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Abstract

The work presented in this thesis is concerned with addressing the nature of drift wave

microturbulence in the reversed field pinch (RFP). Microturbulence is an important phe-

nomenon and contributor to heat and particle transport in tokamaks, where it has been

studied for several decades, but its role in the RFP is a rather new topic of study. As such,

the nature of RFP drift waves and their relationship to their tokamak counterparts is still

developing, and many of the results in this work are focused on addressing this challenge.

Fundamental advances in microturbulence research have been made in recent decades

through two parallel developments: the theoretical framework encompassed in the gyroki-

netic model, and the computational power offered by massively-parallel, high-performance

computing systems. Gyrokinetics is a formulation of kinetic theory in such a way that the

fast timescale gyromotion of particles around magnetic field lines is averaged out. The im-

plementation and use of RFP equilibrium models in gyrokinetic codes constitutes the bulk

of this thesis.

A simplified analytic equilibrium, the toroidal Bessel function model (TBFM), is used

in the gyrokinetic code Gyro to explore the fundamental scaling properties of drift waves

in the RFP geometry. Two drift wave instabilities, the ion temperature gradient (ITG)

mode and the microtearing mode (MTM) are found to occur, and the relationship of their

critical threshold in driving gradients and plasma β is explored. The critical values in these

parameters are found to be above those of similar tokamak cases by roughly a factor of the

flux surface aspect ratio. The MTM is found to be stabilized by increasing the RFP pinch

parameter Θ, making it unlikely for it to unstable in the high-Θ improved confinement

pulsed poloidal current drive (PPCD) discharges.

Efforts are also made to address microinstabilities in specific experimental discharges of

the Madison Symmetric Torus (MST). A semi-analytic equilibrium, the adjusted circular

model (ACM), is developed and implemented in the gyrokinetic code Gene to investigate

representative PPCD discharges. The flexibility of the ACM enables it to be used for the

high-Θ PPCD discharges where the TBFM breaks down. The dominant linear instabilites
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for the discharges modeled here – ITG and the trapped electron mode (TEM) – are studied,

as are their scaling properties in the PPCD regime. It is found that these instabilities are

present outside of the reversal surface, where the driving gradients are strongest. Nonlinear

simulations of the TEM turbulence are performed, the first such done for the RFP, and

zonal flows are found to play an important role in the nonlinear saturation mechanism.

These zonal flows lead to a large Dimits-like shift and suppressed transport. There is also

evidence that residual global tearing mode fluctuations are a necessary part of modeling

transport in the RFP, even in improved confinement PPCD discharges, and by modeling

these residual fluctuations through the use of an externally imposed perpendicular magnetic

field perturbation it is possible to bring simulated fluxes into agreement with experiment.

Finally, the nature of the collisionless MTM, an instability seen to arise in some parame-

ter regimes of the RFP, is investigated analytically using a fluid expansion in the drift-kinetic

framework. Particular attention is paid to the role of magnetic drifts, and some evidence for

their role in the collisionless instability is presented. Comparisons are made to gyrokinetic

simulations and to earlier theory on the magnetic-curvature drift instability.
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ŝ = −0.4 (blue curve); Θ = 1.2: q0 = 0.224, ŝ = −0.507 (green curve); Θ = 1.35:
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Chapter 1

Introduction

“Energy transitions have been among the most important processes of technical

evolution: they are driving our inventiveness, shaping the modern industrial,

and postindustrial, civilization, and leaving their deep imprints on the structure

and productivity of economies as well as on the organization and welfare of

societies.”

Vlacav Smil, Energy at the Crossroads, 2003

“I believe that water will one day be employed as fuel, that hydrogen and oxygen

which constitute it, used singly or together, will furnish an inexhaustible source

of heat and light, of an intensity of which coal is not capable.”

Jules Verne, Mysterious Island, 1874

1.1 The Energy Picture

Civilization, in the modern context, has long relied on the consumption of energy, and

some of the most important issues of the late twentieth and early twenty-first centuries

have revolved around the topic of energy supply. From consumer-scale “price at the pump”

to international geopolitics, energy has been a key consideration in both household and



2

Figure 1.1: Proportion of U.S. energy consumption from different sources. Over 80% of U.S.
consumption comes from fossil fuels. Source: U.S. Energy Information Administration.

national planning, and it is likely to continue to be important in the unfolding events of the

new millenium. Electricity consumption has come to be a necessary element of daily life

for much of the world’s population, allowing access to means of communication, efficient

household and industrial practices, and educational material, among other uses. However,

this consumption carries with it costs beyond the standard measure of cents per kilowatt-

hour. These additional costs stem from the complicated means that determine where energy

comes from and how it is used, and they can include costs to social or ecological systems.

The energy supply of the United States is currently very heavily dependent on fossil

fuels, which constitute roughly 80% of consumption (Fig. 1.1). The remainder is divided

roughly equally between nuclear fission and renewables. Each of these energy sources carries

its own set of costs and benefits.

The issues associated with energy policy are vast. On a local scale, pollution from

fossil fuel plants and gasoline vehicles contribute to air quality degradation and water

contamination. On a national level, energy hungry businesses and consumers require a
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Figure 1.2: World energy consumption, data and predictions. Consumption is expected
to increase by about 50% over current levels by 2040. Source: U.S. Energy Information
Administration.

cheap and secure energy supply for a strong economy, thereby entangling a nation’s domestic

interests with the politics of its energy suppliers. Finally, on a global scale, climate change,

driven to a large extent by CO2 emissions from the burning of fossil fuels, threatens to upset

the planet’s weather systems and ecosystems in ways that are still not well understood.

The U.S. Energy Information Administration has projected the world’s energy consump-

tion to increase by 56% by the year 2040, as can be seen in Fig. 1.2. And although there

are ample supplies of conventional energy resources to meet these needs for a while (coal

reserves alone are estimated at over a hundred years [1]), the issues presented above are

likely to be exacerbated by increased consumption. Addressing these challenges is a high

priority.
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Potential Solutions

There are often two broad categories of solutions offered up to deal with these problems: im-

provements in technological capability, or changes in personal habit and industrial methods

(with some obviously strong connections between the two).

One of the main avenues to address these issues is to find alternative sources of energy,

often with the focus being on renewables such as wind, solar, and hydroelectricity. Although

an improvement on the existing system in many ways, these renewable energy sources have

their own drawbacks and limitations.

These limitations have been discussed in depth elsewhere [2]. Among them are the

problems of intermittency and energy storage, energy density and land area, transmission

losses, and the need for extensive mining of raw materials. The conclusion to be drawn

from a consideration of these limitations is that, although renewable energy sources will

play an important and growing role in the world’s energy supply in the years ahead, they

are unlikely to be a silver bullet, the one approach that solve all energy-related problems.

Therefore, it should be expected that a future energy portfolio will be a diversified mix of

fossil fuels, renewables, and nuclear power. This last option can be separated into nuclear

fission, the process on which all currently operating nuclear power plants are based, and

nuclear fusion.

As an energy source, nuclear fusion provides many benefits over existing energy tech-

nologies. A good overview of the advantages of fusion power may be found in Freidberg

(2007) [2]. Nuclear fusion, in the context of a potential commercial power plant, relies on

fuel that is both abundant and relatively cheap to produce, consisting of reactions between

certain isotopes of hydrogen: deuterium, which can be easily extracted from seawater, and

tritium, which can be bred from lithium, an element that occurs naturally on earth. If

fusion were to provide the entire global energy needs, then at the current rate of consump-

tion it is estimated that supplies of lithium would last for 20,000 years and deuterium for

billions of years [2]. The extraction of lithium from seawater could extend the feasible range

of fusion even further.
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Fusion power generation, like nuclear fission or renewable sources, does not involve the

production of CO2 or other greenhouse gases. Fusion processes also do not involve any long-

lived radioactive products, so both waste disposal and proliferation concerns would not be

as much of an issue as they are with nuclear fission. Additionally, there is no threat of a

meltdown or catastrophic failure as there is with fission plants, making fusion inherently

safer. Fusion could provide clean, carbon-free electricity with high capacity factor and no

threat of large-scale disasters, and unlike renewable sources it has the capability to be a

location-independent baseload source. It is these features that makes energy from nuclear

fusion such an exciting and desirable prospect.

1.2 Nuclear Fusion Processes

Nuclear fusion is the process by which atomic nuclei collide, combine, and release energy.

As the process fueling the Sun, nuclear fusion is essentially the source of almost all energy

on earth (with exceptions being nuclear fission and geothermal energy, which is itself a

result of fission). Solar and wind energies are powered by either direct or passive heating

of the earth’s surface, and all fossil fuels were once living plants and animals that received

their energy either directly (in the case of plants) or indirectly (in the case of animals) from

the Sun.

The process of fusion that takes place in the Sun was first outlined by Hans Bethe [3],

for which he was awarded the 1967 Nobel Prize in Physics. This process involves nuclear

reactions with hydrogen or its isotopes – deuterium (D), composed of one proton and one

neutron or tritium (T), composed of one proton and two neutrons.

The energetically easiest fusion reaction to achieve in an accessible temperature range is

the deuterium-tritium (D-T) reaction [2], and this property makes it the primary approach

of fusion energy research. The basic reaction can be written as

D + T→ α+ n + 17.6MeV (1.1)

where α represents an α-particle (helium nucleus). In this reaction, 17.6 MeV is generated
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due to mass differences and supplies kinetic energy to the reaction products. It is this

energy that can be extracted as part of an energy generating process.

In order to achieve the fusion of the elements on the left side of Eq. (1.1), it is necessary to

overcome the strong Coulomb repulsion that exists between the two postively charged nuclei.

Overcoming this powerful force presents the fundamental challenge of fusion research.

Extremely high temperatures are needed to achieve fusion, on the order of millions

of degrees. At these temperatures, elements exist in the plasma state, in which particles

are partially or completely ionized and exhibit collective, long-range interaction. One of

the major issues for terrestial plasma experiments is confinement, since plasmas are highly

energetic and cannot be confined by material walls. This problem is overcome in the

Sun with gravitational confinement, but this is not an option at the scale of laboratory

experiments. Therefore, an alternative approach to confinement is needed. Although there

are several techniques that have been developed to achieve this, the present work focuses

on just one: magnetic confinement. In this approach, geometric shaping of strong magnetic

fields is used to create a ‘magnetic bottle’ of sorts that contains the plasma. Thus confined,

the plasma may be heated to fusion.

1.3 Fusion Power

There are some important metrics for assessing the success of a fusion reactor. One of these

is the Lawson parameter, or Lawson triple product, nTτE [4]. A product of the density n,

the temperature T , and the energy confinement time τE , this parameter is a measure of

the ability of a plasma confinement scheme to maintain a high energy density plasma (as

measured by nT ) for a long period of time (τE). Having a sufficiently high triple product is

crucial for a viable fusion reactor, and the progress in fusion research as measured by this

parameter is given in Fig. 1.3.

Another important measure for a fusion power plant is the gain factor Q. This is defined

as

Q =
net thermal power out

total heating power in
(1.2)



7

Figure 1.3: Moore’s law in the fusion triple product, a measure of the efficiency of lab-
oratory fusion experiments. The progress of fusion energy research has outpaced similar
measures of progress in other fields. Source: Ikeda (2010)

and is simply a measure of the efficiency of energy production in the power plant. A value

of Q > 1 means that the thermal energy generated by fusion reactions is greater than that

required to heat the plasma. The limit Q =∞ corresponds to ignition, when no heating is

required and the fusion reactions are entirely self-sustaining, given appropriate refueling.

The history of fusion research is one of continuous refinement and advance. The first

experiments conducted in the 1950s were limited by large scale instabilities and had energy

confinement times on the order of only microseconds. As Fig. 1.3 shows, significant progress

has been made in improving the confinement capabilities of fusion devices since then, and in

fact the fusion triple product has progressed faster than the Moore’s law followed by tran-

sistors. Today’s machines can reach energy confinement times orders of magnitude larger

than those attained in the first plasma confinement experiments, with energy confinement

times on the order of a second, and with some machines able to stably operate for periods of

hours [5]. The latest in this series of experiments is ITER, the experimental fusion reactor
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currently under construction in Cadarache, France [5]. ITER is designed to reach a Q of

10.

Although ITER and much of the world’s fusion research is pursuing the tokamak design,

there are alternative approaches as well. The work presented in this thesis is primarily

concerned with a different type of magnetic confinement device: the reversed field pinch

(RFP). Like the tokamak, the RFP is a toroidal confinement device, but it differs in a few

key ways, resulting in a different set of benefits and drawbacks relative to the tokamak [2].

The RFP is designed to have a smaller toroidal field than the tokamak, requiring smaller

magnetic coils and cheaper construction costs. It is also capable of achieving higher values

of normalized plasma pressure (β). Furthermore, due to the high toroidal current and the

presence of finite resistivity, it is able to resitively heat to ignition, a process referred to

as Ohmic heating. This may alleviate some of the need for expensive external heating

sources. Once fusion becomes realizable in a laboratory environment it then becomes an

economic problem, rather than a scientific or engineering one, and only as a cost-effective

method for energy production can it make serious contributions as an alternative energy.

The potentially cost-saving advantages of the RFP configuration are therefore an important

consideration.

There are several disadvantages to the RFP approach, however, that pose a slightly

different set of challenges than the tokamak and must also be considered. The low toroidal

magnetic field means that the RFP is susceptible to magnetohydrodynamic (MHD) insta-

bilities, notably global tearing modes, although there are techniques for controlling these,

as will be discussed. Additionally, since the large toroidal current plays a key role in the

magnetic equilibrium, an external current drive is needed. However, just as the tokamak

design has been able to overcome the many of the challenges of large scale instabilities, it

is expected that the RFP can as well. The RFP is therefore an important area of research

in magnetic confinement fusion.

Along with the increase in energy confinement time seen in Fig. 1.3 there has been an

associated decrease in the spatial scales of the phenomena that tend to limit confinement.



9

Early on, devices were limited by large scale disruptions, sudden and catastrophic events

that were characterized by bulk movement of the plasma to the wall and its immediate loss.

With large scale instabilities stabilized and disruption events eliminated, the task of fusion

research becomes that of reducing the slower processes of particle and heat transport. This

transport may arise due to a number of various effects, all of which cause the diffusion of

particles and energy to the edge of the device, where it is lost. The dominant source of

transport in many devices is now due to small scale “drift wave” instabilities.

1.4 Drift Wave Instabilities and Turbulence

The dominant source of transport in most fusion devices is now believed to be due to drift

wave driven microturbulence, sometimes referred to as ‘anomalous’ transport since it was

first identified only because it exceeded predictions from classical transport (diffusion driven

by Coulomb collisions).

Drift waves arise in plasmas due the creation of diamagnetic currents J that are needed to

satisfy radial force balance J×B/c = ∇pe+∇pi, with B the background magnetic field and

pe and pi the electron and ion pressures. The currents are associated with diamagnetic drift

velocities vDj = (1/(qjnjB))∇pj , for j a label for a particle species with charge qj , nj , and

pressure pj . Drift wave instabilities are driven by gradients in plasma pressure, temperature,

and/or density and have frequencies on the order of the diamagnetic drift frequency ω∗j = k·

vDj . The essential physics of drift waves is presented in Fig. 1.4. Gradients perpendicular to

the background magnetic field enable the propagation of waves in the diamagnetic direction

through the generation of an E × B drift. Under certain circumstances, phase differences

may arise between the various fluctuations that can generate a positive growth rate and

lead to instability.

There are a variety of different instabilities that fall under the heading of drift waves,

among them the ion temperature gradient (ITG) and electron temperature gradient (ETG)

modes, the trapped electron mode (TEM), the kinetic ballooning mode (KBM), and the

microtearing mode (MTM). These modes may also be affected by other physical character-
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Figure 1.4: Physical mechanism of a drift wave. A small perturbation in density in the pres-
ence of a background gradient leads to electric fields and a resultant E×B drift that causes
a wave to propagate in the transverse (y) direction. Under certain conditions, the original
perturbation may be reinforced and amplified, leading to instability. Source: Introduction
to Plasma Physics and Controlled Fusion, F. Chen

istics of the plasma, including plasma pressure, collisionality, and the shape of the magnetic

geometry. For more on the physics of drift waves and their role in transport, see the review

by Horton [6].

Turbulence and transport have been identified as one of the major challenges facing

magnetic confinement fusion research by the National Research Council’s Plasma 2010

Committee report on plasma science [7]. This report identified three scientific goals con-

cerning microinstabilities, turbulence, and transport:

• develop more accurate predictive models of turbulence and transport

• find regimes where turbulence and transport are reduced

• advance the science of low-collisionality plasma turbulence
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These goals are to be met through progress in theoretical capabilities, especially the

analysis of nonlinear physics, and through the the improvement of diagnostic capablities

and comparisons between theoretical predictions and experimental measurements. This

thesis is concerned with a portion of the theoretical aspects of these challenges.

1.5 Present Work

The goal of the present work is to begin assessing the role that microinstabilities play

in the turbulence and transport characteristics of the reversed field pinch. As will be

discussed in more detail in the following chapters, RFP research has largely been the realm

of larger scale instabilities, with microinstabilities an after-thought or not considered at all.

This has changed, however, as novel techniques have enabled the RFP to enter regimes of

operation in which these large scale modes are suppressed and microinstabilities may be

playing important roles in determining transport levels. Among these techniques is pulsed

poloidal current drive (PPCD), which modifies the current profile and stabilizes global

tearing modes.

The main thrust of this work has been to incorporate the RFP magnetic field geometry

into the gyrokinetic framework – both analytic theory and numerical codes – and to deter-

mine the nature of the dominant instabilities and their role in heat and particle transport.

The complexity of the problem is such that the equations must be solved numerically with

the aid of sophisticated codes and powerful parallel computing systems. Where possible,

some simplifications can be introduced and analytic results attained. These results form

a foundation for continued collaboration between theoretical predictions and experimental

observations.

Thesis Outline

The remainder of the thesis is as follows:

Chapter 2 introduces gyrokinetics, the mathematical framework on which this thesis is

based, and a brief derivation of the framework is provided. Due to the multidimensional,
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integro-differential nature of the resultant equations and the complexity of the geometries

in which they are implemented, numerical solvers are used. Two codes used in this thesis

– Gyro [8, 9] and Gene [10, 11] – are introduced and their relationship to each other and

to the underlying gyrokinetic framework is discussed.

Chapter 3 deals with the geometry of the reversed field pinch, the device that is the focus

of the present work. Various analytic models are presented, including their benefits and

drawbacks and their implementation into the gyrokinetic codes. Two models in particular

play large roles in this thesis: the toroidal bessel function model (TBFM) and the adjusted

circular model (ACM).

Chapter 4 contains results from using the TBFM and a representative RFP equilibrium

in the Gyro code. Basic linear results are presented, including critical gradient thresholds

and scaling properties, as well as analytic calculations of the critical β limit for ITG sup-

pression. These results present some initial explorations of the physics of microinstabilities

in the RFP and provide fundamental insights into their scalings.

Chapter 5 contains results from using the ACM to model specific high confinement

discharges of the Madison Symmetric Torus. The results in this chapter and were attained

using the Gene code. Linear results from two different MST discharges are presented, as

well as nonlinear results associated with one of these parameter sets. Comparisons are made

with experimental observations.

Chapter 6 presents a discussion of the collisionless microtearing mode, with particular

attention on the role of magnetic drifts in the instability drive. A fluid expansion of the

drift-kinetic equation is performed, yielding a dispersion relation with some features of the

microtearing mode.

Finally, Chapter 7 provides a summary and discussion of this work. The general fea-

tures of RFP microinstabilities are summarized and potential implications for the Madison

Symmetric Torus are given. Avenues for future research are discussed.
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Chapter 2

Gyrokinetics

“Hamiltonian mechanics cannot be understood without differential forms.”

- V.I. Arnol’d, Mathematical Methods of Classical Mechanics (1989)

“In mathematics, you don’t understand things, you just get used to them.”

- John von Neumann

A plasma can be described generally as a collection of charged particles that exhibit

collective motion. Unlike a neutral gas, in which particles only interact with one another via

binary collisions, the ions and electrons in a plasma can generate electric and magnetic fields

that act back on the plasma itself and affect its behavior. A comprehensive method by which

to investigate microinstabilities in toroidal plasma devices is the gyrokinetic framework, in

which fast particle gyromotion has been removed from the kinetic equations through a

gyrophase averaging procedure [12]. This procedure reduces the problem description from

the original 6D phase space to a more computationally tractable 5D.

The presentation of the gyrokinetic derivation that follows is based on a number of

references, among them the discussion of the Lie perturbation method by Littlejohn and

Cary [13], the review of nonlinear gyrokinetics by Brizard and Hahm [12], and several

graduate theses, including Goerler, Pueschel, Merz and Lapillonne [14, 15, 16, 17].

Even with the simplifications of gyrokinetics, the resultant equations in an arbitrary
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geometry are far too difficult to solve analytically, and so sophisticated gyrokinetic solvers

have been developed for this purpose. Two such codes are used in this thesis: Gyro [18]

and Gene [10, 11]. The gyrokinetic code that provides results presented in Ch. 4 is Gyro;

and the results of Ch. 5 and Ch. 6 were attained with Gene. Both codes can be run

linearly (providing complex frequencies and linear eigenmode structures) and nonlinearly

(providing transport fluxes and turbulent fluctuation information). Unless stated otherwise,

the discussion in this chapter is based on the gyrokinetic equation as formulated for and

implemented in Gene.

2.1 The Gyrokinetic Model

From the evolution of equilibrium quantities, which takes place at system size, down to

particle scale phenomena, there is a wide range of scales that fall within the realm of

plasma physics. Properly addressing these scales is one of the most challenging aspects of

modeling plasmas. One phenomenon that is the focus of this thesis is plasma turbulence

and transport, which often involves interactions between physics taking place at opposite

ends of the scale. The correlation lengths and time scales of turbulent processes generally

lie between the larger and relatively slower phenomena of magnetohydrodynamics and the

fast, small-scale motion of individual particles. This is a large part of what makes plasma

turbulence such an interesting and complicated problem.

At low temperatures plasmas are highly collisional, and these collisions are quite effective

in thermalizing the plasma and enabling the use of two-fluid or magnetohydrodynamic

descriptions. In high temperature regimes, collisions are mostly absent and the plasma must

be described using a kinetic approach. In this formulation, the plasma is characterized by

a particle distribution function, f(x,v, t), which gives the probability density of finding a

particle at any given location in space x, velocity space v, and time t. The plasma density

can be found as the zeroth moment of the distribution function,

n =

∫
d3v f(x,v, t) . (2.1)
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Figure 2.1: Schematic of the gyro-center transform. The fast gyromotion of a particle
around a magnetic field line is averaged over, eliminating a phase-space variable and essen-
tially reducing the physics to that of a moving charged ring. Source: Garbet et al. (2010)

The particle distribution function provides a very complete description of a plasma, but

it is often too cumbersome to be practical. The formulation can be simplified by making use

of the separation of scales that is characteristic of many plasmas. For magnetically confined

plasmas, in which strong magnetic fields provide shaping and confinement, charged particles

spiral around the magnetic field lines in a behavior referred to as gyromotion (see Fig. 2.1).

The rotational time scale is given by the gyrofrequency Ωj = qjB/mjc, and the length scale

of this gyromotion is denoted by the gyroradius ρj = vTj/ΩTj , where vTj = (2Tj/mj)
1/2 is

the thermal velocity of species j with mass mj at temperature Tj . Also often used is the

ion sound gyroradius, ρs = cs/Ωi, where cs = (Te/mi)
1/2 is the ion sound speed and j = e, i

denotes electron or ion properties, respectively.

When the time scale of this gyromotion is considered unimportant to the phenomena

of interest, it may be removed from the particle dynamics through an averaging procedure.

This procedure essentially reduces the dynamical description from one of particles to one

describing a distribution of charged rings. This forms the basis of the gyrokinetic model, one

of the primary tools for addressing issues of microturbulence. The gyrokinetic formulation

is a useful framework for studying microturbulence due to several key characteristics that

this turbulence is assumed to have. These characteristics are known collectively as the

gyrokinetic ordering.
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First, the radius of the gyromotion (gyroradius) is assumed to be small compared to the

variation of the background quantities L, and the dynamic time scale of interest (indicated

by the frequency ω) is small compared to the gyrofrequency Ωj ,

ω

Ωj
∼ ρj
L
≡ ρ∗ ∼ O(εg)� 1 . (2.2)

An inherent part of this assumption is that there is a strong equilibrium magnetic field B0

(”strong guide field”), which restricts particle motion to the magnetic field line. In this

case, the length scale of the fluctuations along the magnetic field line (parallel direction) is

assumed to be much longer than that in the perpendicular direction,

k‖

k⊥
∼ O(εg) . (2.3)

Additionally, it will be assumed that the amplitudes of the turbulent fluctuations are

small compared to the background quantities, an assumption that will allow for a ‘δf ’

splitting in the distribution function. This includes the fluctuations in density δn, magnetic

field B1, and electrostatic potential Φ1,

δn

n
∼ B1

B0
∼ eΦ1

T
∼ O(εg) . (2.4)

As a result of this ordering, the gyrokinetic Vlasov-Maxwell system of equations derived

in the following sections is valid up to O(εg).

Derivation

With this ordering established, we may proceed with the derivation. Though early deriva-

tions consisted simply of a coordinate transformation and gyrophase average [19], modern

gyrokinetic theory relies heavily on the techniques supplied by differential geometry and Lie

perturbation theory[20, 21, 13, 12]. These advanced mathematical formulations overcome

many of the problems with early gyrokinetic derivations, namely retaining the energy and

momentum conservation laws of the original Vlasov-Maxwell equations [12]. The derivation

to follow provides the basis for the gyrokinetic equation as implemented in the Gene code.

