
KINETIC MODELING AND LOWER HYBRID CURRENT DRIVE IN THE REVERSED

FIELD PINCH

by

David R. Burke

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Physics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2010



c� Copyright by David R. Burke 2010

All Rights Reserved



i

ACKNOWLEDGMENTS

This work would not have been accomplished without many contributions from a number of

different people, whose support and help made this work possible. I would like to thank all the

graduate students and staff on MST, specifically Matt Miller, and Hilary Stephens for friendly

conversation, and help on various little scientific matters throughout my graduate career. Likewise,

thanks to John Sarff, and Karsten McCollum and Bill Zimmerman for their input and ideas.

Thanks to Charlie Freeman for sparking my interest in Physics at an advanced level. Thanks

also to Ed Pogozelski, Savi Iyer, David Meisel and Charles Fletcher for nurturing that spark.

Thanks to my plasma professors, Carl Sovinec, Chris Hegna, and David Anderson. I will proudly

say that UW Madison has the best academic plasma curriculum of any school, and credit for that

belongs completely to the talented and dedicated professors, who should also be thanked for many

fruitful discussions long after their classroom obligation to me had ended.

Many thanks to Josh Reusch for G-S reconstructions, and for listening to and discussing many

random crazy ideas, some without merit, some with merit, none dismissed.

Thanks to Bob Harvey for his authorship and help with CQL3D. Thanks to Jay Anderson, for

thoughtful conversations and indulging a few flights of fancy. Thanks to Rob O’Connell for his

help getting me started on CQL3D. I only wish that I had known then what I know now. Thanks

to Abdulgader Almagri, for time, his help and advice, as well as his friendship. All have proven

equally invaluable. Thanks to my compatriots Mike Kaufman and Dan Clayton for many discus-

sions both productive and otherwise.

Thanks to John Kulpin, for all his expertise, twinged with exasperation. Your care and precision

were important to the success of the lower hybrid project. Look on the bright side!



ii

Thanks to John Goetz, who guided me and watched my transformation from an optimist that

saw evidence of current drive in everything to the dreary pessimist I am today. Have a victory snap,

buddy.

Thanks to Cary Forest, my advisor, a man whose creativity is matched only by his exuberance

and enthusiasm. I have rarely met someone who was simultaneously so well versed in a topic and

yet so open to new ideas.

Finally, and most importantly, thanks to my lovely and talented wife Bonita, without whom

this thesis would never have been completed. You are the best thing that has ever happened to me,

and I can’t wait for us to begin our lives together.



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation for Fusion Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Physics of Fully Ionized Gases . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Plasmas and Magnetic Confinement . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Ideal Magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Grad-Shafranov Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Stability in the RFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 RFP Profiles and Confinement . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.6 Plasma rf experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.7 Electron Bremsstrahlung . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Theory of Lower Hybrid Current Drive on MST . . . . . . . . . . . . . . . . . . . 14
1.3.1 Landau Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Quasilinear absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.4 Inductive effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.5 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.4 Wave coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5 Non-Local Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.6 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 The Madison Symmetric Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.1 Operational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



iv

Page

2.1.2 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.1.3 Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.4 X-ray Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2 The Lower Hybrid System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.1 Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.2 The Interdigital Traveling Wave Lower Hybrid Antenna . . . . . . . . . . 74

3 Kinetic Simulations and Radial Transport in the RFP discharges . . . . . . . . . . 86

3.1 CQL3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.1.1 Radial Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.1.2 Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 Fast Electrons in RFP discharges . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3 Methods of Experimental verification of Fokker-Planck predictions . . . . . . . . . 96

3.3.1 Model X-ray flux predictions . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3.2 Data Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.3.3 Stimulated Bremsstrahlung Emission . . . . . . . . . . . . . . . . . . . . 102

3.4 Inductively stabilized (PPCD) plasmas . . . . . . . . . . . . . . . . . . . . . . . . 105
3.5 Standard plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.5.1 Diffusive effects in Ohm’s law . . . . . . . . . . . . . . . . . . . . . . . . 108
3.5.2 Enhanced Confinement Plasmas . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.3 Models of standard plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Lower Hybrid Modeling and Experiments on the MST . . . . . . . . . . . . . . . . 122

4.1 Wave Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1.1 GENRAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.1.2 The Real LH Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.1.3 Antennas for full stabilization experiments . . . . . . . . . . . . . . . . . 129

4.2 Wave absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2.1 Zeffective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.2 Radial Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.3 Broad Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.2.4 Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2.5 Fast Electron Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3 Evidence of LH current drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.4 Current Drive for Full Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.5 Alternative Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.5.1 The intermediate system . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.5.2 The Non-inductive RFP . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



v

Page

5 Coupling Power to Improved Confinement Discharges . . . . . . . . . . . . . . . . 167

5.1 Coupling to the slow mode in MST plasmas . . . . . . . . . . . . . . . . . . . . . 167
5.1.1 Density Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.1.2 Fast-Slow Cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2 Coupling to Improved Confinement Plasmas . . . . . . . . . . . . . . . . . . . . . 174
5.3 Localized Gas Puffing Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 178

6 In Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.1 Review and discussion of original work . . . . . . . . . . . . . . . . . . . . . . . 183
6.1.1 Introductory Material (Chapters 1 and 2) . . . . . . . . . . . . . . . . . . 183
6.1.2 Kinetic Modeling (Chapter 3) . . . . . . . . . . . . . . . . . . . . . . . . 184
6.1.3 Lower Hybrid Current Drive experiments and modeling (Chapter 4) . . . . 185
6.1.4 Gas Puffing to control power coupling (Chapter 5) . . . . . . . . . . . . . 187

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

APPENDICES

Appendix A: Derivation of the relativistic target probe formula . . . . . . . . . . . . . 199
Appendix B: Assumptions about field lines . . . . . . . . . . . . . . . . . . . . . . . 200
Appendix C: The Cold Plasma Model . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Appendix D: Electrostatic Dispersion Relation . . . . . . . . . . . . . . . . . . . . . 208
Appendix E: The raytracing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Appendix F: Lower Hybrid coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Appendix G: Some key error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 216



vi

LIST OF TABLES

Table Page

1.1 Ideal MHD Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 MST Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Comparison of waveguide spectra to interdigital spectra . . . . . . . . . . . . . . . . 77

