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Non-azimuthally symmetric floating potential structure
(also called vortices or convective cells) were examined to
determine whether the structure is responsible for enhanced
diffusion in the Octupole. Two gun plasma were used: a

¢collisionless H plasma (n0~5x1090m_3, TiévBOeV); and a col-
lisional He plasma (ndUleollcm-3, Ti g}.ZeV).
[

The floating potential was measured as a function of
the coordinates perpendicular to the magnetic field by a
Langmuir probe mounted on a cart which could be moved azi-
muthally along the bottom of the Octupole; the results are
presented as two-dimensional contour plots. For a purely
poloidal field, the floating potential was found to be
constant along a magnetic field line, and the two-dimen-
sional contours can be rotated about one of the internal

rings to show the three-dimensional potential structure.

The results can all be understood within the frame-
work of vortex diffusion with & non-thermal energy spec-
trum. For the collisionless plasma in a purely poloidal
field, machine-sized, long-lived convective cells were
observed. The diffusion coefficient calculated using
the toroidal electric field spectrum agrees with measure~
ments by other authors of the diffusion in this plasma.
With an added toroidal field, vortex structure is measured
on the low-field side of the ring; this is consistent with
the theory if the vortices are supported by trapped elec-
trong in the poloidal field mirrors.



For the collisional plasma, at high fields (.5-2kG)
vortices are observed. The electric field spectrum is
peaked at the longest wavelengths. The diffusion calcula~
ted from the spectrum agrees with the previously measured
diffusion in the Octupole for this case. At lower fields
(~#300G), the vortices are observed to damp when the diffu-~
sion in the plasma makes a transition from vortex to clas~
sical diffusion scaling. At very low field (~100G) the
cell structure is much smaller than at high fields by the
earliest times cbserved.

With an added weak toroidal field the cells are ob-
served to decay and the longest-wavelength modes are
damped preferentially. This agrees with previous diffusion
studies that have shown that classical diffusion is domi-
nant for this case.

The physical model that emerges from the theory and
the data is as follows. The initial injection process
creates a plasma with a large amount of energy (from charge
separation) in turbulent vortex modes. During the £first
few milliseconds, this initial, non-reproducible distribu-
tion evolves into a reproducible structure with the energy
concentrated at the longest wavelengths. The spectrum then
retains this shape, and decays on a much longer time scale
than the one required to produce the long-wavelength dis-
tribution. Diffusion is caused by the vortex modes when
the electric fields become uncorrelated. The magnitude of
D, depends on both the magnitude of the electric fields,
and the correlation times. This interpretation also ac-
counts for the enhanced magnitude of D, obtained in the dif-
fusion studies over the Okuda-Dawson diffusion coefficient,
while preserving the scaling.
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CHAPTER I - INTRODUCTION

The purpose of this thesis is two-fold: first, to
present floating potential structure for different plasmas
and operating parameters in the Wisconsin Levitated Octu-
pole. Second, to show how the observed potential structure
can be used, within the framework of vortex diffusion, to
account for enhanced diffusion in the appropriate para-
meter regimes.

Throughout this paper the words "convective cells",
"floating potential cells", and "vortices", will be used
interchangeably to mean 'non-azimuthally-symmetric floating
potential structure'. [Reference 14 contains a discussion
of the various types of cells presented in the literature,
as well as a compendium of experimental papers on cells.]

I.1 HISTORICAL BACKGROUND

The presence of non-azimuthally symmetric floating
potential structure in the large Wisconsin Levitated
Octupole was first reported by Drakel. The structure was
measured by a Langmuir probe, mounted on a cart which
could be moved azimuthally along the bottom of the machine.
Drake also noted the effect of the potential contours
(open or closed) on the orbits of single particles, includ-

ing the effect of azimuthal VB drifts.

Earlier work on the small Wisconsin Torcidal Octupole
had shown asymmetries in the floating potential both
during the injection process and subsequent motion of
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plasma around the machine2’3, and during the later phases
of the experiments when the plasma was more uniformly
distributed4’5. Although the plasma was stable to flutesz,
the plasma losses were still much larger than what would

be expected from classical diffusion6, even with the

addition of a toroidal field7.

When the Wisconsin Levitated Octupole was built,
experiments were begun to understand the cross-field
diffusion., Particle losses to the hoops were measured
with striped particle collector58'9 10,11

Drakel'lz. For a low density (n“logcm—3) collisionless

by Cavallo and

gun plasma in a lkG average field, a diffusion coefficient
was estimated from the measured particle flux to the ring
and the density gradient near the ring, and was found to

be roughly independent of B, and proportional to an inverse
power of the densityl3. In addition to scaling differently
than classical diffusion (D ocn/B , the diffusion coeffi—
cient was several orders of magnltude larger (750cm /sec 10
14). Drakel2
flux was 100 times smaller than expected if the diffusion

were Bohm-like (DB“l/B).

vs .2cm /sec also showed that the particle

Work by Greenwoodl3, Drake and Berrymanls, Navratil

15
'
and others concentrated on first solving the diffusion
equation in Octupole coordinates, and then parametrizing
the scaling of the diffusion coefficient. These results

are summarized in the next section.

H



I.2 DIFFUSION COEFFICIENT SCALING IN THE WISCONSIN
LEVITATED OCTUPOLE
Greenwoodl3, and Drake and Berrymanls, set up and
solved the diffusion equation in Octupole geometry, and
confirmed the independence of the diffusion on B, and

-1/2

determined a density dependence of n for the collisiocn-

less plasma in a 1kG poloidal field.

The next step was to extend the range of plasma para-
15 puilt a

second plasma gun designed to produce a colder, denser,

meters available in the Octupole. Navratil

collisional plasma. Modifications to the capacitor banks
allowed operation at very low fields (<40G near the lower
outer hoop surface)zs. Using the diffusion eguation, den-
sisity profile shapes and time decays were then fit to
predict the scaling of D over a wide range of para-

metersls’25’26.

The results of the profile evolution with a purely
poloidal field can all be explained within the framework
of vortex diffusion:

D« 1 T (1.1)

v 5 =

where e=1+.018n(cm_3)

/BZ(G). Because classical collisional
diffusion is always present, it will be dominant over
vortex diffusion at sufficiently low fields for a dense

enough plasma.

The collisional plasma exhibits classical diffusion
(DCzDon/Bz) at low fields (Bv100G). As B is increased,

there is a transition to vortex diffusion scaling, D

1/2

*
proportional to (T /n) and independent of B. The



—-f -
&
magnitude of D indicates an "effective temperature" T of

lOGeV 26.

For the lower-density collisionless plasma, vortex
diffusion scaling persisted until the density was reduced
to the point where the dielectric constant approached
unity, where the scaling became independent of density,
and proportional to B"l as predicted by equation (1.1).

15

After an initial cooling period of 20ms (during which

the electron temperature decays) the collisionless plasma
*
with €1 had a constant T of 104eV 25. 'I‘e was also

constant after 20 ms.

With an added toroidal magnetic field the collisionless

plasma still diffuses independently of B, but the density

-1/2 to nwl, as seen in computer

27

dependence changes from n
simulations by Kamimura and Dawson In the case of the
collisional plasma, a very small toroidal field (™20G)
added to the poloidal field (Bt/Bp“.03) doesn't affect the
vortex diffusion scaling. A larger toroidal field (Bt/Bp

v,1l) causes the diffusion to become classicalzs.

I.3 OQUTLINE OF THESIS

The work to be described was done concurrently with
the diffusion studies. As cell structure was plotted for
different regimes, it became apparent that cells could be
very large (machine-sized), and very long-lived. Questions
then arose as to what effect the cells can have on plasma
transport across B, what are the causes (or sources) of
cells, and how can they be destroyed or damped. The object

of this thesis is to answer those questions.
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At the same time as the diffusion and cell studies,
theoretical work was being done on two-dimensional plasmas
from several points of view. The results are summarized
in the following paragraphs, and discussed in more detail
later. The importance of the theory lies in that, with a
few modifications and extensions, 2-D fluid theory can be
used to predict both vortex diffusion and macroscopic
vortex structure, remarkably like that observed in the
Octupole.

For the purpose of this thesis we will be mainly in-
terested in the plasma regimes where the diffusion scales
like "vortex diffusion", Dv“ {T*/n)l/z, where T*mTe, and
independent of B. The vortex diffusion coefficient can be
17 studied
the 2-D electrostatic guiding-center plasma (with e=1),

derived in several ways. Taylor and McNamara

and found D for an arbitrary electric field spectrum,

D =

2
1 E” (k}
= I s (1.2)

B K

Okuda and Dawson18 calculated the diffusion coeffi-
cient for a 2-D thermal plasma from the linearized two-
fluid equations, without making the guiding-center approxi-
mation, to obtain

D «= % + independent of B (1.3)

Okuda and Dawson pointed out that if the guiding-
center approximation is not used, the energy distribution
in themal equilibrium is eEz/S"’r rather than E2/8n, with
€”1, and showed that with this substitution into equation
(1.2), Taylor and McNamara's result would be the same as
equation (1.3).



Y

The statistical mechanics of the 2-D guiding center
plasma with £=1 was examined by Joyce and Montgomerylg’zo,
and by Taylorzz, for a non~thermal spectrum. For the
parallel charged rod model with a certain minimum energy,
the equilibrium state was spatially non-homogeneous,
corresponding, in the large energy limit, to two counter-
rotating vortices filling the system. With a different
guiding-center model {a truncated Fourier series represen-

24 obtained similar

tation) Montgomery23 and Seyler et al.
results using the theory for a Navier-Stokes fluid: under
the proper initial conditions on the energy, both theory
and numerical simulation showed macroscopic vortices as
the equilibrium solution. The macroscopic cell stuctures
measured by Drake, and those presented in this paper are
similar in many ways to the macroscopic vortices predicted
by the guiding center models, and have an electric field

energy much larger than the thermal spectrum.

The Okuda-Dawson diffusion coefficient predicted the
correct scaling for the collisionless plasma but was too
small by several orders of magnitude if the thermodynamic
temperature was used. However, there is no a priori reason
to expect the electric field spectrum in the plasma to be

given by a thermal spectrum.

In summary, using the various interrelated aspects of
the theories, we will attempt to show that the vortex
structures observed in the plasma are the source of enhanced

vortex diffusion in the appropriate regimes in the Octupole.

Experiments were made with the collisionless gun
plasma and with a colder, denser collisional plasma. The

plasma parameters are summarized in Table I.l1. More
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detailed information about these plasmas is given in

Navratil15

, Chapter II. The poloidal bank voltage was
varied to operate the machine with the same parameters as
in the diffusion studies. Data was also taken with an
added toroidal field (Bt=0m3OOG on axis). Exceptughere
specifically noted, densities (n) are given in cm 7,
temperatures (Te, T*) are in eV, and all other quantities

are MKS.

Chapter II presents the diagnostics employed. The
first part of Chapter III shows how the results from 2-D
fluid theory can be considered appropriate to plasmas in
the Octupole with a purely poloidal field, and the second
part covers the development of the theory of vortex diffu-
sion. Chapter IV concerns the application of the theory
to Octupole coordinates, and a discussion on the creation
of convective cells in the Octupole. Chapter V presents
data taken with a poloidal field for both plasmas; and
Chapter VI contains the data for both plasmas with a
poloidal and toroidal field. The conclusions are presented
in Chapter VII, along with recommendations for further
work.

It is strongly suggested that the data portions of
Chapter V be skimmed before reading the theory; this will
make it easier to understand why certain theoretical
developments are investigated. In particular note the
presence (or absence) of non~azimuthally—-symmetric float-
ing potential structure and the shape and magnitude of the

azimuthal potential and electric field spectra.



CHAPTER II - DIAGNOSTICS
IT.]1 GENERAL MACHINE DESCRIPTION

The Wisconsin Levitated Octupole (Fig. 2.1) has been
extensively described elsewhere 1’10'13’29. The basic
operating parameters are shown in Table II.l1 for maximum
voltage on the poloidal field bank (5kV). The Octupcle is
a pulsed machine; the four internal hoops are the secondary
of a 90~to-1l transformer. The magnetic field and lines of
constant field strength (mod. B lines} are shown in Fig.
2.2; Octupcle coordinates are sketched in Fig. 2.3 (diffe-
rential operators in this coordinate system are given in
Appendix A). The average magnetic field in the private

25

flux is defined as one~half of the average field strength

on the surface of the large-major-radius ring; Bave is
roughly twice as large in the private flux of the inner

hoops.

Data to be presented was all taken with the field
crowbarred at 25ms, slightly after peak field. The L/R
decay time for the magnetic field varies from “95ms near
the rings to “165ms near the center of the machine30.

This allows experiments to be done in a slowly-varying
magnetic field. A high current SCR and solid state diodel5
allow operation with a crowbarred field even at very low
bank voltages. The four internal rings can be levitated
for a period of approximately 20ms. A typical time se-

quence for a levitated experiment is shown in Fig. 2.4,
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Table II.1

-11-

*
Operating Parameters of the Levitated Octupole

Wall Inner Hoop Outer Hoop
Current’ 1.4 x 105 A 0.5 x 10° A 0.25 x 10° A
B max (at
surface) *¥* 6 kG 12.0 kG 5.5 kG
B min (at
surface) ** 1 kG 5.3 kG 3.4 kG
By (on axis)* 768 G
Poleocidal bank voltage 5 kv
Energy of pulse 0.6 x 10°% g
Total peak core flux 0.72 Wb
Inductance L: L =N2LO, N=90, L, = 0.6 MH (calculated)
Capacitance 0.048 F
Volume of vacuum region 8.6 m?
Volume inside y-critical @ 20ms 7.7 m?
Hoop minor radius 8.9 cm
Inner hoop major radius 0.99 m
Outer hoop major radius 1.79 m
Half~sine period (BP) 43 ms
Half-sine period (BP+B 47 ms
Crowbar time 23 ms
Cowbarred field decay time 65-90 ms

*All parameters are for full amplitude at 20 ms.

**Approximate values,
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FLUX COORDINATES
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IT.2 FLOATING POTENTIAL CONTOUR PLOTS

To meet the two thesis objectives stated in Chapter
I, it was necessary to map the three-dimensional potential
structure in the Octupole for a variety of parameters, It
has always been assumed that there would be no potential
gradients along an Octupole field line in a purely poloidal
field because parallel flow would quickly short out local
imbalances. To verify this, the floating potential was
measured with Langmuir probes for several field lines in
the private flux of the lower outer hoop, and several in
the common flux, at various positions along the field
line. At 45° in 6 from the gap it is possible to access
the same field line from several different probe ports, as
shown in Fig, 2.5, fThe field lines cannot be located to
within better than 1/8"-1/4" for several reasons: 1) the
probe tips are “V1/8" long; 2) the dimensions of the
Octupole and those of the flux plots do not exactly
coincide (for example, the lower lid is 1/2" higher than
the flux plot shows); 3) the approximation used for the
current does not duplicate the real current in the walls
and rings., The floating potential profiles measured had
the same shape in ¥, and, to within experimental error in
locating the field lines, the potential was constant along
a field line.

The potential depends only on 6 (azimuthal angle) and
¥ (flux surface). Therefore, to obtain a 3-D picture of
the floating potential structure, it is enough to measure
the value of ¢ at one position on each field line as a
function of 8., Drake designed a cart with a movable probe
to do this. The cart is permanently mounted on rails on
the bottom lid, at a radius slightly greater than the
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lower inner hoop {at R™l.1lm). The cart can be moved
through an azimuthal angle of 3500, from m900, past the
gap (at OO), through 240°. The cart is insulated from the
rails and the machine by Teflon wheels, and carries four

miniature coaxial signal cables.

The probe located on the cart can carry up to 4 probe
tips. As shown in Fig. 2.6, the probe can be rotated
through an angle o of approximately 1009, so as to sweep
through portions of the lower 1lid mid-cylinder and innerx
nose common flux, and the mid-cylinder side of the private
flux of both lower hoops. The position of the probe tips
aleng the probe body determines what y-surface the probe

tips are on at a given value of the angle o,

Several different probes have been used on the cart.
They have all had had the general shape indicated in
Fig. 2.6, with a shallow bend in the middle. This enables
access quite close to the inner nose and inner ring
{(position A), and allows the probe to avoid hitting the
microwave mirrors, etc., on the lower 1id (position B).
The probe tips were 2mm and 3mm gold halls mounted on
1/32" ceramic stalks; the probe bhody is of 1/8" ceramic.
The probes had either 1 or 2 tips at the bend and 2 tips
at the end. The probe frequency response is limited to
V1kHz by the cable capacitance.

The probe angle ¢ can only be changed at an azimuth
=-90° by a special screwdriver tool pushed through from
the lower lid; therefore, floating potential scans were
taken by setting the angle @ at one value, and then
moving the cart around the machine to obtain ¢(8) on one

psi-surface (per probe tip) at a time. The early data was
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digitized using the Biomations (with a maximum resclution
of 1/64 full scale). Later data was digitized with Jon
Twichell's TADC (nominally 12 bits) with a minimum resolu-
tion of 1/256, and usually better (1/1024). The data was
taken using Greenwood and Zarnstorff's program CARTSCAN.
The Octupole was operated on a 1-1/2 minute cycle; during
this time the experimenter could examine the digitized
signals from the cart and monitor probes, and a "movie"
showing ¢(8) for the current y-surface scan. A sample
shot of data, and a scan in 9 for one psi-surface, are
shown in Fig. 2.7.

