
SHEAR ALFVÉN CONTINUA AND DISCRETE MODES IN THE PRESENCE OF A

MAGNETIC ISLAND

by

Carson Raymond Cook

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Physics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2015

Date of final oral examination: 6/26/2015

The dissertation is approved by the following members of the Final Oral Committee:

Chris Hegna, Professor, Engineering Physics

David Anderson, Professor, Electrical and Computer Engineering

Carl Sovinec, Professor, Engineering Physics

John Sarff, Professor, Physics

Deniz Yavuz, Professor, Physics



c© Copyright by Carson Raymond Cook 2015

All Rights Reserved



i

ABSTRACT

Shear Alfvén instabilities are of considerable interest to plasma confinement and will become even

more important in ITER and future devices containing strong energetic particle drive. In this

dissertation, we investigate the effects of a magnetic island on the shear Alfvén continuum both

analytically and numerically. Using an island coordinate system and a WKB approximation of

the linearized ideal MHD equations, a shear Alfvén dispersion relation for the continuum is found

globally in the presence of an island; the first time this has been obtained analytically. The island

is shown to cause an upshift in the continuum accumulation point frequency. The minimum of the

frequency spectrum is shifted from the rational surface to the island separatrix. This analytic result

confirms previous numerical work. The new theory also identifies additional parity constraints

for the continuum not captured by the previous numerical work in the field. The structure of the

continuum modes is also presented.

The theory is used to explain some previously uncategorized Alfvénic activity observed on the

Madison Symmetric Torus (MST) reversed-field pinch during neutral beam injection. A sizable

n = 5 island exists in the plasma core that has not been included in past simulations of the Alfvén

spectrum in MST. The theoretical Alfvén continua in the core of the island provide a gap in which

the observed n = 4 Alfvénic bursts reside, suggesting that these modes may arise from a cou-

pling due to the island. A novel code for computing Alfvén eigenmodes called SIESTAlfvén is

described. SIESTAlfvén utilizes 3D MHD equilibria with an island obtained using the SIESTA

code. The Alfvén modes are computed by solving the generalized eigenvalue problem obtained

from the Hessian matrix of the potential energy along with the inertia matrix of the SIESTA equi-

librium. Numerical simulations using the STELLGAP/AE3D codes, as well as SIESTAlfvén, are

used to identify the Alfvén bursts on MST as the first observation of an Island-induced Alfvén
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Eigenmode (IAE). The IAE arises from a helical coupling of mode numbers similar to the helicity-

induced Alfvén eigenmode, but occurs in the core of an island. Additional n = −1 activity on

MST is shown to be consistent with a second type of island-induced mode residing below the

lowest continuum branch, named here the Island-induced Global Alfvén Eigenmode (IGAE). The

continuum theory also helps to explain the Beta-induced Alfvén Eigenmode (BAE) frequencies

observed during tearing mode activity on tokamaks including EAST and FTU.
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Chapter 1

Introduction and background

The spectrum of shear Alfvén waves in a magnetically-confined plasma is a crucial topic for

understanding the stability properties of the configuration. Frequency gaps in the continuous spec-

trum (continuum) can lead to Alfvén modes that can couple to and be destabilized by energetic par-

ticles such as those driven by neutral beam injection (NBI) or the copious fast α-particles present

in a fusion reaction. Alfvén instabilities are a general feature of plasma equilibria that can occur in

tokamaks, stellarators, and RFPs.

The shear Alfvén spectrum will become increasingly important as the fusion community pushes

ahead towards ITER and eventually DEMO. In particular, the presence of continuum gaps must be

understood, as they can point to locations in the plasma where discrete Alfvén eigenmodes (AEs)

could exist. These modes cannot couple to the Alfvén waves of the continuous spectrum and thus

do not experience continuum damping. In high temperature fusion-relevant plasmas, these modes

could potentially be driven unstable through a coupling to energetic α-particles. The speed of α-

particles in ITER is predicted to be approximately vA < vα < 2vA, where vA is the Alfvén velocity

in ITER [1].

The most commonly studied AEs in toroidal geometry include the Toroidicity-induced Alfvén

Eigenmode (TAE) and the Beta-induced Alfvén Eigenmode (BAE). These modes lie in gaps that

arise from a coupling of poloidal mode numbers and due to finite shear Alfvén wave compressibil-

ity via geodesic curvature coupling, respectively [2, 3].
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As motivation for this thesis research, MST recently observed a mode exhibiting Alfvénic scal-

ing in 300 kA, non-reversed plasmas with NBI [4]. Theoretical simulations using the STELLGAP

code predict a TAE gap frequency much higher than the observed mode frequency from experi-

ment [5]. Conversely, the BAE gap frequency computed is lower than the experimental frequency

seen on MST. A known limitation of the STELLGAP model is the assumption of closed, nested

flux surfaces. A sizable m = 1, n = 5 island exists in the core of MST for these operating con-

ditions which is not taken into account in these computations. More recently, a BAE mode has

been studied on the EAST tokamak. This mode is only present once an island width threshold

has been reached, and appears to increase in frequency as the island evolves to a larger size [6].

Similar phenomena were originally observed on FTU [7, 8] and TEXTOR [9]. With these experi-

mental findings as motivation, it is natural to investigate whether an island can modify the Alfvén

spectrum.

The effects of an island on the shear Alfvén continuum have been studied in some detail by

Biancalani et al. [10, 11, 12]. In Biancalani’s work, a shooting method code was used to compute

the spectrum. Biancalani showed that an island induces an upshift in the spectrum’s minimum

continuum accumulation point frequency. In the absence of an island, the spectrum minimum lies

at the rational surface. In an equilibrium with an island, the location of the minimum shifts to the

separatrix and the minimum frequency increases. In the following thesis, both analytic theory and

novel numerical techniques are employed to investigate these findings and explain observations on

MST and EAST during tearing mode activity.

1.1 Outline

This dissertation is laid out as follows: In this chapter, some background on shear Alfvén

waves is presented, the distinction between continuum modes and discrete modes is made, and the

coupling mechanism of the continua to form gaps where the discrete modes reside is discussed.

The most commonly studied mode, the toroidicity-induced Alfvén eigenmode (TAE) is used as an

example to illustrate the important concepts.
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In Chapter 2, the equations for the shear Alfvén continuum are solved in the presence of a

magnetic island using WKB theory. An island coordinate system is introduced, which is needed to

solve the Alfvén spectrum when an island is present. Linearized ideal MHD is the model employed

to describe the equilibrium with an island. The frequency continuum and eigenmode solutions are

obtained globally, and the continuum is obtained exactly at the O-point (or core) of the island. The

frequency upshift of the continuum accumulation point is demonstrated analytically for the first

time, and it matches previous numerical results by Biancalani [10].

Chapter 3 explores the experimental observations of n = 4 Alfvénic bursting activity on MST.

The bursts occur during neutral beam injection (NBI) on non-reversed plasmas containing a sizable

n0 = 5 magnetic island. The observed frequencies of the modes are compared favorably to the

continuum frequencies from theory derived in Chapter 2. The n = 4 observations are shown to

be consistent with an Alfvén gap mode living in the island-induced gap present in the core of the

island.

Also included in Chapter 3 is a discussion on the modification of the BAE (beta-induced Alfvén

eigenmode) continuum gap frequency for MST and the EAST and FTU tokamaks. The island up-

shift correction of the minimum continuum frequency is shown to be quite small in MST (7%), but

considerable for tokamaks (25% for EAST). The island-induced BAE upshift from the continuum

theory helps explain the observed frequencies on EAST.

In Chapter 4, MST is modeled as a Single Helical Axis (SHAx) state with the VMEC equilib-

rium code. Using this equilibrium, the STELLGAP code is used to solve for the Alfvén continuum

and the AE3D code is used to solve for the discrete Alfvén eigenmodes (AEs). Though this con-

figuration does not contain an island, the helical core serves as an approximation for the island

without the separatrix. In the helical core, the continua from STELLGAP agree quite well with the

results from the island continuum theory. A helicity-induced Alfvén eigenmode (HAE) is found

with the AE3D code in the helical core. The mode is found at 149 kHz, in agreement with the

140− 160 kHz observed in experiment.
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VMEC and AE3D cannot properly handle magnetic topologies with an island, so another ap-

proach is needed for computations with an equilibrium containing two magnetic axes. To accom-

plish this task, the SIESTA equilibrium code and the new SIESTAlfvén eigensolver are used and

are discussed in Chapter 5. SIESTA begins with a VMEC equilibrium and includes non-ideal mag-

netic perturbations and finite resistivity to obtain an equilibrium containing islands if unstable to

the tearing mode. A newly written code called SIESTAlfvén is introduced; the code acts as a post-

processing step once a SIESTA equilibrium is obtained. An inertia matrix is computed (which is

not present in SIESTA) and a generalized eigenvalue problem is solved to obtain the MHD modes

of the system, including the shear Alfvén modes. The SIESTAlfvén code is benchmarked against

the AE3D code for a configuration containing an m = 1/m = 2-coupled TAE.

Chapter 6 presents the first identification of the Island-induced Alfvén Eigenmode (IAE), ob-

tained using the SIESTAlfvén code. The IAE is discovered in an MST SIESTA equilibrium con-

taining a large island. The n = 4/n = −1-coupled IAE mode is consistent with the helical δn = 5

coupling expected for the n0 = 5 island. It is localized inside the island and is found at 145 kHz,

consistent with the 140− 160 kHz range identified experimentally on MST.

Additionally, Chapter 6 explores possible explanations for some n = −1 activity observed on

MST, which is generally seen preceding the n = 4 Alfvén bursts. The case is made that the n = −1

bursts may be a second type of island-coupled mode, called here the Island-induced Global Alfvén

Eigenmode (IGAE). This extremum mode lives below the lowest branch of the Alfvén continuum

in the core of the island and is similar to an RSAE (reversed-shear Alfvén eigenmode) or a GAE

(global Alfvén eigenmode).

Finally, Chapter 7 presents conclusions from this thesis as well as multiple future research

directions that can build on this work. Several appendices are included at the end of the dissertation.

Now on to some background on Alfvén waves.

1.2 Background on shear Alfvén waves

Before analyzing the shear Alfvén spectrum in the presence of a magnetic island, some pre-

liminaries on Alfvén waves must first be addressed. In this section, we begin by discussing the
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shear Alfvén wave (SAW), an ideal MHD wave. Next, we describe the continuum wave solutions

and the formation of gaps within the continua in Secs. 1.2.1 and 1.2.2, respectively. Finally, a

discussion of discrete Alfvén modes is presented in Sec. 1.2.3.

The shear Alfvén wave is a transverse, low-frequency electromagnetic wave [13]. These waves

propagate along the magnetic field lines at a characteristic velocity, vA [14]. In order to study

shear Alfvén waves, we will begin with the ideal MHD equations in the low-beta limit, p → 0,

following Tokamaks by Wesson [15]. Consider a slab geometry with a uniform magnetic field in

the x̂-direction. This equilibrium satisfies

B = Bx̂, (1.1)

J = 0. (1.2)

Next the ideal MHD equations are linearized, giving the following perturbed equations where

pressure and kinetic effects are not important (natural units µ0, ε0 = 1 are used here and throughout

this thesis). The equations are the momentum equation, Ampère’s law, Faraday’s law, and the ideal

MHD Ohm’s law:

ρ
∂v

∂t
= δJ×B, (1.3)

δJ = ∇× δB, (1.4)
∂δB

∂t
= −∇× δE, (1.5)

δE = −v ×B. (1.6)

In this configuration, the shear Alfvén wave displacement is in the transverse ẑ-direction, v = vz ẑ.

Using this along with the perturbed quantities varying as v, δE, δB, δJ ∼ exp[i(kxx+kyy−ωt)],
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the linearized equations can be written as

δEy = −vzB, (1.7)

δBz =
kx
ω
δEy, (1.8)

δJx = ikyδBz, (1.9)

δJy = −ikxδBz, (1.10)

vz = − i

ωρ
δJyB. (1.11)

Combining these equations one obtains the shear Alfvén dispersion relation,

ω = kxvA, (1.12)

vA =
B
√
ρ
, (1.13)

with vA the Alfvén speed. In this derivation, the wave-vector had an arbitrary orientation in the x-y

plane, k = kxx̂ + kyŷ. However, the dispersion relation only includes the kx-component. Since

the magnetic field is in the x̂-direction, kx = k‖ and the dispersion relation is often written as

ω = k‖vA. Regardless of the direction of the shear Alfvén wave propagation, the wave travels with

velocity ω/k‖ = vA along the magnetic field direction.

The shear Alfvén wave propagating along the magnetic field lines is often described as a wave

traveling along a vibrating, plucked guitar string. The magnetic field line bending B ·∇B provides

the tension, and the ion mass provides the inertia. The wave is both incompressible and transverse,

with the fluid displacement perpendicular to the plane defined by the B field and the wave-vector.

The structure of the shear Alfvén wave is presented in Fig. 1.1.

Compressional Alfvén waves, or magnetosonic waves, will not be discussed much in this thesis.

These waves involve a coupling between Alfvén waves and sound waves through plasma pressure.

In these waves, the plasma displacement is no longer perpendicular to both k and B, and instead

contains velocity oscillations with components parallel to k. These waves are compressible∇·ξ 6=

0, since ∇ ∼ ik and k · ξ 6= 0. In this thesis, the slow-sound approximation is used several

times to remove wave compressibility (and thus exclude magnetosonic waves), but it includes the
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Figure 1.1 A propagating shear Alfvén wave with transverse plasma velocity v creating field line
bending. The wavevector k is parallel to the background field in this case.
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compressional fluid response to a propagating shear Alfvén wave. This approximation is described

in Sec. 1.2.1.

1.2.1 Continuum modes

In a toroidal magnetic geometry with major radius R, there is a double-periodicity constraint

on the shear Alfvén waves. The wave mode structure must accommodate m wavelengths in the

poloidal direction and n wavelengths in the toroidal direction. Due to the magnetic field structure,

the periodicity constraints require k‖ = (n − m/q)/R, where q is the safety factor. The safety

factor is defined on a field line as q = ∆φ/2π, where ∆φ is the change in toroidal angle required

for the field line to return to the same poloidal location. Since the safety factor is a function of the

radius (or poloidal flux), the average parallel wavevector 〈k‖〉 = (n−m/q)/〈R〉 is also a function

of radius. Thus the average frequency from the dispersion relation 〈ω〉 = 〈k‖〉〈vA〉 varies with

radius. The sheared magnetic field causes the average frequency 〈ω(ψ)〉 to vary with radius or

poloidal flux ψ for a general toroidal device.

Since the magnetic field lines lie on flux surfaces, the shear Alfvén waves propagating along

the field lines are surface-localized. The waves propagating on a single flux surface are known

as Alfvén continuum modes. The modes have a non-square-integrable radial structure; they are

characterized by a delta function at the resonant surface. The shear Alfvén displacement has the

following structure:

ξs = δ (ψ − ψ0) cos (mθ − nζ) , (1.14)

where ψ0 is the surface on which the continuum mode lives. The poloidal and toroidal variation in

the continuum wave is given by the dominant mode numbers m and n that identify the continuum

frequency branch.

The nature of the continuum modes can easily be shown mathematically for an axisymmetric

toroidal configuration [16]. For a toroidal plasma, the equilibrium values obey force balance,
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Ampère’s law, and the divergence constraint:

J×B = ∇p, (1.15)

∇×B = J, (1.16)

∇ ·B = 0. (1.17)

The linearized ideal MHD equations for this equilibrium are the momentum equation, the equation

of state, and the combined Faraday’s law/Ohm’s law:

−ρω2ξ = (∇×B)× δB + (∇× δB)×B−∇δp, (1.18)

0 = δp+ ξ · ∇p+ γp∇ · ξ, (1.19)

δB = ∇× (ξ ×B) . (1.20)

Substituting Eq. (1.20) into Eq. (1.18) results in a system of four equations in four unknowns, ξ

and δp.

This system of the modified Eq. (1.18) and Eq. (1.19) can be rewritten using a straight field

line magnetic field representation and coordinate system. The magnetic field can be written as

B = ∇ζ ×∇ψ + q∇ψ ×∇θ, (1.21)

where ψ is the poloidal flux, q is the safety factor, and θ and ζ are the generalized poloidal and

toroidal angles, respectively. In terms of these flux coordinates, the system in Eqs. (1.18) and

(1.19) can be rewritten using the variables ∇ · ξ, ξψ = ξ · ∇ψ, ξsurf = ξ · (B×∇ψ)/|∇ψ|2, and

δP = δp+ δB ·B. With these variables, the linearized MHD equations become

∇ψ · ∇

δP
ξψ

 = C

δP
ξψ

+ D

ξsurf
∇ · ξ

 , (1.22)

E

ξsurf
∇ · ξ

 = F

δP
ξψ

 , (1.23)

where C, D, E, and F are 2 × 2 matrix operators containing surface derivatives B · ∇ and (B ×

∇ψ) · ∇. Details on these matrices can be found in Appendix A. This system is solved by first
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computing ξsurf and ∇ · ξ in terms of δP and ξψ from Eq. (1.23) by inverting the E operator.

These expressions are substituted into Eq. (1.22) which is solved for δP and ξψ for solutions that

are periodic in θ and ζ .

This solution method does not work if the E matrix is not invertible for a given surface ψ0 and

frequency ω(ψ0). In this case, Eq. (1.22) has a radial singularity. If a non-square-integrable solu-

tion with a radial singularity at ψ0 exists, it will be a non-trivial periodic solution to the following:

E

ξsurf
∇ · ξ

 = 0. (1.24)

The eigenvalue ω2 which is buried in E is the continuum frequency for the surface ψ0. If this

procedure is followed for the eigenfrequencies for each flux surface, the corresponding spectrum

ω2(ψ) of continuous frequencies is the Alfvén continuum. Note that Eq. (1.24) involves a coupling

between the shear Alfvén waves and acoustic waves through geodesic curvature and pressure. In

the slow sound approximation γp/ρω2R2
0 � 1, the equations decouple and become a single equa-

tion for the shear Alfvén displacement ξsurf . This approximation removes compressibility from

the Alfvén waves (creating purely shear Alfvén waves), but retains the compressional response of

the fluid to the waves.

These continuum modes are generally strongly stable due to the phenomenon known as con-

tinuum damping. Continuum damping is the process of dispersion that occurs when a finite wave

packet is excited within the plasma. Since a wave packet with radial extent would involve a cou-

pling between different flux surfaces, the Alfvén velocity is different on each of these surfaces

(from the shear) and the wave would quickly disperse. This coupling and spreading of energy to

neighboring continuum waves makes it difficult for energetic particles to drive a continuum mode

unstable.

1.2.2 Coupling of continua to form gaps

Continuum modes with different poloidal and toroidal mode numbers can couple together to

form gaps in the continua [17, 18]. These frequency gaps are important because discrete Alfvén

eigenmodes (AEs) can reside in these frequency bands without experiencing continuum damping.
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These Alfvénic instabilities are the subject of Sec. 1.2.3. A useful resource on the coupling of

Alfvén continua as well as discrete modes is Heidbrink’s 2008 PoP review [14], which was used

to inform this discussion.

The existence of continuum gaps is a generic wave phenomenon. Bragg reflection in a crystal

lattice and the electron band gap in conductors are examples of frequency gaps. Lord Rayleigh

showed that any configuration which contains a periodic variation in the index of refraction N

will induce a continuum frequency gap [19]. In the lattice of a conductor, the periodic potential

modulation caused from the atoms gives a variation in N in the electron wave equation, resulting

in the electron band gap.

The periodic variation in the index of refraction in the core of an optical fiber creates a fre-

quency gap through the interaction of counter-propagating waves. The central frequency of the

gap is

f0 =
〈v〉
2∆z

, (1.25)

with 〈v〉 the average phase velocity in the fiber and ∆z the length of the periodic modulation in N

along the fiber. The gap frequency width is proportional to the modulation in N , ∆f ∼ ∆N/〈N〉

where ∆N = Nmax − Nmin and 〈N〉 is the average refractive index. The gap is created by

the destructive interference of counter-propagating waves as they Bragg reflect off the periodic

variations in the index of refraction.

Bragg reflection also occurs for Alfvén waves in plasmas. The Toroidicity-induced Alfvén

Eigenmode (TAE) gap is arguably the most commonly encountered continuum gap in the fusion

literature [20, 16], due to its prevalence in tokamaks, RFPs, and stellarators. An analogy with

Bragg reflection in fiber optics is helpful in understanding the mechanism for TAE gap formation in

toroidal devices. In a tokamak with magnetic shear, the field strength B varies along the field line.

Poloidal currents in the external toroidal field (TF) coils create toroidal magnetic fields through

Ampère’s law: ∮
B · dl = B2πR = Ienc, (1.26)

where R is the major radius. From this, the magnetic field strength is given by B = Ienc/2πR.

This makes clear the fact that a torus has a high-field side (inboard) and a low-field side (outboard),
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since B ∼ 1/R. The poloidal direction of symmetry in a cylinder is broken in a torus through the

modulation of the magnetic field strength. The “index of refraction”N for Alfvén waves in plasma

can be defined as

N =
〈vA〉
vA

, (1.27)

where 〈vA〉 is the average Alfvén speed in the plasma. Recalling from Sec. 1.2 that vA = B/
√
ρ

allows us to write out the refractive index in terms of the field strength:

N =

√
ρ〈vA〉
B

∼ √ρR〈vA〉. (1.28)

Assuming a uniform density, the index scales with major radius N ∼ R. The variation in index

of refraction as well as the Alfvén speed along a field line creates a continuum frequency gap

analogous to the Bragg gap for fiber optics discussed above. Magnetic field lines sample both

the high- and low-field sides of the torus, and counter-propagating waves traveling along the field

reflect off the periodic variations in B and interfere to create the gap.

In order to compute the central frequency of the TAE gap analogously to the Bragg frequency

in Eq. (1.25), the distance ∆z along which the magnetic field varies periodically is needed. The

distance along a field line to return to a given poloidal location is ∆z = q2πR0. This is the distance

required to complete one full period in the modulation of the B field strength. Substituting this

into Eq. (1.25) gives the central TAE gap frequency:

f =
〈vA〉
q4πR0

. (1.29)

To determine the gap width ∆f , the equation ∆f ∼ ∆N/〈N〉 will be used. The average index

for a field line on a flux surface is proportional to the major radius of the magnetic axis of the

device, 〈N〉 ∼ R0. Assuming a circular cross-section, a flux surface at minor radius r will have

Nmax ∼ R0 + r and Nmin ∼ R0 − r. This gives ∆N ∼ r, and the continuum gap width is

proportional to r:

∆f ∼ r

R0

. (1.30)

This can easily be extended to non-circular flux surfaces using the poloidal flux as a radial coordi-

nate, < r >∼
√
ψ. Eq. (1.30) gives the gap width as a function of minor radius, with the widest
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TAE gap occurring at the edge r = a where ∆f ∼ a/R0 = ε, the inverse aspect ratio. Physically,

this widening of the gap with minor radius comes from the fact that the magnetic field variation on

a flux surface increases with increasing r: ∆B ∼ r. The widening of the TAE gap with radius is

shown in Fig. 1.2. In this plot, the central frequency of the gap f0 ∼ 1/q decreases radially as this

configuration has a monotonically increasing q-profile.

The gap frequency and width as a function of radius were derived from counter-propagating

waves. The TAE example will be used to show how the shear Alfvén continua can couple together.

For two continuum modes with the same toroidal mode number n and poloidal mode numbers

differing by 1, the m and m + 1 mode numbers couple together. These two oppositely directed

modes have equal wavenumbers
∣∣k‖∣∣ at a specific radius, which means their frequencies ω =∣∣k‖∣∣ vA are also equal at that radius. Them continuum mode and them+1 mode have the following

parallel wavenumbers, respectively:

k‖ =
1

R
(n−m/q), (1.31)

k‖ = − 1

R
|n− (m+ 1)/q| . (1.32)

The location where the wavenumbers match is the surface where q = (m+ 1/2)/n; at this surface

we have the following for both continua:

|k‖| =
1

2qR
, (1.33)

ω =
vA

2qR
. (1.34)

This frequency is just the Bragg frequency from Eq. (1.25). When the toroidal coupling is included,

these two waves mix and the frequency degeneracy is avoided. This leaves a gap at the location of

the frequency crossing (at q = (m + 1/2)/n). Within this gap, a discrete Alfvén eigenmode can

form, which is the subject of Sec. 1.2.3. Fig. 1.2 displays the continua with and without toroidal

couplings. In the absence of continuum coupling from toroidicity, the m = 4 and m = 5 branches

in the first plot have a frequency crossing at the location where q = 9/8. When toroidal effects are

included, the crossing is replaced with a frequency gap, as illustrated in the second figure.
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Figure 1.2 A coupling between m and m+ 1 poloidal modes creates a TAE gap
(Toroidicity-induced Alfvén Eigenmode gap). The gap width depends on field strength variation,
∆ω ∼ ∆B/B ∼ r/R0. a) Counter-propagating waves in a cylindrical geometry. b) In a torus, the

m and m+ 1 modes couple together to form gaps. Figure from Heidbrink, 2008 PoP [14].
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Figure 1.3 Cartoon showing the m and m+ 1 poloidal harmonics coupled together to produce
the Toroidicity-induced Alfvén Eigenmode (TAE). Both Fourier components have toroidal mode

number n. The mode is localized at the surface where the safety factor is q = (m+ 1/2)/n.