2.3 Power Loss fraction, Bench measurements . . . . . . . . . . . . . . . . . . . . . . . 82

4.1 Power requirements for stabilizing current drive . . . . . . . . . . . . . . . . . . . . . 152

4.2 Experimental efficiency for various machines compared to MST . . . . . . . . . . . . 153

4.3 Parameters for an LH upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1 Slopes for Linear scaling relationship, LH in PPCD. . . . . . . . . . . . . . . . . . . 186



vii

LIST OF FIGURES

Figure Page

1.1 Binding Energy per nucleon for common isotopes . . . . . . . . . . . . . . . . . . . . 3

1.2 Magnetic Shear in the RFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Model RFP Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Stochasticity in RFP Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Approximate Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Scaling of Landau Damping parameter with thermal velocity . . . . . . . . . . . . . . 17

1.7 Types of motion which give rise to Cold Plasma waves . . . . . . . . . . . . . . . . . 19

1.8 Cold Plasma Dispersion Relation regions for MST-like Parameters . . . . . . . . . . . 23

1.9 Cold Plasma Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.10 Stratified Slab results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.11 Poloidal Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.12 Simple 1-D distribution function for Quasilinear current drive . . . . . . . . . . . . . 33

1.13 Amperian Loop for Inductance Calculation . . . . . . . . . . . . . . . . . . . . . . . 36

1.14 400 kA Standard plasma cutoff diagram and outward propagation results . . . . . . . 41

1.15 Multiseptum Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1.16 Cartoon of antenna coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.17 Impact of the diffusive Ohm’s law, Martines model . . . . . . . . . . . . . . . . . . . 50



viii

Figure Page

2.1 Madison Symmetric Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Profiles from a standard discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3 Profiles from a PPCD discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Profiles from an EC discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5 FIR Chords on MST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 Thomson Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.7 Thomson Scattering diagnostic viewing chords . . . . . . . . . . . . . . . . . . . . . 61

2.8 X-ray detector setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.9 Hard X-ray detectors in place on a boxport flange . . . . . . . . . . . . . . . . . . . . 65

2.10 Raw Soft X-ray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.11 MST LH Power System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.12 Schematic of a Klystron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.13 Klystron Operational Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.14 Lower Hybrid Transmission System . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.15 Slow Wave antenna structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.16 Spectra for various antenna types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.17 Schematic sketch of Phase electronics . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.18 Vacuum Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.19 Spectra with damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.20 Predictions of the 0-D measurement model . . . . . . . . . . . . . . . . . . . . . . . 85

3.1 Sample CQL3D velocity grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Flow Chart for CQL3D constant electric field mode . . . . . . . . . . . . . . . . . . . 91



ix

Figure Page

3.3 Flow Chart for CQL3D constant current mode . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Consistency between Constant Current Mode and Constant Electric Field Mode . . . . 94

3.5 Runaway electron Populations versus field strength . . . . . . . . . . . . . . . . . . . 95

3.6 Generation of a Runaway Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Schematic of X-ray Target Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.8 X-ray flux across multiple chords in a PPCD discharge . . . . . . . . . . . . . . . . . 106

3.9 Parallel Electric field and Current Profile, Standard Plasmas . . . . . . . . . . . . . . 107

3.10 Diffusion acting on a delta function electric field . . . . . . . . . . . . . . . . . . . . 109

3.11 Diffusive Ohm’s law, CQL3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.12 Effect of stochastic diffusion on the distribution function . . . . . . . . . . . . . . . . 112

3.13 Specific current density showing the impact of stochastic diffusion . . . . . . . . . . . 113

3.14 Parallel Current profile Evolution during EC Periods . . . . . . . . . . . . . . . . . . 115

3.15 Stochastic model of EC plasmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.16 Comparison of standard plasma models with measured X-ray Spectra and current profile119

3.17 X-ray spectrum from Target Probe in standard plasmas at ρ = 0.9 . . . . . . . . . . . 121

4.1 Sample GENRAY launch spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.2 Wave Trajectory - Standard Plasma, Real Antenna . . . . . . . . . . . . . . . . . . . 125

4.3 Wave Propagation Diagrams - Standard Plasma, Real Antenna . . . . . . . . . . . . . 126

4.4 Conversion between the slow and fast mode for Standard plasmas . . . . . . . . . . . 128

4.5 Wave Propagation diagrams, optimized antennas . . . . . . . . . . . . . . . . . . . . 131

4.6 Distribution Function Flattening from CQL3D . . . . . . . . . . . . . . . . . . . . . . 133

4.7 Current Drive Degradation Due to Zeff . . . . . . . . . . . . . . . . . . . . . . . . . 135



x

Figure Page

4.8 The Effect of Diffusion on current drive . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.9 Impact of Stochastic diffusion on rf driven current . . . . . . . . . . . . . . . . . . . 137

4.10 Scaling of current drive peak versus Diffusion . . . . . . . . . . . . . . . . . . . . . . 138

4.11 Effects of spectral broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.12 Current Amplification due to applied electric field . . . . . . . . . . . . . . . . . . . . 140

4.13 Fast Electron Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.14 Effect of Fast Electron Routing on Current . . . . . . . . . . . . . . . . . . . . . . . 142

4.15 Toroidal current driven in standard plasmas . . . . . . . . . . . . . . . . . . . . . . . 144

4.16 Predicted x-ray flux during PPCD discharges . . . . . . . . . . . . . . . . . . . . . . 145

4.17 Flux increase due to LH in PPCD plasmas . . . . . . . . . . . . . . . . . . . . . . . . 146

4.18 X-ray spectra for EC plasmas, with and without rf . . . . . . . . . . . . . . . . . . . 147

4.19 X-ray flux during EC periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.20 X-ray spectrum for standard discharges with lower hybrid . . . . . . . . . . . . . . . 158

4.21 Comparison of x-ray spectra with different models of standard plasmas, LH on . . . . 158

4.22 Lower Hybrid Associated Target Probe flux versus radial-like coordinate . . . . . . . 159

4.23 Estimated Current required for stabilization . . . . . . . . . . . . . . . . . . . . . . . 160

4.24 Full stabilizing current Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.25 Scaling of peak current with input power . . . . . . . . . . . . . . . . . . . . . . . . 161

4.26 A Possible LH upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.27 Wave propagation diagrams, upgrade system . . . . . . . . . . . . . . . . . . . . . . 163

4.28 X-ray flux and current drive, hypothetical upgrade system . . . . . . . . . . . . . . . 164

4.29 Stochastic Transport for non-inductive current drive . . . . . . . . . . . . . . . . . . . 164



xi

Figure Page

4.30 Propagation of a core damping fast wave . . . . . . . . . . . . . . . . . . . . . . . . 165

4.31 Deposition of fast wave current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.1 Scaling of coupled power with electron density . . . . . . . . . . . . . . . . . . . . . 168