Floating potential contours were plotted by repeating
this procedure for several values of ¥ to construct a 2-D
grid. To obtain a 3-D picture, the plots can be rotated
around a ring (stretched to follow the field line shape).
Typically 4 to 6 psi-surfaces per tip were scanned; the
grid step size in 6 varied from about .4° to 6° depending
on the experiment. Care was taken to appreoach grid
points from the same direction to minimize the effect of
backlash from the cart's driving mechanism. A typical
experiment would involve 5x111 = 555 shots on the machine.
Unfortunately the Octupole could rarely be counted on to
provide that many shots in a row without some of the
operating parameters changing (or a levator leaking,
etc.). The monitor varied enough from day to day to make
it necessary to take all shots for one scan on the same
day. A compromise was reached by not taking every point
on the grid, except where there were obstacles (Fabry-
Perot Interferometer, supports, the gap, gun ports) which
could be expected to affect Vf; or where gaps in the data
were observed in the movie. The missing points were later
interpclated from the rest of the peints on the same P~

surface,
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FI1G. 2.7 SAMPLE DATA SHOT AND AZIMUTHAL POTENTIAL SCAN,
COLLISIONAL HE.pLASMA: LOH
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Fig. 2.8 shows an idealized sketch of a contour plot.
Plotted data is presented separately for the private and
common flux regions. The VY coordinate is labelled with
the value of ¢ at 25ms.' (Drake's contours are plotted in
flux-space, with Y= w(t) )  As mentloned by Greenwoodl3
the cells are statlonary in real space rather than in flux
space, and plottlng them with respect to ¢25 0s emphasizes
this. The magnetlc field will be normal to the plots, and
for a given plot will be either into, or out of, the page,
but not both.  The physical dimensions for the full range
of values in ¥ (0-10 Dories) are on:the order of 10-50cm,
and for_BGOQ in 8, 27RM27w(l.4m)"“9m. If the plots were
done in_teal-space they would be ‘sectors of a thin annulus,
and if -shown nore nearly to scale, the contour plots would
be long and skinny.

A fixed monitor probe was inserted in a probe port on
the lower outer hoop to keep track of whether the plasma
was reproducible. The changes in Ve for a fixed position
of the cart probe did not correlate with changes in Vf at
the monitor probe, making it impossible to normalize the
data using the'monitor probe. Instead a norm was defined
as the area under the curve for the monitor signal, and an
acceptance criterion was defined about the norm - shots in
which the_monitor‘was outside of this percentage were re-
jected._zThe acceptance range was 10% about the norm for
the high density plasma (this plasma tends to be very
reproducible ~ most shots fell within 5%), and 15% for the
low density plasma. |

Early work concentrated on producing floating poten-—
tial contours, and efforts were made to measure all of the

structure by using a relatively fine grid of points in 9;
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this limited the azimuthal extent of the plots. When it
later became evident that the spectrum was a useful quanti-
ty, the plots were extended to cover 3600, and the distance
between grid points became larger. Ultimately we will be
analyzing the cross-field diffusion from the turbulent
velocity spectra. In the guiding-center approximation,
drifts in ¥ are due to the O-components of the electric
fields, and vice versa. Because the Octupole is a torus

we are not interested in the diffusion in 9; therefore we
want to obtain the electric field spectrum for the 6-
component, which leads to a drift velocity parallel to @.
This will be discussed further in Chapter 1IV.

The relationship between the plasma potential and the
floating potential is given by

kT m
Vo= Ve b 1nﬁ§- (2.1)
We will be interested in Chapter III in the gradient of
the potential rather than its absolute value. Because the
gun plasmas in the Octupole have uniform temperaturesla’ls,
VTe=O, and therefore we can use the floating potential
contours to infer the electric fields in the plasma.
Schmidt and Schmidt31

supports in the small Wisconsin octupole; the effect on

measured electron cocling at the

the calculated E~field spectrum of this local cooling will
be discussed in connection with the power spectrum in
Chapter V. The symbols ¢ and Vf will be used interchange-~
ably in this paper to represent the floating potential.
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II.3 POTENTIAL MEASUREMENTS IN TIME-VARYING FIELDS
IE:'\;'r<':ln533'"35 has pointed out the need to be careful
when measuring potential differences in time-dependent
fields. The problem when measuring potentials with the
cart can be illustrated quite simply: in Fig. 2.%a the
potential difference between points A and B includes the
emf induced in the measuring circuit by the changing core
flux through the loop. The contribution of this azimuthally-
dependent vector potential must be removed to find the
true potential difference between two points separated in
8. Following Evans, we will first examine the general
problem of measuring potentials in a time-varying field,
and then discuss two methods which have been used to
correct the floating potential data taken with the cart.

Fig. 2.9b shows a circuit which might be used to
measure a potential difference. The voltage measured by
the voltmeter is given by

Vo= (¢, - ¢g) + emf (2.2)

Here the emf is the voltage induced by the changing magne-
tic flux through the loop including the dotted line, which
completes the circuit, There is no gquestion how to calcu-
late the emf if it is known exactly where the dotted
portion of the circuit lies (for example, if it is a
length of wire). This is because we know how much flux is

enclosed by the loop in this case.

When the circuit is closed by a plasma it is impossible
to say exactly where the dotted line should lie. However,
Evan535 has shown that one can still calculate the potential
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Fig, 2.984 POTENTIAL DIFFERENCE OF A CIRCUIT ENCLOSING
THE CHANGING CORE FLUX,

€]

Fic, 2,98 PATH OF INTEGRATION, SHOWING CONTOURS C7 AND Co.



~25-

difference bhetween A and B without any knowledge of where
the cleosing contour c, lies if the vector potential A is
given along the known part of the measuring circuit (cl).
The potential difference is given by

by = by =V - = f’-g—%.a;z (2.3)

€1

where the voltmeter reading V is independent of gauge, and
the potential drop $p = ¢p will depend on the particular
~gauge used for ﬁ(w,e,t). To apply equation (2.3) we need
to know where the measuring circuit c,y lies, and the value

of X along the contour Cye

With this equation in mind we will now discuss two
methods of correcting the potential measured by the cart
for the effect of i. The first method is the one used by
Drakel to correct his data; this method was also used to
correct the early data taken for this thesis. The effect
on the results and a comparison with the second method
will be presented at the end of this section.

In the first method the cart was grounded at the
oscilloscope where the cables come out of the machine,
at -90°, fThe measuring circuit is shown in Fig. 2.10. It
runs from the probe tip (a) through the probe body in a
constant-azimuth plane to (b); from (b) to (¢) along the
center conductor of the u-dot cable; from (c) to the os-
cilloscope (d} and back to the grounding point (e), also
in a ?onstant—azimuth plane. ﬁ is a purely toroidal vec-
tor (A=K ), and R.dq is zero along (ab) and along (cde).
To calculate the potential difference betveen {(a) and (e},

$53" ¢+ We need to know only the value of X along the cable
{bec).
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Drake, Greenwood, and Zarnstorff calculated K by
assuming that since, when the cart goes once around the
Octupole the measuring circuit (Hdot cable) encloses all
the changing core flux, then 46 degrees around would
enclose 46/360 of the core flux. Zarnstorff set up an
algorithm32 to calculate 3 and the correction was made in
the programs 6SCAN and CARTSCAN before punching out the
data. The correction is in the form of a constant (which
depends on the poloidal bank voltage) times a function of
t. It hasn't been satisfactorily explained why they chose
to calculate ; rather than measure it on the machine. The
algorithn for i does not take into account that the vector
potential is a function of ¥ as well as of £, and can
therefore be correct for only one psiusurface.#ln addition,
this algorithm does not account correctly for A when the

power crowbar is used, even if the method is correct.

The partial-9 correction is based on Evans' picture
of how the flux penetrates a dielectric plasma33—35; if ¢
in the plasma is high enough, the flux enters at the gap,
spreads around the machine azimuthally until the flux
becomes azimuthally symmetric in the vacuum between the
plasma and the wall, and then penetrates the plasma
radially towards the rings. If the flux is not azimu-
thally symmetric, the algorithm#will not account correctly
for the azimuthal variation of A even if it will give the

correct answer for one complete turn.

The separatrix has £**® at the field null, and a very
high average €. For this reason it has always been
assumed that ws would be symmetric in Vf, and that perturba-
tions in the electric field outside ws would not penetrate
into the private flux. Data taken by Drake which showed
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large potential variations at the azimuth of the gap
inside the separatrix were interpreted by him to mean that
something other than the electric field at the gap was
responsible for creating structure inside WS. However, as
Fig. 2.1l illustrates, even though the flux inside the
separatrix may be uniformly distributed, the flux through
the measuring circuit (between the wire carried by the
cart and the bottom 1id} is not azimuthally symmetric
because the plasma edge does not have a high average A
dielectric constant. The cart wires come through the 1id
at about -90° from the gap. Therefore, the measuring
circuit, for measurements near the gap, would enclose more
flux than the partial-8 correction algorithm calculates,
and the gap structure reported by Drake would be in error.
In summary, the main prob}gm with this method is the
difficulty in calculating A along the measuring circuit,
which occurs because the plasma edge is not a perfect con-
ductor,

Before discussing the second method of correcting for
A, we want to estimate the magnitude of the possible error
in the first method. The gap potential step for a crow-
barred field (but without a power crowbar) at 2.5kV on the
poloidal bank is on the order of 1.2V at lms after injec-
tion, and decreases to V,5V 35ms after injection. If the
flux is symmetrically distributed around the machine, this
corresponds to a maximum of .OO33V/o at the largest bank
voltage used in these experiments., If there is as much as
a factor of 2 difference in the flux density around the
machine, the appropriate 3 correction would bhe .006'7V/o at
the gap, for a difference of .0033V/O. These numbers are
estimates, and will be used in Chapter V to show that the
voltages in the plasma at the gap for the crowbarred case
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Y
cannot be accounted for by citing an incorrect A adjustment.

A second method of correcting for the changing
vector potential, which we prefer, is to ground the cart
at the azimuth of the probe by means of a metal 'finger’
resting on the rail. As shown in Fig. 2.12, there is no
emf generated in the measuring circuit (a coaxial cable)
this way, because |A'd% is the same for the center conductor
and outer conductor in magnitude, but opposite in sign.
The only correction necessary to compare voltages at two
azimuths is to subtract the difference between the poten-
tials at the two grounding points, which is simply the IR
drop in the bottom lid. This avoids making any assumptions
about the dielectric coefficient of the plasma, and has
the advantage of being equally as good in the common flux,
where it is not possible to make the argument about the
infinite dielectric on the separatrix.

To recapitulate: Both methods can give the correct
value of the potential at a point, if used correctly.
However, the first method requires knowledge of 3 along
the measuring circuit; alsc, the algorithm used is incor-
rect if the flux is not azimuthally symmetric. The errors
will be largest for the Octupole operated in a half-sine-
wave mode, and least when the power crowbar is used. 1In
the second method it is not necessary tc know the vector
potential at all. The only assumption made is that the IR
drop in the bottom lid is linear in 6.
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IT1.4 SUMMARY

The object of this chapter has been to show how the
floating potential measurements were made. The information
obtained will be used later to infer the electric field
power spectrum for the plasmas studied, and it will show
how these fields are related to the diffusion.

Any errors in the data corrected by Drake's method
due to assuming incorrectly that the flux was symmetric
are expected to be small because the machine was crowbarred
for all the experiments. This is discussed further in

Chapter V when the data is presented.



-32-

CHAPTER IXI - THEORY OF VORTEX DIFFUSION

The purpose of this chapter is to set up the equations
of motion for fluid turbulence, and to derive an equation
for the diffusion coefficient from the turbulent velocity
spectrum. The suitability of using two-dimensional fluid
theory in the Octupole is discussed in Section III.1. In
the next section (III.2) we will start from the three-
dimensional Navier-Stokes equations with viscosity. Then,
as a result of setting kz=0, we will obtain a set of two-
dimensional equations, and will examine the predictions of
statistical mechanics for this system. In Section III.3
the 2-D equations will be solved for the case of an elec-
trostatic guiding-center (e.s. g.c.) plasma, where the
fluid velocity is given by the ExB drift velocity. 1In
Section III.4 an expression for the energy spectrum is
obtained, and the concept of an ‘'enhanced temperature' is
examined. In Section 1II1.% we derive an equation for the
time-dependent diffusion coefficient given an arbitrary
velocity spectrum, and calculate D using the electric
field spectrum to infer the velocity spectrum for the
guiding~center plasma. In Section III.6 the vortex solu-
tions are discussed, and Section III.7 contains a brief
description of the general time behavior of the diffusion
coefficient. The final section (III.8) contains a summary
of the main points developed.

IIX.l1 USE OF 2~D FLUID THEORY IN THE OCTUPOLE

Previous diffusion studies (summarized in Chapter 1I)

have shown that the theory of vortex diffusion predicts
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the correct diffusion scaling in the Octupole, with a
purely poloidal field. The scaling holds for both the
collisionless plasma, and for the collisional plasma with
a magnetic field large. enough so that viscous damping does
not destroy cells on the experiment time scale. Vortex
diffusion has been derived theoretically from fluid theory
by Okuda and Dawson18 for a two-dimensional thermal plasma.
It has also been derived for a plasma with an arbitrary
(i.e., non-thermal) spectrum using the model of an electro-
static guiding center plasmal7; this approach has been
modified to include the effect of a dielectric plasma

18,21

(wp/mc 0 ). The second method was shown to give

results identical to the first for a thermal plasma.

Plasmas in the Octupole are not in thermal equilibrium,
and the modified formulation using the guiding center
model predicts several interesting features similar to
ones that appear in the data, such as large vortices in
the potential, and an electric field power spectrum that
decreases with wavenumber, k. These features are the
result of solving the full non-linear fluid eqguations.
(The Okuda-Dawson derivation is linearized, and does not
predict macroscopic vortices; however, it does predict the
correct scaling of D with density and magnetic field.)
Because macroscopic vortices are seen in the data, we will
use the second formulation, and examine the theoretical
development leading to vortex solutions in more detail in

the following sections.

The guiding-center model requires that the motion of
the plasma ke due only to the ExB drift of the guiding
centers, an approximation that is exact only in the limit

of very large magnetic fields, where the dielectric cons-
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tant is unity, and there is no dielectric screening of the
electric fields, However, the dielectric constant for
both the collisional plasma, and the collisionless plasma

(except for very small n25

} 1s much larger than 1, and we
will use the e£>1 modification where appropriate. The

effect of the VB drift is discussed further in Chapter IV.

A convenient way to view the e.s. g.c. plasma is as a
collection of charged rods, infinitely long, aligned
parallel to a uniform magnetic field, which interact with
each other purely by electrostatic forces, and where the
equation of motion is simply v=ExB. As will be shown, in
this representation (and another due to Montgomery36 to
be presented in III.3), the equations of motion are formally
identical to those of a two-dimensional, inviscid Navier-

Stokes fluid.

Before we go on to discuss the fluid theory, we need
to examine whether a real plasma in the Octupole can bhe
represented by the model ¢of an e.s. g.c. plasma. The
basic assumptions made to obtain macroscopic fluid vortex
solutions are that the plasma be inviscid, two-dimensional,
and that it have a certain minimum amount of energy of

interaction.

The first requirement, that the fluid be inviscig,
can be modified; the presence of macroscopic vortex
solutions will then depend on the time scale of any dissi-
pative mechanisms present. These damping time scales are
discussed in Chapter IV when the theory is applied to the
Octupole, and also when the experimental results are pre-
sented (V and VI).
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The second requirement 1s actually not as stringent

21 has shown that 3-D systems

as it appears: J. B. Taylor
have contributions to diffusion from both vortex modes and
from collisions. The vortex contribution will dominate if

there is sufficient energy in the k,=0 modes.

With a poloidal field and no toroidal field, Octupole
field lines close upon themselves after one circuit around
the minor axis {(common flux field lines, ~4m) or around a
ring (private f£lux, “80cm} in a constant-azimuth plane.

If these field lines acquire an excess charge, it cannot

be easily dissipated by flow along a field line, but must
be damped by collisicons. Because the potential and density
are constant along a field line (even if B is not), all of
the vortex energy is in the k,=0 modes, and we will expect
to see vortex diffusion except for very dense, cold plasmas
in small magnetic fields, or for plasmas where the vortex

spectrum has damped away.

The third requirement, that the fluid have a certain
minimum energy, emzo, is a difficult one to treat for a
real plasma. For the charged rod model in a box, it has
been shown that any quantity of positive interaction
energy among the charged rods (in addition to the 'self
energy') leads to vortex-like solutions. Positive inter-
action energies are obtained in the numerical simulationsl9
by randomly loading pairs of charged rods initially (random
loading of individual rods does not result in a positive
interaction energy): the maximum interaction energy comes
about when all the positive rods are clumped together on
one side of the box, and all the negatively-charged rods

are close together on the other. The velocity streamlines
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(equipotentials) then correspond to a pattern of macros-
copic vortices f£illing the box.

For the charged-rod model, clumps of charged rods
correspond to E>E and spatially homogenecus charge
distributions correspond to €<E - For a real plasma we
will assume the reverse, that a nonhomogeneous charge
distribution indicates €>E 4 will lead to macroscopic
vortices, and that it is reasonable to try to apply 2-D
fluid theory to plasmas in the Octupole with a purely
poloidal field.