1.2.3 Discrete Alfvén eigenmodes (AEs)

Once a frequency gap is formed in the continuous spectrum as discussed in Sec. 1.2.2 for the

TAE, discrete shear Alfvén eigenmodes (AEs), also known as gap modes, can form within the

gap. These modes are essentially standing waves and are characterized by a finite radial extent and

an eigenfrequency that lies in the gap frequency range. The global structure of an AE contains

the poloidal and toroidal harmonics of the coupled continuum waves that created the gap. The

coupling for a TAE mode is shown schematically in Fig. 1.3. The mode is localized around the

q = (m + 1/2)/n surface where the gap is centered and is dominated by m and m + 1 Fourier

components, the same harmonics involved in the continuum coupling that formed the gap.

Gap modes are of particular interest as potential instabilities in fusion plasmas, since they can

be driven unstable by interactions with energetic particles. Gap modes are generally weakly stable,

but because they exist in a frequency gap they do not experience continuum damping by coupling

to neighboring continuum waves. Without this damping process, it takes a relatively small drive

from energetic particles to drive AEs unstable.



16

Mathematically, the cross-surface coupling present in the global structure of AEs makes them

much more difficult to study analytically compared to continuum modes. To this end, reduced

MHD equations are generally employed [21, 16, 5, 22]. While the details move beyond the scope

of this work, the basic starting equations for AEs in a three-dimensional equilibrium are the ideal

MHD Ohm’s law and the vorticity equation written in terms of the electrostatic potential φ:

∂δψ

∂t
=

1

B
B · ∇φ, (1.35)

∇ ·
[
ρ

B

d

dt

(
∇φ
B

)]
= B · ∇

δJ‖
B

+ δB · ∇
J‖
B
. (1.36)

Here δψ is the perturbed poloidal magnetic flux. Using the relations δJ‖ = ∇2δψ and δB =

∇ζ ×∇δψ and inserting Eq. (1.35) into Eq. (1.36) gives the following eigenvalue equation:

ω2∇ ·
(

1

v2
A

∇φ
)

+ B · ∇
[

1

B
∇2

(
B

B
· ∇φ

)]
+∇ζ ×∇

(
B

B
· ∇φ

)
· ∇

J‖
B

= 0. (1.37)

In this equation, the first term provides the inertia and the second provides the field-line bending.

Both of these terms are also present in the continuum equations. However, a third ballooning

term is also present in this formulation for discrete AEs which is not included in the equations for

the continuum waves. The eigenmode solutions φ to this equation represent the discrete Alfvén

modes together with the mode frequencies ω2. Even though reduced MHD has been used here, the

complexity of this equation usually requires it to be solved computationally. Solution of Eq. (1.37)

using the AE3D code will be discussed in Chapter 4.

An extensive taxonomy of AEs exists. Along with the previously discussed TAE, the Alfvén

zoo contains the beta-induced Alfvén eigenmode (BAE), the ellipticity-induced Alfvén eigenmode

(EAE), the mirror-induced Alfvén eigenmode (MAE), and the helicity-induced Alfvén eigenmode

(HAE), just to name a few. All of these modes and corresponding frequency gaps arise due to vari-

ous couplings between poloidal and/or toroidal harmonics. The coupling is caused from a different

physical or geometric mechanism in each case, but each is due to the effects of a broken symmetry

on the interactions of counter-propagating waves. Most of these modes have been observed ex-

tensively on various experiments [23, 24, 25, 26, 27]. The BAE and HAE will both be discussed

in some detail in this thesis, along with the identification of a new type of AE, the Island-induced

Alfvén Eigenmode (IAE).
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Chapter 2

Analytical theory of the shear Alfvén continuum in the presence
of a magnetic island

Most theoretical descriptions of the Alfvén spectrum rely on the existence of topologically

toroidal flux surfaces. In this chapter, the effect of a magnetic island chain on the shear Alfvén

continuum is calculated analytically. Using a WKB approximation of the linearized ideal MHD

equations, the island is shown to cause an upshift in the continuum accumulation point frequency.

This minimum of the frequency spectrum is shifted from the rational surface to the island separa-

trix. The structure of the eigenmodes is also presented.

2.1 Island coordinate system

In order to obtain the Alfvén continuum, a straight field-line representation of the equilibrium

magnetic field that includes the island has been employed [28, 29]. The island will be treated

as a static feature of the equilibrium, a good approximation since tearing mode timescales are

generally much longer than the Alfvén timescales of interest here, ωtearing << ωA. The portion

of the field without an island is represented in straight field-line coordinates as B0 = q∇ψ ×

∇θ+∇ζ ×∇ψ, where ψ is the poloidal flux and θ and ζ are the poloidal and toroidal coordinates

respectively; q is the safety factor. A symmetry-breaking magnetic field of the form
√
gB1 ·∇ψ =

n0A sin(m0θ − n0ζ) causes an island to form at q(ψ0) = q0 = m0/n0. Here, the Jacobian is
√
g = (∇ψ × ∇θ · ∇ζ)−1. The constant-ψ approximation of tearing mode analysis is utilized in

this work, allowing us to treat A as a constant throughout the island region [30].
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A coordinate transformation to (Ψ∗, χ, α) space given by

Ψ∗ =

∫
dψ(q − q0)− A cos (n0α)

≈ q′0
x2

2
− A cos (n0α) , (2.1)

χ = θ, (2.2)

α = ζ − q0θ, (2.3)

is employed as a first step to derive a straight field representation for the total magnetic field. Here

x = ψ − ψ0 is the distance from the rational surface and q′0 = dq/dψ|ψ=ψ0 . These coordinates

comprise a Hamiltonian system analogous to the pendulum, where (ψ, α) are the action-angles,

Ψ∗ is the Hamiltonian, and χ is the time-like coordinate [31]. The magnetic island width is given

by w = 4
√
|A/q′0|, and the island width will be considered small compared to equilibrium scales

throughout this analysis, ε = q′0w/2 � 1. Ψ∗ is a flux surface label, B · ∇Ψ∗ = 0 for the

equilibrium in the presence of an island. See Fig. 2.1 for a visualization of the island coordinates.

The island O-point is located at Ψ∗ = −A and the separatrix is at Ψ∗ = A.

This transformation allows the total equilibrium field including the magnetic island B = B0 +

B1 to be written as

B = ∇α×∇ψ +∇Ψ∗ ×∇χ. (2.4)

Next the coordinates Φ∗ = Φ∗(Ψ∗) and α∗ are defined such that

∇α×∇ψ = ∇α∗ ×∇Φ∗, (2.5)
∂x

∂Φ∗
=

Ω

q′0x
, (2.6)

∂α

∂α∗
=

q′0x

Ω
. (2.7)

Φ∗ labels flux surfaces along with Ψ∗, and α∗ is a helical angle in the reference frame of the

island with (0, 2π) periodicity on each helical flux surface. The definitions of Φ∗ and α∗ inside

and outside the island separatrix are presented in Appendix C. The island rotational transform Ω

introduced here can be computed with the following:

Ω(Ψ∗) =
dΨ∗

dΦ∗
=

1∮
n0dα

2π

[
1/∂Ψ∗

∂x

] . (2.8)
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Figure 2.1 Island coordinate system for n0 = 1. Surfaces of constant Ψ∗/constant Φ∗ appear as
contours in the plot.
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Here, the distance x from the rational surface can be written in terms of Ψ∗ and α as x =

±
√

2/q′0(Ψ∗ + A cos (n0α)).

Outside the island separatrix, |Ψ∗| > A, it is useful to define a flux surface label k2 =

2A/(|Ψ∗|+A). In this parameter, the separatrix is located at k = 1. The island rotational transform

outside the island is given by

Ω = ± πε

2kK(k2)
, (2.9)

where ε = q′0w/2 is the island half width (our small parameter) and K(k2) is the complete elliptic

integral of the first kind. The plus and minus signs correspond to surfaces with x > 0 (ψ > ψ0)

and x < 0 (ψ < ψ0), respectively.

Inside the island, −A < Ψ∗ < A, we will label flux surfaces with κ2 = (Ψ∗ + A)/2A. The

O-point is at κ = 0 and the separatrix is at κ = 1. Written with this surface label, the island

rotational transform inside the magnetic island is the following:

Ω(Ψ∗) =
πε

4K(κ2)
. (2.10)

A derivation of the rotational transform inside the separatrix is given in Appendix B. Fig. 2.2

displays the helical rotational transform both inside and outside the island.

Using this island coordinate system, the total magnetic field can be written in a straight field

form as

B = B0 + B1 = ∇α∗ ×∇Φ∗ + Ω∇Φ∗ ×∇χ. (2.11)

This allows us to write the derivative along the magnetic field line in a much simpler form:

B · ∇λ =
1
√
g

[
∂λ

∂χ
+ Ω

∂λ

∂α∗

]
. (2.12)

This parallel gradient operator will be used in the next section when deriving the model equations.

2.2 Ideal MHD in the presence of an island

In order to study the Alfvén spectrum in the vicinity of an island, a linearized ideal MHD model

has been implemented. Throughout this manuscript, an equilibrium with a finite-sized magnetic

island will be assumed. This is reflected in the equilibrium magnetic field representation B =
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Figure 2.2 Island rotational transform inside and outside the island. Note that Ω→ 0 at the
separatrix, Ψ∗ = A.
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∇α∗ × ∇Φ∗ + Ω∇Φ∗ × ∇χ derived in the last section. The equilibrium quantities satisfy force

balance, Ampére’s Law, and the divergence constraint:

J×B = ∇p, (2.13)

∇×B = J, (2.14)

∇ ·B = 0. (2.15)

The linearized ideal MHD equations are the momentum equation, the combined Faraday’s law/Ohm’s

law, and the equation of state (natural units for plasmas, µ0, ε0 = 1, will be used throughout this

dissertation). The linear system of equations for the MHD displacement vector ξ, magnetic field

perturbation δB, and pressure perturbation δp is given by

−ρω2ξ = (∇×B)× δB + (∇× δB)×B−∇δp, (2.16)

0 = δp+ ξ · ∇p+ γp∇ · ξ, (2.17)

δB = ∇× (ξ ×B) . (2.18)

Following Cheng and Chance’s treatment (as discussed in Sec. 1.2.1), but now using the vari-

ables ∇ · ξ, ξΦ∗ = ξ · ∇Φ∗, δP = δp + δB · B, and the perpendicular surface component of

the MHD displacement ξs = ξ · (B×∇Φ∗)/|∇Φ∗|2, the ideal MHD eigenmode equations can be

written in matrix form as [16]

∇Φ∗ · ∇

δP
ξΦ∗

 = C

δP
ξΦ∗

+D

 ξs

∇ · ξ

 , (2.19)

E

 ξs

∇ · ξ

 = F

δP
ξΦ∗

 , (2.20)

where C, D, E, and F are complicated operators containing only surface derivatives. The details

of these operators are found in Appendix A. The Alfvén and sound continua arise from solutions

with a non-square-integrable singular radial structure. These solutions occur when the operator

E does not have an inverse. Thus to find these continuum modes and their eigenfrequencies, ω2,
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which compose the spectrum, the following system must be solved for every surface in the domain:

E

 ξs

∇ · ξ

 = 0. (2.21)

In a general toroidal equilibrium with nonzero geodesic curvature κs 6= 0, the two equations

in Eq. (2.21) give a coupling of the Alfvén and sound waves. Writing out this system of two

equations gives the MHD eigenmode equations, where the shear Alfvén and acoustic continuum

modes are coupled through pressure and curvature:

0 = ω2 ρ
|∇Φ∗|2

B2
ξs + B · ∇

(
|∇Φ∗|2

B2
B · ∇ξs

)
+ γpκs∇ · ξ, (2.22)

0 = κs ξs +

(
γp+B2

B2

)
∇ · ξ

+
γp

ω2ρ
B · ∇

(
1

B2
B · ∇(∇ · ξ)

)
. (2.23)

The shear Alfvén waves are primarily governed by Eq. (2.22) while sound waves are mostly

controlled by Eq. (2.23), but the coupling is apparent. The slow sound approximation γp/ρω2R2
0 �

1 reduces the system to a single equation while still retaining the acoustic effects to lowest order

[32]. Taking this approximation to first order results in

ω2ρ
|∇Φ∗|2

B2
ξs + B · ∇

(
|∇Φ∗|2

B2
B · ∇ξs

)
− γpκ2

sB
2

γp+B2
ξs = 0. (2.24)

The minimum frequency of the spectrum is known as the BAE-CAP (continuum accumulation

point) frequency, which in the absence of an island occurs at the rational surface where B · ∇ ∼

(m0 − n0q) = 0. Setting the parallel gradient term to zero in Eq. (2.24), the BAE-CAP frequency

becomes approximately ω2
BAE = 〈κs〉2γpB4/ρ|∇ψ|2(γp+B2), where all the values are evaluated

at the resonant surface, and we are assuming the island component of B is small compared to the

toroidal component [32, 33]. In this expression, the sin θ dependence of κs is removed through

flux-surface averaging. This expression makes clear the importance of both the plasma pressure

and the curvature; both are required for a non-zero BAE-CAP frequency. In a cylinder the geodesic
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curvature is zero, and the Alfvén continuum goes to zero at the rational surface. When the cylin-

der is wrapped into a torus, the curvature couples the shear Alfvén and acoustic waves, and the

BAE-CAP frequency becomes non-zero. Substituting ωBAE into Eq. (2.24) results in the general

eigenmode equation:

(ω2 − ω2
BAE)ρ

|∇Φ∗|2

B2
ξs + B · ∇

(
|∇Φ∗|2

B2
B · ∇ξs

)
= 0. (2.25)

For a cylindrical equilibrium with an island, the geodesic curvature given by κs = 2κ · (B ×

∇ψ/B2) is zero and the Alfvén and acoustic continua decouple. The general eigenmode equation

for the shear Alfvén waves from Eq. (2.21) is then

ω2ρ
|∇Φ∗|2

B2
ξs + B · ∇

(
|∇Φ∗|2

B2
B · ∇ξs

)
= 0. (2.26)

This equation is the same as Eq. (2.25), but without the frequency upshift by ω2
BAE [32, 33]. For

the work that follows we will simply use ω2 as in Eq. (2.26), but everything can be generalized to

a torus in the slow sound limit by replacing ω2 with ω2 − ω2
BAE as is done in Eq. (2.25).

If we assume that the surface displacement can be described with a quantum number l in the

island direction χ, ξs (χ, α∗) = ξ0 (α∗) exp(ilχ), then the parallel gradient operator given by Eq.

(2.12) can be written as

B · ∇ξs =
1
√
g

(
Ω

∂

∂α∗
+ il

)
ξs

=
1
√
g
e
−il
Ω
α∗Ω

∂

∂α∗

(
ξse

il
Ω
α∗
)
. (2.27)

Substituting this back into Eq. (2.26) results in

d

dα∗

(
|∇Φ∗|2 d

dα∗
Y

)
+ ω2ρ

√
g2

Ω2
|∇Φ∗|2 Y = 0, (2.28)

where we have set Y = ξ0 (α∗) exp(ilα∗/Ω). Thus a second-order ODE for the Alfvén eigenspec-

trum is obtained for each flux surface in the presence of a magnetic island.

2.3 WKB analysis of continuum equation

The result derived in the last section, Eq. (2.28), can be rewritten with the identification

|∇Φ∗|2 = (q′0x/Ω)2|∇ψ|2 and a normalized frequency given by ω̂2 = ω2/ω2
A. Here the Alfvén
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frequency is ωA = 1/
[√
ρ
√
g
]
. Employing these definitions simplifies the eigenmode equation as

follows:

d

dα∗

[
x2 d

dα∗
Y

]
+

ω̂2x2

Ω2
Y = 0. (2.29)

From Eq. (2.29), the frequency ω̂2 can be shown to be positive:

ω̂2 = Ω2

∮
dα∗x2

∣∣ dY
dα∗

∣∣2∮
dα∗x2 |Y |2

≥ 0. (2.30)

Thus the square of the Alfvén spectrum frequencies cannot be negative, meaning the spectrum is

stable. In the following, we will show that the presence of the island causes a non-zero upshift to

the minimum frequency.

Eq. (2.29) can be written in terms of a dimensionless distance from the rational surface, x̂ =√
κ2 − sin2 n0α/2 where x = (w/2)x̂. This results in our final form of the continuum equation,

cast in Schrödinger form:

Ω2

ω̂2
x̂2 d

dα∗

[
x̂2 d

dα∗
Y

]
+ x̂4Y = 0. (2.31)

The representation of x̂ in α∗-space is included in Appendix C. Here we will consider l = 0 in

ξs = Y (α∗) exp[il(χ − α∗/Ω)], so our solutions are equal to the surface displacements, Y = ξs.

Our boundary conditions are periodic in α∗:

Y (α∗) = Y (α∗ + 2π) , (2.32)
dY

dα∗

∣∣∣∣
α∗

=
dY

dα∗

∣∣∣∣
α∗+2π

. (2.33)

Eq. (2.31) lends itself to a WKB analysis (named after Wentzel-Kramers-Brillouin). Comparing

the equation to the canonical Schrödinger equation

δ2d
2Y

dt2
−Q(t)Y = 0, (2.34)

yields the following identities:

Q = −x̂4, (2.35)

δ =
Ω

ω̂
, (2.36)

dα∗

dt
= x̂2. (2.37)
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The formal WKB expansion for the solution is Y ∼ exp[(1/δ)
∑
δnSn(t)], where the summa-

tion is from n = 0 to ∞ and the small parameter δ ∼ Ω ∼ ε. Inserting this expansion into the

general Schrödinger equation and solving to second order gives the following solutions for S0, S1,

and S2 in terms of the potential Q:

S0 = ±
∫ √

Qdt, (2.38)

S1 = −1

4
logQ, (2.39)

S2 = ±
∫ [

Q′′

8Q3/2
− 5(Q′)2

32Q5/2

]
dt. (2.40)

Inserting Q = −x̂4 into the lowest two orders and working out the details gives

S0 = ±iα∗, (2.41)

S1 = −1

4
log(−x̂4), (2.42)

The specific form of S2 is presented in Appendix C for surfaces both inside and outside the sepa-

ratrix.

Substituting S0, S1, and S2 into Y ∼ exp[S0/δ + S1 + δS2] results in the following WKB

solution:

Y ∼ 1

x̂
e±i(

ω̂
Ω
α∗+ Ω

ω̂
Ŝ2(α∗)). (2.43)

Here S2(α∗) = ±iŜ2(α∗). The plus and minus signs correspond to two linearly independent

solutions for the second-order ODE. These two solutions can be combined to form odd and even

solutions given by the following:

YO ∼ 1

x̂
sin

(
ω̂

Ω
α∗ +

Ω

ω̂
Ŝ2(α∗)

)
, (2.44)

YE ∼ 1

x̂
cos

(
ω̂

Ω
α∗ +

Ω

ω̂
Ŝ2(α∗)

)
. (2.45)

With this result, we will derive the structure of the eigenmodes and the corresponding shear Alfvén

eigenspectrum in the next section.
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2.4 Alfvén continuum and eigenmode structure

The solutions from Eqs. (2.44) and (2.45) can be made consistent with the periodic boundary

conditions given in Eqs. (2.32) and (2.33). The resulting continuum frequencies are given by

ω̂2 =

jΩ
2

+

√(
jΩ

2

)2

+
q′0
2

(
Ψ∗ − 1

2
ΩΦ∗

)2

, (2.46)

where j is a positive integer. We will see that outside the separatrix, j = jout where jout = 1, 2, 3, ...

is the quantum number. Inside the separatrix, j = n0(jin + 1) where jin = 1, 2, 3, ... is the

quantum number for the interior region of the island. Eq. (2.46) represents the shear Alfvén

eigenspectrum, valid for surfaces inside and outside the separatrix. In order to investigate the

nature of the eigenmodes, we will consider surfaces both inside and outside the separatrix.

For flux surfaces outside the island, the envelope function 1/x̂ of the solution remains well-

behaved since x̂ does not pass through zero. Due to this, modes of both parities are allowed for all

quantum numbers outside the separatrix, giving us the following eigenmodes outside the island:

Y j
O =

1√
πx̂(α∗)

sin [joutα
∗] , (2.47)

Y j
E =

1√
πx̂(α∗)

cos [joutα
∗] . (2.48)

Here the quantum number jout = 1, 2, 3, .... The coefficient comes from the normalization condi-

tion,
∮
dα∗x̂2|Y |2 = 1.

For surfaces within the island, the envelope of the solutions contains an apparent 1/x̂ singu-

larity occurring when x̂ = 0 at α∗ = π/2n0. This singularity can be removed by forcing the

trigonometric functions in Eqs. (2.44) and (2.45) to zero at α∗ = π/2n0. Under this constraint we

lose half of the solutions inside the island, and our eigenmodes are odd for jin odd and even for jin

even:

Y j
O =

1√
πx̂(α∗)

sin [n0(jin + 1)α∗] , jin = 1, 3, 5, ..., (2.49)

Y j
E =

1√
πx̂(α∗)

cos [n0(jin + 1)α∗] , jin = 2, 4, 6, .... (2.50)
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This restriction on parity inside the island is a new result, not identified by Biancalani et al. [12].

In Biancalani’s work, the Alfvén continuum was solved numerically using a shooting code. In

this solution method, the boundary conditions (jin and parity) are entered by hand to initialize the

simulation. This numerical approach did not take the correct steps to ensure regularity. In lieu of a

proper analytic treatment as presented here there is no reason to assume that odd and even parities

can’t both exist for all values of jin, and thus Biancalani’s computational results inside the island

incorrectly contain both the odd and even modes. Only half of these continuum modes survive

when the boundary conditions are handled properly as shown here for the analytical solution, with

odd parity for jin odd and even parity for jin even.

Now that we have the equation for the shear Alfvén continuum and the corresponding contin-

uum modes, we can look at the structure of the spectrum. The Alfvén eigenspectrum given by

Eq. (2.46) is plotted in Fig. 2.3. Note that Eq. (2.31) can be solved analytically at the O-point

(Ψ∗ = −A), resulting in ω̂2/ε2 = n2
0jin (jin + 2) /4. This agrees well with our second-order WKB

approximated solution at the O-point plotted in Fig. 2.3. The analytic solution of the continuum at

the O-point is presented in Sec. 2.5.

Two zero frequency modes, ω̂2 = 0, have been included in the figure as purple points; one

is located at the O-point and the other at the X-point of the separatrix. The solution ω̂2 = 0

with Y a constant is a known, trivial solution to the Alfvén eigenmode equation for any magnetic

geometry and is generally not included. It is usually neglected because the quantum numbers are

zero which makes the eigenmode a constant. It is included and important at the singular O- and

X-points here because in the original θ and ζ coordinates from the toroidal magnetic field, the

quantum numbers are non-zero. Indeed, the zero frequency behavior at the O-point and X-point

corresponds to m = m0, n = n0. This means that the O-point and X-point retain the marginal

stability (ω̂2 = 0) inherent in the original resonant, rational surface ψ0. As such, the O-point and

X-point will still be only marginally stable to m = m0 and n = n0 perturbations.

The behavior of the spectrum near the separatrix (Ψ∗ = A) is of considerable interest. Since

the rotational transform Ω goes to zero at the separatrix, δ = Ω/ω̂ → 0, the WKB expansion

is formally valid for all finite j at the separatrix. Fig. 2.4 provides a close-up of the spectrum
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Figure 2.3 Shear Alfvén continuum in the presence of a magnetic island. Inside the separatrix,
the frequencies of the odd modes are blue curves while the even modes are red. Outside the

separatrix, both parities exist at the same frequency.

Figure 2.4 Shear Alfvén continuum behavior near the separatrix (Ψ∗ = A). Note that all branches
of the continuum limit to a non-zero frequency at the separatrix, ω̂2

sep/ε
2 = 1/8.
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for surfaces near the separatrix. It can be seen that all of the frequencies converge to an island-

modified, non-zero continuum accumulation point frequency at the separatrix. Every continuum

branch limits to the same frequency at the separatrix, and the value of this minimum limiting

frequency is (
ω̂sep
ε

)2

= lim
Ψ∗→A

(
ω̂

ε

)2

=
1

8
. (2.51)

This minimum frequency at the separatrix can be written out explicitly as ω2
sep = (q′0w)2ω2

A/32.

