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ABSTRACT

This is a dissertation for the completion of a Doctorate of Philosophy in Physics degree granted at

the University of Wisconsin-Madison.

Density fluctuations in the large-density-gradient region of improved confinement Madison Sym-

metric Torus (MST) RFP plasmas exhibit multiple features that are characteristic of the trapped-

electron mode (TEM). In fusion relevant plasmas, thermal transport is a key avenue of research in

order to achieve a burning plasma. In the reversed field pinch (RFP) magnetic geometry, the dy-

namics of conventional plasma discharges are primarily governed by magnetic stochasticity stem-

ming from multiple long-wavelength tearing modes, that sustain the RFP discharge but have an

adverse effect on the plasma confinement. Using inductive current profile control, these tearing

modes are reduced, and global confinement is increased to that expected for comparable tokamak

plasma. Under these conditions with certain plasma equilibria, new short-wavelength fluctuations

distinct from global tearing modes appear in the spectrum at frequencies f ∼ 50 kHz that have

normalized perpendicular wavenumbers k⊥ρs . 0.2, and propagate in the electron diamagnetic

drift direction. By adjusting the plasma current or the inductive suppression, there are observable

variations in the spectral features. They exhibit a critical-gradient threshold, and the fluctuation

amplitude increases with a local density gradient dependent parameter. These characteristics are

consistent with the predictions of unstable TEMs based on gyrokinetic analysis using the GENE

code. This thesis represents the first observation and description of TEM-like instabilities in the

RFP geometry.
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Chapter 1

Introduction

The confinement of energy, particles, and momentum in a toroidal magnetic confinement fusion

reactor plasma is anticipated to be limited by plasma turbulence. In present-day tokamak and

stellarator plasmas, microturbulence associated with a variety of drift waves on scales close to the

poloidal gyro-radius are most often thought to be responsible for turbulent transport [1, 2]. Larger-

scale fluctuations can degrade confinement as well, for example, in conventional reversed-field

pinch (RFP) plasmas, multiple tearing modes arise with overlapping magnetic islands that cause the

magnetic field to become stochastic over a large volume of the plasma. Parallel streaming becomes

a potent transport mechanism in this case [3, 4, 5, 6]. Stochastic transport is also important in

microturbulence [7]. Understanding and controlling turbulent transport remains a central goal for

magnetic confinement fusion research, and examining the behavior of these processes in different

magnetic configurations offers an effective way to develop predictive models that are robust over

a wide range of plasma parameters and magnetic configuration variables.

While conventional RFP plasmas suffer from global magnetic tearing instability, inductive cur-

rent profile control yields a ten-fold improvement in the global energy confinement by suppressing

large magnetic fluctuations associated with tearing modes [8, 9, 10]. Improved confinement is

also obtained in self-organizing RFP plasmas through a spontaneous transition to the quasi-single-

helicity regime in which one tearing mode is dominant and secondary tearing modes are reduced

[11]. Once tearing is sufficiently suppressed, microturbulence could limit confinement in the RFP

as it does in tokamak and stellarator plasmas. Recent gyrokinetic modeling reveals drift-wave in-

stability for the RFP configuration, with some properties distinct from those seen in tokamak and

stellarator configurations [12, 13, 14]. The critical-gradient threshold for instability is larger in the
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RFP by a factor of the the aspect ratio, a feature associated with the lower safety factor and larger

poloidal magnetic curvature. Zonal flows are also predicted to be much stronger and the nonlinear

up-shift for the critical gradient (Dimits Shift) yields predictions for relatively lower transport due

to saturated turbulence. However, residual magnetic fluctuations are able to severely reduce zonal

flow amplitudes [15, 16], which increases the transport to values typical for tokamak plasmas [14].

The primary physics findings of this thesis are the measurement and description of a density-

gradient-driven trapped-electron mode in the MST using a far infrared interferometer/polarimeter

system, as well as a comparison of this measurement to gyrokinetic simulations in MST-like equi-

libria. By using an inductive profile control technique to suppress tearing instability and increase

pressure gradients, the tearing instability becomes sub-dominant in the density fluctuation spec-

trum, as measured by the interferometer system, and an emergent density fluctuation is measured.

This density fluctuation is found to be highly dependent on the local electron density gradient,

travel in the electron diamagnetic direction, and has a frequency and wavenumber consistent with

a trapped electron mode instability. Gyrokinetic simulations using the GENE [17] code predict un-

stable trapped electron mode turbulence in the large gradient region of the experimental equilibria.

The comparison of experimental and simulation results leads to the expectation that the density

fluctuation observed experimentally is related to trapped electron mode turbulence. To show these

results, the thesis is organized as follows. First, the MST device will be introduced, including stan-

dard plasma operation, the method of improving confinement using an inductive current profile

control technique called pulsed parallel current drive (PPCD), and a brief overview of the mag-

netics array in Chapter 1. Then, the FIR interferometer-polarimeter system will be introduced in

Chapter 2, including the theoretical basis of the system, technical aspects, basic operation, and

the recent system upgrade. This will be followed by a brief overview of plasma transport in the

RFP in Chapter 3, and computational results from the gyrokinetic code GENE from several plasma

equilibria in linear and nonlinear regimes in Chapter 4. Then, a thorough analysis of density

fluctuations in standard and improved confinement plasmas will be presented in Chapter 5, going

through frequency, wavenumber, and power analysis, as well as analysis of the magnetic features,
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Figure 1.1 Basic magnetic configuration of an RFP device. The toroidal and poloidal magnetic
fields are comparable in magnitude, and the toroidal field reverses sign near the plasma edge.

(Courtesy J.S. Sarff.)

and a comparison of the GENE and experimental results. Finally, The work will be summarized in

Chapter 6, and there will be a discussion of potential future work.

1.1 The reversed-field pinch

The reversed field pinch (RFP) is a toroidally axisymmetric plasma where the toroidal and

poloidal magnetic field (Bφ and Bθ, respectively) are comparable in magnitude and the toroidal

magnetic field reverses sign near the plasma edge, at a point called the reversal surface. This

configuration is shown in Figure 1.1. A parallel current gradient can drive an MHD relaxation

event called a sawtooth crash that flattens the parallel current profile. This relaxation process is

responsible for the sustainment of the toroidal magnetic field, but degrades particle and energy

confinement of the plasma [18].

The RFP preferred state was derived by Taylor in 1974 [18], based on the conjecture that the

magnetic helicity K was conserved over the whole volume of the plasma:

d

dt
K0 =

d

dt

∫
V

−→
A • −→BdV ≈ 0. (1.1)
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Figure 1.2 Safety factor, q, in the RFP for an ensemble of PPCD discharges. The safety factor is
less than 1.0 everywhere in the plasma, and decreases monotonically, changing sign at the

reversal surface.

Minimizing the magnetic energy of the plasma with respect to K0 led Taylor to the preferred state

of the magnetic field, described by:

∇×−→B = λ
−→
B , (1.2)

where λ is a constant. Equation 1.2 describes the RFP minimum energy state for a weakly diffusive

plasma [18].

The dynamo has been studied exhaustively, with various studies attempting to describe the

mechanisms of the process. This includes studies looking at the correlated cross product between

magnetic and velocity fluctuations using spectroscopic diagnostics [19, 20] and Langmuir probe

measurements [21] to show that (〈ṽ× b̃〉) is sufficient to balance parallel Ohm’s law in the RFP and

sustain the discharge. More recently, Ding, et. al [22] used a polarimetry measurement, and Tharp,

et. al [23] and Triana [24] used probe measurements to study MHD and hall dynamo effects.

Magnetic fluctuations that contribute to the dynamo result from resistive tearing modes that

occur in the plasma. In the RFP, the relatively small toroidal magnetic field results in a safety

factor, q =
aBφ
R0Bθ

, that is less than one throughout the plasma, and decreases monotonically through

the plasma. The safety factor changes sign at a point called the reversal surface, as seen in Figure
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1.2. Consequently, the RFP has many closely spaced resonant surfaces where q is rational, i.e.:

q =
m

n
, (1.3)

where m and n are integers. At these rational surfaces, magnetic tearing and reconnection can take

place, allowing for magnetic islands. The effects of these islands will be expanded on in Chapter

3.

The experiments used in this thesis were performed on the Madison Symmetric Torus (MST)

[25], an RFP based at the University of Wisconsin - Madison. It is a moderate sized toroidal plasma

device with a major radius of 1.5 m and a minor radius of 0.52 m. The MST is able to operate

under a wide array of plasma parameters. The plasma current is Ip ≤ 600 kA. Plasma electron

temperatures are Te ≤ 2 keV. Plasma densities in the core are around ne ∼ 1019 particles
m3 . The data

is this thesis will be from plasma discharges with Ip ∼ 200 − 500 kA, ne ∼ 0.8 · 1019 m−3, and

core Te ∼ 800− 1200 eV.

1.2 Improving confinement

The RFP concept has some unique benefits that may make it desirable as a fusion device [26].

These benefits are primarily due to the concentration of the magnetic field within the plasma and

relatively small applied toroidal field. Due to the small magnetic field at the magnets, copper

can be used instead of the superconducting materials that may be required for some other fusion

concepts. Additionally, because an RFP reactor can theoretically be ohmically driven to ignition,

no plasma-facing auxiliary heating elements are required and would not need to be periodically

replaced due to wear. In order to take advantage of these benefits, magnetic fluctuations must be

suppressed to improve confinement [26].

Magnetic fluctuations, which dominate transport in standard RFP plasma operation, are a result

of the plasma attempting to relax into a state of lower energy. Using an inductive current profile

control technique, called pulsed poloidal current drive (PPCD), these magnetic fluctuations can

be suppressed and other processes may become important to transport. The tearing mode arises

from gradients in the parallel current profile J‖/B, and degrade confinement while flattening the



6

 

Figure 1.3 Basic layout of the PPCD circuit. (Reproduced from Chapman internal document,
Ref. [29])

parallel current gradient. PPCD works to flatten this gradient to the same degree as a sawtooth

crash applying a poloidal current in the wall, which reduces the magnetic flux in the plasma over

time, inducing a parallel current in the edge of the plasma that flattens the parallel current profile

[27, 28]. PPCD mitigates v × B fluctuations and reduces the available free energy for global

magnetic tearing modes.

The circuit used for PPCD operation, seen in Figure 1.3, is fairly simple. Current is driven

poloidally in the conducting shell, adjusting the toroidal magnetic field. From Faraday’s law,

∇ × −→E = −∂−→B/∂t, the change in toroidal magnetic field results in a poloidal electric field that

drives poloidal current. Since the field in the edge is primarily poloidal, the driven current is

parallel to the magnetic field, and this reduces the parallel current density gradient.

As a result of PPCD, confinement improves to tokamak-like levels [8], as seen in Figure 1.4.

Additionally, toroidal magnetic fluctuations are reduced by an order 5−10 throughout the toroidal

mode number spectrum, as seen in Figure 1.5, compared to standard plasmas. However there

are still residual magnetic fluctuations, particularly at mode numbers n = 6 − 7, which are still

prominent in the mode number spectrum. Using a field line tracing code to simulate the magnetic

field for these magnetic fluctuations can reveal how stochastic the field is. Standard plasmas are

expected to have fairly high stochasticity due to overlapping magnetic islands, as seen in Figure

1.6. For PPCD plasmas, the magnetic stochasticity is found to be significantly lower in the core,

but is still a significant feature elsewhere in the plasma.



7

MST Standard

MST PPCD

Figure 1.4 MST confinement relative to tokamak H-mode empirical scaling, assuming a tokamak
with the same size, magnetic field strength, and heating power as the MST. (Reprinted from ITER

Physics Guidelines, ITER report N 19 FDR 1 01-07-13 R 0.1.) [30]

 

Figure 1.5 Relative toroidal magnetic fluctuations in standard (blue) and improved confinement
(red) plasmas. (Reproduced from Sarff et al., Ref. [31])
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Figure 1.6 Simulated puncture plot of magnetic field in standard (blue) and improved
confinement (red) plasmas. The field structure outside of the reversal surface is not captured in

this figure, since only 0 < n < 33 modes are plotted in this case. (Reproduced from several
sources, Refs. [32, 4, 33])
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r/a
Figure 1.7 Equilibrium electron density profile in standard (black) and PPCD (red) plasmas.

(Reproduced from Lin et al., Ref. [34])

PPCD has a significant impact on the equilibrium and fluctuating parameters of the plasma.

The electron density flattens in the core, and the electron density gradient steepens in the edge,

as seen in Figure 1.7. Due to the increase in confinement, the electron temperature also increases

significantly, by up to a factor of ∼3, as seen in Figure 1.8. The electron temperature gradient

reaches into the core of the plasma, significantly further than in standard plasmas. The radial

particle flux associated with the m=1,n=6 tearing mode, plotted in Figure 1.9, drops significantly

in most of the plasma. The drastic increase in the electron temperature does not hold for the ion

temperature, as seen in Figure 1.10, where the core ion temperature only reaches ∼300eV during

the PPCD cycle. The ions do not have a mechanism for heating under normal PPCD operation, but

a method called crash-heating, where a magnetic tearing relaxation event is triggered immediately

before PPCD, has been found to increase the ion temperature during PPCD significantly, up to

Ti ∼ 2 keV [10].

Density fluctuations in these plasmas have been somewhat explored in previous work, but no

exhaustive studies have been done. The previous studies were primarily concerned with the effects

of PPCD on the tearing modes, but generally ignored high frequency fluctuations [35]. More recent
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Figure 1.8 Equilibrium electron temperature profile in standard (gray) and PPCD (black)
plasmas. (Reproduced from Sarff et al., Ref. [30])

r/a
Figure 1.9 Radial particle flux associated with n=6 tearing mode. (Reproduced from Lin et al.,

Ref. [34])



11

5/24/2017 ppcf360320fig02 (411×348)

http://iopscience.iop.org/07413335/52/12/124048/downloadFigure/figure/ppcf360320fig02 1/1

Figure 1.10 Ion temperature profile in high current regular PPCD and crash-heated PPCD
discharges. (Reproduced form Sarff et al., Ref. [30])
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analysis [36, 37] has explored higher frequency density fluctuations not associated with the global

magnetic tearing mode, and will be the primary topic of this thesis.

1.3 Magnetics on the MST

The MST has magnetic coil arrays in the poloidal and toroidal directions. Each coil set contains

two or three orthogonally facing coils, depending on the array, that measure the magnetic field at

the wall in the poloidal, toroidal, and radial directions. These coils are mounted on the inside

surface of the MST wall and are contained in ceramic heat shields. The toroidal magnetic array

is made up of 64 evenly spaced magnetic coil sets at 241◦ poloidal with coils facing in three

orthogonal directions. The poloidal array is made up of 32 evenly spaced magnetic coil sets at

180◦ toroidal with two orthogonally facing coils in the radial and poloidal directions. The signal

from the magnetic arrays can be Fourier decomposed into components of the global magnetic

tearing modes, which is routinely done for all MST discharges. For each mode number, up to the

Nyquist limit of the array, the amplitude, phase, and phase velocity are stored in the MST database.

Further processing of the magnetics data can decompose each mode into stationary, positive, and

negative rotating components, which can prove useful for estimating the magnetic mode amplitude

outside the reversal surface of the plasmas [38, 39].

1.4 Other diagnostics

While the data in this thesis was primarily compiled using the FIR interferometer/polarimeter

diagnostic described in Chapter 2, several other diagnostics and analysis codes were useful for

this research. Namely, the Thomson scattering system, and the MSTFit equilibrium reconstruction

code were used for some of the data in this thesis.

Local electron temperature measurements can be made on the MST using a multi-point Thom-

son scattering diagnostic. Thomson scattering is the absorption of a photon and subsequent emis-

sion of a different photon by a free, charged particle. For the data used in this thesis, the Thomson

scattering laser system was run at a repetition rate of 2kHz, had temperature sensitivity 10eV to
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5keV, and radial extent r/a ≤ 0.8. Further information about this system can be found in refer-

ences [40, 41, 42].

MSTFit is a non-linear Grad-Shafranov toroidal equilibrium reconstruction code developed for

the MST [43]. Utilizing the variety of diagnostics available on the MST, MSTFit can accurately

resolve subtle changes in internal structures with implications for MHD stability. It does this by

computing an axisymmetric solution of Maxwell’s equations while satisfying radial force balance

(
−→
J × −→B = ∇P ). In this thesis, MSTFit has been used to calculate local parameters that can

influence drift wave stability, such as pressure gradient scale lengths, safety factor, and magnitude

of the magnetic field.