ITII.2 NAVIER-STOKES TURBULENCE

The development in this section follows Montgomery36.
We start from the 3-D equation of motion for a Navier-

Stokes fluid, and a condition of incompressibility,

(.g..E . "\;-v)% - Fp + vy (3.1)
Vev = 0 (3.2)

where p is the pressure, v the fluid velocity, and v the
viscosity. We expand v in Fourier components in a large
but finite box,

> - '_}E+
v o= 2 (k) KX (3.3)

Taking the divergence of (3.1) and using (3.2) leads
to an equation for p(%),

v2p = T« (-89 (3.4)
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The sclution depends on the boundary conditions, and
can be substituted back into (3.1) to obtain an equation

in terms of %(K) alone:

e
dva(k)
dt

2

-» “p . -+
MaBY(k)VB(p)VY(r) - vk va(k) (3.5)

p+r=Kk

The first term on the RHS is the non~linear term,
with MaBY(ﬁ) a coupling coefficient defined by

kakB

+ ky(duﬁ - k2 ) (3.6)

. k k
i

_ _ aly
Mugy = 7 % kB(GaY K2

Repeated indices are summed over all wavenumbers 5 and T
which can be added vectorially to give k.

The second term on the RHS of (3.5) is a viscous
damping term, is linear, and represents the dissipation in
the fluid. Terms may be added to the RHS of the equation
of motion (3.1l) to represent other forces such as stirring,
water falls, etc. Equivalently, the Fourier transform
(FT) of the force can be included on the RHS of equation
(3.5).

The rate of change of the energy in the fluid is

given by36
ST v 0 ]? = v TP, |2 (3.7)
it k K

so that for a case with no viscosity there will be conserv-
ation of energy. Again we can add a term to the RHS to
represent other dissipative forces, and if the viscosity
is small, the otherzdissipative terms may be responsible

(

for the decay of Zv®(k). The effect of plasma cooling as
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a dissipation mechanism is discussed in section III.3 in
the context of the guiding-center plasma, and in Chapter V
with regard to the experimental data.

We now examine the equations of motion when the flow
is independent of one coordinate. In accordance with a
physical picture of the Octupcle, we will pick this to be
the coordinate parallel to B. The velocity vector will be
in the plane normal to B. The vorticity vector is defined
as the curl of 3,

N

T =V xv=r_b (3.8)

Turbulence in two dimensions is intrinsically diffe-
rent from that in three dimensions. Taking the curl of
eq. (3.1) gives us an equation for the rate of change of
vorticity in a fluid element,

2. va’)"ﬁ = v (3.9)

Therefore, in an inviscid two-dimensional fluid, the
vorticity is constant in direction and in magnitude, and
the enstrophy (mean-square vorticity) is also a constant.

In two dimensions equation (3.5) becomes

dg‘ék) =+ Z-)»M(E'g)r(g)r(;) = sz (}?) {3.10)
ptr=k
where
A
wE,g) = el -1 (3.11)
_ r p

Equations (3.10) and (3.11) (or (3.5) and (3.6) in
the three-dimensional case) are perfectly general and

exact, merely being limited by a suitable expansion in
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Fourier components, and an appropriate set of boundary

conditions.

We are interested in comparing the results of the
fluid theory to experimental data, and for this we will
examine the predictions of theory for 1) diffusion, and
2) relaxation of the velocity spectrum to thermal equili-
brium. The development leading to a diffusion coefficient
will be postponed until after the g. ¢. plasma has been
introduced, as the actual form of D will depend on the
particular velocity spectrum used.

Although equations (3.10) and (3.11), together with
an initial distribution, completely determine the behavior
of the system, there are an infinite number of them, and
we will turn to the methods of statistical mechanics for
solutions, treating the vk as random variables with a
probabilistic distribution over an ensemble, Each member
of the ensemble will evolve deterministically from the
initial conditions; averages over the ensemble will then
be used to predict a most probable state for the system,
The magnitude of fluctuations about the ensemble averages

will be an indication of how good the predicticons are,

We will return to the guestion of dissipation later,
but for now we want to examine the equilibrium state for a
fluid described by the Navier-Stokes equations with zero
viscosity. The first approximation that we will make is
to limit the sum over k to a large, but finite, wavenumber

k This means that we will no longer be able to see

max’
any effects which happen on a spatial scale smaller than
l/kmax‘ This will be done by setting vka for k>kmax'

Physically this is justified in our case by the fact that
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the spectra of the velocities will be seen to be rapidly
decreasing functions of k. The following discussion will
be for the 2-D system in particular because there are
certain important features of the equilibrium solutions
which do not show up in 3-D.

A phase space, with the real and imaginary parts of
the Vi as coordinate537, can be defined for the system.
With v=0, the divergence of (3.5) proves incompressible
flow,

, av,, (K)

W % | A | <O (3.12)

leading to a Liouville theorem in this phase space., This
opens the possibility of ensemble524, and of a description
in terms of an equilibrium 'most probable state' to which
the system will relax from given initial conditions. The
constants of the motion will be used to construct the
equilibrium state.

The constants of the motion which survive the trun-
cation in k-space (Montgomery calls them "rugged" cons-
tants of the motion) are the energy, £, and the enstrophy,

i {mean-square vorticity),
e =2 v (x)]? (3.13)
% o
Q=L k2 |v. (k)2 (3.14)
" o
Because energy and enstrophy are constant if v=0, any

flow of energy to higher wave-numbers is accompanied by a
simultaneous transfer towards the smallest k's, resulting
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in large amplitudes at the lowest modes until some kind of
equilibrium is reached (whereas in 3-D, v=0 leads to equi-
partition of energy). This can be seen from equations
(3.13) and (3.14) if we let the spectrum consist of three
modes O<kl<k2<k3. Then, if.we transfer energy from mode
kz to k3 (which does not violate e=constant), we see that
the enstrophy is increased. To maintain Q=constant it is
- nhecessary to effect a simultaneous transfer of energy to
kl.
A canonical distribution can be constructed from the

energy and the enstrophy:

(-ce~BQ)

P=Ce (3.15)

1 and 871 are the "temperatures"

where the multipliers o
for the energy and enstrophy, respectively, and C is a

normalizing constant.

The expectation value for sz is given by

<Jv k)| = (a + gxPH 7L (3.16)
where o and B can be found by solving
e =2 (a+ 8k4~t (3.17)
K
Q=2 k% + 8k ~?! (3.18)
K

Because of (3.16), either a or B, but not both, can
be negative, subject to energy and enstrophy being positive,
which defines three sets of equilibria depending on the
ratio Q/e. ,

Regime I a<0, B>0 Bkmin + a>0



S N

Regime II a>0, B>0
. 2
Regime III a>0, B<0 o -+ Bkmax>0

Regime III ultimately reduces to I if € and & are

held constant while kma is ipcreased; it correspohds to a

X
spectrum which is an increasing function of k2 up to k.

x'
The most interesting is Regime I, where 0<0, f>0, and
2

a+8kmin

is ne ativezo. In the limit of very large € the equili-
negarive

>0; for this regime the thermodynamic temperature

brium consists of a pair of large counter-rotating vortices
filling the box, and the spectrum is strongly peaked at

the lowest frequency mode. For fluids with less energy,
but still in Regime I, the negative temperature states

will also consist of vortices. As the energy decreases,
the vortices get smaller, and may move about within the
box, The equilibria would not then be stationary in
configuration space.

Montgomery points out that the usual prediction of a
"most probable state" for systems in Regime I may not look
like the actual states at all: for example, the ensemble~

averaged vorticity density for the case a<0, B slightly
2

min
tions of the ensemble have a highly nonuniform distribution

greater than -a/k is zero, but the individual realiza-

of vortices,

The above results are valid for a 2-D system with
v=0., In three dimensions the only constant of the motion
is ¢, and the corresponding canonical distribution is the
familiar one, P = C exp{-€/T).
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The addition of viscosity to a system in Regime I af-
fects the process of equilibration. There are two time
scales, one for the approach to (inviscid) equilibrium,
and the other for the thermalization (which depends on Vv
and any other dissipative mechanisms which can remove
energy from the convective cells). If the first time cons-
tant is short, or if the system is close to the inviscid-
type equilibrium initially, then it seems reasonable that
this type of vortex structure would be observed. The cri-
tical parameter which determines which regime the system
will be in is Q/e: systems with energy above some number
em20 will tend to vortex equilibria; otherwise the final
state, even without viscosity, will be a spatially homo-
geneous equilibrium. Montgomery indicates23 that although
the shape of the spectrum in k may be dependent on whether
the viscosity is exactly zero, in two dimensions the addi-
tion of a small viscosity still gives qualitatively
similar solutions.

Several papers have attempted to determine a numerical

19’55. (For the charged-rod model, em=019.)

~value for €m
Unfortunately, they are suitable only for comparison with

numerical simulations, where kmax and k are predetermined,

min
-and do not readily extend to a real plasma.

ITI.3 THE ELECTROSTATIC GUIDING-CENTER PLASMA

The equation of motion for the e.s. g.c. plasma is

5B
B

(3.19)
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where B is a uniform magnetic field B=Bb., The requirement
that E be electrostatic (E=~$¢, TxE=0) leads, using (3.19),
to a condition of incompressibility, 3-$=0, and the equa-

tion of continuity for electric charge becomes

a3 ) _ . |
("a“E* v-v)p =0 (3.20)

Contours of constant ¢ (electrostatic potential) at
fixed t are streamlines. The set is closed by Poisson's

equation,
TeE = -v% = o/e, (3.21)

Two discretizations of the e.s. g.c. plasma have been
studied extensively, Montgomery23 reviews their similari-
ties and differences, and the predictions that can be made
for both formulations. The first is the parallel charged

rod mode in which the charge density is represented by

a collection of charged field lines,

o (%,t) =L (ey/8) 8(X = X, (3.22)
i
The other, which will be used in this section, repre-
sents the guantities ¢, p, E, and v as a sum of Fourier
components as in equation (3.3), up to a maximum wave-

number k
m !

ax

- - '-k)'+
p(x,t) = z:p(k,t) et x’ etc. (3.23)

k

The transforms will be related by



-45-

ik-B(k,e) = p(k,t) /e = k% (K,¢t) | (3.24)

(%, £) = b x B(k,t)/B (3.25)
with |

kK x B(k,t) = kev(k,8) =0 (3.26)

Eguation (3.20) is identical to the vorticity equaw
tion for the inviscid Navier-Stokes fluid (equation (3.9),
with v=0) if we identify p with I, and we can use the
fluid results to write

<|v(k)|2> = <lE(k)I2>/132 = (o + gk3) "t (3.27)

The energy and enstrophy are still given by (3.17)
and (3.18); using (3.27) they can be written as

(3.28)

0 =]2;. lo(%,t) 2 z)};kzl”x?(i’{,t)lz (3.29)

All of the predictions from the 2-D £luid solutions
carry over, and we can expect to see an energy spectrum
peaked at small k values, and conservation of vorticity
(charge) in the absence of viscosity.

There is no eguivalent to the enstrophy in the charged-
rod model. However, macroscopic vortex solutions are also
obtained in this discretization as an equilibrium state

corresponding, again, to a negative temperaturelg'zo'Zl.

A brief discussion of the effect of cooling is in

order here., Because the plasma has a finite temperature,
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potentials on the order of kT/e can exist in the plasma.
Larger fields cannot be supported; if they exist, the
plasma particles will quickly rearrange themselves to
short out the fields. Thus, if the plasma cools, the
electric fields may also drop. It is not clear how this
term should be included in the equations for the energy
dissipation (3.7). However, 1f the viscosity is small, as
in the case of the collisionless plasma, the total energy
decay can be used to find this term, as will be done in
Chapter V.

IITI.4 ENERGY SPECTRUM

The energy in the vortex spectrum resides in the
electric fields in the plasma, and is due to charge sepa-
ration. For a plasma in thermal equilibrium, the relation
between the energy in the electric field fluctuations and
the thermodynamic temperature is given by

T(k) _ <E(k)%> 2

""7""' = m-'é",r"'_""-"-‘ L”LL (3-30)
with L, and L, the dimensions of the system. The thermal
equilibrium spectrum is independent of k (equipartition of

energy) until kszz

becomes ~1.

For a non-~thermal plasma we can define an effective
temperature T* in the same way as equation (3.30). However,
there is no reason the energy should be divided equally
among the modes. T* can be much larger than the thermo-
dynamic temperature. The "negative temperature" phenomenon
that leads to macroscopic vortices is an example of a non-
thermal spectrum.



—d

Equation (3.30) is an adequate representation of the
vortex spectrum for the electrostatic guiding-~center
plasma in thermal equilibrium. If the g.c. approximation
is not made, Okuda and Dawson have pointed out18 that the
energy T/2 per mode is shared by the zero-frequency vortex
modes and by modes above the gyrofrequency (upper-and
lJower-hybrid waves and Bernstein waves); the energy asso-
ciated with a vortex mode is not Ek2/8w, but aEkz/Bw. This
changes the relationship between the temperature and the
electric field fluctuations responsible for vortex diffusion.

Plasmas in the Octupole have mp/mc>>0, ang are not in
thermal equilibrium. The measured spectrum Ek corresponds
to the part of the spectrum below the gyrofrequency, and
is related to the effective temperature T* by

* *
-E— S LI o pp 2 (3.31)

ITII.5 DEVELOPMENT OF THE DIFFUSION COEFFICIENT

If the velocity for all the particles in an ensemble
is known at all times, the coefficient of gelf-diffusion

can be written as

e
B o= XL0) x(t), (3.32)
2t
where
-+ t—-)-
x(t) -—-j v(t) 4t (3.33)
0

Here %(t) is the Lagrangian velocity of the particle.

To find an expression for D in terms of the more convenient
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Eulerian statistics of the system (such as might be mea-
sured by probes at fixed points), we need to find an

approximation for %(t) in terms of $(§,t). Using (3.3),
- t -3 3
D = <V(0) V({t)> dt (3.34)
o}

t -+ +% -+ e
= L Y <v(k,,0) v (k,,t) expl-ik,*x(t)]>dt

The ensemble average is approximated by Taylor and
McNamara (based on a hypothesis by Corrsin38) as

-

-+ N W L - -
<v(kl,0) v (kz,t)> <exp[-1k2-x(t)]> (3.35)

*x(t) depends on all the Fourier coefficients at times
between 0 and t, so this approximation assumes the velocity
field has a broad enough spectrum so that §(t) depends
only weakly on the modes il and iz.

To evaluate the ensemble average of the exponential,
Taylor and McNamara make the assumption that the fluc-
tuating electric field can be represented by a normal
distribution (Appendix A of Ref. 17) so the probability of
E(t) can be expressed in terms of the desired autocorre-

lation,
s 2
<expl-ik+*x]> = expi-k“R] (3.36)
where
1 t t > >
R{t) = 5 dtl dt2 <V(tl) V(t2)> {3.37)
0 0

Essentially this corresponds to a Lagrangian auto-

correlation that varies as
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Sy (t) = <|Ek(t)[2> exp[~k2R(t)] (3.38)

This approximation was tested numerically39 and was
found to give reasonable agreement, with 'experimental'
autocorrelations showing slightly weaker damping than pre-
dicted by the theory.

R(t) is the mean dispersion of a group of diffusing
particles, and is given by the differential equation
2
S(;) _a Rét) - 12 Z:Ez(ﬁ,t)
B dt 2B k

2
o 2K R(E) (3.39)

where the velocity E(i,t)/B is the solution of equation
{(3.5) or (3.10) with any additional forces added to the
right hand side.

The diffusion equation is given by the first integral
of (3.39), and the integration can be performed explicitly
if Ey is not a function of t.

3 3
D(t) _ dR _ 3_-\62 <E? (X) > —2K R (%)

= e = [1 - e ] (3.40)}
2 dt 282 'k K2

For very long times R(t) is unbounded, and the diffu-
sion equation is given by

E2 1/2 (3.41)
1 k
sz_ Z__.
B X k2

In addition to the total amount of vortex energy
available, its distribution in k-space is important in
determining the magnitude of the diffusion; the diffusion

is dominated by the longest wavelength modes unless Ez(k)
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increases faster than k2. For the thermal spectrum, E2 is
independent of k {(up to kzxg%l), and for the data from the
Octupole to be presented, E(k)2 decreases rapidly as k is
increased; this means that the first few modes are the
most damaging to confinement, This was also shown in a
numerical simulation by Okuda and Dawson, in which they
artificially removed the smallest k-modes and found that
diffusion was greatly reduced, even though the energy in
those modes was a small fraction of the total energyls.
Taylor and McNamara17 also pointed out that the longest
wavelength fluctuations are the slowest to disperse, and
the modes for which the guiding-~center approximation is

most accurate.

The time dependence of (3.40) will be discussed in
some detail in the next section, but before we do, it is

convenient to look at the forms that result for D given

oo f
various electric field spectra. Taylor and McNamara used
the thermal equilibrium spectrum for the two-dimensional

plasma in the g.c. limit,

<g, > = KL L (c.g.s.) (3.42)
1+k7A
D
which, replacing the sum by an integral cut off at k=2n/L,
leads to ‘
_ ¢ [2KT L Y1/2 NT
D = B 17 In m) =gy {c.g.s.) {3.43)

Thus, for the 2-D g.c. plasma the diffusion coefficient
has a Bohm-~like dependence on field strength, even in

thermal equilibrium,
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The model described is valid when B+«, or to be more

precise, when (mp/wc)2<<l. With finite wp/mc, we replace
E2 with EEZ. Since Ek2 is not a function of k at low k's
for the thermal spectrum, it can be taken out of the

sumzs'26 in equation (3.41), and, converting to an integral,

we obtain the Okuda-Dawson diffusion coefficient,

1

K 1/2
1 T
= E_\/“‘1+.'0'I9' 752 (3.44)

. 2 T max
D = in
oD B EL” km

in

so that at large fields D reduces to the previous case,

but if e>1, Dm(T/n)l/z. For a non-thermal spectrum, we
*

replace T{k) with T (k), as in egquation (3.31). When Ek2

is a function of k, there is in general no simple analytical

expression for D.