After transforming to the proper coordinates, this is the same frequency upshift that was previously

found numerically by Biancalani [12] (see Appendix D for coordinate conversions). This minimum

continuum accumulation point suggests the possibility of global BAE (beta-induced Alfvén eigen-

modes) below this frequency gap. BAEs in the presence of an island will be discussed in Sec. 3.4

for MST and tokamaks.

The lowest two eigenmodes for each parity outside the separatrix given by Eqs. (2.47) and

(2.48) are plotted in Fig. 2.5 for Ψ∗ = 2A (k2 = 2/3). The lowest two eigenmodes inside the

separatrix given by Eqs. (2.49) and (2.50) are plotted in Fig. 2.6 for Ψ∗ = A/2 (κ2 = 3/4).

2.5 Exact continuum solution at the O-point

Note that Eq. (2.31) can be solved analytically at the O-point, Ψ∗ = −A. For reference, the

continuum equation derived in Sec. 2.3 is

Ω2

ω̂2
x̂2 d

dα∗

[
x̂2 d

dα∗
Y

]
+ x̂4Y = 0. (2.31)

The equation can be recast by letting Y = f(α∗)/x̂. After substituting this into Eq. (2.31), one

arrives at a differential equation for f :

d2f

dα∗2
+

(
ω̂2

Ω2
− x̂′′

x̂

)
f = 0. (2.52)

Here x̂′′ = d2x̂/dα∗2. This equation can be rewritten in the following suggestive form:

− d2f

dα∗2
+
x̂′′

x̂
f =

ω̂2

Ω2
f. (2.53)
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jout=1, odd jout=1, even

jout=2, odd jout=2, even

-3 -2 -1 0 1 2 3

-0.5

0.0

0.5

Α
*

Y j

Figure 2.5 jout = 1 (solid) and jout = 2 (dashed) mode structure for Ψ∗ = 2A surface outside the
island. Outside the separatrix, even and odd parities are both present and degenerate in frequency.
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Figure 2.6 jin = 1 odd (blue) and jin = 2 even (red) mode structure for Ψ∗ = A/2 surface inside
the island. Inside the separatrix, odd jin correspond to odd modes and even jin correspond to even

modes.
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The continuum equation is thus mathematically equivalent to a 1D time-independent Schrödinger

equation from quantum mechanics, which is given by

− h̄2

2m

d2

dx2
ψ + V ψ = Eψ. (2.54)

From this it is apparent that the potential V for the continuum equation is V = x̂′′/x̂. Since Eq.

(2.53) is a general result for all flux surfaces in the domain, we now turn to finding where the

potential lends itself to an analytic solution.

For surfaces inside the island separatrix, the normalized distance from the rational surface in

terms of α∗ is given by x̂ = κcn [2n0K(κ2)α∗/π, κ2], where cn is the Jacobi elliptic function.

Thus for a general surface inside the island, the potential is

V =
x̂′′

x̂
=

(
2n0K(κ2)

π

)2 [
2κ2sn2

(
2n0K(κ2)

π
α∗, κ2

)
− 1

]
, (2.55)

where sn is the Jacobi elliptic function. This form for the potential is rather complicated and does

not lend itself to a general exact solution.

Analytic progress can still be made by looking at the limiting behavior of the potential (and the

continuum equation). For surfaces near the O-point, κ → 0, the expressions for x̂ and V simplify

considerably:

lim
κ→0

x̂ = κ cosn0α
∗, (2.56)

lim
κ→0

V = lim
κ→0

x̂′′

x̂
= −n2

0. (2.57)

At the O-point the continuum equation, Eq. (2.53), simplifies using this limiting V :

d2f

dα∗2
= −

(
ω̂2

Ω2
+ n2

0

)
f. (2.58)

This is now a Schrödinger equation with constant potential, which of course has the known solu-

tions,

f1 = sin

[√
ω̂2

Ω2
+ n2

0α
∗

]
, (2.59)

f2 = cos

[√
ω̂2

Ω2
+ n2

0α
∗

]
. (2.60)
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Recalling that our actual solution is given by Y = f(α∗)/x̂ results in the following solutions at the

O-point:

Y1 ∼ sin

[√
ω̂2

Ω2
+ n2

0α
∗

]
/ cosn0α

∗, (2.61)

Y2 ∼ cos

[√
ω̂2

Ω2
+ n2

0α
∗

]
/ cosn0α

∗. (2.62)

Next, in order to determine the eigenmodes and frequencies, the boundary conditions on Y

must be imposed. The 2π-periodic boundary conditions in α∗ were given in Sec. 2.3 in Eqs. (2.32)

and (2.33). In order to satisfy periodicity, the following must be enforced:√
ω̂2

Ω2
+ n2

0 = j, (2.63)

where j is an integer. To avoid singularities in the solution caused by the cosn0α
∗ in the denom-

inator, j is further constrained to j = n0(jin + 1). To ensure regular solutions, jin = 1, 3, 5, ...

correspond to odd modes and jin = 2, 4, 6, ... correspond to even modes. The odd and even eigen-

modes are therefore given by

Y j
O =

1√
π

sin [n0(jin + 1)α∗]

cosn0α∗
, jin = 1, 3, 5, ..., (2.64)

Y j
E =

1√
π

cos [n0(jin + 1)α∗]

cosn0α∗
, jin = 2, 4, 6, .... (2.65)

The normalization factor
√
π comes from

∮
dα∗x̂2|Y |2 = 1.

The continuum frequencies at the O-point are obtained by combining the regularity condition

j = n0(jin + 1) with Eq. (2.63) and rearranging:

ω̂2

ε2
=
n2

0jin (jin + 2)

4
. (2.66)

Here the limiting value of the rotational transform at the O-point, Ω → ε/2, has been used. Eq.

(2.66) agrees well with our second-order WKB approximated solution for the continuum at the

O-point shown in Fig. 2.3.
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2.6 Summary

The shear Alfvén continuum for an equilibrium with an island has been obtained using a WKB

analysis. A finite upshift in the continuum accumulation point frequency has been demonstrated

analytically for the first time for modes with the same helicity as the magnetic island (l = 0).

This result confirms past numerical simulations by Biancalani et al that show an increase in this

minimum frequency of the spectrum as well as a movement of the location of this frequency from

the rational surface to the island separatrix [12]. Specifically, the WKB theory presented here

predicts an upshift of the frequency to ω2
sep = ω2

BAE +(q′0w)2ω2
A/32 for a toroidal equilibrium with

finite κs (where we have let ω2 → ω2 − ω2
BAE as described in Sec. 2.2). This frequency upshift

also holds for a cylindrical equilibrium where ωBAE = 0. Parity restrictions on the continua inside

the separatrix due to the boundary conditions were derived analytically; these restrictions were not

treated properly in previous numerical work by Biancalani.

The properties of the spectrum and modes for l 6= 0 will be studied in the future. This study

will be compared to the results of Biancalani for l 6= 0 [10, 11]. In particular, secondary resonances

are expected at rational Ω surfaces where l0−j0Ω = 0. Preliminary comparisons with observations

on MST show that the AE frequencies from the experiments are consistent with modes that lie in

the gap induced by the magnetic island. This will be the topic of Chapter 3. The majority of the

work that was presented in this chapter has already been published [34].
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Chapter 3

Comparison of theoretical continua to experimental observations

Alfvén activity has been observed in the Madison Symmetric Torus reversed-field pinch (RFP)

experiment during neutral beam injection (NBI). Three different NBI-driven modes have been

observed: n = 5, n = 4, and n = −1. The n = 5 mode has been identified as an energetic particle

mode (EPM) and will not be discussed in great detail in this thesis. The n = 4 mode has been

identified as an Alfvén Eigenmode (AE) due to its experimental scaling with the Alfvén velocity

[4]. This n = 4 AE has not been characterized as a specific type up until now, and will be the

subject of much of the rest of this dissertation. The n = −1 mode has not been experimentally

identified as an AE or EPM (or anything else), and will be discussed in Chapter 6.

In the EAST, FTU, and TEXTOR tokamaks, beta-induced Alfvén eigenmode (BAE) activity

has been observed in the presence of a magnetic island [6]. The BAE frequency appears to be

intricately linked to the tearing mode amplitude (island width). The implications of the island

Alfvén continua theory from Chapter 2 for EAST and FTU will be discussed towards the end of

this chapter.

3.1 Background on the Madison Symmetric Torus (MST)

MST is an axisymmetric RFP device with a close-fitting conducting shell. MST has a major

radius of R0 = 1.5 m and a minor radius of a = 0.5 m. Typically, plasma currents in MST are

in the range of 200 − 500 kA [35]. This section describes the MST configuration and the neutral

beam injector; it borrows heavily from Jon Koliner’s thesis [36].
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Parameter Range

Ip 200− 600 kA

Bφ on axis 0.2− 0.55 T

q0 on axis 0.167− 0.23

qa on edge −0.15− 0.01

〈ne〉 0.3× 1019 − 1.6× 1019/m3

Te 0.1− 2 keV

Discharge duration 30− 75 ms

Table 3.1 MST parameters

3.1.1 Geometry and equilibrium features

MST is a relatively simple geometry to study because the aspect ratio of R0/a = 3 makes it

amenable to a cylindrical approximation. Toroidal effects are relatively weak on MST, due to the

safety factor q < 1. In addition, the circular cross section removes much of the coupling due to the

strong shaping present in tokamaks. The operating parameters for MST are presented in Table 3.1.

In this dissertation, MST will be studied in the non-reversed configuration. In a non-reversed

equilibrium the reversal surface where Bφ = 0 is located at the edge (F = 0). This forces the

safety factor q to zero at the edge as well. See Fig. 3.1 for the q profile and magnetic field for this

configuration. The q profile is small in RFPs and monotonically decreases with radius. Note that

the safety factor passes through the 1/5 surface in the plasma core.

3.1.2 Neutral beam injection

A 1 MW neutral beam injector (NBI) is installed on MST [37], which is used to heat the core

ions. The NBI can fire hydrogen or deuterium beams at energies up to 25 keV; this works out to

beam velocities of 2.2× 106 m/s for hydrogen and 1.6× 106 m/s for deuterium beams. The beam

is injected at an angle tangential to the core magnetic field; see Fig. 3.2 for a schematic of the

beam view. The hydrogen or deuterium neutral particles injected by the NBI are ionized through

collisions sustained along their path through the plasma core. The pulse length of the beam lasts
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Figure 3.1 Safety factor and magnetic field profiles for a non-reversed MST configuration. Both
the safety factor and the toroidal magnetic field Bφ go to zero at the edge. Figure courtesy of Jay

Anderson, adapted from Koliner’s thesis.
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for 5 to 20 ms. This allows the beam to be turned on and off during a typical shot on MST, which

lasts about 30 to 75 ms. The beam drive can be considered an equilibrium feature for an analysis of

Alfvén waves during tearing mode activity, since both the Alfvén timescale τA = 1/k‖vA ∼ 1µs

and the n = 5 island toroidal rotation timescale τtear = 1/ftear ∼ 250µs are much shorter than the

beam duration τA � τtear � τbeam.

The use of neutral beam injection (NBI) and the concomitant fast ion population serves as a

destabilizing drive for energetic particle modes (EPMs) and Alfvén eigenmodes (AEs). Fig. 3.3

shows the fast ion density distribution in v‖ and radius along with the Alfvén speed vA. Much of

the core fast ion population is resonant with the Alfvén speed, allowing the energetic particles to

potentially drive AEs to instability.

3.1.3 Alfvénic activity during NBI

Alfvénic activity has been studied in NBI-heated plasmas in MST in the non-reversed con-

figuration [4]. In the non-reversed configuration, the reversal surface with Bφ = 0 is locked at

the plasma edge. By scanning the plasma current from Ip ≈ 200 kA to Ip ≈ 500 kA, the core

B field can be adjusted. Modifying the magnetic field results in a change in the Alfvén speed,

vA = B/
√
ρ. A detailed scan in observed burst frequency vs. core Alfvén speed was performed

by Koliner (see Koliner’s thesis). The Alfvénic frequency activity (∼ 100 kHz and up) on MST is

measured through the use of 32 Bθ signals from the toroidal array of magnetic coils and 8 Bθ and

Bφ signals from the poloidal array of coils. The results of the study for deuterium, hydrogen, and

helium plasmas are presented in Fig. 3.4. These frequencies have all been Doppler corrected for

the tearing mode frequency of 10− 30 kHz for MST.

The n = 5 bursts do not show a strong scaling with the Alfvén velocity. They have been shown

to be energetic particle modes (EPMs) that scale with the NBI beam velocity [4]. The n = 4 burst

frequencies exhibit a strong scaling with core Alfvén speed and thus have been determined to be

AEs. In addition to scanning the core B field to modify vA, the Alfvén speed can also by changed

by adjusting the mass density ρ = mini experimentally in two ways. First, the ion number density

ni can be tweaked; second, the experiment can be run with a different plasma species, giving a
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Figure 3.2 Schematic view of the neutral beam injector installed on MST. The beam passes
through the core tangential to the toroidal magnetic field. The smaller radial beam is the

diagnostic neutral beam, which is not discussed in this paper. Figure courtesy of Steve Oliva.
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Figure 3.3 Fast ion density as a function of v‖ and radius in MST. This plot was calculated using
the TRANSP code for plasmas with ni = 0.7× 1019/m3. The Alfvén speed vA is plotted vs.

radius, and much of the core fast ion population is resonant with the Alfvén wave. Figure from
Koliner, 2012 PRL [4].
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different ion mass mi. While deuterium (mi = 2mp) is used for most of the shots, hydrogen

(mi = mp) is used to probe the high Alfvén speed regime, and helium (mi = 4mp) is used to

probe the low Alfvén speed regime.

3.2 Investigation of n = 4 Alfvén bursting modes on MST

Since the n = 4 activity on MST has been shown to be Alfvénic, the question naturally turns

to characterizing the type of AE. Simulations are generally used to study the Alfvén continuum

and mode structure. As a first step for any computation of the Alfvén continua and modes, an

equilibrium model is needed. Generally the next step is to compute the continuum for the equi-

librium using an ideal MHD code that solves for radially-singular solutions to the shear Alfvén

equations. The Alfvén continuum is studied for frequency gaps, which indicate frequency ranges

to search for discrete Alfvén eigenmodes. Finally, these AEs are found and analyzed (if present)

using a generalized eigenvalue matrix solver that includes coupling across flux surfaces, allowing

for global, non-singular solutions. These codes for discrete modes generally solve equations based

on a reduced MHD formulation.

For the MST configuration under consideration here, Koliner has studied the Alfvén spectrum

numerically using the VMEC and STELLGAP codes [36]. These codes are all discussed in detail

in Chapter 4. The Variational Moments Equilibrium Code (VMEC), developed by S. P. Hirshman

[38, 39], is used to solve for the equilibrium. VMEC is a three-dimensional ideal MHD equilibrium

code that solves for equilibria with closed nested flux surfaces. The VMEC code will be discussed

in detail in Sec. 4.2. Once a VMEC solution for MST is found, the equilibrium is used as an input

to the STELLGAP code to compute the shear Alfvén continuum [40]. STELLGAP was developed

by D. A. Spong, and will output the Alfvén continuum frequencies as a function of flux throughout

the domain.

For the MST case considered here, we are interested in understanding the nature of the n = 4

AE bursts. A canonical case from experiment is core vA ≈ 1.5 × 106 m/s and Alfvén burst

frequencies of f ≈ 130 kHz. Koliner studied this non-reversed configuration numerically using

VMEC and STELLGAP [4]. The q-profile from VMEC and the continuum frequencies from
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Figure 3.4 n = 4 and n = 5 MST burst frequency data vs. Alfvén speed. Note that the n = 5
bursts exhibit weak scaling with vA, while the n = 4 bursts are clearly Alfvénic in nature. Figure

from Koliner’s thesis.
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STELLGAP are presented in Fig. 3.5. An n = 4 toroidicity-induced Alfvén eigenmode (TAE)

frequency gap is present in the computed continuum from f ≈ 210 kHz to f ≈ 300 kHz. This gap

range is much higher than the observed frequency of 130 kHz. Therefore we can conclude that the

Alfvén activity observed on MST is not a TAE mode.

Since the TAE gap is too high to explain the observations, another possibility is the beta-

induced Alfvén eigenmode (BAE) gap, which exists at low frequencies. A version of STELLGAP

exists that includes acoustic couplings to lowest order [41]. D. A. Spong has run STELLGAP

simulations that use the slow-sound approximation to include the fluid’s compressional response

to the Alfvén wave in order to study the BAE gap for this case (unpublished, presented in 2013

ISHW invited talk). In Fig. 3.6, the acoustic coupling pulls the n = 5 continuum branch out of

resonance at the q = 1/5 surface and gives a gap frequency upshift of fBAE = 24 kHz. This gap

is much lower than the observed mode frequency of 130 kHz. Thus the Alfvénic activity on MST

is neither a TAE nor a BAE.

3.3 Effects of n0 = 5 island on MST continuum

It is important to note that the model used by Koliner described in Sec. 3.2 assumed nested,

topologically toroidal flux surfaces. This assumption is built into the VMEC code. Returning to

Fig. 3.5, the n = 5 continuum is in resonance at the q = 1/5 surface where the branch frequency

goes to zero. This low-order rational surface in the core of MST is unstable to tearing modes, and

an island forms when finite resistivity is included [42].

Experimentally, MST has measured a sizable core island in this configuration using Thomson

scattering fluctuations correlated with edge-measured magnetic amplitudes [43, 44, 45]. The mode

numbers of the island are m0 = 1, n0 = 5, consistent with the q-profile passing through 1/5, and a

half-width of about 7 cm. Because this island in the core was neglected in the VMEC/STELLGAP

simulations discussed in Sec. 3.2, it is natural to consider the following two questions: 1) How

does the presence of this large island affect both the Alfvén continuum and discrete modes in MST?

2) Could the island create a gap that the observed AEs live in?
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Figure 3.5 Top plot: safety factor q computed with VMEC for the non-reversed MST
configuration. Bottom plot: shear Alfvén continuum frequencies from STELLGAP. A sizable

TAE gap is predicted in the 200− 300 kHz range. The gap is too high to explain the observations
of an AE at ∼ 130 kHz. Figure from Koliner, 2012 PRL [4].
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Figure 3.6 A STELLGAP simulation of the continua in MST with finite beta effects included
through the slow-sound approximation. The BAE gap can be seen below 24 kHz. Figure courtesy

of Don Spong.
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The Alfvén continuum in the presence of an island was investigated analytically in Chapter 2.

In order to compare this theory to the MST experimental observations, a brief discussion on mode

numbers is needed. Experimentally (and in the absence of an island), the poloidal harmonic m and

the toroidal harmonic n are used as good quantum numbers in the sense that the linear operator

commutes with the rotation operator. The quantities of interest can be expanded in a Fourier series

in these harmonics; here we are interested in the shear Alfvén displacement:

ξs =
∑
m,n

ξm,ne
i(mθ−nζ). (3.1)

Once an island is formed, these m,n numbers are no longer the best quantum numbers to use for

the magnetic surfaces inside the island. Instead the jin and l numbers from the theory presented in

Chapter 2 should be used, with the displacement expanded as

ξs =
∑
jin,l

ξjin,le
i(lχ−jinα∗). (3.2)

However, when an island is present, experimental observations will still measure the poloidal and

toroidal mode numbers m and n, since these are what can be measured by the various diagnostics

on the machine. Each mode still has a dominant m component, which is what is measured and

used here.

Because both experiments and the VMEC coordinates (presented in Chapter 4) used for the

numerical simulations in this dissertation use m and n, while the analytic theory from Chapter 2

uses jin and l, it would be useful to have a simple mapping between the two sets of numbers. The

problem is that one set of quantum numbers does not easily translate into the other. This is simply

because the island numbers serve as a good set of quantum numbers inside the island where the

poloidal/toroidal harmonics do not work. Similarly, the dominant poloidal/toroidal harmonics are

used far outside the island or when no island is present, where the island numbers do not work. It is

possible, however, to gain a rough understanding of the mapping between the two sets of numbers

by considering a jin, l mode and an m,n mode in the core of the island. In this way, we can gain

an understanding of what jin and l correspond to a given m and n.

It is useful to relate an m,n mode to an h, l mode, where h is the mode number for the α

coordinate. Then we will relate h back to jin, the α∗ quantum number we actually want. The
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relationship between the cylindrical and island modes for an island in a cylinder is

ξs ∼ ei(mθ−nζ) = ei(lχ−hn0α), (3.3)

mθ − nζ = lχ− hn0α. (3.4)

Recall from Sec. 2.1 that χ = θ and α = ζ− q0θ. Substituting these relations gives mθ−nζ =

(l +m0h)θ − n0hζ , which allows a mapping between the mode numbers given by

m = l +m0h, (3.5)

n = n0h. (3.6)

This relationship is exact, but is in α space; what we actually want is the relation to α∗ space with

quantum number jin. To convert to this other set of quantum numbers, the relationship will no

longer be exact. The rough map from jin to h can be determined by considering a small island

embedded in a global equilibrium. On a global scale, the island is localized to a resonant flux

surface. From a global view, the h number valid on the original rational surface would correspond

to jin ≈ 2h on a flux surface just inside the separatrix. This doubling in quantum number is due to

the doubling in periodicity which occurs when crossing from a surface just outside the separatrix to

a surface just inside the separatrix. Using jin ≈ 2h in Eqs. (3.5) and (3.6) results in the following

approximate conversions between island mode numbers jin and l and global mode numbers m and

n:

jin ≈
2

n0

n, (3.7)

l ≈ m− m0

n0

n. (3.8)

For MST, the island has mode numbers m0 = 1 and n0 = 5. The Fourier modes observed ex-

perimentally and found numerically (treated later on in this dissertation) are m = 1, n = 4 and

m = 0, n = −1. With Eqs. (3.7) and (3.8), these can be related back to approximate jin and l

from the continuum theory. Recalling that jin = 1, 2, 3, ... and l = 0, 1, 2, ..., an m = 1, n = 4

mode corresponds to jin ≈ 2 and l ≈ 0, and an m = 0, n = −1 mode corresponds to jin ≈ 1

and l ≈ 0. This mapping will be useful throughout this thesis. Additionally, since the theory in
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Chapter 2 was developed for l = 0, this shows that the lowest continuum branch from theory with

jin = 1 roughly corresponds to m = 0, n = −1, and the second lowest branch (jin = 2) roughly

corresponds to m = 1, n = 4 for the MST equilibrium.

In Sec. 2.5, the continuum frequencies at the O-point (or core) of the island was derived

analytically, resulting in Eq. (2.66):

ω̂2

ε2
=
n2

0jin (jin + 2)

4
. (2.66)

This equation can be rewritten in a form more amenable to experimental parameters, recalling that

ω̂2 = (ω2 − ω2
BAE)/ω2

A. Writing in terms of frequency and using fA = k‖vA one arrives at

f =

√
f 2
BAE +

n2
0jin (jin + 2)

4
ε2k2
‖v

2
A, (3.9)

where k‖ = 1/(q02πR0). For MST, the relevant parameters are n0 = 5, q0 = 1/5, R0 = 1.5

m, k‖ = 0.53/m, fBAE = 24 kHz, w/2 = 7 cm, q′0 = .004/cm, and ε = q′0w/2 = .028. These

parameters come from private correspondence with Jay Anderson as well as Jon Koliner [4]. When

these parameters are used in Eq. (3.9), the resulting continuum frequencies as a function of Alfvén

speed for jin = 1 and jin = 2 are plotted in Fig. 3.7. The continuum frequencies converge to the

same BAE accumulation point frequency in the limit of vA → 0. As the Alfvén speed increases,

the continuum branches spread into a wide gap. The burst frequencies measured on MST are also

plotted for deuterium, helium, and hydrogen plasmas. As mentioned previously, the experimental

data has been Doppler shifted to correct for the 10 − 30 kHz tearing mode rotation frequency

on MST. The Doppler correction is pulled from a database for each shot. Experimental data is

available in the range of vA ∼ 1 × 106 to ∼ 2.5 × 106 m/s. At the time of writing, about 430

new bursts have been included in this plot thanks to recent analysis by John Boguski and Ruiyang

Feng. The burst data lies inside of the envelope formed from the jin = 1 and jin = 2 continuum

branches from theory. Thus, the experimental observations are consistent with an n = 4 Alfvén

eigenmode existing in the frequency gap induced in the core of the n0 = 5 island. Notice that

the frequency gap width between the two continuum branches increases with increasing vA. This

gap is named here the Island-induced Alfvén Eigenmode (IAE) gap, since the island creates this
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gap in the continuous spectrum. The scaling of the gap between the continuum branches in the

island according to Eq. (3.9) predicts that the n = 4 AE frequencies on MST should scale with the

island width. Experiments are underway on MST to measure the n = 4 mode frequency at various

different island sizes. The island width can be modified by pulling the q-profile down and bringing

the 1/5 resonant surface closer to the magnetic axis. The “pressure” from the circular axis causes

the island to squeeze to a smaller size as it is dragged towards the center of the plasma.

