Since Winp/ Kinp = 20, and (J nj2 d3r + Dy) /
Jnj- b ddr » 26, the mean field energy to helicity dissipation ratio (| nJ 2 d%r
/JnJ - B d3r) must be < 20 (as shown by all cases listed in TABs. 4.1 and
42). Not coincidentally, the Taylor state has Jny2d3r/ | nJ - B d3 =20, as
with the unstable case where all fluctuations are artificially suppressed
(Secs. 3.3a and 3.4a). Neither state can be the mean field of a
dyanamo-sustained steady state. Thus, Taylor's theory may require an
additional constraint on | ny2d3r / f nj-B d3r. It may be an interesting

exercise to find a mean field state that minimizes ] nJ 2 d3r with respect to
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[nJ - B d3t; the solution should set an upper bound on the fraction of Winp
that can drive fluctuations in steady state. This ultimately constrains the
amount of work that fl‘uctuations can do on the mean field for
self-stabilization, and presumably, how stable the mean field profile can
be.

Furthermore, to more precisely determine how injected energies are
divided between fluctuations and mean field dissipations, more detailed
stability considerations may be required. For exa_mpl‘e, for sustainment the
RFP must exist near some nonlinear marginal stability boundary for the
dominant dynamo modes; hoWever, it can be very stable for the other
modes. Periodicity constraints, viscosity, and resistivity profiles can also
preferentially weight the effect of different modes. To this end, the idea of
Bhattacharjee et. al.8 seems most promising: an additional constraint was
introduced which depends on the mode number of an assumed dominant
instability.

Deviations from the ideal boundary condition adds additional
complications.  Basically, the additional problem boils down to
determining the ratio [ -S<v x b>p - T d3r/ Jexte b d3rfor a given vacuum
width. Physically, this ratio determines the efficiency (in terms of Kinp) of
nonideal boundary instabilities to self-stabilize. If this ratio is large, the
instabilities; by the constraint of (/nJ 2 d3r + | -S<v x b>g,-Jd3r) /
dny-Bd3r + fext e-b d3r) = 20 (nj- b is ignored), easily modifies the mean
field (presumably towards a more stable state) with small K,

inp
enhancement. If [-S<v x b>g,-Jd3r/ fext e-b d3r = 20, the mean field
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must also have j nJ 2 d3r / ! 1] - B d3r = 2@. This implies, from earlier
discussions, an unstable mean field state (it's unlikely to be the Taylor

state), and Vi, would rise without bound.

d. Comments on the work of Tsui

Using essentially Eq. 4.2, Tsui® calculated the Vi, rise for an RFP
plasma in which a graphite tile was inserted at the edge. Assuming no
increase in J nJ - B d®rand f nj-b d3r, the rise in V], was determined by
calculating the surface helicity leakage. As with our theory, he suggested
that this leakage is due to obstruction of current flow through surfaces
which magnetic flux can penetrate. Unlike our MHD based theory, he
calculated the surface helicity loss from kinetic sheath effects. A relation
between the surface potential and electron temperature was derived. His
theory, however, did not include stability considerations, and hence could
not account for an E¢ which must become more positive (Eq. 4.3). If the
sheath effect can be linked to the creation of a vacuum region, then the

two theories can be combined.

e. Comments on the Kinetic Dynamo Theory

Jacobson and Moses? have proposed a theory in which the dynamo
effect is caused by long collisional mean-free path electrons traveling along
stochastic field lines (the Kinetic Dynamo Theory, KDT). With this theory,
E¢ is not required (rather, only low level fluctuations which cause field

line stochasticity are necessary). Recently, the KDT has been extended by
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Moses et. al.10 to explain the dependence of V{, on boundary conditions.
Basically, if fast streaming electrons carried significant energy along field
lines to the wall or limiters, increased Winp 18 required to balance the loss.
A global helicity balance is also possible (Eq. 4.2) if the electrons causes
surface potentials to be built up.