An outline of the derivation presented below is as such:
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• the one-form description of particle dynamics is presented (where the one-form is

given by γ)

• the one-form is separated into background and perturbed components (γ → γ0 + γ1)

• the one-form is transformed from particle coordinates to guiding center coordinates

(γ → Γ)

• the one-form is transformed from guiding center coordinates to gyrocenter coordinates

using Lie perturbation methods (Γ→ Γ̄)

• the evolution equation of the gyrokinetic distribution function is derived using the

Euler-Lagrange equations

The derivation of the gyrokinetic distribution function starts with the Hamiltonian H

for a single non-relativistic particle moving in a magnetic potential A(x) and electrostatic

potential Φ(x)

H(x,v) =
1

2
mv2 + qΦ(x) , (2.5)

where the particle has mass m, charge q, and particle phase space coordiantes (x,v). This

can also be written in the Lagrangian formulation

L(x,v) = p(v) · ẋ−H(x,v) =
(
mv +

q

c
A(x)

)
· ẋ−

(
1

2
mv2 + qΦ(x)

)
, (2.6)

with p(v) = mv + q
cA(x) the canonical momentum and ẋ represents the time derivative of

x.

The coordinates x and v are not the most useful for describing particle dynamics in a

strong guide field. This is largely due to the fast gyromotion of particles in strong mag-

netic fields, a motion that causes much quicker movement in some directions than others.

Through careful consideration of individual particle motion, it is possible to choose a more

natural coordinate system, thus simplifying the description. A more useful set of coordi-

nates for describing particle behavior are the guiding center variables Z = (X, v‖, µ, ϕ, t).

These are the gyrophase angle

ϕ = arctan

(
−vx
vy

)
,
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the guiding center X

X = x− ρ(X, µ)a(ϕ) , (2.7)

where ρ(X, µ) = v⊥(X)/Ω(X) is the gyroradius and a(ϕ) = cosϕê1 + sinϕê2. Here a

local coordinate system has been introduced in which b̂0 is the direction of the equilibrium

magnetic field and ê1× ê2 = b̂0. Besides this, there are the velocity space coordinates: the

parallel velocity

v‖ = vz

and the magnetic moment

µ =
mjv

2
⊥

2B0
=
mj(v

2
x + v2

y)

2B0
.

The coordinate transformation is completed using methods from differential geometry,

in particular the geometric object known as a one-form. Here, we define the one-form

γ(x,v) by its relation to the Lagrangian∫
L(x,v)dt =

∫
γ(x,v) . (2.8)

Transforming from a one-form γ expressed in terms of coordinates z = (x,v) (particle

coordinates) to a one-form Γ in terms of coordinates Z (guiding center coordinates) takes

place in the following way:

Γµ = γν
dzν

dZµ
, (2.9)

where µ and ν denote the phase space components of γ, Γ, z, and Z.

Before proceeding with the coordinate transformation, the one-form (γ) will be sepa-

rated into perturbed (γ1) and unperturbed (γ0) parts, corresponding to the perturbed and

unperturbed fields with which it is defined. Since equilibria are generally assumed to be in

a condition of quasineutrality, it is assumed that there is no background electric field and

Φ0 = 0:

γ0 =
(
mv +

q

c
A0(x)

)
· dx− 1

2
mv2dt (2.10)

and

γ1 =
q

c
A1(x) · dx− qΦ1(x)dt . (2.11)
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After applying the coordinate transformation, we arrive at the one-form expressed in

guiding center coordinates. Because the gyroradius is much smaller than the spatial vari-

ation of the background quantities, it is a good approximation to simply replace the x-

dependence with X. Additionally, the gyroaverage for the unperturbed component can

be performed by simply taking an integral over the gyrophase angle ((1/2π)
∫
dϕ). These

techniques do not work well for the perturbed one-form, however, since the fluctuating

quantities have much shorter spatial variations. In this case, a more sophisticated coordi-

nate transformation method will be needed. The transformed one-forms are (and where the

overbar denotes the gyroaveraged quantity)

Γ̄0 =
(
mv‖b̂0(X) +

q

c
A0(X)

)
· dX +

µmc

q
dϕ−

(
1

2
mv2
‖ + µB0(X)

)
dt (2.12)

and

Γ1 =
q

c
A1(X + r) · dX +

A1(X + r) · a(ϕ)

v⊥(X)
dµ+

mv⊥(X)

B0(X)
A1(X + r) · c(ϕ)dϕ− qΦ1(X + r)dt .

(2.13)

The transformation of the perturbed one-form from guiding center to gyrocenter co-

ordinates (Γ1 → Γ̄1) can be achieved through the use of a Lie transform, a near-identity

transformation that allows for a continuous variation based on a smallness parameter ε,

here representing the gyrokinetic ordering presented above. Using the vector gµ, called the

generator, a new set of coordinates Z̄ is related to the initial coordinates Z by the equation

∂Z̄µ

∂ε
(Z, ε) = gµ(Z̄(Z, ε)) , (2.14)

where Z̄µ(Z, 0) = Zµ define the initial conditions when ε = 0. This can also be written in

terms of an operator T (ε)

Z̄µ(Z, ε) = T (ε)Zν , (2.15)

where the Lie transform is defined in its operator form:

T ∗ = exp(εL) T ∗−1 = exp(−εL) . (2.16)
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Here ε is a small parameter and L is the Lie derivative operator. For operators, the expo-

nential is defined in terms of its Taylor expansion

exp(εL) = 1 + εL+ ε2L2/2 + ... , (2.17)

where the “near-identity” nature of the Lie transform becomes apparent. The Lie derivative

can be expressed in terms of the generating functions gµ when operating on a scalar (f) or

a one-form (γ)

L(f) = gα
∂f

∂Zα
(Lγ)α = gβ

(
∂γα
∂Zβ

−
∂γβ
∂Zα

)
. (2.18)

We apply the transform to Γ (which is in guiding center coordinates) to get Γ̄ (which is

in gyrocenter coordinates). It is then possible to use gauge freedom to eliminate gyrophase

dependency.

The expression to transform the one-form is given by

Γ̄ = T ∗−1Γ + dS . (2.19)

Here dS represents the total derivative of a gauge function that we are free to choose.

The gyroaveraging occurs when dS is chosen to eliminate ϕ dependence from the RHS of

Eq. (2.19). This is possible since adding a total derivative to the one-form will not change

the equations of motion (in other words, the Lagrangian on the left hand side of Eq. (2.8)

remains unchanged).

Up to second order in ε, the operator T ∗−1 becomes (where L = L1 + εL2 +O(ε2))

T ∗−1 = exp(−εL1)exp(−ε2L2) = 1− εL1 + ε2
(

1

2
L2

1 − L2

)
+O(ε3) . (2.20)

Eq. (2.19) can then be written out order by order (expanding Γ̄, Γ, and S):

Γ̄0 = Γ0 + dS0

Γ̄1 = Γ1 − L1Γ0 + dS1

Γ̄2 = Γ2 − L1Γ1 + (
1

2
L2

1 − L2)Γ0 + dS2 .

The zeroth order one-form has already been given above in Eq. (2.12). With suitable

choices for the generating functions and the gauge function S1 (for these expressions, see,
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e.g., Ref. [14]), these transformations will lead to an expression for Γ̄1. Expressions for the

gyroaveraged field quantities can be found in Appendix A of Ref. [16]. We then arrive at

the gyrocenter one-form up to first order:

Γ̄ = Γ̄0+Γ̄1 =
(
mv‖b̂0 +

q

c
A0 +

q

c
Ā1‖b̂0

)
·dX+

µmc

q
dϕ−

(
1

2
mv2
‖ + qΦ1 + µ(B0 + B̄1‖)

)
dt .

(2.21)

The Gyrokinetic Vlasov Equation

Now that the gyrokinetic one-form has been determined, it is relatively straightforward to

generate the gyrokinetic Vlasov equation that describes the evolution of the distribution

function in the absence of collisions. The Vlasov equation expressed in terms of gyrocenter

coordinates is

dF

dt
=
∂F

∂t
+ Ẋ · ∇F + µ̇

∂F

∂µ
+ v̇‖

∂F

∂v‖
= 0 . (2.22)

The equations of motion for the various gyrocenter coordinates are determined from the

the Euler-Lagrange equations

d

dt

(
∂L

∂Żν

)
− ∂L

∂Zν
= 0 . (2.23)

The Lagrangian employed in the Euler-Lagrange equations is found from the one-form

via the relationship given in Eq. (2.8). With these substitutions we arrive finally at the

evolution equation for the gyrokinetic equation

∂Fj
∂t

+

(
v‖b̂0 +

B0

B∗0‖
(vE×B + v∇B + vc)

)
·
(
∇Fj +

1

mjv‖

(
qjE− µ∇(B0 + B̄1‖)

) ∂Fj
∂v‖

)
= 0 ,

(2.24)

where B∗0‖ = b0 ·
(
∇×

(
A0 +

mjc
qj
v‖b0

))
. The drifts are given by:

the ExB velocity

vE×B =
c

B0
b̂0 ×∇χj , (2.25)

the grad-B drift

v∇B =
µ

mjΩj
b̂0 ×∇B0 , (2.26)
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and the curvature drift

vc =
v2
‖

Ωj
(∇× b̂0)⊥ =

v2
‖

ΩjB0

(
b̂0 ×

(
∇B0 +

βtot

2

∇p0

p0

))
, (2.27)

where χj = φ̄ − v‖
c Ā1‖ + µ

qj
B̄1‖ is the gyro-averaged modified potential, p0 = n0T0 is the

pressure, and βtot = 8πp0/B
2
0 is the total normalized plasma pressure.

In the event that plasma pressure is negligible (β = 0) the grad-B and curvature drifts

may be combined as

vDj =
1

Ωj

(
v2
‖ + v2

⊥/2
)(

b̂0 ×
∇B0

B0

)
. (2.28)

This is often a useful simplification for analytic purposes, and it one that will be employed

for various estimates in this thesis.

Collisions

The physics of collisions has so far been neglected in the above derivation. In a fusion

plasma temperatures are expected to be high enough so that the collisionless limit is a

reasonable approximation, however in most magnetic confinement experiments collisional

effects still play important roles in much of the dynamics. If collisions are included, the

RHS of the Vlasov equation (Eq. (2.22)) picks up an additional term that contains the

effects of particle correlations (collisions), which will be denoted C(f).

Due to the long-range nature of the forces within the plasma (the Coulomb force),

collisions betweens particles can be considered to be the result of many small-angle de-

flections. This results in a collisional term represented by the Landau-Boltzmann collision

operator [16]

C(fj , fj′) =
∂

∂~v
·
(

D · ∂
∂~v
− ~R

)
fj , (2.29)

where D is the diffusion tensor and ~R is the dynamical friction,

D =
γjj′

m2
j

∂2Gj′

∂~v∂~v
~R =

2γjj′

mjmj′

∂Hj′

∂~v
. (2.30)

These are in turn defined in terms of the Rosenbluth potentials G and H

Gj′(~v) =

∫
d3v′fj′u Hj′(~v) =

∫
d3v′fj′

1

u
, (2.31)
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and where ~u = ~v − ~v′ and γjj′ = 2πq2
j q

2
j′ ln Λc, with ln Λc representing the Coulomb loga-

rithm.

The Landau-Boltzmann prescription is the collision operator implemented in Gene. A

simplification of this operator, called pitch-angle scattering, is employed in Gyro.

Pitch-angle scattering

The treatment of collisional processes can be further simplified by assuming infinitely heavy

ions and taking vT i → 0. This eliminates collisional energy transfer between electrons and

ions and reduces the effect of collisions to just a diffusion in pitch-angle ξ = σ
√

1− λB,

where λ =
v2⊥
v2 B̂

, B̂ is the normalized magnetic field, and σ denotes sign (direction of v‖).

For a species j, the collision operator is taken to be an energy-independent Lorentz

operator

C(fj) =
νj(εj)

2

∂

∂ξ
(1− ξ2)

∂fj
∂ξ

, (2.32)

where εj = Ej/Tj = mjv
2/2Tj is the normalized energy. The collisionality coefficient νj(εj)

is energy dependent and has a different form depending on whether it is describing electron

or ion collisions. For the electrons, it has the form

νe(εe) =
νei

ε
3/2
e

[Zeff +H (
√
εe)] , (2.33)

while for the ions, it is given by the equation

νj(εj) =
ν

(j)
ii

ε
3/2
j

Nion∑
k=1

Z2
knk
nj

+H(

√
mk

mj
εj) , (2.34)

where j indicates the ion species, Nion is the total number of ion species used in the

simulations, and νii = νei
√
e/mj(Te/Tj)

3/2(nj/ne)Z
2
j . Zj is the nuclear charge of the jth

ion species and Zeff is the effective nuclear charge. The function H(x) is

H(x) =
e−x

2

√
πx

+

(
1− 1

2x2

)
erf(x) . (2.35)

All simulations performed in the present work contain just one ion species. In Gyro,

the level of collisionality is set through the parameter νei.
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Field Equations

It still remains to derive the gyrokinetic field equations, which describe the evolution of the

perturbed electrostatic potential Φ and magnetic vector potential A, with the background

fields being described by the equilibrium conditions. These equations are found by com-

bining Maxwell’s equations (the Poisson equation for Φ and Ampère’s law for A) with the

appropriate velocity moments of the gyrokinetic distribution function.

The Poisson equation describes the evolution of the electrostatic potential Φ in terms of

the density, which is derived from the zeroth moment of the distribution function (Eq. (2.1))

−∇2Φ1(x) = 4π
∑
j

n1j(x)qj . (2.36)

The magnetic vector potential A is described by Ampère’s law

∇2A = −4π

c
j +

1

c

∂E

∂t
. (2.37)

This is defined in terms of the current, which involves the first velocity moment of the

distribution function

j = qj

∫
d3vvf(x,v, t) , (2.38)

which involves the particle phase space distribution function instead of the gyrocenter dis-

tribution. The transformation to guiding center variables from gyrocenter space can be

achieved through the use of the pull back operator (T ∗ = exp(εL)). The resultant equa-

tions govern the behavior of the fluctuations in Φ, B‖, and A‖. These expressions are

[15]∑
j

qj(1−Γ0(bj))
qjΦ

T0j
=
∑
j

qj

(
(Γ0(bj)− Γ1(bj))

B‖

B0
+

2πB0

mjn0j

∫
J0(λj)fjdv‖dµ

)
,

(2.39)

(1 +
∑
j

4bjβj(Γ0(bj)− Γ1(bj))
B‖

B0
=

= −
∑
j

2βj

(
B0

n0jT0j

∫
µ

2iI1(iλj)

λj
fjd

3v +
qjΦ

T0j
(Γ0(bj)− Γ1(bj))

)
,

(2.40)
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and

∇2
⊥A‖ = −8π2B0

c

∑
j

qj
mj

∫
v‖J0(λj)fjdv‖dµ , (2.41)

with J0 the zeroth order Bessel function, I0 and I1 modified Bessel functions, and

λi = iρj∇⊥ , Γi = Ii(bj)e
−bj , bj = λ2

j = − Tj
mjΩ2

j

∇2
⊥ . (2.42)

For a more complete derivation of these expressions, refer to, e.g., Ref. [16]. It is worth

noting that in the resultant equations A‖ is described independently while Φ and B‖ are

coupled. However, all simulations presented in the chapters to follow have B‖ = 0.

2.2 Gyrokinetic Codes

Solving the equations given above in specific experimental geometries is too difficult a task

for analytic theory without using severely limiting simplifying assumptions. To avoid the

necessity for these assumptions, and the limitations of the conclusions drawn from them, a

variety of gyrokinetic codes have been developed to deal with this task. This thesis contains

results from two different gyrokinetic codes: Gyro and Gene. Both of these codes provide

numerical solutions of the gyrokinetic system of equations presented above but differ in their

choice of coordinates and discretization methods. Such differences will be outlined here. For

more complete descriptions please refer to Ref. [18, 22, 23] for Gyro and Ref. [11, 10, 24]

for Gene.

Both codes contain the ability to do either local or global domains, though all work

in this thesis is restricted to the local (flux-tube) approximation. In this approximation,

background quantities are fixed and vary linearly over the simulation domain according to

the background gradients.

Both Gyro and Gene are Eulerian solvers (also called ”continuum” codes). As op-

posed to Lagrangian solvers (or PIC - ”particle-in-cell” codes), which compute character-

istic curves in phase space, Eulerian codes use a fixed grid in phase space. Eulerian codes

allow for greater flexibility in the choice of numerical algorithms and are not as susceptible

to numerical noise as PIC codes.



26

The gyrokinetic equation is further simplified for numerical computation by employing

δF splitting, in which the distribution function is separated into background (F , usually

taken to be a local Maxwellian distribution) and perturbed (f ≡ δF ) components. This pre-

scription has already been partially employed in the derivation given above in the assumed

ordering between fluctuating fields and background quantities.

Field-following coordinates

Having derived the gyrokinetic system system of equations above, it now remains to solve

them in a particular magnetic geometry. At this stage, a further simplification can be made

by implementing a field following coordinate system (note that now coordinate system refers

to the physical coordinates of the simulation domain, rather than the phase space coordi-

nates of the distribution function.) This choice is motivated by the anisoptropic nature of

microinstabilities (k‖/k⊥ � 1), which means that only the perpendicular directions require

the use of high resolutions.

A natural coordinate system to use for describing the magnetic field geometry is the

straight field line coordinate system, denoted by the variables (Ψ, χ, φ). Here Ψ is a flux

surface label, χ is the straight field line poloidal angle (defined through the safety factor

q = B ·∇φ/B ·∇χ), and φ is the toroidal angle. These coordinates form a system in which

magnetic fields are simply described by straight lines.

The transformation into field-aligned coordinates essentially involves a rotation in the

χ − φ plane, aligning one coordinate axis with the magnetic field direction. The symbols

used for the field aligned system will be (x, y, z), where the radial coordinate x is defined

as

x =
q0

r0B0
Ψ− x0 , (2.43)

the coordinate y defines the binormal direction (perpendicular to both the radial direction

and the magnetic field line)

y =
r0

q0

[
q′χ∇Ψ + q∇χ−∇φ

]
, (2.44)
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and z is the direction along the field line, defined as

z = χ . (2.45)

In these definitions r0 is the radius of the magnetic surface at the midplane and (x = x0, y =

y0, z = 0) defines the center of the flux tube. Here q0 is the safety factor at r0.

In the Gene code, many of the geometric terms in the gyrokinetic set of equations are

written in terms of the metric gij . (See Ref. [25]). The components of this are

gxx = ∇x · ∇x =

(
q0

r0B0

)2

gΨΨ , (2.46)

gxy =
1

B0

(
q′χgΨΨ + qgΨχ

)
, (2.47)

gyy =

(
r0

q0

)2 [
(q′)2χ2gΨΨ + 2qq′χgΨχ + q2gχχ + gφφ

]
, (2.48)

gxz =
q0

r0B0
gΨχ , (2.49)

gyz =
r0

q0

(
q′χgΨχ + qgχχ

)
, (2.50)

and

gzz = gχχ . (2.51)

These metric coefficients will pick up a particular form when some specific magnetic

equilibrium model is defined.

Normalization

Since numerical solvers work most naturally in the realm of dimensionless numbers, and

not physical units, it becomes necessary to normalize the above system of equations and

remove all dimensional dependence. Towards this end, several basic reference values are

defined for the normalization procedure. These include the elementary electric charge e, a

reference temperature Tref , a reference mass mref , a macroscopic reference length Lref , and

a reference magnetic field Bref . Physical quantities may be extracted from the normalized

results by substituting in experimentally relevant values for these reference quantities.



28

Additionally, some derived reference units are employed for normalization. These in-

clude a reference sound speed

cref =

(
Tref

mref

)1/2

, (2.52)

and a reference gyroradius

ρref =
cref

Ωci
. (2.53)

In the results of chapters to follow, Tref = Te, mref = mi, Lref = R0, and Bref is taken

as the on-axis magnetic field. Consequently, cref = cs, the ion sound speed, and ρref = ρs,

the ion sound gyroradius.

Flux tube approximation

To cut down on more of the numerical expense, a further approximation is made by sim-

plifying the computational domain. This is the “flux tube”, or “local”, approximation.

Rather than simulating the entire toroidal volume, for many cases it suffices to model just

a flux tube, a restricted domain that follows a magnetic field line for some integer number

of poloidal turns. For axisymmetric devices like the tokamak or reversed field pinch, one

poloidal turn is sufficient to capture all geometric variation (z ∈ [−π, π]).

The flux tube domain is also restricted in the x and y directions, so that the domain has

some finite box size given by Lx and Ly. Equilibrium quantities are Taylor expanded around

the center of the domain and are thus assumed to vary linearly across the flux tube. This

simplification requires the assumption that the radial box size (Lx) is sufficiently small as

compared to the machine size. The edges of the domain are handled by employing periodic

boundary conditions. This ensures the conservation of particles and energy, but requires

that Lx and Ly are larger than any structures that may arise in the ensuing turbulence. It

is therefore important to perform convergence checks of these quantities to ensure properly

converged results.

The implementation of a quasi-periodic boundary condition in the parallel (z) direction

requires a bit more care than the other coordinates, since the existence of finite magnetic

shear leads to a simulation domain that is sheared in the y direction. This shear, in turn,
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leads to a coupling of kx modes. The parallel boundary condition can be expressed as (see,

for instance, Ref. [14])

F (kx, ky, z + Lz) = F (k′x, ky, z)e
2πiky ŝr0 , (2.54)

where k′x = kx + 2πŝky, Lz is the parallel box size, and ŝ = (r0/q0)dq/dr. Although

the definition of the magnetic shear ŝ used here is the same as that regularly defined

for the tokamak, the term here arises from a Taylor expansion of the safety factor q and

does not rely on underlying tokamak assumptions. The parallel boundary condition is of

particular importance to the modeling of the RFP due to the high values of ŝ that exist

in the device. High shear requires high radial resolution, one feature of RFP simulations

that tends to make them more computationally expensive than their tokamak counterparts.

More discussion on the difference between the tokamak and RFP definitions of shear and

the implications for simulations is contained in Ch. 5 on page 81.

Since background quantities are not allowed to evolve in the local approximation, the

simulations are not entirely self-consistent. This issue can be addressed through the use

of global simulations. Global runs may differ from local ones due to a number of effects,

including the role of ρ∗ and the existence of avalanche transport processes. Although some

of these effects may be quite important and unknowable a priori, global simulations require

additional computational resources and, in the case of the RFP, careful consideration of the

high-shear geometry and the reversal surface. Therefore, all work included in this thesis is

performed using the flux-tube approximation.

The GYRO code

The work presented in Ch. 4 is based on simulations completed with the initial-value gy-

rokinetic code Gyro [18, 9, 23], which differs in several ways from Gene.

Although Gyro has been developed to solve the same basic set of equations as Gene,

differences in the implementation arise as a result of the choice of coordinate system (both

real space and velocity space) and in the way this system is discretized. These choices in
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turn affect the numerical algorithms chosen to solve the system differential equations that

constitute the gyrokinetic framework.

The coordinate system used in Gyro is based on the Miller equilibrium model [26] and

is expressed in terms of the coordinates (r, θ, ζ), where r is the flux surface label, θ is an

angle in the poloidal plane, and the toroidal angle variable is given by ζ = φ −
∫ θ

0 dθ
′q̂,

where φ is the physical toroidal angle and q̂ = b̂ · ∇φ/b̂ · ∇θ is the locally defined safety

factor.

To deal with numerical challenges that arise at the bounce points θb for trapped particles,

where v‖(θb) = 0, the normalized orbit time τ is used instead of the poloidal angle. This is

defined as

τ0(λ, θ) ≡


∫ θ
−θb

Gθ(θ′)dθ′√
1−λB̂(θ′)

, if λ ≤ 1
B̂(π)

(trapped)∫ θ
−π

Gθ(θ′)dθ′√
1−λB̂(θ′)

, if λ > 1
B̂(π)

(passing)

, (2.55)

where θb is the bounce point and Gθ(r, θ) = B
Bunit

R
R0

1
r|∇r|

1
|∇θ| .

The velocity space coordinates are chosen to be energy ε ≡ m(v2
‖ + v2

⊥)/2T , the pitch

angle variable λ ≡ v2
⊥/B̂v

2 (B̂ is normalized magnetic field), and the sign of the parallel

velocity σ ≡ sgn(v‖).

The discretization methods for these coordinates are as follows [9]: the toroidal angle

is treated spectrally, the radial and orbit-time derivatives are performed using upwind

differences, the energy integrals for ε and λ are treated using Gauss-Legendre quadrature,

and the time-stepping is done using 2nd-order Runge-Kutta.

Unlike Gene, Gyro remains in physical space for the radial direction, performing

derivatives with an upwind difference method rather than spectral multiplication. This

has the potential to introduce numerical dissipation, although with sufficient resolution

this is not an issue.

Another way that Gyro differs from Gene is in the treatment of collisions. In Gyro,

collisions are treated with the pitch-angle scattering operator — a special case of the more

general Landau-Boltzmann operator given before.
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Conventions

Besides differences in coordinate choices and discretization methods, there are differences of

convention between Gyro and Gene. The normalization of the timescale in Gyro differs

from that in Gene by a factor of the aspect ratio, so growth rates and real frequencies

are expressed in terms of cs/a, rather than cs/R0 (where a is the minor radius and R0 is

the major radius). Additionally, the sign convention of electron/ion direction is reversed,

so that in Gyro a negative real frequency indicates a drift wave in the ion diamagnetic

direction, while in Gene a negative frequency indicates the electron direction. Although

they do not affect the numerical computations, these differences are reflected in the results

presented in the respective chapters and should be taken account when doing side-by-side

comparisons. Furthermore, wavenumbers are expressed in terms of ‘poloidal wavenumber’

kθ, which, despite the notation, represents the binormal direction and therefore has the

same meaning as ky used in Gene. In the tokamak, where the toroidal field dominates,

the binormal coordinate is predominantly in the poloidal direction. Conversely, near the

reversal surface in the RFP geometry the y-axis points more in the toroidal than poloidal

direction.