IIT.6 FLUID SOLUTIONS; BOUNDARY CONDITIONS

Time-dependent solutions $(§,t) can be obtained from
simulations by plotting the equipotentials (streamlines)
at any given time, but there is no general theory to '
predict what they will be, or how they will develop in
time. However, for a conservative system in equilibrium,
the equilibrium distribution can be used to write Poisson's

equation20 as

V2¢ = ~4ﬁen0 [exp(-RBed) - exp(Bed)] (3.45)

where B<0 is the coefficient corresponding to the negative
temperature. This equation can be made dimensionless on a
square box of side L by letting ¥Y=eB4¢, Azz—SNeZnBLzz
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v2y + A%sinhy = 0 (3.46)

Analytic solutions to the sinhY equation have not
been found; the numerical solutions (found by McDonald48
by using special iterative techniques) for a given energy
and A are not unique. The most probable state for a given
A is determined by the solution with maximum entropy,

2
ul A E (3.47)

S = In W= 288 = -
4ﬁe2 Dy

The shape of the streamlines is determined by the
boundary conditions. Typical solutions (with a perfectly
conducting boundary) are given in Refs. 47 and 48; for the
L/2 by L rectangular box, this method predicts the same
solutions as those obtained in simulations by Joyce and
Montgomerylg'zo. (It should be noted that these solutions
were obtained for systems with a total net charge of

Zero.)

The vortex solutions and boundary conditions will be
discussed further in Chapter IV in the context of boundary
conditions appropriate for plasmas in the Octupole.

III.7 SOLUTION OF THE TIME-DEPENDENT PROBLEM

Because the Octupole is not a steady-state device, it
is important to consider the time scale on which D(t)-»D_.
This time is of the order of that necessary for the longest-
lived Sorrelation to go to zero. The time behavior of R,
é and R is shown in Fig. 3.1, assuming a non~dissipative

(constant energy) spectrum.
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Fie. 3,1 SKETCH OF THE SOLUTION TO EQUATIONS (3
(3,40, |
S - ELECTRIC FIELD CORRELATION
D - DIFFUSION COEFFICIENT
R -~ MEAN~SQUARE DISPERSION

.39) AND
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We can divide the time axis into two time regions de-
pending on whether t<t or t>t, where T can be roughly de-
fined as the time for the electric field correlation to
drop to a small fraction of its initial value. For t>7T we
can represent D by the long-time solution (3.41), but for
t<t the full, time~-dependent, eguations must be solved.

It is useful at this point to get an idea of the time
scales for the plasmas we will consider in the Octupole.
Using typical parameters for the two plasmgs considered
(Table III.1l), the equations for R, R and R were solved
numerically using ACSL (Advanced Continuous Simulation

Language). The electric field spectrum used was
E.-?. 22 Ek2 = E 2 e-zt/'l'(t) Z_l_z__ (3.48)
K © k k

The time decays t(t) were chosen to match the time decays
of experimental spectra. Figs. 3.2 and 3.4 show R, R (RD)
and R (RDD) for the collisionless and collisional simula-

tions, and Figs. 3.3 and 3.5 show the time decay of EEi
(energy) and Zszi {enstrophy). It can be seen for the

'collisionless' plasma that the rapid initial damping of
the spectrum leads to a D at large times two orders of
magnitude smaller than the D which would be calculated
using Eoz. In the 'collisional' plasma case, a long-time
solution has not yet been reached even after 50ms because
the electric fields are smaller initially. This shows
that for plasmas in the Octupole it is necessary to con-

sider the time dependence of the diffusion coefficient.

For insight into the process, we will examine the so-
lution to (3.40) in the limiting cases where analytical
solutions are possible. ¥For a single k-mode the solution
is



Table III.1l
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collisionless collisional
5 (1V/m) 2 (.2V/m) 2
B 1kG 600G

2ms, 0<t<5ms
T 20ms, 5<t<30ms
66ms, t>30ms

D 1.2x10°cm?/sec

Ilms, t<3ms

60ms, t>3ms

4.2x104cm2/sec

Table IITI.1l Parameters used in the solution of the

differential equation for the diffusion

(ACSL) .
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R(t) = "}‘i“ In (cosh® wt) (3.49)
2k
dR _ w
= 2 tanh wt (3.50)
2 1 2.2
0° = k%E (k) (3.51)
B2

The time it takes D(t)
on the time constant, wzﬁkzv (k), which is of the order of
the time it takes a fluid particle to go half-way around a
cell.

to reach its full value depends
2

The limit as t+> is the steady state solution given

in the previous section,

The other interesting limit is where sz(t) is very

small, and the term in the square brackets in (3.40) is

approximately equal to sz. The solution is then

2 2
R(t) = § )};E—Q(-]fl | (3.52)
B
2
dR _ t E” (k)

D increases linearly in time at a rate proportional to the
total energy, again dominated by the mode with the largest
amplitude, For a spectrum that is a decreasing function
of k, diffusion will be largely due to the longest wave-
lengths. Recalling that

R(t) = = [Ar(t)]? (3.54)
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is the mean dispersion of a group of particlesl7, equation
(3.54) states that for very small times Ar(t)=vEt. This
corresponds to the inertial range: the particles are
free-streaming under the influence of the applied electric
field, and there is as yet no diffusion. The 2-~D fluid

theory of evolving turbulence24+69,61

is beyond the scope
of this paper, and not much is known about D(t) for a
decaying plasma. The assumption we have made is that we
can use the measured spectra in equation (3.40) to obtain

the time dependence of D.

ITI.8 SUMMARY

With a purely poloidal field, plasmas in the Octupole
can be treated as two-dimensional fluids. We will use the
guiding-center formulation, modified to account for a
dielectric constant greater than unity, to calculate
diffusion. The spectrum E(k)2 will be obtained from the
measured potentials. The details and extensions to the

theory for use in the Octupole are presented in Chapter
Iv.

Vortices cause diffusion when they become uncorrelated;
in an equilibrium plasma this is caused by statistical
fluctuations about the ensemble average. The process of
diffusion is increased if the spectrum is decaying and
there is a density gradient.

The large plasma vortices, first examined by Drakel
in the Wisconsin Levitated Octupole, and presented later
in the data chapters, can be predicted from the fluid
theory if we assume that the plasma has a non-thermal
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spectrum. The vortex solutions are a consequence of the
two-dimensional non-linear nature of the problem, and
correlate with a non-thermal spectrum peaked at the lowest
spatial frequencies (we don't expect large vortices in
thermal equilibrium, where the spectrum is flat).

We have followed the derivation proposed by Montgomery
rather than that of Okuda and Dawson, because Montgomery
emphasizes the non~linear nature of the problem, which
then leads naturally to the phenomena of negative tempera-
tures and large vortices for a non~themal spectrum.
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CHAPTER IV -~ APPLICATION OF THEORY TO THE OCTUPOLE

The fluid theory solutions for the equipotentials
(streamlines) and the expression for a diffusion coeffi-
cient (3.40) presented in Chapter III were developed for a
very special set of conditions:

* gquilibrium spectrum

* non~dissipative forces

* jsotropic spectrum

* motion of plasma due only to guiding-center drifts

* gtraight uniform magnetic field

* yniform plasma (no density or temperature gradients)

* two-dimensional, rectangular coordinate system

None of the above are strictly true in the Octupole,
and the various changes and approximations that have to be
made to obtain even a very simplified theory to use in the
Octupole are considered in Section IV.6. These factors
are discussed in Sections IV.1-IV.,5. A brief summary of
the sources of cell structure in ‘the Octupole is given in
Section IV.7.

IV.1l NON~EQUILIBRIUM STATES; ENSEMBLE AVERAGES

There are two time scales to be considered for the
time-dependent diffusion coefficient. We examine a
system in equilibrium to understand the first time scale:
the diffusion of a group of particles released from §=0 at
t=0 is described by equation (3.40) until R(t) is large
enough so that the exponential term vanishes, and D(t)-D_

{3.41), This time scale was considered by Taylor and
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McNamaral7, who have evaluated the diffusion for a station-
ary spectrum in which the total energy is constant and the
decay of the autocorrelation in time is due to fluctuations
of E(ﬁ,t) about an average <E(E)>. This time scale is not
emphasized in much of the theQretical work, which usually
presents the long-time D_ sclmtion (Okuda and Dawsonla,

Taylor21).

The second time scale is associated with a non-
equilibrium situation which arises either because a system
is not in its most probable state (typical of simulations
by Joyce and Montgomeryl9 and other524), and/or because
there are dissipative forces acting on the system. Simula-
tions for given intitial conditions include both this time
scale and the previous one.

The time-~dependent turbulence theory24'60’61 is very
complicated even in a simple coordinate system; no attempt
has been made to apply the theory to the Octupole. The
results to be presented later will make the assumption
that the effect of the various time scales is correctly
represented by using the measured time-decaying spectrum.

To use equation (3.40) we need the correlation of the
velocity field over an ensemble; this is especially impor-
tant if the number of 'most probable states®' is large -
and they are substantially different. This is the case if
the energy is concentrated in small vortices, for example,
which fit into the 'box' in many ways. When the most
probable states are few or essentially indistinguishable,
as in the case where the structure tends towards a large
vortex, or pair of vortices, which can f£it in only one or
two ways, the most probable state should be the same as
the actual state of the system.
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The observed vortex structure in the Octupole seems
to correspond to the latter case -~ the smaller cells are
much less important, and the structure of the large vorti-
ces is reproducible. Therefore, the assumption is made
that the reproducible structure measured in the Octupole
represents the most probable state, and that the ensemble
average can be replaced by the measured spectra.

IV.2 DISSIPATIVE FORCES

Diffusion for the fluid model depends on the energy
in the vortex spectrum, and any mechanism which removes
energy from the vortex spectrum will reduce the diffusion.
Because of this, the diffusion at long times is smaller
than that which would result if the total energy in the
spectrum were constant. This effect was illustrated in
the numerical examples in Chapter III where we used a
time-dependent energy spectrum.

As will be discussed when the data is presented, at
least two mechanisms reduce the energy of the spectrum in
the Octupole. One is ion viscosity, and the other is
cooling. Again the assumption is made that any dissipative
effects are correctly accounted for by using the measured
spectra.

IV.3 NON-~ISOTROPIC FLUID VORTEX THEORY
Although the 'square box' is useful for numerical

simulations and theory, the question naturally arises when
applying the theory to the Octupole of what the effect is
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of a (possibly) non-isotropic velocity spectrum. The
first thing to note is that for an e.s. g.c. plasma, the
velocity is perpendicular to the electric field. The
diffusion equation is actually a tensor equation, which
Tayldr and McNamara simplified by assuming isotropy to
obtain an analytical solution. In this section we will
choose simplifying assumptions more suitable for the
Octupole, based on experimental results, and will not

require the spectrum to be isotropic.

The analytical solution is more complicated when the
spectrum is not isotropic. For simplicity we will show
the equation for the electric field correlation (3.39)
rather than the diffusion equation, which is its first
integral (3.40). The results will apply equally to the
equations for dR/dt and R(t). (This method was used in
the examples in Chapter III because numerical integration
is more accurate and more stable than numerical differenti-

ation.) Equation (3.39), in tensor form, is

IR - L L <EE@ B EExB) >
dt 2B k
X exp [— -%2 (fc’xﬁ)-ﬁ(t)-(ﬁxﬁ)] (4.1)
B

If the spectrum is isotropic then

R R
R=| % ¥ (4.2)

RY§ RYY :
reduces to RI. As equation (4.1} indicates, diffusion is
two-dimensional for the vortex modes., To see this, note
that the exponential term in (4.1l) is dependent on both x
and y. If we assume that the c¢ross terms are negligible,
equation (4.1) reduces to a pair of coupled differential
equations,
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2 2
2 (ky Rxx+kx Ryy)] (4.3)

2
d R 2
xX 1 <E "rex -
- 2}: y CexP [

at? 2B% k

W ojto

and equivalently for dzRyy/dtz. Note that the diffusion

in x depends on the spectrum in y and vice versa, even if
the cross terms are ignored.

IV.4 MAGNETIC FIELD AND DENSITY INHOMOGENEITIES;
NON-~-UNIFORM e

The straight, uniform magnetic field required by the
2-D g.c. theory is non-physical. (Under some experimental
circumstances the plasma could be located in the straight
uniform part of the field, but then the question of poten-
tial and density gradients along the field line would
prdbably arise.) Confinement systems, the Octupole in
particular, have inhomogeneous fields with curvature,
There are two consequences of this that have to be con-
sidered when applying the g.c. theory to the Octupole.
First, the non-uniform field contributes to a position-~
dependent dielectric coefficient; this effect is discussed
later in this section. The second effect is that the
guiding-~center drift is no longer the only drift. With a
density gradient there is also a diamagnetic drift (Ref.
46, Chapter III), which in the Octupole is azimuthal (if
there are no azimuthal density gradients), and in opposite
directions for ions and electrons. Fluid theory is still
applicable; however, the formal correspondence between the
2-D Navier-Stokes equation (3.9) and the fluid equation
(3.20) holds only when v=ExB. The single-particle picture
includes a VB drift and a curvature drift (Ref, 46, Chapter
ITI and III} not present in the fluid description; both are
also azimuthal in the Levitated Octupole.
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It has not been determined how to include the azimuthal
diamagnetic drifts formally in the theory. However, the
azimuthal drifts may play a role in symmetrizing azimuthal
density gradients, as discussed by Navratil in his "picket
fence" model (Ref. 15, p.76-79).

Little theoretical work has been done on the problem
of vortex diffusion with a density gradient. Okuda and
Dawson included a 20% density gradient in one of the two
dimensions of their simulations, and found that the vortex
diffusion smcoothed out the inhomogeneitylg. True and
Okuda (Ref. 40) reported that convective modes were un-
changed by the presence of a density gradient, but that
ion flute modes became unstable (however, in the Octupocle
flute modes are stabilized by the good curvature of the
field in the private flux and the average good curvature

in the common flux4l).

We are interested in whether density gradients can
affect the fluid solutions, and especially in how they
change the magnitude or shape of the spectrum, As will be
shown in Chapter V, the potential contour plots for plasmas
in a purely poloidal field tend to show relatively little
structure in the region near the separatrix (near the
density peak), and more in the region closer to the rings.
The vortex diffusion coefficient density dependence obtained
from the study of the profile evolution is Dain(w)]“l/z.
However, the diffusion coefficient obtained from the £f£luid
theory in Chapter III {(without a density gradient) is
independent of position.

One important effect of inhomogeneous density and
magnetic field is the variation of the dielectric constant,
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from e€+» at the field null, to e+]1 near the plasma edge.
(Note that there would be a variation in € even for a
system with uniform B if there were a density gradient.)
It is believed that the inclusion of the effects of a
density gradient in iy on the distribution of the electric
field energy will account for the Y-dependence of Dv' For
the purpose of numerical computations, the electric field
spectrum used will be Eez(w,k,t).

If T*weE2 is a constant in the plasma as the diffusion
studie525 suggest, then we expect the electric field
gspectrum to vary in ¥. This variation is seen in the
data. The principal result of the gradients in the Octupole
appears to be a dielectric effect: the azimuthal potential
gradients measured in the plasma are lower near the separ-
atrix where the dielectric constant is higher (due to the
peak of the density profile and the low average value of B
along the separatrix field line). We will account for the
variation with ¥ by using the local values of the variables

on each y~surface.

IV.5 BOUNDARY CONDITIONS AND FLUID SOLUTIONS IN THE
OCTUPOLE

The fluid solutions discussed in Chapter III were
obtained for equilibrium plasmas in a box with perfectly
conducting (equipotential) boundaries. In addition, all
but one of the solutions presented by McDonald48 (and the

19,20

Joyce and Montgomery simulations ) correspond to a

total net charge of zero.
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Boundary conditions are different for the Octupole. ¢
and En—§¢ are both continuous functions of the azimuthal
angle 6. The rings are equipotentials; the boundary
conditions at the walls are discussed in Chapter V. The
separatrix flux surface would also be an equipotential if
the magnetic field were zero everywhere along ws; this
would divide the Octupole into two separate regions, a
private flux region and a common flux region. The closed
cells observed in the data (Chapter V) do not cross the
separatrix from one region to the other; however, the
potential on the separatrix is itself a function of time.
In addition, for the collisionless plasma the electrons
have an anomalous diffusion rate across B which exceeds
the ion rate, the plasma potential is positive in the
Octupole (see, for example, potential profiles taken by
Greenwood Ref. 13, section III.S5) andu[pdv#o.

It has not been shown that the kinds of numerical so-
lutions obtained by McDonald are the only kinds possible.
The multiplicity of solutions corresponds to local maxima
of the entropy and it is difficult to determine whether a
given state has the absolute maximum entropy. Because
there are many solutions, the iterative procedures are
very dependent on initial guesses. This means that,
especially for more complicated geometries such as the
Octupole, even though we may be able to obtain a numerical
solution for the theoretical equipotentials which solves
the differential equation and boundary conditiohs, we may
not be able to prove that it is, in fact, the equilibrium
solution corresponding to maximum entropy. However, even
though a solution may not have maximum entropy, the local
maxima may represent the possibility of meta-stable states.
Interesting results in this context were obtained by
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Saison, Wimmel and Sardei for two-fluid trapped-ion

transport in Tokamaks.