1.5 Summary

The MST RFP is a moderate sized plasma fusion experiment that is typified by its magnetic

geometry and large-scale global magnetic tearing modes dominating the thermal transport charac-

teristics. The global magnetic tearing modes help sustain the RFP discharge, but have a deleterious

effect on the plasma confinement characteristics. By inductively applying a current in the edge of

the plasma via PPCD, the global magnetic tearing modes can be suppressed, and other smaller scale

instabilities may become important to thermal transport. The MST is a well diagnosed plasma, and

many diagnostics, including the far-infrared interferometer-polarimeter system (described in Chap-

ter 2), Thomson scattering system, and edge magnetics can be used to describe the dynamics of

the improved confinement plasmas.
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Chapter 2

FIR

The far-infrared (FIR) laser interferometer-polarimeter diagnostic is a high time response,

multi-chord system used to measure plasma parameters that influence the index of refraction of

the plasma. This includes the line-integrated electron density (ne) and the magnetic field paral-

lel to the laser path (Bz). These measurements are taken across the full diameter of the plasma

and can be used to infer parameters like the equilibrium electron density, the fluctuating electron

density, the electron density gradient, and the plasma current. This diagnostic was built by and is

maintained in collaboration with the University of California at Los Angeles [44]. This chapter

will include details on the theory behind the diagnostic in Section 2.1 for the interferometer and

Section 2.2 for the polarimeter, both of which have been derived using the method in “Principles of

Plasma Diagnostics” by Hutchinson [41]. This is followed by a detailed description of the physical

FIR system in Section 2.3, and a description of the recent FIR mixer upgrades in Section 2.4.

2.1 Interferometry theory

For electromagnetic waves (such as a laser) in a plasma, the plasma can be treated as a contin-

uous medium in which a current can flow, and is governed by Maxwell’s equations in a vacuum

[41]. The important Maxwell’s equations for this formulation are:

∇×−→E = −∂
−→
B

∂t
, (2.1)

and

∇×−→B = µ0
−→
j + ε0µ0

∂
−→
E

∂t
, (2.2)
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where
−→
E is the electric field,

−→
B is the magnetic field, ε0 and µ0 are the permittivity and permeabil-

ity of free space, and the electromagnetic qualities of the plasma are contained in the current
−→
j .

By taking the curl of Equation 2.1 and the time derivative of Equation 2.2,
−→
B can be eliminated to

obtain

∇× (∇×−→E ) +
∂

∂t
(µ0
−→
j + ε0µ0

∂
−→
E

∂t
) = 0. (2.3)

The plasma is assumed to be relatively homogeneous in space in time. This allows for Fourier

analysis of the fields and currents such that:

−→
E (x, t) =

∫ −→
E (
−→
k , ω)ei(

−→
k •−→x−ωt) d

3−→k
(2π)3

dω

2π
, (2.4)

where
−→
k is the wavenumber and ω is the angular frequency Therefore each field quantity can be

linearized such that:

∂
−→
E

∂t
= −iω−→E , (2.5)

∇×−→E = i
−→
k ×−→E . (2.6)

Ohm’s law is, for each Fourier mode:

−→
j (
−→
k , ω) = −→σ (

−→
k , ω) • −→E (

−→
k , ω), (2.7)

where −→σ is the conductivity of the plasma. In general, a plasma may be an anisotropic medium so

that −→σ is a tensor conductivity.

For a single Fourier mode, Equation 2.3 becomes:

−→
k × (

−→
k ×−→E ) + iω(µ0σ •

−→
E − ε0µ0iω

−→
E ) = 0, (2.8)

which can be written:

(
−→
k
−→
k − k21 +

ω2

c2
ε) • −→E = 0, (2.9)

where 1 is the unit tensor and ε is the dielectric tensor

ε = (1 +
i

ωε0
σ). (2.10)
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Equation 2.9 is three simultaneous equations for the components of the vector
−→
E . For this equation

to have a nonzero solution, then the determinant:

det(
−→
k
−→
k − k21 +

ω2

c2
ε) = 0, (2.11)

must be true. This equation represents the dispersion relation for waves in this framework.

The simplest case in this framework is:

σ = σ1, (2.12)

ε = ε1, (2.13)

where the plasma medium is isotropic. The waves separate into two cases: electric field polar-

ization perpendicular to the electromagnetic wave (
−→
k • −→E = 0), and electric field polarization

parallel to the electromagnetic wave (
−→
k ×−→E = 0). For a wave traveling along the ẑ direction, the

expression in the determinant of Equation 2.11 can be written expressly as the matrix:

−→
k
−→
k − k21 +

ω2

c2
ε =


−k2 + ω2

c2
ε 0 0

0 −k2 + ω2

c2
ε 0

0 0 ω2

c2
ε

 , (2.14)

for which Equation 2.11 holds if:

−k2 +
ω2

c2
ε = 0, if

−→
E perpendicular, (2.15)

or
ω2

c2
ε = 0, if

−→
E parallel. (2.16)

The perpendicular wave dispersion relation is a standard expression for dispersion in a uniform

dielectric medium. The parallel wave dispersion relation is just ε = 0. This becomes more inter-

esting when ε is not isotropic and the wave cannot be divided easily into transverse and longitudinal

parts, as the electric field is generally both, and the matrix in Equation 2.14 will have non-zero off-

diagonal terms.
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A relatively simple treatment of the plasma conductivity in a cold plasma approximation can

provide insight into the behavior of electromagnetic waves in a plasma. The electrons are con-

sidered stationary except for motion due to electric fields. For a single electron, the equation of

motion is:

me
∂−→v
∂t

= −e(−→E +−→v ×−→B 0), (2.17)

whereme is the electron mass, e is the fundamental charge,−→v is the particle velocity, the magnetic

field
−→
B 0 is static, and collisions are ignored. For a cold plasma, a single Fourier mode in −→v is

purely harmonic such that −→v ∝ e−iωt. For coordinates aligned to the magnetic field,
−→
B 0 = B0ẑ,

the components of the equation of motion for an electron are:

−meiωvx = −eEx − eB0vy, (2.18)

−meiωvy = −eEy + eB0vx, (2.19)

−meiωvz = −eEz, (2.20)

which can be solved for v in terms of E:

vx =
−ie
ωme

1

1− Ω2/ω2
(Ex − i

Ω

ω
Ey), (2.21)

vy =
−ie
ωme

1

1− Ω2/ω2
(Ey + i

Ω

ω
Ex), (2.22)

vz =
−ie
ωme

Ez, (2.23)

where Ω ≡ eB0/me is the electron cyclotron frequency. Since all electrons move the same way in

the cold plasma approximation, the current density is:

−→
j = −ene−→v = σ • −→E , (2.24)

where the conductivity tensor is:

σ =
inee

2

meω

1

1− Ω2/ω2


1 −iΩ/ω 0

iΩ/ω 1 0

0 0 1− Ω2/ω2

 . (2.25)
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While this is only for the electrons, the ions are significantly more massive than the electrons, such

that the ion contribution is small and can generally be ignored, provided the frequency is high

enough.

The dielectric tensor ε can be found using Equation 2.10:

ε =


1− ω2

p

ω2−Ω2

iω2
pΩ2

ω(ω2−Ω2)
0

−iω2
pΩ2

ω(ω2−Ω2)
1− ω2

p

ω2−Ω2 0

0 0 1− ω2
p

ω2

 , (2.26)

where ω2
p = nee

2/ε0me is the electron plasma frequency. To make the equations simpler, the

variables X and Y are introduced such that:

X =
ω2
p

ω2
, (2.27)

Y =
Ω

ω
. (2.28)

The axes are chosen such that
−→
k = k(0x̂, sin(θ)ŷ, cos(θ)ẑ), where θ is the angle between

−→
k and

−→
B 0. The determinant equation then becomes

det


−N2 + 1− X

1−Y 2
iXY
1−Y 2 0

−iXY
1−Y 2 −N2cos2(θ) + 1− X

1−Y 2 N2sin(θ)cos(θ)

0 N2sin(θ)cos(θ) −N2sin2(θ) + 1−X

 = 0, (2.29)

which represents a quadratic equation in N , the index of refraction of the plasma. The solutions

are generally written in the form:

N2 = 1− X(1−X)

1−X − 1
2
Y 2sin2(θ)± [(1

2
Y 2sin2θ)2 + (1−X)2Y 2cos2θ]

1
2

, (2.30)

which is the Appleton-Hartree formula [41] for the refractive index of a cold plasma, where ε is

independent of
−→
k .

For an electromagnetic wave propagating in a plasma device, θ can vary continuously, so a

rigorous solution can be difficult to obtain. In order to simplify this result, there are two special

cases that can be considered: when the wave is parallel (θ = 0) or perpendicular (θ = π/2) to the
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background magnetic field. When the wave propagates parallel to the magnetic field (~k ‖ ~B), the

index of refraction becomes

N2 = 1− X

1− Y 2
± XY

1− Y 2
= 1− X

1± Y . (2.31)

When the wave propagates perpendicular to the magnetic field (~k ⊥ ~B) the index of refraction

becomes:

N2 = 1−X, or N2 = 1− X(1−X)

1−X − Y 2
. (2.32)

The parameters X (= ω2
p/ω

2) and Y (= Ω/ω) depend on only the electron density ne and equilib-

rium magnetic field (B0) respectively. This allows the refractive index to be used as a measure for

these parameters with excellent confidence.

If the magnetic field is small, such that the cyclotron frequency is sufficiently smaller than the

wave frequency, then Y → 0, and the index of refraction becomes:

N2 ≈ 1−X, (2.33)

for all angles of the wavenumber relative to the background magnetic field. This simplification

allows for the difference in the index of refraction of the plasma and of the air to be measured in

such a way as to provide a measure of the electron density. The phase difference φ between a wave

in a plasma and a wave in the air outside the plasma can then be described by:

∆φ =

∫
(k0 − kplasma)dl =

ω

c

∫
(N − 1)dl. (2.34)

Substituting the index of refraction into Equation 2.34 yields

∆φ =
ω

c

∫
((ω2

p/ω
2 − 1)1/2 − 1)dl, (2.35)

which can be simplified further with a binomial expansion for the case where ωp � Ω, defining

the wave frequency as ω = 2πc/λ to substitute into Equation 2.35, which becomes

∆φ = ω/c

∫
(ω2

p/2ω
2)dl =

λe2

4πc2meε0

∫
nedl. (2.36)

For relevant MST parameters, Equation 2.36 becomes:

∆φ = 2.814 ∗ 10−15λ

∫
nedz, (2.37)
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where λ is the wavelength of the electromagnetic wave, and z is the distance along the length of

the chord in the plasma, in the vertical direction.

2.2 Polarimetry

The FIR laser system can also take advantage of the fact that the plasma exhibits birefringence.

That is, the ordinary and extraordinary modes of a beam will have different indices of refraction,

given a small but finite Y (Equation 2.28), which for interferometry was assumed to be Y � 1.

The Appleton-Hartree dispersion relation for small, nonzero Y then becomes:

N2 ≈ 1−X ±XY cosθ, (2.38)

with the addition referring to the ordinary (O) wave and the subtraction referring to the extraor-

dinary (XO) wave. For interferometry this correction leads to a fractional correction on the order

of Y cosθ in the density which can be corrected for, but is often ignored given ω � Ω. If the O

and XO modes of a polarized wave can be expressed as orthogonally polarized, an effect known as

Faraday rotation will occur. The two modes will have a phase difference:

∆φ = (NO −NX)
ω

c
z, (2.39)

which leads to the wave still having linear polarization, but being rotated by an angle ∆φ/2. The

Faraday rotation angle therefore becomes:

α =
∆φ

2
=

1

2
(NO −NX)

ω

c
z ≈ 1

2

XY cosθ

(1−X)1/2

ω

c
z. (2.40)

For a nonuniform plasma, the total Faraday rotation of the beam along the path will therefore

become:

α =
1

2

∫
ω2
pΩcosθ

cω2(1− ω2
p/ω

2)1/2
dl ≈ e2λ2

8πm2
ec

3ε0

∫
ne ~B • ~dl. (2.41)

For relevant MKS values, Equation 2.41 becomes:

α = 3 ∗ 10−13λ2

∫
ne(l) ~B • ~dl, (2.42)

which gives a relation for the magnetic field parallel to the electromagnetic wave’s direction of

propagation.
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2.3 The MST FIR system

The FIR interferometer-polarimeter system is a vertically viewing heterodyne system that can

be used to measure parameters such as the electron density with high time response to a high degree

of accuracy. The laser functions by having the three formic acid laser cavities optically pumped

by a 70−100 W CO2 gas laser, producing three FIR lasers with slightly different frequencies.

When the lasers are combined, the result is a modulated signal which can be used to extract the

relative phase between the lasers. The system can be operated with only two lasers, to provide

only the density (one probe beam and reference beam) or Faraday rotation (two probe beams) or

with all three lasers to provide two density measurements and the Faraday rotation, which can

be differentiated by the three separate beat frequencies between the three lasers. A simplified

schematic of the laser system can be seen in Figure 2.1, showing full three beam interferometer-

polarimeter operation.

The pumping laser is a commercial continuous power 100 W CO2 gas laser built by Coher-

ent, Inc. It is an RF-excited sealed GEM-Select-100 which consists of a liquid cooled gas filled

discharge tube, a partially reflective output coupler, a fixed grating, and a movable piezo electric

mirror to adjust the cavity length. The piezo electric allows for the CO2 laser frequency to be tuned

to the FIR pumping frequency. The CO2 laser operates at a wavelength of∼9.27 µm, and is driven

by an external RF source that uses a DC power supply.

The CO2 lasing transition results from molecular vibrational states, instead of the atomic tran-

sitions responsible for shorter wavelength lasers. The CO2 molecule, seen in Figure 2.2, is subject

to vibrational energy due to bending, symmetrical stretching, and asymmetrical stretching. When

the molecule relaxes to a lower energy vibrational state, a photon is released, and due to the plenti-

ful nature of the vibrational states, the output laser wavelength is more continuous than for shorter

wavelength lasers, which generally depend on transition of electrons. In order to obtain the re-

quired monochromatic laser emission necessary to efficiently pump the FIR lasers, a controllable

grating is used to isolate the wavelength for a vibration of interest. In order to enhance excitation

of the CO2, other gases are introduced. Nitrogen gas, which has one degree of vibrational freedom,
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Figure 2.1 Simplified configuration of the 11 chord FIR interferometer-polarimeter system.
(Reproduced from Parke, et. al, Ref. [45])
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2.3). Vibrational energy is transferred to the CO2 molecule by collisions resulting 

in an excited state. When the molecule relaxes to a lower vibrational state, the 

energy is dissipated as a photon, as is the case for atomic transitions. Although 

both processes result in the emission of a quantized photon, the vibrational 

energy levels are more plentiful and closely packed then their low n atomic 

counterparts. This results in laser emission that is more like a continuum. To 

obtain the monochromatic emission required for the efficient pumping of the FIR 

laser, a grating is used to isolate the particular vibrational transition of interest. 

O OC

O OC

O O
C

O OC

Equilibrium Bending

Symmetric Stretching Asymmetric Stretching
 

Figure 2.3 – The CO2 molecule is subject to three types of vibration: 
bending, symmetric stretching, and asymmetric stretching. 

To ensure that the population of vibrationally excited CO2 

molecules in the discharge tubes is sufficient for high-powered lasing, 

additional gases are introduced to enhance excitation. The process of 

continually exciting (pumping) and de-exciting (lasing) the CO2 molecule 

is displayed in (figure 2.4). Nitrogen, which is diatomic, has only one 

degree of vibrational freedom (symmetric stretching) and is easily excited 

by collisions in the discharge tube. Since vibrationally excited N2 is 

similar in energy to the CO2 excited state, N2 can efficiently transfer its 

energy to a CO2 molecule during a collision. Stimulated emission occurs 

Figure 2.2 Cartoon of the three types of vibration a CO2 molecule is subject to. (Reproduced
from Lanier, Ref. [44])

is easily excited by collisions in the discharge tube to a similar energy to CO2, and can efficiently

transfer energy to the CO2 excited state via collision. Stimulated emission then allows the CO2

molecule to radiate its energy. To prevent re-absorption, Helium gas is added, which enhances

collisional de-excitation of of the CO2 molecules.