2.3 Chapter Summary

The gyrokinetic Vlasov-Maxwell system of equations have been presented, with an outline of

the Lie perturbation method for the derivation of the evolution equation for the gyrokinetic

distribution function. The field equations describing the evolution of the electrostatic and

magnetic potentials were also described. Taken together, this set of equations described

the gyrokinetic framework, one of the primary methods of analysis for microturbulence in

magnetic confinement devices. For the purposes of numerical solving, the normalization

and discretization of these equations was discussed. The two gyrokinetic codes used in this

these, Gyro and Gene, were presented along with several key differences in their methods

and conventions.
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Chapter 3

The Reversed Field Pinch

“Essentially, all models are wrong, but some are useful.”

- George E. P. Box, Empirical Model-Building and Response Surfaces (1987)

Research on magnetic confinement fusion has predominantly concentrated on developing

the tokamak concept, and although this design is perhaps the most well advanced, other

promising approaches exist as well. One of these, the reversed field pinch (RFP), is the focus

of the present work. Like the tokamak, the RFP is an axisymmetric toroidal device that

provides a “magnetic bottle” for plasma confinement. Unlike the tokamak, the formation

of the RFP’s magnetic field is largely a process of self-organization, rather than the result

of externally imposed fields. In this process, an initial magnetic structure “relaxes” into a

lower energy state subject to certain topological constraints [27].

During standard operation the RFP is dominated by large-scale tearing mode events,

known as sawteeth, which produce stochastic magnetic fields and large magnetic-fluctuation-

induced transport [28, 29]. These tearing modes drastically reduce energy confinement time

and diminish the usefulness of the RFP as a magnetic confinement fusion concept. It is

possible to improve upon the standard operating characteristics of the RFP by using pulsed

poloidal current drive (PPCD) [30, 31, 32, 33, 34], a current profile control technique that

flattens the current profile and removes the drive for the global tearing modes. In this

regime, the transport fluxes may start to approach levels more in line with expectations
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from microturbulent driven ‘anomalous transport’ with some cases of PPCD seeing energy

confinement time increase by as much as a factor of ten over standard discharges [32].

Although the experimental observations for fluctuations that are independent of global

tearing modes is still fragmentary, there is growing evidence for drift wave activity [29,

35, 36, 37, 38, 39]. The tearing modes couple to a broad cascade that delivers magnetic

energy to small scales and simultaneously brings kinetic energy closer to equipartition as

the wavenumber increases [29, 35], in keeping with MHD. However, at smaller scales, the

kinetic energy eventually becomes greater than the magnetic energy. In this regime there are

notable changes in the coherence and cross phase between magnetic field and density, likely

associated with a different type of fluctuation. The observed radial structure indicates a

standing wave pattern consistent with collisional shear Alfvén waves or microtearing modes

[36]. Other observations suggest that temperature and density gradients in the edge are

close to critical values.

Exploring and characterizing the microinstability spectrum in the RFP is a major focus

of the present work. This chapter outlines the development of various RFP equilibrium

models and their implementation into gyrokinetic codes.

3.1 General Features of the Reversed Field Pinch

The dominant feature of the RFP magnetic geometry is a toroidal magnetic field that

reverses towards the edge of the plasma, a characteristic that differentiates it from the

tokamak. This results in a safety factor q that goes through zero and toroidal and poloidal

fields that may be the same order of magnitude throughout a large portion of the device.

A schematic diagram of the Madison Symmetric Torus (MST), an RFP at the University

of Wisconsin that is the focus of this thesis, and a representative equilibrium magnetic field

profile is given in Fig. 3.1.

While having a weaker toroidal magnetic field removes the need for external magnetic

field coils and contributes to making the RFP a cheaper alternative to the tokamak, this

design choice has a negative effect on stability. The tokamak strives to maintain a q-profile



34

Figure 3.1: Schematic diagram of an RFP. Key features of the magnetic field geometry
can be seen: concentric circular flux surfaces, a toroidal field that reverses out towards the
edge of the device, and toroidal and poloidal fields that are roughly equivalent in strength
throughout much of the plasma volume. Courtesy J. S. Sarff.

always above 1, ensuring that a strong toroidal field is present and able to suppress certain

instabilities, such as kink-tearing modes. In the RFP, however, the q-profile generally starts

at q ≈ 0.2 in the core and decreases from there. This means that multiple m = 1 and m = 0

tearing modes are unstable, creating large magnetic island structures that overlap to create

a stochastic magnetic field [40]. An example q-profile is shown in Fig. 3.2, with the radial

extent of various island structures indicated. The stochastic magnetic field and large tearing

mode activity have a detrimental effect on energy confinement. As will be discussed, this

is countered to some extent through the application of current profile control, which leads

to conditions more favorable to the observation of drift wave microinstabilities.

The equivalent strengths of the poloidal and toroidal fields in the RFP lead to a higher

degree of poloidal curvature and a smaller radius of curvature as compared to the tokamak,

a feature that affects the type and characteristics of the microinstabilities present. Various

geometric properties – such as q, magnetic shear ŝ, and the magnetic gradient and curvature
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Figure 3.2: A q-profile for a ‘standard’ RFP discharge showing the radial extent of magnetic
island structures. These overlapping islands are associated with the stochastic field seen in
the Poincaré plot in Fig. 3.3. Source: Sarff et al. (2003)

drifts – constitute a different regime than those investigated in tokamaks. As such, it can

be expected that instabilities will have different scaling and stability properties in the RFP.

3.2 Madison Symmetric Torus

Many of the results presented in this thesis have been formulated specifically for the Madison

Symmetric Torus (MST) RFP [41]. Reporting first plasma in 1990, MST is one of the longest

running RFP experiments. It is constructed out of a close-fitting symmetric aluminum shell,

and has a major radius of R0 = 1.54 m and a minor radius of a = 0.52 m. The conductive

shell serves several functions, both forming the vacuum vessel and operating as a toroidal

field winding. Current coils wrapped around a large iron core through the center of MST

inductively drive a large toroidal plasma current and a large poloidal magnetic field within

the device. Through a process of nonlinear magnetic self-organization a dynamo is created

that results in the reversal of the toroidal field towards the edge of the plasma. Typical

parameter ranges for MST are given in Tab. 5.1.

Magnetic equilibria, an important component of the modeling process detailed in this

chapter, are arrived at via the MSTFit code [42], a nonlinear Grad-Shafranov solver devel-

oped specifically for MST. This approach finds numerical solutions to the Grad-Shafranov

equation while at the same time attempting to satisfy radial force balance (J ×B = ∇P )
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plasma current 0.2 MA – 0.6 MA
major radius 1.54 m
minor radius 0.52 m

density ∼ 1× 10−19m−3

electron temperature up to 2 keV
poloidal beta up to 26%

confinement time 1 ms – 12 ms

Table 3.1: Machine specifications and normal operating parameters for the Madison Sym-
metric Torus (see Chapman et al. (2009)). These ranges include both standard and improved
confinement discharges.

and applying a best-fit procedure to match available experimental measurements. MSTFit

follows an iterative procedure, computing an equilibrium profile and predicted signals for

a suite of available diagnostics [43, 42, 44]. The electron temperature profile is measured

through Thomson scattering, density measurements come from FIR interferometry, and

magnetic fluctuations are measured by Faraday rotation polarimetry. The on-axis mag-

netic field is determined via motional Stark effect. For the discharges studied in this thesis

there are no independent Ti measurements. The χ2 difference between the predicted and

measured quantities is evaluated, and available free parameters are adjusted and a new

equilibrium calculated in an attempt to minimize the χ2 value. Equilibrium calculated by

MSTFit provide the experimental anchor against which the accuracy of simpler analytic

models are evaluated.

Improved confinement discharges

As has been discussed, confinement in the reversed field pinch (RFP) is dominated by global

tearing modes under ordinary circumstances. These large scale modes create stochastic

magnetic fields (see Fig. 3.3) that have hugely detrimental effects on transport. Con-

sequently, microscale drift-type fluctuations have received far less attention in the RFP

than they have in the tokamak. However, operational modes such as pulsed poloidal cur-

rent drive [45], which applies an external force to flatten the current gradient, and the

quasi-single-helicity state [46], whose quasi-spontaneous formation leads to a suppression of

multiple-helicity tearing modes, have gained success in reducing global tearing mode activ-
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Figure 3.3: Poincarè puncture plot for a standard (non-PPCD) MST discharge. Overlapping
magnetic islands result in a stochastic magnetic field structure. Source: Sarff et al. (2003)

ity. In this regime, confinement time can improve significantly, and equilibrium density and

temperature gradients can steepen [32, 47]. This produces conditions in which microscale

turbulence might emerge as a factor in confinement, just as it does in the tokamak.

The MHD mode activity of standard RFP discharges creates radial magnetic field fluc-

tuations that destroy flux surfaces and lead to stochastization. This is a scenario that in

turn leads to high levels of transport through parallel conduction of electrons [48]. This

stochasticity is demonstrated in Fig. 3.3 through a magnetic field puncture plot. In the

puncture plot, or Poincarè plot, flux surfaces (vertical lines at constant r/a) are populated

with a number of sample field lines which are then traced multiple times around the torus.

Radial magnetic diffusion results in a wandering of the field lines and a ‘noisy’ plot.

With PPCD, a poloidal current is inductively driven in the outer region of the device,

flattening the current profile. This reduces the global tearing mode activity and generates

smaller magnetic island structures and better-behaved magnetic fields. A puncture plot for

a PPCD discharge is presented in Fig. 3.4. The radii that will be the focus of much of the

present work occur out past the reversal surface (r/a ≈ 0.7, depending on the discharge)

where the flux surfaces are largely intact and there is very little magnetic stochasticity,
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Figure 3.4: Poincaré puncture plot for a sample PPCD discharge. By flattening the current
profile, global tearing modes are largely stabilized and magnetic flux surfaces are better-
behaved as compared to the standard discharge. Source: B. Hudson, Ph.D. Thesis (2006)

although a small amount remains that will be shown to play an important role in the

physics of nonlinear saturation.

A number of drift wave microinstabilities have been identified in the tokamak, and

although many of the same modes might be expected to be unstable in the RFP, their

exact characteristics and the parameter regimes in which they are unstable are not known

a priori. As has been described, the magnetic geometry of the RFP differs in several

significant ways from the tokamak, and these differences can be expected to affect the

scaling properties of the instabilities in the device, perhaps even presenting a different set

of likely modes. Accurate modeling of microinstabilities in the RFP requries the use of an

RFP-specific geometry. There are several models that may be used for this, a few of which

will be described now.



39

3.3 RFP Equilibrium Modeling

The implementation of an RFP equilibrium into a gyrokinetic code requires some important

geometric considerations, since many codes have been formulated based on toroidal flux,

which increases monotonically in a tokamak but can be multivalued in an RFP. Therefore,

RFP equilibrium implementations must work around this constraint. Additionally, there are

other, sometimes more subtle ways that tokamak assumptions may be built into gyrokinetic

codes. Examples of this may emerge in the definitions of the parallel wavenumber k‖ and

the magnetic shear ŝ.

Two common tokamak equilibrium models often implemented in gyrokinetic codes are

the s-α [49] and Miller [26] models. The first of these, s-α, is an equilibrium consisting of

shifted concentric circular flux surfaces and is parameterized by magnetic shear ŝ and the

plasma ballooning parameter α = −q2R(dβ/dr). The Miller equilibrium model is a more

sophisticated and adaptable model that allows for geometric variation in the flux surface

shape, including such parameters as triangularity and elongation. This flexibility enables

the modeling of non-circular flux surfaces.

The need for an RFP specific equilibrium was demonstrated in Tangri et al. [50], where it

was shown that the tokamak s-α equilibrium underestimated ITG growth rates at radial lo-

cations with poloidal curvature dominant. While the more sophisticated Miller equilibrium

did a better job, it still fell short at large r/a or high values of ky. This work demonstrated

the need for RFP-specific equilibria to be implemented in gyrokinetic codes, and it will be

shown in Ch. 5 that, for MST, it is these larger radial locations that are the most important

from the perspective of drift wave turbulence.

There are a number of different equilibrium models that can be used to describe the

magnetic field geometry of the RFP. Much of the difference between the RFP and the

tokamak lies in the behavior of the toroidal magnetic field. As a toroidal device, the RFP’s

toroidal field contains a 1/R dependence, like that of the tokamak, however there is also a

strong dependence on the minor radius r that the tokamak does not have. Among other

things, this minor radius dependence changes the scale of the magnetic drifts, so that these
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drifts in the RFP are larger than their tokamak counterparts by roughly a factor of the

aspect ratio.

Taylor relaxation and the Bessel function model

The origin of the difference between the magnetic field geometries of the tokamak and RFP

comes from the methods for creating the magnetic fields. In the former, the magnetic

field structure is largely determined by external field coils, while in the latter the magnetic

field comes about as a result of a process of self-organization. In this process there is a

spontaneous reversal of the toroidal magnetic field that occurs due to reapportionment of

helicity through the plasma volume. Generally, this is achieved by creating a small toroidal

field with external coils and using an induced toroidal current to generate a poloidal field.

The pinch effect caused by the toroidal current can trigger self-organization, manifested by

a reversal of the toroidal field in the outer portion of the plasma, from which the reversed

field pinch gets its name.

The relaxation process that forms the RFP geometry was first described by Taylor

(1974) [27]. This is a process of energy minimization subject to certain topological con-

straints. Making the assumption that plasma internal energy is negligible (β = 0), this

theory essentially relies on the minimization of magnetic energy,

W =
1

2

∫
V

(∇×A)dτ , (3.1)

where the integral is taken over some flux tube volume V , dτ is a volume element, and A

is the magnetic vector potential. With the additional assumption of a perfectly conducting

magnetic fluid, the magnetic field cannot break or reconnect, and the topology must be

preserved. One consequence of this is the conservation of helicity over V ,

K =

∫
V

A ·Bdτ , (3.2)

where B = ∇×A is the magnetic field.



41

With the minimization of energy and the conservation of helicity it can be found that

the equilibrium of the final relaxed state will be determined by the condition

∇×B = µ(r, θ) B (3.3)

for a function µ(r, θ), dependent on radius r and poloidal angle θ, that is constant along

magnetic field lines. Eq. (3.3) describes what is known as a force-free state, in which the

plasma current (proportional to ∇×B) is in the same direction as the magnetic field.

With some departure from an ideal plasma (resistivity or electron inertia) it becomes

possible for magnetic reconnection to occur and for the topology to change. In this case, it

is necessary to relax Eq. (3.2). Now, it is only the total helicity

K0 =

∫
V0

A ·Bdτ (3.4)

that needs to be conserved, where the integral is now over the total plasma volume V0.

This results in a unique solution to Eq. (3.3), where µ now represents a constant across all

magnetic field lines.

A simplified solution of Eq. (3.3) (for µ constant) can be found in the cylindrical limit

(the limit of infinite aspect ratio). In this limit, the poloidal and toroidal components of

Eq. (3.3) become the defining equations of the Bessel functions, J0 and J1. The magnetic

field components can therefore be expressed as

Bφ = B0J0

(
2Θ

r

a

)
(3.5)

and

Bθ = B0J1

(
2Θ

r

a

)
, (3.6)

where B0 is the magnetic field strength on-axis and Θ = µa/2 = 〈Bθ〉wall/〈Bφ〉vol (the ratio

of wall-averaged poloidal field over volume-averaged toroidal field) is known as the RFP

pinch parameter. These functions are plotted in Fig. 3.5 for Θ = 1.35. It can be seen that

the Bessel function model (BFM) captures the essential nature of the RFP magnetic fields,

that is, a toroidal field that decreases from the core, becoming weaker than the poloidal

field and eventually reversing sign.
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Figure 3.5: Toroidal field (blue) and poloidal field (green) for the Bessel function model,
with Θ = 1.35. This model contains the essential feature of the RFP, which is the reversal
of the toroidal field and a q = 0 surface.

Toroidal Bessel Function Model

Although the BFM captures the basic features of the RFP equilibrium, by being a cylindrical

approximation it cannot account for the sometimes important effects that arise as a result of

toroidal curvature, especially particle trapping. Furthermore, it may not be straightforward

to incorporate the BFM into a gyrokinetic code such as Gyro [18, 9], which assumes an

equilibria that is a solution of the Grad-Shafranov equation and requires a toroidal magnetic

field of the form Bφ ≡ F (Ψ)/R.

Work has been done to extend the BFM, incorporating toroidal and finite β effects. This

model, called the toroidal Bessel function model (TBFM) is discussed in detail in Ref. [50].

An outline of the derivation will be given here.

As with the derivation of many similar equilibria, the starting point is the assumption

of an axisymmetric equilibrium consisting of nested flux surfaces labeled by unique values

Ψ. For the RFP, it is also a good assumption that the flux surfaces are circular, and that

flux surfaces are characterized by the variables R(Ψ) and Z(Ψ). Being an axisymmetric
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equilibrium, Ψ obeys the Grad-Shafranov equation [51, 52]

∆∗Ψ = −µ0R
2p′ − F dF

dΨ
, (3.7)

where p′ = dp/dΨ is the gradient of pressure and the magnetic field B is described as

B = (1/R)∇Ψ× eφ + (F/R)eφ , (3.8)

with the toroidal and poloidal components of the magnetic field obeying the relations RBφ =

F (Ψ) and Bθ = |∇Ψ|/R. In the coordinate system used here

∆∗ ≡ R2∇ ·
(
∇Ψ

R2

)
= R

∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂Z2
. (3.9)

It is useful to transform from toroidal coordinates (R, φ′, Z) to cylindrical coordinates

(r̂, θ, φ), with the definitions r̂ = r/a, R = R0 + ar̂ cosφ, Z = ar̂ sinφ, and φ′ = −φ. With

this transformation, the left hand side of the Grad-Shafranov equation (Eq. (3.7)) becomes[
∂2

∂r̂2
+

1

r̂

∂

∂r̂
+

1

r̂2

∂2

∂θ2
− a

R0 + ar̂ cos θ

(
cos θ

∂

∂r̂
− sin θ

r̂

∂

∂θ

)]
Ψ . (3.10)

This equation is often solved numerically to generate an equilibrium. A simplified

analytic equilibrium can be found by making the approximation

dF (Ψ)

dΨ
= µ , (3.11)

where

F (Ψ) = µ(Ψ−Ψs) (3.12)

and where µ and Ψs are assumed to be constants. Eq. (3.11) is motivated from experimental

RFP equilibria on MST. If low β is assumed, the p′ term can be neglected in Eq. (3.7),

from which comes the solution

Ψ(r̂) =
aB0

2Θ
[J0(2r̂Θ)− J0(2Θ)] . (3.13)

From this equation, as well as Eq. (3.8), the form of the magnetic field in the TBFM is

derived:

Bφ =
B0J0(2Θr̂)

1 + (r̂a/R0) cos θ
(3.14)
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and

Bθ =
B0J1(2Θr̂)

1 + (r̂a/R0) cos θ
. (3.15)

This equilibrium is now in a form that can be implemented in the Gyro code. This

model is a function of the parameters Θ, r̂, and θ. The specifics of this implementation and

initial results were presented in Ref. [50]. Further results based on this model constitute

the bulk of Ch. 4.

Limits of the TBFM

Although the TBFM is an improvement on the BFM, it still has severe limitations. In

particular, the TBFM breaks down for Θ & 1.8 and is not capable of accurately describing

high-Θ PPCD discharges.

A comparison of the TBFM model with an experimental equilibrium in which Θ = 1.5

is given for the poloidal and toroidal magnetic fields in Fig. 3.6. Although the model still

captures the essential features at this Θ value, it has begun to depart from the experimental

fields and is no longer an accurate representation of the actual experimental magnetic

geometry. At the pinch parameter Θ = 2.96, the TBFM no longer captures the equilibrium

accurately, as can be seen in Fig 3.7. For these cases a new approach must be taken.

Adjusted Circular Model

With the limitations posed by the TBFM, and the strong need to accurately model high-

confinement PPCD discharges, it is necessary to implement a different equilibrium model.

The approach taken here to achieve this is to make use of the highly flexible Gene code [10,

11] and to modify the circular equilibrium used therein. Gene does not rely on underlying

tokamak assumptions in the implementation of a chosen geometry and is therefore capable

of incorporating a wide range of magnetic field equilibria.
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Figure 3.6: The TBFM (green dashes) and experimental magnetic field (blue dots) at
Θ = 1.5. Shown are both the toroidal and poloidal components of the magnetic field. The
TBFM still somewhat follows the equilibrium field, but it is starting to break down.
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Figure 3.7: The magnitude of the magnetic field for the experimental field (blue dots), the
TBFM (green dashes), and the ACM (red line) for a Θ = 2.96 equilibrium. The ACM does
a good job of describing the equilibrium, in contrast to the TBFM.
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Circular model

The gyrokinetic code Gene contains a circular equilibrium, called the ‘circular model’,

discussed in detail in Ref. [25]. The circular model is an improvement upon the more basic

s-α equilibrium model, which due to the definition of the poloidal angle has been shown to

contain inconsistencies on the order of the inverse aspect ratio ε ≡ r/R0 [25].

In the circular model, the form for the magnetic field is given as

B =
B0R0

R

(
eφ +

r

R0q̄
eθ

)
, (3.16)

where the magnitude of the field is given by

B = |B| = B0R0

R

(
1 +

(
ε

q̄

)2
)1/2

, (3.17)

and where q̄ = q
√

1− ε2. The derivative of the field, another important component used in

the Gene code, is

dB

dr
= B0

[
−

(1 + ( εq̄ )2)1/2

(1 + ε cos θ)2

cos θ

R0
+

(1 + ( εq̄ )2)−1/2

1 + ε cos θ

ε

q̄

[
1

R0q̄
− ε

q̄2
q̄′
]]

= B0

(1 + ( εq̄ )2)1/2

1 + ε cos θ︸ ︷︷ ︸
B

[
−cos θ

R0

1

1 + ε cos θ
+

1

1 + ( εq̄ )2

ε

R0q̄2

[
1− r

q̄
q̄′
]]

.
(3.18)

Although the circular model is an improvement upon s-α, by itself it is not capable of

describing the RFP magnetic fields. This is due to the strong dependence of the RFP’s

toroidal field on minor radius r, which is not captured in this model. A naive use of this

model with RFP parameters vastly overestimates the B-field in the region of the reversal

surface. This is demonstrated in Fig. 3.8. This particular case is for a 200 kA PPCD

equilibrium with Θ ≈ 3, but the evident error between the model and the experiment

would be an inevitable outcome of using the circular model with any RFP equilibrium.

To get a better sense of the deficiencies of the circular model in describing the RFP

equilibrium, we may transform the TBFM into a similar form as Eq. (3.17) and note the
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differences. The specification for the magnetic field in the TBFM is

B =
B0R0J0(2Θr/a)

R
eφ +

B0R0J1(2Θr/a)

R
eθ

=
B0R0

R
J0(2Θr/a)

(
eφ +

J1(2Θr/a)

J0(2Θr/a)
eθ

)
=
B0R0

R
J0(2Θr/a)

(
eφ +

ε

q
eθ

)
,

where the cylindrical approximation for q has been employed (q = rBφ/RBθ). The magni-

tude of the magnetic field in this prescription is

B = |B| = B0R0

R
|J0(2Θr/a)|

(
1 +

(
ε

q

)2
)1/2

. (3.19)

This expression is very similar to the circular equilibrium model (Eq. (3.17)), with

the difference lying in the Bessel function multiplier J0(2Θr/a) which captures the minor

radius dependence of the toroidal field. This term is a necessary difference from the circular

model in that it counteracts the singularity at the reversal surface and keeps B finite as

q → 0. This demonstrates that additional modifications to the circular model are required

to capture the RFP geometry.

Although additional r dependence could be added and a generic RFP equilibrium incor-

porated into this model by simply including the BFM in the prescription for the magnetic

field, this is not desirable due to the limitations of the BFM itself. Therefore, a more general

approach will be taken by replacing J0(2Θr/a) with some function g(r) that depends only

on r.

Adjusted Circular Model

We choose to take a g(r) of the form g(r) = qf(r), where q is the safety factor and f(r)

is a polynomial determined by a fit to the experimental field. The explicit inclusion fo q

in this expression is for the purpose of achieving an exact cancellation with the 1/q term

in |B|, thereby ensuring a well-behaved expression even at the q = 0 surface. The original,

unmodified circular model may be reproduced by choosing f(r/R0) = |q|−1.
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Figure 3.8: The experimental magnetic field (blue dots) along with the circular equilibrium
(red dashes). By not allowing for a minor radius dependence of the toroidal field the circular
model encounters a singularity at the q = 0 (reversal) surface. Roughly twenty radial points
are used to create these curves, which leads to a peak in the magnetic field for the circular
equilibrium rather than a true singularity.

This function is incorporated into the model as follows. Taking the fitted function

f(ε = r/R0) such that

B =
B0R0

R
qf(ε = r/R0)

(
eφ +

r

R0q̄
eθ

)
, (3.20)

and where the magnitude of the field is given by

B =
B0R0

R
|q|f(ε)

√
1 + (ε/q̄)2 . (3.21)

This expression forms the basis for a ‘semi-analytic’ equilibrium model, in which the function

f(ε) is fit to an experimental equilibrum profile generated by MSTFit. More specifically, the

f is fitted to Bexp
R
R0

1
|q|(1 + (ε/q̄)2)−1/2. In this way an experimental magnetic equilibrium

can be incorporated into Gene in an entirely analytic way. The radial derivative of this

model is given as

dB

dr
= |q|f(ε)

d

dr

(
B0R0

R

(
1 + (ε/q)2)1/2

))
+ |B|

(
q′

q
+
f ′

f

)
, (3.22)
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where f ′ = df/dr = df/dε · 1/R0 and q′/q = ŝ/r. In some of the plots that follow, the

adjusted circular model is sometimes referred to as ‘Fit’.