For the regime of interest from experiment, the continuum branches in the island from theory

are very insensitive to the BAE frequency used. In Fig. 3.8, Eq. (3.9) has been plotted for jin = 1

and jin = 2 with and without the BAE frequency upshift, fBAE . The upshift results in very small

corrections to the continua in the 1× 106 to 2× 106 m/s range in which experimental observations

are available. Thus the inclusion of fBAE in Eq. (3.9) is not necessary to capture the IAE gap for

MST.

The continua in the core of the island do have a strong dependence on the normalized island

half-width ε = q′0w/2. The continuum branches scale up and down in frequency with ε, and the

gap width ∆f also scales with ε. A larger island width increases the continuum frequencies and

also increases the gap between the branches. Fig. 3.9 shows the behavior of the frequencies in the

island core at three different island widths. An expression for the gap size in terms of ε and the

Alfvén speed can be derived by comparing the jin = 1 and jin = 2 branches:

∆f =

(
√

2−
√

3

2

)
n0k‖εvA. (3.10)

Here the simplification fBAE = 0 has been used as discussed above; the approximation barely

affects the result. This gap width scaling with ε suggests that an island width threshold may exist,

below which no Alfvénic activity would occur. At sufficiently small ε, the IAE frequency gap

may be too small to support an Alfvén mode, as continuum damping could prevent the instability

from growing. Preliminary experimental results from MST appear to support this conclusion.

Comparing Fig. 3.9 to Fig. 3.7 suggests a possible explanation for the burst data that lies outside

of the continuum envelope. If the equilibrium has evolved to a significantly larger or smaller

magnetic island size during a shot, then the burst frequency may lie outside the continua which
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n = 4 AE Burst Data
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Figure 3.7 The theoretical continuum frequencies at the island O-point for jin = 1 and jin = 2
plotted along with observed Doppler-corrected Alfvénic burst data from MST experiment. The
continuum branches provide an envelope for the AE bursts throughout. New data courtesy of

John Boguski and Ruiyang Feng.
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Figure 3.8 The theoretical continuum frequencies at the island O-point for jin = 1 and jin = 2
plotted with BAE frequency upshift in blue and without upshift in red. The BAE upshift is not

very significant in the region with experimental observations, from ∼ 1× 106 to ∼ 2× 106 m/s.
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Figure 3.9 The theoretical continuum frequencies at the island O-point for jin = 1 and jin = 2
for three different values of ε = q′0w/2. The frequencies of the continuum branches as well as the

size of the gap scales with the island width, ε.

are computed assuming a fixed island size of ε = .028. A larger island shifts both the continua

and allowed burst frequencies higher, and a smaller island shifts the continua and allowed burst

frequencies lower.

3.4 Island-modified BAE modes in MST vs. tokamaks

In addition to the helically-coupled gap in the core of the island already discussed in this chap-

ter, there is another type of gap affected by an island. Recall from Sec. 2.2 that the beta-induced

Alfvén eigenmode (BAE) continuum accumulation point frequency ωBAE occurs at the rational

surface in the absence of an island. For ωBAE to be nonzero, geodesic curvature and finite pres-

sure effects must be included through the slow sound approximation γp/ρω2R2
0 � 1 to retain the

compressional response of the fluid to the shear Alfvén waves. When an island is present, we have

shown that the BAE accumulation frequency is upshifted, and the new minimum is located at the

separatrix. The upshifted BAE frequency at the separatrix is given by

ω2
sep = ω2

BAE + (q′0w)2ω2
A/32. (3.11)
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Figure 3.10 Schematic showing the modified Alfvén continuum due to a magnetic island. The
continuum and discrete frequencies are shown with dashed lines in the absence of an island and
solid lines when an island is present. The frequency is plotted vs. minor radius, so the separatrix

is counted twice. Figure from Biancalani, 2011 PPCF [12].
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Fig. 3.10 shows a schematic of the frequency upshift effect from the island. When no island

is present, the minimum frequency ωBAE is located at the resonant surface; the continuum in this

case is shown with a dashed blue curve. A discrete BAE mode could only exist at a frequency

below this minimum, as illustrated by the dashed red line. When an island is present the minimum

frequency is increased, and the location of the minimum is moved to the separatrix, as shown with

the solid blue curve. This higher minimum allows BAEs to potentially exist at a higher frequency

without experiencing continuum damping, as demonstrated with the solid red line.

3.4.1 BAE frequency upshift on MST

Beneath the BAE continuum frequency (often called the BAE gap), a discrete BAE mode can

resonant and can be driven unstable by energetic particles. Since the island leads to an upshift in

the BAE continuum frequency, there is a larger BAE gap frequency range for a BAE to occupy.

For MST, the BAE upshift correction is found to be quite small. Eq. (3.11) can be rewritten in a

form that is easier to compare to experiment:

fsep =

√
f 2
BAE +

(
εk‖vA

)2

8
. (3.12)

Here k‖ is measured in m−1 and recall that ε = q′0w/2. This allows us to use the standard MST

parameters introduced in this chapter: ε = .028, k‖ = .53/m, and vA = 1.75 × 106m/s. From

the finite-beta STELLGAP simulation in Fig. 3.6, the BAE frequency in the absence of an island

is fBAE = 24 kHz. Using these values in Eq. (3.12) gives a minimum frequency at the separatrix

of fsep = 25.7 kHz. The magnetic island thus gives a small correction of about 7% to the BAE

minimum frequency in MST. No Alfvénic modes have been identified below the 25 kHz range on

MST, so no BAE activity has been observed.

3.4.2 BAEs on the EAST tokamak

In tokamaks, a much larger upshift to the BAE continuum frequency from a magnetic island is

found. In MST, the very small shear (q′0 = .004/cm) in the core of the plasma where the island

is located leads to a very small ε = q′0w/2 of ε = .028 and thus a small correction to the BAE
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Device ε fBAE fsep Correction

EAST .125 17 kHz 21.3 kHz 25%

MST .028 24 kHz 25.7 kHz 7%

Table 3.2 A comparison of the continuum upshifts due to an island in EAST and MST.

frequency. Tokamaks tend to have a much larger value for the magnetic shear q′0 at the rational

surface compared to MST. The EAST tokamak is a good example. EAST contains tearing mode

activity at a q0 = 2/1 surface; the shear at this location is approximately q′0 = .05 /cm (see Fig.

3.11, plot a)), leading to ε = .125 for a 5 cm island [6]. This ε for EAST is over 4 times larger than

the value for MST, so the BAE upshift correction is expected to be much higher.

EAST has a major radius of 1.7 m, toroidal fieldBT = 1.8 T, and generally runs with deuterium

plasmas at densities of ni ∼ 2×1019/m3. With these operating conditions, the parallel wavelength

and Alfvén speed are k‖ = .047m−1 and vA = 6.2 × 106m/s. The BAE minimum continuum

frequency has been calculated by Xu in the absence of an island [6]. Xu used the following equation

derived from an asymptotic solution to the generalized fishbone-like dispersion relation (GFLDR)

developed by Zonca [46]:

fBAE =
1√

2miπR0

√
Te +

7

4
Ti. (3.13)

Using experimental parameters, Xu calculates this to be fBAE = 17 kHz. In EAST, the upshifted

BAE frequency at the separatrix due to an island from Eq. (3.12) is fsep = 21.3 kHz. This is a

much larger correction than that seen for MST; the island upshifts the frequency by about 25% in

EAST. A comparison of the continuum upshifts for MST and EAST is shown in Table 3.2.

This island-induced BAE frequency upshift has not been taken into account before for EAST,

and it helps explain some experimental observations. The discrete BAE frequencies measured on

EAST should lie below the minimum BAE continuum frequency, but the observed mode frequen-

cies of 14− 18 kHz are very close to and even touch and cross over the BAE continuum frequency

computed with no island in Eq. (3.13). Fig. 3.11, plot b) shows this phenomenon. Using the

island-upshifted continuum frequency of fsep = 21.3 kHz computed here shows that the observed
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Figure 3.11 Experimental data from EAST tokamak. a) Safety factor profile and ion temperature
at two different times during the shot. b) Observed BAE mode frequencies (labeled fH1 and fH2)
and theoretical BAE continuum accumulation point frequency fBAE from Eq. (3.13) (labeled here

fCAP ). Figure from Xu, 2013 PPCF [6].
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modes can be identified as BAE modes living below the island-upshifted minimum continuum fre-

quency. These modes are consistent with a modified version of the BAE named here the IBAE for

Island-upshifted Beta-induced Alfvén Eigenmode. The mode is still a BAE in character, but can

exist at a higher frequency without damping on the continuum thanks to the increased continuum

accumulation point frequency caused from the island.

3.4.3 BAEs on the FTU tokamak

As further evidence of the validity of the island-induced BAE frequency upshift, experiments

on the Frascati Tokamak Upgrade (FTU) during strong tearing mode activity have observed BAE

mode frequencies that scale roughly linearly with the island width, as measured through poloidal

magnetic fluctuations [47]. Fig. 3.12 displays the measured n = −1 BAE frequencies vs. the

tearing mode amplitude measured through poloidal magnetic fluctuations. The scaling of these

observed modes with island width is consistent with modes residing in an island-upshifted BAE

gap given by Eq. (3.12) derived in this thesis.

The shear at the resonant surface in tokamaks including EAST and FTU is generally signif-

icantly larger than the tiny shear at the q = 1/5 surface in the core of MST. This higher shear

makes the island’s effects on the low-frequency BAE gap significantly greater in tokamaks than

that which is seen on MST (and RFPs in general with a core-localized island). BAE activity is thus

expected to be more intricately linked to magnetic island growth in tokamaks compared to RFPs,

as can be seen in the literature [6, 8, 47].

3.5 Summary

The n = 4 Alfvénic burst activity on MST has been shown to be consistent with a gap mode

residing in the core of the n0 = 5 magnetic island. The AE burst frequencies obtained from an

experimental scan in the core Alfvén speed vA lie in the gap in the core of the island obtained

from the continuum theory presented in Chapter 2. The jin = 1 and jin = 2 continuum branches

sandwich the burst data as expected for an island-induced Alfvén eigenmode. This n = 4 AE will

be investigated numerically in the subsequent chapters.
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Figure 3.12 Experimental BAE frequencies measured on the FTU tokamak vs. tearing mode
amplitude measured as magnetic fluctuations. The BAE frequencies scale strongly with the

magnetic island width. Figure from Buratti, 2005 Nucl. Fusion [47].
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A magnetic island is shown to cause a larger BAE frequency upshift in tokamaks compared

to MST. The larger upshift arises from the significantly larger shear q′0 (and thus ε) present in

tokamaks. The island-modified BAE continuum frequency explains observed BAE mode activity

on EAST and FTU.
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Chapter 4

Numerical investigation of Alfvén eigenmodes on MST

In Chapter 3, we showed that the n = 4 Alfvénic bursting activity observed on MST is consis-

tent with a discrete shear Alfvén mode living in the island-induced gap predicted by the analytic

theory of the continua. We will now strive to confirm this hypothesis using two types of numerical

investigations. In this chapter, the STELLGAP code is used to compute the Alfvén continuum

which can be compared to the theoretical spectrum for MST discussed in Chapter 3. Second,

AE3D is used to search for discrete Alfvén eigenmodes. Prior to discussing either of these codes,

a numerical model approximating an MST equilibrium with an island is needed.

4.1 Modeling MST with an island as a SHAx state

It is known experimentally that a large n0 = 5 island is present in the non-reversed MST

configuration. Recall that the safety factor in Fig. 3.5 passes through q = 1/5 in the core. An

equilibrium code called VMEC was used by Jon Koliner to model MST. The VMEC equilibrium

code assumes closed, nested flux surfaces and thus can only model a single magnetic axis. Due to

the restriction of a single axis, one of two approximations has to be made when modeling the MST

configuration with a core 1/5 island. First, the island can be neglected as was done by Koliner [4],

yielding an axisymmetric equilibrium. As was shown in Sec. 3.2, this model did not yield Alfvén

continua consistent with Alfvén burst frequencies from experiment. Second, the axisymmetric

circular magnetic axis can be neglected resulting in magnetic surfaces that vary smoothly from a

helical axis out to circular flux surfaces at the plasma edge. In the parlance of the RFP world, this

is known as a Single Helical Axis (SHAx) state.
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We will now investigate this second approximation, where we simplify the equilibrium con-

taining a circular and helical axis (island) into a SHAx state. There is considerable motivation for

doing so: the continuum theory in Sec. 2.4 showed that the frequency branches inside of the island

all converge to a continuum accumulation point at the separatrix. Since the frequencies all drop

close to zero at the serparatrix, this effectively localizes any modes present to the island core, where

it is free of continuum damping. In order to extend out to the separatrix and beyond, a mode would

couple to the accumulating continua and stabilize. Since all of the action of the Alfvén mode takes

place in the core of the island, this is the area of the equilibrium that must be accurately modeled.

In a SHAx state approximation, the helical core axis approximates the axis of the island, and thus

the equilibrium features of the island core should be captured. The island separatrix and accom-

panying topology change is not included in this model, but should not be crucial for obtaining the

qualitative features of AEs inside the island.

The canonical MST case to be considered here contains deuterium plasmas with a current of

Ip = 300 kA and ni = 0.7 × 1019m−3 ion density. With this plasma current, the core magnetic

field is B = 0.3 T. Using these parameters and mi = 2mp for deuterium, the Alfvén speed is

vA = B/
√
µ0mini = 1.75 × 106 m/s. For this value of vA, the experimental mode frequencies

from Fig. 3.7 are in the 140 to 160 kHz range. We will use these frequencies to compare to

numerical simulation results in this and upcoming chapters. The VMEC code will now be briefly

introduced for modeling the MST equilibrium. Then the STELLGAP and AE3D codes will be

discussed along with simulation results of the Alfvén continua and discrete modes.

4.2 The Variational Moments Equilibrium Code (VMEC)

The Variational Moments Equilibrium Code, VMEC, is an extremely useful code for comput-

ing three-dimensional plasma equilibrium. It is the workhorse equilibrium code for many stellara-

tor simulations and reconstructions. VMEC obtains an equilibrium by using a variational method

to find a minimum of the energy in the system [38, 39].
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VMEC tries to find an equilibrium in MHD force balance,

F = J×B−∇p = 0, (4.1)

while also enforcing Ampère’s law and the divergence constraint:

∇×B = J, (4.2)

∇ ·B = 0. (4.3)

To obtain this force balance, VMEC minimizes the total energy. The total plasma energy is given

by

W =

∫ (
B2

2
+

p

γ − 1

)
dV, (4.4)

where the first term is the magnetic energy, the second is the kinetic energy, and the integration is

taken over the entire volume of the plasma.

In order to conserve magnetic flux, a contravariant representation of the B field is utilized.

When solving for RFP equilibria, the logical ‘LRFP’ is set to true in VMEC, allowing the code to

run in terms of safety factor and poloidal flux. The magnetic field written in terms of poloidal flux,

denoted here by ψ, is the following:

B = ∇ζ ×∇ψ + q∇ψ ×∇θ∗. (4.5)

The poloidal-like angle θ∗ used in VMEC is given by θ∗ = θ + λ(ψ, θ, ζ), with λ a poloidal

stream-function used to make the field lines straight. This is done for numerical reasons; using λ

to normalize the poloidal coordinate allows the Fourier series to be truncated at a finite number

of harmonics. In VMEC, the coordinates are denoted by s, u, and v, where s = ψ/ψedge is the

normalized poloidal flux, u = θ, and v = ζ .

VMEC represents the magnetic flux surfaces using the following Fourier series:

R =
∑
m,n

Rm,n(s) cos(mu− nv), (4.6)

Z =
∑
m,n

Zm,n(s) sin(mu− nv), (4.7)

λ =
∑
m,n

λm,n(s) sin(mu− nv). (4.8)
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During the energy minimization process, VMEC modifies the spectral components of the flux

surfaces to find a lower energy state. Once a minimum of the energy is found, the configuration is

in ideal MHD force balance and thus an equilibrium is obtained.

To initialize VMEC, the pressure profile, safety factor profile, and total enclosed magnetic flux

ψedge are specified in an input file. In addition, information regarding the magnetic flux geometry

of a starting configuration is needed. VMEC can be run in two modes: fixed boundary and free

boundary. In free boundary runs, the simulation is initialized by specifying the location and cur-

rents in the external coils. In these simulations, the last closed flux surface is allowed to evolve.

For fixed boundary simulations the Rm,n and Zm,n Fourier components of the last closed flux sur-

face are specified as inputs, and this plasma boundary remains unchanged throughout the energy

minimization process in VMEC. In practice free boundary simulations are performed initially for

a device’s current coil configuration, and then the resulting outer flux surface is generally used

as a starting point for future fixed boundary runs, which run much faster than the free boundary

computations.

A 500 kA SHAx VMEC input file was available from MST. The input file is from a V3FIT

reconstruction [48] which agrees well with experiment. In order to scale the profiles to 300 kA, the

pressure profile was scaled down by a factor of .602 to match the total integrated pressure of the

desired case. This factor is the ratio of total integrated pressure in the 300 kA case to the integrated

pressure for the 500 kA case. The PHIEDGE parameter in VMEC for total enclosed magnetic

flux has also been reduced, adjusting the total enclosed magnetic flux to the proper level for 300

kA plasmas. Running VMEC in fixed boundary mode, a well-converged VMEC equilibrium for

the SHAx model of interest has been obtained. Three flux surfaces from the VMEC SHAx con-

figuration are shown in Fig. 4.1. The surfaces transition smoothly from a helical core to circular,

axisymmetric surfaces towards the edge. Using this equilibrium, the continuum and discrete modes

can be studied with STELLGAP and AE3D, respectively.
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a)

b)

c)

Figure 4.1 Three flux surfaces for an MST SHAx equilibrium from VMEC. a) A helical core flux
surface near the axis. b) A surface in the region that transitions from helical to circular surfaces.

c) A circular, axisymmetric surface near the plasma edge.
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4.3 The STELLGAP continuum code

STELLGAP is a code written by Don Spong of Oak Ridge National Lab to compute the shear

Alfvén continuum [40]. STELLGAP follows the theoretical framework set up by Salat and Tata-

ronis [49, 50]. It requires a VMEC equilibrium as an input.

4.3.1 Model equations

The Alfvén continuum equation for incompressible waves (no ξ‖) in the low-β limit is

ρmω
2 |∇ψ|

2

B2
Eψ + B · ∇

[
|∇ψ|2

B2
B · ∇Eψ

]
= 0, (4.9)

where ψ is the poloidal flux and Eψ is the covariant ψ component of the electric field. To avoid

confusion with the normalized poloidal flux ρ = ψ/ψedge, the mass density is labeled as ρm. The

first term provides the wave’s inertia while the second-term provides a restoring force (tension)

through field-line bending. Note that this is the same basic equation as Eq. (2.26) from Chapter

2, but in the absence of an island. This equation is valid for three-dimensional geometry, and no

coupling to acoustic waves is present. In STELLGAP, Eq. (4.9) is solved using Boozer coordi-

nates. Boozer coordinates are a special case of straight field-line coordinates, and as such offer a

particularly simple representation for the parallel gradient operator, B · ∇ [51, 52]. To obtain the

Boozer coordinates required by STELLGAP, a VMEC equilibrium must first be run through the

Boozer-Xform code before being passed to STELLGAP. Boozer-Xform had a problem handling

the reversal surface in RFPs. This has been fixed by switching to poloidal flux and using q in-

stead of the rotational transform ι (see Appendix E). In terms of Boozer coordinates, the following

parallel gradient operator and |∇ψ|2 can be used in Eq. (4.9):

B · ∇ =
1
√
g

(
1

q

∂

∂θ
+

∂

∂ζ

)
, (4.10)

|∇ψ|2 = gρρ
(
dψ

dρ

)2

. (4.11)

Here ρ is the normalized flux surface label, θ is the poloidal angle, ζ is the toroidal angle, and gρρ

is the contravariant ρρ metric element.
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Next, the electric field in Eq. (4.9) is expanded in a Fourier series:

Eψ =
∑
m,n

Em,n
ψ cos(mθ − nζ). (4.12)

Only the even (cos) parity of the electric field is required for devices with stellarator symmetry.

After using these representations for B ·∇, |∇ψ|2, andEψ, Eq. (4.9) is multiplied by
√
g cos(mθ−

nζ) and flux surface averaged to give the symmetric generalized matrix eigenvalue equation,

ω2Ax = Bx. (4.13)

In this equation, x =
[
Em1,n1

ψ , Em2,n2

ψ , Em3,n3

ψ , ...
]T gives the continuum mode structure, ω2 is the

eigenfrequency, and A and B are both symmetric matrices. Within STELLGAP, Eq. (4.13) is

solved using the DGEGV LAPACK subroutine from the IBM ESSL library.

The continuum equation assumes solutions with a non-square-integrable, singular radial struc-

ture. Thus Eq. (4.13) must be solved separately for each flux surface throughout the domain,

resulting in a continuum of eigenfrequencies as a function of radius. No coupling across surfaces

is included, so the matrices A and B are constructed for each surface. The included poloidal and

toroidal mode numbers for the simulation can be specified with mmax and nmax, and range ac-

cording to 0 ≤ m ≤ mmax and −nmax ≤ n ≤ nmax. The dominant m and n values are output

along with frequency and radius, allowing the different continuum branches to be distinguished.

In addition to the desired mode numbers, the ion density profile and ion mass is also specified in

an input file to STELLGAP.

4.3.2 Computing the MST Alfvén continuum

The MST SHAx equilibrium from VMEC shown in Fig. 4.1 is used to initialize a STELLGAP

simulation. Recall that the closed, nested flux surfaces vary smoothly from helical surfaces in the

core to surfaces with a circular cross-section out towards the plasma edge. After running the VMEC

coordinates through Boozer-Xform to obtain the Boozer coordinates needed by STELLGAP, the

Alfvén continua are computed using STELLGAP’s eigensolver routines.

The continuum frequencies vs. radius are plotted along with dominant n in Fig. 4.2 and dom-

inant m in Fig. 4.3. In the core of the plasma where the surfaces are helical, a sizable frequency
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helical "island" core

HAE gap

Figure 4.2 Shear Alfvén continuum in MST computed using STELLGAP. Dominant n toroidal
mode number is color-coded. A helicity-induced Alfvén eigenmode (HAE) gap is present in the

helical core with an n = 4/n = −1 coupling.
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helical "island" core

HAE gap

Figure 4.3 Shear Alfvén continuum in MST computed using STELLGAP. Dominant m poloidal
mode number is color-coded. A helicity-induced Alfvén eigenmode (HAE) gap is present in the

helical core with an m = 1/m = 0 coupling.
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gap exists in the 110 to 230 kHz range. This continuum gap involves a helical coupling between

n = −1 and n = 4 toroidal Fourier modes and m = 0 and m = 1 poloidal Fourier modes. A

helicity-induced Alfvén eigenmode (HAE) gap exhibits the following general coupling [53]:

δn = n2 − n1 = n0, (4.14)

δm = m2 −m1 ≥ 1. (4.15)

Here n0 is the toroidal mode number of the island; n0 = 5 for MST. The gap is identified as with

an HAE, since δn = n0 = 5 and δm = 1 for this case. The frequencies of the m = 0, n = −1,

and m = 1, n = 4 continuum branches in the helical core (the approximate n0 = 5 island) can be

compared to the island core continua frequencies from analytic theory for jin = 1 and jin = 2;

recall that these numbers map to each other. From Fig. 3.7, the continuum frequencies from theory

for vA = 1.75×106 m/s are 115 kHz for jin = 1 and 185 kHz for jin = 2, in reasonable agreement

to 110 kHz and 230 kHz from STELLGAP, especially considering that VMEC/STELLGAP is

using a SHAx approximation to the island. This gap frequency range of 110 − 230 kHz found

numerically will now be used as a target frequency to search for global modes using the AE3D

code.

Additional STELLGAP simulations have been performed for Ip = 200 kA and Ip = 250 kA

in MST. The results are shown in Fig. 4.4. In the helical core, the continua appear to obey the

vA scaling of Eqs. (3.9) and (3.10) from the analytic theory for the island O-point frequencies

and frequency gap in MST. Note that the HAE gap width scales with the plasma current, and the

continuum branch frequencies also increase with increasing Ip ∼ B ∼ vA.

STELLGAP serves as a useful code not only for computing the continuum, but also for identi-

fying frequency and radius ranges in which to search for eigenmodes using the AE3D code. AE3D

allows the user to specify a frequency range for the calculations, and frequencies in a continuum

gap from a STELLGAP simulation generally provide an excellent starting point.
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helical "island" core

HAE gap

helical "island" core

HAE gap

helical "island" core

HAE gap

200 kA

250 kA

300 kA

Figure 4.4 Shear Alfvén continua in MST computed using STELLGAP for Ip = 200, 250, and
300 kA. The HAE gap frequencies and width increase with Ip, and thus vA.
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4.4 The AE3D code for calculating Alfvén modes

The calculation of discrete AEs with radial extent is significantly more complicated than com-

puting continuum modes. A reduced MHD formulation in the low-β limit is employed to allow for

the finite radial extent of discrete Alfvén eigenmodes in AE3D. AE3D was written by Don Spong

to calculate Alfvén eigenmodes [5]. Following the reduced MHD equations of Kruger, Hegna, and

Callen [22], AE3D computes modes of finite radial extent along with their eigenfrequencies.