Upon examination of Eq. 4.3, we find possible inconsistencies. By
definition, the collisionless electrons carry current without electric field.
Thus, Eq. 4.3 remains valid, as long as the i term is understood to include
only MHD currents, while B is due to both MHD and KDT currents.
Without large Eg, Eq. 4.3 implies that [nJ - B d3r at least doubles when Vi,
more than doubles with the insertion of limiters. Since the current profile
due to a sum of MHD and KDT currents cannot be significantly changed (it
would show up in the F-© relation), the collisionless electrons must then
carry significant negative parallel current (on the order of the total toroidal
current). This is an unlikely scenario for the steady state experiments (for
which Eq. 4.3 applies) with inserted limiters. The KDT however, provides
a plausible explanation for the oscillatory behavior (not a steady state,
hence Eq. 4.3 does not apply) of the OHTE thin shell experiment. It may be
that the KDT effect becomes significant when MHD fluctuations are large
and phase-locked (the slinky mode), thus enhancing field line
stochasticity!l. Significant positive parallel current in the outer region

due to the collisionless current can then stabilize the dynamo modes.
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4.2 COMMENTS ON ANALYTICAL CALCULATIONS OF E;

To date, analytical calculations of Ef using the MHD equations have
usually ignored nonlinear mode coupling effects12/13. In principle, most
of the important quasilinear effects can be included. In practice, however,
only the shape of Ef due to a single mode, with assumed mode type (e.g.,
tearing mode), is derived from linear theory. The entire Ef profile is then
assumed to be composed of contributions from a bath (across the minor
radius) of such modes, each with an assumed saturation amplitude. The
determination of saturation amplitudes (as a function of radius) can be
guided by experiments, by 3D numerical simulation, or by physical
arguments. The derived E¢ usually flattens the A profile, and successfully
produces the dynamo effect. These calculations contribute to the
understanding of the dynamo effect from a dynamical point of view.
Thus, with suitable extension, they may help in understanding the
quasilinear destabilization mechanism underlying the nonideal boundary
effects. We do not as yet see an easy way to do the necessary extension, but

additional work in this direction is still being considered.

4.3 SCALING TO EXPERIMENTAL PARAMETER REGIMES

From the MHD equations used in the numerical calculations (Egs. 3.1
and 3.2), the only two parameters to be scaled are S and v. In general, the
numerical results are scaled by extrapolation from a few sample runs with
different 5 and v. This work is currently being performed. Here, we make

simple predictions based on the MHD equations, and physical arguments.
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Assuming V. ~ 1/S and that Bt does not scale with S in the S — oo
limit, if Vi and By are solutions of the steady state MHD equations at one
S value, then they are alsé solutions at another S value. This is the scale
invariant property of the steady state MHD equations (see Ref. 14); it
implies that the nondimensional electric fields (e.g., VL) should be
independent of S as §— . In addition, the viscous and nonlinear
advection terms are unimportant in this large S limit.

If S is finite, the simple scaling laws described above do not hold if the
viscous and nonlinear advection terms cannot be ignored. This occurs
when v is relatively large, which is expected since viscous dissipation of
energy can become significant as described earlier. The relative effect of
viscosity, usually stabilizing, increases with decreasing S. Thus, for the
high @ cases, the large vacuum region distant wall cases, or in the latter
stages of thin shell evolution, we expect the V[, to increase with S. This

behavior has already been seen and reported elsewherel5,

4.4 FUTURE WORK

In this section, we discuss some of the planned, initiated, or possible
research topics to follow the work presented in this thesis. Roughly, the
topics can be grouped under a few general areas: better understanding of
present results, parameter testing, stabilization, and additional physics.

Towards better understanding of the present results, additional code
diagnostics are being implemented. These diagnostics would track the

flow of energy between modes, determine the relative importance of small
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scale versus large scale fluctuation dissipation, and determine the
nonlinear terms that are important for the quasilinear effects. In addition,
analytical studies based on helicity balance and maybe quasilinear
approximations of the MHD equations should be pursued.

Parameter testing is necessary to determine the extent of applicability
of the current results, and in many cases, allows us to scale the results to
realistic conditions. Clearly, parameter testing will also help to better
understand our present results. To these ends, it would be appropriate to
test the effects of increased mode resolution, and varying S, v, 15, ©, R/a.
Initial results from runs with ﬁNice the number of toroidal and poloidal
modes showed negligible changes with small vacuum regions (up to 30%).
Since nonlinear stabilization becomes important as fluctuations increase,
however, additional small scale modes are expected to be stabilizing with
larger vacuum regions and during latter stages of thin-shell evolution.
The necessity for testing the effects of varying the other parameters (S, v,
Tg, etc.) are obvious, and will not be further discussed.