The difference between the ACM and the original circular model is the inclusion of the

factor |q|f(r/R0), which captures the dependence of the toroidal magnetic field on r and

allows for a smoothly varying expression through the reversal surface, where q and the

toroidal field go to zero. Although this choice enables the ACM to include the reversal

surface, the inclusion of this surface in gyrokinetic codes presents additional difficulties due

to the low q and high ŝ. This problem is elaborated on in Ch. 5.

The differences between the ACM and the TBFM can be seen by plotting the com-

ponents of the magnetic fields for each model, along with the experimental field. Fig. 3.9

shows the toroidal component of the field, where it can be seen that at this value of Θ the

TBFM contains a double reversal, clearly a non-physical effect. The polodial component

of the magnetic field is plotted in Fig. 3.10, where it can again be seen that the TBFM is

not capable of matching the experimental field in these high-Θ discharges. The ACM fit,

conversely, matches the experimental field well. The ACM, like the original circular model,

is limited in that it is only capable of modeling circular flux surfaces. However, this is an

assumption that is well-satisifedin MST [42].

Benchmarking

Since gyrokinetic simulations are a relatively new topic of study for the RFP, it is impor-

tant to compare results from separate codes with slightly different handling of geometric

quantities. This exercise, referred to as benchmarking, serves as a check on both the im-

plementation of the equilibrium model into the separate codes, as well ensuring the codes

are solving the gyrokinetic system of equations in a consistent and repeatable way.

The TBFM as implemented in Gyro and the ACM as implemented in Gene have

been benchmarked against each other for the case of a Θ = 1.35 equilibrium with β = 0,

a/LT = 5.0, and a/Ln = 0.58, where 1/Ln = −d lnn/dr and 1/LT = −d lnT/dr. The ion

and electron temperature gradients are assumed to be equal. The results of this benchmark
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Figure 3.9: The toroidal magnetic field for the experimental field (blue dots), the TBFM
(green dashes), and the ACM (red line) for a Θ = 2.96 equilibrium. The toroidal field of
the TBFM reverses direction twice, a feature seen in neither the experimental field nor the
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Figure 3.10: The poloidal magnetic field for the experimental field (blue dots), the TBFM
(green dashes), and the ACM (red line) for a Θ = 2.96 equilibrium. The TBFM poloidal
field erroneously contains a reversal, while the fit provided by the ACM successfully matches
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are shown in Fig. 3.11. The original Gyro results have been published in Tangri et al. [50],

and more details can be found there.

The polynomial component of the ACM magnetic field has been determined through

a fit to the Θ = 1.35 TBFM, rather than to any experimental field measurements. This

is effectively an exercise in verification and provides a check on the implementation of the

ACM into Gene, rather than an exploration of the detailed differences between the models.

As can be seen in Fig. 3.11, there is very good agreement for a low-Θ non-PPCD case where

the TBFM is well-suited to describe the magnetic geometry. One advantage of the ACM is

its ability to accommodate more general equilibria than the TBFM, such as high-Θ PPCD

discharges where the TBFM breaks down. This allows the modeling of PPCD equilibria

with parameters drawn directly from MST discharges.

3.4 Chapter Summary

The essential features of the reversed field pinch were presented along with several analytic

equilibrium models. The RFP is a device in which microinstability studies are a relatively

new topic, and work has been done to incorporate the RFP geometry into gyrokinetic codes

for the purpose of addressing this issue. Some of the limitations of Taylor’s original Bessel

function model are removed with the development of the toroidal Bessel function model,

which has been incorporated into the Gyro code. However, due to the limitations of these

Bessel function based models in accurately modeling the geometry of higher-Θ discharges

a new model was developed based on the Gene code’s circular model. The adjusted cir-

cular model provides a flexible equilibrium model capable of addressing the geometries of

specific experimental discharges. The following chapters contain results from using these

models and the aforementioned gyrokinetic codes to study the types and characteristics of

microinstabilities in the Madison Symmetric Torus.
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Chapter 4

Fundamental microinstability

studies in an RFP equilibrium

Microinstabilities have been a topic of study in the tokamak for a number of years, and

after some uncertainty about what modes may be most compatible with the high shear and

low safety factor conditions of the RFP, numerical solutions of gyrokinetic models in RFP

geometry have shown that many instabilities familiar from the tokamak may also arise in

the RFP [53, 54, 50]. In the present chapter two such modes are explored in some detail:

the ion temperature gradient (ITG) driven mode and the microtearing mode (MTM). As

will be discussed, a general feature of the RFP versions of these instabilities are critical

thresholds in the driving gradients and in β (here and in the following β refers to electron

pressure β = 8πn0Te0/B
2, where B0 is the magnetic field, n0 is the background density, and

Te0 the background electron temperature) that are larger than their tokamak counterparts

by roughly a factor of the aspect ratio R/a.

The results presented in this chapter use the toroidal bessel function model (TBFM) as

implemented in the Gyro code. A description of this implementation, and initial results,

were published in Tangri et al. [50]. The following results can be considered to build on

those and have been published in Carmody et al. [55]. Although not modeling any specific

discharge, by containing some of the general features of the RFP equilibrium — such as
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high magnetic shear and strong poloidal curvature — this model is capable of providing an

initial characterization of the instabilities that arise in this device.

4.1 Equilibrium Modeling

The work presented here is performed with the Gyro code using the TBFM model described

in Ch. 3. As mentioned previously, the TBFM is an analytic equilibrium that captures the

essential features of the RFP. Flux surfaces are assumed to be circular, and to lowest order

in β the magnetic fields are given as:

Bθ =
B0J1(2Θr/a)

1 + r cos θ/R0
, Bφ =

B0J0(2Θr/a)

1 + r cos θ/R0
, (4.1)

where Θ is the RFP pinch parameter. Although the TBFM is not capable of modeling

high-Θ PPCD equilibria, or addressing the unique geometric characteristics of specific MST

discharges, the low q and high ŝ are representative of conditions unique to the RFP. These

results can therefore shine some light on general characteristics of instabilities in this device.

In addition to the background magnetic equilibrium, certain of the gyrokinetic operators

are generalized to the RFP geometry. These generalizations stem from characteristics of the

RFP equilibrium that differentiate it from the tokamak. Primarily, the poloidal magnetic

field in the RFP is much stronger relative to the toroidal field as compared to the tokamak,

and in the case where the normalized radius of the simulation domain is r0/a ∼ 0.5, they

are roughly the same order of magnitude. Under these circumstances, the common tokamak

approximation B ∼ Bφ cannot be made, and the more general form B = Bφ(1+(εt/q0)2)1/2

must be used, where Bφ is the toroidal magnetic field and εt = r0/R0 is the inverse aspect

ratio of the flux surface. This difference affects operators such as the curvature drift fre-

quency and parallel transit operators, the latter of which in its general form will pick up

an additional factor

b · ∇ ∼ k‖ =
1√

1 + (εt/q0)2

1

q0R0
. (4.2)

Besides being incorporated into the code, these geometric modifications must also be taken

into account in analytic estimates whenever generalizing a tokamak analysis to an RFP envi-
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ronment. The next section provides an example of this in the context of finite-β suppression

of ITG. Let it also be noted that, for the Gene work described in Ch. 5, the modifications

to k‖ and the curvature drift are not required, since Gene is formulated based on more

general descriptions of geometry than Gyro is.

Parameters

The MST has a major radius of R0 = 1.54 m and a minor radius of a = 0.5 m, yielding

an inverse aspect ratio of εt ≈ 1/3. Simulations presented here look mainly at the radial

location r0/a = 0.5, with, unless otherwise stated, the other parameters being: q = 0.186,

ŝ = −0.716, Θ = 1.35, a/Ln = 0.58, a/LT = 5.0, Ti/Te = 0.4, ν(a/cs) = 0. The collision

frequency ν, in particular, plays an important role in the dynamics of the MT mode,

which will be discussed in Sec. 4.4. The numerical resolution parameters used for these

simulations are typical for microtearing simulations, with 8 pitch angles, 8 energy gridpoints,

20 gridpoints in orbital time, and 64 radial gridpoints. In particular, the radial resolution

must be high enough to resolve the narrow current channel physics of the microtearing

mode. It is important to note that the simulations performed here are linear and for a

generic RFP equilibrium. Modeling a more realistic equilibrium or performing nonlinear

work has different resolution requirements, and the results of just such an approach can be

found in Ch. 5.

4.2 Beta Scan

Since β values of 10% and higher are not unusual in the RFP, it is important to perform an

analysis of potential electromagnetic instabilities that may arise. When increasing β, it is

reasonable to expect that the ITG mode is eventually stabilized – it is thus helpful to know

at what critical βITG
crit stabilization occurs and how βITG

crit scales with various geometric and

equilibrium parameters. It is also important to determine whether a new instability emerges

at higher β, and if so, at what critical β the instability arises and what characteristics apply

to it. In the tokamak, the kinetic ballooning mode becomes unstable as β is increased
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beyond a certain threshold. In the RFP, it would not be surprising for a microtearing mode

(MTM) [56, 57, 58, 59, 60] to become unstable for β values above the low-β ITG regime,

as it does in certain parameter regimes in the tokamak [61, 62, 63], provided the electron

temperature gradient that drives the MTM is comparable to the ion temperature gradient

for ITG instability.

It is natural to consider the MTM as a potential instability for the RFP, if only because

it is the small-scale extension of global tearing modes [64], which dominate confinement in

ordinary discharges [29]. The MTM is not a current driven mode: current driven tearing

modes require that a current gradient that varies on the scale of the minor radius a be

larger than the flux discontinuity at the resistive layer, which goes like −2kθ, ensuring that

∆′ > 0, where ∆′ is the standard parameter of the MHD tearing mode. With the binormal

wavenumber kθ large, microtearing modes have ∆′ < 0. However, they can be driven by

electron temperature gradients just like other drift modes, including trapped electron modes

and electron temperature gradient driven modes.

A scan over β from 0 to 10% was performed to determine the variety of modes that

might be dominant across this range. The results can be seen in Fig. 4.1. It should be

noted that for this scan, the pinch parameter is kept constant and does not vary self-

consistently with β. At low β, the dominant instability is identified as an electrostatic ITG

mode. As β increases this mode is suppressed and eventually overtaken by a MTM at a

β of approximately 4.5%. The transition can be seen most clearly in the real frequency

plot. Here, the frequency of the ITG mode is in the ion direction (negative sign in this

convention) and that of the MTM is in the electron direction (positive sign).

One interesting feature of the low-β versus high-β instabilities is the range of scales at

which these modes are unstable. This difference can be seen in Fig. 4.2. At low β, the

ITG mode ranges from kθρs = 0.1 to kθρs = 0.9, achieving a peak near 0.5. Initially, the

MTM arises at these same scales, with a peak at roughly the same value, although with a

slightly broader range. Fig. 4.3 shows the growth rates and frequencies versus wavenumber

for β = 4%. It can be seen that the ITG mode remains relatively unchanged and the
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Figure 4.1: Growth rate and mode frequency plotted as a function of β for kθρs = 0.372.
ITG is stabilized with increasing β, and MTM requires a critical β for instability. A
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growth rate for a case where a/LTe = 3.0, where MTM is stabilized, to show more complete
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Figure 4.3: Growth rate and mode frequency plotted as a function of kθρs for β = 0.04. At
this value of β ITG and MTM exist at similar scales.

dominant instability at kθρs = 0.3 − 0.6, while the microtearing covers a broader range of

kθ. As β increases, the peak of the microtearing mode shifts to higher kθ. This can be seen

in Fig. 4.2, where it is observed that at a β = 9% the MTM not only reaches higher growth

rates, but does so over a much larger range of scales, peaking at a value of kθρs ≈ 1.5.

The range of β simulated covers different modes of operation of MST. A standard

discharge will have values of β ∼ 4 − 5%, a range that means ITG and microtearing
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may both be equally strong. Improved confinement pulsed poloidal current drive (PPCD)

discharges, on the other hand, may achieve β values of 9% or higher [34], in which case

microtearing may be the dominant mode, although for reasons that will be discussed in

Ch. 5 certain characteristics of PPCD equilibria make MTM unlikely.

4.3 ITG β Suppression

Finite-β suppression of ITG (a linear effect which may be amplified nonlinearly [65]) has

been a topic of study in the context of tokamaks [66], and that analysis will be applied

here to ITG in the RFP. In the RFP, ITG growth rates can still be quite strong at values

of β where tokamak ITG is typically stable [18], as can be seen in Fig. 4.1. In fact, ITG

remains unstable past β = 5% (although subdominant to MTM) and may not stabilize

until β ∼ 10%.

This analysis of the finite-β suppression of the ITG mode follows that of Hirose [66],

making the appropriate modifications for the RFP geometry. Ref. [66] is itself an electro-

magnetic extension to the electrostatic theory presented in Ref. [67]. As discussed before,

the RFP modifications are due to the different strengths and scale lengths of the magnetic

field. In the tokamak, the scale length of magnetic field variation is proportional to the

major radius, 1/LB = ∇B/B ∼ 1/R0, while in the RFP, the appropriate scale is the minor

radius, ∇B/B ∼ 1/a. As was mentioned above, the parallel derivative term also needs

to be modified to account for the equivalent strengths of the poloidal and toroidal fields.

Therefore, the modified terms will take the following forms: k‖ = 1/(q0R0(1 + (εt/q0)2)1/2)

for the parallel wavelength, and ωDj = vDj · k = 2cTj(∇B × B) · k/eB3 ∼ 1/LB for the

curvature drift, where c is the speed of light and e is the fundamental charge.

The following discussion is based on a fluid analysis of the ITG instability. Starting

with the ion continuity equation and the energy equation

3

2
nj

(
∂

∂t
+ vj · ∇

)
Tj + pj∇ · vj =

5

2
njv∗j · ∇Tj −

5

2
njvDj · ∇Tj , (4.3)

and before including the finite-β effects, the ion and electron densities are found to be,
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respectively,

ni =
(ω + 5ωDi/3)(ω∗e − ωDe)− (ηi − 2/3)ω∗iωDe

(ω + 5ωDi/3)2 − 10ω2
Di/9

eΦ

Te
n0 , (4.4)

and

ne =
eΦ

Te
n0 , (4.5)

where pj = njTj , ω∗j = v∗j · k = cTj(∇lnn0 ×B) · k/eB2 ∼ 1/Ln, and ηi = d lnTi/d lnn0.

The expression for the electron density is modified by the consideration of finite-β

effects. This is done by taking into account perpendicular magnetic field perturbations,

or, equivalently, perturbations to the parallel magnetic vector potential: B⊥ = ∇ × A‖.

Including such perturbations in the parallel momentum balance of electrons will result in

the electron density taking the form

ne =

(
Φ− ω − ω∗e

ck‖
A‖

)
en0

Te
. (4.6)

The parallel electron current can be attained from the electron continuity equation and

the electron density given in Eq. (4.6):

J||e =
n0e

2

k||Te
((ω∗e − ω)Φ +

(ω − ωDe)(ω − ω∗e) + ηeω∗eωDe
ck||

A||) . (4.7)

Then, using Ampère’s law and the quasineutrality condition, we arrive at the following

relation:

A‖

(
1− β

k2
‖LnLB

[
2
εn
τ2

+
1

τ
(1 + 2εn) + 1 + ηe

])
=
ω∗e
ck‖

k2
De

k2
⊥

(
1 + 2

εn
τ

)
Φ , (4.8)

where τ = Te/Ti, kDe = (4πn0e
2/Te)

1/2, ηe = d lnTe/d lnn0, k⊥ = k · B⊥ ≈ kθ, and

εn = Ln/LB. Then, as in Ref. [66], we are able to derive the stability condition, with

certain terms adjusted to account for the RFP generalizations

β ≥ εnε
2
t τ

2

(1 + (εt/q0)2)q2
0[(τ + 2εn)(τ + 1) + τ2ηe]

. (4.9)

The criterion given above is similar to that of Ref. [66], but for RFP parameters it yields

a higher critical β than is seen in tokamaks. This is due primarily to the smaller q0 and
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Figure 4.4: Beta stabilization of ITG for the parameters r/a = 0.4, q = 0.244, a/LTe =
0, a/Ln = 0.08. A parabolic fit has been used to project out to a critical beta for stabilization
of ∼ 9%. The critical β estimated by Eq. (4.9) is ∼ 19%, roughly a factor of two larger
than that seen in the simulations.

shorter connection length that is a result of the equivalent strengths of the poloidal and

toroidal fields in the RFP.

For the parameters used in Fig. 4.1 and taking a/LB = 1, the above expression yields

a critical β of just above 6% for a/LTe = 5.0 and just above 9% for a/LTe = 3.0. An

alternate case, in which r0/a = 0.4, q0 = 0.244, and a/LTe = 0 is presented in Fig. 4.4, and

the resulting critical beta for these parameters is ∼ 19%, which differs from the limit seen

in the simulations by roughly a factor of two. There is some sensitivity to 1/LB (contained

in εn) in these calculations and consequently results from the analytic expression should be

treated as estimates only, but a general conclusion that may be drawn is that the critical

beta calculated for the RFP will be larger than that for a tokamak by approximately a

factor of the aspect ratio.

Attention is now turned to the instability observed at higher β, the microtearing mode.
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4.4 Microtearing Modes

The dominant instability at higher values of β is identified as a MTM. These modes are

characterized by having tearing parity in the parallel direction. This appears as odd parity

in the electrostatic potential Φ and even parity in the magnetic potential A‖, as seen in

the eigenmode structure in Fig. 4.5. This structure, including the small amplitude features

occurring every 2π (attributed to poloidal variation) is similar to that seen in other devices,

including MAST [68] and RFX-mod [53]. A sample ITG eigenmode structure, by way of

comparison, is given in Fig. 4.6. Several parameter scans were performed in order to better

characterize the observed MTM. The β value of these scans was taken to be 9%, a value

chosen to lie in the potential range for PPCD discharges in MST.

The MTM is known to be driven by the electron temperature gradient rather than the

current gradient, as is the case for the large scale tearing mode. Thus, a strong dependence

of the growth rate on LTe is expected, and this is seen in Fig. 4.7. Here the mode can

be seen to require the threshold gradient of approximately a/LTe ≈ 3.5, which is higher

than that reported in [53] ((a/LTe)crit ∼ 2). This threshold falls at a similar value as is

observed for the ion temperature gradient threshold for the ITG mode. However, it can be

seen that the MTM growth rate rises much more steeply with temperature. Such a strong

dependence can be expected to lead to profile stiffness, fixing the experimental gradient near

the threshold for instability. Additionally, nonlinear simulations in the spherical tokamak

have revealed a nonlinear upshift in the effective gradient threshold as compared to linear

simulations [69], and the same effect can be expected to occur in the RFP.

In Fig. 4.8 can be seen the effect of varying the temperature ratio Ti/Te. The MTM

shows a strong increase of the growth rate with this ratio. There is an opposite dependence

in ITG (see plot b), where the growth rate decreases as Ti/Te increases. This is consistent

with MTM’s electron temperature gradient drive.

An interesting aspect in recent gyrokinetic work relating to the MTM is the observa-

tion of instability in low-collisionality regimes. This is observed for simulations with both

tokamak [68, 62, 69, 63] and RFP geometries [53, 70]. Theoretically, a series of papers
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Figure 4.5: Eigenmode structure for the MTM in electrostatic potential Φ and magnetic
potential A‖ with both real (green dashed curve) and imaginary (red solid curve) compo-
nents. The fields are plotted against the magnetic-field following ballooning angle θ∗. This
mode displays tearing parity, which is recognized as even parity in A‖ and odd parity in Φ.
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Figure 4.6: Eigenmode structure for the ITG mode in electrostatic potential Φ (upper plot)
and magnetic potential A‖ (lower plot) with both real (pink curve) and imaginary (orange
curve) components. The fields are plotted against the magnetic-field following ballooning
angle θ∗. This mode displays ballooning parity, which is recognized as odd parity in A‖
and even parity in Φ. As an electrostatic mode plotted for β = 0.001 the magnetic vector
potential fluctuation is quite small.
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Figure 4.7: Growth rate plotted against temperature gradient for kθρs = 0.372 in the case
of MTM (red squares) and ITG (green circles). Both instabilities have a threshold around
a/LT ≈ 3.5 − 4.0, for their respective driving gradients, although these thresholds may
differ for an alternate set of parameters.

specific to the tokamak in their approximations have collectively pointed to the conclusion

that the microtearing mode is very sensitive to collisionality ν, and should become stable

for small collisionality [59, 71, 58, 60]. One design of the current study has been to probe

this mismatch between these theoretical predictions and the results of the aforementioned

gyrokinetic simulations. A collisionality scan (Fig. 4.9) shows instability at low ν, but be-

havior with other parameters suggests that there may be two branches of the instability,

one at low collisionality, and one at higher values of ν (in the ‘semi-collisional’ range) that

is more compatible with theoretical predictions. We specifically study the possibility, first

suggested for RFP tearing modes in Ref. [72], of an RFP MTM branch that is enabled

by the large electron curvature drift of the RFP. Artificial variation of the strength of the

electron curvature and ∇B drifts shows that the growth rate diminishes toward zero when

the magnetic drift falls outside a certain range of values. This is in agreement with recent

work done in the spherical tokamak [63] and the RFP [70].

Since collisions are expected to play an important role in the mechanism for instability
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Figure 4.8: Growth rate plotted against the temperature ratio Ti/Te for kθρs = 1.488.
Shown are MT (a) and ITG (b). The qualitative dependence is consistent with expectations
of modes with either ion or electron gradient drives.
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of MTM [57, 59], a scan was performed over the collision frequency, the results of which are

given in Fig. 4.9. The collision operator used in Gyro is a pitch-angle scattering operator

C(f) =
νe(ε)

2

∂

∂ξ
(1− ξ2)

∂f

∂ξ
, (4.10)

where ξ is the pitch angle and νe(ε) = ν[Zeff +H(ε1/2)]/ε3/2, with Zeff the effective nuclear

charge, H(x) = exp[−x2]/xπ1/2 + (1 − 1/2x2)erf(x) and ε = Ee/Te = mev
2/2Te. In these

expressions, ν is the control parameter in the simulations.

A notable feature of Fig. 4.9 is the appearance of what seem to be two separate regimes

of MTM, with a transition between the two occuring roughly around ν ∼ 0.1− 1. At ν ∼ 1

the growth rate achieves a peak and then falls off for higher collisionality. At lower values

of ν the growth rate flattens, remaining finite in the limit of zero collisionality. Gyro

uses an upwind differencing scheme, which may introduce collisional effects, but additional

convergence checks were performed and increased resolution does not result in substantial

changes to the growth rate. It should also be noted that the real frequency scales linearly

with ν above ν ≈ 1.

The collisional dependence of this mode was investigated at several different radii (vary-

ing only q0 and ŝ in correspondence with the TBFM and keeping all other parameters fixed).

The results of this can be seen in Fig. 4.10. Importantly, the wavenumber spectrum at ν = 1

(a) shows a general stabilization of the mode at larger radius, which might be attributed to

the larger shear at these locations. The collisionality scan (b) also shows interesting behav-

ior: in particular, the growth rate at low ν is much more affected by increased radius than

at ν ∼ 1, and at r/a = 0.6 the mode is completely stabilized in the collisionless limit. This

behaviour may suggest that there are two distinct varieties of MTMs in these simulations –

one at low collisionality and one at moderate collisionality – that have somewhat different

physics behind their drive mechanisms. The effects of increasing the pinch parameter Θ

are similar to the effects of increasing the radius, as can be seen in Fig. 4.11. This is to

be expected from the TBFM, due to the same parametric dependence on r and Θ in that

model. As Θ increases the growth rate of the MTM falls and the peak shifts to lower kθ.
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Although the accuracy of the TBFM at Θ = 1.7 is questionable, there is a clear trend.

Higher Θ equilibria, corresponding with higher values of local magnetic shear, result in

lower growth rates for the MTM. This is especially relevant for PPCD discharges, which

may have values of Θ as high as 3. This suggests that the MTM is likely to be stable in

PPCD.