The FIR lasers convert the ∼10 micron CO2 laser radiation into three roughly independent

lasers with significantly longer wavelength, on the order of 100’s to 1000’s of microns, depending

on the lasing medium being used. For the MST FIR system, Formic Acid (HCOOH) is used, which

yields a wavelength of ∼432.5 microns (≈693 GHz). Output power can be optimized by using a

Fabry-Perot etalon for each laser cavity consisting of a quartz plate output coupler and a wire mesh.

Although the input CO2 laser power is 20−30 W per FIR laser cavity, the output laser power is only

on the order of∼10−30 mW. When the laser power is optimized, the cavity length can be changed

independently for each cavity by using a motor-mounted mirror. The cavity length dictates the

laser frequency, and differences between the cavity frequencies produce the interference frequency

(IF) of the lasers, which can be tuned based on the requirements of the system.

By using the same CO2 laser to pump all three cavities, any fluctuations in CO2 power will be

equally distributed to each cavity. CO2 power fluctuations can be caused by changes in tempera-

ture, vibrations, or feedback laser power from the system. With this configuration, even if the FIR

laser power fluctuates, the modulated signal will be very stable.
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0.62 to +0.83. The toroidal displacement, shown in figure 2.7, was originally 

designed to minimize the field errors that would be associated with an array of 

closely packed holes in the conducting shell. Although unplanned, this 

arrangement has some significant advantages when examining density 

fluctuations, which will be addressed in later chapters. Additional information 

on the relevant chord parameters is outlined in table 2.1. 
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Figure 2.7 – The 11 chords a separated into 2 arrays, displaced by 
5.0 degrees toroidally. They view impact parameters (R-Ro) of -32, -
24, -17, -09, -02, +06, +13, +21, +28, +36, and +43 cm. 

Figure 2.3 Schematic of the 11 vertically viewing FIR chords separated into 2 sets, displaced 5◦

toroidally. (Reproduced from Lanier, Ref. [44])

The eleven FIR chords are separated into two sets that are toroidally displaced by five degrees.

Figure 2.3 shows how the chords are spaced on the MST, with each chord displaced along the minor

radius of the machine by ∼8 cm. The chords view impact parameters ranging from -32 cm to 43

cm, with the specific chord impact parameters, toroidal location, and vertical chord length cited in

Table 2.1. While the toroidal separation was initially designed to limit field errors in the conducting

shell of the vacuum vessel, it proves to be useful for measuring toroidal wavenumbers associated

with density fluctuations related to the work in this thesis, as will be discussed in Chapter 5.

The laser power is distributed through the system via a system of thin metallic wire meshes act-

ing as beam splitters. These wire meshes, manufactured by Buckbee/Mears of St. Paul, MN, with

later precision electro-forming in New York, are electro-formed out of nickel substrate and can

have a variety of line densities, controlling the reflected and transmitted power distributions. The

meshes can be difficult to align with tip-tilt controls, resulting in difficulty in laser alignment, par-

ticularly for polarimetry alignments. They are also quite fragile, requiring a number of protective

measures to limit replacement, which would require some degree of realignment for the laser. This
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Chord Name Impact Parameter

R−R0 (cm)

Toroidal Angle

φ (degrees)

chord length

L (cm)

N32 -32 255 81.97

N24 -24 250 92.26

N17 -17 255 98.29

N09 -9 250 102.4

N02 -2 255 103.9

P06 6 250 103.3

P13 13 255 100.7

P21 21 250 95.14

P28 28 255 87.64

P36 36 250 75.04

P43 43 255 58.48

Table 2.1 Name, impact parameter, toroidal angle, and chord length for each FIR chord.
(Reproduced from Lanier, Ref. [44])
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includes covering the optics above the machine with aluminum, and the detection optics below the

machine with plastic covers while the diagnostic is not in operation.

The lasers, after passing through the vacuum vessel and combining at wave-splitters under the

machine, were measured with a UCLA fabricated diode/pre-amplifier assembly for much of the

data taken in this thesis. The diode, which is a Gallium/arsenide (GaAs) Schottky corner-cube

mixer, has a relatively low noise-equivalent-power (≈10−10 W/
√

Hz) and a time response of sev-

eral MHz [46]. However, the measurement efficiency of the corner-cube mixer is very sensitive

to incident angle. This can be problematic for initial alignment and for cases such as high density

fluctuations or high power plasma fluctuations, where the FIR beam can be steered away from the

mixer. The FIR beam is focused into the mixers with a plano-convex polyethylene lens with a focal

length of 8 cm [44]. The detector assembly for each chord is mounted on a rotating stage which is

then affixed to 3 orthogonal translating stages, allowing a large amount of freedom of movement

for detector placement. The alignment procedure involves iteratively adjusting the mixer incident

angle and position until the signal power is maximized. The process is repeated for all 12 mixers

(eleven chords and the reference), and should be repeated every few months to ensure peak diag-

nostic performance. The UCLA fabricated diode/pre-amplifier assembly was recently upgraded,

and this upgrade will be discussed in Section 2.4.

This setup required a pre-amplification box fed into a variable amplifier to get appreciable

signal [44]. This pre-amplifier, built by Don Holly, amplified and filtered the signal, removing

low (<300 kHz) and high (>3 MHz) frequency components present in the signal. The preamp

gain is ∼103 for the frequencies near the laser interference frequencies used experimentally. The

output of the two-stage preamplifier is then fed into a variable amplifier for adjusting signal levels

before being fed into the digitizers. This allows modification of the signal amplitude to obtain

optimal signal resolution on the digitizer. While the phase measurement is inherently amplitude

independent, there is still a minimum and maximum allowed amplitude that should be avoided:

too much power and the mixers can saturate, too little power and the phase can be difficult to

extract. The amplitude modulation on the amplifier allows the signal from each mixer to be reliably

larger than the minimum during operation. Even with minimal amplification, some channels have
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sufficient signal to saturate the mixer pre-amplifiers, resulting in a non-sinusoidal output signal

which severely contaminates the phase measurement. To dampen the power on these channels,

pieces of paper are placed in the beam line between the lens and the mixer to attenuate the signal.

2.4 The FIR upgrade

Recently, in 2014, new planar-diode mixers were installed, replacing the previously used

corner-cube mixers [46, 45]. The new mixers have increased sensitivity and reduced noise floor,

allowing for resolution of fluctuations up to 250 kHz for polarimetry and up to 600 kHz for inter-

ferometry. This is seen as a five fold lower phase noise and a ten fold higher sensitivity. A picture

of the old corner-cube (a) and new VDI planar-diode (b) mixers is included in Figure 2.4. The

laser input for each mixer is pointed down in the figure, with an amplifier attached via an SMA

connection on top of the mixer. The planar-diode mixers can also be deployed in a multi-mixer

array, potentially allowing for a dramatic increase in wavenumber sensitivity. By increasing the

frequency and wavenumber sensitivity of the diagnostic, it may become possible to describe a

larger range of drift wave turbulence, which is the focus of this thesis.

Experiments were conducted to compare the operation of the corner-cube and planar diode

mixers [46]. The two mixer configurations are differentiated primarily by the method of coupling

the radiation, but have some similarities. Both mixers employ a Schottky-barrier diode for fast

time response and have apertures of width ∼1.5 mm. For the corner-cube mixer, the radiation is

coupled into a whisker-diode contact via a quasi-optical configuration. The planar-diode mixer has

a 2 mm aperture conical horn built into the detector block and employs a fundamental waveguide

coupling to the diode. Both mixers have the signal and local oscillator radiation coupled into the

mixer via the same optical path. The corner-cube mixers consist of a whisker contact with a diode

chip, which is delicate and has a noise response dependent on the quality of the electrical contact,

while the planar-diode mixers are constructed using semiconductor planar deposition techniques.

The corner-cube mixers were made at UCLA, and had been used reliably on the MST for over

20 years, while the planar-diode mixers have been in use for ∼2 years. The planar-diode mixers
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Figure 2.4 (a) Corner-cube (and amplifier) and (b) VDI planar-diode (and amplifier) mixers
designed for operation with 700 GHz source radiation. (Reproduced from Ding, et. al, Ref. [46])
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do not require the additional amplification stages to maintain appreciable power, so there are no

bandwidth restrictions due to amplifier response [46].

Plasma tests of the corner-cube and planar-diode mixers using Faraday rotation show signifi-

cant improvement in noise floor and sensitivity. By examining phase fluctuations in the Faraday

effect measurement, broadband magnetic turbulence fluctuations can be explored. Data is taken

near the magnetic axis and the first order expansion for the fluctuating Faraday signal is given

by ΦF ∼
∫
δne
−→
B • −→dl +

∫
ne
−→
δb • −→dl , where the first term is negligible because the equilibrium

magnetic field is perpendicular to the laser propagation direction. Broadband fluctuations, likely

dominated by radial magnetic field fluctuations for the central chord in standard sawtoothing RFP

discharges for the two mixers, shown in Figure 2.5, show a reduction of the noise floor by a factor

of 5 for the planar-diode mixers, and a sensitivity to fluctuations up to ∼400 kHz, compared to

∼150 kHz for the corner-cube mixers. This clearly demonstrates that the planar-diode mixers are

significantly more well-suited for turbulence measurements.

The planar-diode mixers have several other potential benefits over the corner-cube mixers. Due

to the increased sensitivity of the planar diode mixers, they can be operated without a focusing

lens while maintaining an acceptable signal to noise ratio. The planar-diode mixers also have

precision located dowel pins on each side, allowing multiple mixers to be arranged in a linear

array. When in this configuration, the maximum measurable wavenumber of the system increases

from ∼0.18 cm−1 by an order of magnitude, to ∼2 cm−1. This allows for the potential to measure

high frequency, high wavenumber drift-wave-like instabilities. While much of the data in this

thesis was taken with the corner-cube mixers, several experiments were done with the planar-diode

mixers which are discussed in Section 5.4.

2.5 Summary

The FIR system is an eleven chord vertically viewing interferometer/polarimeter diagnostic

system. The system can be used to measure high frequency fluctuations, up to several hundred

kHz, in both line-integrated density and Faraday rotation. Toroidal separation of the chords allows

for toroidal wavenumber measurements up to 0.18 cm−1. The system has been upgraded with
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Figure 2.5 Faraday-effect phase fluctuation frequency spectra for cases with (red) and without
(black) plasma using (a) corner-cube mixer and (b) planar-diode mixer. Data are ensembled over

32 events during the time window 0.5-2.5 ms after sawtooth crash. (Reproduced from Ding, et. al,
Ref. [46])
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new planar-diode mixers that are significantly more sensitive than the previously used corner-cube

mixers. The new mixers are easier to align and require less input power, allowing them to be used

in various interesting new experiments that may improve turbulence measurements available both

temporally and spatially, initially by increasing sensitivity to high frequencies, and by allowing

multiple measurements per chord.
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Chapter 3

Transport and instabilities

A major focus of work across many devices and plasma configurations has been the study

thermal transport in fusion relevant plasmas. In order to attain a burning plasma, thermal transport

must be reduced to acceptable levels. A major source of transport has been attributed to plasma

instabilities, via either stochastic transport or through small scale turbulence [47]. This chapter

will initially focus on stochastic transport in the RFP due to MHD scale turbulence in Section 3.1.

Then the focus will shift in Section 3.2 to micro-instabilities that can dominate transport when

large-scale instabilities are suppressed, including brief discussions of several of the instabilities

that are predicted in improved confinement RFP plasmas.

3.1 Plasma transport

3.1.1 Stochastic transport

Tearing and reconnection at rational surfaces allows for magnetic islands. These islands, seen

in Figure 3.1, allow heat and particles to rapidly traverse the radial extent of the island, degrading

the confinement. If islands overlap, as they do in standard RFP operation, then the magnetic field

can become stochastic, as seen in Figure 1.6(a), further degrading confinement. Instead of heat

and particles only transporting across the island width, they can transport across a whole stochastic

region, which can include a significant radial extent of the plasma.

Rechester and Rosenbluth [3], by modeling electron heat transport via parallel conduction

along wandering field lines, addressed the fusion relevance of transport in a stochastic magnetic

field in 1978, where they conjectured that the magnetic diffusion coefficient Dm would take the
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Figure 1.3 – Rational surfaces permit tearing and reconnection of 
the magnetic field to occur, allowing islands to form. Magnetic 
islands degrade confinement by allowing rapid transport across the 
island’s width. 

The situation outlined above is compounded in the RFP because as islands 

form and begin to grow on the many closely packed rational surfaces, they can 

overlap. When islands overlap, the magnetic field becomes stochastic, and the 

field lines can wander freely throughout the overlap region. If a large number of 

islands are overlapping, large stochastic regions can form in the plasma, and 

instead of rapidly transporting heat and particles just across an island width, 

the confinement is degraded over the entire stochastic region (figure 1.4). 

Figure 3.1 Rational surfaces permit tearing and reconnection of the magnetic field to occur,
allowing islands to form. Magnetic islands degrade confinement by allowing rapid transport

across the island’s width. (Reproduced from Lanier, Ref. [44])
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form:

Dm ≈ Lac
〈b̃r〉2
B2

0

, (3.1)

where 〈b̃r〉2/B2
0 is the fluctuation to mean field ratio for the radial magnetic field, and Lac is the

autocorrelation length of the diffusion of the magnetic field. In the MST the ratio of the fluctuating

to mean field is 〈̃br〉/B0 ≈ 1 − 2%. The autocorrelation length is approximately a meter for the

MST, and therefore Dm ≈ 1. × 10−4 m. In the collisionless limit (λmfp >> Lac) the stochastic

electron heat conductivity χst,e becomes:

χst,e =
〈(∆r)2〉

∆t
=
Dmλmfp

τc
= DmvT , (3.2)

where τc is the collision time, λmfp is the mean free path between collisions, and vT =
√
T/m is

the thermal velocity. In the MST, λmfp is on the order of 10’s of meters, so the collisionless limit

is a good approximation [33].

3.1.2 Heat transport

Electron heat transport conductivity, χe, is decreased in the core of PPCD plasmas by over an

order of magnitude compared to standard plasmas , as seen in Figure 3.2 [30, 33, 48]. This quantity

gives an indication of the conducted heat flux:

Qe = χene∇rTe, (3.3)

and therefore a measure of the global energy confinement time. It is observed that in areas where

the magnetic field is stochastic, the collisionless stochastic transport model adequately describes

the measured heat diffusivity. In PPCD, the magnetic field is not stochastic in some areas of the

plasma, and non-stochastic transport may be dominant.

3.2 Microinstabilities

In optimized tokamak and stellarator devices, the dominant source of transport is now believed

to be due to drift-wave driven microturbulence[14]. Drift waves arise due to the creation of dia-

magnetic drift currents
−→
J that are required to satisfy radial force balance (

−→
J ×−→B )/c = ∇pe+∇pi,
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Figure 3.2 Heat transport conductivity χe compared to the stochastic heat transport conductivity
in standard and PPCD plasmas. In areas of the plasma where the magnetic field is stochastic, the
stochastic quantity adequately describes the heat transport. (Reproduced from Sarff, Ref. [33])
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with
−→
B being the background magnetic field, and pe and pi being the electron and ion pressures, re-

spectively. The currents are associated with diamagnetic drift velocities−→v Dj = (1/(qjnjB)))∇pj ,
for j being a label for a particle species with charge qj , density nj , and pressure pj . Drift wave

instabilities are driven by gradients in plasma pressure, temperature, or density and have frequen-

cies on the order of the diamagnetic drift frequency ω∗j =
−→
k • −→v Dj . The essential physics for

drift waves are presented in Figure 3.3. Gradients perpendicular to the background magnetic field

enable the propagation of waves in the diamagnetic direction through the generation of
−→
E × −→B

drift. Under certain circumstances, phase differences may arise between the various fluctuations

that can generate a positive growth rate and lead to instability.

A variety of instabilities can be classified as drift waves, including ion temperature gradient

(ITG) and electron temperature gradient (ETG) modes, the trapped electron mode (TEM), and the

micro-tearing mode (MTM). These instabilities can be influenced by various characteristics of the

plasma, including the plasma pressure, collisionality, and the magnetic geometry. More informa-

tion on the specifics of these instabilities can be found in Horton [50]. The results of this thesis

will focus primarily on density-gradient-driven TEM-like instabilities predicted to be unstable by

gyrokinetic simulations in optimized PPCD plasma equilibria. Ion temperature gradient driven

instabilities are predicted in other plasma equilibria, and will also be explored.