The same MHD computational tools developed to study the effect of
nonideal boundary can also examine the possibility of alternative
stabilization schemes. Some of the ideas to be considered are feedback
stabilization through electrical means at the boundary, current profile
modification, and means of controlling helicity and energy flow at the
boundary. Among these ideas, feedback stabilization is the simplest and is
already being planned for an experiment!6. Current profile modification

may work with weak reversal (which weakens external kink and m = 0
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modes), and theoretically, can stabilize the dynamo modes for all
boundary conditions. Thus, this method can conceivably improve the
transport characteristics of the RFP beyond the ideal wall case. Although,
admittedly, the method would be complicated. Controlling the edge
helicity flow can be done through electrostatic feedback. This idea is only
at the conceptual stage and could be considered sometime in the future.
The MHD computations performed have adequately depicted key
physical mechanisms that influence the plasma as the boundary is varied.
To obtain a comprehensive picture, even within MHD, will however
require inclusion of other important effects. The ones often mentioned
are equilibrium flow, pressure, the Hall effect, and transport. Some of
these effects are already being examined by other researchers. For example,
enhanced transport associated with nonideal boundary fluctuations was
shown to limit the maximum beta attainablel”. Flow was found to be
ineffective against kink modes which can lock to the walll8. Against
resistive modes, however, flow can slow doWn the mode growth (a mode
cannot lock to both the rotating plasma and the stationary shell). Since
both types of modes might be important, this issue is unresolved and need

to be examined further.
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Chapter 5
CONCLUSION

We have studied both the thin shell and the distant wall problems
linearly and nonlinearly. Similar physics dominates each case (the
resistive shell affects only the time evolution, not the final state).

Linearly, five type of modes of potential import are identified: the
dynamo modes, the ULQ tokamak kinks, the n>0 external kinks, the -B5
tearing modes, and the m = 0 tearing modes. Of these linear modes, the
dynamo modes are supposed to be least sensitive, while the kinks are the
most sensitive to boundary condition variations.

Nonlinearly, without a close-fitting conducting wall, the plasma
generally evolves to a state with enhanced fluctuations, primarily
composed of the dynamo modes. The dynamo modes, due to quasilinear
mode interaction, are more strongly affected by the boundary than the
linear theory implies. The fluctuations increase as the radius of the
conducting wall is increased. The increased amplitude of these modes
(which ordinarily produce the dynamo effect) yields an increase in the
induced electric field, given by v xb. The electric field is mainly in a
direction to oppose the current parallel to the magnetic field; hence, an
increase in the applied loop voltage, Vi,, is necessary to maintain the
toroidal current constant. If the loop voltage is held constant, the current
decreases as the plasma (through a sequence of ULQ kinks) evolves toward

a nonreversed tokamak-like state. The nonlinear results indicate that the
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dynamo modes are probably the principal cause of the anomalous loop
voltage seen in recent experiments with limiter insertion (HBTX-1B).
Some qualitative features of .our thin shell results have recently been seen
in experiments (e.g., large dynamo mode growth, Vy rise, deeper reversal).
The implication is that it will be necessary to find means to aid the thin
shell in stabilizing the various modes.

In the discussions of helicity balance, we showed that f E¢ B d3r in the
plasma increases from zero as the vacuum region increases in thickness.
This represents an enhanced helicity transport to the boundary, where it is
electrostatically dissipated in the surrounding insulating layer. Virtually
all of the enhanced injection of helicity due to the enhanced V1, is lost in
this manner (i.e., we see negligible change in the helicity dissipated by the
plasma). The mean field helicity dissipation is always significant,
however, and should be considered in all steady state models of the RFP
based on the helicity balance (which precludes the Taylor state). With
these and other considerations, we think that relatively detailed stability
considerations are necessary, especially in the nonideal boundary cases, to
understand the RFP state. Hence, a realistic model of the RFP state is
unlikely to be as simple as the Taylor model.

No real surprises are found in the energy balance properties: we find
with nonideal boundary conditions that enhanced fluctuations enhance
energy dissipation. Notably, from energy balance, we inferr that half of the
enhanced Poynting flux input from the enhanced V1 are viscously

dissipated.
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The nondimensional V[ for the various quasi-steady state nonideal
boundary cases should, from scale invariant properties of the force-free
MHD equations, scale up with S, if it scales at all. Any scaling should

occur when viscous dissipation is significant.
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| Appendix
THE THIN SHELL BOUNDARY CONDITION

A.1INTRODUCTION

In this appendix, we derive the boundary conditions used in the
thesis. ~There are two linearly independent thin shell boundary
conditions: one is for by; the other is for j.. The boundary condition for b,
has been derived and used by other researchers (Refs. 1-7). The purpose
here is to clarify the derivations, and the assumptions used therein.