4.4.1 Model equations

The basic model equations are the vorticity equation and the ideal Ohm’s law:

∇ ·
[
ρm
B

d

dt

(
∇φ
B

)]
= B · ∇

δJ‖
B

+ δB · ∇
J‖
B
, (4.16)

∂δψ

∂t
=

1

B
B · ∇φ. (4.17)

Here the perturbed quantities are denoted with a δ, and the remaining are equilibrium quantities.

The electrostatic potential is φ; δψ is the perturbed poloidal magnetic flux.

The perturbed parallel current and perturbed magnetic field can be written in terms of δψ as

δJ‖ = ∇2δψ, (4.18)

δB = ∇ζ ×∇δψ. (4.19)

Using the ideal Ohm’s law Eq. (4.17) in Eqs. (4.18) and (4.19), and substituting these back into

Eq. (4.16) gives the following eigenvalue equation:

ω2∇ ·
(

1

v2
A

∇φ
)

+ B · ∇
[

1

B
∇2

(
B

B
· ∇φ

)]
+∇ζ ×∇

(
B

B
· ∇φ

)
· ∇

J‖
B

= 0. (4.20)

Here φ and all of the perturbed quantities are assumed to vary in time as e−iωt. AE3D solves this

equation for φ, the electrostatic potential eigenmodes. This equation is similar to Eq. (4.9), with

the first term providing the inertia and the second term the field-line bending. Since modes are not

restricted to a singular radial structure, a third ballooning term is also present in this formulation.

Next, Eq. (4.20) is multiplied by a trial function φ̃ and integrated over the plasma volume.

The resulting equation is solved using a Galerkin approach, where φ and φ̃ are expanded in a
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finite element (in radius) and Fourier series (in poloidal/toroidal angles) representation. Churning

through this process results in a generalized matrix eigenvalue equation:

Fy = ω2Gy, (4.21)

where F and G are block tridiagonal matrices. The eigenvector is

y =
[
φm1,n1
ρ1

, φm2,n2
ρ1

, ..., φm1,n1
ρ2

, φm2,n2
ρ2

, ...
]T , a column vector of the Fourier components of the

potential for each flux surface. AE3D solves for the Alfvén eigenmode potentials y and the

eigenfrequencies ω2 using several different solvers that are selectable by the user, including LA-

PACK/DGGEV and JDQZ. JDQZ uses a Jacobi-Davidson QZ algorithm written by G. Sleijpen

and H. van der Vorst, which allows very fast, efficient solution of Eq. (4.21) by pre-specifying

a target frequency (eigenvalue) on which to center the eigenmode search. Instead of computing

all the eigenvalues, JDQZ computes just a subset, allowing for much faster run times. The target

frequency is generally chosen to be a gap frequency of interest from STELLGAP simulations.

The surface displacement ξs used in the analytic theory of Chapter 2, the electric field Eψ

used in STELLGAP, and the potential φ used by AE3D are all closely related to one another. The

potential and Eψ are related in the normal manner, through E = −∇φ. Here E, Eψ, φ, and ξs are

all perturbed wave quantities. In terms of the flux coordinates ψ, θ, and ζ , this relation is

E = −
(
∂φ

∂ψ
∇ψ +

∂φ

∂θ
∇θ +

∂φ

∂ζ
∇ζ
)
. (4.22)

By inspection, Eψ = −∂φ/∂ψ. The plasma displacement and electric field are related through the

ideal MHD Ohm’s law,

E = −∂ξ
∂t
×B. (4.23)

Assuming the quantities have a e−iωt time dependence and looking at the covariant-ψ component

gives Eψ = iωξs (recall that ξs = ξ · (B ×∇ψ)/|∇ψ|2). Thus the relationship between the three

different representations of the eigenmodes is the following:

Eψ ∼ −
∂φ

∂ψ
∼ iωξs. (4.24)

It should be noted that AE3D is also capable of computing the continuum modes localized to

a single flux surface. Fig. 4.5 shows an example of a continuum mode computed with AE3D.
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The radial structure appears as an approximation to a singularity (the sign of the singularity does

not matter). In this case the mode is an m = 1, n = 6 continuum mode localized to a surface

at
√
ψ = 0.72. These singular modes can be computed much more quickly and efficiently by the

STELLGAP code, but also are found with AE3D as delta function solutions along with the global

solutions. This continuum mode structure is in stark contrast to the Alfvén eigenmodes of finite

radial extent computed with AE3D, as shown in Fig. 4.6, which will be discussed shortly. By

scanning the modes output by AE3D, the global AEs vs. the continuum modes can be identified.

4.4.2 Computing Alfvén eigenmodes in MST

An extensive search for Alfvén modes in MST has been conducted using the AE3D code. Us-

ing the JDQZ solver in AE3D, a scan in the range of 0 to 300 kHz has been performed. For the

parameters of interest with vA = 1.75 × 106 m/s, a discrete Helicity-induced Alfvén Eigenmode

(HAE) has been found within the HAE continuum gap frequency range found with STELLGAP.

The structure of the mode is presented in Fig. 4.6. The AE is localized to the core of the helical

plasma, as expected for our SHAx proxy to the island. The eigenfrequency was found to be 149

kHz, consistent with the 140 to 160 kHz range in which Alfvén bursts have been observed experi-

mentally. The HAE frequency lies in the center of the 110− 230 kHz HAE gap from STELLGAP,

as well as the 115 − 185 kHz gap in the island core from theory. The structure of the HAE is

dominated by the m = 1, n = 4 Fourier component, but also has a significant m = 0, n = −1

contribution. This agrees with the δn = 5, δm ≥ 1 coupling expected from the continuum gap.

Experimentally, the n = 4 Alfvén burst is measured to have an m = 1 poloidal structure. In addi-

tion, the n = 4 bursts are generally observed along with m = 0, n = −1 activity in MST [54]; this

will be discussed in greater detail in Chapter 6.

AE3D has also been used to find the discrete modes for the Ip = 200 kA and 250 kA cases. The

continua for these two configurations were studied in Sec. 4.3.2. In both cases, AE3D computed a

core-localized HAE mode dominated by the m = 1, n = 4 Fourier component. The eigenfunction

for the HAE in the 200 kA case is shown in Fig. 4.7. The 200 kA HAE eigenfrequency is 90
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Figure 4.5 Shear Alfvén continuum mode computed with AE3D. The radial structure is singular
at the flux surface on which the continuum mode resides,

√
ψ = 0.72 for this case. This m = 1,

n = 6 continuum mode oscillates at 287 kHz.
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helical "island" core

Figure 4.6 Helicity-induced Alfvén Eigenmode (HAE) in MST computed with the AE3D code.
The Fourier mode components of the electrostatic potential are plotted vs.

√
ψ. The mode is

dominated by a coupling between the m = 1, n = 4 and m = 0, n = −1 Fourier components.
The AE is largely localized in the helical core. The frequency of the mode is 149 kHz, in

agreement with 140− 160 kHz from experiment.
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kHz, lower as expected for this configuration. The frequencies of the modes scale with the plasma

current since vA ∼ B ∼ Ip, as expected from theory.

Eq.(3.9) from Chapter 3 for the continuum frequencies in the core of the island is

f =

√
f 2
BAE +

n2
0jin (jin + 2)

4
ε2k2
‖v

2
A; (3.9)

this theory can be compared with the computed core HAE gap continuum frequencies from STELL-

GAP (from Sec. 4.3.2) and the discrete AE frequencies computed from AE3D. Fig. 4.8 shows the

continuum theory curves for jin = 1 and jin = 2, along with STELLGAP-computed continuum

frequencies and discrete Alfvén eigenmode frequencies computed with AE3D for Ip = 200 kA,

250 kA, and 300 kA.

The AE3D-computed mode frequencies lie in both the theory continuum gap and the contin-

uum gap from STELLGAP for all three values of vA tested. The theory and STELLGAP continua

frequencies both exhibit positive scaling with the core Alfvén velocity, and both gaps increase as

vA increases. However, agreement is not perfect. Because STELLGAP uses a VMEC SHAx ap-

proximation to the actual equilibrium containing an island, the agreement with the island theory

is not expected to be exact. The discrepancies between theory and STELLGAP are believed to

stem from both the SHAx approximation, as well as the lack of mode localization. Specifically,

the STELLGAP/VMEC simulations lack a separatrix to truly localize the mode activity within the

island. In VMEC, the gradual transition from core helical flux surfaces to edge circular flux sur-

faces does not include a separatrix, and thus it is unsurprising that the STELLGAP continua do not

line up exactly with the continua predicted from theory. The AEs computed are not as localized

as they should be if a true separatrix were included. Recall that the accumulation of continua at

the separatrix effectively limits the radial extent of modes due to continuum coupling. In addition,

the continuum branch curves from theory are from the solution at the O-point. Figs. 4.6 and 4.7

identify an HAE mode that exists throughout the core of the magnetic island, not just at the O-

point. If the continua from theory were plotted for surfaces further out from the O-point within

the island, better agreement may be obtained. Nevertheless, the STELLGAP/AE3D simulations
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helical "island" core

Figure 4.7 Helicity-induced Alfvén eigenmode (HAE) from 200 kA MST case, computed using
AE3D. The mode is localized to the helical core and is dominated by m = 1, n = 4, along with

coupling to m = 0, n = −1. At this lower vA (from lower Ip), the eigenfrequency is 90 kHz.

Figure 4.8 Comparison of theory, STELLGAP, and AE3D frequencies vs. Alfvén speed. The
jin = 1 and jin = 2 continuum branches from theory and the computed STELLGAP continuum
frequencies from the helical core both increase with increasing vA ∼ Ip; the gap also increases

with vA. The AE3D mode frequencies lie in the gaps obtained from both theory and STELLGAP.
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appear to capture the essence of the n0 = 5 island core and the shear Alfvén continua and HAE

mode contained within.

4.5 Summary

MST has been modeled as a Single Helical Axis (SHAx) equilibrium in VMEC. The m = 1,

n = 5 helical core present in this equilibrium serves as an approximation to the island found in

non-reversed MST plasmas. Using this VMEC closed-surface approximation, the STELLGAP and

AE3D codes have been utilized to find the shear Alfvén continua and discrete modes, respectively.

The continuum branches computed with STELLGAP agree relatively well with the continua from

theory in the core of an island. An n = 4/n = −1 coupled Helicity-induced Alfvén Eigenmode

(HAE) has been found with AE3D in the helical core of the SHAx equilibrium. A scan in plasma

current was conducted, and the mode is a robust feature for the range of currents in which the AE

is observed experimentally.

We have established the existence of an Alfvén mode located in the helical core of the SHAx

equilibrium in VMEC, our approximation to an island. This HAE found with AE3D is an important

first step in categorizing the n = 4 activity on MST. However, to truly get the details correct and

to identify the Alfvén bursts as an island-induced mode, an equilibrium containing an actual island

must be used. The SIESTA equilibrium code is capable of resolving this topology containing two

magnetic axes.
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Chapter 5

Computing MHD modes with the SIESTAlfvén code

SIESTA is a three-dimensional equilibrium code capable of resolving magnetic islands [55].

Most MHD equilibrium codes such as VMEC [38] and EFIT [56] assume the existence of nested,

topologically toroidal flux surfaces. Several equilibrium codes such as HINT [57], PIES [58],

and SPEC [59] have been developed that allow for magnetic islands; however these codes all use

a very different approach from SIESTA and have been dogged by overly simplistic geometries

or restrictively slow computation time. SIESTA fills a much needed gap, allowing for very fast,

scalable simulations of global equilibria containing multiple islands and stochastic regions.

SIESTA is in many ways the logical successor to the VMEC equilibrium code. A large suite

of codes have been developed around VMEC. VMEC serves as the equilibrium “engine” of sorts

for stability codes, extended MHD simulations, neoclassical transport calculations, and of course

experimental reconstruction codes (like V3FIT [48]). SIESTA was written by the same author as

VMEC (Steve Hirshman), and actually begins its calculations with an equilibrium from VMEC.

The hope is that one day SIESTA can fill the role that VMEC currently plays: the MHD equilibrium

engine for a myriad of other simulations, but with the added ability to handle magnetic islands.

SIESTA requires a VMEC equilibrium as input, and utilizes this as a starting equilibrium.

From there, magnetic perturbations and resistivity are included to form islands if the configuration

is unstable to tearing modes. In this chapter the SIESTA energy minimization process is discussed,

followed by a presentation on the addition of inertia to SIESTA and the modifications made with

the new SIESTAlfvén code. SIESTAlfvén is a new code for finding the MHD modes from a

SIESTA equilibrium. Finally, SIESTAlfvén is benchmarked against the AE3D code.
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5.1 The Scalable Iterative Equilibrium Solver for Toroidal Applications (SIESTA)

SIESTA, the Scalable Iterative Equilibrium Solver for Toroidal Applications, is a code for

resolving an equilibrium containing islands [55]. SIESTA uses the fixed coordinate representation

of the closed flux surfaces from VMEC as a static coordinate system throughout the perturbation

and convergence process. SIESTA uses the square root of normalized flux r =
√
s as its radial

coordinate, where s is the normalized flux from VMEC. This is used to provide better resolution

of the equilibrium flux surface structure near the magnetic axis. In order to compare SIESTA and

VMEC results to each other, the radial mapping from the VMEC s coordinate to the SIESTA r

coordinate must be taken into account. Because VMEC uses a uniformly spaced radial mesh in

s while SIESTA uses a uniformly-spaced radial mesh in r =
√
s, some care has to be used in

analyzing the gridding for derivatives, etc. Throughout this thesis, results are generally shown

in r-space, the natural radial coordinate for SIESTA. This also makes comparison to experiment

easier since r = 〈r〉/〈a〉.

5.1.1 MHD equilibrium energy principle

The SIESTA iterative scheme works as follows. Beginning with a VMEC equilibrium, non-

ideal resonant perturbations are added. Next, the nonlinear ideal MHD energy is minimized by

solving the linearized ideal MHD force balance equations for a new plasma displacement. After

each major iteration, resistive perturbations to the magnetic field are added to continue the tearing

process (if unstable). After each step, the nonlinear force is obtained and compared to the specified

force tolerance. If it is above the tolerance, the process is repeated. If it is below the tolerance, an

equilibrium solution has been found.

In order to minimize the MHD force residual and obtain force balance, the energy is minimized

using an MHD energy principle. SIESTA has the same expression for total energy as VMEC

(magnetic plus pressure),

W =

∫ (
B2

2
+

p

γ − 1

)
dV, (5.1)
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but the details of each term differ due to the included resistive effects. For a variational treatment,

the time derivative of the energy is taken. Using Faraday’s law and particle conservation,

∂B

∂t
= −∇× E, (5.2)

∂p

∂t
= (γ − 1)v · ∇p− γ∇ · (pv), (5.3)

the change in total energy is given by

∂W

∂t
=

∫
[−E · J + v · ∇p] dV −

∮
S · dA. (5.4)

To reach this form, Ampère’s law ∇ × B = J and the Poynting and kinetic flux equation S =

E×B + γ/(γ − 1)pv have been used.

Currently SIESTA only runs in fixed boundary mode; this allows the surface integral term to

be dropped. Using the resistive Ohm’s law E + v ×B = ηJ, the MHD energy principle becomes

∂W

∂t
= −

∫ [
v · (J×B−∇p) + ηJ2

]
dV. (5.5)

The velocity v is the variational parameter. The resistivity is decreased to zero, η → 0 as the

energy is minimized, leading to an equilibrium where W is stationary and F = J×B−∇p = 0.

Integrating the time out of Eq. (5.5) without the resistivity, the equation becomes the variation

in W in terms of the perturbed MHD displacement vector ξ where ξ = v∆t:

δW −
∫ [

BiδB
i + δp

]√
gdrdudv. (5.6)

The variational energy has been written in terms of SIESTA’s curvilinear coordinates r, u, and v,

and Einstein summation notation is used. The δW variation’s dependence on the displacement ξ

comes through the perturbed pressure and the perturbed magnetic field:

δB = ∇× (ξ ×B), (5.7)

δp = (γ − 1)ξ · ∇p− γ∇ · (pξ). (5.8)
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SIESTA tries to minimize Eq. (5.6) using ξ as the unconstrained variational parameter. In terms

of SIESTA’s curvilinear representation, the variations in Eq. (5.6) are

δBi =
∂

∂xj
(
ξiBj − ξjBi

)
, (5.9)

δp = −γ ∂ (pξi)

∂xi
+ (γ − 1)ξi

∂p

∂xi
. (5.10)

It should be noted that the Jacobian and the metric elements,
√
g and gij , are for the background

static coordinate system, and thus do not evolve during the variational process.

With the help of Eqs. (5.9) and (5.10), the variational principle in Eq. (5.6) can be written

explicitly in terms of the displacement,

δW = −
∫
Fiξ

i√gdrdudv, (5.11)

with i ∈ (r, u, v),
√
g the Jacobian, and the covariant force components given by the following:

Fi = εijk
√
gJ jBk − ∂p

∂xi
, (5.12)

where xi is a shorthand for the (r, u, v) coordinates. The resistivity η will be discussed in Sec.

5.1.4.

5.1.2 Fourier representation and boundary conditions

In SIESTA, the spectral representation of the surfaces is given by

R =
nmax∑

n=−nmax

mmax∑
m=0

Rm,n(r) cos(mu+ nv), (5.13)

Z =
nmax∑

n=−nmax

mmax∑
m=0

Zm,n(r) sin(mu+ nv). (5.14)

Here m spans only non-negative integers up to a maximum specified mode number 0 ≤ m ≤

mmax, and n spans both positive and negative integers −nmax ≤ n ≤ nmax for a specified value

of nmax. Care has to be taken in comparing mode numbers between SIESTA and VMEC since

SIESTA uses trig arguments of mu + nv while VMEC uses mu − nv. The relationship be-

tween mode numbers for the two codes is nSIESTA = −nVMEC . nVMEC corresponds to the
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physical toroidal mode number n that is generally used, and n = nVMEC will be used when dis-

cussing SIESTAlfvén simulation results in Chapter 6. Currently, SIESTA is restricted to stellarator-

symmetric fields. Each quantity has a definite even or odd parity in stellarator symmetry, similar

to the above representation for R and Z. With stellarator symmetry, the pressure, magnetic field,

and displacement have the following Fourier expansions:

p =
∑
m,n

pm,n(r) cos(mu+ nv), (5.15)

Br =
∑
m,n

Br
m,n(r) sin(mu+ nv), (5.16)

Bβ =
∑
m,n

Bβ
m,n(r) cos(mu+ nv), (5.17)

ξr =
∑
m,n

ξrm,n(r) cos(mu+ nv), (5.18)

ξβ =
∑
m,n

ξβm,n(r) sin(mu+ nv), (5.19)

where β ∈ (u, v). In the future, there are plans to remove the stellarator symmetry restriction in

SIESTA.

The boundary conditions at the coordinate axis r = 0 are given by the following:

∂φ

∂u
= 0, (5.20)

∂h

∂u
= 0. (5.21)

This condition holds for any vector h and scalar φ. The boundary condition is for the coordinate

singularity obtained from the static VMEC coordinates, which generally does not coincide with

the magnetic axis once SIESTA has perturbed the configuration during the energy minimization

process.

5.1.3 Preconditioning with the Hessian

In order to solve for the new displacement at each iteration, SIESTA must solve a linear sys-

tem. Using the steepest descent algorithm (one of several methods SIESTA can use), the plasma

dispacement is found at each iteration using a positive-definite preconditioner matrix P as part
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of a Krylov subspace solve. Given a force residual F at the current iteration, the new perturbed

displacement is

ξi = P ijFj. (5.22)

Plugging this into Eq. (5.11) for the variation gives

δW = −
∫
FiP

ijFjdV ≤ 0, (5.23)

which is less than or equal to zero since P ij is positive definite. In this form, it is clear that the

energy functional is stationary if and only if the MHD force residual is zero.

At each overall nonlinear iteration, SIESTA computes a new MHD displacement according

to Eq. (5.22). Within this step, multiple linear iterations of the solution are performed to obtain

a proper linear solution. Any positive-definite preconditioner P ij can be used, but an intelligent

choice of the preconditioner based on the relevant physics will lead to faster convergence to equi-

librium. Before discussing the proper preconditioner that is used, it should be noted that SIESTA

has a slightly curious representation of the displacement within the code. For primarily book-

keeping reasons, the Jacobian from the volume differential in Eq. (5.11) is multiplied by the MHD

displacement and labeled as Γi within SIESTA:

Γi =
√
gξi. (5.24)

The magnetic field, pressure, force, and energy are all represented within SIESTA in terms of Γi.

In terms of this modified plasma displacement, the preconditioned equation to solve for the new

perturbation becomes the following:

Γi = P ijFj. (5.25)

To motivate selection of the preconditioner in SIESTA, consider a configuration at iteration n in

SIESTA, with an MHD force residual Fn = Jn×Bn−∇pn. One method to determine the plasma

displacement Γi that will minimize the energy functional is to linearize the MHD equations about

the current position and set the total linearized force to zero, which becomes the next iteration

n+ 1:

Fn+1 = Fn + δJ×Bn + Jn × δB−∇δp = 0. (5.26)
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The linear terms are all functions of the displacement Γ and can be written in terms of a linearized

MHD force operator acting on the displacement. This force operator is just the Hessian matrix,

given as follows:

Hn =
∂Fn

∂Γ
= − ∂2W

∂Γ∂Γ
, (5.27)

HnΓ = δJ×Bn + Jn × δB−∇δp. (5.28)

With the Hessian operator acting on the displacement, Eq. (5.26) becomes

HnΓ = −Fn. (5.29)

This is just a linear system of equations for the plasma displacement; comparing this to Eq. (5.25),

we see that an intelligent choice of the preconditioner is the inverse of the Hessian matrix:

P = −H−1
n . (5.30)

Using this preconditioner for the energy minimization is equivalent to solving the linear system in

Eq. (5.29) for the new displacement at each iteration. When the computed force residual Fn+1

is not yet below the specified tolerance due to nonlinear terms in Γi, the process iterates on itself.

After enough iterations, the simulation should converge to an equilibrium once the force residual

drops below a specified tolerance.

The Hessian operator is a matrix with block tridiagonal structure arising from the presence

of second-order radial derivatives in the MHD force. Each block row (column) corresponds to

a radial flux surface. Within each block, the indices span the directional (r, u, v) components as

well as the included Fourier mode numbers m and n. Spectral coupling in the equations leads to

blocks which are densely populated. SIESTA can be run in serial to invert the Hessian matrix at

each iteration, but is much faster when run in parallel. BCYCLIC is a parallel cyclic reduction

algorithm developed at Oak Ridge National Lab for factoring block tridiagonal matrices, such as

the Hessian [60]. While the details of the parallel version of SIESTA are out of the scope of this

thesis, information on the scaling with processors can be found in the BCYCLIC paper as well

as additional work by Sudip Seal [61]. In the author’s experience, most SIESTA simulations with

relevant parameters can now be run in parallel in 5 minutes or less (often under a minute).
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5.1.4 Opening magnetic islands

The iterative scheme discussed so far employs strictly ideal MHD. If SIESTA only considered

ideal perturbations, the frozen flux theorem would not allow the topology to change from the

initial VMEC equilibrium, and islands could not form. SIESTA allows for the formation of islands

through two processes: non-ideal “island” perturbations and finite resistivity. First, we will discuss

the non-ideal perturbations. SIESTA applies an initial non-ideal magnetic perturbation given by

δB = ∇×
(
A‖b̂

)
. (5.31)

The perturbation from this parallel vector potential seeds a small amplitude island in the configura-

tion. The parallel component of the vector potential is A‖ = −E‖∆t, where the non-ideal parallel

electric field can be written as E‖ = (E ·B)/B. Within SIESTA, e = E ·B is chosen such that it

causes a negative change in magnetic energy given by

δW = −
∫

J · EdV = −
∫
Ke
√
gdrdudv, (5.32)

where the parallel current is given by K = J · B/B2. Prior to island formation, the localized

current sheet K at the resonant surface shields the island from forming.

The simplest choice for the non-ideal electric field e is to set e ∼ K, which corresponds to

adding parallel resistivity. While this would lead to the steepest descent to equilibrium, it also

causes resistive changes in the global current and thus modifies the safety factor profile. In order

to preserve the q-profile, e is chosen such that the global, non-resonant current profile is preserved

but the resonant shielding of parallel current at the rational surface is diminished, leading to the

opening of an island. This is done by picking e as follows:

e ∼ Kresonant =
∑

m,n−resonant

(
√
gK)m,n (r) cos (mu+ nv) . (5.33)

In this equation, only the resonant m and n values are included in the summation. Thus the mean

m = 0, n = 0 component of the current is not included in this expression and will not be diffused

(∆′ remains unchanged), leaving the q-profile globally intact. The components in Eq. (5.33) are
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resonant at the radial positions rm,n where m − nq (rm,n) = 0. As discussed in Sec. 5.1.2, Eq.