The physics of the drive mechanism was investigated further by looking at the role of

magnetic drift in the instability. In this study, a scalar factor α (not associated with the

αMHD of the s-α model) was placed in front of the magnetic drift term (including both

curvature and ∇B drifts) in Gyro and varied to change its relative strength; a value of

α = 1 corresponds to the physical magnetic drift. The results of this are seen in Fig. 4.12

for ν = 0.001 (a) and ν = 1.0 (b). In both cases, the instability is strongest for α ≈ 1 and

falls off for values much lower or higher than this. An analysis yielding similar results has

been conducted using GS2 in RFX-Mod [70]. This behavior is consistent with the magnetic

curvature drift instability derived by Finn and Drake (Ref. [72]), in which they describe a

semi-collisional drift-tearing mode unstable in the presence of curvature drift and an electron

temperature gradient. Ref. [72] is formulated in a cylindrical RFP equilibrium, and they

note that this instability is strong only when ωD ∼ ω∗, a characteristic that makes it

more relevant to the RFP, with its associated stronger curvature drifts, than in a standard

tokamak. We also note that although Ref. [72] uses fluid theory in the semi-collisional

regime, collisions do not play an explicit role in the instability, and it is plausible that this

mode may arise in the collisionless limit with proper inclusion of magnetic drifts. Such an

analytic approach is taken in Ch. 6. Another possible mechanism may be due to trapped

particles, as suggested by recent work in spherical tokamaks [63]. The relationship between

these instability drives is not yet clear and more work remains to be done to establish the

relevant physics for different devices. It may be the case that there are multiple mechanisms

for instability in this regime and a unique collisionless MTM does not exist.
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Figure 4.9: MTM growth rate and frequency plotted against ν for kθρs = 1.488. There
appear to be two distinct regmes: a region of constant growth rate and constant real
frequency at low ν and a separate region at ν with a peak in growth rate and a real
frequency that scales linearly with ν.
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Figure 4.10: MTM wavenumber spectrum at ν = 1 (a) and collisionality scan (b) for
different values of r/a. The corresponding values of q0 and shear are — r/a = 0.4: q0 =
0.209, ŝ = −0.382 (red solid curve); r/a = 0.5: q0 = 0.186, ŝ = −0.716 (green dashed
curve); r/a = 0.6: q0 = 0.155, ŝ = −1.344 (blue dotted curve). There is stabilization of
MTM with increasing radius r/a, especially prevalent at low ν. Increased radius coincides
with increased shear, which may play a role in stabilization.
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Figure 4.11: MT wavenumber spectrum at ν = 1 for different values of Θ, the RFP pinch
parameter. The corresponding values of q0 and shear are — Θ = 1.1: q0 = 0.255, ŝ = −0.4
(blue curve); Θ = 1.2: q0 = 0.224, ŝ = −0.507 (green curve); Θ = 1.35: q0 = 0.186,
ŝ = −0.716 (red curve); Θ = 1.5: q0 = 0.153, ŝ = −1.011 (cyan curve); Θ = 1.7: q0 = 0.115,
ŝ = −1.637 (purple curve). There is stabilization of MTM with increasing Θ. Increased Θ
corresponds to increased shear, which may play a role in stabilization. This also suggests
that higher-Θ PPCD discharges may be stable to MTM.

4.5 Chapter Summary

The linear characteristics of microinstabilities in a generic RFP geometry were investigated

using the gyrokinetic code Gyro. The equilibrium modeled in this chapter is one of low q

and high magnetic shear relative to the tokamak, something that is true generally of RFP

equilibria. It is important to note, however, that other RFP equilibria may involve yet

lower q and higher shear, and so care should be taken when extrapolating these results to

other regimes. Just such a case is the focus of Ch. 5, which investigates microinstabilities

in specific improved confinement discharges in MST.

It has been shown that under certain conditions, including high temperature gradients

and weak density gradients, MTM supplants the ITG instability as the dominant mode

above a critical β value around 5% - 6%. In this transition the dominance of ITG at

low β is assured by having an ion temperature gradient above the threshold a/LT i ≈ 3.
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Figure 4.12: The role of magnetic drift in the MTM instability. The parameter α is a factor
regulating the strength of the magnetic drift (including both curvature and ∇B drifts) in
the code. Shown are ν = 0.001 (a) and ν = 1.0 (b), as well as kθρs = 1.488 (red solid curve)
and kθρs = 0.186 (green dotted curve). This behavior is similar to that seen in Finn and
Drake (1986). The points at low α represent a separate mode that has not been studied in
detail.
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The dominance of microtearing at higher β is assured by having the electron temperature

above a similar threshold (a/LTe ≈ 3). We show that the coupling to Alfvén waves that

stabilizes the ITG mode as β increases does so at a higher β in the RFP than in the tokamak

because of the shorter parallel connection length associated with the large poloidal field.

The MTM is identified on the basis of a mode structure that shows canonical tearing

parity in the electromagnetic fields and a frequency in the electron direction. We examine

scaling properties of the MT growth rate, including its threshold behavior, its scalings with

the temperature ratio, and equilibrium quantities like the pinch parameter Θ. Growth

rate scalings with respect to both r and Θ relate to magnetic shear scaling, which in the

TBFM is not an independent equilibrium parameter. This work follows a number of recent

studies that suggest the microtearing mode may be important in both the tokamak and the

RFP [68, 62, 73, 69, 53, 63, 70]. Here our analysis is specific to equilibria consistent with

certain regimes of operation of the Madison Symmetric Torus [28]. Moreover, in adapting

gyrokinetic codes originally developed for the tokamak, we are careful to capture all of the

effects arising from an equilibrium magnetic field with comparable poloidal and toroidal field

components. This can be done using the toroidal Bessel function model in the Gyro code

[18], with RFP-appropriate representations of the curvature drift and parallel derivative

[50].

The MT mode was further investigated by performing a variety of parameter scans.

The characteristics of the mode were in agreement with previous simulation work in other

devices. Evidence for a collisionless MTM was seen, although further work remains to be

done as to be determine the nature of the physics behind this mode. Previous analytic

work in tokamaks (see Refs. [57, 59]) has concluded that MTM should be stable in the

collisionless limit. Beside the results presented here, evidence contradicting this conclusion

has been seen in gyrokinetic simulations in tokamak [62], spherical tokamak [68, 63], and

RFP [70] geometries. There is some evidence that magnetic drift plays an important role in

the instability, and it may be described by the magnetic curvature drift instability of Finn

and Drake [72]. This topic is further explored in Ch. 6.
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The results of this work regarding implications for the Madison Symmetric Torus suggest

that although MTM may be capable of playing a role in the gyroscale dynamics, various ge-

ometric scaling properties suggest that it will be stabilized for the parameter regime of high

confinement PPCD discharges. Let us note, however, that for alternate sets of parameters

other modes, such as the trapped electron mode or kinetic ballooning mode, may emerge

and play a role in the turbulence characteristics. This is the topic of the next chapter, in

which a more flexible equilibrium model is used to investigate the microinstability spectrum

of PPCD discharges.
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Chapter 5

Microturbulence studies of

improved confinement discharges

Opening the way to a more in-depth study, the previous chapter addressed many of the

fundamental aspects of microinstabilities and their characteristics in a reversed field pinch.

In particular it was shown that the stronger poloidal field as compared to a tokamak leads to

different stability thresholds, differing from similar tokamak quantities by roughly a factor

of the aspect ratio.

Although this fundamental analysis was useful for investigating the general nature of

RFP instabilities, the question remains of the type and characteristics of instabilities that

may arise in some of the improved confinement discharges in MST, which are described

by an RFP pinch parameter Θ at which the TBFM is no longer valid. These improved

confinement discharges are a regime with longer energy confinement time than the standard

discharges and likely to be more susceptible to microinstability physics.

The technique for achieving these advances is pulsed poloidal current drive (PPCD),

a current profile control technique that results in reduced global tearing mode activity

and improved energy confinement time [32]. It is important to understand the role that

microinstabilities play in this regime of operation. This adds to the previous body of

microinstability work in the RFP, which has been done either in a generic, low-Θ equilibrium
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current r/a q ŝ β νc R0/LT R0/Ln

200 kA

0.61 0.04 −5.9 0.065 0.005 15.1 4.4
0.79 −0.06 10.3 0.017 0.03 21.8 13.9
0.84 −0.09 6.9 0.010 0.05 29.5 19.4
0.89 −0.13 4.8 0.004 0.11 45.1 32.1

500 kA

0.76 −0.05 10.0 0.023 0.0012 11.3 19.7
0.81 −0.09 6.7 0.015 0.0013 14.5 25.1
0.86 −0.12 5.0 0.007 0.0014 25.4 34.8
0.91 −0.16 3.8 0.002 0.0022 76.8 71.9

Table 5.1: Physical parameters for the two MST discharges studied in this work, as obtained
from the MSTFit equilibrium reconstruction code. It has been assumed that Ti = 0.4Te,
and therefore R0/LT = R0/LTe = R0/LTi . For more on MSTFit, see Anderson et al. (2004).

[50, 55] (the results of which were described in Ch. 4) or within the context of an internal

transport barrier in a single-helical-axis (SHAx) regime [54, 53, 70].

In the present chapter we address the picture of microinstabilities and their associated

turbulence in a set of PPCD discharges on the Madison Symmetric Torus (MST) [41]. We

find in this case that ITG and TEM are the dominant instabilities. Although ITG has been

studied in some detail in the context of the RFP, less is known about the characteristics

of TEM. TEM turbulence has been considered to be a source of electron heat transport in

tokamaks, but its role in the RFP is not yet certain. The results of this chapter represent

the content of a paper submitted to Physics of Plasmas [74].

5.1 Modeling

The modeling in this chapter was performed with the adjusted circular model (ACM) which

was introduced in Ch. 3. In this model, the magnetic field is given as

B =
R0B0

R
|q|f(r/R0)(eφ + eθ

r

R0q̄
) . (5.1)

An earlier version of the ACM which has been employed to produce all numerical results

reported in this paper differs from that described above in the use of q rather than q̄ in

Eq. (5.1). This results in a slight inaccuracy as r/a→ 1, but any difference in linear growth

rates or nonlinear fluxes is less than 10% for the cases studied here.
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The parameters for these simulations are drawn from experimental discharges on the

Madison Symmetric Torus, an RFP with a major radius of 1.54 m and a minor radius of

52 cm. Two separate PPCD discharges are modeled here: a 200 kA discharge and a 500

kA discharge. These discharges have been chosen because they represent different regimes

of PPCD, the former with the highest achieved value of β and the latter with the highest

achieved electron temperature [34]. The goal of performing a microinstability analysis of

these discharges is to assess the role of microturbulence in the transport characteristics

of PPCD plasmas, as well as provide further information regarding observed differences

between the two cases. The set of parameters for each of these cases is presented in Tab. 5.1.

Listed are the plasma current for each of the two discharges, the normalized minor radius

at which simulations were conducted, the safety factor q, magnetic shear ŝ, electron β =

8πn0Te0/B
2
ref , normalized temperature gradient R0/LT = −(R0/T )dT/dr of both electrons

and ions, and normalized density gradient R0/Ln = −(R0/n0)dn0/dr at each of the radial

locations. Bref is the background magnetic field of the flux tube. The collisional frequency

is given by νc = π ln Λe4n0R/
√

8T 2
e0, where n0 is the background density, e is the elementary

electric charge, and ln Λ ≈ 10.

The 200 kA and 500 kA discharges have several key differences. At any given radial

location, the 200 kA discharge has larger values of β and normalized temperature gradients

that are stronger than the respective density gradient. The 500 kA discharge, conversely,

has density gradients that are larger than the temperature gradients. The q and Ti profiles

for the 200 kA case are given in Fig. 5.1 and Fig. 5.2 for the 500 kA case. This difference

is a determining factor in the type of instability that is dominant in each of these cases.

The experimental profiles are generated using the MSTFit equilibrium reconstruction

code [42], which solves the Grad-Shafranov equation with input from external and edge

diagnostics on MST. The electron temperature profile is attained from Thomson scattering

and soft-X-ray tomography. Density measurements are produced with far-infrared (FIR)

interferometry/polarimetry. There are no ion temperature measurements for these dis-

charges, but measurements from some improved confinement discharges have found core
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Figure 5.1: Radial profiles for the safety factor and the temperature for the 200 kA case.
The red vertical lines indicate the radial locations at which simulations were performed. The
blue shaded region indicates high shear (|ŝ| & 10) and has been excluded from modeling.
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Figure 5.2: Radial profiles for the safety factor and the density for the 500 kA case. The
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blue shaded region indicates high shear (|ŝ| & 10) and has been excluded from modeling.
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ion temperature to be on the order of 30%− 50% of the core electron temperature [32], so

the ion temperature in the present work is assumed to be a constant factor of 0.4 times the

electron temperature.

These experimental profiles are used in the Gene code as input for the collisionality,

β, and gradient values, and as a magnetic field profile that is replicated using the ana-

lytic geometry model detailed above, with f(r/R0) as a sixth-order polynomial fitted to

the reconstructed magnetic field. In all the work that follows, Gene is used in its radi-

ally local mode of operation, in which background quantities are assumed to vary linearly

over the simulation domain. The nonlinear simulations to follow have radial box sizes of

≈ 17− 20ρs ≈ 17− 20 cm. Global simulations will therefore become necessary once exper-

imental measurements of heat and particle diffusivities are sufficiently precise to demand

corresponding highly accurate theoretical predictions, but local simulations can still be ex-

pected to yield good results here, within a few ten percent of the global, physical fluxes.

An important distinction must be made here between the tokamak definition of magnetic

shear ŝ used above and the actual physical shear, referred to here as ŝRFP. Magnetic shear,

essentially a measure of the rate of variation of k‖ ∼ B ·∇ away from a rational surface, is a

well-defined quantity throughout the plasma volume. The quantity ŝ, however, relies on the

tokamak expansion Bφ � Bθ and has a singularity at the q = 0 surface. Near this surface,

a new expansion of k‖ can be made, with the approximation Bθ � Bφ, and an RFP-specific

formula derived. The result of this is the expression ŝRFP = Rdq/dr, which holds as long as

|B| ∼ Bθ remains true. The relative ratio ŝ/ŝRFP = r/Rq provides a measure of the inade-

quacy of the tokamak shear definition near the reversal surface. Note that this inadequacy

does not affect the accuracy of the Gene simulations: although ŝ is provided as an input

parameter to Gene’s equilibrium model, it serves only as a means by which to define dq/dr

(dq/dr ≡ (q/r)ŝ) as a diagnostic and for setting flux tube boundary conditions and does

therefore not require inherent tokamak assumptions. However, challenges may nevertheless

arise in numerical computation. At the reversal surface, for instance, where q → 0 and

ŝ → ∞, even though dq/dr is well-defined, the quantity (q/r)ŝ is not. High values of |ŝ|,



82

through the parallel boundary condition that couples kx modes, require high x resolution,

placing a practical constraint on the ability of Gene to model cases with very large |ŝ|.

A region of very high |ŝ| (where |ŝ| > 10) around the reversal surface has therefore been

excluded from these modeling studies as a matter of practicality. This region is an area of

some interest in the RFP, and modeling it remains an important avenue for future work.

5.2 Linear Results

The dominant instabilities for the 200 kA and 500 kA cases are, respectively, ITG and TEM.

A plot of growth rates versus minor radius is given in Fig. 5.3 for both the 200 kA and

500 kA discharges. All modes show typical ballooning parity in the eigenmode structure,

marked by even parity in electrostatic potential Φ and odd parity in magnetic potential

A‖. Both discharges show that growth rates are higher at larger radii, which correspond to

larger values of the normalized gradients.

For the 200 kA discharge it is found that the dominant modes for r/a ≤ 0.84 have

frequencies in the ion direction and can be categorized as ITG. The mode at r/a = 0.89

for the 200 kA case displays characteristics of an ITG/TEM hybrid, including complicated

gradient dependencies and smooth transitions in the frequency from ion to electron direction

with the variation of parameters. This shall be further elaborated on below.

The growth rates and frequencies as functions of the wavenumber kyρs (where ky is the

binormal wavenumber and has the same meaning as kθ in Gyro, ρs = (Te/mi)
1/2mi/eBref

is the ion sound gyroradius, and mi is the ion mass) are presented for the 200 kA case in

Fig. 5.4 for different radial locations. In our convention throughout this chapter, a positive

frequency indicates the ion diamagnetic direction. There is an increase in growth rates and a

general widening of the spectra to high ky as we move outward in radius, as well as a shift in

the peak of the spectrum. For r/a ≤ 0.84, the instability is identified as the ion temperature

gradient mode on the basis of its frequency in the ion direction and an instability threshold

in ion temperature gradient scale length (see Fig. 5.5). By way of contrast, it can be seen in

Fig. 5.6 that there is no similar threshold in the electron temperature gradient. The results
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Figure 5.3: Peak growth rates versus minor radius for the 200 kA (a) and 500 kA (b)
cases. The blue shaded region indicates high shear (|ŝ| > 10) and has been excluded from
modeling. γmax is the maximum growth rate attained from a ky scan.
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of density gradient scans are presented in Fig. 5.7. The gradient scans are performed at

the ky of the peak growth rate, which occurs in the range of kyρs = 0.4 − 0.6 for the ITG

modes and kyρs = 0.6 for the hybrid ITG/TEM. As can be seen in Fig. 5.5, the critical

gradient values for the ITG fall within the range R0/LT i ≈ 10 − 25, while the outermost

radius shows no critical value. The instability that is present at r/a = 0.89 is identified as

a hybrid ITG/TEM.

It has been seen in kinetic microinstability calculations that ηi ≡ (d lnTi0/dr)/(d lnn0/dr)

is an important parameter in determining the dominant instability. The dominant instabil-

ity tends to be ITG for ηi above a critical value of ηic ∼ 1.2−1.4 and TEM for ηi < ηic [75].

The η (η ≡ ηe = ηi in these runs) values as a function of radial location for the two dis-

charges considered in this work are given in Fig. 5.8, where it can be seen that the 200 kA

case lies above the region ηic ∼ 1.2−1.4 and the 500 kA case lies predominantly below. Im-

portantly, there are some parameter regimes in which these two modes can merge and form

a hybrid. The hybrid tends to be characterized by smooth transitions in the frequency from

negative to positive with the variation of the gradient parameters, while marking an excep-

tional point in parameter space [76]. Additionally, the analogously defined quantity ηe ≈ 1

represents an important transition between density-gradient-driven TEM and temperature-

gradient-driven TEM, a differentiation that has important consequences for the physics of

nonlinear saturation, as will be discussed in more depth in Sec. 5.3.

Moving on to the characteristics of the other MST discharge, the wavenumber spectrum

is given for the 500 kA case in Fig. 5.9. The spectrum can be seen to peak around kyρs ≈

0.6 for each of the radial locations. Although the real frequencies for these modes are

predominantly in the electron direction, at the outermost radial locations, r/a = 0.86 and

r/a = 0.91, the frequency becomes positive at high ky. This mode is often referred to as the

“ubiquitous mode” and is a feature of collisionless TEM in the high ky limit. This behavior

has been described previously in numerical calculations and gyrokinetic simulations [75, 77,

78] and analyzed in depth in Coppi et al. (1990) [79].

A density gradient scan is performed at the wavenumber of the peak growth rate for each
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of the radial locations from Fig. 5.9. The results are presented in Fig. 5.10, where it can be

seen that there is a strong dependence of the growth rate on density gradient with a critical

gradient occuring around R0/Ln ∼ 15 for each radial location. For this reason, and a real

frequency in the electron direction, these modes are identified as density-gradient-driven

TEM. These modes show some dependence on ion and electron temperature gradients, but

no critical values, as can be seen for the electron temperature gradient in Fig. 5.12 and for

the ion temperature gradient in Fig. 5.13. It should be noted that for this discharge, the

values of collisionality obey the relationships ν∗ ≡ νc/ωb � 1 and νc/ω � 1, with ω the real

frequency of the instability and the bounce frequency ωb ≡ ε1/2vte/qR0 defined in terms of

the aspect ratio ε = r/R0 and the electron thermal velocity vte = (Te0/me)
1/2. This is well

in the collisionless regime. For the radial location r/a = 0.86 there is an ion mode that is

dominant at low values of the density gradient and is likely ITG.
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Figure 5.11: Growth rates plotted against β for the 200 kA case. All modes show little
variation with β, a characteristic that is related to a high β threshold for electromagnetic
instabilities. The frequencies are similarly unaffected by variations of β.

β dependence

These modes all demonstrate an independence with respect to plasma β, a behavior that

can be seen for the 200 kA case in Fig. 5.11. Although weak β dependence is a characteristic

expected of TEM, ITG is known to be stabilized by increasing β, both linearly [55, 66, 80]

(a feature also explored in the previous chapter) and nonlinearly [65, 81]. An important

conclusion to draw from these results is that, despite operating at a β that is considered high

in the context of tokamaks, the instabilities present in PPCD plasmas are predominantly

electrostatic. Notably absent are KBMs and MTMs. All RFP modeling work has thus

far shown no evidence of KBMs, a mode known to arise in finite-β simulations in the

tokamak at a typical β of 0.6% − 2% [8, 82, 80]. The absence of KBMs in the RFP may

be explained as a consequence of two geometric properties: high magnetic shear and low

safety factor. In the tokamak, KBMs are seen to emerge at some considerable fraction

(generally about 70% − 100%) of the ideal ballooning mode critical β [83, 80, 65]. In the

RFP, however, the critical β for the ideal ballooning mode increases in regions of high

shear [84]. If KBMs are tied to this threshold in a similar way, then it can be expected
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that the KBM threshold will increase as well. Using the plasma ballooning parameter

αMHD = βq2 (R0/Ln +R0/LTe + (R0/Ln +R0/LT i)Ti/Te) and a naive use of the tokamak

threshold for the critical MHD ballooning limit αcrit
MHD = 0.6ŝ [85], we may make an estimate

of the critical MHD ballooning β. This yields a value of βMHD
crit ≈ 750% for the 200 kA

r/a = 0.84 case and generally above 50% for all cases studied here. The use of ŝRFP in

place of ŝ in the α-threshold expression reduces these limits, generally by a factor of 2− 3.

Even so, these estimates suggest that the experiment operates well below the range of β

where effects tied to the KBM threshold are likely to play a significant role. In a related

matter, the same geometric effects that cause the KBM threshold to be pushed up may also

be responsible for a higher threshold for shear Alfvén waves, and therefore a lack of ITG

stabilization with β. This explains why, in the parameter regime of these discharges, the

instabilities remain electrostatic for experimentally relevant β.

Previous work in the RFP (as outlined in the previous chapter) has also shown signs

of MTMs [70, 55], which are not present in these PPCD simulations. This may also be

explained as a result of high magnetic shear. It has been demonstrated that, in the RFP,

the MTM is stabilized by high values of magnetic shear [70] and by high values of the RFP

pinch parameter Θ, which also corresponds to high values of shear [55]. In the present

PPCD discharges the areas most likely to be unstable to MTM (regions of high β and

high electron temperature gradient) are also regions of high magnetic shear. Under these

circumstances, the stabilizing effects of the shear are strong enough to overcome the MTM

instability drive.

5.3 Nonlinear Results

We report results from the first nonlinear gyrokinetic simulations in PPCD plasmas. These

results come from the 500 kA case at r/a = 0.86 and r/a = 0.91. The relevant physical

parameters for these runs can be found in Tab. 5.1.

First, we will make some comments on the resolution requirements. Nonlinear gyroki-

netics in the RFP is very resource-intensive, requiring radial resolutions in excess of similar
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Figure 5.14: A time trace of the nonlinear fluxes for a density gradient of R0/Ln = 58.8.
The dominant channels are electron heat flux Qese (blue) and particle flux Γes (green). There
is a large overshoot in the beginning due to strong linear growth rates, but this is countered
by strong nonlinear saturation mechanisms.

tokamak cases. This is largely due to the high magnetic shear of the RFP, which, because

of the parallel boundary condition (requiring for some quantity F , F (kx, ky, z + Lz) =

F (k′x, ky, z)exp[2πiky ŝr0], with k′x = kx + 2πŝky and Lz the parallel box size [14]), sets

restrictions on the radial box size and grid spacing. High radial resolution, in turn, results

in increased computational expense and more processor-hours required for saturation. For

the r/a = 0.86 case, the following set of resolutions was used: 24 ky modes, 24 parallel grid

points, 32 parallel velocity grid points, 12 magnetic moment grid points, and 284 radial grid

points. A time trace of the saturated transport levels for a sample run is given in Fig. 5.14.

Completing a nonlinear run such as this takes roughly 100,000 processor hours on a Cray

XT5 computer. The r/a = 0.91 case, where |ŝ| is smaller, requires less radial resolution

and can be performed with fewer hours.

As discussed in the previous section, the dominant linear instability for these sets of

parameters is a density-gradient-driven TEM. The nonlinear evolution shows a phase of

strong linear growth, at which point nonlinear processes arise and act to saturate the
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turbulence and suppress transport fluxes — note that the so-called overshoot is larger than

in typical tokamak simulations. This nonlinear saturation is due to the emergence of zonal

flows, ky = k‖ = 0 fluctuations that provide an energy damping mechanism and place limits

on radial transport [86, 87]. Zonal flows are known to be an important element of nonlinear

saturation and the formation of transport barriers [88].

The transport spectra are given in Fig. 5.15 for both cases. In comparison, electrostatic

particle transport and electrostatic electron heat transport (other transport channels being

negligible) peak at around kyρs = 0.2, with minimal transport at the highest ky. This is

significantly below the peak of the linear growth rate spectrum at kyρs = 0.6.

A nonlinear gradient scan was performed for the r/a = 0.86 case, the results of which

can be seen in Fig. 5.16. This figure shows a scan of the density gradient, along with the

respective linear growth rates for comparison. Electron heat transport outweighs ion heat

transport, and despite operating at β values (given in Tab. 5.1) that would be considered

large in the context of the tokamak (as was discussed in Sec. 5.2), the transport is almost

entirely electrostatic. Furthermore, there can be seen a strong shift in the critical gradient as

compared with the linear case, with the nonlinear threshold occuring around R0/Ln = 35 as

compared to the linear threshold of R0/Ln ≈ 10− 15. This nonlinear upshift in the critical

gradient has been discussed before in the context of TEM turbulence in the tokamak [77],

but has yet to be addressed in the RFP where a different magnetic geometry may lead to

different characteristics. In particular, the magnitude of the shift seen in Fig. 5.16, where

the nonlinear threshold is roughly 3 times the linear one, is larger than that seen in the

tokamak, where there tends to be an increase of the critical gradient by 10%−30% [89, 65].

This suggests that zonal flows may have a much larger impact in the RFP as compared to

the tokamak.

As with the tokamak case, the shift here is attributed to the presence of strong zonal

flows, which are known to moderate linear instabilities and reduce transport levels. Numer-

ical studies of a variety of both gyrokinetic and fluid models have found zonal flows to play

a key role in the transfer of energy to damped modes, an important process for nonlinear
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Figure 5.15: The flux spectra for (a) r/a = 0.86 and R0/Ln = 52.3 and (b) r/a = 0.91
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saturation [90, 91, 92]. Clear evidence for zonal flows can be seen in the contours of the elec-

trostatic potential Φ, which is given in Fig. 5.17 along with the contours for the perturbed

electron density ne: A strong contribution from the ky = 0 mode is apparent in the Φ con-

tours. Similarly, ky = 0 features in the density contours indicate a zonal density structure.