If the evolution of the applied magnetic perturbation on one side of
the thin shell is known, the penetration rate of this magnetic field
through the shell can be easily derived by the Laplace transform technique.
In reality, the magnetic field produced by the induced eddy currents in the
shell affects the electrical system (e.g., a plasma) which originally excited
the eddy currents. Thus, the response of the source of the perturbation
must be included in the calculation. This is not possible when the
perturbation is caused by a complicated system such as an MHD modeled
plasma; the Laplace transform of its temporal dependence do not exist.

Nevertheless, Laplaée transform can still be used to understand the
response characteristics of the shell, which allows use to derive the
simplified thin shell boundary condition. Physically, the electric and
magnetic responses of the shell is determined by the decay characteristics
of the eddy currents excited by the applied magnetic perturbation. The

eddy currents are a linear superposition of basis eigenstates, each with a
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characteristic .decay rate. The thin shell approximation amounts to
keeping only the lowest order eigenstate solution, i.e., the one with the
slowest decay rate. The higher order solutions are assumed to have
decayed away in the time scale of interest. A jump condition on by, and a
boundary condition on j. are derived based on the current profile of the
lowest order solution. The eigenstates and their characteristic decay rates

are derived with the Laplace transform technique.

A2 DERIVATION OF EIGENSTATES

We consider the slab geometry (as shown below) first.
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To find tﬁe magnetic field solutions, we solve a diffusion equation in
the slab, and the standard Laplacian in the vacuum region. The diffusion
equation is just

ngV2b = ob/at, (A1)
which is derived from the Ohm's law (e = Tgj), and the dimensionless (sce
Chap. 3) Faraday's and Ampere's law (Vxe=-0b/dt and Vxe=j). The
boundary conditions are continuity of e,, ey, and b at the two interfaces at
x = a+A and x = a. An assumed magnetic perturbation [ba(t)] is applied at
x = a. We Fourier analyze in the z and y directions, and Laplace transform
in time [i.e., L(3b/3t) = pb~(p)). For the rest of the Appendix, b™(p), e"(p),
and j"(p) denote the magnetic field, electric field, and current density of a
single Fourier harmonic in Laplace space. The eigenstates and
characteristic decay rates are found by examining the magneltic field
solution to Eq. A.1 in Laplace space. More specifically, the magnetic field

solution in Laplace space can be generally written as

FLUxP), BaP)

A
(x, P) =
b P) D)

where U(x,p) and D(p) are determined from the boundary conditions. By
taking the inverse Laplace transform, one generally obtains a set of steady

state and a set of transient solutions. These can be written as

bixt)=5. F[U(?‘,f’s)) vesidue (L;(%&t . F[Q(x, Pe), 5:(&)] Q"’ct
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where the py's locate the zeros of D(p), and the Pg's locale the poles of
b"a(p). The characteristic decay rates of the eigenstates are equal to the
-Py's. The Laplace space equivélent of Eq. A.1 is just

V2b"(p) = - e<2b"(p), (A.2)
where - <2 = p/ng. For divergence-free veclor fields, there are two sets of
linearly independent solutions8-thereafter labeled R and Q. The R field
satisfy the relationship

R=VBxx" (A.3)
where x” is the unit vector in the x direction. The Q field satisfy

Q=opC + V@YD, (A4)
The [} and v are scalar fields which are solutions of the Poisson equation,
ie.,

V2(B,7) + «<2(B,y) = 0, (A.5)
where o2 = (ky?+ky2+kz2). The ky, ky, and k; are mode numbers in the x,
y, and z directions respectively. The vacuum solution for the region

between x = a and x = a+A is just

b"(p,x) = Va0, (A.6)
where .. is a solution of the Laplacian. More importantly, we get

by (a+A,p) = -E(a+A by, (a+A), (A.7a)

b*y(a+A,p) = iky\|fvac(a+A), (A.7b)

and

bAz(a‘*'A,p) = ikzwvac(a+A), (A-7C)
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where

;_(k,%k;)i}, 4 ez(t,‘fkj‘jicam)
A
E@+ab) = Ckyt k3)* ] (A.8)

éz(k.{*f{( SHN ﬁa(krtfgi)i(am)

The Wy,0(x) solution is known within a multiplicative constant at this
point.

From the structure of the Q and the R fields, we find that the Q field
determines the by (equivalent to by in cylindrical geometry) boundary
condition to be derived, while the R field determines the jx boundary
condition. This is because the Q field has j°x = 0 and the R field has b", = 0.
Hence, the diffusion of magnetic field into the vacuum region is
determined by the Q field only. Since the two fields are linearly
independent, the R field can be force to vanish (e.g., by inserting an
additional insulating layer on the x =a surface of the slab) without
affecting the Q field.