3.2.1 The trapped electron mode

The TEM is characterized by electrons that are magnetically trapped in the ”low-field” side

of tokamak devices [51, 52, 53, 54], in magnetic wells in stellarator devices [55, 56], or in the

edge of improved confinement RFP discharges [48, 37, 57]. Trapped electron modes are driven

by pressure gradients in the presence of magnetic curvature, and are classified into 2 categories:

density-gradient driven and temperature gradient driven. The key parameters for studying TEMs

are the normalized pressure gradients R0/Lne and R0/LTe,i , where R0 is the major radius of the

device, and Lx = −x/∇x is the gradient scale length.

The development of TEM-type instabilities can lead to the generation of zonal flows [58],

which are characterized as an azimuthally symmetric band-like shear flow, and are found both in
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Figure 1.4: Physical mechanism of a drift wave. A small perturbation in density in the pres-
ence of a background gradient leads to electric fields and a resultant E⇥B drift that causes
a wave to propagate in the transverse (y) direction. Under certain conditions, the original
perturbation may be reinforced and amplified, leading to instability. Source: Introduction
to Plasma Physics and Controlled Fusion, F. Chen

istics of the plasma, including plasma pressure, collisionality, and the shape of the magnetic

geometry. For more on the physics of drift waves and their role in transport, see the review

by Horton [6].

Turbulence and transport have been identified as one of the major challenges facing

magnetic confinement fusion research by the National Research Council’s Plasma 2010

Committee report on plasma science [7]. This report identified three scientific goals con-

cerning microinstabilities, turbulence, and transport:

• develop more accurate predictive models of turbulence and transport

• find regimes where turbulence and transport are reduced

• advance the science of low-collisionality plasma turbulence

Figure 3.3 Physical mechanism for a drift wave. (Reproduced from Chen, Ref. [49])
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lab plasmas and in nature. They are expected to be seen as an n = 0 flow driven by n 6= 0 drift

waves. Zonal flows act to partially suppress drift wave turbulence, and can act as a transport barrier.

Further description of drift wave driven zonal flows can be found in Diamond et al. [59] and Terry

[60].

3.2.2 The ion temperature gradient driven mode

The ion temperature gradient (ITG) mode has been thoroughly explored in tokamaks, and arises

from gradients in the ion temperature profile [61]. The ITG driven instability can have significant

impact on high temperature burning plasmas. ITG turbulence may drive thermal conduction that

carries heat from fusion reactions in the core to the edge of the plasma. Exploring ITG instabilities

is important to fusion plasma research. In tokamaks, the saturation of ITG turbulence has been

found to depend critically on turbulently driven zonal flows. ITG is a candidate for driving turbu-

lent heat transport in tokamaks and stellarators [62]. ITG instabilities are classically driven by the

electrostatic dynamics of passing ions. In the RFP, ITG instabilities have been predicted for PPCD

plasma equilibria where the ion temperature gradient is comparable to or stronger than the density

gradient [57].

3.2.3 The micro-tearing mode

Micro-tearing modes (MTMs) are electromagnetic modes characterized by rapid, small scale

magnetic reconnection events. This can degrade local confinement significantly as particles are

allowed to traverse radially. They are distinguished from magnetic tearing modes in the RFP by

the scale of the magnetic tearing. Magnetic tearing modes in the RFP are characterized by the

global scale of the event, while microtearing modes exist over small scales of the plasma. The

MTM is driven by the electron temperature gradient, as opposed to the current gradient for the

global tearing mode [63]. While these instabilities were originally predicted in some improved

confinement RFP equilibria by Carmody, et. al [63] and potentially observed in the RFX-MOD

device [64], they appear to be stable in improved confinement MST equilibria [57], and hence are

less likely to arise.
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3.3 Summary

Thermal transport is an incredibly important area of research in plasma physics, and must be

understood to achieve a burning plasma. In the RFP, thermal transport in standard discharges are

dominated by overlapping magnetic islands that create significant stochasticity in the magnetic

field. By suppressing the stochasticity in the magnetic field, drift wave turbulence can become

important to the transport characteristics of the plasma. There are several sources of drift wave

turbulence that can have various characteristics. Exploring these possible drift waves in the RFP

will include gyrokinetic simulations and experimental results.
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Chapter 4

Overview of GENE simulations

Gyrokinetic simulations of improved confinement RFP plasmas, performed by Carmody et. al.

[14] and Williams et. al. [57], show that drift wave instabilities are expected in these plasma equi-

libria. Comparing the gyrokinetic results presented in this chapter with the experimental results in

the next chapter, the turbulence and transport characteristics of improved confinement RFP plas-

mas can be explored. The kinetic theory base and gyrokinetic simplifications will be explored in

Section 4.1. Section 4.2 will discuss the implementation of gyrokinetic codes to the RFP geome-

try. Finally, Sections 4.3 and 4.4 will discuss the linear and nonlinear results of GENE simulations

performed by Carmody and Williams.

4.1 Modeling

4.1.1 Kinetics

Ideally, all plasma dynamics could be described by the Newton-Maxwell system of equations.

However, due to the incredibly large number of particles in a fusion plasma, it is incredibly un-

realistic to track the position and momentum of each particle at all points in time. A statistical

approach is significantly more tractable, describing the plasma by a set of distribution functions.

In a hot, weakly coupled plasma, multi-particle correlations involving three or more particles can

be neglected, and two particle interactions are reduced to a collision operator C(fs′ , fs) for a sin-

gle particle distribution function fs(−→q ,−→p ) in a six dimensional phase space where q and p are the

position and momentum of a particle, respectively. An evolution equation of fs is given by the
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Boltzmann equation:
Dfs
Dt
≡ ∂fs

∂t
+ {fs, Hs} = C(fs′ , fs), (4.1)

where the Poisson bracket {fs, Hs} in coordinates −→q and −→p is defined as:

{fs, Hs} =
∂fs
∂qi

∂Hs

∂pi
− ∂fs
∂pi

∂Hs

∂qi
, (4.2)

and Hs(
−→q ,−→p ) is the Hamiltonian of collisionless single particle motion,

Hs(
−→q ,−→p ) =

1

2ms

|−→p − es
c

−→
A |2 + esφ, (4.3)

where es and ms are the charge and mass of particle species s, c is the velocity of light, φ is the

electrostatic potential, and
−→
A is the vector potential for the magnetic field. Because collisions occur

on time scales significantly slower than characteristic frequencies for many turbulent fluctuations

such as some types of drift waves, a collisionless model is often used. Therefore, Equation 4.1

becomes:
Dfs
Dt
≡ ∂fs

∂t
+ {fs, Hs} = 0. (4.4)

By taking the velocity moments of the distribution function, the particle density ns and current

density js are found to be:

ns =

∫
fsd

3p, (4.5)

js = es

∫
vfsd

3p, (4.6)

where v = [p−(es/c)
−→
A ]/ms. The electromagnetic fields

−→
E and

−→
B are determined by substituting

ns and js into the Maxwell equations:

∇×−→E = −1

c

∂
−→
B

∂t
, (4.7)

∇×−→B =
4π

c

∑
s

js +
1

c

∂
−→
E

∂t
, (4.8)

∇ • −→E = 4π
∑
s

esns, (4.9)

∇ • −→B = 0, (4.10)

which give a basic description of a collisionless plasma [65].
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Figure 4.1 Gyrocenter approximation used in gyrokinetic codes. (Reproduced from Garbet et al.,
Ref. [77])

4.1.2 Gyrokinetics

While the Vlasov-Maxwell system reduces the complexity of the kinetic description of a

plasma, it includes a very large range of spatial and temporal scales. To avoid simulating multi-

ple hierarchies of scales, a nonlinear gyrokinetic model was developed by eliminating phenomena

with frequency on the order of the cyclotron frequency (ω & Ωs) while keeping essential kinetic

effects. This formulations consists of a guiding-center transform [66, 67, 68, 69] and a gyro-center

transform [70, 71, 72, 73] based on Hamiltonian or Lagrangian formalism with the Lie perturbation

theory [74, 75]. Further information on this formalism can be found in Garbett et. al. [65].

As shown in Figure 4.1, single particle motion in strong ambient magnetic fields consists of a

fast periodic gyro-motion and a slower guiding-center motion. Low frequency perturbation satis-

fying a particular ordering, such that ω/ωc � 1 and rc/R0 � 1 (where ω is the electromagnetic

frequency of interest, ωc is the gyro-frequency, rc is the gyroradius, and R0 is the major radius),

primarily affect the guiding-center motion, and the magnetic moment µ = msv
2
⊥/2B0 becomes

approximately adiabatically invariant. This allows a coordinate transformation to gyro-center co-

ordinates, where µ is invariant and the gyro-phase ξ is averaged over [76].

The Euler-Lagrange equation in conjunction with a modified Lagrangian using the previous

approximations provides equations for time derivatives of all the phase space coordinates. The
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Vlasov equation contains these derivatives, and in the absence of collision can be written:

df

dt
=
∂f

∂t
+
−̇→
X • ∇f + v̇‖

∂f

∂v‖
+ µ̇

∂f

∂µ
= 0, (4.11)

where
−→
X is the gyro-center position, v‖ is the parallel velocity, and a dot over a variable represents

the time derivative of that variable (ẋ ≡ ∂x/∂t). This equation states that the phase space volume

of a particle distribution function f is conserved. Applying the drift velocity definitions:

−→v χ = − c

B2
0

∇χ1 ×
−→
B 0, (4.12)

−→v ∇B =
µ

mΩ

−→
b 0 ×∇

−→
B 0, (4.13)

−→v c =
v2
‖

Ω
(∇×−→b 0)⊥, (4.14)

the modified potential:

χ1 = φ̄1 −
v‖
c
Ā1‖ +

1

q
µB̄1‖, (4.15)

and assuming that the perturbed field is much smaller in scale than the equilibrium field, the time

derivatives for the relevant variables is found to be:

−̇→
X = v‖

−→
b 0 +

B0

B∗0‖
(−→v χ +−→v ∇B +−→v c), (4.16)

v̇‖ = (

−→
b 0

m
+

B0

mv‖B∗0‖
(−→v χ +−→v ∇B +−→v c)) • (−q∇Φ̄1 −

q

c

−→
b 0

˙̄A1‖ − µ∇(B0 + B̄1‖)), (4.17)

µ̇ = 0, (4.18)

which, when inserted into the Vlasov equation from before, leads to:

∂f

∂t
+(v‖

−→
b 0 +

B0

B∗0‖
(−→v χ+−→v ∇B +−→v c))• (∇f +

1

mv‖
(−q∇Φ̄1−

q

c

−→
b 0

˙̄A1‖−µ∇(B0 + B̄1‖))
∂f

∂v‖
).

(4.19)

Equation 4.19 can be normalized and numerically solved with certain codes, but it is convenient to

continue with a perturbed part of the distribution function f ⇒ f0 +f1, where f1
f0
� 0. Introducing

a modified distribution function:

g1 = f1 −
q

mc
Ā‖
∂f0

∂v‖
, (4.20)
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and the derived quantity

G1 = g1 −
q

mv‖
χ1
∂f0

∂v‖
(4.21)

the perturbed Vlasov equation becomes:

∂g1

∂t
+
B0

B∗0‖

−→v χ • (∇f0 −
1

mv‖
µ∇B0

∂f0

∂v‖
)+

B0

B∗0‖
(−→v χ +−→v ∇B +−→v c) • ∇G1 + v‖

−→
b 0 • ∇G1

− (
1

m

−→
b 1 +

B0

mv‖B
∗
0‖

−→v c)•

(q∇Φ̄1 +
q

c

−→
b 0

˙̄A1‖ + µ∇(B0 + B̄1‖))
∂f1

∂v‖
(4.22)

Similarly, the gyrokinetic field equations can be derived from Maxwell’s equations. Skipping

some steps, the field equations can be evaluated to:∑
j

qj(1− Γ1(bj))
qjΦ

Tj0
=

∑
j

qj((Γ0(bj)− Γ1(bj))
B‖
B0

+
2πB0

mjnj0

∫
J0(λj)fjdv‖dµ (4.23)

(1 +
∑
j

4bjβj(Γ0(bj)− Γ1(bj)))
B‖
b0

= −
∑
j

2βj(
B0

nj0Tj0

∫
µI1(λj)fjd

3v +
qjΦ

Tj0
(Γ0(bj)− Γ1(bj)))

(4.24)

∇2
⊥A‖ = −8π2B0

c

∑
j

qj
mj

∫
v‖J0(λj)fjdv‖dµ (4.25)

It is notable that the field equations for Φ and B‖ are coupled. For small βj , the parallel mag-

netic fluctuations are negligible, but in higher βj scenarios, B‖ may become significant. Together

with the Vlasov equation, the field equations constitute a set of equations that can advance the

distribution function in time, providing a physical description of the evolution of the plasmas [76].

While a full plasma system can theoretically be simulated using these equations, this would

require significant computational effort, and it is therefore more convenient to reduce the simulated

region of the plasma to flux tubes. This limits the gyrokinetic framework to local events, but retains

most of the physical effects. More information on flux tube geometry can be found in the references

[78, 79, 76]. A full derivation of the gyrokinetic equations, with many intermediate steps is given
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in References [76, 63]. Here, some of the most important steps and results from Carmody and

William’s work has been summarized.

4.2 Gyrokinetic modeling in the RFP

Most gyrokinetic codes (e.g. GENE or GYRO) were originally produced for the tokamak geom-

etry, such that implementation of the code to the RFP geometry requires some important consider-

ations. The code is formulated for toroidal flux, which increases monotonically for a tokamak, but

can be multivalued for an RFP due to reversal of the toroidal field at the reversal surface. Several

other tokamak assumptions, some subtle, are built into gyrokinetic codes, such as definitions for

parallel wavenumber k‖ or magnetic shear ŝ. Therefore, an RFP specific equilibrium is required

[80] to adequately explore RFP equilibria at large r/a, where the pressure gradients are largest and

drift wave turbulence can be important.

To adapt a gyrokinetic code to the RFP, Carmody et al. developed several equilibrium models

[63]. By using the GENE code, which does not rely on tokamak assumptions in the geometry

implementation, a wide range of magnetic field equilibria were capable of being tested. GENE

contains a circular equilibrium, which can be modified using additional radial dependence into an

adjusted circular model (ACM). This is done by replacing the Bessel function J0(2Θr/a) with a

function g(r) = qf(r), where q is the safety factor and f(r) is a sixth order polynomial determined

to fit the experimental field. With some derivation, the model for the magnetic field becomes:

−→
B =

B0R0

R
qf(ε = r/R0)(−→e φ +

r

R0q̄
−→e θ), (4.26)

where B has the magnitude

B =
B0R0

R
|q|f(ε)

√
1 + (ε/q̄)2. (4.27)

This fit has been show to be capable of matching the experimental fields well, even in very high

reversal discharges [63].
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4.3 Linear GENE results

Linear gyrokinetic studies were performed using the GENE code [17], with reconstructions

of experimental profiles taken from an ensemble of 200 kA PPCD plasmas discussed in Sec-

tion 5.2. Localized flux-tube simulations were performed with effective minor radial extent,

∆r = 10ρs(10−20cm). Consistent with previous analysis [14], instability is present in the

wavenumber range kyρs = 0.1 − 1.2 with frequencies in the electron diamagnetic direction.

Trapped electron modes are destabilized by the strong density gradient, in the region r/a ≥ 0.7, as

seen in Figure 4.2, where the measured fluctuations are maximum (see Figure 5.5), which is out-

side the toroidal field reversal surface. The computed linear growth rates at r/a = 0.8 are shown

in Figure 4.3 versus the inverse local normalized density gradient scale length, R0/Ln = −R0

n0

∂n0

∂r
,

which is a variable parameter in the GENE modeling describing the instability drive strength. The

growth rates are normalized to a characteristic sound speed crossing time, R0/cs. A critical in-

verse normalized density gradient scale length threshold for linear instability, R0/Ln ≈ 20, is

observed. This critical gradient required for TEM turbulence is significantly larger than the criti-

cal gradient for TEM turbulence in Tokamaks, which only require a critical gradient R/LT e ∼ 6

[81, 82, 83, 84]. Separating the contributions of passing and trapped particles shows the instability

to be driven by trapped particles. Continuous growth rates and frequencies with wavenumbers and

gradient scale lengths indicate that a single instability dominates linear growth. The turbulence

generated by this instability is particularly important in toroidal fusion plasmas, and the behav-

ior here is indicative of the case studies performed by Carmody in Reference [14] in key aspects

such as the impact of residual long-wavelength magnetic fluctuations on zonal flows in nonlinearly

saturated turbulence.