(5.33) has even parity in mu+ nv due to the imposed stellarator symmetry.

In order to open islands, the radial profile of e must contain “tearing parity”. The tearing mode

parity for the parallel electric field is even about the resonant radius; this diffuses the δ-function

parallel currents. The odd parity is not included in the parallel electric field, which allows the

rippling 1/x Pfirsch-Schlüter currents to remain in the converged equilibrium. These odd paral-

lel currents are required to balance the curvature-driven perpendicular currents in the continuity

equation:

∇ · J = B · ∇K +∇⊥ · J⊥ = 0. (5.34)

The even tearing parity in Eq. (5.33) is imposed in SIESTA through the following version of the

parallel current which is symmetrized with respect to rm,n:

K̃m,n (r) =
am,n(r)

2

[
(
√
gK)m,n (|r − rm,n|+ rm,n) + (

√
gK)m,n (− |r − rm,n|+ rm,n)

]
.

(5.35)

In this expression, the parallel current K is evaluated at the symmetrized radius argument. am,n(r)

is a filter function for each m,n that is zero when the arguments of Km,n are outside the allowable

range of 0 ≤ r ≤ 1 and a constant a0
m,n > 0 when the arguments are within the allowable range.

The choice of non-ideal electric field perturbation e ∼ K̃m,n gives a negative-definite resistive

change in magnetic energy:

δW = −
∫ ∑

m,n−resonant

K̃2
m,n(r)dr < 0. (5.36)

The odd-parity rippling component of K integrates to zero. The perturbation strength a0
m,n must

be chosen small enough so that the linearization of energy in Eq. (5.32) is valid. In addition, if the

perturbation is chosen too large, the simulation will not converge as shown in Table 5.1.

In addition to the non-ideal tearing perturbation, SIESTA also includes finite resistivity to allow

islands to form in fewer iterations and converge quickly to a lower energy state. At resonant rational

surfaces, the VMEC starting equilibrium contains current sheets required by ideal MHD to prevent

island formation. The finite resistivity in SIESTA allows these singular current structures to diffuse
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and islands to open. Following each major ideal iteration step n detailed above, SIESTA diffuses

the parallel currents through a combination of Faraday’s law and the resistive Ohm’s law:

∂B

∂t
= −∇× E, (5.37)

E = ηJ. (5.38)

Combining these equations and using vector identities and SIESTA coordinates, one arrives at the

equation for the non-ideal perturbed magnetic field components:

δBi = ∇ ·
(
η∆tJ×∇xi

)
. (5.39)

The resistive time-step ∆t is determined by CFL stability. In a form of time-splitting, several

iterations of this equation are run following every major ideal iteration. However, the resistivity is

reduced and eventually turned off when a small value of the force residual is reached. From that

moment on, all iterations are purely ideal, and the simulation is able to converge to an ideal MHD

equilibrium containing islands. The iterative scheme employed in SIESTA is shown in Fig. 5.1.

In the version of SIESTA used for this work, the magnetic perturbation size is still controlled

manually through specifying the magnitude of A‖ (a0
m,n discussed above). In practice, SIESTA is

now quite robust with respect to this user-controlled parameter. For most equilibria that the author

has studied, a helical perturbation in the range of 1 × 10−3 to 5 × 10−3 will give approximately

the same solution, with an island width of nearly the same size. The reason that this is possible

is because of the finite resistivity in SIESTA. The perturbation acts as an initial “guess” for the

island, and the resistivity essentially provides a tearing rate for convergence to equilibrium.

A study has been conducted for the MST configuration of interest, in which a sizable n0 = 5 is-

land should be present. A scan in the size of the applied helical perturbation (‘HelPert’ in SIESTA’s

variable naming) was performed, while keeping the resistivity at the “standard” numerical resistiv-

ity of η = .01 typically used in these simulations. The equilibrium obtained was studied along with

the number of iterations required to obtain convergence. Table 5.1 presents the results including

the number of iterations and the details of island formation. A perturbation size of A‖ = 1× 10−3

is found to be too small to seed an island; no topology change can be seen. For perturbations in the



89

Figure 5.1 Flow chart of iterative scheme used in SIESTA. Figure from Hirshman, Sanchez,
Cook, 2011 PoP [55].
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HelPert A‖ # iterations Island formed?

1× 10−3 6 No

2× 10−3 7 Yes

3× 10−3 7 Yes

4× 10−3 8 Yes

5× 10−3 8 Yes

6× 10−3 12 Not converged

Table 5.1 Scan of input helical perturbation size A‖ in SIESTA. If the perturbation is too small,
no island is obtained. If the perturbation is too large, the simulation does not converge and the

flux surface structure breaks down.

range of A‖ = 2× 10−3 to 5× 10−3, an equilibrium with an island is obtained in 7 or 8 iterations.

Finally, A‖ = 6 × 10−3 is found to be too large of a perturbation, as the simulation does not con-

verge within 12 iterations and the flux surfaces are broken and stochastic due to the overly large

perturbation. These results demonstrate that the combination of non-ideal perturbations with resis-

tivity makes SIESTA relatively robust to the choice in A‖, with very similar equilibria obtained for

A‖ in the range of 2×10−3 to 5×10−3. The Lundquist number S = µ0LvA/η for an MST SIESTA

simulation with η = .01 is approximately S ∼ 2 × 103, which is quite low. This small Lundquist

number corresponds to a resistivity that is higher than that found experimentally for MST. This

high resistivity is always used in SIESTA simulations for convergence purposes; the code does not

follow physical timescales during its energy minimization descent. The large value for resistivity

helps the SIESTA simulations converge quickly. Recall that the resistivity is turned down to zero

as the force residual decreases, so that there is no resistivity once the final ideal MHD equilibrium

is obtained.

5.2 Including inertia with the SIESTAlfvén code

Once an equilibrium is found with SIESTA, the computed Hessian matrix gives half of the nec-

essary dynamics for computing the normal modes of the system. No inertial term is present during
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the energy minimization process; if inertia is included once an equilibrium is found, the proper

ideal MHD normal modes of the system can be computed from the Hessian and inertia matrices.

A post-processing code called SIESTAlfvén has been written to find the Alfvén eigenmodes from

a SIESTA equilibrium.

5.2.1 MHD eigenmode equations with inertia

In order to use SIESTA as an eigenmode solver, the inertia must be included in the MHD

equations. Returning to Eq. (5.29),

HnΓ = −Fn, (5.29)

this is the linearized ideal MHD momentum equation without the inertial term containing the mass

density. Including an inertia matrix T to be defined later in SIESTA coordinates, the ideal MHD

momentum equation is

−ω2TΓ = Fn + HnΓ. (5.40)

Once SIESTA converges and an equilibrium is found at iteration N , FN → 0, force balance is

obtained, and the linearization is about a proper MHD equilibrium. The momentum equation is

then linearized about the equilibrium:

−ω2TΓ = HNΓ. (5.41)

The Hessian matrix HN (H from this point on) is computed in SIESTA at each iteration and is

easily dumped from the code once an equilibrium is found. Obtaining the inertia matrix T from

SIESTA and solving Eq. (5.41) with SIESTAlfvén will be the topic of this section.

The linearized MHD equation, Eq. (5.41), is a generalized eigenvalue problem for eigenmode

Γ =
√
gξ and eigenfrequency ω2. This system contains the full MHD eigenspectrum, with the

shear Alfvén modes as a subset. Eq. (5.41) is written explicitly in terms of the desired physical

displacement vector ξ:

−ω2T
√
gξ = H

√
gξ. (5.42)
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In SIESTA coordinates, the inertia tensor is given by Tij = ρgij/
√
g. Substituting this into the

eigenmode equation results in

−ω2ρgijξ
j = Hij

√
gξj. (5.43)

Writing the eigenproblem in terms of ξj suggests the following forms for the modified Hessian and

inertia matrices:

H̃ij = Hij
√
g, (5.44)

T̃ij = ρgij. (5.45)

In terms of these modified tensors (which actually correspond to the physical Hessian and inertia),

the system to be solved with SIESTAlfvén is

−ω2T̃ijξ
j = H̃ijξ

j. (5.46)

5.2.2 Constructing the inertia matrix

A new module within SIESTA called inertia.f90 has been written for the purpose of dumping

out the necessary information from SIESTA for constructing H̃ij and T̃ij . The inertia module

is used by the existing hessian module within SIESTA, and the computeInertia subroutine from

the inertia module is called in hessian.f90 immediately after the blocks of the Hessian matrix are

dumped out. The computeInertia subroutine computes the quantities needed for the SIESTAlfvén

post-processing code and dumps them out to five text files.

First, the lower metric elements gij = ei · ej where i ∈ [r, u, v] are obtained from SIESTA. The

six lower metric elements gij in real space are available in the metrics module. There are only six

stored instead of nine because gij is a symmetric tensor so guv = gvu, gru = gur, and grv = gvr. The

inertia and Hessian matrices, T̃ij and H̃ij in Eq. (5.46), must be represented in Fourier m,n space.

Since the Hessian matrix Hij already computed in SIESTA is block-tridiagonal in Fourier space,

the generalized eigenvalue problem is naturally cast inm,n space. Working in Fourier space allows

for more efficient solution of the eigenvalue problem due to the tridiagonal block structure and the

solvers available for this type of matrix. The real space gij components from the metrics module

are Fourier transformed to obtain the m,n space components in the computeInertia routine. Next,
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these Fourier coefficients have to be packed into a metric matrix with two indices (row and column)

that each run through radius, (r, u, v) vector components, and toroidal and poloidal harmonics n

and m. This is primarily a book-keeping exercise, and involves translating the metrics stored in

an m,n array into an m,n,m′, n′ matrix where m,n are the Fourier components for the row index

and m′, n′ are the Fourier components of the column index. The translation from array to matrix

is performed according to m → m − m′ and n → n − n′. Additionally, the components must

remain bounded such that 0 ≤ m,m′ ≤ mmax and−nmax ≤ n, n′ ≤ nmax. The gij matrix is block

diagonal in Fourier space since the metrics are local quantities involving no coupling between

surfaces. The computed blocks are written out to the text file ‘TBLK.txt’ once SIESTA converges

to equilibrium.

Next the Jacobian
√
g is needed. Similar to the gij metrics, the Jacobian is stored in SIESTA

in real space in the quantities module. In computeInertia,
√
g is transformed to Fourier space. The

Jacobian is a scalar quantity, and thus only contains the radius and m,n components. It operates

on all vector components equivalently. The Jacobian is dumped to the ‘JBLK.txt’ file by the inertia

module at the end of the SIESTA simulation.

Some additional data from SIESTA needs to be dumped for constructing the shear Alfvén

displacement ξsurf from the eigenmode vector components ξr, ξu, and ξv once they are computed

by SIESTAlfvén. This process will be discussed in detail in Sec. 5.2.3. For now, it is important

to know that the covariant magnetic field components, ∇p data, metrics in real space, and Fourier

mode information from SIESTA need to be written out at the end of the simulation for future

post-processing. The real space gij components from the metrics module are written out to file in

‘siestametrics.txt’. Information on the Fourier representation in SIESTA is contained in the cos/sin

components in the islandparams module as well as the orthonorm parameter (for normalizing θ∗)

from fourier.f90. This data is written out to the ‘siestafourier.txt’ file. The ∇p components can

be obtained in the quantities module. The covariant B field components must be computed from

the contravariant components, which are also available in the quantities module. The contravariant

components are stored in real space, and the covariant components are computed in inertia.f90
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from the lower metrics and contravariant B according to

Br = griB
i, (5.47)

Bu = guiB
i, (5.48)

Bv = gviB
i. (5.49)

∇p and the Bi components are dumped out to the file ‘siestabfieldpres.txt’.

In addition to all of the new text files that are dumped out in inertia.f90, the hessian module

in SIESTA writes the Hessian matrix out to three text files. The main diagonal blocks are written

to ‘DBLK.txt’, the upper diagonal blocks are dumped out in ‘UBLK.txt’, and the lower diagonal

blocks are dumped in ‘LBLK.txt’.

With all of these text files written out at the end of a SIESTA simulation, the next step is to run

the siestapost program that was written to construct H̃ij and T̃ij from all of the dumped data. H̃ij

is computed in a very straightforward manner. Recall from Eq. (5.45) that H̃ij = Hij
√
g. Since

the Jacobian
√
g has been dumped in ‘JBLK.txt’ in matrix form and the SIESTA Hessian Hij is

dumped in matrix block form, the desired Hessian H̃ij is computed block by block by performing

matrix multiplication on the blocks of Hij and
√
g. This modified Hessian still retains the block-

tridiagonal structure of the original and is written to the file ‘amatrix.dat’ by siestapost to be read

in by the eigenvalue solver.

To compute T̃ij = ρgij , the gij components in Fourier space are read in from ‘TBLK.txt’.

SIESTA never explicitly calculates the plasma mass density ρ (recall there is no inertia in SIESTA),

so instead it is specified. The siestapost code reads in the density from the same ‘plasma.dat’ file

used by STELLGAP and AE3D. Wherever possible, SIESTAlfvén makes use of modular compo-

nents of AE3D post-processing routines so that simple comparisons can be made between the two

codes. A namelist of user-specified parameters for the density profile is read. The ion to proton

mass ratio mi/mp for the plasma species is obtained in this manner, and the ion density profile is

input through several modeling options including a polynomial fit, a constant profile, and several

other profile-shaping options. The radial density profile ρ is constructed from this namelist data

in siestapost and multiplied by the metric elements gij to obtain the inertia tensor T̃ij . Since the
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ion mass density ρ is a scalar, the multiplication is simple, with ρ(js) multiplying every Fourier

component of the gij block on surface js. T̃ij is a block diagonal matrix, just like Tij is.

Several other normalization factors are included in the computation of T̃ij . A factor of (2π)2 is

included in the inertia matrix to change the eigenvalue from ω2 in rad/s to f 2 in Hz. A factor of

(103)2 is also included to scale the eigenvalues in kHz. With the normalization factors, T̃ij = ρgij

is written out to ‘bmatrix.dat’. Finally, siestapost writes out a ‘jdqz.dat’ file for use by the JDQZ

eigenvalue solver, to be discussed in the next in Sec. 5.2.3. This file contains information about the

dimensions of the Hessian and inertia matrices, including the number of block rows and the size of

the blocks. It contains an array of included Fourier mode numbers m and n, as well as an array of

the radial surface locations from SIESTA. The surfaces must be specified according to SIESTA’s

uniform grid in r =
√
s.

At this point, we now have an eigenvalue problem for the physical displacements ξi and their

frequencies in kHz, f :

H̃ijξ
j = −f 2T̃ijξ

j. (5.50)

Writing out the individual components of the matrices and vectors explicitly gives the following:

H̃mnρ,m′n′ρ′

ij ξjm′n′ρ′ = −f 2T̃mnρ,m
′n′ρ′

ij ξjm′n′ρ′ , (5.51)

where m,m′ are poloidal mode numbers, n, n′ are toroidal mode numbers, and ρ, ρ′ are radial

indices. The displacement ξj is a column vector, and the mnρ before the comma in the superscript

of the two matrices is the row indexing while the m′n′ρ′ after the comma is the column indexing.

5.2.3 Solving for the MHD eigenmodes

In order to solve this generalized eigenvalue problem, a targeted eigenvalue solver called JDQZ

is used. The LAPACK routine dggev was initially used, but for problems of this size the dggev

serial generalized eigensolver was prohibitively slow. The Hessian and inertia matrices generally

contain 100 to 200 flux surfaces and mode ranges around mmax ∼ 5 and nmax ∼ 10. This gives

100+ block rows with block size 3(mmax + 1)(2nmax + 1) ∼ 380, therefore the system contains



96

around 38, 000 equations. Due to the shear size of this system, novel approaches have been applied

for finding the eigenmodes.

To get around the inefficient solution with LAPACK, SIESTAlfvén now uses JDQZ, a Jacobi-

Davidson algorithm for finding the eigenfunctions near a specified target frequency. By limiting

its eigenvalue search to modes near a target eigenvalue, JDQZ can run much more quickly than

an eigensolver that finds all the eigenvalues and vectors. The Hessian and inertia matrices H̃ij

and T̃ij are given to the JDQZ solver from the ‘amatrix.dat’ and ‘bmatrix.dat’ files, respectively.

Information about the matrix size is passed in through ‘jdqz.dat’, and the target frequency (in

kHZ) is specified as a command line argument. Within the JDQZ code, the number of desired

eigenmodes and frequencies can be set manually and is usually set to around 40. Once the JDQZ

code runs and finds the eigenmodes and frequencies, it writes the ξi contravariant components

to ‘gammasupsasci.dat’, ‘gammasupuasci.dat’, and ‘gammasupvasci.dat’ (the ‘gamma’ naming

convention is retained from an older version of the code, but these are indeed ξi and not Γi). The

eigenfrequencies are written to the ‘egnvalues.dat’ text file.

5.2.4 Constructing the shear Alfvén displacement

Now we have the capability to compute the spectrum of MHD eigenmodes and frequencies,

with the desired shear Alfvén modes as a subset. However, the current representation of the eigen-

modes as ξr, ξu, and ξv is not the most useful representation for studying the Alfvén displacements.

Recall from Chapter 2 that for shear Alfvén modes, the displacement is dominated by a binormal

surface component, given by

ξsurf = ξ · (B×∇Φ∗)/|∇Φ∗|2, (5.52)

where Φ∗ is the helical flux that labels magnetic surfaces in the presence of an island. The problem

with trying to compute this displacement from our ξi eigenvectors in SIESTA coordinates is that

there is no explicit Φ∗ coordinate that defines the flux surfaces in SIESTA. Recall that the (r, u, v)

coordinates come from the initial VMEC equilibrium without an island. At this starting point, the

flux surfaces lie on surfaces of constant r, so ∇r plays the role of ∇Φ∗. However, as soon as
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the islands begin to form through perturbations and resistivity as the simulation evolves, the flux

surfaces change but the coordinate system remains fixed. As an obvious example, take the region

local to an island;∇r, the radial direction from the closed nested flux surface initial equilibrium, is

now not perpendicular to the helical island flux surfaces at all. In fact, in some places it is parallel.

The solution to all of this lies in the pressure. In the initial VMEC equilibrium, the pressure

contours lie on surfaces of constant r and can be specified as radial profiles. Once an equilibrium

with islands is obtained in SIESTA, the pressure is no longer a function of r, but is now a function

of r, u, and v. Since the equilibrium is in ideal MHD force balance, J×B = ∇p, the flux surfaces

are still surfaces of constant pressure in a SIESTA equilibrium with an island. The perpendicular

to the flux surfaces can be identified with ∇p, which plays the role of ∇Φ∗. Using the pressure,

the shear Alfvén displacement in a SIESTA equilibrium is

ξsurf = ξ · (B×∇p)
|B×∇p|

. (5.53)

No problems from a uniform pressure have been encountered thus far, as ∇p 6= 0 inside an island

in a SIESTA equilibrium. A contravariant representation for the eigenmode displacements was

obtained using JDQZ, ξ = ξrer + ξueu + ξsev for each mode. A code has been written for

computing ξsurf from ξr, ξu, and ξv. The code, called xsurfdisp, is run after the JDQZ solver

has been used to find the eigenmodes and frequencies. It reads in the ξi components in Fourier

space from ‘gammasupsasci.dat’, ‘gammasupuasci.dat’, and ‘gammasupvasci.dat’. The magnetic

field and pressure gradient in real space are read in from ‘siestabfieldpres.txt’. Both vectors are

in a covariant representation, B = Br∇r + Bu∇u + Bv∇v and ∇p = ∂p/∂r∇r + ∂p/∂u∇u +

∂p/∂v∇v.

In order to compute the B×∇p vector, the∇p and B components are combined as follows:

(B×∇p)k = εijk
Bi√
g

∂p

∂xj
. (5.54)

Here εijk is the Levi-Civita symbol. The magnitude of the binormal vector is then computed in

the normal manner, with |B × ∇p| =
√
gij(B×∇p)i(B×∇p)j . The lower metric elements

gij in real space are read in from ’siestametrics.txt’. After normalizing the B × ∇p vector as

f = B×∇p/|B×∇p|, f is a true binormal.
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code STELLGAP AE3D SIESTAlfvén

equilibrium VMEC VMEC SIESTA

computes continua Y Y N

computes AEs N Y Y

compressibility N N Y

allows islands N N Y

Table 5.2 Comparison of the features of the STELLGAP, AE3D and SIESTAlfvén codes.

Next, them,n components of ξi from JDQZ are inverse-Fourier transformed back to real space.

The surface displacement component is computed in real space through the dot product between ξ

and f : ξsurf = gijξ
if j . Finally, the surface displacement is transformed back to Fourier space, and

the Fourier components of ξsurf are written to the file ‘xisurfasci.dat’. Now the actual binormal

shear Alfvén surface component of the eigenmodes have been obtained.

The displacement components ξr, ξu, ξv, as well as the surface component ξsurf have been

written to file in the same manner as is done in AE3D, and thus can be studied using the same

post-processing plotting routines developed for that code. An extension has been written for the

xplotegn routine written by Don Spong for analyzing modes from AE3D. With the new extension,

the SIESTAlfvén-computed AEs can be plotted and the user has the ability to specify the desired

component at the command line. Both the ξi components from the ‘gammasupxasci.dat’ files and

the ξsurf component from ‘xisurfasci.dat’ can be visualized in this manner. The normal component

has also been computed according to ξ⊥ = ξ · ∇p/|∇p|. For the shear Alfvén modes analyzed in

Chapter 6, this perpendicular component has been found to be about an order of magnitude smaller

than ξsurf .

A comparison of the features in the STELLGAP, AE3D, and SIESTAlfvén codes is shown in

Table 5.2. SIESTAlfvén is most closely related to the AE3D code; both are used to compute the

discrete Alfvén eigenmodes. Because of this, SIESTAlfvén is benchmarked with AE3D.
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5.3 Benchmarking SIESTAlfvén against AE3D for a TAE case

In order to benchmark SIESTAlfvén with the AE3D code, a circular RFP test case with a

q = 3/2 surface is used. Two Alfvén waves couple together at the 3/2 rational surface to form

the toroidicity-induced Alfvén eigenmode (TAE) gap mode. Recall that an m, n mode couples to

an m + 1, n mode at the radius where q = (m + 1/2)/n. Thus the q = 3/2 surface will couple

the m1 = 1 and m2 = 2 components of an n = 1 TAE mode. The STELLGAP code was used

initially to identify the TAE gap frequency range. The computed continua contain an m1 = 1,

m2 = 2-coupled TAE gap from 10−20 kHz. The frequencies are low because this test case comes

from an MST configuration with a q-profile that is scaled up to cross the 3/2 surface in the core.

In this test case, no perturbation is used in SIESTA so no island is present in the resulting

equilibrium. Because AE3D contains only incompressible dynamics∇ · ξ = 0 [5], while SIESTA

includes finite compressibility and retains Alfvén-acoustic wave coupling [55], care has to be taken

when comparing the two codes. In an effort to remedy this, the ratio of specific heats γ in SIESTA

has been increased from the standard value of 5/3 to 10. This large value of γ is used to approxi-

mate incompressibility in SIESTA.

AE3D and SIESTAlfvén were both run on this equilibrium to compute the discrete TAE. The

TAEs computed with AE3D and SIESTAlfvén agree quite well. The computed eigenfrequencies

agree to within 4%, with AE3D at 15.8 kHz and SIESTAlfvén at 16.4 kHz. As shown in Fiq. 5.2,

the TAE mode structures found with both codes are reasonably similar. Both are localized around

the r =
√
s = 0.1 surface, where the gap is located. Both consist of a coupling between the

m1 = 1, n = 1 and m2 = 2, n = 1 modes. The magnitude of the components, and not the sign,

should be compared between the two simulations. The differences in the computed modes may

be because AE3D computes in VMEC s = ψ poloidal flux space while SIESTAlfvén computes in

SIESTA r =
√
s space. The uniform radial mesh in r in SIESTA affords more resolution close

to the axis where this particular mode resides, while the uniform mesh in s in AE3D gives less

resolution in the core.
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a) AE3D

b) SIESTAlfven

Figure 5.2 Toroidicity-induced Alfvén Eigenmode test case computed using a) AE3D and b)
SIESTAlfvén. The mode is comprised of a coupling between the m = 1, n = 1 and m = 2, n = 1

Fourier components. The mode is localized near the q = 3/2 surface, as expected for this TAE.
The frequency of the mode is computed as 15.8 kHz with AE3D and 16.4 kHz with SIESTAlfvén.
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5.4 Summary

The SIESTA equilibrium code for resolving configurations containing magnetic islands has

been described. A new post-processing code called SIESTAlfvén has been introduced that con-

structs an inertia matrix along with the Hessian matrix obtained from a converged SIESTA equi-

librium. These matrices form a generalized MHD eigenvalue problem given by−ω2T̃ijξ
j = H̃ijξ

j

that SIESTAlfvén solves using JDQZ for the MHD mode displacements ξj and eigenfrequen-

cies ω2 for the configuration. These eigenmodes are analyzed to find the shear Alfvén modes.