We solve for the py's from the Q field solutions first. By continuity of

b"(x,p) at x = a+A, the components of the b™(x,p) solution in the slab are just

k' :
bplxp) = (<~ e )( C; Sinkye® 1 ¢ (oshky x) (A.9a)
b“y(x,p): iﬁ;& (C‘ (U.f ka -+ C?_ Sin kx X ) (Agb)
and
b 00p) = 1 Kx (CI Cosho X = C, Sin k,x)‘) (A90)

e



129

where the Cy and Cg coellicients are related by

C, (Sinkea + Kt (oS /r,\A)

C, = (1K)
2 - A E 1
—XZ Sink,a - (oS kra A10
(&, 2+ /(’;z) i g ( )

From Eq. A.10, the set of py's are found from the ky roots of the equations

k E SinkyA - Cuskyd = O (A1)
(kxl,f,[(}?-) X .
and
Sin kxer  + (i"i@w (0skyts = 0 (A.12)
x

The solutions can be found graphically as shown below for Eq. A.11.
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tuafs of Ez,Au
Figy A2



130

For a thin shell A « (ky2 + k,2)"1/2, and since E has a minimum value of
(ky? + k,2)1/2 as b approaches infinity, the solutions for ki's are (excluding
ko) kj? = (in/ A)2 fori=1,2,3,etc. This corresponds to transient decay rates
for the corresponding eigenstates of

-pri = (ki2 + ky? + kg = ng(in/A)2 fori=1,2,3.. (A.13)
For small koA [assuming A « (ky? + k,2)"1/2] the ko solution can be
estimated by Taylor's series expansion of the cotangent term, we get

ko? ~ (ky? + kz2)/EA. (A.14)
The ky roots of Eq. A.12 can be found graphically as well. A different set of
decay rates are associated with these roots; the decay rates are

Pty = ngl+1/2)n/A)2 fori=1,2,3.. (A.15)

The time scale for which the thin shell approximation is valid is now
apparent. If the perturbation vary on a time scale slower than A/ng(4A/n2),
all except the lowest order eigenstate for the eddy current will have
decayed away. The remaining lowest order eigenstate has current density
which is nearly constant in the x direction (ie., koA « 1). |

The solutions for py; | i=1,23.. and P*t1 1 1=1,2,3.., and the kod «1
condition are valid in the cylindrical geometry as long as the thin shell
condition A « (kg2 + k;2)"1/2is satified. This is due to the following
reasons. If A « (kg2 + k,2)-1/2 the cylindrical thin shell than approximates a
slab, hence the field solutions in the slab must be approximately the same
as those in the shell. As for the differences in the vacuum field solutions,
switching to the cylindrical geometry will affect the Pt,i‘ i=1,2,3..- the

p 1| 1=1,2,3.., and the koA solutions since the evaluation of E will be
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affected. Irom the graphic solutions of Ky shown above, however, we see
that the k; | ;9 solutions are weakly dependent on the E term if A « (kg2 +
kz2)"1/2. The k¢ solution, and hence the decay rate corresponding to its
eigenstate, show a greater dependence on the E term than the i | iz0
solutions.  (Physically, this implies that the lowest order cigenstate
governs the diffusion of magnetic fields into the vacuum, whereas the
higher order eigenstates governs diffusion into the slab.) However, the
key condition of koA « 1 if A « (kg2 + k,2)-1/2 remains valid.

The cylindrical thin shell boundary condition can now be derived. If
koA «1, the lowest order eigenstate solution has br, jo. and j, roughly
constant in the shell (see Eq. A.9). Thus, its possible to apply simple jump
conditions on the 8§ and z components of the magnetic field across the
shell (e.g., the jump in b, is proportional (o eg in the shell), which in
conjunction with Faraday's law and the V - b =0 condition, leads to the
thin shell boundary condition on by (liq. 2.3).

The thin shell boundary condition on j;, which is needed if there is
no insulating layer on the inner surface of the shell, can be derived in the
same manner as the boundary condition on by, The R field solutions need
to be considered in this case. It turns out that on a time scale of A/mg(A/2)
all the transient eigenstate solutions decay away. This does not imply that
jr = 0, however; we still need to consider the e = Vy solution, where y is a
scalar potential function. This is the electrostatic solution, which by
continuity of e,, ey and b,, leads to the boundary condition on jy.

Sk % o |
(0 ?(:’.—c;) = f:m)) ,51,(;» J*,){ (A.16)
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