These growth rate calculations were repeated at several radial locations from a reconstruction

of an ensemble of 200 kA PPCD plasmas, calculated by MSTFit [85]. The growth rates, shown in

Figure 4.4, show that the peak growth rates are located in the edge of the plasma at r/a ≈ 0.84,

where equilibrium gradients are strongest, at a normalized wavenumber of kyρs ≈ 0.5. In the

interior of the plasma, at r/a ≈ 0.56, where the gradients are weak and there is little free energy
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GENE simulations show drift waves in RFP

Slides courtesy Z. Williams

• ky scans performed at 
multiple radial positions

• Strong destabilization of 
linear modes where 
gradients are strongest

• GENE (www.genecode.org): gyrokinetic turbulence code, adapted 
to RFP geometry
GENE simulations run for PPCD

TEM

ITG

Figure 4.2 Linear growth rates at several radial locations as computed in GENE, given a 200 kA
PPCD equilibrium. (Reproduced from Carmody et al., Ref. [14])

γ/
(c

S/
R 0
)

R0/Ln

Figure 4.3 Linear growth rates for TEM at r/a = 0.8 versus the inverse normalized density
gradient scale length as computed in GENE. (Reproduced from Williams et al., Ref. [57])
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TURBULENCE IN IMPROVED-CONFINEMENT REVERSED-FIELD PINCH
DISCHARGES

Z.R. Williams, J.R. Duff, T. Nishizawa, M.J. Pueschel, P.W. Terry University of Wisconsin-Madison

I. SUMMARY
- FIR measurements detect high-frequency fluctua-

tions during PPCD plasma discharges in MST
- Fluctuation properties are consistent with density-

gradient-driven TEM
- IDS measurements in a separate PPCD discharge

observe high-frequency fluctuations in C+2 density
correlated with FIR density fluctuations

- Gyrokinetic simulations using the GENE1 code an-
alyze these discharges to characterize these fluctua-
tions and the corresponding turbulence

- Preliminary results investigating energetic particle
diffusion reveals tearing fluctuations may alter scal-
ing laws derived for typical tokamaks

II. DRIFT WAVES IN PPCD
- Large scale tearing modes highly detrimental to con-

finement in the RFP
- Pulsed Poloidal Current Drive (PPCD): reduces cur-

rent gradients and tearing modes, results in im-
proved confinement

- Tearing mode reduction followed by high-frequency
density fluctuations (see (a) 200 kA PPCD above)

- Fluctuations connected to large increase in gradients
(shown in (b))

- High-frequency fluctuations exhibit strong depen-
dence on density gradient
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III. 200 KA PPCD DISPERSION
FIR interferometry measurements place these

fluctuations in the wavenumber range k? . 0.2 cm�1

Ion-scale fluctuations depending strongly on density
gradient ! suggestive of rn-driven TEM

IV. GENE MODELING OF PPCD
- Linear GENE calculations characterize these fluctua-

tions, using MSTFit equilibrium parameters as input
- Properties of fluctuations consistent with density-

gradient-driven Trapped Electron Mode

- Nonlinear simulations exhibit very strong transport
regulation via zonal flows

- Tearing mode effects required to accurately model
experiment, eliminate critical gradient upshift

V. TEM ZONAL FLOWS
- Without tearing modes, negligible transport in TEM

simulations due to very strong zonal flow formation
- Externally imposed Br fluctuation models residual

tearing modes present in PPCD, degrades zonal
flows

Zonal Flow, Bext
r = 0.0 Zonal Flow, Bext

r = 0.033

For further discussion concerning the physics of RFP zonal flows, see
Z.R. Williams poster at Sherwood 2017 in Annapolis, MD

VI. 380 KA PPCD - FIR + IDS
- Additional diagnostic capabilities ! further connec-

tion points between experiment and theory, expand-
sion of validation effort

- Inclusion of C+2 density fluctuation measurements
using IDS in 380 kA PPCD consistent with FIR high-
frequency measurements, shown below

Fluctuations peak at higher k?, persist across larger
wavenumber range compared to 200 kA

Dispersion relation calculated from experimental data

380 KA - LINEAR RESULTS
- Linear analysis predicts TEM as dominant instability,

positive frequency signature of the ubiquitous mode

- Growth rate peak at higher ky , larger ky range for
instability consistent with experiment

Nonlinear analysis including C+2 species ongoing

VII. FAST IONS IN THE RFP
Previous work2 gives analytic scaling laws for energetic
particle diffusion based on pitch angle ⌘ ⌘ vk/v:

D
es
pass(E) ⇠

✓
E

Te

◆�1

D
es
trap(E) ⇠

✓
E

Te

◆�3/2

D
es
pass,FLR(E) ⇠

✓
E

Te

◆�3/2

Gyrokinetc simulations of fast ion diffusivity in toka-
maks shows good agreement with these scaling laws

- Fast ion diffusivity calculated in RFP, with and with-
out tearing perturbation, shown above for ⌘ = 0.9

- Good agreement without perturbation; inclusion of
Bext

r introduces discrepancies

REFERENCES
[1] http://www.genecode.org
[2] M.J. Pueschel et al., Nucl. Fusion 52, 103018 (2012)

This work was supported by the U.S. Department of Energy,
Grant No. DE-FG02-85ER-53212

Figure 4.4 Linear growth rates for TEM at several radial locations versus the normalized
wavenumber as computed in GENE. (Reproduced from Williams et al., Ref. [57])

available for instabilities, the growth rates are quite low, as expected. The scaling of this instability

with the inverse normalized density gradient scale length and the location of the peak growth rates

are indicative of TEM-type turbulence.

By adjusting the relative strength of the density gradient scale length and the ion tempera-

ture gradient scale length, defined as η ≡ Ln/LTi , the drive of TEM and ITG instabilities was

explored. If the normalized ion temperature gradient scale length exceeds a particular threshold,

namely η ≈ 1.2− 1.4, then ITG was found to be the fastest growing mode. If η did not exceed this

threshold, then TEM was found to be the fastest growing mode. At the border of this threshold, a

hybrid (combination of multiple present modes) mode was found to be excited [14]. In principle,

this phenomena can be explored experimentally by looking at several plasma equilibria where the

relative strength of the gradients changes, such as for crash-heated PPCD where the ion tempera-

ture gradient can be much larger, or for “moderate-confinement” PPCD, where the density gradient

is weaker.

Due to their inherent trapped-particle nature, TEMs are localized to the low-field side of

toroidal confinement devices. This behavior has been confirmed in linear simulations, in which

the TEM eigenmode is plotted against a field-line line following coordinate θ, which is primarily



49

Figure 4.5 Structure of the TEM in the RFP. The TEM has ballooning structure in Φ across a
field aligned coordinate θ, which is dominantly poloidal in the region of interest. (courtesy Zach

Williams)

poloidal in the region of interest. As seen in Figure 4.5, the mode structure peaks at θ = 0 (corre-

sponding to the outboard midplane), and falls off rapidly towards the inboard side. A perturbation

with this structure is a “ballooning” mode [86].

4.4 Nonlinear GENE results

Turbulence and transport in PPCD discharges were modeled using nonlinear flux-tube GENE

simulations. Initial calculations based on PPCD equilibria produced negligible transport, indicated

by the dashed line in Figure 4.6, with electron heat transport conductivity on the order of χe ∼
10−4 m2/s for MST relevant parameters. This is due to very strong zonal flows, seen in Figure

4.7(a), that are nonlinearly generated, lowering the saturation level for the instability. The impact

of the zonal flow can be seen in Figure 4.8 in the purple triangles, which shows a large upshift in

the critical gradient required for TEM transport relative to the threshold of the linear instability.

This upshift is known as the Dimits shift [87]. The zonal flow, acting as a regulator of turbulence,

increases the pressure gradient required to produce TEM turbulence.

Because of the large discrepancy between the GENE calculated [57] and experimentally mea-

sured [30] values of the electron heat conductivity χe in the area of interest, it was posited that
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Figure 4.6 Heat transport in simulated 200 kA PPCD plasmas with (blue) and without (red) an
enforced magnetic perturbation on the scale of residual global magnetic tearing. (Reproduced

from Williams et al., Ref. [57])
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Figure 4.7 Electrostatic potential with and without enforced residual magnetic fluctuations.
Without the ad hoc magnetic perturbations, zonal flows form sheets in the electrostatic potential
that act as a transport barrier. With the magnetic perturbation, the zonal flows are “shorted out”,

and become broader. (Reproduced from Williams et al., Ref. [57])
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Figure 4.8 Linear growth rates (blue), nonlinear heat flux without an external Br (purple), and
nonlinear heat flux with an external Br (red) for TEM at r/a = 0.8 versus the inverse normalized
density gradient scale length as computed in GENE. (Reproduced from Williams et al., Ref. [57])

the simulation may be missing some physics. Namely, the presence of residual magnetic tearing

fluctuations were not considered in the simulation. These residual magnetic fluctuations, discussed

in Section 1.2, were found to have an important impact on TEM turbulence. In order to approx-

imate these tearing fluctuations without having to model the entire plasma volume, an ad-hoc,

tearing-parity, constant-in-time, parallel vector potential A‖ perturbation was implemented in the

simulation volume. The inclusion of this perturbation degrades the zonal flow activity, seen in

Figure 4.7(b). A radial magnetic perturbation, modeled after the ad-hoc A‖ in Figure 4.9 in the x

direction, allows electron streaming along field lines to travel to different flux surfaces, effectively

shorting out the zonal flows. The impact of the zonal flow degradation can be seen in the Dimits

shift in Figure 4.8 for the A‖ 6= 0 case, where the critical gradient for TEM turbulence is reduced

to a linear-like level. The zonal flow degradation has a strong effect on the electrostatic heat flux

Qe
es, seen in Figure 4.6 in theA‖ 6= 0 case, which increases to levels comparable to the experiment.

The calculated diffusivity (χe ∼ 10 m2/s) comes within 30% of the experimental value [30, 57].

Simulations for “medium-confinement” 200 kA PPCD discharges, which will be discussed

experimentally in Subsection 5.3.3, tend to have stronger temperature gradients and weaker density
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Figure 4.9 Puncture plot of magnetic fluctuations outside the reversal surface, as calculated by
GENE. Overlapping magnetic islands can form outside the reversal surface, allowing for rapid

radial transport. (courtesy Zach Williams)
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gradients, have also been done and resulted in an equilibrium that is expected to be unstable to ITG

turbulence. For this discharge equilibrium, calculated transport properties were on the same order

as experimental transport without the inclusion of residual magnetic tearing fluctuations. When

the magnetic fluctuations were included, the transport increased a little, but were less impactful

than in the TEM dominated discharge. While transport in the TEM dominated equilibrium is

increased by orders of magnitude by the inclusion of a tearing perturbation, the transport in the

ITG dominated plasma equilibrium only changes by approximately a factor of two for an identical

tearing perturbation. The ITG dominated discharge also only shows a very small Dimits shift,

revealing a very different role of zonal flow saturation in the two regimes. This difference in the

two regimes is quite interesting, and a topic of current investigation [57].

4.5 Summary

The gyrokinetic code GENE has been used to simulate RFP plasmas using several MST equilib-

ria from MSTfit. Linear simulations have predicted unstable density gradient driven TEM fluctua-

tions in 200 kA PPCD equilibria. This instability has critical normalized inverse density gradient

scale lengths on the order of R0/Ln ≈ 20. Simulations on other PPCD equilibria have predicted

that the identity of the fastest growing mode present in the plasma depends on the relative strength

of the density gradient scale length and the ion temperature gradient scale length, with stronger

inverse ion temperature gradient scale lengths driving an ITG instability. Initial nonlinear GENE

simulations of the 200 kA PPCD plasmas equilibria predicted strong zonal flows driven by TEM

turbulence, limiting transport properties significantly. This was due to absence in the simulations

of magnetic fluctuations still present in PPCD plasmas. More precisely, GENE does not operate

with any current gradients present in the plasma, which is the free energy source for magnetic

tearing mode perturbations. The addition of ad hoc magnetic fluctuations resulted in disruption of

the zonal flows, increasing transport to levels comparable to those seen experimentally. Further

cooperation between the GENE group and the MST experimental team may provide opportunities

for validation of the GENE code in the RFP geometry.
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Chapter 5

Electron Density Fluctuations in RFP Plasmas

Measuring density fluctuations is an integral part of measuring thermal transport characteris-

tics. Using the FIR interferometer/polarimeter system described in Chapter 2, line-integrated den-

sity fluctuations can be measured. Additionally, the FIR system can measure the line-integrated

equilibrium density, and by using an Abel inversion, the equilibrium density along the mid-plane

of the plasma. By using the toroidal chord separation, wavenumber information can be measured

via the density fluctuation power spectrum, as described in Appendix A. Measuring the density

fluctuations in several plasma equilibria can give a glimpse into the thermal transport characteris-

tics of these plasmas, but will not reveal the whole picture, due to the lack of velocity fluctuation

measurements, whose phase relative to the density and temperature fluctuations is also important

to the particle and thermal fluxes.

This chapter will describe density fluctuations in standard plasmas in Section 5.1 and 200 kA

PPCD plasmas in Section 5.2, as well as the dependence of high frequency density fluctuations

on the electron density gradient. In Section 5.2.2, the wavenumber associated with high frequency

density fluctuations will be explored. Section 5.2.3 will discuss residual magnetic perturbations

present in 200 kA PPCD plasmas both inside and outside the reversal surface. Other plasma

equilibria will be discussed in Section 5.3, including 400 kA PPCD plasmas, crash-heated 500

kA plasmas, and “medium-confinement” 200 kA PPCD plasmas. Aliasing of the wavenumber

spectrum in these plasma equilibria helped motivate the recent FIR mixer upgrade, and preliminary

data from these mixers will be presented in Section 5.4.
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5.1 Density fluctuations in standard plasmas

A considerable amount of research has been done on density fluctuations in standard RFP

plasma operation, particularly in regard to the global magnetic tearing mode [35, 88]. In a standard

sawtoothing plasma discharge, the density fluctuation amplitude can range from 15 − 40% of the

equilibrium value from the edge to the core, depending on the time relative to the sawtooth crash.

The evolution of the density fluctuation power spectrum for an ensemble of 173 sawtooth crashes in

200 kA standard plasmas is shown in Fig. 5.1. From the figure it is seen that the density fluctuations

are initially very low frequency, and as the sawtooth crash occurs, there is a broadening of the

density fluctuation power spectrum to higher frequencies, followed by a decrease of broadband

density fluctuation power back to the lower frequency scales. The increase in relative density

fluctuation power is strongest in the edge of the plasma, as seen in Figure 5.1(c), which shows the

density fluctuation power spectrum measured at an impact parameter of x ≡ R − R0 = 0.43 m.

The fluctuation power is up to an order of magnitude larger in the edge of the plasma than in the

core of the plasma (note the difference in scales between plots), as seen in Figure 5.1(a), which is

measured at x = 0.06 m.

Standard discharges have a large number of magnetic tearing modes influencing the plasma.

This can be seen in the frequency-wavenumber power spectrum, as shown in Figure 5.2, which

is taken for an ensemble of 200 kA standard plasmas from edge FIR chords. The coherent fluc-

tuations are low frequency (.20 kHz), and broad in wavenumber, spanning from approximately

−0.1 cm−1 to 0.05 cm−1. Higher frequency density fluctuations (>20 kHz) are incoherent in these

plasmas, indicative of a cascade of energy from low frequency to higher frequencies, seen in the

broad tearing-dominated curve of Figure 5.3. These broadband density fluctuations are strongly

correlated with tearing mode dynamics, including nonlinear three-wave interactions that energize

stable modes and generate broadband turbulence [89].
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Figure 5.1 Density fluctuation power spectrum as a function of time over an ensemble of 173
sawtooth crashes at 3 impact parameters: x = 0.06 m (a), x = 0.21 m (b), and x = 0.43 m (c)
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the sawtooth crash.
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5.2 Description of TEM-like density fluctuations in 200 kA PPCD plasmas

5.2.1 Equilibrium and fluctuating electron density characteristics

By suppressing the tearing modes with PPCD, the stable tearing modes are no longer energized,

and broadband turbulence is suppressed. Therefore, new modes may emerge from the plasma

equilibrium, or may be driven unstable by the larger pressure gradients in these plasmas. By

exploring these new instabilities, the characteristics of these plasmas can be described.