5.2 Coupled power fraction, simple model . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.3 Coupled power fraction versus vacuum gap length, Golant model . . . . . . . . . . . 171

5.4 Simple F-S reflection model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5 The effects of the Fast-Slow cutoff on antenna coupling . . . . . . . . . . . . . . . . . 173

5.6 Coupling during PPCD periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.7 Coupling during EC periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.8 Edge Density Profiles for MST plasmas . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.9 Effects of gas puffing on coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.10 Mode activity during PPCD with doping . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.11 Effects of doping during EC periods . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D.1 Perpendicular wave number for the slow wave . . . . . . . . . . . . . . . . . . . . . . 210



xii

NOMENCLATURE

qα Electric charge of a single particle of species alpha

nα Number density of a species alpha

mα Mass of a single particle of species alpha

Bt Toroidal Magnetic Field

Bp Poloidal Magnetic Field

vthα

�
nkT/m, most probable speed of a particle in a maxwellian. For a magnetized

plasma n = 2.



KINETIC MODELING AND LOWER HYBRID CURRENT DRIVE IN THE REVERSED

FIELD PINCH

David R. Burke

Under the supervision of Professor Cary B. Forest

At the University of Wisconsin-Madison

The reversed-field pinch (RFP) magnetic confinement device has been shown to be susceptible to

tearing fluctuations, which lead to the growth of magnetic islands. When these islands overlap,

magnetic field lines reconnect, and wander stochastically from the core of the RFP to the edge.

This stochastic field line wandering decreases energy confinement as hot particles from the plasma

core follow the magnetic field lines to the cold edge. Tearing fluctuations can be stabilized by

localized current drive. Lower hybrid wave injection is proposed as a source of this current. Kinetic

modeling is employed to make predictions about lower hybrid wave absorption an associated x-

ray emission. The strengths and weaknesses of the model used are first explored by applying it

to non-rf RFP discharges. The model is shown to provide good results for inductively stabilized

plasmas, and a certain subclass of plasmas with stochastic field lines, but it is found to be somewhat

deficient for typical discharges. Scaling relationships between current density and injected power

are presented, including the effects of a background electric field and radial transport. Stochastic

plasmas are shown to be unable to support a sufficiently localized current profile. Inductively

stabilized plasmas do provide sufficient confinement, however antenna coupling is not efficient.

Low power operations of a lower hybrid antenna are in good agreement with model predictions,

and a bremsstrahlung target probe is used to prove that a significant population of electrons is being

generated within the plasma. Finally, methods of improving coupling between the antenna and the

plasma are developed, studied and described. It is shown that the reduction in coupling associated

with improved confinement plasmas can be mitigated by edge fueling.

Cary B. Forest



xiii

ABSTRACT

The reversed-field pinch (RFP) magnetic confinement device has been shown to be susceptible to

tearing fluctuations, which lead to the growth of magnetic islands. When these islands overlap,

magnetic field lines reconnect, and wander stochastically from the core of the RFP to the edge.

This stochastic field line wandering decreases energy confinement as hot particles from the plasma
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are presented, including the effects of a background electric field and radial transport. Stochastic

plasmas are shown to be unable to support a sufficiently localized current profile. Inductively

stabilized plasmas do provide sufficient confinement, however antenna coupling is not efficient.

Low power operations of a lower hybrid antenna are in good agreement with model predictions,

and a bremsstrahlung target probe is used to prove that a significant population of electrons is being

generated within the plasma. Finally, methods of improving coupling between the antenna and the

plasma are developed, studied and described. It is shown that the reduction in coupling associated

with improved confinement plasmas can be mitigated by edge fueling.
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Chapter 1

Introduction

The reversed field pinch (RFP) magnetic confinement device has been proposed as a potential

fusion reactor for generating electric power. The RFP has many advantages over other proposed

magnetic fusion designs, particularly its lower applied magnetic field. A lower magnetic field can

be generated by less expensive and less sophisticated magnets, which are cheaper. It is feasible

that copper can be used to generate the required field rather than superconducting magnets, which

are vulnerable to damage by the high energy neutrons created by fusion reactions. The RFP is

susceptible to large scale tearing fluctuations however, which lead to dramatically increased trans-

port from the hot dense core to the cold plasma edge. These tearing modes are found to be driven

by the gradient in the parallel current profile. Therefore, localized current drive is proposed as a

means of stabilizing these modes. In the past, rf waves have been used to drive current in tokamak

plasmas. The lower hybrid slow mode in particular has been observed to create a fairly localized

region of current deposition. This is proposed as a means of stabilizing RFP tearing modes. The

current work focuses on the feasibility of this scheme, and compares the predictions of theoretical

models to experimental data.

1.1 Motivation for Fusion Experiments

Energy expenditure is directly related to standard of living in modern industrialized nations.

Currently, energy production around the world relies primarily on non-renewable resources, par-

ticularly hydrocarbon fuels such as gas, coal and oil. These are undesirable because of their limited

supply and their potential effect on health and the environment. Many alternative energy sources
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have been proposed such as solar and wind power. Unfortunately, both solar panels and wind tur-

bines are energy intensive to construct and subsequently dispose of, and both technologies serve

under the caprices of inconsistent fuels. A cloudy, windless day leaves these sources of power

silent. Moreover, the most efficient locations for power generation (broad uninterrupted hills and

deserts) are physically remote from the primary consumers of electric power, namely dense ur-

ban and industrial areas. Nuclear power is suggested to supplement these other technologies and

provide base load power consistently and efficiently.

The heart of nuclear fuel cycles is the strong nuclear force and the binding energy of nuclei. The

strong force binds protons and neutrons together. The magnitude of the strong force far exceeds

that of electric (Coulomb) repulsion. Unlike the Coulomb force, the strong nuclear force is very

short ranged, and so does not extend beyond the nucleus of an atom. Just as electrons exist in

discrete energy levels around nuclei, nucleons (that is protons and neutrons), bound together by

the strong force, exist in distinct energy levels within a nucleus. Because these levels are created

by an attraction due to the strong force (as opposed to the electromagnetic force), they are much

higher energy then the levels of a bound electron. The energy required to break up a nucleus is

called the binding energy. This is identical to the amount of energy liberated when a nucleus is

assembled. The key insight of nuclear fuel is gained by examining the amount of binding energy

per nucleon for various isotopes of common elements (Figure 1.1). The particles at the peak of

this graph are described as tightly bound, because it takes a larger energy input to liberate a single

nucleon than for elements away from this peak.