The normalized density amplitudes are weaker than the Φ amplitudes by roughly a factor of

four, indicating the dominance of zonal flows over zonal density, although in some regimes

(though not any of those observed in the context of the present study), particularly those

where temperature gradients are much stronger than density gradients, the role played by

zonal flows in saturation is known to be much diminished, and zonal density emerges as the

expected dominant saturation mechanism [93].

An important measure of the zonal flow activity is the E × B shearing rate ωE =

d2Φzon/dx
2, where Φzon is the zonal component of the electrostatic potential. The shearing

rate is a well known causative effect for transport reduction. However, it is also a proxy

for the efficiency of zonal-flow-catalyzed energy transfer to damped modes. Zonal flows are

generally considered to be important for nonlinear saturation when the shearing rate is at

least as large as the the maximum linear growth rate when taking into account finite fre-

quency corrections [94, 86, 95]. Although these corrections are not included in this analysis,

ωE is consistently an order of magnitude larger than the peak linear growth rate, a com-

monly used criterion to determine zonal flow impact without utilizing the aforementioned

finite-frequency corrections [80, 78]. Fig. 5.18 (a) shows nonlinear density gradient scans at

several different values of ŝ, with the fluxes increasing as ŝ is reduced. In Fig. 5.18 (b) we

plot the ratio ωE/γlin of the zonal flow shearing rate and the peak linear growth rate for

these same cases. As shear is reduced, this factor decreases, a result of both an increase in

linear growth rate and a decrease in ωE . At ŝ = 2.5, the shearing rate falls below 10γlin, a

transition that is associated with higher fluxes (as can be seen in Fig. 5.18).

A nonlinear upshift in the critical density gradient for TEM turbulence has been seen

before in gyrokinetic simulations in the context of the tokamak [77] and is seen as a similar

process to the Dimits shift observed in the case of ITG turbulence [89]. As in the Dimits
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shift, zonal flows play an important role in the suppression of transport fluxes, and it has

been found that both magnetic shear and the electron temperature gradient can affect the

characteristics of zonal flows in TEM turbulence [96]. In particular, the role of zonal flows in

saturating TEM turbulence has been found to depend on ηe, with zonal flows important for

ηe < 1 and relatively unimportant above this critical value, where the TEM is driven by the

electron temperature gradient rather than the density gradient [78]. It has been suggested

that zonal density generation is responsible for nonlinear saturation in the absence of zonal

flows [93]. The ηe radial profile for the 500 kA is given in Fig. 5.8. The value of ηe only

becomes greater than 1 above r/a ' 0.9, suggesting that zonal density may play a greater

role towards the edge in MST. Indeed, as can be seen in Fig. 5.17, the relative strength

of the zonal density structure as compared to zonal flow is larger at r/a = 0.91 (factor of

≈ 1/3) than at r/a = 0.86 (factor of ≈ 1/4).

Another important result of these simulations is that the nonlinear threshold occurs at

roughly the nominal experimental value, indicated by the vertical dashed line in Fig. 5.16.

This suggests that the experiment may be operating near a critical threshold and microin-

stability driven turbulence may be playing an important role driving transport. Although

the experiment appears to be operating near marginal stability, the transport seen in the

simulations falls significantly below that observed in experiments on MST. At a gradient

of R0/Ln = 52.3, which is 50% larger than the nominal experimental density gradient, the

value of the electron electrostatic heat diffusivity is found to be χese = 1.5 m2s−1, lower than

the experimental value of ∼ 30 m2s−1 [33], though there are large uncertainties in the exper-

imental estimate. Further out, at r/a = 0.91 the electron heat diffusivity at experimental

gradients is χese = 2.9 m2s−1, still well below experimental estimates. As shall be demon-

strated below, this gap can be bridged, however, by taking into account residual magnetic

fluctuations from tearing mode activity and their deleterious impact on zonal flows.
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Magnetic perturbations and transport

Thus far we have not accounted for the role played by magnetic stochasticity, an important

contributor to transport processes in the RFP, even in the relatively well-behaved PPCD

discharges. The effect of stochastic fields in gyrokinetic simulations has been a topic of

recent interest [97, 98, 73, 99], revealing that self-consistent magnetic stochasticity may

be ubiquitous in tokamak gyrokinetic simulations, arising at low values of β due to the

nonlinear excitation of linearly damped microtearing modes. In the present work, at β =

0.7%, there is virtually no stochasticity inherent in the nonlinear simulations (see Fig. 5.20

(a)), an outcome related to the increased MHD β limit discussed above. Clearly, the

flux surfaces are almost completely intact, and the radial motion of particles streaming

along perturbed field lines is essentially negligible. As a consequence, a variety of models

concerning the physics of magnetic perturbations are no longer applicable here (at least

as long as only self-consistent perturbations are considered, see below), as they require a

fully stochastic nonlinear state of the perturbed flux surfaces—compare the (quasi-)linear

and nonlinear electron flutter transport reported in Ref. [80]. The degree to which these

simulations are in a magnetically nonlinear state can be assessed through the evaluation

of the contribution to the overall electromagnetic heat conductivity from the Rechester-

Rosenbluth term [48] χeme = χe‖〈(B̃x/Bref)〉, where χe‖ ≈ k−1
‖ (Te/me)

1/2. The transport

predicted by this formula is far larger than that observed in the simulations, therefore it

is reasonable to conclude that this term is not contributing to transport and quasilinear

approximations may be used. Similarly, the predictions in Refs. [100, 101] for Bx and

related quantities do not hold here. However, this neglects the effect of residual tearing

mode fluctuations. In standard discharges of the RFP, large-scale tearing modes, driven by

the gradient in the current profile, produce stochastic magnetic fields [102, 103]. Though

this is largely controlled with PPCD, some stochasticity still remains [33, 104], and even

at the radii considered here (where no fully stochastic field is measured), significant radial

excursion of perturbed field lines occurs.

To address the issue of how this may affect microturbulent transport, we have imposed
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an artificial Gaussian perturbation on A‖ in the z direction with kx = 0 and ky = 0.2,

corresponding to a resonant Bx perturbation. The strength of this perturbation can be

tuned to introduce a small radial displacement of the magnetic field, in this case leading to

a magnetic diffusivity [48, 97] of Dm = 〈(∆r)2〉/2∆l ∼ 10−8 m, defined in terms of the radial

excursion ∆r and the field line length l. Without the imposed perturbation this value is

Dm ∼ 10−10 m. Fig. 5.20 (b) shows the Poincaré plot associated with such a perturbation.

The level of diffusivity introduced here is not enough to lead to true stochastization, but

instead serves only to slightly degrade the flux surfaces. Although the experimental value

of Dm is not known precisely, the value used here was chosen based on best estimates (see

Ref. [104] and Fig. 5.19.)

There are several outcomes of introducing this resonant perturbation. One is the gen-

eration of a small amount of electromagnetic heat flux (χeme = 3.2 m2s−1, as compared

to χeme ≈ 0 without the imposed perturbation.) Another, more important effect is an

increase in the electrostatic heat flux, which increases by more than a factor of ten to

χese = 25.2 m2s−1. This result can be seen in Fig. 5.21, which shows a time trace comparing

the particle and heat fluxes before and after the addition of the perturbation. This increase

in transport is due to the weakening of the zonal flows responsible for saturation, an effect

known from studies of the nonzonal transition in tokamaks [105, 106, 107, 101]. Fig. 5.22

shows contours of Φ and n for the case with imposed diffusivity, and it can be seen that the

ky = 0 structures are very much diminished, both in their absolute amplitudes – despite the

increased χe – and in relation to the structure with ky 6= 0. The degradation of the zonal

flow is caused by the magnetic flutter induced loss of electrons from their radial surface,

which creates a radial current that diminishes the zonal potential [105]. The large effect of

radial magnetic field perturbations in the present work is likely due to both the strength of

the zonal flows as well as the effectiveness of stochasticity in their damping. In particular,

the zonal flow decay time as reported in Refs. [105, 106] is linear in q, suggesting that for a

large radial region in MST (where q is much lower than in a tokamak), this process is very

effective. This analysis suggests that the experimental fluxes may be accounted for by drift
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Figure 5.16: Electron heat and particle fluxes are plotted as a function of density gradient
for the 500 kA case at r/a = 0.86. The linear growth rates for these parameters are
also shown for comparison. Straight line fits have been applied to the fluxes, and a cubic
fit has been applied to the TEM portion of the linear growth rate curve. The onset for
the nonlinear fluxes occurs at R0/Ln ≈ 37, roughly a factor of 3 greater than the linear
threshold of R0/Ln ≈ 13. The vertical dashed line indicates the nominal experimental value
of R0/Ln.

wave turbulence in the presence of a small amount of magnetic diffusivity. However, the

value of Dm chosen above serves only as a rough estimate, as the experimental quantity is

largely unknown for these discharges [104]. Since there is such sensitivity of these results

to the level of magnetic diffusivity, it is highly important to determine this value experi-

mentally as precisely as possible. This presents an area of interest for future work in both

experiment and numerical simulation.

5.4 Chapter Summary

We have performed a series of linear and nonlinear gyrokinetic simulations in PPCD dis-

charges of MST plasmas and characterized the gyroscale processes. A 200 kA discharge has

been found to be linearly unstable to ITG and a hybrid ITG/TEM, while the higher-current

500 kA discharge has been found to be unstable to a density-gradient-driven TEM. The pa-
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(a) (b)

Figure 5.17: Contours of electrostatic potential Φ and electron density n for the 500 kA case
at (a) r/a = 0.86 and R0/Ln = 52.3 and (b) r/a = 0.91 and R0/Ln = 71.9. Strong vertical
features (ky = 0) in Φ are indicative of zonal flow activity, while the density contours show
some (but relatively weaker) zonal structures as well.

rameter ηi is found to be an important determining factor in the dominant instability type,

with TEM prevalent for ηi . 1.3 and ITG prevalent for ηi & 1.3. Furthermore, magnetic

shear is also an important parameter, and high values of shear – in conjunction with low

values of q – contribute to the absence of electromagnetic effects and modes.

Nonlinear simulations performed for the 500 kA discharge showed strong zonal flows

and a significant Dimits-like shift, with the nonlinear threshold density gradient approxi-

mately three times the value of the linear critical gradient. Although the experiment seems

to be operating near marginal stability, the simulations yield transport levels well below

that of experimental measurements on MST. To investigate the effect of residual tearing

mode fluctuations, a small radial magnetic field perturbation was imposed, which served

to greatly reduce the zonal flow strength and bring transport fluxes up to levels more in

line with experiment. In general, this work reveals that microinstability-driven transport

may be sufficient to explain experimental transport levels, but work remains to be done to
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Figure 5.18: (a) Particle flux versus density gradient for three different values of magnetic
shear, ŝ = (r/q)(dq/dr). (b) Zonal flow shearing rate divided by linear growth rate versus
density gradients for different values of magnetic shear. For ŝ = 2.5 the zonal flow shearing
rate drops below 10γlin (indicated by the black dashed line in the lower plot) and the flux
substantially increases. Other parameters are as given for the 500 kA case at r/a = 0.86.
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Figure 5.19: A profile of the magnetic diffusivity as calculated by the MAL code. The
calculation is only intended to be valid from r/a = 0.5− 0.7, but it serves as an upper limit
and a useful order of magnitude of this quantity at the radius simulated in this work. Since
the nonlinear fluxes are sensitive to the strength of the imposed field, it is important to
determine the experimental magnetic diffusivity as accurately as possible. For the original
figure and more on the MAL code and the calculation of Dm, see B. Hudson, Ph.D. Thesis
(2006).

better determine important experimental quantities such as gradients and magnetic diffu-

sivity/residual tearing mode stochasticity. This presents important topics for future work

and an area for fruitful collaboration between theory and experiment.
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Figure 5.20: Poincaré puncture plots without (a) and with (b) a small added resonant
perturbation to A‖. Though the flux surfaces are still largely intact, the imposition of a
small resonant radial magnetic field leads to the reduction of zonal flows and a large increase
in transport. More details on the field line integration routine may be found in Pueschel et
al. (2013).
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Figure 5.21: Electron heat (blue) and particle flux (green) before and after the inclusion of
an imposed perturbation on A‖. The imposed magnetic diffusivity weakens zonal structures
and results in a large increase in the transport levels. Shown are the fluxes after institut-
ing the artificial perturbation (solid lines) as compared with those same quantities before
(dashed lines).
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Figure 5.22: Contours of Φ and n for the r/a = 0.86 case where a resonant A‖ perturbation
has been implemented to introduce a small radial perturbation to the magnetic field. The
effect is to greatly diminish the zonal structures evident in Fig. 14 (a).
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Chapter 6

The collisionless microtearing

mode

During the course of the last few years the microtearing mode (MTM) has gained promi-

nence as an important topic of study in magnetic confinement devices [68, 62, 61, 69, 108,

53, 55, 70]. The MTM is a small-scale drift wave driven by the electron temperature gradi-

ent [109] and requiring finite β. The temperature gradient drive, separate from the current

gradient drive of the global tearing mode, enables the MTM to exist at higher mode num-

bers than the global mode, with k ∼ ρ−1
s . As a gyroscale instability, it is expected to make

contributions to electron heat and particle transport.

Gyrokinetic simulations across a number of different magnetic geometries have shown

signs of the MTM, from tokamaks [62, 61, 110] to spherical tokamaks [68, 69, 108] and

reversed field pinches (RFP) [53, 55, 70]. The features of the MTM seen in these simulations

largely match those predicted by early analytic theories, i.e., a critical value in the plasma

pressure β and in the electron temperature gradient R0/LTe.

However, one important way in which recent numerical results have differed from early

predictions is in the role of collisions in the instability mechanism. Early analytic work was

performed across a number of collisionality regimes [58, 57, 56, 71] and found collisions to

play an important role in the instability drive. It was therefore concluded that an energy
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dependent collision operator is necessary for instability [59]. Contrary to these findings,

a number of gyrokinetic studies have shown the MTM to remain unstable even in the

collisionless or low collisional frequency regime [68, 70, 61, 55, 63], suggesting the existence

of a drive mechanism that is not accounted for in the early literature. The current chapter

addresses extensions to previous theories and the role played by magnetic drifts in the

collisionless MTM instability drive.

6.1 Microtearing Mechanisms

The microtearing mode arises, much as the global tearing mode [111, 64], from a disconti-

nuity in the magnetic vector potential. This is associated with the existence of a tearing

layer in the current profile. The relationship between the plasma current and the magnetic

vector potential is expressed in Ampère’s law:

∆′ =
1

A‖

(
∂A‖

∂x

)∣∣∣∣∞
−∞

=
1

A‖

−4π

c

∫ ∞
−∞

dxJ‖ , (6.1)

where ∆′ is the standard tearing parameter [111]. It has also been assumed that ky � kx

and Ji � Je.

For high m number (high ky) modes, ∆′ ≈ −2ky. The growth rate of the collisionless

drift-tearing mode is γ = kyvTe(∆
′a)/2k2

0alsπ
1/2 [58], so a negative ∆′ parameter at high ky

results in a stable mode. In this regime an additional mechanism is needed for instability.

The microtearing mode has been addressed analytically in a number of papers [109,

58, 56, 57, 112, 113, 59]. A good review of the microtearing literature is given in the

Ph. D. thesis of D. Applegate [114]. A brief summary will be given here.

The kinetic nature of the tearing instability was first addressed in Hazeltine et al.

(1975) [109]. Therein a rigorous Fokker-Planck collision operator was employed in the

context of the slab tearing mode, and a new drift-tearing instability was discovered that

explicitly requires an energy dependent collision operator. This theory was revised some-

what by Drake and Lee (1977) [58], who investigated further the collsional properties of the

mode and established several different regimes – collisional, semi-collisional, and collision-
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Figure 6.1: Schematic of the thermal force, responsible for the collisional MTM instability
mechanism. Electrons streaming along the magnetic field line encounter frictional forces
associated with collisions. A radially perturbed magnetic field in the presence of a back-
ground temperature gradient leads to an imbalance between the collisional friction and the
creation of a parallel current. This parallel current can then reinforce the original magnetic
perturbation, leading to instability.

less – finding that the collisionless mode is stable at the wavenumbers at which microtearing

would be expected.

The collisional and semi-collisional MTM instability arises due to the thermal force,

Fth ∼ −n0∇‖Te . (6.2)

In particular it is the time-dependent part of this force that is necessary for the instability

to occur [60]. The thermal force is due to a parallel gradient in the electron temperature,

which may be established by a radially perturbed magnetic field in the presence of a radial

background gradient. Such a gradient leads to different regions of collisionality along the

field line and an imbalance of forces that can create a parallel current. When this parallel

current reinforces the magnetic field perturbation an instability can occur. A schematic of

the thermal force is given in Fig. 6.1.

Additional work was done to expand on the physics of the collisional MTM. Gladd

et al. (1980) used numerical calculations to relax some of the simplifying assumptions of
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the Drake and Lee work, including retaining fluctuations in electrostatic potential Φ and

allowing for the variation of A‖ across the tearing layer. Later work by Cowley et al. [113]

dealt with FLR effects, finding them to be strongly stablizing. Importantly, they found the

approximation of unmagnetized ions to be good within the tearing layer d, although the

extended nature of the Φ eigenmode structure can extend far outside this limit and yield

a residual current contribution that is stabilizing. Catto and Rosenbluth [71] considered

the effect of trapped particles and found an additional instability mechanism that arose

from the scattering of electrons across the trapped/passing boundary. This mechanism

also requires collisions. In Connor et al. [59] several of these instability mechanisms are

considered and extended to lower collisionality in the intermediate range νe < ω∗e < νe/ε.

Again the important conclusion was drawn that the microtearing mode should be stable in

the collisionless limit.

One important effect not included in the aforementioned papers is the effect of magnetic

drifts on passing electrons. These magnetic drifts may constitute an energy dependent drift

that generates a parallel current and allows for an instability mechanism even in the absence

of collisions.

The width of the tearing layer d is an important parameter for the analysis of the MTM,

partially determing the physical effects that must be considered. In Hazeltine et al. it was

assumed that d� ρi, but Drake and Lee find that in the collisionless limit d becomes much

smaler than ρi. One effect of this result is that ions may be considered unmagnetized, and

therefore the approximation ñi = −en0Φ̃/Ti can be made.

The tearing layer width can be determined by considering some important effects that

inhibit the growth of a large parallel current. In the absence of collisions, electrons stream

along magnetic field lines at the thermal velocity vTe. They will be slowed by an oscillating

electric field if the thermal velocity is greater than the phase velocity of the oscillation

(vTe > ω/k‖). This implies that the MTM can only exist if the condition k‖ < ω/vTe holds.

In the slab approximation, where k‖ = kyx/Ls, this corresponds to a tearing layer width of

d =
ωLs
kyvTe

, (6.3)
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where Ls is the length scale of magnetic shear.

6.2 Microtearing and Magnetic Drifts

The microtearing mode presented in Ch. 4 has some characteristics which have revealed

several aspects of its underlying drive mechanism. The most important of these are the

collisional independence at low ν and the electron temperature gradient drive.

An important element missing from the early analytical MT theory was the role of

magnetic drifts. This simplification was perhaps well justified in many tokamak cases, where

magnetic field lengths scales are on the order of the major radius (LB ∼ R0) and magnetic

drifts are therefore less of a concern than other effects, but in the RFP, with its associated

stronger poloidal magnetic field, the magnetic field length scale can be proportional to the

minor radius (LB ∼ a), and the magnetic drifts can play a correspondingly larger role.

Recent gyrokinetic studies have shown that magnetic drifts are an important part of the

instability drive in the collisionless regime [68, 70, 55, 63]. This behavior can be seen in

Fig. 6.2. These results are produced using the Gene code, where a scaling parameter fc

has been used to artificially adjust the strength of the magnetic drift, and fc = 1 represents

the physical drift.

Different forms of the magnetic drifts may be implemented in Gene by setting the

nature of the drift term. For the work conducted here, this term is set to be of the form

vcurv+∇B ∼ b×
[(
v2
‖ +

v2
⊥
2

)
∇B
B

+

(
v2
‖ +

v2
⊥
2

)
4π

B2
∇p
]
/Ω . (6.4)

Let us note that a further simplified term is used in the analytic derivation corresponding

to the β = 0 limit (ignoring the pressure gradient term)

vcurv+∇B ∼ b×
[(
v2
‖ +

v2
⊥
2

)
∇B
B

p

]
/Ω . (6.5)

There was found to be no difference in the gyrokinetic results between the use of these

expressions. Even though microtearing is a finite-β mode it would appear that the pres-

sure gradient contribution to the magnetic drift is not important for the instability drive

discussed here. For more on the drift terms in Gene, see also the Gene manual [11].
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The simulations are further simplified by the use of adiabatic ions and the absence of

collisions. Importantly, it is found that instability occurs only for a range of fc, falling off

as fc becomes much different from 1. Figure 6.2 also shows the dependence of the mode on

the parameter ηe = (d lnTe/dr)/(d lnne/dr), with stronger growth rates for larger values of

ηe. In these simulations R0/Ln is held fixed while R0/LTe is varied.

A curvature driven mode matching the characteristics of the kind just presented has been

described before by Finn and Drake [115, 72]. This work was performed specifically in an

RFP geometry using the Braginskii fluid equations. Importantly, it was found that the mode

requires an electron temperature gradient and is only unstable when the curvature drift

ωc = −2kTBθ/eB
2rs and the diamagnetic drift ω∗p = kp′/neBθ are similar in magnitude,

with the linear growth rate falling off for ωc . ω∗p or ωc & ω∗p. This behavior can be seen in

Fig. 6.3, reproduced from Ref. [72], where it can be seen that this relationship to curvature

is similar, at least qualitatively, to the relationship that has been found in gyrokinetic

simulations, given in Fig. 6.2. This theory was formulated in the context of an RFP, in

which the curvature drift is larger than that in a tokamak by roughly a factor of the aspect

ratio. When the curvature drift is close to that of the diamagnetic frequency a coupling

occurs between the drift-tearing mode and a curvature drift mode, enabling instability even

when ∆′ ≤ 0.

The mechanism for the Finn and Drake curvature driven mode is fundamentally different

from the collisional MTM discussed above, since the collisional mode does not appear

in the Braginskii fluid formulation unless the time dependent thermal force is explicitly

included [60]. Furthermore, the fluid nature of the mode described in Ref. [115] implies that

kinetic resonances are unimportant to the physics of the curvature driven mode described

there. If the physics of this mode is indeed the same as that of the collisionless MTM, this

suggests that insight into the latter mode may be gained by the use of a fluid expansion

in the kinetic framework. Such an expansion constitutes the aim of the present work. An

analytic inclusion of the magnetic drifts into the drift-kinetic model is developed, essentially

constituting an inclusion of the magnetic drift term into the theory of Drake and Lee [58].
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Figure 6.2: Results from the Gene code showing MT growth rate versus fc, a parameter
that scales the strength of the magnetic drift in the Vlasov equation. A parity selection
procedure has been implemented acting on Φ and A‖ so that only tearing parity modes are
allowed. The strength of the instability scales with ηe. Adiabatic ions are used and other
parameters are R0/Ln = 1.74, kyρs = 1.4, and β = 0.09.
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Figure 6.3: Growth rate plotted against curvature drift frequency, with both quantities
normalized to the diamagnetic frequency, for the magnetic-curvature drift mode of Finn
and Drake. A peak occurs around ωc/ω∗p ' 1. Multiple values of f ≡ ω∗t/ω∗p are shown,
so that higher values of f , with constant density gradient, can be associated with a stronger
temperature gradient. Note that the parameter fc in Fig. 6.2 corresponds with ωc/ω∗p here,
rather than f . Source: Finn and Drake (1986).

The effect of magnetic drifts on the microtearing mode has been discussed in some detail

in Predebon and Sattin (2013) [70]. There the effect of magnetic drifts was considered in a

slab geometry in a drift-kinetic model and found to play an important role in the instability

mechanism of the collisionless MTM. Magnetic drifts were included in a heuristic fashion and

the resultant eigenmode equations solved numerically. The present work can be considered

to approach this same task in a more rigorous way. Let us also note that Ref. [70] also found

evidence for other instability mechanisms beyond the magnetic drifts, and it is possible that

there is not a unique collisionless MTM.