Using the FIR interferometer, the time-dependent electron density fluctuation power spectrum,

as well as the equilibrium density and density gradient can be measured and used to describe insta-

bilities in the electron density present in these plasmas. Figure 5.3 shows ensemble-averaged fre-

quency power spectra for line-integrated electron density fluctuations measured in 200 kA tearing-

dominated and improved-confinement plasma conditions. For both regimes, the data was measured

in the edge of the plasma at impact parameter of x = 0.43 m (r/a = 0.86) relative to the geomet-

ric axis, R0. The power spectrum for tearing-dominated conditions is for 1 ms time slices taken

before PPCD is active, tstart = 9.5− 10.5 ms, and the spectrum for PPCD improved confinement

conditions is for 1 ms time slices near the end of the inductive control phase when the density and

temperature attain their maximum values, tend ≈ 18− 22 ms. The typical frequency range for the

dominant m = 1, n & 2R0/a ∼ 6 tearing modes in the standard RFP spectrum is f ≈ 10 − 30

kHz, where n is the toroidal mode number. As anticipated, the density fluctuations are reduced at

most frequencies with PPCD, however, Figure 5.3 shows an emergent spectral peak appearing at

frequency f ∼ 50 kHz. This fluctuation is found to have characteristics comparable to the TEM

instability described computationally in Chapter 4.

By looking at the density fluctuation power as PPCD evolves, structures in the electron density

fluctuations may become easier to identify with regard to the equilibrium evolution. A spectrogram

for the evolution of the line-integrated density fluctuation power at x = 0.43 m for an ensemble-

average of 142 PPCD plasmas is shown in Figure 5.4(a). The PPCD programming is initiated at

t = 10 ms, which is about the time of peak Ip following plasma formation at t = 0 ms. At 10 ms the

dominant density fluctuations are associated with tearing fluctuations, i.e., the ‘tearing dominated’
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spectrum in Figure 5.3. As PPCD sets in, tearing fluctuations subside, and a new spectral peak

emerges at higher frequencies. These emergent density fluctuations are observed in improved

confinement discharges over MST’s full range of plasma currents, but the frequency spectral width

of the new peak is narrowest for 200 kA PPCD plasmas. Maximum plasma pressure is obtained

at the end of the PPCD control phase [10], which is followed by a return to tearing-dominated

conditions at t & 22 ms.

The amplitude of the emergent density fluctuations is peaked in the outboard region of the

plasma where the gradient in the equilibrium (flux-surface-averaged) density is the strongest. Fig-

ure 5.5 shows the ensemble-averaged amplitude of the line-integrated density fluctuations, 〈ñe〉x,

for each interferometer chord, Ri, integrated over the frequency band 40 − 65 kHz to isolate the

emergent fluctuations. Angle brackets 〈 〉 denote an ensemble average. The ensemble average of

the Abel-inverted density profiles, 〈ne(r)〉, at 20 ms mapped to the mid-plane (Z = 0) is also

plotted in Figure 5.5. The fluctuation power is strongest in the outboard side of the plasma, which

is consistent with a ballooning parity mode, as described in Section 4.3, and as seen in Figure 4.5.

The time evolution of the density gradient, 〈|∇ne(r, t)|〉, is plotted in Figure 5.4(b) for the outer re-

gion of the plasma. The density gradient is calculated from an Abel inversion of the line-integrated

density profile taken from the FIR diagnostic. The emergence of the density fluctuation, shown in

Figure 5.4(a), coincides with the sharp increase in |∇ne| during PPCD, shown in Figure 5.4(b).

The emergent density fluctuations exhibit a clear density-gradient threshold behavior, as shown

in Figure 5.6. The fluctuation amplitude varies shot-to-shot, depending on the degree of tearing

suppression. The shot ensemble is binned according to the magnitude of the mean density gradient

measured in each plasma. An inverse normalized gradient scale length characteristic of the strong-

gradient region, R0〈|∇ne|0.8〉/〈ne〉|0.8 is calculated for each bin, where |∇ne|0.8 is the magnitude

of the density gradient at r/a = 0.8, and ne is the local density calculated from an Abel inversion

of the FIR measured equilibrium density profile. Note that the local density gradient scale length,

Ln ≡ ne(r)/|∇ne|, rapidly varies because the width of the strong-gradient region is comparable to

Ln. The power in the emergent fluctuations, 〈ñ2
e〉, increases when the gradient exceeds the thresh-

old R0〈|∇ne|0.8〉/〈ne〉|0.8 ≥ 18, as seen in Figure 5.6. The time evolution of R0〈|∇ne,0|〉/〈ne〉|0.8
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(averaged over the full ensemble) is plotted in Fig. 5.4(c), which shows the gradient scale length in-

creases by∼20% as PPCD activates. Similar analysis for the electron temperature gradient, |∇Te|,
does not exhibit clear critical-gradient behavior, although the Thomson scattering measurements in

the outer region of MST plasmas presently have relatively large uncertainty due to stray laser light

issues. Efforts to improve Thomson scattering are underway. Ion temperature measurements were

not available for these plasmas, but the ion temperature profile is typically assumed to be some

fraction of the electron temperature profile.

5.2.2 Wavenumber analysis

The toroidal wavelength of the fluctuations is determined by the phase shift between mea-

surements along the two outboard-most interferometer chords that are separated 5◦ toroidally

(R0∆ϕ = 13 cm). An in-depth description of the method for this calculation is outlined in Ap-

pendix A. These chords are tangent to magnetic surfaces that have safety factor q ⇒ 0 and are

therefore most sensitive to fluctuations with akθ ≈ ak‖ . 1. The two-point-correlation frequency-

wavenumber power spectrum at t = 20 ms is shown in Figure 5.7. In the f ≈ 50 kHz range where
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Figure 5.7 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations between FIR chords at x = 0.36, 0.43 m at 20 ms. Positive (negative) wavenumber
corresponds to wave propagation in the ion (electron) diamagnetic drift direction. (Reproduced

from Duff, et. al, Ref. [37])

the emergent fluctuations are largest, the toroidal wavenumbers range from kϕ ≈ −0.1 cm−1 to

kϕ ≈ −0.2 cm−1, where the minus sign corresponds to wave propagation in the electron dia-

magnetic drift direction. This is opposite the direction of propagation of the residual f ∼ 15

kHz core-resonant tearing modes, kϕ ≈ 0.04 cm−1 (n ≈ 6), which acquire finite frequency from

plasma flow. The density fluctuations associated with residual tearing modes are still resolved in

Figure 5.7. By fitting a line to the weighted mean of the S(k, ω) plot, shown in Figure 5.8, the

group velocity vgr is found to range from ∼− 2 km/s to ∼− 4 km/s, depending on the maximum

and minimum wavenumber used for the fit. The expected drift velocity, v∗e = Te,0∇ne/(e|B|ne)
for the relevant plasma equilibrium is ∼10 km/s, which gives some indication of what the Doppler

shift may be. The toroidal plasma flow is small near r/a = 0.8 [90, 91], so the Doppler shift of

the emergent fluctuations is small and, if nonzero, likely to also be in the ion drift direction.

While it is assumed the largest component of the wavenumber is toroidal, the FIR chords used

for the measurement do have a radial separation. The same phase shift analysis for the wavenumber

can be used between adjacent chords at the same toroidal angle for a spectrum dominated by the

radial and poloidal wavenumbers, or the extreme inboard and outboard chords for a primarily

poloidally dominated spectrum. For these plasma equilibria, chords with zero toroidal separation
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show very high coherence for the emergent fluctuation, but a wavenumber of k � 1 cm−1 as seen

in Figure 5.9, indicating the radial wavenumber is small.

5.2.3 Residual magnetic fluctuations

Residual magnetic fluctuations can potentially have very important transport implications in

PPCD plasmas. The nonlinear gyrokinetic simulations discussed in Section 4.4 have shown that

magnetic perturbations can degrade zonal flows, reducing confinement. Using a demodulation

technique developed by Fimognari [38], residual magnetic fluctuation power can be estimated. For

each MST shot, a spatial Fourier decomposition is routinely performed using the 16 coil poloidal

array and 64 BT coil toroidal array. These signals have large fluctuations on top of the slowly

varying component, due to the presence of both stationary and rotating components of the modes.

Decomposition of the toroidal array signals separates out positive, negative, and zero frequency

components corresponding to magnetic fluctuations having phase velocity in the positive or neg-

ative toroidal direction or remaining stationary. This process uses temporal FFT analysis of the

mode amplitudes to determine the sign of the frequency, as discussed in reference [38]. Modes

resonant in the core are negative frequency (ion diamagnetic direction), but there is evidence for

toroidal flow reversed in the extreme edge of standard RFP plasmas, as noted in [38]. In deeply

reversed plasmas, such as PPCD discharges discussed here, modes with moderate toroidal mode
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number, |n| ∼ 10, can be resonant both in the core and the extreme edge. We use the demodulation

method to isolate both positive and negative phase velocities to help reveal this possibility. In the

region of the plasma where the TEM instability is observed, the plasma velocity is small, but it

could be counter to the core plasma flow. While the magnetic fluctuation resonant at r/a ≈ 0.8

is not precisely determined, this method still provides an estimate of the magnetic fluctuations for

use in calculating the stochastic electron heat conductivity.

As noted in Section 1.2, and seen in Figure 1.5, during PPCD the amplitude of the magnetic

tearing modes is suppressed significantly, but they do not disappear completely. In particular,

the n = 6 − 8 modes have sizable amplitude. The magnetic fluctuation spectra for an ensemble

of 200 kA PPCD plasmas were separated via the demodulation code, as seen in Figure 5.10 for

positive frequency modes, and Figure 5.11 for negative frequency modes. In negative frequency,

the poloidal and toroidal magnetic fluctuation spectrum is peaked at the n = 6 mode, and falls off

significantly for all other modes. The magnetic fluctuation amplitude associated with these modes

is quite low, peaked at ∼1 − 2 G for the n = 6 mode, and dropping to <0.2 G for broadband

toroidal modes. For the positive frequency modes, Figure 5.11 shows a broader, lower amplitude

magnetic fluctuation spectrum. The peak for the magnetic amplitude spectrum is at n = 1 for

the poloidal fluctuations, and at n = 2 for the toroidal fluctuations. There is also a double peak

feature, with the n = 8−10 fluctuation being the secondary peak for both the poloidal and toroidal

directions. The amplitude for the magnetic fluctuation modes is still quite low, being <0.45 G

for all modes in the poloidal direction, and <1.2 G in the toroidal direction. The higher mode

number fluctuations drop off more slowly than for negative frequency, with the closely spaced

mode numbers having comparable amplitudes. Therefore, the magnetic fluctuations in the edge

of the plasma, where the TEM-like instability is measured, can be quite complex, with many

closely spaced, comparable amplitude magnetic modes, which may result in significant overlap of

magnetic islands and significant magnetic stochasticity.

The f < 0 magnetic measurements in these plasmas are quite important both to the experi-

mental results, and the nonlinear GENE results, as discussed in Section 4.4. The toroidal magnetic

fluctuations can be used to estimate the radial magnetic fluctuations, and therefore the stochastic
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m = 1, n = 10 tearing mode, evaluated using RESTER. (Courtesy John Sarff)

electron heat conductivity, described in Section 3.1.1. This is done using profiles for Bφ, Bθ, and

Br for a given set of mode numbers calculated using RESTER [92], an example of which is given in

Figure 5.12 for the n = 10 mode. RESTER is a linear stability code that determines which modes

access free energy from the equilibrium field configuration, and is described by Sovinec in Ref.

[92]. The RMS amplitude of Bφ for modes m = 1, n = 8− 12 implies Br is about ∼0.7 G, while

|B| ∼ 1000 G, Lac ∼ 1 m, and vth =
√
Te/m ∼ 2000 km/s. Using Equation 3.2, this results in

a stochastic electron heat conductivity χst,e = vTLac
〈b̃r〉2
B2

0
∼ 1 m2/s. Hence, the stochastic heat

transport in the edge of the plasma is significantly lower than the measured heat transport [30], im-

plying that there is another mechanism for the heat transport. GENE analysis discussed in Section

4.4 predicts that TEM turbulence could be responsible for much of the electron heat conductivity

χe ≈ 10 m2/s in the region of interest.

5.3 Other plasma equilibria

High frequency fluctuations have been explored in several different plasma equilibria. The

strongest control over the PPCD equilibrium is with the plasma current, so higher current plasmas
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were explored, at 400 (Subsection 5.3.1) and 500 kA (Subsection 5.3.2). Additionally, “medium-

confinement” 200 kA PPCD plasmas, where the tearing mode is not well suppressed, were ex-

plored in Subsection 5.3.3.

5.3.1 400kA PPCD plasmas

400 kA PPCD plasmas have been extensively studied for microturbulence. By increasing the

plasma current, the equilibrium changes, potentially changing the characteristics of any observed

microturbulence. In Figure 5.13(a), it is observed that the total density fluctuation power decreases

as PPCD turns on from 10 to ∼15 ms. Similarly to 200 kA PPCD plasma equilibria, a higher

frequency density fluctuation emerges. This emergent fluctuation is higher frequency than the

emergent fluctuations in 200 kA plasmas, at ∼100 kHz in 400 kA discharges, versus ∼50 kHz

from the 200 kA discharges discussed previously. The 400 kA emergent fluctuation is also lower

power than at lower current, and decreases in frequency as PPCD evolves, from ∼100 kHz at ∼16

ms down to ∼50 kHz at ∼20 ms. This down-shift in frequency may indicate that plasma veloc-

ity plays a more important role in these plasmas than in the lower current equilibrium. In Figure

5.13(b), the density gradient was found from inverted density profiles for these plasmas. The den-

sity gradient is lower magnitude than in the lower current equilibrium, but still significantly larger

than in standard plasmas. The experimental proxy for the normalized inverse density gradient

length, R0〈|∇ne|0.75〉/〈ne〉|0.75, is plotted in Figure 5.13(c). The normalized inverse density gradi-

ent scale length increases during PPCD by ∼75%, a significant increase over the course of PPCD.

By integrating the fluctuation over a frequency range including the spectral feature, as seen in Fig-

ure 5.14, some information about the radial structure of the instability is revealed. This profile,

measured near the end of the PPCD cycle, shows that the instability has drifted slightly towards

the core of the plasma, peaking in power closer to the chord located at an impact parameter of

x = 36 cm, as opposed to the 200 kA plasma case, where the instability peaked in the outboard

edge of the plasma.

The spectral information in the spatial domain for this plasma equilibrium is more difficult

to measure than in the lower current case. The wavenumber-frequency power spectrum shown in
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Figure 5.13 Evolution of (a) the line-integrated electron density fluctuation power at x = 0.36 m
and (b) the equilibrium density gradient for an ensemble of 400 kA PPCD plasmas. The evolution
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Figure 5.15 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations at x = 0.36, 0.43 m during PPCD in 400 kA plasmas. Positive (negative)

wavenumber corresponds to wave propagation in the ion (electron) diamagnetic drift direction.

Figure 5.15 shows that the residual magnetic tearing modes are still present during the PPCD cycle.

Additionally, the spectral feature at ∼50 kHz is quite broad and low power, and is quite close to

the Nyquist limit of the measurement. This implies that the spectral feature is aliasing onto lower

wavenumbers measured by the FIR, and that the peak wavenumber for these discharges is too large

to be measured with this technique. Theoretically, the FIR mixer upgrade will be able to measure

the spectral feature, having a wavenumber limit of ∼2 cm−1. Other diagnostics may also be able

to access this wavenumber range, such as the IDS-II system.

5.3.2 Crash-heated 500kA PPCD

High current crash heated PPCD plasmas are some of the highest temperature plasmas made in

the MST. Studies on these plasmas have shown that the ion temperature increases significantly, and

decays more slowly than in standard plasma operation [10]. The subsequent increases in the ther-

mal gradients, namely the ion temperature gradient, may indicate that ion-temperature-gradient-

like turbulence may become important. The frequency-wavenumber power spectrum shown in

Figure 5.16 shows that the FIR cannot adequately describe the fluctuations in these plasmas. While
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Figure 5.16 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations at x = 0.36 m during PPCD in 500 kA crash heated plasmas. Positive (negative)

wavenumber corresponds to wave propagation in the ion (electron) diamagnetic drift direction.

the global tearing mode appears to be well defined, with low wavenumber and low frequency, as

seen in other plasma equilibria, the higher frequency fluctuations are spread across a large number

of wavenumbers, indicating the density fluctuations are highly aliased, and outside the diagnostic

viewing parameters.