For a large nucleus (like Uranium or Thorium), the total nuclear binding energy is less than the

energy of two smaller nuclei. For instance, 238U has a binding energy of about 7.6 MeV/nucleon

(a total of about -1.8 GeV). If one were to split the nucleus exactly in half, it would produce two

nuclei with 119 nucleons each (for example Palladium 119), at around 8.5 MeV/nucleon, for a

total of 2 × (−1.016 GeV) = −2.03 GeV. This extra 200 MeV of energy will be released as

either kinetic energy, electrons, neutrons or γ-rays, depending on the specifics of the reaction. On

the small nucleus side of the plot, we see that energy can be liberated by creating larger nuclei.

Importantly, a good deal more energy is created per nucleon. Progressing from small elements
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Figure 1.1: Binding Energy per nucleon for common isotopes

to larger elements is called fusion (as particles are being “fused” together) and progressing from

larger to smaller elements is called fission.

While it is a well developed technology and satisfactory in the short term, fission is ultimately

unattractive due to weapons proliferation concerns. As the standard of living in the developing

world improves, energy demands will increase, and creating a network of fission power plants in

less developed countries presents a latent threat to national security. Fusion on the other hand is

somewhat resilient against this concern. Although fusion weapons certainly exist, ignition is only

achieved by the use of fission based weaponry, thus making possession of highly enriched uranium

or plutonium a prerequisite for constructing a fusion based weapon. Controlling the proliferation of

these elements is a much easier task if they are not required in power plant operations. Proliferation

of tritium and activated materials from fusion plants is somewhat of a concern, but not as serious as

the proliferation of uranium and plutonium. A second advantage is that the basic fuel of the most

accessible fusion reaction is a combination of deuterium (2H, usually referred to as D) and tritium

(3H, referred to as T). Deuterium is readily available in the form of heavy water, as it accounts

for 0.015% of all naturally occurring hydrogen [1], and tritium can be bred from abundant (albeit
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industrially useful) lithium. Additionally, the byproduct of a D + T fusion reaction is helium (this

is in fact why helium is naturally abundant in the sun, giving rise to its name), a very stable and

nonreactive element, as opposed to cesium, rubidium and a whole host of other toxic, radioactive

and/or violently reactive elements produced by fission [2].

In order to harness fusion power on a large scale, the electromagnetic repulsion between nuclear

protons must be overcome, either in large quantities, for long amounts of time, or (preferably) both.

The sun satisfies both of these requirements by its gravitational force, which is strong enough to

hold an ionized hydrogen cloud together and cause a portion of it to heat to temperatures where

the thermal (kinetic) energy can overcome electric repulsion. The two major methods of achieving

fusion reactions on Earth are called inertial confinement and magnetic confinement. In inertial

confinement experiments, deuterium is “shocked” by applying a high powered pulse (usually by

firing a laser or directing x-ray radiation) to a solid target, creating a short lived but dense and

high temperature plasma. Here, the term confinement refers to being held together long enough to

undergo a fusion reaction, as this situation is not long lived due to the intense pressures involved,

and the limited application of external force. This scheme is inherently pulsed, and will not be dealt

with further in this work. The second and arguably more promising scheme for power generation

is to heat a large population of deuterium and tritium nuclei to the point where the thermal energy

can overcome the Coulomb repulsion as in the sun (hence it is described as “thermonuclear”).

1.2 The Physics of Fully Ionized Gases

1.2.1 Plasmas and Magnetic Confinement

The temperatures required for thermonuclear energy production are much higher than the ion-

ization energy of hydrogen. Thus, hydrogen atoms in a reactor quickly dissociate into their con-

stituent ions and electrons. When a large population of hydrogen atoms is heated to these temper-

atures (on the order of 10 keV ≈ 100 million Kelvin1), the thermal motion of electrons and ions
1It is found to be far more convenient to use units of energy to represent the temperatures of plasma species (i.e. ions

or electrons). The conversion is accomplished by simply applying the Boltzmann constant, k = 8.617× 10−5 eV/K,
i.e. TeV = kTK
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is so great that recombination into hydrogen atoms is not energetically favorable, precisely in the

same way that a sufficiently fast moving asteroid is not bound into orbit by the gravitational pull

of the Earth. A soup of freely streaming, dissociated electrons and ions forms, which is called

a plasma. Because these particles are both charged and fast moving, a plasma generates and is

affected by electric and magnetic fields. Due to the extreme heat, it is necessary to isolate these

particles from its surroundings. A natural way to contain such a plasma is by applying a large

magnetic field. Charged particle motion in a magnetic field is dictated by the Lorentz force, specif-

ically Fm = qv × B, where q is the particle charge, v is the velocity and B is the magnetic field.

As a consequence of the cross product, this force is perpendicular to the particle motion and the

magnetic field. Therefore, motion parallel to the magnetic field is unrestricted, and the particle is

forced to undergo a circular orbit around the magnetic field direction. This type of motion is called

“cyclotron motion”. In deference to the importance of this effect, plasma dynamics are usually

divided into two directions: “parallel”, along the field and “perpendicular”, around the field (this

convention will be used throughout this work). Cyclotron motion typically occurs at a very high

frequency (ωcα = qαB/mα,O ∼ GHz for electrons, O ∼ MHz for ions, where qα is the charge of

the particle B is the magnetic field magnitude and mα is the particle mass) and very small length

scales (rcycα = v⊥/ωcα, O (re) ≈ 0.1 mm, O (ri) ≈ 1 cm, where v⊥ is the velocity perpendicular

to the field direction), though these values vary considerably with B and T (the temperature). Be-

cause the particles restricted in this way carry their own charge however, redirecting their motion

alters the total magnetic field. All of the fundamental challenges in plasma physics arise from the

complex interchange of externally applied and internally generated fields. Particles are still free to

move parallel to the magnetic field, and so field lines are often formed into closed circles or nested

helices. Because of this restriction, fusion reactors are typical bent around to form a torus.

1.2.2 Ideal Magnetohydrodynamics

The most highly developed and simplest effective model of plasma dynamics is ideal magneto-

hydrodynamics (MHD). The core conceptual basis of the model is derived by considering a plasma

as a single perfectly conducting fluid. Whereas a true laboratory plasma consists of upwards of
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dρ/dt = −ρ∇ · v Continuity equation

ρ (dv/dt)
⊥

= J×B−∇⊥p Force balance (perpendicular direction)

ρ (dv/dt)
�

= −b̂ · ∇p Force balance (parallel direction)

dp/dt = −γp∇ · v Adiabatic Compression

E + v ×B = 0 Ohm’s Law

∇× E = −∂B/∂t Faraday’s Law

∇×B = µ0J Ampere’s Law (non-relativistic)

∇ ·B = 0 Magnetic Divergence Constraint

Table 1.1: The 14 ideal MHD equations listed with the equation from which they are derived.