6.3 Derivation

The derivation follows closely that of the collisionless drift-tearing mode as outlined in

Ref. [58]. The starting point for this approach is the non-adiabatic part of the perturbed
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distribution function,

ge = −eFM
Te

ω − ω̄∗T
ω − k‖v‖ − ω̄D

(
Φ−

v‖A‖

c

)
, (6.6)

where e is the electric charge, c is the speed of light, k‖ = kyx/Ls is the parallel wavenumber,

Ls is the shear length scale in a toroidal geometry, x = r − rs is the distance from the

rational surface, ω̄T = ω∗n + ω∗T ((v2
⊥ + v2

‖)/v
2
Te − 3/2) is the gradient drive term, ω∗n =

−(kyTe/eB)(n′/n) is the electron diamagnetic frequency, FM = π−3/2n0v
−3
Te exp(−(v2

‖ +

v2
⊥)/v2

Te) is the Maxwellian distribution function, v2
Te = 2Te/me is the thermal velocity, Te

is the background electron temperature, and n0 is the background density. The form for the

magnetic drift used here is ω̄D = ωD(v2
‖/v

2
Te + v2

⊥/2v
2
Te), which represents the combination

of both ∇B and curvature drifts in the zero β limit. In this limit the magnetic drift is

simplified, so that the curvature and grad-B drifts may be combined to form

ω̄D = vD · k = (vc + v∇B) · k =
B0 ×∇B0

ΩeB2
0

· k (v2
‖ + v2

⊥/2) = ωD(v2 + u2/2) , (6.7)

where v = v‖/vTe and u = v⊥/vTe. The definition of ωD becomes

ωD = −2TeB0 ×∇B0 · k
eB3

0

. (6.8)

The parallel current may be derived from Eq. (6.6) by taking the first parallel velocity

moment J‖ = −e
∫
d3vv‖ge. The denominator ω−k‖v‖− ω̄D introduces analytic difficulties

in the form of resonances in velocity space. As mentioned before, the work of Finn and

Drake using fluid theory suggests that the magnetic drift kinetic resonance is unimportant

for the existence of a curvature driven tearing mode. Assuming the unimportance of this

resonance and assuming small ωD, the denominator may be simplified by applying the

expansion

1

ω − k‖v‖ − ω̄D
∼ 1

ω − k‖v‖

(
1 +

ω̄D
ω − k‖v‖

+O(ω̄2
D)

)
. (6.9)

With this expansion, it is possible to separate the electron distribution function (Eq. (6.6))

such that

ge = ge,0 + ge,ωD ,
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where ge,ωD consists of all terms proportional to ωD and ge,0 contains all other terms,

ge,0 = −eFM
Te

ω − ω̄∗T
ω − k‖v‖

(
Φ−

v‖A‖

c

)
. (6.10)

With this prescription the parallel current also becomes separable:

J‖ = J‖,0 + J‖,ωD , (6.11)

where J‖,ωD is the current that arises as a result of the ωD terms and J‖,0 is the collisionless

parallel current in the absence of magnetic drifts as derived in Drake and Lee [58],

J‖,0 =
ω2
pe

4π
iE‖

1

ω
s2ω

∗
n

ω

[(
ω

ω∗n
− 1

)
Z ′(s) +

s

2
ηeZ

′′(s)

]
, (6.12)

where s = ω/(k‖vTe). This equation is expressed in terms of the first and second derivatives

of the plasma dispersion function Z(s). For reference, these functions are given here:

Z(s) = π−1/2

∫ ∞
−∞

dt
e−t

2

t− s
, (6.13)

Z ′(s) = π−1/2

∫ ∞
−∞

dt
e−t

2

(t− s)2
= −π−1/2

∫ ∞
−∞

dt
2t

t− s
e−t

2
, (6.14)

Z ′′(s) = π−1/2

∫ ∞
−∞

dt
2e−t

2

(t− s)3
. (6.15)

The task now is to evaluate the parallel current generated as a result of the magnetic

drifts. The part of the distribution function proportional to ωD (and ignoring terms of

order ω2
D) is:

ge,ωD = −eFM
Te

(ω − ω̄∗T )ω̄D
(ω − k‖v‖)2

(
Φ−

v‖A‖

c

)
(6.16)

A form for the parallel current J‖,ωD = −e
∫
d3vv‖g

ωD
e = JΦ

‖,ωD + J
A‖
‖,ωD may be deter-

mined from this expression via a number of steps. The derivation of the parallel current

terms is given in Appendix A. Therein, expressions for the ωD-driven parallel current pro-

portional to A‖ (J
A‖
‖,ωD) and Φ (JΦ

‖,ωD) are derived. These expressions are:

JΦ
‖,ωD =

ω2
pe

4π

2π−1/2

k‖v
2
Te

ωD
k‖vTe

∫ ∞
−∞

dv
ω(v3 + v/2)− v3ω∗n − v5ω∗T − v/2(ω∗n + ω∗T /2)

(s− v)2
e−v

2
Φ ,

(6.17)
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J
A‖
‖,ωD = −

ω2
pe

4πc

2π−1/2

k‖vTe

ωD
k‖vTe

∫ ∞
−∞

dv
ω(v4 + v2/2))− v4ω∗n − v6ω∗T − v2/2(ω∗n + ω∗T /2)

(s− v)2
e−v

2
A‖ .

(6.18)

To compare more directly with the ωD = 0 terms from Drake and Lee, these terms

can be rewritten in terms of Z ′ and Z ′′. Using these definitions, the Φ component of the

magnetic-drift-driven parallel current (Eq. (6.17)) becomes

JΦ
‖,ωD =

ω2
pe

4πc

c

vTe

1

ω
s

2ωD
ω

[(
s3ω∗T − s(ω − ω∗n −

1

2
ω∗T )

)
Z ′(s)

+

(
1

2
s4ω∗T −

1

2
s2(ω − ω∗n + ω∗T )− 1

4
(ω − ω∗n −

1

2
ω∗T )

)
Z ′′(s)

]
Φ .

(6.19)

And doing the same with the A‖ term (Eq. (6.18)),

J
A‖
‖,ωD = − 1

ω

ω2
pe

4πc

2ωD
ω

A‖s
2

[(
s4ω∗T − s2(ω − ω∗n)− 1

2
(ω − ω∗n − ω∗T )

)
Z ′(s)

+

(
1

2
s5ω∗T −

1

2
s3

(
ω − ω∗n +

3

2
ω∗T

)
− 1

4
sω∗T

)
Z ′′(s)

]
.

(6.20)

In order to derive a dispersion relation from these expressions, it is necessary to find a

relationship between Φ and A‖. This is done through the quasineutrality equation.

Quasineutrality

The quasineutrality equation is given by

ne2Φ

Te
(1 + τ) = e

∫
d3vge , (6.21)

expressed in terms of the non-adiabatic part of the distribution function (Eq. (6.6)), where

τ = Te/Ti. Ions are assumed to be adiabatic, so that gi = 0 and fi = − eΦ
Ti
fM .

As with the expressions for the parallel current, the relationship between Φ and A‖ as

given by the quasineutrality relationship is derived in Appendix A. The result of this is the



121

expression

Φ =
vTe
c
A‖

[[
s4ω̂Dη − s2ω̂D(ω̂ − 1− η/2) +

ω̂

2
(ω̂ − 1)

]
Z ′(s)

+
[
s5ω̂Dη − s3ω̂D(ω̂ − 1 + η) +

s

2
(ω̂η − ω̂Dω̂ + ω̂D + ω̂Dη/2))

]
Z ′′(s)/2

]
/[

(1 + τ)ω̂2/s+
[
s3ω̂Dη + sω̂(ω̂ − 1)

]
Z ′(s)

+
[
s4ω̂Dη − s2ω̂D(ω̂ − 1 + η/2) + ω̂(ω̂ + η/2− 1)

]
Z ′′(s)/2

]
,

(6.22)

where all frequencies are normalized to ω∗n, so that ·̂ ≡ ·/ω∗n and η ≡ ω∗T /ω∗n.

The parallel current terms are restated here using the same normalization,

J
A‖
‖,ωD = −

ω2
pe

4πc

2ω̂D
ω̂2

s2

[(
s4η − s2 (ω̂ − 1)− 1

2
(ω̂ − 1− η)

)
Z ′(s)

+

(
1

2
s5η − 1

2
s3

(
ω̂ − 1 +

3

2
η

)
− 1

4
sη

)
Z ′′(s)

]
A‖ ,

(6.23)

JΦ
‖,ωD =

ω2
pe

4πc

2ω̂D
ω̂2

s2

[(
s3η − s

(
ω̂ − 1− 1

2
η

))
Z ′(s)

+

(
1

2
s4η − 1

2
s2 (ω̂ − 1 + η)− 1

4

(
ω̂ − 1− 1

2
η

))
Z ′′(s)

](
c

vTe

)
Φ .

(6.24)

6.4 Parallel Current Structure

Before attempting to solve the above set of expressions analytically, it is useful to first

consider the structure of the parallel current, and how this structure changes with the

variation of important parameters. Fig. 6.4 shows the real and imaginary parts of the

parallel current for the ωD = 0 case. The other parameters are τ = 1 and η = 10. The

magnitude of the current for these same parameters is plotted in Fig. 6.5. Without solving

for ω̂ explicitly, it is necessary to make some assumption for its form. For the purpose

of visualizing the structure of the parallel current expression, it has been assumed that

ω̂ = 1 + η. These structures are plotted against x/d, for d given in Eq. (6.3).

The effect of the ωD components on this structure can also be explored. Fig. 6.6 shows

the curve from Fig. 6.5 (ω̂D = 0) plotted along with the curve for ω̂D = 1. In Fig. 6.7 is
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Figure 6.4: Real (blue curve) and imaginary (orange curve) portions of J‖(x) for ω̂D = 0,
η = 10, τ = 1. The assumption ω̂ = 1 + η has been used. The real part is even in x while
the imaginary part is odd.
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Figure 6.5: |J‖(x)| for ω̂D = 0, η = 10, ω̂ = 1 + η, τ = 1.
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Figure 6.6: |J‖(x)| for ω̂D = 0 (blue curve) and ω̂D = 1 (orange curve). Other parameters
are η = 10, ω̂ = 1 + η, and τ = 1.
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Figure 6.7: |J‖(x)| for ω̂D = 0 (blue curve) and ω̂D = 1 (orange curve). Other parameters
are η = 1, ω̂ = 1 + η, and τ = 1.

shown these same values (ω̂D = 0 and ω̂D = 1), but for η = 1. It can be seen that both η

and ω̂D have an effect on the sharp peaks seen at x/d ≈ ±0.5-1.

One piece of information that may be gleaned from these plots is the behavior of J‖

at large s (small x). In Sec. 6.6, the large-s limit of the parallel current expressions will

be taken. In those expressions, the behavior of the current will become like J‖ ∝ x2.

Consequently, the integral in Ampère’s law cannot be taken from x = −∞ to x = ∞ and

will instead be restricted to x/d = −1 to x/d = 1. This may discard important information,
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but it is a necessary component of investigating the limiting behavior.

6.5 Φ = 0 Result

It has been found that in some gyrokinetic simulations the electrostatic potential fluctuation

Φ is a necessary component of instability [68]. This scenario can be investigated by choosing

Φ = 0 and ignoring the JΦ terms, a step taken in Drake and Lee (1977) [58] (where the

collisionless MTM was found to be stable). As discussed above, the MT mode will be

damped away if the phase velocity of the mode is less than the electron thermal velocity.

This imposes an upper limit on the parallel wavenumber and suggests that only the inductive

term needs to be considered in the parallel electric field E‖ = −ω
cA‖ + k‖Φ.

Ampère’s Law was previously stated as an integral over x, but the parallel current is

now written as a function of s, reading s = ω/(k‖vTe) = ((ωLs)/(kyvTe))(1/x) = d/x. In

order to perform this integral we must perform a variable substitution:∫ ∞
−∞

dx→ − ωLs
kyvTe

∫ ∞
−∞

ds

s2
.

Knowing the asymptotic behavior of Z ′ and Z ′′ will be also important here, so the expansion

of these functions in the large s limit is presented here:

Z ′(s) ' iπ1/2σe−s
2
(−2s) +

1

s2
+

3

2

1

s4
, Z ′′(s) ' iπ1/2σe−s

2
(−2 + 4s2)− 2

s3
− 6

s5
. (6.25)

Now, the A‖ contributions in Ampere’s law can be considered to arise from two terms: the

ωD = 0 term ∆′0 (considered in Drake and Lee (1977)) and the ωD contribution ∆′ωD that

comes from integrating Eq. (6.23):

∆′ωD =
4π

c
d

∫ ∞
−∞

ds

s2
∼
∫ ∞
−∞

ds

[(
s4η − s2 (ω̂ − 1)− 1

2
(ω̂ − 1− η)

)
Z ′(s) +(

1

2
s5η − 1

2
s3

(
ω̂ − 1 +

3

2
η

)
− 1

4
sη

)
Z ′′(s)

]
.

(6.26)

As will be shown, with the assumption that Φ = 0, the parameter ∆′ωD evaluates to

zero due to a number of cancellations that occur among these terms.

We first look at the terms proportional to ω̂ − 1, given by

− (ω̂ − 1)

∫ ∞
−∞

ds

[
s2Z ′(s) +

s3

2
Z ′′(s) +

1

2
Z ′(s)

]
. (6.27)
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Consider the highest s-order term, proportional to s3Z ′′. Using some algebraic manipula-

tions, including integration by parts and the identity sZ + 2 = −Z ′/2, this can be written

in another form:∫ ∞
−∞

ds
s3

2
Z ′′(s) =

∫ ∞
−∞

ds

[
s3

2

(
Z ′′(s) +

2

s3

)
− 1

]
=
s3

2

(
Z ′(s)− 1

s2

)∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞
−∞

ds

[
3

2
s2

(
Z ′ − 1

s2

)
+ 1

]
.

(6.28)

The boundary term evalutes to zero at both s = 0 and s = ±∞, so although these expres-

sions could be written in a more mathematically rigorous way to encompass s = 0, this is

not done here.

Now, doing the same with the s2Z ′ term,∫ ∞
−∞

ds s2Z ′(s) =

∫ ∞
−∞

ds

[
s2

(
Z ′(s)− 1

s2

)
+ 1

]
. (6.29)

We can now combine Eq. (6.28) with Eq. (6.29) to give∫ ∞
−∞

ds

[
s2Z ′(s) +

s3

2
Z ′′(s)

]
= −1

2

∫ ∞
−∞

dss2

(
Z ′(s)− 1

s2

)
= −s

2

2

(
Z +

1

s

)∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

+

∫ ∞
−∞

ds s

(
Z +

1

s

)
︸ ︷︷ ︸

=− 1
2
Z′(s)

.
(6.30)

This will cancel with the (ω̂ − 1)Z ′(s) term, so that Eq. (6.27) evaluates to zero.

Now we turn our attention to the terms in Eq. (6.26) proportional to η:

η

∫ ∞
−∞

ds

[(
1

2
s5 − 3

4
s3 − 1

4
s

)
Z ′′(s) + (s4 +

1

2
)Z ′(s)

]
. (6.31)

We first rewrite the s5Z ′′ term,∫ ∞
−∞

ds
s5

2
Z ′′(s) =

∫ ∞
−∞

ds
s5

2

(
Z ′′(s) +

2

s3
+

6

s5
− 2

s3
− 6

s5

)
=
s5

2

(
Z ′(s)− 1

s2
− 3

2s4

)∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞
−∞

ds

[
5

2
s4

(
Z ′ − 1

s2
− 3

2s4

)
+ s2 + 3

]
.

(6.32)
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We can then do the same with the s4Z ′ term,∫ ∞
−∞

ds s4Z ′(s) =

∫ ∞
−∞

dss4

(
Z ′(s)− 1

s2
− 3

2s4
+

1

s2
+

3

2s4

)
=

∫ ∞
−∞

ds

[
s4(Z ′ − 1

s2
− 3

2s4
) + s2 +

3

2

]
.

(6.33)

Eq. (6.32) and Eq. (6.33) can be combined to give∫ ∞
−∞

ds

[
s4Z ′(s) +

s5

2
Z ′′(s)

]
=

∫ ∞
−∞

ds

[
−3

2
s4

(
Z ′(s)− 1

s2
− 3

2s4

)
− 3

2

]
= 0 +

∫ ∞
−∞

ds

[
6s3

(
Z(s) +

1

s
+

1

2s3

)
− 3

2

]
=

∫ ∞
−∞

ds

[
6s2 (sZ(s) + 1) +

3

2

]
=

∫ ∞
−∞

ds

[
−3s2Z ′(s) +

3

2

]
=

∫ ∞
−∞

ds

[
6s

(
Z(s) +

1

s

)
− 3 +

3

2

]
=

∫ ∞
−∞

ds

[
−3Z ′(s)− 3

2

]
.

(6.34)

Then we rewrite the s3Z ′′ term

−
∫ ∞
−∞

ds
3s3

4
Z ′′(s) = −

∫ ∞
−∞

ds
3s3

4

(
Z ′′(s) +

2

s3
− 2

s3

)
= −3s3

4

(
Z ′(s)− 1

s2

)∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

+

∫ ∞
−∞

ds

[
9

4
s2

(
Z ′ − 1

s2

)
+

3

2

]

=

∫ ∞
−∞

ds

[
9

4
Z ′(s) +

3

2

]
.

(6.35)

Adding Eq. (6.34) and Eq. (6.35) gives∫ ∞
−∞

ds

[(
1

2
s5 − 3

4
s3

)
Z ′′(s) + s4Z ′(s)

]
= −

∫ ∞
−∞

ds
3

4
Z ′′(s) . (6.36)

And finally now consider the sZ ′′ and Z ′ terms from Eq. (6.31),∫ ∞
−∞

ds

[
−s

4
Z ′′(s) +

1

2
Z ′(s)

]
= −s

4
Z ′(s)

∣∣∣∞
0︸ ︷︷ ︸

=0

+

∫ ∞
−∞

ds

[
1

4
Z ′(s) +

1

2
Z ′(s)

]

=

∫ ∞
−∞

ds

[
3

4
Z ′(s)

]
,

(6.37)

which, when added to Eq. (6.36) yields zero. This means that the full η expression

(Eq. (6.31)) evaluates to zero.
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The final results of performing the integration over s is that
∫

(ds/s2)J
A‖
‖,ωD/A‖ = 0, so

that there is no additional contribution to ∆′ from curvature terms, at least in the case

that Φ = 0. Thus, in the absence of Φ there is no ωD driven instability. As mentioned, this

result has been seen in certain regimes [68], although other work has shown evidence for

the collisionless MTM even in the Φ = 0 case [70], and it is likely that there are additional

effects not captured in these limits.

6.6 Φ 6= 0 Result

In the previous section, it was found that there is no contribution to the tearing parameter

∆′ from J
A‖
‖,ωD . In the more general case, where Φ is non-zero, it is necessary to make use of

the quasineutrality equation to derive a relationship between Φ and A‖. This relationship

(Eq. (6.22) given above) is difficult to incorporate analytically into the expression for ∆′,

and so some simplifications will be made to enable an analytic approach.

An additional simplification can be made by assuming the frequency ω to be much

larger than both k‖v‖ and ωD. As can be seen from Fig. 6.2, near the physical value of

the magnetic drift (fc = 1) the real frequency is ω ≈ 12cs/R0 ≈ 15ω∗n for the parameters

studied there. This means that the analysis that follows should be expected to be valid for

ω̂D ∼ 1. The expansion ω − k‖v‖ � ωD has already been used to simplify the equations.

Enforcing ω � k‖v‖ is equivalent to taking the large s
(
s = ω/k‖vTe

)
limit of Z ′ and Z ′′.

This expansion, however, places restrictions on the extent of the x integral (or s integral,

equivalently) in Ampère’s law. In fact, we must restrict the integral to a thin region around

the resonant surface x = 0. Taking the limits of the x integral to be from -d to d, this

translates to limits in s from −∞ to −1 and 1 to ∞.

The large-s expansion of the parallel current

To proceed, we must take the large-s limits of the above expressions for the parallel current.

This is done by using the large argument expansions for Z ′ and Z ′′ given in Eq. (6.25). The

imaginary component (proportional to e−s
2
) is neglected.
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For the original, non-magnetic-drift terms (from Eq. (6.12)) this expansion yields

J
A‖
‖,0 →

ω2
pe

4πc
A‖

1

ω̂
s2

[
(η + 1− ω̂)

1

s2
+

(
3η +

3

2
(1− ω̂)

)
1

s4

]
(6.38)

and

JΦ
‖,0 → −

ω2
pe

4πc

(
c

vTe
Φ

)
1

ω̂
s2

[
(η + 1− ω̂)

1

s3
+

(
3η +

3

2
(1− ω̂)

)
1

s5

]
. (6.39)

The magnetic drift terms (Eqs. 6.23 and 6.24) become in the large-s limit

J
A‖
‖,ωD → −

ω2
pe

4πc
A‖

2ω̂D
ω̂2

s2

[(
22

4
η + ω̂ − 1

)
1

s2
+

(
9

4
η − 3

4
(ω̂ − 1)

)
1

s4

]
(6.40)

and

JΦ
‖,ωD →

ω2
pe

4πc
Φ

c

vTe

2ω̂D
ω̂2

s2

[(
7

2
η + 2(ω̂ − 1)

)
1

s3
+

(
−3

4
η +

3

2
(ω̂ − 1)

)
1

s5

]
. (6.41)

Finally, the quasineutrality expression (which contains contributions from both ωD = 0

and ωD 6= 0 terms) becomes:

Φ/s→ A‖
vTe
c

N(s)

D(s)
, (6.42)

where the functions that comprise the numerator and denominator are given by

N(s) = −s
(
−ω̂

(
2η
(
s2 + 3

)
+ s2(2− 8ω̂D)− 6ω̂D + 3

)
+

ω̂D
(
η
(
14s2 − 3

)
− 8s2 − 6

)
+
(
2s2 + 3

)
ω̂2
) (6.43)

and

D(s) = 2
(
s2ω̂D

(
2ηs2 − 3η + 2s2 + 6

)
+ ω̂

(
η
(
s2 + 3

)
− 2s4(ω̂D − 1) + s2(1− 6ω̂D)− 6

)
−ω̂2

(
2s4(τ + 2) + s2 − 6

))
,

(6.44)

respectively.

This expression can be further simplified by taking only the largest sn terms of the

numerator and denominator, resulting in an expression proportional to s−1:

Φ→ −1

2

1

s

−ηω̂ − ω̂ + 4ω̂ω̂D + 7ηω̂D − 4ω̂D + ω̂2

ηω̂D + ω̂D + ω̂ − ω̂ω̂D − ω̂2(τ + 2)

(vTe
c

)
A‖ (6.45)
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The above expressions can be combined and integrated in Ampère’s law, yielding a

dispersion relation of fourth order in ω.

Starting with Ampère’s law, expressed in terms of s:

∆′ =
4π

c
d

[∫ −1

−∞

ds

s2

1

A‖
J‖ +

∫ ∞
1

ds

s2

1

A‖
J‖

]
= G

A‖
0 +GΦ

0 +G
A‖
ωD +G

A‖
ωD ,

(6.46)

the large-s limit expressions for the parallel currents derived above can now be substituted

into this expression and the integrals performed.

For the J
A‖
‖,0 term,

G
A‖
0 = −

ω2
pe

c2

d

ω̂
(3 + 4η − 3ω̂) . (6.47)

For the JΦ
‖,0 term,

GΦ
ωD

=
ω2
pe

c2

d

ω̂

1

30
(−28η + 19(ω̂ − 1))

−ηω̂ − ω̂ + 4ω̂ω̂D + 7ηω̂D − 4ω̂D + ω̂2

ηω̂D + ω̂D + ω̂ − ω̂ω̂D − ω̂2(τ + 2)
. (6.48)

For the J
A‖
‖,ωD term,

G
A‖
ωD = −

ω2
pe

c2

d

ω̂

ω̂D
ω̂

(3− 25η − 3ω̂) . (6.49)

For the JΦ
‖,ωD term,

GΦ
0 =

ω2
pe

c2

d

ω̂

ω̂D
ω̂

1

30
(61η + 58(ω̂ − 1))

−ηω̂ − ω̂ + 4ω̂ω̂D + 7ηω̂D − 4ω̂D + ω̂2

ηω̂D + ω̂D + ω̂ − ω̂ω̂D − ω̂2(τ + 2)
. (6.50)

These expression can all be combined to yield the following dispersion relation:

∆′ =

(
ω2
pe

c2

d

ω̂

)(
−3− 4η + 3ω̂ − ω̂D

ω̂
(3− 25η − 3ω̂)+

1

30

(
(−28η + 19(ω̂ − 1)) +

ω̂D
ω̂

(61η + 58(ω̂ − 1))

)
−ηω̂ − ω̂ + 4ω̂ω̂D + 7ηω̂D − 4ω̂D + ω̂2

ηω̂D + ω̂D + ω̂ − ω̂ω̂D − ω̂2(τ + 2)

)
,

(6.51)

where

∆′

d
ω̂
c2

ω2
pe

→ −2ky
Ωi

cs

Ln
Ls

vTe
cs

c2

ω2
pe

= −2(kyρs)
vTe
cs

Ln
Ls

(
δe
ρs

)2

, (6.52)
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and the definition of d given in Eq. (6.3) has been used. The ratio between the electron

skin depth δe and the ion sound gyroradius ρs can also be written as(
δe
ρs

)2

=
1

2

mi

me

1

βe
.

Eq. (6.51) can be investigated in a simplified scenario by first assuming that ∆′ = 0. This

simplification is motivated by the fact that the tearing parameter ∆′ is not a fundamental

component of the MTM, and it was found in Ref. [115] that the magnetic curvature-drift

instability was able to occur even for ∆′ = 0.

The dispersion relation, as a fourth order equation in ω̂, yields four separate roots. The

behavior of these roots with the variation of the key parameters η and ω̂D is studied. A

benefit of plotting all modes is that, since there are some issues in the numerical solver

with root tracking / labeling, it is easier to discern the important behavior. A key difficulty

arises in identifying the roots of the dispersion relation, and looking at the behavior of these

roots with various parameters can help in this process.

Figure 6.8 shows the roots of the dispersion relation with ω̂D = 0 and τ = 1. There is

a root with features of the drift-tearing mode, with a real frequency ω̂ ≈ 1 + 4η/3, which

is stable. Since all frequencies are normalized to ω∗n, a positive real frequency indicates the

electron direction.

Figure 6.9 shows the dependence of the roots on the magnetic drift frequency ω̂D for

η = 10. It can be seen that there is an unstable root for positive ω̂D with the real frequency

of this root in the electron direction, a consequence of mode coupling. The behavior on

η for ω̂D = 1 is given in Fig. 6.10, where it can be seen that this mode is destabilized by

increasing η, although there is no critical threshold. Although the characteristics of the

instability share many qualities with the MTM, more work remains to confidently identify

the modes present in the dispersion relation and their relationship to the MTM.