5.3.3 Medium-confinement 200kA PPCD

Occasionally, the PPCD cycle does not control the global magnetic tearing modes as well,

and a sawtooth crash occurs several milliseconds into the PPCD cycle. Typically, these plasmas

are discarded from ensembles and ignored, but some interesting phenomena have been observed

by collecting these types of shots. These shots can have significantly different equilibrium pro-

files than the best 200 kA PPCD plasmas used previously, including having a comparable electron

density gradient and ion temperature gradient, such that ηi ∼ 1. Based on previous gyrokinetic

simulations, this adjustment to the equilibrium suggests an ITG-like instability may become rele-

vant, while the TEM-like instability may become less important, or disappear.
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The density equilibrium in these plasmas can change significantly from shot to shot, as can the

density fluctuation spectrum. In the edge of the plasma, where the gradients are strongest and drift

waves are expected, there is again an emergent fluctuation, seen in Figure 5.17. In these plasmas,

sawtooth crashes will typically occur early in the PPCD cycle, between 10−16 ms, seen as bursts

of large density fluctuations throughout the frequency spectrum. From 18−20 ms, it appears that

two separate spectral features emerge, with one peaking at ∼30 kHz, and a higher frequency one

between ∼40−60 kHz. These may potentially correspond to separate drift wave instabilities, with

the likely candidates for the fastest growing mode being ITG and TEM instabilities.

By looking at two spatially separated chords, as before, the wavenumber of these spectral

features can be explored. The lower frequency emergent fluctuation, seen in Figure 5.18, peaks

at a relatively low wavenumber, ∼0.06 cm−1 in the electron diamagnetic drift direction, while the

higher frequency emergent fluctuation is comparatively broad in both frequency and wavenumber,

peaking at ∼0.09−0.11 cm−1. The two fluctuations appear to be propagating in the electron drift

direction. It appears that, based on this data, these plasmas are unstable to a complicated version

of TEM turbulence. There is no experimental evidence for the GENE predicted ITG turbulence.

Regardless, due to the large variation between plasma discharges in this data set, this type of

equilibrium is quite difficult to study in detail.

5.4 Measurement with the upgraded FIR system

Using the new planar-diode mixers in an array setup, referenced in Section 2.4, and as seen in

Figure 5.19, significantly higher wavenumbers may potentially be measured, up to ∼1 − 2 cm−1,

nearly a full order of magnitude higher than possible using toroidally separated chords. Exper-

iments were done to explore this detector setup, with both toroidal and radial separation of the

mixers. Initial setup had the mixers attached to each other directly, with the mixer inputs separated

by ∼1 cm. Data was taken in 200 kA PPCD plasmas, with the mixers displaced toroidally for

one set of shots, and radially for another set of shots. In order to take radial separation data, a

quarter wave plate was placed in front of the mixers to correct the laser polarization. The mixer

array was found to be ineffective for phase difference, so a 1 cm spacer was introduced between
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Figure 5.17 Density fluctuation power spectrum for an ensemble of medium confinement 200 kA
PPCD plasmas. A second emergent fluctuation appears in this plasma equilibrium, implying the

presence of a second, sub-dominant drift wave instability.
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Figure 5.18 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations at x = 0.36, 43 m during PPCD in medium confinement 200 kA PPCD plasmas at
t = 20− 21 ms. Positive (negative) wavenumber corresponds to wave propagation in the ion

(electron) diamagnetic drift direction.
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Figure 5.19 Photograph of planar diode mixer in mixer tube (left) and two mixer array for high
wavenumber measurement experiments (right).

the mixers, and apertures of various sizes were introduced in the beam line. The arrayed mixers

saw effectively identical signals, as seen in Figure 5.20, limiting the usefulness of this setup. This

setup may not adequately distinguish spatially separated plasma volumes due to the acceptance

angle of the planar-diode mixers of 5◦, which may cause the line-of-sight for the mixers to over-

lap. The apertures inserted to reduce the line-of-sight overlap reduced the laser power seen by the

mixers by over an order of magnitude, requiring the use of the pre-amplifiers, which are removed

for normal use with the planar-diode mixers. The noise introduced by the pre-amplifiers may have

masked any small-scale phase differences in the mixer array. These problems may be addressed

by using an array of 1 cm diameter focusing lenses for each mixer in the array, which would act as

an aperture and increase the laser power seen by each mixer. A setup like this may be used in the

future to measure high wavenumber fluctuations.

5.5 Summary

The FIR interferometer-polarimeter system has been used to explore relatively high frequency,

high wavenumber density fluctuations in improved confinement RFP plasmas. In low current
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Figure 5.20 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations for high wavenumber measurement, with both mixers located at an impact parameter

of x = 0.43 m.
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(200 kA) PPCD discharges, the highest power density fluctuations are associated with a ∼50 kHz,

∼0.1 cm−1 spectral feature which propagates in the electron diamagnetic drift direction. This spec-

tral feature has been found to depend strongly on the density gradient in the edge of the plasma,

and has a critical density gradient of R0〈|∇ne|0.8〉/〈ne〉|0.8 ≈ 18 below which the spectral feature

does not appear. The spectral feature is localized in the outboard edge of the plasma, consistent

with a ballooning structure. Predicted stochastic electron heat conductivity χst,e was calculated in

the plasma region of interest, and was found to be quite small (χst,e ∼ 1 m2/s), implying some

other method for heat transport in these plasmas, such as the presence of electrostatic drift wave

turbulence. This spectral feature compares favorably to a TEM predicted by GENE simulations of

these plasma equilibrium.

In “medium-confinement” 200 kA PPCD plasmas, a second, co-dominant fluctuation appears.

In GENE simulations of this plasma equilibrium, ITG turbulence was found to be the dominant

instability. Experimentally, this does not appear to be the case, given the direction of propagation

of the observed density fluctuation, and the observed turbulence may still be TEM-like.

In higher current discharges, the spectral feature appears to increase in wavenumber, outside

the range of the FIR system’s capabilities. Upgrades to the FIR mixers, including employing an

array of mixers in the same chord, were not successful in resolving the wavenumber spectrum of

the instability in these plasmas. Producing a description of the turbulence characteristics of these

plasmas may prove to be a fruitful area of future research.
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Chapter 6

Summary and Future Work

THE MST FIR interferometer-polarimeter system has been upgraded with new planar-diode

mixers, and has been used to measure density fluctuations consistent with the trapped-electron-

mode instability in improved confinement RFP plasmas. This is the first description of the these

fluctuations in this plasma configuration. The measured density fluctuations are consistent with

predictions made by the gyrokinetic code GENE. The experimental role of these instabilities in

particle transport is as yet unknown due to the measurement of plasma velocity fluctuations being

unavailable, so the density fluctuations cannot be correlated with the velocity fluctuations.

6.1 Density fluctuations

The FIR system was used to compare the density fluctuation spectra in standard and improved

confinement plasmas, to infer the relative thermal transport in the two regimes. Density fluctu-

ations are significantly suppressed in improved confinement plasmas, which is expected for the

significantly lower transport in this regime. However, there is a peak in the improved confinement

density fluctuation spectra at higher frequencies, on the order of 50 kHz. These higher frequency

density fluctuations are not observed in standard plasmas by the FIR system, and are expected to be

associated with drift wave instabilities. The higher frequency density fluctuations were correlated

to the density gradient, and had electron diamagnetic drift direction propagation. In 200 kA PPCD

plasmas, the emergent density fluctuations scaled with a normalized density gradient parameter,

R0〈|∇ne|0.8〉/〈ne〉|0.8, and had a critical normalized density gradient, R0〈|∇ne|0.8〉/〈ne〉|0.8 ≈ 18.

The spectral power as a function of the wavenumber and frequency was found, and the density
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fluctuation peaked at f ≈ 50 kHz and k ≈ 0.1 cm−1 in the electron diamagnetic direction. The

density fluctuations were localized in the outboard edge of the plasma, where the density and tem-

perature gradients are largest and indicative of a ballooning type structure of the turbulence. No

scaling with the electron temperature gradient was observed in these 200 kA PPCD plasmas.

While similar emergent density fluctuations structures were observed in higher current 400

kA PPCD plasmas, they proved to be difficult for the current FIR diagnostic system to resolve

in wavenumber. The density fluctuations in these plasmas were broader in frequency, ranging

from ∼40 kHz to ∼150 kHz, and significantly lower power. The density fluctuation power peaked

further away from the wall, at r/a ≈ 0.75, consistent with a density gradient driven instability,

given the location of the peak density gradient in these plasmas was also further from the wall.

The wavenumber of the density fluctuation was unresolvable with the current FIR system, showing

significant aliasing in the spectral power, indicating a peak wavenumber ≥0.2 cm−1.

6.2 GENE Comparison

The GENE code has been used to simulate the unstable mode spectrum for several improved

confinement RFP equilibria. These simulations made several predictions about these plasmas re-

garding the fastest growing instability and the drive for any instability. There were also predictions

made regarding peak wavenumber, frequency, and required gradients for such drift waves. Initial

simulations predicted a very large zonal flow that inhibited transport to very low levels. These

zonal flows were found to be disrupted by residual magnetic fluctuations caused by the incomplete

suppression of the global tearing mode present in RFP plasmas. In simulations of 200 kA PPCD

plasmas, TEM microturbulence was found to be the dominant instability. The TEM was found to

be primarily driven by the density gradient, and exhibited a critical density gradient, below which

the mode was stable. The relative agreement between the GENE simulation predictions and the ex-

perimental FIR data suggest that there exists a TEM in the outboard edge of 200 kA PPCD plasmas

which may influence transport [57].
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6.3 FIR upgrades

The FIR has been upgraded with new planar-diode mixers, which were compared to the old

corner-cube mixers. The new mixers have a significantly lower noise floor, and significantly more

sensitivity [45]. This allowed for experiments with no focusing lens in an attempt to increase the

spatial sensitivity of the system. Initial testing for high wavenumber fluctuations was unsuccessful,

likely due to overlap of the angle of acceptance of the mixer array resulting in a lack of phase

separation. This measurement could potentially be improved by including an array of lenses for

the mixer array, further differentiating the plasma volume sampled by each mixer.

6.4 Conclusions

In summary, density fluctuations with characteristics consistent with density-gradient-driven

trapped electron modes emerge in reduced-tearing MST RFP plasmas. The fluctuations exhibit a

critical-gradient threshold, propagate in the electron diamagnetic drift direction, and have perpen-

dicular wavelengths expected for TEMs. These features are consistent with gyrokinetic modeling

based on measured plasma equilibria. Critical gradient behavior is characteristic of microturbu-

lence that regulates heat and particle transport, for example the ‘stiffness’ observed in core tem-

perature profiles of tokamak plasmas [77, 93, 94]. While the critical gradient behavior in Figure

5.6 suggests the same may apply for PPCD’s reduced-tearing conditions, experimentally it is diffi-

cult to separate TEM-induced transport from that due to residual tearing and stochastic transport.

Future measurements may be able to make this distinction in MST plasmas, e.g., using insertable

probes. Nonlinear modeling with GENE predicts very low transport levels in the absence of tear-

ing fluctuations. When residual tearing is included, their disruptive effect on zonal flows leads

to higher turbulent saturation levels and fluxes comparable with the power-balance measured heat

conductivity in PPCD plasmas, χe ∼ 5 − 10 m2/s, compared to a stochastic heat conductivity

predicted to be χst,e ∼ 1 m2/s. It is therefore likely that TEM microturbulence plays a significant

role in regulating transport in the edge region of reduced-tearing RFP plasmas. The gyrokinetic
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modeling predictions for large critical gradients and strong zonal flows shows that the RFP con-

figuration has tokamak-level turbulent transport with partial suppression of tearing modes, and

transport could be even smaller than that of tokamak plasmas if more thorough tearing reduction

were achieved experimentally.

6.5 Future Work

The work in this thesis can be expanded in several ways. The recent FIR mixer upgrade,

while increasing bandwidth and signal-to-noise ratio, has an as-yet not fully explored design space.

Additionally, the level of transport in improved confinement plasmas due to drift wave turbulence

was not measured.

While some experiments were done to explore high wavenumber measurements, they proved

relatively fruitless at the time, likely due to overlap of the mixer viewing angle. This may be

alleviated by designing an optical system such that the mixers in a high wavenumber setup have

individual, more distinct optical paths. This could be accomplished by having an array of lenses

for the mixer array, decreasing the need for apertures that significantly decrease signal power, and

potentially decreasing the overlap of the optical paths.

While the density fluctuation power in 200 kA PPCD plasmas appears to be largely attributed

to trapped-electron mode turbulence, this may not be the case in other plasma equilibria. In higher

current 400 kA PPCD plasmas, for example, there may be a combination of trapped-electron mode

and ion-temperature gradient mode instability. There is also evidence of some drift wave turbu-

lence in the extreme edge of standard plasma equilibria [95]. These plasma equilibria need to be

explored further experimentally to attribute the thermal transport to any unstable modes.

Some of the first measurements on the MST were to characterize transport in the edge of the

plasma [96]. These experiments could be repeated in low current PPCD discharges in an attempt to

characterize the particle and heat transport associated with the electrostatic drift wave turbulence

described in this thesis.

The effects of magnetic perturbations on zonal flows is an interesting area of research, but

difficult to study in RFP plasmas, where magnetic perturbations cannot currently be completely
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suppressed. However, in a tokamak plasma where magnetic turbulence is small, the effects of

externally applied resonant magnetic perturbations on zonal flows could be studied.
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APPENDIX
Spectral analysis

This appendix outlines the procedure for finding spectral power, coherence, and the wavenumber-

frequency power spectra for a set of signals, as described by Beall, 1982. By taking the Fourier

transform of a set of signals, information on the wavenumber spectra can be found using the phase

information of the signals.

A.1 Fourier transforms

the Fourier transform F of a time dependent signal f(t) is defined as g(ω) = F(f(t)), where

ω is the angular frequency (ω = 2πf ), such that

g(ω) =
1√
2π

∫ ∞
−∞

f(t)eiωtdt (A.1)

f(t) =
1√
2π

∫ ∞
−∞

g(ω)e−iωtdt (A.2)

is the Fourier transorm (A.1) and inverse Fourier transform (A.2). The units of g(ω) and f(t) are

the same. Assuming f(t) is real, and that f(t) ↔ g(ω) are a transform pair, then the Fourier

transform has the following properties:

g(−ω) = g∗(ω) (A.3)

f(at) =
1

|a|g(
ω

a
) (A.4)

1

|b|f(
t

b
)↔ g(bω) (A.5)

f(t− t0)↔ g(ω)e2πiωt0 (A.6)

g(ω − ω0)↔ f(t)e−2πiωt0 (A.7)
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A.2 Autopower spectrum

The Fourier spectrum of a set of data can be used to find the power spectrum of the signal. The

power spectrum of a data set f(t) is given by:

S(ω) = g(ω)g∗(ω) (A.8)

such that the units of S(ω) are the square of the units associated with f(t). Power spectra are often

presented as one-sided, such that no negative frequencies are given. The one-sided power spectrum

is given by:

S(ω) =

g(ω)g∗(ω) ω = 0, ω
2

2g(ω)g∗(ω) elsewhere

(A.9)

Power spectra curves display the power spectrum or power spectral density of a signal. If we

have an N-sample signal f(t) with a Fourier transform g(ω), then the auto-power spectral density

APSD is given by APSD(ω) = g(ω)g∗(ω)
∆f

where ∆f = fs/N , and fs is the sampling frequency.