10
21 particles of various energy, charge and mass, ideal MHD abstracts these to a single mass den-

sity (ρ), net fluid velocity (v), and pressure (p). Because the various species can have different net

velocities and charges, there is a non-zero net current density (J), which gives rise to and interact

with electromagnetic fields E and B. Charge density is assumed to be zero. This is easily justified,

because if there is charge separation within the plasma, a very large electric field will quickly de-

velop, and relatively light, easily moved electrons will be attracted or repelled very quickly in order

to cancel it out (this attribute of plasmas is called “quasineutrality”). This allows us to derive the

14 coupled ideal MHD equations [3] (given in Table 1.1), which are essentially derived from force

balance, the continuity equation, momentum and energy conservation and Maxwell’s Equations in

the non-relativistic limit.

1.2.3 Grad-Shafranov Equilibrium

A simple model used to describe plasma equilibria can now be derived. This is accomplished

by taking the MHD equations and setting the time derivatives to zero. Further, it is assumed inertia

and stress are negligible. A cylindrical coordinate system is used, such that the axial dimension is

aligned with the hole in the center of the torus. Symmetry is assumed in the angular (“toroidal”, φ)

direction (this is called “axisymmetry”). What remains is a 2-dimensional slice of the total toroidal
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plasma. A stream function, ψ, is the then derived for the magnetic field in this plane such that

BR = − 1

R

∂ψ

∂Z
BZ =

1

R

∂ψ

∂R
(1.1)

where R is the major radial dimension, pointing out from the center of the torus, and Z is the ver-

tical dimension. The ideal MHD equations then provide a nonlinear elliptical differential equation

for ψ, called the Grad-Shafranov equation.

∆
∗
ψ = −µ0R

2 dp

dψ
− F

dF

dψ
(1.2)

where F = RBφ, p is pressure, and

∆
∗
ψ ≡ R

∂

∂R

�
1

R

∂ψ

∂R

�
+

∂
2
ψ

∂Z2
. (1.3)

Because ψ is related to magnetic flux, magnetic field lines in the plasma are constrained to a

surface with a single value of ψ, called a flux surface. Various profiles of F and p that satisfy this

equation define the different common machine types, with two notable examples being the called

the tokamak and the reversed field pinch. A somewhat heuristic understanding of the difference

between these two configurations can be gleaned by analyzing the stability properties of the one

dimensional simplification of an MHD equilibrium, called the screw pinch.

1.2.4 Stability in the RFP

A screw pinch is a theoretical model for one dimensional plasma equilibrium. The theoretical

screw pinch is a periodic or infinite cylinder, with a magnetic field that has both an angular and

an axial component (but no radial component). The current density J is also allowed to have

angular and axial components. Sources for instability in a screw pinch are the current gradient

and the pressure gradient. A necessary (though not sufficient) stability condition for screw pinches

(including tokamaks and RFPs) is given by the Suydam Criterion, [3]

rB
2
z

µ0

�
q
�

q

�2

+ 8p
�
> 0 (1.4)

Suydam’s Criterion is derived by applying an energy principle to a cylindrical plasma column
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Figure 1.2: A cartoon of the magnetic field pitch in an RFP. Field pitch is seen to reverse direction

at about 80% of the minor radius forming what is called the reversal surface.

with axial and azimuthal symmetry. Perturbations are then assumed to have a small radial extent.

If a configuration does not satisfy this criterion, it will not be stable. Examining this restriction,

we see that the first term is positive definite (bringing the value farther above zero, and therefore

stabilizing), because radius is defined to only be positive, µ0 is a fixed positive number, and the

other terms are squared. The second term on the other hand is typically negative (destabilizing),

because the pressure is generally highest in the hot dense core, and low at the edge because the

edge temperature must be low enough to not damage the experimental vessel. Therefore a stable

screw-pinch type equilibrium will maximize the first term in order to mitigate the second term.

Here q is defined as

q =
B · ∇φ̂

B · ∇θ̂
≈ rBt

RBp

and is called the MHD safety factor because of its role in stabilizing instabilities. Unlike the

tokamak, which achieves stability through its high toroidal field (Bt), the RFP is stabilized by

its high relative safety factor gradient q
�
/q, usually called magnetic shear. This is achieved by

inducing a toroidal field on the order of the poloidal field. As the RFP plasma evolves, the toroidal

field is observed to pinch inward, reversing direction at the edge, creating a shear profile that is

largest near the largest pressure gradient. This is illustrated in Figure 1.2. Thus an RFP is capable
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Figure 1.3: A comparison of some models for the magnetic field in an RFP. The parameters for

this plot are F = −0.2 and Θ = 1.69 which are typical operating parameters in MST. The

MPFM model can be shown to be significantly more accurate, particularly in the edge of

the plasma, where pressure gradient effects are the largest.

of satisfying Eq. 1.4 for a given pressure gradient with a smaller field than a tokamak. This makes

the RFP an attractive candidate as a fusion reactor, as the powerful field coils required to drive the

high fields of the tokamak are expensive and (if superconducting) vulnerable to damage induced

by the high neutron flux of a fusion reactor.

1.2.5 RFP Profiles and Confinement

RFP research was first motivated by results of the ZETA device, [4] a toroidal pinch located in

the United Kingdom. In some discharges of this device, a long, quiet, stable period was observed.