The solutions to (3.46) in the Octupole will have to
be obtained numerically, but we can make a first estimate
by expanding on a topological trick suggested by Fisherso.
He investigated the similarity between some of the solutions
to (3.46) in Cartesian coordinates and solutions in cylin-
drical coordinates. We have taken the additional step of
noting that the two-dimensional plot of A0=360° by ¢ =ww—
wr is topologically equivalent to an annulus if we map
onto r. The transformation can be thought of as deforming

the topology continuously while maintaining (3.46).

The solutions we are interested in are the ones which
fulfill the boundary conditions ¥Y=a at ww and Y=b at wr.
Sketched in Fig. 4.la, b, and ¢, are three such soclutions.
In the first column is the solution given by McDonald48 in
Cartesian coordinates (McDonald calls these three solu-
tions s-s, d-d, and diagonal d-d). The second column has
the solutions as they might look deformed into cylindrical
coordinates, and in the third column an equipotential sur~
face of circular shape has been replaced by the inner
boundary of the annulus. Solving for these directly using
(3.46) in Octupole coordinates has not yet been attempted.
It should be noted, however, that even though the boundary
conditions would be met by this method, the net charge en-
closed by the 'box' could change (this is not necessarily
a disadvantage since we have already seen that the net
charge is not zero in the Octupole). This would have to
be accounted for when obtaining a solution.
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The most probable state for a given value of the
energy depends on A, If the energy is too high, for
example, there may be no s-s solution (Fig. 4.la, col. 1),
and in this case something like Fig. 4.1lc¢, col. 3, might
be the highest-entropy solution compatible with all the

constraints.

The question of time-varying solutiens is not ad-
dressed by the analysis of the sinh¥Y equation (see Section
IITX.6), which refers only to the long-time equilibrium
state of a conservative system. For the Octupole, though,
it is interesting to consider what would happen to a
system in equilibrium with an energy E, if the energy were
decreased, It is possible to imagine that as the energy
decreased, a transition could be made to a state that was
previously not allowed, with a higher entropy, for a new

equilibrium,

We speculate that something of this nature may occur
during the transition from vortex diffusion to classical
diffusion26 as the energy spectrum is damped. A compari-
son of Figs., 4.2a, b, and ¢, shows that one shape can be
obtained from the other by a continuous deformation as the
amplitude of the azimuthal variation (along the dotted
line) is reduced. We note also that the entropy, S=28E,
is negative; equation (3.46) was derived for B<0. The

maximum entropy possible for any solution will be zerxro.

By a continuous process, then, as the energy spectrum
ig damped, the electric field shape can go from one in
which gradients in 6 lead to radial diffusion, to one in
which there are still radial fields but only collisional

diffusion.
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If we considexr only the private flux region, with the
ring and the separatrix Y-surface as the boundaries of
this region, and assume that the appropriate boundary
conditions are that ws and wr each be an equipotential,
then the longest-wavelength mode is sketched in Fig. 4.3a,
Typically, the width in ¢ of the private flux region is
“10cm, and in €, 103cm. The wavenumber, E, is a vector.
Therefore, the mode with the second smallest wavenumber is
as sketched in Fig. 4.3b rather than Fig. 4.3c¢c. The first

10~20 longest-wavelength modes thus all share the same klw'

We wish to emphasize that although the above develop-
ment is plausible it has not been checked numerically.
Even 1f the sketches are indeed solutions, we cannot know
if we have a complete set for a given situation, nor can
we prove that we have the maximum-entropy solution, and,
in addition, we still have to consider the time dependence

for real plasmas.

The discussion of the deformation of boundaries from
a box to an annulus does not include the effects of intro-
ducing additional boundary conditions, such as supports,
during the process. The symmetry of the box (4 corners)
is not a natural one to the circle; rather we can see the
possibility of any integer number of toroidal modes. This
discussion is intended to show a possible class of solu-~

tions rathexr than justify a particular one.

IV.6 APPLICATION TO OCTUPOLE COORDINATES

In the previous sections of this chapter we have dis-
cussed the various effects which have to be considered
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when applying vortex diffusion theory to the Octupole. In
this section we will examine what equation (4.1) looks
like in Octupole coordinates, and what assumptions are
necessary to estimate D from the experimental data.

The tensor equation, (4.1}, consists of four separate
equations, coupled by the exponential term. To solve this
equation completely we need to expand the electric field
in eigenfunctions suitable for the Octupole, and then

solve the four:coupled equations simultaneously.

The Octupole coordinates perpendicular to B are Y and
8. Eigenfunctions in these coordinates can be found by
considering Poisson's equation. Using the differential
operators in Appendix A, it can be shown that Poisson's
equation is separable in Octupole coordinates. Tbe eigen-
functions in 6 are the toroidal eigenfunctions, elme; the
potential structure can be Fourier transformed in 6 to
obtain the amplitudes of the toroidal modes if 1) the data
covers at least one complete period of the lowest spatial
frequency present, and 2) the sampling rate is high enough
to prevent aliasing. The eigenfunctions in ¥ cannot be
expressed in terms of analytic functions, but can be

obtained numerically.

As discussed in Chaptexr II, contour plots were cons-
tructed using 5 Y values and 10-100 6 positions. This
means that we can get a reasonable approximation to the
toroidal electric field spectrum; aliasing is not a pro=-
blem because the spectrum drops rapidly with increasing
wavenumber. However, unless the toroidal spectrum has
most of its energy in a mode m;4, only 360° scans will
provide a correct spectrum.
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The spectrum in ¢ cannot be obtained from the contour
plot data because there are at best, using private and
common flux data, about 10 points in ¢ between the ring
and the wall, Because of this limitation in the data, in
the rest of this chapter we will obtain an approximate

solution for D, that uses only the toroidal spectrum,

We are interested in the net diffusion across a Y-
gsurface, so we need only the solutions to the equations
for dszw/dt2 and dsze/dt2 (the net diffusiocon in 6 is
zero) . The exponential in (4.1), in Octupole coordinates,
is
2

Y + k*. R )]. (4.4)

exp [~2 (k2 R,.~ k ke(R o Ry

wRee™ %y * Ry

we ¥

The first assumption we will make is that D¢¢>>D¢3'
The second assumption is that the exponential is dominated
by the term kzewa. These assumptions imply that the
diffusion is caused by the energy in the azimuthal electric
fields. ©Not enough is known about the <E¢E8> and <EwEw>
correlations yet to prove definitely that this ordering is
correct; however, as the discussion on fluid solutions in
Sections III.6 and IV.5 has implied, there should be no
diffusion across a y~surface due to vortex modes unless
there are azimuthal potential gradients.

With these assumptions, equation (4.1) reduces to

dzR

o 1) EPg exp (-2k%gRy) (4.5)
k

at?  2m2

This equation is very similar to Taylor and McNamara's
equation, (3.40), with the exception that it emphasizes
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that the toroidal spectrum and eigenmodes should be used
to determine diffusion (Dzdew/dt) in the ¢ direction.

The expressions given for the diffusion coefficient
in (3.30) and (3.40) give a result dependent only on the
anplitude of the electric field spectrum and its distribu-
tion in k-~space. There is no x dependence in either
equation. In the Octupole it has been observed that the
azimuthal electric field spectrum E82 depends on which Y-
su;face the measurement is made on. Near the separatrix

Eq is small relative to its magnitude nearer the rings

and wall. (This is what would be expected from equation

13,15

* *
(3.30), T c==€EZ, where T i1s a constant and £ varies

as a function of ¢ and ¥.)

Because of this variation with ¢ and %, and because
we are interested primarily in diffusion in ¢, we will ob-
tain the diffusion across a y~surface by integrating (4.5)
on the closed flux surface.

Using the toroidal eigenmodes elme, we express ¢ as

6(8) = L o(m o™ (4.6)
(From this point on we will use k interchangeably with m -
to represent a toroidal eigenmode.) The differential
operators in Octupole coordinates are given in Appendix A,

The equations for Ee, vw, and D, are given by

Eg (m) = - é%g ¢ (m) (4.7)
vw(m) = - % ¢ (m) ' (4.8)
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§:<E (m)> [1/2
(4.9)

lw)
]
i

m 2
m

In y-coordinates, the gradient of n is Vn=27RBIn/9vy.
Substituting this into the equation for D (assuming the
t>» limit)}, and averaging the flux over a Y-surface, we
can calculate <&y,

ro- ‘Dﬂ\?’n da _ IDVn R d6ds
av aa IR asas
2,,1/2 J_R*aedr, an

chm 3y

= () %3» (4.10)

#

2n{ 3 <¢(m)
m

éghp) consists of a function of P which does not de-
pend on 8 and a geometrical factor. The geometrical
factor is nearly constant in each of the three regions in
the Octupole;

1.7 outer hoop private flux
1.1 inner hoop private flux
1.5 commen flux

To put the diffusion coefficient in units appropriate
to compare with T', we multiply 3n/3y by an average value
of 2TRB over the y-surface.

_ LW _
I‘av = Z"m—ﬁg‘;‘; « Un —o9av°Vn (4.11)

The units of ¢ are volts; in MKS JXW} is in Vm, and«pav is

in mz/sec. We have chosen to use MKS units throughout,

4

and multiply by 10" at the end to obtain,fgv in cmz/seC.
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The geometrical terms were obtained from PLP 703.
Two factors have to be accounted for: the difference be-
tween the Dory (=1/10 peak core flux for a given bank vol-
tage) and Webers; and the decay of B with time. The mag-
netic field was assumed to vary in time as Boexp(—t/lsoms),
where B, is the value of B at peak field. This
approximation assumes that the flux plot retains its shape

as it decays.

The time-~dependent diffusion equation is obtained by
using the time-~dependent form of (4.9); the rest of the
derivation is identical. The differential egquation was
solved numerically using a predictor~corrector algorithm.
The approximation for small sz (3.52) was used to find
the initial conditions to start the solution (Runge-Kutta
algorithms cannot handle R(0)=0, dR/dt=0 at t=0). This
approximation was kept to the same accuracy as the solution

to the differential equation (10“5).

The spectrum is peaked at the lowest mode numbers.
It was found that the numerical solution inveolving 50
modes (Fig. 4.4) was essentially identical to that involv-
ing 20 modes (Fig. 4.5}); including fewer than 20 modes led
to variations in the results. Therefore, the numerical
solutions were evaluated using the 30 longest-wavelength

modes.

Note: Instead of multiplying by <2mRB> we could also
use the value of 27RB at the point in space where the
compariscon with the flux is to be made, in the bridge
region of the LOH. This would result in a numerical
factor smaller by about 1/4.
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Plots of D(y) vs t will be shown in Chapter V and VI,
The numbers plotted will be ﬁgv from {(4.11) in cmz/sec;
these estimates will be compared with the results of the

studies of density profile evolution25’26.

Iv.7 SOURCES OF CONVECTIVE CELLS

Any mechanism which leads to charge separation is a
potential source of convective cells. The only exception
is when charge separation leads to drift surfaces (equip~-
otentials) that are azimuthally symmetric, in which case

there is no diffusion across a y~surface.

For gun plasmas in the Octupole, injection appears to
be the principal mechanism for the creation of cells. The
process was described in detail for the small Octupole by
Dory, et. al.z, as follows. The plasma beam from the gun
polarizes as 1t crosses the magnetic field, and the direc-
ted velocity causes charges to separate until the polariza-
tion electric field cancels the average magnetic force on
the plasma. Then the interior of the cloud is free to
continue moving forward (into the magnetic well) due to
the ExB drift. When the plasma first encounters a field
line the polarization causes the field line to become |
charged; when encountering the same field line on the
other side of the Octupole, the field and the polarization
are in the opposite direction. The propagation of charge
of opposite sign along the field line then shorts out the
electric fields, and the plasma stops. After the initial
penetration, the plasma is flute-unstable inwards and
azimuthally.
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The plasma cloud splits and proceeds around the torus
and the two clouds collide at 180° from the gun port.
During this phase, theory44 and experiment2 show the
development of double vortex equipotentials. (Ref. 45
shows the same process in a linear gquadrupole.)

The gun plasmas have an initial directed energy of

n30evr?

ured near the gun port and around the machine during the

, and very large potentials (v100V) have been meas-

injection process. This electric field energy is available
for convective cells, although the plasma will short out
potentials greater than KT/e after the initial turbulence
damps out, It is interesting to note that the process

puts energy into long-wavelength modes initially; if it

did not, the energy spectrum might damp (by cooling or
viscosity) before the cells coalesced into macroscopic

(observable) vortices.

Other processes create charge separations in the
Octupole., One is the effect of supportsl, which may
preferentially drain electrons from the plasma. Non-
azimuthally symmetric boundary conditions (due to electric
fields at the gap, portholes, particle collectors, field

1,10,13,15

errors, supports, etc. ) also play a role in

determining what the electric field spectrum will be.

Drift waves (which require finite kz) have been pro-
posed as a means of effecting a charge separation at short
wavelengths; convective cells can form from non-~linear
mode coupling., This is discussed further in Chapter VI
for the collisionless plasma with an added toroidal field,
but is not a mechanism for cell creation when kzﬂo, as in
the case with closed field lines.
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With a poloidal and toroidal field, where flow along
a field line is expected to short out potential structure,
particles that are trapped in magnetic mirrors can be a
means of maintaining the charge separation necessary for
convective cells. An example of this is given in Chapter

VI for the collisionless plasma.
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CHAPTER V - FLOATING POTENTIAL CONTCURS
IN A PURELY POLOIDAL FIELD

As noted previously by Drake1 in the large Octupole,
and by others in the small Octupole, the floating potential
with a purely poloidal field in many cases is not azimu-
thally symmetric, even with the machine levitated, and the
long-wavelength structure can be both reproducible and
long=lived. Along a field line, however, Vf is constant,
and the field lines are contained in constant azimuth
planes. Because of this we can measure ¢ in the Octupole
by constructing two-~dimensional plots using the cart probe
(Chapter II); 3-D structure can be found by rotating the
contour plots around the rings, stretching to follow the
magnetic field lines.

The 2~-D character of the Octupole with a purely
poloidal field suggests examining two-dimensional fluid
theory; this is discussed in detail in Chapter III, and
extended to Octupole coordinates in Chapter IV. 1In the
present chapter we will compare several fluid theory
results, such as macroscopic potential cells, shape of the
electric field spectrum, and calculation of a diffusion
coefficient, with the experimental measurements. ‘

Potential structure was measured for a wide range of
parameters; special effort was made to examine cases for
which the profile evolution studies had also been done.

' Data is presented for the collisionless plasma, and for
the collisional plasma over a range of field strengths.
Levitated data is presented as well as supported data.

The contours to be shown were all taken with the field

crowbarxred.
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The data to be presented in this chapter shows that
cell structure is present when vortex diffusion is measured,
and much reduced when the diffusion scales like classical
diffusion. The vortex diffusion coefficient calculated
from the E2 spectrum agrees in magnitude and shape with

the results of the profile decay experiments.

V.l COLLISIONLESS PLASMA

A, Supported Data. Two sets of supported data are

presented for the collisionless plasma. Data was taken
with 2.5 kV on the poloidal bank (this corresponds to B,y
[Ref. 26] v1kG on the bridge side of the private flux of
the LLOH). Data from two experiments is shown: an 80° scan
of the private flux of the LOH, and a 360° scan of the
private flux of the LIH.

l, Experimental Observations, Figs. 5.la~f

show the floating potential in the private flux of the
LOH. The scan covers an 80° segment of the Octupole from
2980, through OO, to 200, for 5 Y-surfaces. The scan
includes the support at 318° and a probe port at 330°.

The data shows a large cell which closes at the position
of the support (at 3180). The next support is at 30° and
the contours seem to be closing at the right side of the
plot (200)n This cell remains in the same position for
the entire experimental period. Its amplitude decays for
about the first 20-30ms, and then remains roughly constant
for the remainder of the pulse. There is some structure in
the separatrix region, but the potential variation is
largest in the region 3.5§w§4,5.
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The floating potential contours for a full scan
(3600) of the LIH are given in Figs. 5.2a-d (private flux)
and 5.3a-d (common flux)}. This data had large variations
in the monitor, and is presented mainly to show the charac-
teristic cell pattern for a collisionless plasma with the
machine supported: the three inner supports are clearly

visible in the private flux contours.

The data for the common flux (see, for example, Fig.
5.3b at 7ms after injection) shows an oscillation in the
potential corresponding to the azimuthal position of all
the supports, both inner and outer, and also that of the
gap. Since this data was taken in the common flux region
near the inner nose, it shows that the entire field line
is affected by the support. However, the effect is not
gquite as marked as for the private flux. We also note
that there is some evidence of outer supports in the
private flux of the inner hoop (Fig. 5.2b). All of the
psi~surfaces in the common flux are not at the same
potential at a suppert:; this occurs because the support is
floating relative to the wall., There don't appear to be
closed cells in the main body of the plasma in the common
flux, but there may be somel closer to the wall in the

region the probe can't reach.

The cell structure i1s stationary; although the field
lines are soaking into the rings and walls, the cells do
not move with them. The boundary condition required at
the ring is an equipotential, but the probe cannot get
close enough to the boundaries to determine what the
structure looks like at the wall. The containment volume
extends to the critical ¢-surface, with wc%7.8 at 25ms
after the start of the pulse (see Fig. 2.2); in some parts
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of the Octupole there is a region between wc and the wall,
and in other places wc intersects the wall (for example,
at the inner nose). We do not yet know what effect this
has on the cell structure near the Octupole walls. Local
perturbations (such as collectors on the hoops) can also

affect the shape of the equipotentials near the ring.