A.3 Cross-power spectrum,

Given two signals of N samples f1(tn) and f2(tn), where n = 1, 2, 3, ...N − 1, N , the Fourier

transforms of the two signals are given by g1(ωn) and g2(ωn). The cross power spectrum is then

given by:

H1,2(ωn) = g1(ω)g∗2(ω) (A.10)

The coherence is then given by:

γ2
1,2(ωn) =

|H1,2(ωn)|2
S1(ωn)S2(ωn)

(A.11)

or, more importantly, for an ensemble of M signals, the coherence is given by:

γ2
1,2(ωn) =

|
M∑
j=1

H
(j)
1,2(ωn)|2

[
M∑
j=1

S
(j)
1 (ωn)][

M∑
j=1

S
(j)
2 (ωn)]

(A.12)

where γ2
1,2 is significant when:

γ2
1,2(ωn) ≥ 1

M
. (A.13)
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A.4 Wavenumber frequency spectrum

For an ensemble of data N (n = 1, N ) samples long with M (j = 1,M ) realizations (e.g.

sawtooth crashes, PPCD shots, etc.), with measurements at 2 spatial locations f (j)
1 (tn) and f (j)

2 (tn)

with separation χ, there are two sets of Fourier transforms, g(j)
1 (ωn) and g(j)

2 (ωn). The cross power

is then given by:

H
(j)
1,2(ωn) = g

(j)
1 (ωn)g

(j)∗
2 (ωn). (A.14)

The local phase between the two sets of spectra are then:

Θ(j)(ωn) = tan−1(
=H(j)

1,2(ωn)

<H(j)
1,2(ωn)

) (A.15)

Where =H(j)
1,2(ωn) is the imaginary part of the cross power spectrum and <H(j)

1,2(ωn) is the real part

of the cross power spectrum. The local wavenumber is given by:

K(j)(ωn) =
Θ(j)(ωn)

χ
. (A.16)

The wavenumber-frequency power spectrum can then be found by:

S(k, ω) =
1

M

M∑
j=1

I[0,∆K)(k −K(j)(ωn))
S

(j)
1 (ωn) + S

(j)
2 (ωn)

2
(A.17)

Where S
(j)
1 (ωn)+S

(j)
2 (ωn)

2
is the average autopower spectrum of the two signals, and

I[0,∆K)(k −K(j)(ωn)) =

1 0 ≤ (k −K(j)(ωn)) < ∆K

0 elsewhere

(A.18)

is boxcar function used to determine resolution in wavenumber. The following code is what the

author used to calculate the S(k, ω) spectrum in IDL.

A.5 S(k, ω) IDL code

IDL routine used to calculate S(k, ω) plots used in this thesis. Built and maintained by the

author.
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A.5.1 S(k, ω) top level code

pro skw, shotlist,node1=node1,node2=node2,$

dt=dt,f_min=f_min,f_max=f_max,title=title

;set defaults for nodes 1&2 as p36 and p43, can also set to other

;chords and magnetics channels

if n_elements(node1) ne 1 then node1 = ’\fir_fast_p36’

if n_elements(node2) ne 1 then node2 = ’\fir_fast_p43’

;set duration of fft in ms

if n_elements(dt) ne 1 then dt = 1.0

;set minimum and maximum of frequency plotted

if n_elements(f_min) ne 1 then f_min = 0

if n_elements(f_max) ne 1 then f_max = 200

;set displayed plot title for reference

if n_elements(title) ne 1 then title = node1 +’ vs ’ + node2

;go to external code lsb_skw, which reads an lsb file and calculates

;the spectral power

data = lsb_skw(shotlist,node1,node2,dt)

;number of elements in data array in x and y directions

nx=n_elements(data(*,1))-1

ny=n_elements(data(1,*))-1

;crops data array to extract a frequency array, wavenumber array, and

;skw array

freq_arr=data[nx,0:ny-1]

k_arr=data[0:nx-1,ny]
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skw=data[0:nx-1,0:ny-1]

;save plot to file asdf.eps as encapsulated postscript

plotfile = ’asdf.eps’

set_plot,’ps’

device, /encapsul,filename=plotfile,xsize=8,ysize=8,/color,/inches

;;;;;;;following block for plotting the S_kw spectra for a data set

skw_ind=where(skw ne 0.0)

maxdata=max(skw)

mindata=min(skw(skw_ind))

;mindata=max(skw)/50

;print, mindata,maxdata

nl=60

l_c=dblarr(nl)

c_c=dblarr(nl)

cto=1.0

;stop

zer_arr=where(skw eq 0.0)

skw(zer_arr)=mindata/100

skw=alog10(skw)

mindata=min(skw(skw_ind))+3.5

maxdata=max(skw)

print, mindata,maxdata

;set minimum and maximum of data for display purposes due to log scaling
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;can adjust lines 51,52 to get colors to display properly

;but must remove 0s from data or plot will fail

skw(where(skw le mindata))=mindata

skw(where(skw ge maxdata))=maxdata

for i=0,nl-1 do begin

l_c[i]=(maxdata-mindata)*i/(nl-1.0)+mindata

c_c[i]=(255.0-cto)*i/(nl-1.0)*cto

endfor

skw=10^(skw)

l_c=10^(l_c)

;stop

loadct,39

;error in plotting requires multiple runs, with and without lines

;78-80, to get seperate plots with data and scale

contour,skw,k_arr,freq_arr,/nodata, position=[0.1,0.4,0.8,0.9]$

,xtitle=’wavenumber (cm^-1)’,ytitle=’frequency (kHz)’$

,xrange=[min(k_arr),max(k_arr)],yrange=[0,f_max],xstyle=1

;contour, rotate([[l_c],[l_c]],1),indgen(2),l_c,/nodata,$

; position=[0.92,0.4,0.96,0.9],/noerase,xtitle=’’,ytitle=’power (A.U.)’,ylog=1,$

; yrange=[10^floor(mindata),10^ceil(maxdata)];,ystyle=1

loadct, 22
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contour,skw,k_arr,freq_arr,c_linestyle=1,$

levels=l_c,c_color=c_c,/fill,/overplot, position=[0.1,0.4,0.8,0.9],/noerase

contour, rotate([[l_c],[l_c]],1),indgen(2),l_c,$

levels=l_c,c_colors=c_c,/overplot,$

/fill, position=[0.92,0.4,0.96,0.9],/noerase,ylog=1

;print, mean(phi[ind2]*180./!pi)

;stop

device,/close

end

A.5.2 lsb skw.pro subroutine

function lsb_skw, file, node1, node2, dt,tselp=tselp,debug=debug

debug = 0

if n_elements(tselp) eq 0 then tselp=16.

openr,lun1, file+’.lsb’,/get_lun

print, file+’.lsb opened for reading’

tmp = ’’

readf, lun1, tmp

shot = 0
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date = ’11-111-1111’

t1 = 0

t2 = 0

nreal = 0

tsel = 0.E0

data = fltarr(10)

i = 0

s = 0

readf,lun1,tmp

readf,lun1,format=’(i3,2x,a11,2x,i3,2x,i3,2x,i2)’,shot,date,t1,t2,nreal

while date ne ’00-000-0000’ do begin

for s =0,nreal-1 do begin

shotf = get_mdsplus_shot(shot,date) ;open shot

;print, shotf

readf,lun1,format=’(e12.5,2x,i1)’,tsel

;endfor

tsel = tselp ;for selecting a time

;other than the one in the lsb file

;tsel = tsel+2.0

tsel = 10.

data1_arr = raw_data(shotf,node1,tsel,dt)
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if keyword_set(debug) then begin

ndata = data1_arr[n_elements(data1_arr)-1]

;taxis = findgen(ndata)*(1./data1_arr[n_elements(data1_arr)-2])

f0 = 20.

f1 = 55.

f2 = 200.

noise =0 ;randomu(seed,ndata)*0.1

data1_arr[0:ndata-1] = cos(2.*!PI*f0*data1_arr[ndata:2*ndata-1]) + $

cos(2.*!PI*f1*data1_arr[ndata:2*ndata-1]) + $

3.*cos(2 *!PI*f2*data1_arr[ndata:2*ndata-1]) +noise

endif

n1 = data1_arr(n_elements(data1_arr)-1)

sig1 = data1_arr(0:n1-1)*sqrt(52^2-28^2)/sqrt(52^2-43^2)

stm1 = data1_arr(n1:2*n1-1)

sampr1 = data1_arr(2*n1)

den1 = mean(sig1)

if den1 lt 0.0 then sig1 = -sig1

data2_arr = raw_data(shotf,node2,tsel,dt)

if keyword_set(debug) then begin

ndata = data2_arr[n_elements(data2_arr)-1]

noise =randomu(seed,ndata)*0.1
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data2_arr[0:ndata-1] = cos(2.*!PI*f0*data2_arr[ndata:2*ndata-1] + 50.*!DTOR) + $

cos(2.*!PI*f1*data2_arr[ndata:2*ndata-1] + 35.*!DTOR) + noise

endif

n2 = data2_arr(n_elements(data2_arr)-1)

sig2 = data2_arr(0:n2-1)

stm2 = data2_arr(n2:2*n2-1)

;temp = sig2

;sig2 = interpol(temp, stm2, stm1)

;stm2 = stm1

sampr2 = data2_arr(2*n2)

den2 = mean(sig2)

if den2 lt 0.0 then sig2=-sig2

n = n1<n2

h1 = hanning(n,/double)

h2 = hanning(n,/double)

;stop

;sig1 = sig1-mean(sig1)

;sig2 = sig2-mean(sig2)

ft1 = fft(sig1*h1,-1)

ft2 = fft(sig2*h2,-1)
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;stop

ft1 = ft1(0:n-1)*2

ft2 = ft2(0:n-1)*2

node_loc1 = strsplit(node1,’_’,/extract)

node_loc1 = node_loc1(0)

node_loc2 = strsplit(node2,’_’,/extract)

node_loc2 = node_loc2(0)

;print, node_loc1,node_loc2

if node_loc1 eq ’\Bpdot’ or node_loc1 eq ’\Btdot’ then begin

freq_arr = (findgen(n))*(sampr1/n)

freq_arr(where(freq_arr lt 1.)) = 1.

ft1 = ft1/(2 * !pi* freq_arr)

endif

if node_loc2 eq ’\Bpdot’ or node_loc2 eq ’\Btdot’ then begin

freq_arr = (findgen(n))*(sampr2/n)

freq_arr(where(freq_arr lt 1.)) = 1.

ft2 = ft2/(2 * !pi* freq_arr)

endif

s12 = conj(ft1)*ft2

s11 = abs(ft1)^2

s22 = abs(ft2)^2
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nra = n_elements(s12)

freq_arr = (findgen(nra))*sampr1/nra

freq_ind=where(freq_arr ge 5.0 and freq_arr le 150.)

freq_arr=freq_arr(freq_ind)

;print, i

phi = atan(imaginary(s12(freq_ind)),real_part(s12(freq_ind)))

x=16.5 ;16.5 cm for regular setup, p43 and p36

;x=1.5 ;1.5 cm for 2 mixer setup

;x=13.9 ;13.9 cm for regular setup, p06 and p13

int=50

k=phi/x

k_max=!pi/x

;stop

del_k=k_max/int

skw_tmp = make_array(2*int+1,n_elements(freq_arr))

k_arr=indgen(int*2+1)*del_k-k_max+del_k/2

k_arr(n_elements(k_arr)-1)=0

for q=0,2*int-1 do begin

w_tmp=make_array(n_elements(freq_arr))

w_allowed=where(k gt k_arr(q) and k le k_arr(q+1))

w_tmp(w_allowed)=1

skw_tmp(q,*)=w_tmp*(s11(freq_ind)+s22(freq_ind))/2

;if max(skw_tmp gt 0.01) then skw_tmp(where(skw_tmp eq max(skw_tmp)))=0

;stop

endfor

;stop

;if max(skw_tmp) gt 0.01 then begin
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; skw_tmp(where(skw_tmp eq max(skw_tmp)))=0

;stop

;endif

if i eq 0 then begin

sum_sig1 = sig1

sum_sig2 = sig2

sum_stm1 = stm1

sum_stm2 = stm2

sum_s12 = s12

sum_s11 = s11

sum_s22 = s22

sum_ft1 = ft1

sum_ft2 = ft2

sum_skw = skw_tmp

i = i+1

endif else begin

sum_sig1 = sum_sig1+sig1

sum_sig2 = sum_sig2+sig2

sum_stm1 = sum_stm1+stm1

sum_stm2 = sum_stm2+stm2

sum_s12 = sum_s12+s12

sum_s11 = sum_s11+s11

sum_s22 = sum_s22+s22

sum_ft1 = sum_ft1+ft1

sum_ft2 = sum_ft2+ft2

sum_skw = sum_skw+skw_tmp

i = i+1
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endelse

print, i

;plot, freq_arr,(s11^2)/i,xrange=[0,100],ylog=1,yrange=[1e-12,1e-7]

;oplot, freq_arr,(sum_s22^2)/i,psym=-1

;plot, freq_arr,(sum_s11^2)/(sum_s22^2),xrange=[0,200],yrange=[-2,20]

;plot, freq_arr,atan(imaginary(s12),real_part(s12))*180./!pi/5.,xrange=[0,100]

;stop

endfor

;print, max(skw_tmp)

;print, where(skw_tmp eq max(skw_tmp))

;stop

readf, lun1,tmp

readf, lun1,format=’(i3,2x,a11,2x,i3,2x,i3,2x,i2)’,shot,date,t1,t2,nreal

endwhile

print, i

;sum_phi = atan(imaginary(sum_s12),real_part(sum_s12))

sampr = fltarr(n_elements(sum_ft1))

sampr(0) = sampr1<sampr2

sampr(1) = i

sampr(2) = den1

sampr(3) = den2
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;print, sampr1, sampr2

;data_arr = [[sum_sig1],[sum_sig2],[sum_stm1],[sum_stm2],[sampr*i]]

;data_arr=[[sum_ft1],[sum_ft2],[sum_s11],[sum_s22],[sum_s12],[sum_phi*i],[sampr*i]]

data_arr = [[sum_skw/i]]

data_arr(int*2,*)=freq_arr

data_arr = [[data_arr],[k_arr]]

;stop

free_lun,lun1

return, data_arr

end

A.5.3 Other subroutines

The subroutine ’lsb skw.pro’ calls a few other subroutines for fairly trivial tasks. For example,

the routine ’raw data.pro’ simply finds the data associated with the given data path, time, and shot

number and saves it to the specified variable. various other routines, like ’fft’ and ’hanning’, are

defined in IDL and can be looked up independently. These routines are trivial enough to not be

included in the text of this thesis.
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APPENDIX
Other plots

B.1 S(k, ω) plots across the diameter of the plasma

Figure 5.7 represents the largest observed spectral power between two chords through the

plasma for the ensemble of 200kA PPCD plasmas. However, as each chord passes through the

edge region of the plasma, each pair of toroidally separated chords can measure an S(k, ω) plot for

each ensemble of data in this thesis. Following are plots for alternating chords, starting with the

data from figure 5.7 in figure B.1(top), and alternating chords through the full minor radius of the

plasma.

In figure B.1 the signal at chord p36 is compared to the signal at chords p43 (top) and p28

(bottom). The observed spectral power is largest in the first plot, and drops significantly further

in at p28, and has the same peak frequency and wavenumber. Figure B.2 moves in further to

comparing the signal at chord p21 to the signal at chord p28 (top) and p13 (bottom). There is

a further decrease in spectral power for the density fluctuations at ∼50 kHz and ∼15kHz and

∼ −0.10− 0.15cm−1, and an increase in the observed spectral power associated with the residual

magnetic tearing fluctuations, at ∼15kHz and ∼ 0.02 − 0.03cm−1. Figure B.3 looks at the core

of the plasma, using the chord p06 compared to chord p13 (top) and n02 (bottom). The density

fluctuation power between these chords is quite low, on the order of 1030m−4/kHz, at wavenumber

k ∼ −.15 and k ∼ .14, respectively. Figure B.4 looks toward the inboard core of the plasma,

comparing chord n09 to chords n02 (top) and chord n17 (bottom). The mode power increases as

the gradients increase on the inboard side of the plasma, and the wavenumbers beak at ∼ −0.1

for both plots. Figure B.5 looks toward the inboard edge of the plasma, comparing chord n24 to

chords n17 (top) and chord n32 (bottom). Dynamics for these sets of chords becomes a bit odd,



112

with each S(k, ω) plot becoming fairly broad for the spectral feature. the wavenumber peaks at

∼ −0.12 for both plots, but is very broad, with significantly less peaking than in figure B.1.
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Figure B.1 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations between chords at impact parameters of (a) R−R0 = 36, 43cm and (b)

R−R0 = 36, 28cm.
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Figure B.2 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations between chords at impact parameters of (a) R−R0 = 21, 28cm and (b)

R−R0 = 21, 13cm.
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Figure B.3 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations between chords at impact parameters of (a) R−R0 = 6, 13cm and (b)

R−R0 = 6,−2cm.
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Figure B.4 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations between chords at impact parameters of (a) R−R0 = −9,−2cm and (b)

R−R0 = −9,−17cm.
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Figure B.5 Frequency-wavenumber power spectrum of the line-integrated electron density
fluctuations between chords at impact parameters of (a) R−R0 = −24,−17cm and (b)

R−R0 = −24,−32cm.