Many years later Taylor developed a theory [5] of self stabilization in these plasmas. Taylor’s

theory predicts that there exists a natural minimum energy state in which the magnetic field can be

described completely by

∇×B = µB (1.5)

where µ is a constant. This leads to the solution (assuming a cylinder)

Bz = B0J0(µr) Bθ = B0J1(µr), (1.6)
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thus the toroidal field will reverse direction if µa > k0, where k0 ≈ 2.404 is the argument of the

first zero of the Bessel function. Several other models for plasma equilibria exist, for instance the

Modified Polynomial function model, which attempts to account for pressure gradients (magnetic

fields from these two models are plotted in Figure 1.3). The plasma equilibrium is completely

characterized by two parameters, called pinch and reversal. The plasma reversal parameter (F ) is

the ratio of the edge toroidal field to the toroidal field averaged over the circular cross section. The

pinch parameter (Θ) is the ratio of the edge poloidal field to the cross section averaged toroidal

field. These two parameters constrain the equilibrium magnetic field and the current density pro-

files, normalized to the core toroidal field. Magnetic profiles accounting for the toroidicity in

experiment can be calculated by numerically solving the Grad-Shafranov equation. [3, 6]

The unique magnetic shear of the RFP gives rise to many interesting phenomenon. Ideal MHD

theory states that the most unstable surfaces in a toroidal confinement device will be surfaces where

the safety factor is a rational number, usually represented as q = m/n. Since the safety factor of

the RFP goes through zero, there are infinitely many m = 0 and m = 1 rational surfaces in an RFP

discharge, which are susceptible to tearing fluctuations. These fluctuations lead to the growth of

magnetic islands which grow until their width is comparable to the distance separating them. Since

magnetic field lines are initially confined to the surface of these islands, when the islands expand

to the point where they come nearly into contact, the field lines must reform in such a way as to

preserve the zero divergence of the magnetic field. The reformed field lines wander radially in a

stochastic, random-walk fashion, increasing heat transport from the core to the edge and degrading

confinement. [7] This is shown in Figure 1.4. This image was generated by taking magnetic fields

from a cylindrical MHD code (DEBS) [8] and following the field lines. Note, this should not be

considered hard data because the interpolation is not divergence free, and is being interpolated as

though the field geometry were toroidal when in fact DEBS makes a periodic cylinder assumption.

This stochasticity limits the ability of the Ohmic field to heat the plasma as hot core particles

are rapidly exchanged with cold edge particles. MHD simulations [9] indicate that the tearing

fluctuation magnitude can be mitigated by flattening the current profile near the reversal surface,

where a large number of m = 0 surfaces overlap. This is predicted to reduce stochasticity, thereby
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Figure 1.4: These two images show the effects of stochastic field line wandering. The first image is

the ideal (fluctuation free field), a set of nested toroidal helices. The second plot shows the

distortion caused by tearing modes and reconnection. Line coloration in the second image

is based on the origin of the field line, and coincides with the coloration in the first image.

Note change in radius, particularly for the orange, blue and green field lines.
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lowering particle diffusion and improving particle confinement, leading to increased temperatures

in the core. Experimentally, this has been realized by inducing an additional poloidal electric

field in the plasma with an ancillary external circuit. This pulsed poloidal current drive (PPCD)

technique has demonstrated improved confinement coupled with core heating and increased plasma

β. [10] These plasmas are also observed to have a reduced “MHD dynamo”, an MHD phenomenon

associated with large magnetic fluctuations. [11] Unfortunately, this current is driven inductively

and so is inherently pulsed. A major focus of present RFP research is sustained current drive. Rf

waves have a long history of use in other plasma devices, and have been exploited to drive radially

localized current, and so they are proposed as a scheme to provide this stabilizing current.

1.2.6 Plasma rf experiments

Wave interactions within plasmas have been of absorbing interest since the first plasma devices

[12]. In 1965, T. H. Stix proposed a scheme [13] whereby fast waves would be launched into

a plasma, and mode converted at a critical layer; the upper hybrid resonance to heat electrons

and the lower hybrid resonance to heat ions. The frequency would be chosen to be an integer

multiple of the electron or ion cyclotron frequency, and the wavelength chosen such that once

mode converted to a slow wave, the wavelength would be near the cyclotron radius. Therefore, the

rf wave would propagate inward quickly without damping much on the way, and then proceed to

be mode converted and damp readily. In this way the core can be selectively heated.

Many experiments in lower hybrid (LH) heating were undertaken. The Stix scheme was discov-

ered to be somewhat inefficient however. Karney [14] predicted a different absorption mechanism

for heating ions, which was also pursued. Electron Landau damping [15] was also observed.

Realizing a new potential application for rf in fusion plasmas, Fisch [16] proposed exploiting

the Landau resonance using LH waves to drive current, potentially reducing the reliance on an

ohmically driven field. Because Landau damping preferentially accelerates electrons that are al-

ready quite a bit faster than the thermal particles, and the cross section for Coulomb collision is

inversely related to speed, electrons accelerated by this method are far less collisional than their

slower cousins. This means that a small number of electrons can carry a great deal of current,
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and fairly efficiently since they are less likely to give their energy up to the thermal particles.

Experiments were carried out in some linear devices to verify this theory, and were quite success-

ful. [17, 18] Shortly thereafter, two major competitive efforts were launched to drive current with

LH in a tokamak, one at the Princeton Large Torus [19] and one at Versator at MIT [20]. Both of

these experiments observed reduced voltage around the torus. This indicates that the Ohmic field

magnitude was dropping, and since the current was maintained, rf current drive could be deduced.

Since these two experiments, LH antennas have appeared on many major tokamaks, including

JET [21], ASDEX [22], JT-60U [23], Alcator C-Mod [24], and HT-7 [25]. In addition, two notable

fusion devices focusing on long pulse lengths specifically exploit LHCD: TRIAM-1M [26] which

has achieved 20 kA plasmas for over 3 hours, and Tore Supra [27] which has created hot, dense

plasmas sustained above 0.6 MA for over 2 minutes [28]. LHCD is also being used to access

so-called Advanced Tokamak regimes, which exploit novel current profiles for performance im-

provement. [29] Uchimoto et al. proposed [30] a similar application, using a lower hybrid scheme

to drive the necessary stabilizing current on on the Madison Symmetric Torus (MST) RFP. In the

advanced tokamak and stabilized RFP schemes, LH is particularly attractive. The low-collisional

LH electrons in these scenarios are further accelerated by the Ohmic field, which is not turned off

as it is in plasma sustainment experiments. Therefore there is an amplification effect to any current

driven.

1.2.7 Electron Bremsstrahlung

Measuring the impact of lower hybrid experiments is fairly simple in a tokamak as the current

driven is essentially completely in the toroidal direction. Thus, by monitoring the toroidal loop

voltage (a measure of the Ohmic field) and the toroidal plasma current, one can deduce the current

created by rf. If the loop voltage drops and the current remains the same, it is a simple matter to

claim that the LH system is supplying the necessary current, and in fact this was observed [19].

Since both of these measurements can be made external to the plasma, small changes can be

measured accurately and the effects of small scale current drive can be easily seen. This is not the

case in the RFP since the targeted direction of current flow is poloidal. Poloidal current cannot be
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measured external to the plasma. Therefore, key diagnostics must focus on direct measurements

of the fast electron population through bremsstrahlung, [2] either stimulated by probe insertion or

observed directly from electron-ion collisions.