The torocidal spectrum of the electric field is shown
in Figs. 5.4 and 5.5 for two psi-surfaces in the private
flux of the LIH (¥=4.09 and 4.52). The figures show that
the enerqgy spectrum of the toroidal vortex modes is a
rapidly decreasing function of k, and decays in time. Note
that, because what is plotted is Ez(k) and not E(k), the
regsolution of the plot corresponds to a factor of 30 in the
potential rather than 103. This means that the 'bump' at
the higher mode numbers is well within the resolution of
the digitizer, and is not just noise.

i

2. Discussion. ihen considering the data for

the collisionless plasma in a purely poloidal field, we
want to examine three mainjareas, to see if the proposed
theory provides a reasonabje framework for understanding
the data. These areas areé first, the shape of the
measured vortices and sPecfra; second, the time decays and
possible damping mechanism%, and third, the magnitude of
the vortex diffusion coefch1ent and enhanced temperature
T that can be @Stlm&»@d from the data.

i

Potential Q3ntours. The full scan contours,

Figs. 5.2 and 5.3;(LfH), show a pattern of three large
cells. The plot@faré similar to the fluid solutions
proposed in Fig.j4.2b, col. 3, if we allow three toroidal
modes rather thJE four. Data on the shape of the potential

/
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profile in ¢ was taken by Greenwoodl3, who measured the
floating potential profile and the density profile for the
collisionless plasma at the probe port at 330° on the LOH
(Figs. 3.6 and 3.8 in Ref. 13). The density and floating
potential profiles have approximately the same shape at
that azimuth, but the flcating potential cannot have the
same normal mode solution as the density at all azimuths
because although the density is azimuthally symmetric, V

f
is not,

The mean-free~path for the collisionless plasma is
“100m, and there is very good communication along the
field line. The levators are in electrical contact with
the ring but can float from the walls; thus the supports
can act as an additional boundary, creating an equipotential
surface out of the field lines intersected at the azimuth
of a support. From the data for the collisionless plasma
it appears that all field lines in the private flux at the
azimuth of the support are at the same potential,

One might expect that the support as an additional
boundary condition might make the mode m=3 (or m=5 for the
outer hoops) the longest-wavelength mode, but the spectra
(Figs 5.4 and 5.5) for the private flux psi-surfaces do
not support this, but show that m=l is the longest mode.
Instead we can think of the support as a local perturbation
in the potential extending in & for no more than a few
degrees. From Drake's detailed data for the cell structure
in the vicinity of a support (Ref., 1, Fig. 5.15, p. 153)
we can estimate a perturbation width of 5-15°, which
corresponds to a mode number 24-~72, and is probably the
source of the bump at mv30 on the spectrum of Ez,
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The shape of the toroidal spectra (Figs. 5.4 and 5.5)
indicates a non-thermal plasma, as in thermal equilibrium E
is 1ndependent of k (up to kzk nl). Lines proportional to
1/k and l/k have been drawn on Fig. 5.5; the scale factor
is such that the lines pass through the data. This shows
that E82 is approximately proportional to l/kz, as is
predicted in equation (3.27) for the equilibrium vortex
spectrum, and similar to numerical simulations by Seyler,
et al.24. [Note that the theory predicts this dependence
for a non-thermal equilibrium corresponding to a negative
temperature,] However, the spectrum is too noisy to obtain
estimates of the parameters o and B; the values vary by
large amounts, and even change sign, depending on how many
modes are used.

Damping. For this plasma the ion viscosity 52 is
very small (a few cm /sec), and the ion viscous damping
time, TuaL /u, is on the order of seconds even for cells as
small as a centimeter. Therefore, we do not expect to see
the large cells damped by ion viscosity, and any damping is
due to some other mechanism. (However, the non~-linear mode
coupling may transfer energy from the long-wavelength cells
to short-wavelength cells where viscous damping is impor-
tant.) The fluid loses energy, and we observe experimen-
tally that the amplitudes are tied to the electron tempera-
ture. Therefore, we will examine in particular the effect
of cooling, which can damp the vortex spectrum because as
the plasma cools it is not able to support the large elec-
tric fields measured during the injection and filling
process.

The electron temperature for this plasma decays with
TeNZOms for the first 20ms, and then remains approximately
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constant at l.5eV for the remainder of the experimental
periosz, The partial scans of the LOH (Fig. 5.1) show
qualitatively the same behavior: for about the first 20ms
the amplitude of the large cell in the private flux decays,
and then remains roughly constant. The potentials in the
plasma are on the order of the electron temperature, but it
is not possible to estimate a decay rate for the electric

field from the partial scan contour.

The time decay of the power spectrum of the potential
is shown in Fig. 5.6 for the two psi-surfaces in the
private flux from the 360° scan of the LIH. (Because this
set of data was noisy we have analyzed only the two psi-
surfaces with the smallest variation in the monitor.)
Although more information is needed about the two-
dimensional character of the spectrum, we note that the
decay of E¢(k)2 has a time behavior similar to that of the
electron temperature. For a stationary spectrum this would
also be true of ZE(k)z° The.decay is exponential over the
whole experimental period, with IE2%8ms. This corresponds
to a decay for the electric field of roughly twice this
value (v1éms) which is close to the known value for Te (T
v20ms) during the first 30ms; however, Te becomes a constant
at v30ms, while EEBZ continues to decrease on these two Y-

surfaces.

The time decays of several individual modes from the
same two psi-surfaces are plotted in Figs. 5.7 and 5.8. The
individual modes also decay with TE2 8ms; this agrees with
the discussion of Section IV.5, that the first 20-~30 modes

in 8 share a single k Data is not plotted earlier than

v
l0ms after injection because it is not reproducible during
the early times. Arbitrary initial distributions evolve
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into the same long-wavelength structures. This agrees with
the argument in Section IV.1 that the observed potential
cells represent the most probable state of the system.

The LOH partial scan shows that the contours, while
retaining their shape, decay for about the first 25-30ms,
and then remain approximately constant. Greenwoodl3 took
a constant-azimuth scan of Ve through the probe port at
330° for the same plasma. To get an idea of the time
decays we have plotted the voltage at the peak as a function
of time (Fig. 5.9). The peak voltage decreases exponent-
ially with an 8ms time constant for the first 20ms.

During the next 20ms the profile becomes severely distorted
(see Ref. 13, Fig. 3.8) and the characterization of the
decay by a single mode in { becomes less and less valid.
The time decay of the peak slows by a factor of 2 (to
v1l7ms) ; however, an average, such as the value at the flat
spot, continues to decrease at about_the same initial rate
(9ms) .

From the supported data for the collisionless plasma
we conclude that plasma cooling can account for the damping
of the vortex spectrum in the first 20-~30ms. In the latter
part of the experiment, the evidence is contradictory: the
contours (Fig. 5.1 and 5.2) do not change much but the |
spectra from the two y~surfaces in the LIH private flux
continue to decay. It would be necessary to look at more

Y-surfaces to resolve this guestion.

*®
Vortex Diffusion Coefficient; T . If the study

of the convective cells is going to yield useful information
about plasma lifetimes in the Octupole, we need to be able

*
to calculate parameters such as T and Dv from the vortex
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spectra. The following calculations use the local values
on a psi-surface as discussed in Chapter IV; these numbers
should be seen as giving an order of magnitude since the
two-dimensional spectrum has not yet been fully developed
and the effects of inhomogeneities, etc., are not included
in the simple theory of Sec. IV.6.

The value of the diffusion coefficient D(t) obtained
using equation (4.10) for the two Y-surfaces in the LIH
private flux is plotted in Fig. 5.10a. D, is on the order
of 104cm2/sec 5ms after injection, decreases to V2,5~
3.5X103cm2/sec by 20ms, and then levels off, and begins to
climb very slowly. The decay of D(t) at early times is
plotted in Fig. 5.10b on a log scale; from 5 to 20ms after
injection, D{t) decays exponentially with TDmles. The
behavior of D(t) agrees in general with the diffusion study
resultszs: Initially, T* decays rapidly, and because
Da(T*/n)l/z, D will also decrease; after 30 ms, T* is cons-
tant, but n is still decaying, so that D will increase in
time. The magnitude of DV calculated using (4.10) after
20ms is larger by a factor of 2-5 than the 800cm2/sec
gquoted in Ref, 25, Fig. 2. This is remarkably good agree-
ment from the relatively crude model proposed in Chapter
III and IV.

The effect of diffusion due to long-wavelength vortex
modes on a finite-size plasma can be seen in the density
profile decay data presented in Ref., 25, Fig. 5. The
profile becomes distorted by the effect of the large cell
observed in Fig 5.1 between Y=3.5 and ¥=4.5. We note from
the full scan of the LIH (Fig. 5.2) that cells are present
from the earliest time plotted, and the "flat spot" appears
on the profile at ~10-15ms after injection, which is on the
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order of the time it takes a particle to ExB drift half-way
around the cell. Because the collision time is of the same
order as the circulation time around a cell, particles can
move across the magnetic field by following an equipoten-
tial.

*
The enhanced temperature T can be estimated using
equation (3.30):
* 2
T (k) _ eE"(k) 2

= = B IWLJ— (5.1)

using the value of Ez(m=l)==.075V2/m2 at 25ms from Fig. 5.4

(v=4.1), with nv2x108/em®, Bv2kg, v=8x10%cm?

*
T (m=l)=2.4X105eV. This estimate is very rough, but it

, we find

shows that there is enough energy in the vortex spectrum to
account for the observed diffusion.

B. Levitated Data. Two experiments were performed to

investigate the effect of supports in the collisionless
plasma. In the first the rings were levitated, and the
plasma injected into a fully levitated machine. In the
second experiment the levators were pulled out after the
plasma had been injected.

1. Experimental Observations. Figs. 5.lla~f

present potential contours in the private flux for normal
levitation - the machine is fully levitated at the time the
plasma is injected. Late levitation data for the private
flux is shown in Fig 5.12a~f, where the machine is fully
levitated v20ms after plasma injection. The levators are
pulling out of the machine for the first 20ms of this
experiment., Both scans cover the same section of the
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machine as the supported partial scan of the LOH, Fig. 5.1:
an 80° segment of the private flux of the lower cuter hoop,
including an outer support at 3180, and the gap at 0°,
Common flux data was not taken.

The normal levitation data is different from the
supported data shown previously in that, in addition to not
showing the characteristic closed contour at the azimuth of
the support, the potentials are a factor of 2-3 larger.

The levitated contours appear relatively flatter than the
gsupported contours (i.e., no large closed cells) in the
azimuthal direction, and remain so for the levitation
period of v20ms, although the potentials drop by a factor
of 2 from 3ms to 1l0ms. Starting at around 20ms we see the
support coming back intc the plasma, and by 25ms after
injection the vortex pattern at the support is very clearly
defined. The pattern remains in the vicinity of the
support, but its magnitude has decreased by a factor of 25
by 35ms, and the resolution of the Biomation becomes too
small to follow the cell. The time sequence for this
experiment is shown in Fig, 5.13a.

The contours for the late levitation experiment are
shown in Fig. 5.12a~f., The timing sequence is shown in
Fig. 5.,13b. The machine is fully levitated ~20ms into the
pulse, The early times, while the support is pulling out,
show structure in the vicinity of the support. When the

support is fully out V_. appears somewhat flatter, but the

structure does not dam; away. When the supports come back
the structure is accentuated. This data is very similar in
shape to the supported data for this plasma, although the

potential at the separatrix is about twice as large. There

appears to be somewhat less variation in the azimuthal
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direction than for the supported data, but more than for

the normal levitation case.

2. Discussion. The boundary conditions are

different without the supports connecting the separatrix
and the ring: When the plasma is injected into a fully
levitated Octupole, the equipotentials have a different
shape than when the Octupcle is supported, as is observed
in the normal levitation contours, Fig. 5,11, However,
when the plasma is injected and the supports are pulled out
afterwards (Fig. 5.12), a cell pattern similar to that of

a supported plasma is observed. This occurs because the
cell structure that is set up initially takes a long time
to damp for the ceollisionless plasma.

The levitated Ve profiles in ¥ are different from the
supported profiles. In the supported contours ws is
shorted to the hoop by the levators, and there is a negative
cell between the ring and the separatrix. The levitated
contours show the potential rising from the ring towards
the separatrix, with a positive peak; when the levators
come back in the cell that forms is positive, even though
the separatrix is now shorted to the hoop.

It remains to take a full scan for the levitated data
to assess the magnitude of the spectrum in 6. This should
be done for all three cases under the same operating
conditions. This is crucial because the longest~wavelength
modes are the cones causing the most diffusion (see Chapter
VII). If our interpretation of the bump on the spectrum
for the supported case is correct, it should be absent for
the normal levitation case but present in the late levita-
tion spectrum,
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It is not possible to estimate the azimuthal spectrum
from the levitated contours because the range in ¢ does not
cover one full period of the lowest frequency mode present,
aﬁd without a spectrum it is not possible to compute D or
T .

C. Summary. In the collisionless plasma, ion visco-
sity is too small to account for the damping of the electric
fields. The decay of the spectrum indicates that the
electric field and the electron temperature decay at roughly
the same rate; physically this occurs because the plasma
will tend to short out fields larger than kT /e. Therefore
the effective temperature T mEZ decays twice as fast as To-

Profile evolution diffusion studies for the collision-

51 indicate

less plasma in a purely poloidal, levitated, mode
that levitation made little change in the level of enhanced
diffusion. Therefore we can assume that roughly the same
amount of vortex energy is present in the plasma with the
Octupole supported or levitated, and that the difference is
mainly in the distribution of energy in the spectrum. This

remains to be investigated.

The magnitudes of D, and T* calculated from the sup-
ported data agree reasonably well with the diffusion study
resultszs However, the data is somewhat limited and the
question of the effect of the supports on the cell structure
needs to be investigated more thoroughly. The principal
experimental problem is that the collisionless plasma is
not very reproducible, and operating parameters tend +to
drift. This problem is discussed further in Chapter VII in

the recommendations for further work.
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V.2 COLLISIONAL PLASMA

A, Supported Data. The collisional plasma in a pure-

ly poloidal field was examined in detail. Three experi-
ments were performed with the hoops supported. The experi-
ments paralleled the profile evolution studie526 (the

results of these studies were summarized in Chapter I.)

a. Contours were plotted for a quarter segment
of the private flux of the LIH, at three values of the
average magnetic field, Bave' The high-field case (Bavem2kG)
corresponds to a plasma with vortex diffusion scaling. For
the intermediate field (BaVGNGOOG) case, the diffusion
scales as vortex diffusion initially; then, as the vortex
spectrum is damped, the diffusion makes a transition to a
collision-dominated diffusion. The last case (B, v3606G)
corresponds to a plasma with collisional diffusion on the
LOH. The results of the experiment showed that the presence
of potential structure correlated roughly with vortex

diffusion, and its absence with collisional diffusion.

b. In this experiment, a full scan was made of
a single y-surface in the private flux of the LOH at two
B v600G {(vortex diffusion) and Ba

ave' ave
V180G {collisional diffusion).

values of B
ve

c. A full scan (8=3600, gix v~surfaces) was
taken of the private flux of the LIH, at Bave%480G. D, was
calculated as a function of ¥, and was shown to have the
same general shape as the diffusion coefficient obtained in

the studies of the profile evolutionzs, D(w)mn(w)"l/z.



la. Experimental Observation. A series of

scans was made for the collisional plasma in which the
bank voltage for the poloidal field was varied by a factor
of 5.5. Data is presented in Figs. 5.14 to 5.16.

The first set of data (Fig. 5.l4a-e) was taken in the
private flux of the LIH with 2.53kV on the poloidal bank.
This corresponds to an average magnetic field BaveWZKG.
The scans show a considerable amount of structure at all
times. The separatrix region is relatively flat, while
the psi-surfaces near the ring have much more azimuthal
variation in the potential. The cells move around and
change initially, establishing a recognizable shape with a
large cell located between ¢=3 and y=4. The large cell
does not decay in amplitude after the 17ms contour, and

retains roughly the same shape.

At 10ms after injection the gap voltage is on the
order of .1V for the crowbarred field at 2.5kV on the
bank. The question arises from examining Fig. 5.14 at 7ms
and 1l2ms after injection whether this is the cause of the
structure at the gap. The data was corrected by Drake's
method (see Chapter II}; .003V/O was subtracted from the
data. If there is as much as a factor of 2 difference be-
tween this and the actual flux density at the gap, over
the 6° segment in which there appears to be a large field
gradient, the difference would account for ~.016V. The
voltage step on the plots is on the order of .1-.2V, so
the possibly incorrect adjustment would not be responsible
for v1/6 of the voltage step at the gap with a flux asymme-
try of a factor of 2. If this factor is larger, the
correction could account for more of the gap structure,.

Detailed comparisons have not been made.
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The second set of data (Fig. 5.15) was taken with
750V on the poloidal field bank. This corresponds to Bove
v300G in the private flux of the outer hoops, and V600G in
the private flux of the LIH whexre the contours were measured.
The first contour shown, at 7ms after injection, has a
fair amount 6f structure, including a small cell at ~320°.
The later contours are much smoother., It is not just the
disappearance ¢of the small cell that is apparent, but the
smoothing out of the potential in general. As in the pre-
vious data, the potential gradients are smaller in the se-

paratrix volume. -

The third set of contours (Fig. 5.16) is for 450V on
the bank (360G Baive LIH). The potential contours are very
much flatter than those shown in Fig. 5.14 for the high-
field case, even though the actual voltages (v.2 to .8V)
are of the same order. The potential gradients in } are
steeper near the ring, and the separatrix volume is flat,

The three sets of contours show that as the magnetic
field is decreased, the fleocating potential contours go
from having large azimuthal variations to being azimuthally
symmetric. The difference in these three sets of contours
is one of shape, not magnitude, as a comparison of the
data shows that the potentials in all three cases are of
the same order (0-,8V), The potential gradients in ¢ are
also of the same order, The electric fields, though are
not; Eg is much smaller for the low~field case than for
the high-£field case.