The SIESTAlfvén code has been benchmarked against AE3D for a TAE test case, and reasonable

agreement was found.
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Chapter 6

Identification of the Island-induced Alfvén Eigenmode (IAE)

The continuum theory presented in Chapter 3 suggests that the n = 4 Alfvén bursts observed

in MST neutral beam-driven plasmas may be localized to the core of the n0 = 5 island present

in the core; these modes may arise from an island-induced helical coupling. Simulations using

the VMEC and STELLGAP/AE3D codes in Chapter 4 found a mode existing in the helical core

consistent with the predictions from theory. The mode frequency lies in the helicity-induced gap

as expected. These computational results lend credence to the idea that the MST modes are IAEs,

but a simulation containing a true island and separatrix are still needed to confirm that the island-

coupled mode is real.

In this chapter, the SIESTAlfvén code introduced in Chapter 5 is used to investigate the exis-

tence of an Island-induced Alfvén Eigenmode (IAE) in MST. SIESTA simulation results for MST

are presented. The configuration contains a sizable core n0 = 5 island is found in the equilib-

rium as expected from experiment. Using the SIESTAlfvén solver, an n = 4 IAE is identified in

this configuration, confirming that the Alfvénic activity on MST is indeed caused from an island

coupling. The characterization of this new class of Alfvén mode is detailed. Additional n = −1 ac-

tivity observed on MST is also discussed, along with several possible explanations for the mode. A

new mode called the Island-induced Global Alfvén Eigenmode (IGAE) is identified and proposed

to explain the observations.
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6.1 MST SIESTA equilibrium

The non-reversed MST configuration with an island from experiment has been reproduced

using the SIESTA code. Beginning with an axisymmetric VMEC equilibrium for the case with

Ip = 300 kA and Bζ = 0 on edge, SIESTA is run with a non-ideal magnetic perturbation of

A‖ = 3×10−3 Tm and standard resistivity of η = 0.01. The simulation converges to an equilibrium

with a negligible force residual (< 10−26) and a sizable m0 = 1, n0 = 5 island present in the

plasma core. 201 flux surfaces are used for this computation.

The pressure contours from the converged SIESTA equilibrium are shown in Fig. 6.1. The

surfaces of constant pressure are plotting in real R, Z space. Near the original magnetic axis, a

large island is present with poloidal mode number m0 = 1. The island width is about 15 cm and

has a bean-shaped appearance, consistent with reconstructions from experiment. If more pressure

surfaces are included in the plot, the original circular magnetic axis can also be seen, but the high

number of surfaces makes an overly busy figure that is difficult to see. Fig. 6.2 displays the

Poincaré puncture plots for the SIESTA magnetic field B through a surface of constant poloidal

angle, θ. The punctures are plotted in ζ , r =
√
s space. In this plane, the toroidal mode number

n0 = 5 is clearly visible.

6.2 The Island-induced Alfvén Eigenmode (IAE)

SIESTAlfvén is now used to investigate the MHD modes present in MST. The SIESTA equi-

librium is used to initialize the SIESTAlfvén eigenmode computations. Next, the siestapost routine

in SIESTAlfvén constructs the matrices needed for the MHD eigenmode problem, Eq. (5.50):

H̃ijξ
j = −f 2T̃ijξ

j. (5.50)

Along with the data from SIESTA, an ion density profile must be specified in order to compute

T̃ij = ρgij . In the ‘plasma.dat’ file the ion to proton mass ratio is set to mi/mp = 2 for deuterium

plasmas of interest to match MST experiment. The ionprofile=3 option in ‘plasma.dat’ is used,
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Figure 6.1 Contours of constant pressure in a poloidal plane from an MST SIESTA equilibrium.
The m0 = 1 character of the island is clearly visible. The circular axis is still present, and can be

seen if more surfaces are included in the plot.
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Figure 6.2 Poincaré puncture plot from the SIESTA B field intersecting a toroidal plane at
constant θ. Punctures are shown for r =

√
s vs. ζ . The n0 = 5 component of the island can be

seen clearly.
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Figure 6.3 Ion density profile for MST from the equation ni = n0

(
1− aρb

)c, plotted vs.
normalized poloidal flux. This profile is used for the SIESTAlfvén simulation.

which specifies an ion density profile in the form

ni = n0

(
1− aρb

)c
, (6.1)

where n0, a, b, and c are all specified by the user. Here ρ is the normalized poloidal flux (s from

VMEC). The physically relevant parameters from experiment were obtained from Jon Koliner.

The density on axis is n0 = 1 × 1019/m3 and a = 0.8, b = 2, and c = 2. The resulting profile

from these parameters is presented in Fig. 6.3. The profile has an integrated average density

of 〈ni〉 = 0.7 × 1019/m3 matching experiment. From this density profile and the Jacobian
√
g,

SIESTAlfvén constructs the matrices H̃ij and T̃ij .

6.2.1 Discovery of the IAE with SIESTAlfvén

Next, the generalized eigenvalue problem from Eq. (5.50) is solved using JDQZ in SIESTAlfvén.

The eigenmode solutions are then analyzed, as they contain both discrete modes and SIESTA’s ap-

proximations to continuum modes. The continuum modes tend to be nearly singular, but because

the SIESTA flux surfaces are not surfaces of constant r a radial singularity in the SIESTA radius r

does not correspond cleanly to a mode restricted to a single magnetic surface. This is a numerical
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issue stemming from the fact that our coordinate system from VMEC are not magnetic flux coordi-

nates in SIESTA. Because of this, SIESTAlfvén cannot currently be used to solve for the continuum

modes as STELLGAP does. After examining the solutions, a discrete mode was discovered at 145

kHz. In the plasma core, the B field is largely in the v direction. Globally, s remains the normal

to the original flux surfaces, so s is not a valid normal coordinate for the perturbed flux surfaces in

the vicinity of the island. Because of this, the shear Alfvén displacement is mainly in the poloidal

u direction. The contravariant u component of the mode ξu is presented in Fig. 6.4. It is found

that ξu >> ξs, ξv, as expected. The actual shear Alfvén surface component ξsurf is computed as a

post-processing step to the JDQZ solve by SIESTAlfvén. Recall from Sec. 5.2 that this component

is given by ξsurf = ξ · (B×∇p)/|B×∇p|. The IAE surface displacement is plotted in Fig. 6.5.

This component is valid even local to the island and illustrates the proper computed structure of the

mode. The mode is dominated by two peaks of n = 4 and n = −1 toroidal harmonics localized

to the core of the magnetic island, which extends from about r = 0.1 to r = 0.4. This mode is

the first identification of an island-induced Alfvén eigenmode, named here the IAE. The 145 kHz

frequency found is consistent with the 140 − 160 kHz observed on MST for the relevant Alfvén

speed, vA = 1.75 × 106m/s. It is also very close to the 149 kHz frequency found with AE3D in

Sec. 4.3.2.

6.2.2 Mode structure of the IAE

The double-peak character present in the IAE structure is consistent with the coupling between

mode numbers expected for gap modes (in this case δn = 5) [14]. This is the same type of

helical coupling present in the helicity-induced Alfvén eigenmode (HAE) in Fig. 4.6. Fig. 6.6

shows a cartoon of the helical/island coupling relevant to the IAE. Recall that the HAE found with

VMEC/AE3D in Chapter 4 for an n0 = 5 SHAx state was dominated by n = 4 and n = −1

harmonics, corresponding to δn = 5. This δn = 5 helical coupling is also present in the IAE mode

computed with SIESTAlfvén. The IAE was discovered in an island with n0 = 5 field periods. The

island-induced Alfvén eigenmode has the same coupling as an HAE and arises due to the island’s
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island

Figure 6.4 Island-induced Alfvén Eigenmode (IAE) in MST computed with the SIESTAlfvén
code. The Fourier mode components of the contravariant u (poloidal) component of the

displacement are plotted vs.
√
ψ. The IAE is localized within the magnetic island. The frequency

of the mode is 145 kHz, in agreement with 140− 160 kHz from experiment.
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island

Figure 6.5 Island-induced Alfvén Eigenmode (IAE) in MST computed with the SIESTAlfvén
code. The Fourier mode components of the proper shear Alfvén surface displacement are plotted
vs. r =

√
s. The mode is dominated by an island-induced helical coupling between the n = 4 and

n = −1 Fourier components and is localized within the magnetic island. The frequency of the
mode is 145 kHz, in agreement with 140− 160 kHz from experiment.
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helical behavior. However the IAE is localized to the core of a magnetic island, while an HAE is

found in the bulk plasma of a stellarator or an RFP in a SHAx state.

The poloidal Fourier harmonic m is the mode number with respect to VMEC θ. Recall that

SIESTA represents fields in terms of a static set of VMEC coordinates, r =
√
s, u = θ, and v = ζ;

for example the pressure is represented as

p =
∑
m,n

pm,n(r) cos(mu+ nv). (6.2)

Once a magnetic island forms, u is no longer a “poloidal”-like angle on surfaces in and near

the island. A flux surface in the island extends through a range of both r and u, and the island

is localized to a small range of poloidal angle u. Because of this, m is not a good number for

surfaces inside the island. For a mode localized to the core of an island, as the IAE in Fig. 6.5 is,

the poloidal mode numberm is not very meaningful since an infinite number of poloidal harmonics

in the Fourier transform would be necessary to properly capture the mode. This explains the high

amount of mode content present in the eigenmode. The Fourier components in the IAE with lower

amplitudes are almost entirely made up of the other m values for n = 4 and n = −1. This

significant m mode content does not decrease with more flux surfaces and is present in simulations

containing 100 to 300 surfaces. Instead of m, the proper mode number inside the magnetic island

is jin as discussed in Chapters 2 and 3. Unfortunately this quantum number from theory is not

available from the VMEC coordinates in SIESTA, or the measurements from experiment for that

matter. The n value from SIESTA is referenced with respect to a toroidal transit around the device

and is a useful, physical mode number.

6.3 Unexplained n = −1 activity on MST

The two main Fourier components of the SIESTAlfvén-computed IAE are the n = 4 and

n = −1. The Alfvénic burst observations from MST discussed thus far have all been n = 4. It

turns out that n = −1 activity has also been observed on MST. Fig. 6.7 from Lin [54] shows the

temporal evolution of n = 5, n = 4, and n = −1 beam-driven instabilities on MST measured

through poloidal magnetic field fluctuations. Generally an n = 5 energetic particle mode (EPM)
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Figure 6.6 Cartoon showing the n and n+ δn toroidal harmonics coupled together to produce the
Island-induced Alfvén Eigenmode (IAE). The mode is localized in the core of the magnetic

island.
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is excited first, followed by a brief transition through an n = −1 mode at a low-amplitude to the

n = 4 Alfvén eigenmode that has been discussed in detail throughout this thesis. The n = −1

mode is observed at a smaller amplitude than the n = 4 AE and a much smaller amplitude than the

n = 5 EPM, making it more difficult to characterize. Additionally, the n = −1 mode is observed

through density fluctuations at a radial location that is slightly outboard from the location of the

n = 4 AE. Fig. 6.8 shows temporal evolution and radial resolution of density fluctuation data for

the n = 5, n = −1, and n = 4 modes; the transition from n = 5 to n = −1 to n = 4 is clearly

visible in these plots. The n = 5 EPM is predominantly located on the inboard side, while the

n = 4 AE is localized to the outboard side, with the n = −1 mode located further outboard.

The n = −1 mode is still incompletely characterized from experiment at the time of this

writing; ongoing experiments are being performed on MST to further identify this mode. There are

two main questions regarding the mode that remain unresolved. First, the type of mode needs to be

identified. It is unclear whether the n = −1 mode is an Alfvén Eigenmode, an EPM, or something

else. In order to determine this, experimental scalings of the mode frequency with the NBI velocity

and the Alfvén speed are needed. If it is determined that the n = −1 mode is an AE, the second

question is whether it is a unique instability or part of an already-identified mode. In order to

answer this question, the frequency of the mode needs to be carefully measured experimentally.

If the frequency matches the frequency of another instability, it may be a component of that same

mode. If it has a different frequency, it is probably something distinct. Early observations have

identified that the n = −1 mode oscillates at f = 65 kHz [54], but more thorough investigations

are currently underway on MST. The reason it can be difficult to measure the frequency is because

of the mode’s small amplitude and fleeting nature.

Assuming for now that the n = −1 mode is an AE (this should be proven or disproven in the

near future through more refined measurements), there are three potential candidates for the type

of Alfvén eigenmode. The n = −1 AE could be a Fourier component of the same IAE that was

already detailed in this chapter. It could be a beta-induced Alfvén eigenmode (BAE) living below

the BAE accumulation point frequency. Finally, it could be a new type of island-induced global
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Figure 6.7 Temporal evolution of n = 5, n = 4, and n = −1 NBI-driven modes in MST. The
modes are measured through edge poloidal magnetic field fluctuations. The n = 5 EPM peaks

first, followed by a quick transition through the n = −1 to the n = 4 AE. Figure from Lin et al.,
2013 PoP [54].

Figure 6.8 Temporal vs. spatial density fluctuation activity on MST. The first plot contains the
n = 5 EPM, the second the n = −1 mode, and the third the n = 4 AE. Figure from Lin et al.,

2013 PoP [54].
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Alfvén eigenmode with a frequency below the lowest continuum branch in the core of the island.

Each of these possibilities will now be examined.

6.3.1 n = −1 mode as a Fourier component of the IAE

The n = −1 mode could be a Fourier component of the island-induced Alfvén eigenmode

(IAE) discussed in Sec. 6.2. The IAE computed with SIESTAlfvén shown in Fig. 6.5 is comprised

of dominant n = 4 and n = −1 Fourier harmonics from the island’s δn = 5 coupling. The n = 4

component of the mode has been observed in experiment in the range of 140 − 160 kHz, which

agrees with the computed 145 kHz. The n = −1 mode observed on MST could be the other

dominant Fourier component of the IAE. If this was the case, the n = −1 should be observed

around 140−160 kHz, along with the n = 4 mode since they would be part of the same instability.

While still inconclusive, current measurements of the mode at about 65 kHz point to a different

explanation. In addition, the n = −1 mode also occurs at a slightly different time and radial

location from the n = 4 activity, further hinting at a different, independent character for this mode.

6.3.2 n = −1 mode as an island-upshifted BAE

The n = −1 mode could be an Island-upshifted Beta-induced Alfvén Eigenmode, or IBAE.

BAE modes are extremum modes that lie below the lowest minimum of the continuum frequencies.

Though it is still a shear Alfvén mode, the BAE requires acoustic coupling through the slow-sound

approximation γp/ρω2R2
0 � 1 in order to retain the compressional response of the fluid to trans-

verse Alfvén waves [33]. The effects of a magnetic island on the BAE continuum accumulation

point frequency, ωBAE were detailed in Chapter 2 and again in Chapter 3 for MST, EAST, and FTU

parameters. The BAE frequency is the minimum frequency of the continuum that occurs at the ra-

tional surface (in the absence of an island) when the geodesic curvature from the torus and finite

beta effects are included. Recall that the island moves the BAE minimum continuum frequency to

the separatrix and upshifts the frequency according to Eq. (3.12) from Chapter 3:

fsep =

√
f 2
BAE +

(
εk‖vA

)2

8
. (3.12)
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If the n = −1 mode observed in MST experiment lies below the minimum frequency ωsep, it

would be consistent with an upshifted IBAE. Experimentally the n = −1 mode is found at 65 kHz.

Using MST parameters, the minimum frequency at the separatrix from Eq. (3.12) was calculated in

Chapter 3 to be fsep = 25.7 kHz with only a small upshift from the magnetic island. This minimum

continuum frequency is considerably lower than the observed 65 kHz, making the n = −1 activity

incompatible as an IBAE. This is consistent with expectations for MST, which has weak geodesic

curvature κs making finite beta effects less important.

In addition to the n = −1 activity occurring at a frequency above the island-upshifted BAE gap,

the observations are also qualitatively different from the BAE activity in the presence of islands

observed on the EAST, FTU, and TEXTOR tokamaks discussed in Chapter 3 [6, 47, 8]. On these

tokamaks, BAEs are always observed in pairs with opposite toroidal mode numbers (for example

n = 1 and n = −1), which form standing waves within the island and are believed to receive

their energy from nonlinear coupling to the tearing mode. In contrast, the n = −1 bursts on MST

have not been observed with any counter-propagating n = 1 activity. Additionally Fig. 6.7 shows

that the n = −1 mode amplitude actually increases as the n = 5 tearing mode amplitude (island)

increases. If the n = −1 mode on MST drew its energy from the tearing mode as the BAE does in

tokamaks, then the tearing amplitude should decrease as the n = −1 ramps up. All of this suggests

that the n = −1 is not a island-upshifted BAE.

6.3.3 n = −1 mode as an Island-induced Global Alfvén Eigenmode (IGAE)

The n = −1 mode could be a second type of mode resulting from island effects, identified here

as the Island-induced Global Alfvén Eigenmode or IGAE. Motivation for this new AE stems from

the fact that the IAE identified in this thesis exists in the gap between the n = −1 (jin = 1) and

n = 4 (jin = 2) continua computed in STELLGAP, which correspond to the lowest two branches

in the island from theory. A discrete mode could exist beneath the lowest n = −1 (jin = 1)

continuum frequency branch. The continuum branches all contain an extremum at the O-point in

the form of a local frequency maximum; see Figs. 2.2 and 2.3 in Chapter 2. Recall from Eq. (2.10)
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in Chapter 2 that the rotational transform inside the island is given by

Ω =
πε

4K(κ2)
. (2.10)

At the O-point (κ = 0), the shear in the island rotational transform goes to zero, limκ→0 ∂Ω/∂κ =

0. Similar to a reversed-shear Alfvén eigenmode (RSAE) [62], an extremum in the rotational trans-

form profile ∂Ω/∂κ = 0 corresponds to an extremum in the continuum ∂ω/∂κ = 0 at the island

O-point. It has long been established that an extremum in the Alfvén continuum frequencies can

allow for discrete modes localized near the extremum point [62, 63]. These modes are known as

global Alfvén eigenmodes or GAEs, and exist at a frequency below the extremum continuum fre-

quency. Because the radial variation in the frequency spectrum vanishes at the O-point extremum

∂ω/∂κ = 0, an effective potential well exists that traps the Alfvén wave, creating a GAE [14]. The

absence of magnetic shear is the “defect” that localizes the mode. The GAE is characterized by a

single poloidal and a single toroidal mode number, m and n, without the δm, δn couplings present

in gap modes.

With this extremum in the Alfvén continuum as motivation, an AE scan for a GAE was per-

fomed using the AE3D code. The frequency extremum of the n = −1 branch at the O-point was

found with STELLGAP at 110 kHz. Therefore a GAE mode would be expected in the 0 − 110

kHz range if it exists. Running AE3D in the base case of Ip = 300 kA discussed in Chapter 4, a

discrete mode was found at 76 kHz. As seen in Fig. 6.9, the mode is localized to the helical core

of the “island” in this SHAx equilibrium. It is almost entirely composed of an m = 0 and n = −1

Fourier component, consistent with a GAE. These mode numbers also agree with the STELLGAP

continua computed in Chapter 4 in Figs. 4.2 and 4.3; the lowest continuum branch is m = 0,

n = −1. The computed mode frequency of 76 kHz is quite close to the current experimental mea-

surements of 65 kHz for the n = −1 mode. In addition, early experimental measurements indicate

that this instability has poloidal mode number m = 0, in agreement with the computed AE.

All of this points to the identification of the n = −1 activity on MST as a separate m = 0,

n = −1 global mode at 65 − 75 kHz named here the Island-induced Global Alfvén Eigenmode

or IGAE. A separate n = −1 IGAE and n = 4 IAE agrees with the experimental findings of

n = −1 and n = 4 activity peaking at different times and radial locations (see Fig. 6.7). Two
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helical "island" core 

Figure 6.9 Island-induced Global Alfvén Eigenmode (IGAE) computed with AE3D for MST
base case with Ip = 300 kA. The mode is dominated by a single poloidal and toroidal harmonic,
m = 0 and n = −1, as expected for a GAE. The eigenfrequency computed is 76 kHz, close to the

current experimental measurements of 65 kHz for the n = −1 instability.
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distinct island-induced modes also explains the disparate frequency measurements of 150 kHz for

the n = 4 activity and 65 kHz for the n = −1. Further experimental measurements of the n = −1

mode are required to determine satisfactorily whether the instability is indeed an AE and to confirm

the mode frequency of 65 kHz. Currently the IGAE looks to be the most plausible explanation for

the n = −1 burst activity. Further numerical identification of the IGAE can be investigated with the

SIESTAlfvén code and a proper island treatment if warranted in the future based on experimental

findings.

The identification of the n = 4 IAE and the possible identification of the n = −1 IGAE leads

to the following physical picture for the NBI-driven activity in MST presented in Fig. 6.7: An

n = 5 EPM instability is driven by the beam in the core of the n0 = 5 island. The mode is resonant

with the island and draws additional energy from the tearing mode, leading to a decrease in tearing

mode amplitude. The EPM localized in the island destabilizes a quick succession of Alfvén modes;

first the n = −1 IGAE at a lower frequency and amplitude and second the n = 4 IAE at a higher

frequency and amplitude. The EPM transfers its energy into the two AEs and dies off, allowing

the tearing mode to rise again.

6.4 Summary

The SIESTAlfvén code has been used to identify the first true Island-induced Alfvén Eigen-

mode (IAE) in an MST equilibrium containing an n0 = 5 island. The mode results from a helical

coupling of δn = 5 in the core of the island. The IAE is dominated by n = 4 and n = −1

toroidal harmonics and was found at a frequency of 145 kHz, consistent with the 140 − 160 kHz

n = 4 Alfvénic activity observed on MST. The MST observations are now believed to be the first

experimental identifications of an IAE. This new type of AE is consistent with the island-induced

continuum gap from the theory presented in Chapter 2.

An additional mode, named here the Island-induced Global Alfvén Eigenmode (IGAE) has

been found in an MST SHAx equilibrium using AE3D. The mode exists below the minimum

n = −1 continuum branch and is an n = −1-dominated mode. The IGAE appears to explain the

low-frequency n = −1 activity that has been observed on MST immediately preceding the n = 4
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mode. This IGAE has been found at 76 kHz, and the experimental n = −1 bursts are observed

at 65 kHz. This island-induced mode may be the best candidate for the unexplained bursts, but

additional experimental measurements and characterization is needed.

The three new types of island-modified Alfvén eigenmodes presented in this thesis: the Island-

induced Alfvén Eigenmode (IAE), the Island-induced Global Alfvén Eigenmode (IGAE), and the

Island-upshifted Beta-induced Alfvén Eigenmode (IBAE), are all shown schematically in Fig. 6.10

along with the Alfvén continua. The IAE exists at the highest frequency of the three, in the helical

gap between the jin = 1 and jin = 2 continuum branches. The IGAE exists below the jin =

1 branch in the core of the island. Finally, the IBAE exists at the lowest frequency below the

continuum accumulation point frequency. The IBAE is the only one of the three not restricted to

the interior of the island; it can extend beyond the separatrix without coupling to the continua.
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IAE

IGAE IBAE

Figure 6.10 Schematic of the radial extent and frequency range of the Island-induced Alfvén
Eigenmode (IAE), the Island-induced Global Alfvén Eigenmode (IGAE), and the

Island-upshifted Beta-induced Alfvén Eigenmode (IBAE), along with the Alfvén continua in the
presence of an island from theory.
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Chapter 7

Conclusions and future work

In this dissertation, the shear Alfvén continua and discrete Alfvén eigenmodes in the presence

of a magnetic island have been studied both analytically and numerically. A global dispersion re-

lation for the Alfvén continuum valid both inside and outside the island was found analytically for

the first time. A new type of Alfvén instability, christened here the Island-induced Alfvén Eigen-

mode or IAE was shown numerically to exist in the core of an island using the new SIESTAlfvén

code. A previously unexplained Alfvénic instability on the Madison Symmetric Torus (MST) RFP

has been identified as the first experimental observation of an IAE.