As electrons stream freely in a plasma, they occasionally encounter ions or other electrons.

The Coulomb force between the colliding particle and the target causes a deflection of the collid-

ing particle. [31] Electrons emit photons when accelerated due to their charge, and this is called

bremsstrahlung (”braking”) radiation. Predicting the magnitude of this effect typically requires one

of a number of approximations, most of which are well studied. Bremsstrahlung cross sections are

derived from quantum mechanics, and various permutations have been derived by many authors,

especially Bethe and Sommerfeld. [32] These can be integrated over a distribution function in order

to predict the total emission from a plasma, assuming the distribution function is known.

1.3 Theory of Lower Hybrid Current Drive on MST

Roughly speaking, the physics of LHCD can be divided into 4 separate time/length scales:

the wave phase scale, the wave propagation scale, the wave absorption scale, and the net current

drive scale. Mercifully, these different levels do not coincide with the notable exception of the

absorption scale and the net current drive scale, which are intrinsically related through induction

(discussed in §1.3.4). The wave phase scale refers to what occurs on the order of a single wave

oscillation, and so this scale is defined by the wavelength (∼ 1 × 10
−4

m) and the period of the

wave, 1/(800 MHz) = 1.25 ns. Landau damping occurs on this length scale, though it doesn’t

have a macroscopic effect until kinetic time scales. Arguably there could be turbulence induced

stochasticity on this spatial scale, but it is unlikely that the time scales are fast enough to interact

with the wave at this level. The next largest scale is the wave propagation scale. This represents

the amount of time the wave takes to get to its destination. This distance is roughly 1/3 of the way

around the machine poloidally (∼ 1 m), and is used to estimate the time scale by dividing by the

group velocity. The final two time scales are the absorption time scale, representing the amount

of time it takes deposit significant energy from the wave into electrons, and the net current drive

time scale. The net current drive time scale is the amount of time between energy being deposited,
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and relaxation of the field which arises due to Faraday’s law and Ampere’s law in response to an

injection of current. This ordering is shown in Figure 1.5.

1.3.1 Landau Damping

LHCD experiments exploit Landau damping to drive current. Landau damping is a means of

transferring energy from an electrostatic wave to electrons in plasmas. The basic formalism was

outlined by Landau in 1946 [33]2. The equations governing the evolution of this process can be de-

rived by studying the behavior of a distribution of charged particles in the presence of a sinusoidal

electrostatic perturbation. The dynamics of the distribution are constrained by the Boltzmann equa-

tion. For simplicity, the effects of collisions are ignored. This equation can be solved analytically

by first separating the distribution function into a constant background Maxwellian distribution,

and a small perturbed general distribution which is initialized to be zero. After this, a Laplace

transform in time and a Fourier transform in space are applied, and the equation is solved. One

must be careful to maintain the orientation of the integral curve around the poles when inverting

the Laplace transform. Thorough discussion of this solution is give in books by Swanson [35] and

Stix [36]. The damping rate predicted by this prescription is

γL =
√

π
ω

2
pe

ω
2

k3v3
the

e
−(ω/kvthe )2 (1.7)

were γL is the damping rate of the wave, ωpe is the electron plasma frequency (discussed in Section

1.3.2.1), vthe is the most probable velocity of the Maxwellian distribution, ω is the frequency of the

electrostatic wave (in radians/s), and k is the wavenumber of the electrostatic wave. This damping

rate has the scaling shown in Figure 1.6. From this we say the condition for strong damping is

vφ = (0.2− 3)vthe .

In the traditional interpretation of Landau damping one considers a single electron encounter-

ing an electrostatic wave and being accelerated by that wave’s electric field. An electron moving
2This reference can be difficult to locate. It is reproduced in a slightly less difficult to locate collection of Landau’s

published works. [34]
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Landau damping rate scaling with thermal velocity

0 1 2 3 4 5
vφ/vthe

0.0

0.1

0.2

0.3

0.4

0.5

γ L
ω

/ω
pe2 

 

Figure 1.6: Normalized Landau damping rate given by equation 1.7 for constant density and wave

frequency. Based on this plot, “strong” Landau damping is interpreted to mean vφ ≈
(0.2− 3)vthe .

slowly relative to the wave’s phase velocity will not be accelerated much before the quickly oscil-

lating wave undergoes a full period, and thus will see virtually no net force. Conversely, a very

fast moving electron will see the wave as essentially static, and will have enough momentum to

sample an entire period before there is much of an effect on it, thus experiencing a zero average

force. Only electrons moving near the speed of the wave will experience acceleration, as they

are pushed continually in the same fashion as a surfer on a water wave. Depending on what the

phase of the wave is when the electron enters the resonance region it will either be accelerated or

decelerated. Thus, our expectation of Landau damping is that it will have a region of effectiveness

around v = vφ, not effecting slow or fast electrons, and it will have the effect of driving resonant

electrons both faster and slower, roughly in equal measure. Therefore we expect a flattening of

the electron distribution function near v = vφ. A more thorough investigation of the physics of

Landau damping was undertaken by Stubbe and Sukhorukov [37] who enjoin us to recall that the

Landau solution requires us to include the electrons which constitute the wave, while the above

interpretation ignores those electrons. The distinction is immaterial for the purposes of this work.
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1.3.2 Wave Propagation

In order to drive current at a precise radial location, a comprehensive study of wave propagation

must be undertaken to determine the correct positioning and launch parameters of the experimental

antenna. For lower hybrid experiments in tokamaks, antenna position is typically assumed to be at

the outboard midplane due to the spatial constraints on large wave guide antennas. Relaxing this

restriction allows for more control over the launched spectrum, and so allows a wider range of fre-

quencies to be considered. Precise predictions about wave spectra and position can be determined

by the use of ray tracing codes, but a general description of some of the major phenomena can be

derived analytically by employing some fairly simple models. A good derivation of some elements

of lower hybrid wave propagation is given by Forest et al. , [38], and the elements most relevant to

this work are reproduced in Appendices C and D.

1.3.2.1 Cold Plasma waves

Although thermal effects are necessary to understanding wave absorption and are predicted to

impact wave accessibility to some degree, [39] a great deal of insight can be derived by the simpler

Cold Plasma model, originally developed by Altar and Appleton. [40] This model ignores thermal

motion, but has the advantage of tractability, and still captures many of the most important features.