In Fig. 6.11 is shown the dependence of the instability growth rate onR = −∆′ω̂c2/(dω2
pe) ∝

β−1. The existence of a threshold near R ≈ 500 implies that there is a critical β value, a

feature of the MTM.
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Figure 6.8: Real frequency (top plot) and growth rate (bottom plot) as functions of η for
ω̂D = 0. All roots of the dispersion relation are shown. Quantities are normalized to ω∗n.
Root 4 has features of the drift-tearing mode, with ω ≈ 1 + 4η/3 and in the direction of ω∗n
(electron direction). All roots are stable.

6.7 Chapter Summary

The role of magnetic curvature drift in the collisionless microtearing mode was investigated

using the drft-kinetic framework. Using an expansion in ωD/(ω−k‖v‖), the magnetic-drift-

driven contributions to the parallel current were calculated and the effect on instability

assessed.

It was demonstrated that including only A‖ contributions to the parallel current, ignor-

ing the inclusion of the electrostatic potential terms, results in no contribution from ω̂D
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Figure 6.9: Real frequency (top plot) and growth rate (bottom plot) as functions of ω̂D
for η = 10. Quantities are normalized to ω∗n. For positive ω̂D a coupling occurs between
modes, yielding an instability in the electron direction driven by the magnetic drift.

terms in Ampère’s law. This indicates that, at least with the present assumptions, Φ is

a necessary element of the instability. This is in agreement with some gyrokinetic simula-

tions [68], although others find instability even in the absence of Φ fluctuations [70], and so

there may be mechanisms for instability not considered here.

Including Φ terms and expanding terms in the large-s yielded a fourth order dispersion

relation with several unstable roots. The dependence of these roots on ω̂D and η was

investigated, and it was found that for some value of ω̂D an instability occurs as the result

of a coupling between an apparent drift-tearing mode and a curvature driven mode. This
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Figure 6.10: Real frequency (top plot) and growth rate (bottom plot) as functions of η for
ω̂D = 1. Quantities are normalized to ω∗n. The parameter η is destabilizing, although there
is no critical threshold.

instability has some features of the collisionless MTM, including a frequency in the electron

direction, a dependence on η, and a critical β, but more work remains to make a positive

identification. Specifically, this would take the form of detailed comparisons between the

roots of the dispersion relation and gyrokinetic simulations. Particular care must be taken

in considering the relative normalizations and definitions, especially for the magnetic drifts.

It should also be noted that there is evidence that multiple instability mechanisms

exist [70], possibly associated with the magnetic shear and the density gradient. The

effect of these parameters in the current derivation was not considered. There are several
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Figure 6.11: Growth rate versus R = −∆′ω̂c2/(dω2
pe) ∝ β−1 for the ω̂D-driven mode with

η = 10 and ω̂D = 1. The growth rate goes to zero near R ≈ 500, implying that there is a
critical β threshold for this instability.

additional avenues for potential further exploration, including taking higher order terms in

the expansions and considering more carefully the effect of the tearing layer width. A finite,

positive ∆′ may also have important effects on the instability spectrum.
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Chapter 7

Conclusions

Years of progress in experimental RFP research have lead to conditions of enhanced heat and

particle confinement, in which microinstability-driven turbulence is expected to be making

contributions to heat and particle transport. This thesis presented a theoretical analy-

sis of the microturbulence characteristics of the reversed field pinch using the gyrokinetic

framework, with particular attention paid to the experimental conditions of the Madison

Symmetric Torus.

The reversed field pinch has made serious advances as a magnetic confinement fusion

concept in recent years. Improved confinement regimes in the RFP have been responsible for

increases in the energy confinement time by at least a factor of ten. As the RFP continues

to find innovative ways to improve confinement and heating, the effects of microinstabilities

on transport will play an ever increasing role. As experimental techniques are developed

and implemented to assess this role, it is important to develop concurrently the ability to

characterize and understand these instabilities from a theoretical perspective. One way this

is realized is in the identification of the likely instabilities for particular MST discharges and

their identifying characteristics. This also takes the form of various scaling relationships

that determine how instability properties, such as linear growth rate or nonlinear fluxes,

depend on important parameters such as machine size, β, temperature, density, magnetic

field geometry, and magnetic diffusivity. The major results presented in this work are now
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summarized below.

7.1 Summary of Results

The first obstacle to modeling gyroscale physics in the RFP is to incorporate an accurate

RFP equilibrium model into the gyrokinetic framework. This was done in the present

work through the use of two different models: the toroidal Bessel function model (TBFM)

and the adjusted circular model (ACM), the latter of which is now incorporated into the

Gene code. Both of these models enable the key elements of the RFP geometry – namely,

low q and high magnetic shear – to be implemented into numerical gyrokinetic solvers.

Although both models are limited by the requirement of circular flux surfaces, this is a

condition well satisfied in most MST discharges. While the TBFM is best suited for low-

Θ discharges, which are more reflective of ‘standard’ MST discharges and therefore less

likely to have microinstability-driven physics play an important role, the ACM is flexible

enough to model more general axisymmetric RFP geometries. In particular, this includes

the improved confinement PPCD discharges in which microinstabilities are expected to be

present and perhaps dominating the turbulent spectrum.

Linear Results

This present work (along with the work of others) has shown that many of the microin-

stabilities known from tokamak studies may also arise in the RFP. This list includes ion-

temperature gradient modes, trapped electron modes, and microtearing modes.

Ch. 4 described the results of fundamental studies of drift wave instabilities in the RFP

using the TBFM implemented in the Gyro code, and this work was originally published

in Carmody et al. (2014) [55]. In this geometry, two drift wave instabilities were identified:

the ion temperature gradient (ITG) mode, and the microtearing mode (MTM). Although

similar in many of their fundamental characteristics, such as drive mechanism and parameter

dependencies, the RFP versions of these instabilities differ in several important ways to their

tokamak counterparts. Among these differences is the location of critical parameter values
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for instability onset, which have been found to be dependent on geometric characteristics.

The gradient thresholds, for instance, are found to be larger than in the tokamak by roughly

a factor of the aspect ratio, so that (R/L)crit
tok ≈ (a/L)crit

RFP. A similar relationship was found

for the ITG suppression β limit. The MTM was found to be stabilized by the RFP pinch

parameter Θ (associated with higher magnetic shear), a property that suggests the MTM

is unlikely to be unstable in high-Θ PPCD discharges.

One instability missing from all RFP gyrokinetic results so far is the kinetic ballooning

mode (KBM), an electromagnetic instability driven by the pressure gradient. This is re-

lated to another important β consideration: the KBM β limit, the β value at which KBM

becomes unstable, the ratio β/βcrit
KBM serving as a proxy for other electromagnetic effects

as well. The low q and high magnetic shear found in the RFP geometry can push this

limit quite high, so that even in high β conditions (as compared to the tokamak) discharges

may remain predominantly electrostatic with regard to the microturbulence characteristics.

These effects were discussed in Ch. 5.

Linear results from two experimental PPCD discharges on the Madison Symmetric Torus

were presented in Ch. 5, and those results have also been submitted in a paper to Physics of

Plasmas [74]. These equilibria were modeled using the ACM implemented in the Gene code.

From a microinstability standpoint, PPCD discharges can perhaps be best characterized in

terms of their dominant gradient – i.e., whether a discharge is dominated by temperature

gradients or by density gradients to a large extent determines the type of instability that

will be most unstable. This dominance can be determined in a quantitative way through

the parameter η ≡ (∇T/T )/(∇n/n). It was found that for ηi < 1.2 − 1.4 the dominant

instability is likely to be density-gradient-driven TEM, and for ηi > 1.2−1.4 ITG is the likely

instability, although other parameters, such as temperature ratio, also enter into the picture

and there is perhaps not a rigid boundary. Within the range ηi = 1.2 − 1.4 it is possible

to have a hybrid mode with characteristics of both ITG and TEM. For TEM dominant

discharges, the parameter ηe may be important for differentiating between density-gradient-

driven TEM (expected for ηe < 1) and temperature-gradient-driven TEM (expected for
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ηe > 1), a transition that holds for tokamaks but which was not explored in detail in the

present work.

In Ch. 6 the linear collisionless MTM, seen in gyrokinetic simulations in some parameter

regimes in the RFP (although not for typical PPCD discharges), was investigated analyt-

ically using the drift-kinetic formalism. The effect of magnetic drifts, ignored in many

previous theories, was included using a fluid expansion. The mode was found to be sta-

ble in the absence of fluctuations in the electrostatic potential. Including the electrostatic

potential led to a dispersion relation that contained roots with some of the properties of

the MTM, including a frequency in the electron direction, a dependency on the electron

temperature gradient and the magnetic drift frequency, and a threshold in β, although more

work remains to positively identify this mode as the collisionless MTM.

Nonlinear Results

Results from the first nonlinear gyrokinetic evaluation of improved confinement PPCD

discharges were presented in Ch. 5. These results have also been submitted to Physics of

Plasma [74]. A discharge linearly unstable to density-gradient-driven TEM was modeled

nonlinearly, and a large Dimits-like shift was found to occur, with the nonlinear density

gradient threshold roughly a factor of three above the critical linear value. This shift, and

the nonlinear saturation mechanism in general, was found to be due to the presence of

strong zonal flows. Zonal flows are an important element of plasma turbulence as they act

to suppress transport through shear flow and the transfer of energy to damped modes.

The nonlinear critical threshold was found to occur near the value of the experimental

density gradient, but the electron heat diffusivity present in the simulations was well below

experimental estimates. This discrepancy could be accounted for through the inclusion

of added magnetic diffusivity. An important element of the RFP is the global tearing

mode spectrum, and although this spectrum is largely suppressed in PPCD discharges,

some residual activity may remain. To consider the effect of these residual tearing mode

fluctuations, an imposed magnetic perturbation was added, leading to increased levels of



139

magnetic diffusivity. This resulted in the degradation of the zonal flows and an order of

magnitude increase in the transport fluxes. Although the specific nature and strength of

the imposed perturbation remains to be determined, it is apparent that the proper inclusion

of residual magnetic fluctuations is an important part of gyrokinetic modeling in the RFP.

7.2 Future Work

The specific role played by the microinstabilities discussed in this thesis in the Madison

Symmetric Torus is still an open topic, and understanding this role constitutes one of the

main thrusts of future work. One path this could take is the development of synthetic di-

agnostics, so that the output of nonlienar simulations may be more directly compared with

experimental measurements. There are also a variety of effects not considered in the present

work, and the inclusion of these effects in modeling may have important consequences. For

instance, all nonlinear runs performed in the preceding chapters used the local approxima-

tion, in which background quantities were assumed to vary linearly over some finite spatial

domain. While often a good approximation, this assumption means that results are not

entirely self-consistent. Performing global nonlinear runs could lead to new effects and dif-

ferent results, although global runs near or including the reversal surface present additional

challenges associated with the low safety factor and high magnetic shear at that location.

Another issue of geometry that was not addressed is the simulation of the reversal

surface. This location was not modeled due to difficulties posed by the high ŝ and zero

toroidal field. This is an area of some interest as the reversal surface lies at an intersection

between the high gradients near the edge and the high β present in the core. As such, this

location may enable the existence of electromagnetic instabilities not seen at other radii.

This uncertainty is further compounded by the somewhat exotic nature of low q. While

there is nothing inherently unmanageable about this parameter space, it does require some

careful consideration. A full microinstability characterization of the RFP would likely be

incomplete without the inclusion of this region.

Another important consideration is the large amount of uncertainty in several critical
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experimental quantities. These include the temperature and density gradients, which may

have uncertainties of as much as a factor of two (or more, in the case of the ion tempera-

ture), and the magnetic diffusivity, which for the radial locations of interest in the PPCD

discharges is perhaps only known to within an order of magnitude. The magnetic diffusiv-

ity due to residual tearing mode activity is of particular importance for determining the

nonlinear transport fluxes, and it was found that the fluxes were sensitive to the strength

of the imposed resonant magnetic perturbation. Since the imposed pertubation has such

an important effect on the saturation mechanism it may be expected that the Dimits shift

will be smaller, and performing a gradient scan with the imposed magnetic diffusivity could

yield important results.

Aside from geometrical or equilibrium effects, there are other physics effects that are

of interest. The physics of damped modes is one that has been explored in some detail in

tokamak turbulence, but the nature of these mechanisms in the RFP is as yet unknown.

Damped modes may play a similar role in regulating turbulence in the RFP, but the exact

nature of the energy transfer mechanisms still remains to be investigated.

Finally, more work remains to be done on the linear theory of the collisionless MTM.

Although an unstable mode was found with many features of the MTM, comparisons with

gyrokinetic simulations are needed to determine how well the modes present in the disper-

sion relation represent the behavior of the collisionless MTM.
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Appendix A

Derivation of expressions for the

collisionless microtearing mode

This appendix provides the derivation of the parallel current terms J
A‖
‖,ωD (Eq. (A.28)) and

J
A‖
‖,ωD (Eq. (A.29)) used in Ch. 6, as well as the relationship between Φ and A‖ from the

quasineutrality expression (Eq. (A.27)).

A.1 Parallel current

The non-adiabatic part of the distribution function is

ge = −eFM
Te

ω − ω̄∗T
ω − k‖v‖ − ω̄D

(
Φ−

v‖A‖

c

)
, (A.1)

where e is the electric charge, c is the speed of light, k‖ = kyx/Ls, Ls is the shear length scale,

x is the distance from the rational surface x = r−rs, ω̄T = ω∗n+ω∗T ((v2
⊥+v2

‖)/v
2
Te−3/2), ω∗n =

−(kyTe/eB)(n′/n), FM = π−3/2n0v
−3
Te exp(−(v2

‖ + v2
⊥)/v2

Te) is the Maxwellian distribution

function, v2
Te = 2Te/me, Te is the electron temperature, and n0 is the background density.

The form for the magnetic drift used here is ω̄D = ωD(v2
‖/v

2
Te + v2

⊥/2v
2
Te), which represents

the combination of both ∇B and curvature drifts in the zero β limit.

The part of the distribution function proportional to ωD (ignoring terms of order ω2
D)



142

is

ge,ωD = −eFM
Te

(ω − ω̄∗T )ω̄D
(ω − k‖v‖)2

(
Φ−

v‖A‖

c

)
, (A.2)

and the ωD = 0 component is

ge,0 = −eFM
Te

ω − ω̄∗T
ω − k‖v‖

(
Φ−

v‖A‖

c

)
. (A.3)

A form for the parallel current (J‖,ωD = −e
∫
d3vv‖ge,ωD) may be determined from this

expression via a number of steps. First, the v⊥ dependence contained in ω̄∗T , ω̄D, and FM

can be removed analytically. What remains will then be written in terms of the derivatives

of the plasma dispersion function, Z ′ and Z ′′:

Z(s) = π−1/2

∫ ∞
−∞

dt
e−t

2

t− s
, (A.4)

Z ′(s) = π−1/2

∫ ∞
−∞

dt
e−t

2

(t− s)2
= −π−1/2

∫ ∞
−∞

dt
2t

t− s
e−t

2
, (A.5)

Z ′′(s) = π−1/2

∫ ∞
−∞

dt
2e−t

2

(t− s)3
. (A.6)

For the purpose of clarity, the curvature contribution to the parallel current will be

broken up into separate terms,

JωD‖ = JΦ
‖,ωD + J

A‖
‖,ωD , (A.7)

with

JΦ
‖,ωD =

n0e
2π−3/2

Te

2π

k2
‖vTe

∫ ∞
0

duu

∫ ∞
−∞

dvv

ωωD(v2 + u2/2)− (ω∗n + ω∗T (v2 + u2 − 3/2))ω̄D
(s− v)2

e−v
2−u2Φ

(A.8)

and

J
A‖
‖,ωD = −n0e

2π−3/2

Te

2π

k2
‖vTe

vTe
c

∫ ∞
0

duu

∫ ∞
−∞

dvv2

ωωD(v2 + u2/2)− (ω∗n + ω∗T (v2 + u2 − 3/2))ω̄D
(s− v)2

e−v
2−u2A‖ ,

(A.9)

where s = ω/(k‖vTe), v = v‖/vTe, and u = v⊥/vTe.
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For performing various of the integrals over velocity space, the following formulae will

also be useful: ∫ ∞
0

dxxe−x
2

=
1

2
,

∫ ∞
0

dxx3e−x
2

=
1

2
,

∫ ∞
0

dxx5e−x
2

= 1 (A.10)

and∫ ∞
−∞

dxx2e−x
2

=

√
π

2
,

∫ ∞
−∞

dxx3e−x
2

= 0,

∫ ∞
−∞

dxx4e−x
2

=
3
√
π

4
,

∫ ∞
−∞

dxx6e−x
2

=
15
√
π

8
.

(A.11)

First, we turn our attention to the JΦ
‖,ωD term (Eq. (A.8)). The first term in the

numerator will be designated by JΦ−1
‖,ωD and the second by JΦ−2

‖,ωD . Performing the the u

integral (to remove v⊥ dependence) yields

JΦ−1
‖,ωD =

n0e
2π−3/2

Te

2π

k2
‖vTe

∫ ∞
0

duu

∫ ∞
−∞

dvv
ωωD(v2 + u2/2)

(s− v)2
e−v

2−u2Φ

=
n0e

2π−3/2

Te

2π

k2
‖vTe

1

2

∫ ∞
−∞

dvv
ωωD(v2 + 1/2)

(s− v)2
e−v

2
Φ .

(A.12)

Doing the same with JΦ−2
‖,ωD yields

JΦ−2
‖,ωD =

n0e
2π−3/2

Te

2π

k2
‖vTe

∫ ∞
0

duu

∫ ∞
−∞

dvv

−(ω∗n + ω∗T (v2 + u2 − 3/2))ωD(v2 + u2/2)

(s− v)2
e−v

2−u2Φ

(A.13)

JΦ−2
‖,ωD =

n0e
2π−3/2

Te

2πωD
k2
‖vTe

∫ ∞
0

duu

∫ ∞
−∞

dvv

−v2(ω∗n + ω∗T (v2 + u2 − 3/2))− u2/2(ω∗n + ω∗T (v2 + u2 − 3/2))

(s− v)2
e−v

2−u2Φ

JΦ−2
‖,ωD =

n0e
2π−3/2

Te

2πωD
k2
‖vTe

1

2

∫ ∞
−∞

dvv
−v2(ω∗n + ω∗T (v2 − 1/2))− 1/2(ω∗n + ω∗T (v2 + 1/2))

(s− v)2
e−v

2
Φ

=
n0e

2π−3/2

Te

2πωD
k2
‖vTe

1

2

∫ ∞
−∞

dvv
−v2ω∗n − v4ω∗T − 1/2(ω∗n + ω∗T /2)

(s− v)2
e−v

2
Φ .

(A.14)

Now, we turn our attention to evaluating the J
A‖
‖,ωD term (Eq. (A.9)). The integral is

almost the same as the JΦ
‖,ωD term, but with an additional factor of −v(vTe/c). Again this
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expression is broken up into two parts, J
A‖−1

‖,ωD , given by

J
A‖−1

‖,ωD = −n0e
2π−3/2

Te

2π

k2
‖vTe

1

2

vTe
c

∫ ∞
−∞

dvv
ωωD(v3 + v/2)

(s− v)2
e−v

2
A‖ , (A.15)

and J
A‖−2

‖,ωD , given by

J
A‖−2

‖,ωD = −n0e
2π−3/2

Te

2πωD
k2
‖vTe

1

2

vTe
c

∫ ∞
−∞

dvv
−v3ω∗n − v5ω∗T − v/2(ω∗n + ω∗T /2)

(s− v)2
e−v

2
A‖

(A.16)

Putting all this together, and recognizing that n0e
2/Te = 2ω2

pe/(4πv
2
Te), gives the following

expressions:

JΦ
‖,ωD =

ω2
pe

4π

2π−1/2

k‖

1

v2
Te

ωD
k‖vTe

∫ ∞
−∞

dv

ω(v3 + v/2)− v3ω∗n − v5ω∗T − v/2(ω∗n + ω∗T /2)

(s− v)2
e−v

2
Φ

(A.17)

and

J
A‖
‖,ωD = −

ω2
pe

4π

2π−1/2

k‖

1

v2
Te

ωD
k‖vTe

vTe
c

∫ ∞
−∞

dv

ω(v4 + v2/2))− v4ω∗n − v6ω∗T − v2/2(ω∗n + ω∗T /2)

(s− v)2
e−v

2
A‖ .

(A.18)

To write in a slightly more compact way, and to compare with the ωD = 0 terms from

Ref. [58], these expressions will be rewritten in terms of Z ′(s) and Z ′′(s). These terms

are sufficiently complex so as to prevent a simple and obvious identification as forms of

derivatives of the plasma dispersion function. However, it is still possible to rewrite them

in this form using a more formal method.

Rewriting the parallel current

To rewrite the parallel current terms given above, recognize that these expressions all can

be written as a summation of integrals of the form∫ ∞
−∞

dv
αvn

(s− v)2
e−v

2
,
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where n is an integer and α indicates some coefficient independent of v (although through

k‖ it does have a dependency on s).

Integrals of this form can be rewritten in terms of Z ′(s) and Z ′′(s) using a series of

algebraic manipulations and integration by parts operations. This is done for polynomials

up to v6, with the steps written out explicitly for a few of the expressions as examples.

∫ ∞
−∞

dv
1

(s− v)2
e−v

2
= π1/2Z ′(s)

∫ ∞
−∞

dv
v

(s− v)2
e−v

2
= −π1/2Z ′′(s)/2

∫ ∞
−∞

dv
v2

(s− v)2
e−v

2
=

1

2

∫ ∞
−∞

dv

[
1

(s− v)2
+

2v

(s− v)3

]
e−v

2

= π1/2Z ′(s)/2 +

∫ ∞
−∞

dv
−(s− v) + s

(s− v)3
e−v

2

= π1/2Z ′(s)/2− π1/2Z ′(s)− π1/2sZ ′′(s)/2

= π1/2

(
−1

2
Z ′(s)− 1

2
sZ ′′(s)

)

∫ ∞
−∞

dv
v3

(s− v)2
e−v

2
=

1

2

∫ ∞
−∞

dv

[
2v

(s− v)2
+

2v2

(s− v)3

]
e−v

2

= −π1/2Z ′′(s)/2 +

∫ ∞
−∞

dv
−v(s− v)− s(s− v) + s2

(s− v)3
e−v

2

= −π1/2Z ′′(s)/2 + π1/2Z ′′(s)/2− sπ1/2Z ′(s)− s2π1/2Z ′′(s)/2

= π1/2

(
−sZ ′(s)− 1

2
s2Z ′′(s)

)

∫ ∞
−∞

dv
v4

(s− v)2
e−v

2
= π1/2

((
−1

4
− s2

)
Z ′(s) +

(
1

4
s− 1

2
s3

)
Z ′′(s)

)

∫ ∞
−∞

dv
v5

(s− v)2
e−v

2
= π1/2

((
−1

2
s− s3

)
Z ′(s) +

(
1

2
s2 − 1

2
s4

)
Z ′′(s)

)
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∫ ∞
−∞

dv
v6

(s− v)2
e−v

2
= π1/2

((
−3

8
− s4

)
Z ′(s) +

(
3

8
s+

3

4
s3 − 1

2
s5

)
Z ′′(s)

)
With these expressions we can now express JΦ

‖,ωD and J
A‖
‖,ωD in terms of derivatives of

Z(s).

The Φ component of the magnetic-drift-driven parallel current (Eq. (A.17)) becomes

JΦ
‖,ωD =

ω2
pe

4π

2

k‖

1

v2
Te

s
ωD
ω

[(
s3ω∗T − s

(
ω − ω∗n −

1

2
ω∗T

))
Z ′(s)

+

(
1

2
s4ω∗T −

1

2
s2 (ω − ω∗n + ω∗T )− 1

4

(
ω − ω∗n −

1

2
ω∗T

))
Z ′′(s)

]
Φ ,

(A.19)

while the A‖ component (Eq. (A.18)) becomes,

J
A‖
‖,ωD = − 1

ω

ω2
pe

4π

2

v2
Te

v2
Te

c

ωD
ω
A‖s

2

[(
s4ω∗T − s2 (ω − ω∗n)− 1

2
(ω − ω∗n − ω∗T )

)
Z ′(s)

+

(
1

2
s5ω∗T −

1

2
s3

(
ω − ω∗n +

3

2
ω∗T

)
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Quasineutrality

It will also be necessary to have a relationship between Φ and A‖. This comes from the

quasineutrality equation, which is given as

n0e
2Φ

Te
(1 + τ) = e

∫
d3vge , (A.21)

where ge is the non-adiabatic part of the distribution function (Eq. (A.1)) and where n0 is

the background plasma density and τ = Te/Ti. Ions are assumed to be adiabatic, so that

gi = 0 and fi = − eΦ
Ti
fM .

As before, an expansion is performed, and this is broken up into ωD and ωD = 0

terms. After performing the v⊥ integral, the non-magnetic-drift term becomes (coming

from integrating Eq. (A.3))
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(A.22)
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Separating this into the Φ and A‖ components and writing in terms of Z ′ and Z ′′ yields
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and

e

∫
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As before, the curvature contributions can be broken up into Φ and A‖ components.

The derivation of these terms proceeds in a similar manner to that of the parallel current,

with the integrands differing by a factor of (−v‖). The result of this for gΦ
e,ωD

is

e
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and for g
A‖
e,ωD this is
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Schematically, the form that Φ takes is

Φ ∼
∫
g
A‖
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g
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Combining all terms and solving for Φ, we arrive at the following expression,
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where all frequencies are normalized to ω∗n, so that ·̂ ≡ ·/ω∗n and η ≡ ω∗T /ω∗n.

The parallel current terms derived before are restated here with the same normalization:
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and
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Eqs. (A.27), (A.28), and (A.29) provide the basis for important results derived in Ch. 6.
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