In Chapter 2, the shear Alfvén continuum was studied analytically in the presence of a magnetic

island. A magnetic island coordinate system was employed in the ideal MHD equations, allowing

the magnetic field to be represented in straight field-line form throughout the domain, inside and

outside the island. The Alfvén continuum wave equation was solved using a WKB expansion in

the small parameter δ = Ω/ω̂ ∼ ε, where Ω is the island rotational transform, ω̂ is the normalized

eigenfrequency, and ε = q′0w/2 is the normalized island half-width. Through WKB analysis, the

solution for the continuum modes and frequencies was found analytically for the first time for

surfaces both inside and outside the island. The continuum frequencies computed can be written

in a closed-form dispersion relation, valid on any flux surface:

ω̂2 =

jΩ
2

+

√(
jΩ

2

)2

+
q′0
2

(
Ψ∗ − 1

2
ΩΦ∗

)2

. (2.46)

The minimum frequency of the continuous spectrum moves from the resonant, rational surface

in the absence of an island to the separatrix when an island is present. Additionally the frequency



122

is upshifted at the separatrix, resulting in the following new minimum frequency:

ω2
sep = ω2

BAE + (q′0w)2ω2
A/32. (3.11)

This is the first time this separatrix frequency has been derived analytically. After transforming

to the proper coordinates, this is the same frequency upshift found numerically by Biancalani

[12]. The analytic solution presented in this thesis also handles the boundary conditions within

the magnetic island properly. In Biancalani’s shooting method code approach, solutions with odd

and even parity were included for all values of jin. Our work here identifies that the solutions are

restricted to odd parity for odd jin and even parity for even jin.

In Chapter 3, the shear Alfvén continuum derived in Chapter 2 was used to compute the con-

tinua for MST parameters and the n0 = 5 island identified from experiment. Using the equation

for the continuum at the O-point of the magnetic island,

f =

√
f 2
BAE +

n2
0jin (jin + 2)

4
ε2k2
‖v

2
A, (3.9)

the lowest two continuum branches for jin = 1 and jin = 2 in the core of the island were shown

to envelope the observed n = 4 Alfvénic bursts in Fig. 3.7. Thus the experimental n = 4 Alfvénic

activity is consistent with a gap mode located in the core of the island. The continuum theory

was also used to explain BAE activity observed during tearing mode activity on the EAST and

FTU tokamaks. The island-induced continuum upshift explains the high discrete BAE (or Island-

upshifted BAE, IBAE) frequencies observed on EAST.

Previous numerical investigations of the continua using STELLGAP had neglected the core

island and failed to identify gaps that could explain the observed AEs. With the theoretical island

continua from Chapter 3 sandwiching observations as motivation, a new attempt at STELLGAP

and AE3D computations was detailed in Chapter 4. The island was modeled as the n0 = 5 helical

core of a Single Helical Axis (SHAx) equilibrium in VMEC, and STELLGAP and AE3D were

run using this configuration. The SHAx state retains the essential helical couplings present in

the island core, but does not contain a separatrix and both magnetic axes. The computed continua

from STELLGAP contain a sizable gap in the “island” core, with frequencies consistent with those
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from theory. The gap coupling found is m = 1, n = 4 and m = 0, n = −1, consistent with the

δn = 5 coupling for the helical core. Using the AE3D code for discrete modes, a helicity-induced

Alfvén eigenmode (HAE) was found in the frequency gap. The mode is characterized by strong

m = 1, n = 4 and m = 0, n = −1 components, as expected from the island-induced gap and

agreeing with the m = 1, n = 4 mode numbers measured experimentally. The 149 kHz frequency

also agrees with observations on MST.

In Chapter 5, a new tool to calculate shear Alfvén eigenmodes in the presence of a magnetic

island was introduced. The novel SIESTAlfvén code was built as a post-processing step to the

SIESTA equilibrium code, which computes ideal MHD equilibria containing magnetic islands.

SIESTAlfvén computes an inertia matrix T̃ij along with the Hessian matrix H̃ij from SIESTA

and solves the generalized eigenvalue problem −ω2T̃ijξ
j = H̃ijξ

j . The solutions are the full

MHD eigenmodes, including the shear Alfvén modes of interest. The SIESTAlfvén code was

benchmarked against the AE3D code for a TAE test case with no islands, and good agreement was

found.

In Chapter 6, an MST configuration with an n0 = 5 island was modeled in SIESTA, and the

SIESTAlfvén code was used to study the MHD modes of the resulting equilibrium. An Island-

induced Alfvén Eigenmode (IAE) was found at 145 kHz, consistent with the 140− 160 kHz from

experiment. The IAE is localized to the core of the island, and is dominated by n = 4 and n = −1

Fourier modes as expected from the δn = 5 island coupling. The n = 4 Alfvénic activity on MST

is believed to be the first experimental observation of this new IAE.

Additional, unexplained n = −1 activity has been observed on MST at approximately 65

kHz. An n = −1 Island-induced Global Alfvén Eigenmode (IGAE) has been discovered with the

AE3D code. This mode exists in the core of the island below the lowest continuum branch. The 76

kHz mode is in reasonable agreement with the observed frequency and may explain the n = −1

activity observed on MST. Further experimental probing of the n = −1 mode is needed in order to

determine whether it scales with the Alfvén speed and to confirm the frequency. However based on

current experimental measurements, the IGAE appears to be a likely candidate for this instability

on MST.
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The identification of three different Alfvén eigenmodes modified or created by an island in this

thesis leads to an interesting question: Does the whole Alfvén zoo exist in the island? The IAE is

caused from the helicity of the island, analogously to an HAE. The IGAE is a global AE restricted

to the core of the island and is similar in nature to a GAE or RSAE (reversed-shear). The IBAE

is a BAE upshifted by the island. Since the island counterparts of three of the well-known AEs

have been identified in this thesis, it may very well be that the “whole zoo is on the island”, and

Island-induced TAEs, Island-induced EAEs, and Island-induced MAEs also exist. The island does

contain a separatrix, after all, and is in a very real way a stellarator embedded in another topology.

It seems reasonable that island versions of the Alfvén eigenmodes present in a stellarator could all

exist, possibly with interesting characteristics and couplings due to the larger device in which the

island exists.

As the fusion community looks forward to ITER and the future, Alfvén instabilities become

even more important. The energetic α-particles produced in ITER (or a fusion reactor) will provide

a strong destabilizing drive for AEs. In ITER the α speed will be comparable to the Alfvén speed,

vA < vα < 2vA [1], leading to a strong resonance between energetic particles and Alfvén modes.

An Island-induced Alfvén Eigenmode (IAE) instability has been shown to exist in MST during

neutral beam injection. The stronger energetic particle drive may make this type of instability even

more problematic for high temperature, fusion-relevant plasmas containing islands. Because of

this, the discovery of the IAE in MST and the description of the IAE in this thesis may serve as

a word of caution toward planned islands in experiment. The presence of an IAE instability in an

island could compound problems from neoclassical tearing modes evolving during the discharge.

Island divertors, such as those in Wendelstein 7-X, and resonant magnetic perturbations (RMPs)

for mitigating edge-localized modes (ELMs) in tokamaks both utilize islands to maintain or control

confinement. While these concepts may accomplish their intended tasks and may very well prove

necessary, they may also open the door to the new types of island-induced Alfvénic instabilities

described in this dissertation.
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Future work

There are many different research directions that can build on this work on the Alfvén spectrum

in the presence of islands. Everything presented in this thesis was based on the ideal MHD model.

Because the energetic particle drive is crucial in determining the growth rate of Alfvén modes, the

current MHD model is only able to predict the mode frequency, but not the growth rate. A proper

kinetic treatment that incorporates finite Larmor radius effects is necessary to determine the growth

rate of these instabilities, which could then be compared to experimental measurements on MST.

Some work has been done using kinetic theory to determine the growth rate and instability mech-

anism of an island-modified BAE mode [64]. A similar analysis could in principle be investigated

for the IAE found here. Betti and Freidberg have a generalized kinetic analysis for the growth

rate of Alfvén eigenmodes [65]. They find that the growth rate is determined by the competing

energetic alpha particle drive and the electron and ion Landau damping.

The growth rate problem could also be studied computationally using gyrokinetic or gyro-fluid

codes. Most of the current codes, such as the gyrokinetic codes EUTERPE, GENE, GYRO, and

GTC [66, 67, 68] and the gyrofluid code TAEFL [69], operate in simplified geometries (some sim-

ply flux tubes) and would need modifications to run on the complex three-dimensional geometry

of an island embedded in a larger equilibrium. These types of codes could be an invaluable tool for

understanding plasma kinetic effects and drives for Alfvén instabilities if adopted to more flexible

geometries. Recently Don Spong has added the ability to use a VMEC equilibrium to initialize the

Gyrokinetic Toroidal Code (GTC). This is a large first step, since a 3D MHD equilibrium can now

be used instead of the simple 2D Grad-Shafranov EFIT equilibria used previously. In the future,

if SIESTA equilibria could be used to initialize GTC, the EP-Alfvén wave interactions could be

studied numerically in the presence of an island. From this the growth rate of the IAE could be

calculated.

Because SIESTAlfvén includes finite compressibility∇·ξ 6= 0, it could be interesting to see an

analytic theory for the Alfvén continuum with finite plasma wave compressibility. A compressional

theory would allow the shear Alfvén wave to couple to the acoustic wave, which can lead to
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compressional Alfvén waves (CAWs) and beta-induced Alfvén-acoustic eigenmodes (BAAEs). In

these modes, the wave polarization contains an additional ξ‖ component in addition to the normal

shear Alfvén ξ⊥ component. The effects of Alfvén-acoustic couplings on the Alfvén continua in

an island remains an open question.

The shear Alfvén continuum analysis of Chapter 2 was performed for waves of the same he-

licity as the magnetic island, that is l = 0. The l 6= 0 case would further generalize the theory.

Secondary resonances are expected for these modes inside the island at surfaces of rational island

rotational transform Ω, where l0 − j0Ω = 0.

The SIESTAlfvén code currently is able to compute discrete AEs with a finite radial extent in

the plasma. However, it does not resolve the continuum modes to a satisfactory level to compute

the shear Alfvén continua as STELLGAP does for VMEC equilibria. One proposed method for

accurately obtaining these continuum frequencies is to use the individual blocks from the SIESTA

Hessian matrix H̃ij . The blocks correspond to a single surface, so solving the diagonal blocks one

at a time would remove the cross-surface coupling and could provide the appropriate continuum

frequencies. The difficulty here is that the surfaces are in terms of the VMEC radial coordinate s,

and thus do not correspond to physical magnetic flux surfaces once an island is formed in SIESTA.

The coordinate surfaces are drastically different from the flux surfaces inside the magnetic island

and in the surrounding region. A reformulation of the Hessian matrix blocks in terms of the flux

surfaces obtained from the pressure profile with an island may be one method that could be used

to properly compute the Alfvén continuum from SIESTA.

Analytically, there are several other interesting directions that could be pursued. First, this

thesis employed analytic theory for the Alfvén continuum, and left the computation of discrete

AEs exclusively to numerical simulation using AE3D and SIESTAlfvén. Direct analysis of global

modes using ideal MHD is extremely complicated, but it may be possible to make some ana-

lytic progress on the discrete modes through a reduced MHD formulation [21]. Analytic theory

analogous to the work of Cheng and Chance for the TAE mode may prove useful [16], albeit the

geometry will be much more complicated for the island case of interest than the large aspect-ratio,

two-dimensional tokamak equilibrium studied there.
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A resistive MHD treatment of the Alfvén spectrum may is also an interesting topic. If the

island is allowed to grow or shrink by pulling energy from the Alfvén wave, this may lead to a

better understanding of the dynamics of island evolution in the presence of strong particle-drive.

The nonlinear interaction and energy transfer between Alfvén instabilities and tearing modes is an

interesting topic that is ripe for investigation.

Finally this dissertation investigated IAEs in an island in MST, an RFP. The geometry of an

island in a circular RFP is much less complicated and involves less potential couplings than an

island in a stellarator or a 3D tokamak with considerable shaping. A helical stellarator containing a

helical island with different m0 and n0 numbers from the device is a very interesting configuration,

and the resulting IAEs and couplings could be quite different in character than the IAE in an RFP

studied in this thesis. These could be of practical importance, due to the presence of island divertors

on the Wendelstein 7-X stellarator [70]. The SIESTAlfvén tools described in this thesis could be

used to investigate IAEs in stellarators with islands, such as Wendelstein 7-X.



APPENDICES



128

Appendix A: C, D, E, and F matrix operators

The following are the C, D, E, and F matrix operators from Cheng and Chance’s derivation of

the Alfvén continuum in a toroidal equilibrium [16]. The operators can be generalized to equilibria

containing magnetic islands by replacing the poloidal flux ψ with the helical flux Φ∗:

C11 = κψ, (A.1)

C12 = ω2ρ+ p′κψ + |∇ψ|2B · ∇
(
|∇ψ|−2B · ∇

)
+
(
B · J− ŝ|∇ψ|2

) (
ŝ|∇ψ|2/B2

)
,(A.2)

C21 = 0, (A.3)

C22 = −|∇ψ|2∇ ·
(
∇ψ/|∇ψ|2

)
, (A.4)

D11 =
(
|∇ψ|2ŝ−B · J

) (
|∇ψ|2/B2

)
B · ∇, (A.5)

D12 = γpκψ, (A.6)

D21 = |∇ψ|2
[
κs − (B×∇ψ)/B2 · ∇

]
, (A.7)

D22 = |∇ψ|2
[
1 +

γp

ω2ρ
B · ∇

(
B · ∇
B2

)]
, (A.8)

E11 =
ω2ρ|∇ψ|2

B2
+ B · ∇

(
|∇ψ|2B · ∇

B2

)
, (A.9)

E12 = γpκs, (A.10)

E21 = κs, (A.11)

E22 =
γp+B2

B2
+

γp

ω2ρ
B · ∇

(
B · ∇
B2

)
, (A.12)

F11 = −κs + (B×∇ψ)/B2 · ∇, (A.13)

F12 = B · ∇
(
|∇ψ|2/B2

)
ŝ−

[
(J ·B)/B2

]
B · ∇ − p′κs, (A.14)

F21 = −1/B2, (A.15)

F22 = −κψ/|∇ψ|2. (A.16)

Here κ = (B/B) · ∇(B/B), κψ = 2κ · ∇ψ, and κs = 2κ · (B×∇ψ/B2) are the curvature terms.

ŝ = (B×∇ψ/|∇ψ|2) · ∇ × [(B×∇ψ)/|∇ψ|2] is the negative local magnetic shear.
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Appendix B: Island rotational transform inside separatrix

Beginning with the helical flux function Ψ∗ from Hegna and Callen’s paper [28], defined as

Ψ∗ =

∫
(q − q0)dψ − A cos(n0α) ≈ q′0

x2

2
− A cos(n0α), (B.1)

the island rotational transform Ω(Ψ∗) within the island separatrix will be derived. Here q′0 =

dq
dψ

∣∣∣
ψ=ψ0

and x = ψ − ψ0. A characterizes the “amplitude” of the magnetic island and α =

ζ − q0θ + φ0

n0
with q0 = m0

n0
. The island width in flux space will be used during the derivation as

well. This is given by

w = 4

√∣∣∣∣Aq′0
∣∣∣∣. (B.2)

The island rotational transform is given by the following expression:

Ω(Ψ∗) =
1∮ (

n0dα
2π

) [
1/∂Ψ∗

∂x

] . (B.3)

From the approximate helical flux in Equation B.1 one can derive

∂Ψ∗

∂x
=
√

2q′0(Ψ∗ + A cos(n0α)). (B.4)

Substituting this into Equation B.3 and setting a = n0α yields

Ω(Ψ∗) =
1∮ (

da
2π

)
1√

2q′0(Ψ∗+A cos a)

. (B.5)

The closed integral in the denominator is evaluated from amin to amax and back again on a helical

flux surface. Since ∂Ψ∗

∂x
switches signs across the rational surface, the closed integral is equal to

twice the integral from amin to amax. Using the trig identity cos a = 1− 2 sin2
(
a
2

)
in Equation B.5

results in the following equation:

Ω(Ψ∗) =
1∫ amax

amin

(
da
π

)
1√

2q′0(Ψ∗+A−2A sin2(a
2 ))

. (B.6)

Setting κ2 = Ψ∗+A
2A

, this can be rewritten as

Ω(Ψ∗) =
πq′0w

2
∫ amax

amin

da√
κ2−sin2(a

2 )

. (B.7)
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It can easily be shown that amin = −amax, and since the integral is an even function in a we can

double the integral from 0 to amax. Next the substitution u = a
2

brings out another factor of 2,

resulting in

Ω(Ψ∗) =
πq′0w

8
∫ amax/2

0
du√

κ2−sin2 u

. (B.8)

Then one more substitution with sinu = κ sin y gives the following expression after simplification:

Ω(Ψ∗) =
πq′0w

8
∫ π/2

0
dy√

1−κ2 sin2 y

. (B.9)

But this is just the complete elliptic integral of the first kind K in terms of κ. Thus the desired

expression for the island rotational transform inside the separatrix is given by

Ω(Ψ∗) =
πq′0w

8K(κ2)
, (B.10)

κ2 =
Ψ∗ + A

2A
. (B.11)

This can be compared to the corresponding expression for Ω for surfaces outside the separatrix

given by Hegna [29]:

Ω(Ψ∗) = ± πq′0w

4kK(k2)
, (B.12)

k2 =
2A

Ψ∗ + A
. (B.13)
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Appendix C: Island coordinates

The island coordinates outside the separatrix are given by

Φ∗ = ± w

πk
E(k2), (C.1)

α∗ =
π

n0K(k2)
F
(n0α

2
, k2
)
, (C.2)

whereK(k2) andE(k2) are the complete elliptic integrals of the first and second kind, respectively,

and F (n0α/2, k
2) is the incomplete elliptic integral of the first kind.

Inside the separatrix, we have

Φ∗ =
2w

π

[
E(κ2) + (κ2 − 1)K(κ2)

]
, (C.3)

α∗ =
π

2n0K(κ2)
F

(
sin−1

[
1

κ
sin

n0α

2

]
, κ2

)
. (C.4)

In terms of α∗, x outside and inside the separatrix, respectively, can be written as

x̂ =

√
1

k2
− sn2

[
n0K(k2)

π
α∗, k2

]
, (C.5)

x̂ = κcn

[
2n0K(κ2)

π
α∗, κ2

]
. (C.6)

Here, sn and cn are the Jacobi elliptic functions.

S2 from the WKB expansion takes the following form, outside and inside the separatrix:

S2 = ± iε

4kΩ
[(k2 − 2)

K(k2)

π
α∗

+ 2E

(
am

[
K(k2)

π
α∗, k2

]
, k2

)
], (C.7)

S2 = ± iε

8Ω
[−4K(κ2)

π
α∗

+ 4E

(
am

[
2K(κ2)

π
α∗, κ2

]
, κ2

)
]. (C.8)

In these expressions, am is the Jacobi amplitude and E(·, k2) is the incomplete elliptic integral of

the second kind.
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Appendix D: Translation to Biancalani’s notation

This appendix details the conversion of Biancalani’s island coordinate system formulation in

[10, 11, 12] to the coordinates and notation used in this thesis. Some trivial relations with Bian-

calani’s variable given on the left and our variable given on the right are

θT = θ, (D.1)

ζT = ζ, (D.2)

qT = q, (D.3)

rT ∼ ψ, (D.4)

r0 ∼ ψ0. (D.5)

In order to compare Biancalani’s flux surface label ψ (which will be referred to as ψB to avoid

confusion) with the helical flux function Ψ∗ used here, several other variables need to be translated.

The u coordinate from Biancalani works out to be

u = n0α− φ0. (D.6)

The M constant tearing mode amplitude from Biancalani can be written in terms of the variables

from this thesis as

M =
q′0A

2
=

(q′0w)2

32
. (D.7)

Finally, the definition for magnetic shear that will be used for this translation is

s =
2ψ0

q0

q′0. (D.8)

Using Eqs. D.6, D.7, and D.8, ψB and Ψ∗ can be related in terms of our notation:

ψB =
(q − q0)2

2
+
q′0A

2
[cos (n0α− φ0) + 1] , (D.9)

Ψ∗ =
q′0
2

(ψ − ψ0)2 − A cos (n0α) . (D.10)

It should be noted that while Ψ∗ has units of magnetic flux, ψB is dimensionless. The safety factor

outside the island can be converted to the notation of this thesis through the following expressions
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for Biancalani’s x (referred to here as xB to avoid overlap with our x) and e:

xB =
1

4

√
ψB

2q′0A
, (D.11)

1− e =

(
q0γn0w

2ψ0

)2

. (D.12)

Here γ =

√
1 +

(
r0
R0q0

)2

. Setting e = 1 (approximately correct for typical islands in tokamaks),

the safety factor outside the island qout, from Biancalani can be compared to the rotational trans-

form outside the island Ωout, from Chapter 2:

qout =
1

2πn0

∫ 2πq0n0

0

du

1−
√

2
q2
0

[ψB − 16q′0A (cosu+ 1)]
, (D.13)

1

Ωout

=
n0

2π

∮
dα√

2q′0 [Ψ∗ + A cos (n0α)]
. (D.14)

The simplified formula for qin inside the island given by Biancalani can be compared to the equiv-

alent expression for Ωin derived in Appendix B. Both are written in terms of the complete el-

liptic integral of the first kind, K, one with argument xB defined above and one with argument

κ =
√

Ψ∗+A
2A

:

qin =
2

πq′0wn0

K(x2
B), (D.15)

1

Ωin

=
8

πq′0w
K(κ2). (D.16)
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Appendix E: Boozer-Xform modifications for RFPs

VMEC and the Boozer-Xform code, which performs a transformation from VMEC coordinates

to Boozer coordinates, both utilize toroidal flux Φ, as the radial variable. For RFPs containing a

reversal surface, toroidal flux does not work as a surface label since Bζ = 0 on a surface within

the plasma. Due to this, toroidal flux is not a single-valued function of the flux surface radius.

Poloidal flux should instead be used for RFPs with a reversal surface (or indeed for all configu-

rations to avoid confusion). VMEC has been modified by S. P. Hirshman in the past to accomodate

poloidal flux, and the Boozer-Xform code was modified by the author during the course of the

work for this dissertation.

The magnetic field in Boozer coordinates is generally written in terms of the toroidal flux, Φ,

as follows:

B = ∇Φ×∇θ + ι∇ζ ×∇Φ. (E.1)

Boozer coordinates also give a particularly simple covariant representation of B:

B = g∇ζ + I∇θ + ν∇Φ. (E.2)

Using the two representations, it can easily be seen that the Jacobian of the transformation from

(Φ, θ, ζ) to cylindrical coordinates is given by

√
gΦ =

g + ιI

B2
. (E.3)

The contravariant representation of the field given above can be rewritten in terms of χ, the poloidal

flux, using ι = dχ
dΦ

:

B =
1

ι
∇χ×∇θ +∇ζ ×∇χ. (E.4)

The magnetic field still has a nice covariant representation with the new coordinate χ:

B = g∇ζ + I∇θ +
ν

ι
∇χ. (E.5)

The Jacobian of the transformation from (χ, θ, ζ) to cylindrical coordinates can again be obtained

from the covariant and contravariant representations, resulting in

√
gχ =

g/ι+ I

B2
. (E.6)
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Figure E.1 Toroidal flux Jacobian vs. radius from old Boozer-Xform code. The Jacobian is
singular at the reversal surface.

Thus there is a very simple relationship between the Jacobian of Boozer coordinates using poloidal

flux χ and the Jacobian of Boozer coordinates using toroidal flux Φ. This relation can be written

as
√
gχ =

1

ι

√
gΦ. (E.7)

Since ι → ∞ at the reversal surface in an RFP, the Jacobian in terms of Φ is singular at the

reversal surface, that is
√
g

Φ
→ ∞. However, the Jacobian of Boozer coordinates in terms of

χ,
√
g
χ

remains analytic across the reversal surface. This behavior can be seen in the output of

Boozer-Xform for an MST test-case in Figs. E.1 and E.2. In Fig. E.1, the singular behavior of
√
g

Φ
at the reversal surface can be seen. In contrast Fig. E.2 displays the Jacobian obtained from

the modified version of Boozer-Xform and
√
g
χ

is clearly analytic throughout the domain.

Combining these modifications to Boozer-Xform with the modifications made to STELLGAP

by Don Spong allows STELLGAP to be used for RFPs with a reversal surface. Figs. E.3 and E.4

show STELLGAP simulation results for MST with a reversal surface before and after the fixes,

respectively. Notice that the singularity problem at the reversal surface has been resolved with the

changes to the codes.
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Figure E.2 Poloidal flux Jacobian vs. radius from modified Boozer-Xform code. The Jacobian
remains analytic across the reversal surface.

Figure E.3 STELLGAP continuum results for an MST equilibrium with a reversal surface at
ρ = 0.85 prior to Boozer-Xform and STELLGAP modifications. There is a singularity problem at

the reversal surface. Figure from Don Spong.
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Figure E.4 STELLGAP continuum results for an MST equilibrium with a reversal surface at
ρ = 0.85 after Boozer-Xform and STELLGAP modifications have been implemented. There is no

longer an issue at the reversal surface. Figure from Don Spong.
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