2a. Discussion. As summarized in Chapter I,

the diffusion studies using the density profile evolution
have shown that for high magnetic fields the diffusion
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coefficient scales as vortex diffusion, and at very low
fields the diffusion is collisional. PFig 5.17 {(taken from
Ref. 26) shows the profile evolution for three cases covering

about the same range of magnetic field.

If the potential structure is the source of the en-
hanced diffusion at higher field strengths, we would ex-
pect to see little structure at low field, where collisional
diffusion dominates. Fig. 5.16 is consistent with this
interpretation. The contours are relatively flat and the
azimuthal electric fields are small. Asymmetries due to
plasma injection, etc., are damped out in the first few
milliseconds.

At the intermediate value of B the time needed to
damp out the vortex structure is longer because the ion
viscosity is smaller. Therefore we would expect the
vortex structure (Fig. 5.15) to take longer to damp out;
this is what is observed in the contours.

Finally, at high fields, where the viscous damping
time is of the order of the length of the experimental
pulse or longer, we would not expect the potential struc-

ture to disappear.

The sequence of the contours as the field strength is
increased is consistent with the interpretation we have
made that the potential structure is the source of the
enhanced temperature. However, the data was taken on the
inner hoop which has a higher average field strength than
the outer hoop; thus the transition from vortex to classical
diffusion takes longer than it would for the LOH, even if
all other factors are equal.
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lb. Experimental Observations . The toroidal

spectrum of ¢ (k) was measured for a single y~surface
(y=3.4,LOH) in the private flux. PFig. 5.18 shows ¢ (k) vs.

k for 1.5kV on the poloidal hank (BaVENSOOG), and Fig.

5.19 shows ¢(k} for 250V on the bank (Bave%lBOG). The
spectra are plotted at 2ms, 1l0ms, and 20ms, after injection.
Both show that ¢ (k) is a decreasing function of k; the
electric field spectrum for the low-field case drops off
faster with increasing k than the high-field case.

The time decay of the sum of all the modes is shown
in Fig. 5.20. For both cases, the decay constant is “S5ms.
The magnitude of the high-field case is approximately
three times larger than the low-field case. The time
decay of several individual modes is plotted in Figs. 5,21
and 5.22 for the high- and low~field cases respectively.
The individual modes also decay with a “5ms time constant.

2b, Discussion. This case is not well under-

stood. The vortex spectrum in 8 decays at about the same
rate for both scans. We would expect the low-field case to

damp much more rapidly than the high-field case.

D, is plotted in Fig. 5.23 and 5.24. The electric

field spectrum is smaller in magnitude at the low-field
case. However, the vortex diffusion coefficient is an

order of magnitude larger. We can calculate Dcl for both

casesls, using

4 1/2G2 1 n

seac ;—2-;—-37—2- (5.1)

e

D . = 1.65x10"% cmiev

cl
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With nv2x1g™ 7, Te%.ZeV, we find Dcl(BaveNGOOG)—ZOOCm /sec,

so that D_>D for the high-field case. However, for the
low-field case, Dcl=1200cm2/sec, and Dvmlo4cm2/sec.

Part of the discrepancy may lie in the different shape
of D(Y). The shapes for the classical diffusion coefficient

=172y are

(Den) and the vortex diffusion coefficient (Den
sketched in Fig. 5.25. From this figure we note that it
might be possible for DV to be larger than Dcl at the
position where the scan was made (y~3.4, with wS%5.7 and
wr%2.4), while Dcl>Dv in the bulk of the private flux
volume., However, this may not account for the factor of 10
difference in the numerical values obtained. It will be
necessary to examine more Y-surfaces to account for this
discrepancy, and a larger range of magnetic fields. This
is discussed in the recommendations for furthexr work in

Chapter VII.

The viscous damping time of a cell with wavenumber k
is Tuml/ukz. As discussed previocusly, the largest 20-30
toroidal modes which fit into the Octupole share the same
wl' with Av5cm. Therefore, the longest cells have the
same damping times, and Tuml/uk %25cm /u. For a .leV

il we can estimate the

collisional He plasma with nvl0
damping times using LIH average values. These are shown in
Table V.1, The damping times in the table are consistent
with what is observed in the time decay of the contour
plots, but full scans are needed in addition to more
information about EW’ to see if the long modes actually

damp in unison.
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Fig., 5.25 SKETCH OF THE SPATIAL DEPENDENCE
OF THE DIFFUSION COEFFICIENT



Table V.1 *

-1}_;2—

Bave Tu Bank Hoop
(G} {ms) Voltage
(k)
100 .3 .250 0
200 1.2 .250 I
240 1.7 . 600 0
300 2.8 750 0
480 6.9 .600 I
600 11 .750 I
1.5 0
800 20 2 0
1000 30 2.5 0
1200 43 1.5 I
1600 77 2 I
2000 120 2.5 I
* Tu“l/k 2U
U“n/BZ, k 2 and n assumed constant.
Table V.1 B as a function of poloidal bank vol-

p ave

tage and hoop:; viscous damping times for a

S5cm vortex.
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lc., Experimental Observations. A 360° scan of

six y~-surfaces in the private flux of the LIH was made at
600V on the poloidal bank (Bavem480G LIH). The contour
plots are shown in Fig. 5.26., The cell pattern is very
clear. There are two large cells: a positive cell centered
roughly at ¢=2.75, B=250°, and a negative cell centered at
Yy=4,5, 6=700, halfway around the machine in 6 from the
positive cell. The cell structure does not lose its
identity in the 70ms observation period, although it

decays in amplitude by about a factor of 2 over the same
period.

The power spectrum for the six Y-surfaces, Eze(m), is
shown in Fig. 5.27a-f (3ms after injection) and Fig.
5.28a~f {(7ms). The plots show that E2 is a decreasing
function of k. The plots at 3ms after injection show a

small bump at mv60; by 7ms the bump has disappeared.

The E8 power spectrum is a strong function of position
in ¥. The separatrix has little structure; the amount of
structure increases towards the ring. ZEg(k) is plotted in
Pig. 5.29 for the six Y-surfaces measured, at 4 times. The
earliest time plotted is 10ms after injection; at earlier
times the structure is not reproducible.

The decay of Eg as a function of time is plotted for
all six y-surfaces in Fig. 5.30a and b. The plots show
that after an initial decay (tvlOms), the electric fields
on the y~-surfaces in the main body of the plasma remain
constant. The spectrum at yY=2.77 decays gradually with
(very roughly) a 20ms time constant.
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The last y-surface measured is at y=2.15. This field
line intersects the hoop; however, on the low-field side of
the hoop this field line is still accessible (see Fig.
2.6). This is probably the reason that the electric fields
on this y~surface decrease in time.

2c. Discussion. Because the plasma is very

collisional, Amfp<Af’ and the support does not connect all
of the field lines at its azimuth together. The bump on
the 3ms spectra is much smaller than the one on the colli~
sionless spectra, and at a higher mode number. If the bump
is due to the supports in both cases, then the support is
not an additional boundary condition for the collisional
plasma, as expected.

2

We have used the E®° data to estimate the diffusion

coefficient for this plasma as a function of y-surface and
time, as discussed in Chapter IV. The results are presented
g, the
diffusion coefficient is also y-dependent, with the separa-

in Fig. 5.31, Because of the y~dependence of E

trix region having the smallest values of D The diffusion
increases during the first 5-10ms and then becomes constant,
except for the two y-surfaces closest to the ring. DV is
smallest lowest near the separatrix, where it has a value

m500cm2/sec.

We can estimate T*(k) as for the collisionless plasma,
using nmloll/cm3, B=480G, E(m=1)=.02V/m, which leads to
*
¥ (m=1)=5.6x10 eV.

The magnitude of Dv and T* for this plasma are in
reasonable agreement with the results shown in Ref. 26, and
the shape of Dv(w) is roughly what would be expected for
Dvocn“l/2 (see, for example, Ref. 13, Fig. 3.21).
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It is interesting to see that the time decay of the
spectrum is different on different y-surfaces. The theory
is not sophisticated enough to predict details such as time
decays except in a general way, and more study is necessary
to understand the spatial dependence on Y. However, even
with a simple model it has been possible to estimate 2
diffusion coefficient from the electric field spectrum, and
show that the vortices can be responsible for diffusion in
the Octupole.

B, Levitated Data. Vf contours from a partial scan

of the Octupole for the collisional plasma are shown in

Fig., 5.32. The machine was fully levitated when the
plasma was injected and during the next 20ms; after this
the supports started to come back in. The data was taken
in the private flux of the LIH, with 2.5kV on the poloidal
bank (corresponding to BaveNZRG). The plot covers an 80°
segment from ~20°, through the gap at 00, to +60° in 6.

1. Experimental Observations. The data shows

the development of the vortices. There is cell structure
present from the earliest time plotted (4ms after injection),
throughout the levitated period (to “45ms after injection),
and after the supports come back in. The structure is not
stationary, but evolves slowly in time over the experimental
pulse. There is little structure at the separatrix by 5ms
after injection; during the levitated portion the steepest
potential gradients in ¥ occur near the ring. The contours
show cell development in the region between yv4 and ps,

and between the ring and 4.
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2. Discussion. The levitated contours are
similar in shape to the supported contours for this plasma,
but the potential gradients in ¢ are a factor of 4 or so
larger. The difference between the levitated and supported
contours is smaller for the azimuthal electric fields;
however, without a full scan in 6 it is not possible to

make detailed comparisons. Because the plasma is colli-

sional, the supports are a very localized perturbation in
the plasma, and there is little disturbance a few mean-
free-paths away. The supports do, however, connect the
high~dielectric~constant separatrix to the rings, serving
as a path to short out some of the electric fields at ws.
Because of this the levitated contours (Fig. 5.32) have a
higher energy density than the supported contours (Fig.
5.14), and should have a higher T .

This agrees with diffusion data taken by Navratills,
who noted that for the collisional plasma in a levitated
Octupole the transition from vortex diffusion to classical
diffusion occurs at a lower value of the poloidal field,
which indicates a higher initial T*; also, the profile did
not take on the classical shape by the initial observation
(3ms after injection) even for the lowest poloidal field
available (BaveméoG, LOH)54. Thus the interpretation of
having the cells be the source of the vortex diffusion is
consistent with the profile evolution data for the colli-
sional plasma with the Octupole levitated, but more informa-
tion about the spectrum is necessary before an estimate of
the magnitude of DV or T* can be made.

C. Summary. The data shown for the collisional
plasma supports the theory that the macroscopic vortices in
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the plasma are the observable part of a non-thermal spectrum
with an enhanced temperature %107ev. Many details remain
to be worked out in the 2-D fluid theory for the Octupole.
However, we see that the trends in the data are generally
in the correct direction: When the field is reduced, the
spectrum damps. The diffusion coefficient calculated from
the supported data is of the right order of magnitude and
shape. The levitated contours appear to have a higher
energy density than the supported contours. And the shape
of the contours is similar to the fluid solutions proposed
in Fig., 4.2, as expected, since for the collisional plasma
the levators do not form additional boundary conditions as
in the case of the collisionless plasma. |
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CHAPTER VI ~ EFFECT OF BT ON COLLISIONLESS
AND COLLISIONAL PLASMAS

With a purely poloidal field, Octupole magnetic field
lines close upon themselves after one revolution in x in a
constant-azimuth plane. When a toroidal field is added,
the field lines advance A6 in the azimuthal direction for
each revolution about the minor axis (Ay=2m). The trans-

form angle, A48, is given by

A = ot dl. = o h—i— do (6.1)

where Bt=a/R. A8 approaches infinity at the field null,
and is different for each Octupole p-surface, leading to a
sheared magnetic field. If the ratio 1=AB8/Ax is a rational
number, the field line will close upon itself after an
integral number of revolutions in the azimuthal direction;
otherwise the field line will generate a flux surface. In
either case, the length of the field line will increase.

Potential structure has been observed in the Octupole
for plasmas with a poloidal and toroidal field, but it is
no longer necessarily true that the potential is constant

along a field line, and in general, ¢=¢(X,%,¥).

Vortex diffusion theory is applicable to 3-D plas-

aslB’ZI; the vortex contribution to D comes from modes

m
with kzno. The cart probe has access to a limited portion
of the Octupole, and it is not possible to measure the
electric field spectrum as was done in Chapter V: rotating

the contours around the ring will not produce the 3-D



potential structure, For this

reason the discussion will

be more qualitative than in the previous chapter, but it is

still possible to investigate many of the features of 3-D

convective cells.

VI.1l COLLISIONLESS PLASMA

The ion mean-~free-path for the collisionless plasma

can be estimated from

2
12 7.
2.1x10 i
A =V paTy T el cm (6.2)
mip - eh 1L /100 n
where
_ 1/2
Vin 1 = (Ty/my) (6.3)
3/2
3\}mi Ti
Ti = o= 17 (Ref. 52) (6.4)
4V1r Ae 2 ng
A= 1Inp = 23,4 - 1.15 logn + 3.45 log Te (6.5)

Using parameters from Table I.1,

lmfp im2000m initially,

and decreases to +40m at 30ms after injection (when n

8

n8x108cm™>, Ref. 25).

With a purely poloidal field, excess charge on a mag-

netic field line cannot dissipate because the field line is

When a toroidal field
become very long.

closed,
The minimum
the length of the line through
Afw2w(R=1.4m)m8.8m. For field

A <<(Af+m). This means that

mfp

is added the field lines
field line length (Af) is

the poloidal field null,

lines that form flux surfaces,

unless there are other

mechanisms which inhibit free flow of charge, we would

expect to see any excess charge dissipate quickly by paral-

lel flow along the field line.



-16l-

Magnetic mirror trapping. If electrons are trapped in

a magnetic mirror, the excess charge can only be dissipated
if the electrons are scattered out of the mirror by colli-
sions, or more ions are collisionally trapped. Xamimura
and Dawsonz7 investigated the effect of mirror trapping in
a thermal plasma by means of computer simulations, and
showed that convective diffusion is enhanced. The appro-
priate damping mechanism is collisional detrapping, with a
time constant proportional to the collisional lifetime and

the mirror ratio, Tchln(Bmax/Bmin); the diffusion coeffi-
cient is
T3/2
Dyp < =5 ' independent of B (6.6)

Diffusion studies have observed this scaling for the
collisionless plasma with a poloidal and toroidal field (in
the private flux of the LOH). The magnitude of D, indicated
an effective temperature T* of 500eV. An additicnal experi-
ment performed with collisionless electrons and collisional
ions indicated that the trapped particles were electrons;
the scaling remained the same, but the effective temperature
was lower, v150eV, [Note: fluctuations measured in this
region could account for only a small percentage (22%) of

the diffusionSG.}

In the common flux trapped ion modes were observedSG:
a dissipative mode in the region 5,7§w§6.1f and a colli-
sionless mode (in the ion diamagnetic drift direction)
outside Yy=6.1. It was noted, however, that the fluctuations

could account for all the diffusion in this region.

A. Experimental Observations. Cell structure was

measured for the low density plasma (n%logcm3, TiNZOwZeV in
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20ms). The magnitude of the toroidal field (in series with
the poloidal field) was 380G on axis. The poloidal field
bank voltage was 2.5kV, corresponding to BaveWZkG (LIH) .

Because Amfp for this plasma is long, thermal flow
along the field lines intersected by the supports accounts
for a significant loss of plasma. For this reason the data
was taken with all four hoops levitated (as were the diffu-

sion studie556’57).

Data for the private flux of the LIH is presented in
Fig. 6.la-f. The private flux exhibits a good deal of
potential structure for the duration of the levitated
period (v20ms.), Fig. 6.la~e. The structure damps signifi-
cantly between 15 and 25ms (Fig. 6.le and f) during the
time the supports come back in, and remains at approximately

the same amplitude for the remainder of the experiment.

The contours are similar to the supported data with a
purely polcoidal field (Figs. 5.1 and 5.3), with closed
cells in the region 3.5§w§4.5. However, we note that there
is relatively little structure near the ring (2.5§¢§3.5).
The separatrix 1s alsc flatter than the bulk cof the plasma,
as was the case for the Bp-only data.

Common flux data is shown in Figs. 6.2a-d. There is
cell structure for the levitated portion of the experiment.
The cell structure {private and common flux combined) is
similar to the solutions proposed in Chapter IV, Fig. 4.1b,
¢ol. 3. The observed cells are positive in the common flux

and negative in the private flux.
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B. Discussion. The data presented is consistent with

what is expected if the potential structure is the source
of Dv. Since the cart probe passes approximately through
the trough of the lower inner hoop mirrors in both the
private and common flux regions, we observe cells. We
would expect the observed cell structure to be close to the
maximum value for the Yy-surface, because it is measured at
the bottom of the mirrors. Measurement558 of the potential
fluctuations on the LOH indicate a factor of two to five
difference in the potential between the low- and high-field
sides of the hoop, and we assume that the inner hoop is ‘
similar.

To calculate the power spectrum (and thus estimate T*)
we need to measure ¢ (¥,0,V). We can't get this information
from the contour plots, but we can show by a very rough
estimate that the magnitude of T* is much smaller than the
value for this same plasma without a toroidal field.

From Fig. 6.1 the magnitude of E(k,t) on the low-field
side of the hoop is .5-1.0V/m, which is of the order of
the potential structure for the case with no toroidal
field. If B on the high-field side is a factor of 5
smaller than the low-field side, then EZ
a factor of 25 on the high-field side of the ring. Then
T*, which is the integral of Ez over the volume of the

will be smaller by

plasma, would be between

104ev

< ¥ < 10%ev
5E T e

400 =

where 104eV is the value for the same plasma without a
toroidal field. Since part of the energy would be in modes
with a kﬁ (which do not contribute to D, ), we would expect
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X
an even smaller T value as the enhanced temperature for

the vortex modes with k =0,

It is not possible to obtain the shape of the spectrum
in & from a partial scan, but it sould also be expected
that the longest wavelength modes would be damped and that
the cells would be smaller due to localized trapping.

Since the long-wavelength modes contrigute the most to D,
this would also reduce the effective T .

We note that the contours show more structure towards
the separatrix. This is consistent with what one would
expect from a physical picture, since there is more trapping
(and hence more structure) on the field line with the

largest mirror ratio.

It is not possible to state, given this data, what the
scaling of D is for this plasma; however, the information
available from the contours is not inconsistent with a
Kamimura-Dawson diffusion coefficient, and the rough esti-
mate of T* given indicates that the power spectrum has more

energy than a thermal spectrum,.

VI.2 COLLISIONAL PLASMA

With a toroidal field added to the poloidal £field, the
length of a field line increases, and excess charge can be
shorted out as the field line connects regions of positive
and negative charge. The collisional mean-free-path (for
both species) is smaller than the length of the pcoloidal
field mirrors; therefore we do not expect trapped particle

27

effects like those in the case of the collisionless
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plasma. After the vortex spectrum is damped, we expect to
see classical diffusion in this plasma; we would also
expect to see very little potential structure in the
contour plots.

The results of the diffision studies on the colli-
sional plasma in a sheared magnetic field are reported in
D avezGOOG {poloi-
dal bank voltage=l.5kV), and the results can be summarized

Ref, 59. The experiments were done for B

as follows:
1) with a very small toroidal field (20G on axis),
D scaled as the vortex diffusion coefficient.

2) with weak shear (75-100G) the diffusion in the
plasma became classical even in the presence of
large density fluctuations (8n/nv20%).

A. Experimental Observations. For this plasma it has
51

been shown that plasma losses and diffusion are not
changed by the presence or absence of supports. Therefore,
the two experiments to be discussed were made with the

hoops supported to minimize wear on the levators.

1. Inner hoop. The first set of data consisted

of floating potential scans of 5 psi-surfaces, taken in the
private flux of the lower inner ring. The scans covered
about a quarter of the machine, including the poloidal
field gap. The poloidal field bank voltage was 1.5kV

(Bp ave’bl.ZkG). Scans were made for Bt=20G and 100G (on
axis).

For the first case, Bt=2OG on axis and cells are

present for all times. The potential structure has its
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steepest gradients in the region closest to the ring

(Fig. 6.3a-d); the separatrix region has less structure.

With B =100G on axis, Fig. 6.4a-d, the structure
becomes much flatter; the steepest gradients in the poten=-
tial are still located nearest the rings, but the variations
in the azimuthal direction, which give rise to the cross-
field diffusion, are very much smaller than with Bt=ZOG.

2. Outer hoop. The data consists of a full scan
(360°) of a single psi-surface (Yv3.4) on the lower outer
hoop for BP ave=600G (1.5kV on the poloidal bank}, with and
without Bt=lOOG. This psi-surface is in the private flux

between the ring (yv2.4) and the separatrix (Yv5.6).

Fig. 6.5 and Fig. 5.5 show the electric field power
spectrum obtained from the azimuthal gradient of the
floating potential, with Bp ave:GOOG, with and without
Bt=100G, respectively. The power spectrum vs. toroidal
mode number is shown at 5ms, 10ms, and 15ms, after injection.
{The Béuonly data is discussed in Chapter V.) The spectra
are quite noisy, but we can make a few gualitative state-
ments about them. A comparison of the spectra shows that
both decrease in time. At any given time, Ez(k) is a
decreasing function of k, and E(t) for a given mode k is
smaller with a toroidal field than without one. The BP+Bt
data lacks the "bump" on the spectrum {(at kv20-30) present
in the Bp data, and decreases more rapidly as a function of
k. Overall, the shapes of the spectra are somewhat diffe-
rent, with the Bp data proportional to l/kz, and the Bp+Bt
spectrum more closely proportional to 1/k. (These estimates
are by eye only, not by curve-fitting technigues.)
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Fig. 6.6 shows the time decay of the power spectra
summed over all the modes. This figure compares the data
with and without a toroidal field on the same scale. We
note two things in particular. During the early times, the
total energy is smaller with an added toroidal field by an
order of magnitude, It is also decaying faster: at 10 ms
after injection, tv2ms with a toroidal field, and 4.5ms
without one., At later times, however, the toroidal field
data decreases more slowly than the poloidal field data,
although the total energy in the poloidal field spectrum
still remains larger by an order of magnitude at 50ms afterxr

injection.

Data for individual modes is plotted in Figs. 6.7 and
5.21, which show the time decay with and without Bt, for
m=1, 2, 3, and 10. Time decays at 1l0ms after injection (TE
and TE2) are summarized in Table VI.I for several toroidal
mode numbers, and g is plotted as a function of k in Fig.
6.8. With the toroidal field the longest-~wavelength modes
damp very quickly (TEml-2ms) for about the first 10-15ms of

the experiment.

B. Discussion

1. Inner hoop contours. The diffusion measure-

ment559 on this plasma indicate that with very weak shear

(Bt=20G) the diffusion is essentiélly the same as without

a toroidal field; with a larger amount of shear the diffu-
sion becomes c¢lassical. Thus we would expect to observe
cell structure for the first case, and to see either flat
contours, or damping cells, for the second. The cell plots

with Bt=20G on axis agree with this expectation: a large
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Table VI.1
k Bp B +Bt
TEZ g TEZ TE
1 6.5 13 1 2
2 4 B 1.5 3
3 4.5 9 2 4
10 3 6 5 10
15 3 6 4
20 4 8 3
ZEz(k) 4.5 2
k

Table VI.1 Decay times {in msec) for toroidal electric
field modes: collisional He plasma; supported;
private flux of the lower outer hoop;

l0msec after injection; B e=600G (1.5kV);

p av
Bt=100G on axis.
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amount of vortex structure is present in the inner hoop

contours (Fig. 6.3a-d), and the cells persist in time.

The LIH contours taken with Bt=lOOG have much less
structure, and the cells damp quickly. However, comparison
with the classical contours in Chapter V (Fig. 5.16) shows
that the latter have somewhat less structure, Although

100G was enough to damp the vortex structure on the lower
59

outer hoop””, it seems likely that more would be required
on the inner hoop which has a higher average poloidal field
(Bp avewl.ZkG ve 600G). It is not known whether the

relationship is linear (so that it would require the same

ratio Bt/B to damp the vortex structure).

P

We have discussed two ways of obtaining a plasma where
classical diffusion is the dominant diffusion mechanism,
With a purely poloidal field, the vortex spectrum is damped
by collisional ion viscosity if the field is small enough
(uwl/Bz); lowering Bp increases U most near the rings.

When a toroidal field is added, however, shear is strongest
near ws, and we would expect to see the vortex spectrum
damp first in the separatrix volume.

We have noted that for both BP and Bp+Bt, the cell
structure is flattest near ws‘ Part of this effect is the
dielectric screening of the electric fields which is strong-
est in the separatrix region, but it seems to be more
pronounced an effect with a toroidal field. This may be
due to the different y~dependence of the two damping mecha-

nisms,

2. Outer hoop; single y-surface. The effect of

the toroidal field (BtleOG on axis) is very clear:



first, the long wavelength modes are damped very quickly.
We would expect this from a physical point of view, since
a long-range order is required to maintain the largest
cells. And since it has been shown that the longest
wavelengths cause the most dapage to containment, this
preferential damping is the reason why a small amount of
shear makes a large change in the diffusion, even if the
vortex spectrum is not completely damped out. Second, the
total energy in the spectrum, ZEz(k,t), also decreases by
the addition of a toroidal field, as shown in Fig. 6.6,
Both these effects will reduce the vortex diffusion coeffi-

cient calculated from the spectrum.

Dv was calculated from this data for a purely poloidal
field in Chapter V. With an added toroidal field, we can
estimate DV is we assume that the spectrum measured at one
value of X (with A6=2m) is an approximation to the spectrum
on the whole y-surface. To justify this approximation, the
spectrum would have to be measured at several values of y:

this cannot be done with the cart.

The diffusion coefficient obtained using this assump-~
tion has been plotted in Fig., 6.9 along with D,, calculated
for the same plasma without a toroidal field. The magnitude
of Dv is observed to decrease by a factor of 3-4 when Bt is
added, to m500cm2/sec.

The diffusion study results showed that, for this
plasma, the diffusion becomes classical when a toroidal
field of 100G is added to the 600G average poloidal field.
The classical diffusion coefficient is NSOOcmz/sec (using
n=5XlOllcmu3), which is of the same order as DV estimated

from the Bp+Bt data. It can't be stated conclusively from
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this scan that the magnitude of D is reduced to less than
the magnitude of Dcl when a toroidal field is added; how-
ever, the trend is definitely in the expected direction: Bt
reduces the vortex spectrum, and long-wavelength modes are
preferentially damped. In addition it is known62 that with
an added toroidal field, collisional diffusion in this
plasma at early times includes higher-order modes (the nor-

mal modezs'26

is reached in 9ms vs. <3ms for a purely
poloidal field). These modes have higher fluxes than the
normal mode, so that it is possible that the flux from the
collisional modes is larger than that from the vortex

modes.

We conclude that this data is consistent with the
interpretation that the potential structure is the source
of vortex diffusion in the Octupole. It must be clearly
understood that this is an order-of-magnitude calculation
and it depends on using a method developed for two dimen-
sions in a three-dimensional situation.



CHAPTER VII -~ CONCLUSION
VII.1 EXPERIMENTAL RESULTS

The first objective of this thesis has been accom-
plished: Potential contours have been plotted for a wide
range of Octupole parameters using two different plasmas.
In addition, toroidal spectra have been presented (for 3600

scans), as a function of time and toroidal mode number.

The second objective was to investigate the relation-
ship between the cells and vortex diffusion in the Octupole.
There is a strong correlation: Cells are present when the
~diffusion (calculated from the profile evolution and collec-
tor measurements) scales as Dv' and much reduced in ampli-
tude when Dv<Dcl'* The toroidal spectra have been used to
estimate D, and T from the potential structure, and the
results agree reasonably well with the results of the dif-

fusion studieszs'ze. Discrepancies will be discussed later.

The physical model that emerges from the theory and
the data is as follows. The initial injection process
creates a plasma with a large amount of energy {(from charge
separation) in turbulent vortex modes. During the first
few milliseconds, this initial, non-reproducible distribu-
tion evolves into a reproducible structure with the energy
concentrated at the longest wavelengths. The spectrum then
retains this shape, and decays on a much longer time scale
than the one required to produce the long-wavelength dis-
tribution. Diffusion is caused by the vortex modes when

the electric fields become uncorrelated. The magnitude of
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Dv depends on both the magnitude of the electric fields,

and the correlation times.

This interpretation alsc accounts for the enhanced
magnitude of Dv obtained in the diffusion studies over the
Okuda-Dawson diffusion coefficient, while preserving the
scaling. There is then no need to postulate complicated
local models to show how convective cells may account for
plasma losses. However, there are several discrepancies
which must be taken care of before we can state unequivo-
cally that the electric field vortex structure is the sole
source of the diffusion. The remainder of this section is
dedicated to examining these discrepancies.

A possible discrepancy was noted for the collisionless
plasma injected into a fully levitated Octupole. The poten~
tial contours were much flatter for the levitated case than
for the supported case. However, without a full scan it is
impossible to determine whether the longest-wavelength modes
are similar in both cases. This would be expected, as T* is
the same for bothzs’ls. This case should be examined in
more detail, and a full scan taken as discussed in the next
section, with the Octupole levitated and supported. If the
vortex interpretation is correct, both cases will have simi-
lar spectra, except that the spectrum for the levitated case

will lack the bump at mv30.

A more important discrepancy arose in connection with
the collisional plasma in a supported Octupole. The
vortex diffusion coefficient is independent of B over the
range in which ¢>>1. This scaling was confirmed experi-
mentally for the profile evolution in the Octupole26.

The initial particle density in the machine varies by only
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a factor A2 in the magnetic field ranges studied. There~-

fore, if 5 5
E ¢ _

o, VY 2 -V
v k“B B2

then for different values of B (but constant D=Dv) the re-—

lationship

¢2
Sy ~ g¢constant
B
should be maintained. That is, on the average, if B de-
creases by a factor of 4 we would expect VZ¢(k)2 to de-

crease by the same factor.

In the experiment referred to in Section V.2A, a scan
was taken of a single Y-surface in the LOH private flux for
the collisional plasma, at 1.5kV on the poloidal bank (D=DV
from the diffusion studies; BavemeooG), and 250V (D=Dcl,
Bave=lOOG). Although the magnitude of the electric field
spectrum decreased when the magnetic field was reduced, the
ratioc of E/B increased, and Dv calculated from the spectrum
increased. Dcl(¢l/32) also increased, but it was still
smaller than D, - This case should alsc be examined experi-
mentally in more detail, as the observation that Dv in-
creases 1is based on a scan of a single y-surface,

VII.2 RECCOMMENDATIONS FOR FURTHER WORK

The general correlation of vortices with vortex diffu-
sion is strong. However, although the potential structure
has been mapped for many different cases, the information
about some of these cases is incomplete. We will discuss
here some improvements to the method used to take data,
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and recommend a series of experiments which should shed more
light on the questions which arose during the writing of

this thesis.

A, Method improvements. The preferred data set for a

given case would include a 360° scan of several py—-surfaces.
Since it has been shown that the toroidal electric field
spectrum is a decreasing function of the toroidal mode num-
ber, and that the first 10-20 modes are the most important,
it is suggested that scans cover the 360° in by taking
data at 40 equispaced azimuthal points. The cart is limi-
ted to carrying four signal cables by its construction.
Without major changes to the cart, a large improvement
would be accomplished by using the four probe tips to mea-
sure the potential on four yY-surfaces in the private flux
simultaneously. This requires construction of a probe such

as the one illustrated in Fig. 7.1.

This type of specialized probe would be useful only in
a limited region (note that at position B the probe tips are
practically all on the same yY-surface), However, it may be
possible, by careful placement of the four tips, to find
another position o', such that two scans in 6 would produce
eight yY-surfaces reasonably well spaced, and provide more
information about the potential as a function of $. A probe
like this would have to be carefully constructed and cali-
brated, but would guadruple the data-taking rate for the
LOH private flux, allowing experiments to be accomplished
before operating parameters drift, or making it possible
to examine full scans for cases with different parameters
on the same day.
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puo— Iy {1
TIME = .028 SEC

F1c., 7.1 PROPOSED CART PROBE, WITH TIPS PLACED SO AS TO
MEASURE VF ON FOUR V-SURFACES IN THE PRIVATE
FLUX oF THE LOH siMuLTANEOUSLY.
AT B, ALL FOUR TIPS ARE APPROXIMATELY AT THE
SAME VALUE OF ¥,
WITH THE PROBE AT THE ANGLE &, THE TIPS ARE ON

vE 2, 3, 4.3, anp b,

At o, v¥ 2,5, 3,7, 4.8, anp 5.3,
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For direct comparison with profile evolution results,
it is alsc recommended that density profile scans be taken
simultaneously. Any efforts that result in more reprodu-
cible plasmas will also increase the number of cases that
can be examined, by decreasing the number of rejected shots.

The model developed in Chapters III and IV is a very
simple one. Extensions to the theory are necessary to in-
clude factors such as density gradients, curved field lines,
and non-rectangular geometries., It is also necessary to
produce a set of fully two-dimensional equations, and exa-
mine the terms which were neglected in Section IV.6. Much
work remains to be done on the subject of electric field
correlations in the Octupole, and a comparison with Taylor

and McNamara's assumption of a jointly-normal distribution.

Solution of the sinhY equation on an annulus, rather
than a rectangular box, would be relatively simple, and.
could lend weight to the Octupole fluid solutions proposed
in Chapter IV.

B. Further experiments., More detailed scaling infor-

mation could be obtained by examining potential contours
(full scans) in the LOH private flux for the collisional
plasma in a purely poloidal field. A set of values of Bave
should cover the low~field case {(where Dcl>Dv)’ the transi-
tion case, and several values of Bave in the region where
Dv>Dcl‘ In the latter region, as B is changed, the ratio

E/B should be constant.

The collisionless plasma could be examined in the
same way, over a range of fields with D=D,. In addition,

it is necessary to compare the toroidal spectra of the
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electric field for the levitated and supported cases; this
would determine whether the 'bump' on the supported spec-
trum at mv30 is in fact one of the effects of the supports.
Since the diffusion studies imply that T* is the same for

the two cases, we would also expect the spectra to have the
same magnitude.



APPENDIX A
DIFFERENTIAL OPERATORS IN OCTUPOLE COORDINATES
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