The cold plasma model has been observed to predict the propagation of LH waves well. [15]

Before proceeding, I must make a quick digression. In much of the analysis presented in this

work, the index of refraction (n = ck/ω) is used. In traditional optics the index of refraction

is thought of as a material property. Because plasmas are inhomogeneous and dispersive media,

with a dispersion relation related not only to frequency but also polarization, this obfuscates the

underlying physics. The index of refraction is favored in many contexts however because it is

the figure of merit for many aspects of wave propagation. For instance, the exponential term for

Landau damping rate is dependent on k�/ω, not just k�, and so absorption is in some way very

dependent on n. Therefore usage of the index of refraction will not be suppressed, but it must be

stressed that it is more appropriate to think of it as a wave property, a normalized wave number.
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Since we are interested in high frequency, short wavelength (compared to machine size) phe-

nomenon, it seems logical to concentrate on small scale, localized behavior. Bearing this in mind,

we consider the forces on individual particles arising from the electric and magnetic fields within

the plasma. The primary impacts of the electric field on small scale perturbations are the so-

Figure 1.7: Plasma oscillations are shown on the left. First, the idealized unperturbed electrons.

When bunched together as in the second picture they repel one another, causing bunching

follow by depletion. As these newly bunched electrons are forced into one another, they

again repel, causing the perturbation to move (in both directions in this case). On the right

is an image of cyclotron motion, with ions traveling around the field in one orientation and

electrons traveling in the opposite orientation with a smaller orbit size.

called plasma oscillations. Particles of the same charge that move close to one another are repelled

away by an ever increasing electric field. Thus, forcing a group of similarly charged particles to-

gether gives rise to a repulsive wave which propagates through the plasma, with a frequency of

ωpα =
�

nαe2/�0mα, where α is the species index (electron, deuteron, carbon, etc.).

The most dramatic effect of the large background magnetic field on plasma particles is cy-

clotron motion. The collective magnetic field deflects all motion perpendicular to it, redirecting

particle trajectories into a helix around field lines. This type of motion is typically very fast, mak-

ing a full orbit around a field line with a frequency ωcα = qαB/mα, often several GHz for electrons

in a fusion reactor. These two types of motion are illustrated in Figure 1.7.
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It is the coupling of these two types of motion for all species in a plasma (when combined with

drift motion individual particles) that gives rise to the entire host of what are known as cold plasma

waves. Cold plasma wave propagation is constrained by a two solution dispersion relation covering

a wide range of frequencies. A reasonable derivation of this model is given by Stix [36], and

followed by Swanson. [35] The procedure is outlined in appendix C.1. Essentially it arises from

solving the single particle equations of motion, in conjunction with Faraday’s law and Ampere’s

law, in the presence of a magnetic field and an electric field perturbation. This analysis leads us to

the dispersion relation

D
�
ω, n�, n⊥

�
≡ An

4
⊥
−Bn

2
⊥

+ C = 0 (1.8)

where

A = S

B = PS + S
2 −D

2 − n
2
�
(P + S)

C = Pn
4
�
− 2PSn

2
�
−D

2
P + PS

2

with the cold plasma dispersion elements (S, D and P ) being

S = 1−
�

α

ω
2
pα

ω2 − ω2
cα

(1.9)

D =

�

α

ωcαω
2
pα

ω (ω2 − ω2
cα

)
(1.10)

P = 1−
�

α

ω
2
pα

ω2
. (1.11)

This equation, quadratic in n
2
⊥

, has two solutions, given by

n
2
⊥

=
B ± F

2A
(1.12)

where F =
√

B2 − 4AC. These two solution branches are given many names by many different

authors, depending on factors like polarization. For the purposes of this work, these branches will

be referred to as the fast wave (the negative branch) and the slow wave (the positive branch). This

choice of naming will be justified later (Figure 1.9).
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For certain situations we can use a simplified dispersion relation by imposing the electrostatic

condition. This approximation is reasonable when the wave polarization is such that the wave is

primarily longitudinal. This is derived in Appendix D, and is valid when the wave being studied

has a mostly longitudinal polarization. As discussed in Appendix D, this is only really acceptable

for the slow branch, far from cutoffs. In our parameter range of interest, the general electrostatic

dispersion relation

k ·K · k = 0, (1.13)

simplifies to
k

2
⊥

k
2
�

≈ ω
2
ce

ω2
≈ 50− 225. (1.14)

From this form of the dispersion relation, we can derive an approximate expression for the group

and phase velocity of the wave, namely

Vφ =
c

n�

ω

ωce

�
ω

ωce

b̂ + r̂

�
(1.15)

Vg =
c

n�

�
b̂− ω

ωce

r̂

�
. (1.16)

This derivation is carried out in detail in Appendix D.

1.3.2.2 Cutoffs, Mode Conversion and Evanescence

Since wave analysis assumes a wave of the form e
ik·r−iωt, an imaginary value of k (and there-

fore n) will lead to a real exponent for our field, i.e. an exponentially growing or decaying field.

The exponentially amplifying wave is uninteresting to us, because such a mode does not conserve

energy (because it does not conserve power in steady state) without a source in the plasma. There-

fore when some component of n becomes imaginary, we say the wave is decaying. This occurs

when the right hand side of Equation 1.12 becomes negative, or when the term F becomes imag-

inary. The first case leads to a purely decaying field and is therefore called a cutoff, whereas the

second case leads to a decaying wave, termed an evanescent wave. Moreover, since the fast wave

and slow wave solutions converge for F = 0, there is a chance for mode conversion. It is important
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to bear in mind that when we refer to cutoffs and evanescence, we are talking about exponential

decay in the spatial structure of the wave. This means that the wave simply does not penetrate into

the region, not that power is being deposited.

The critical point for cutoffs occurs where n
2
⊥

crosses zero on its way to becoming negative.

In this case, Equation 1.8 must be of the form C1n
2
⊥
(n

2
⊥

+ C2) = An
4
⊥

+ Bn
2
⊥

, i.e., C = 0. This

gives rise to the cutoff points

C = Pn
4
�
− 2PSn

2
�
−D

2
P + PS

2

= P ((n
2
�
− S)

2 −D
2
) = 0, (1.17)

i.e. P = 0 and n
2
�

= S ± D. The P = 0 condition creates a cutoff barrier at n = ωme�0/e
2.

The second pair of cutoffs (n2
�

= S ± D) are called the right and left mode cutoffs, because of

the impact on certain wave polarizations. The critical point for fast-slow mode conversion and

evanescence is the point where F
2

= 0, i.e. where B
2

= 4AC. While this term is fairly complex,

it is perfectly well behaved and can be easily represented on a plot. These results can be combined

to create a plot of the propagation region for both the fast and the slow modes. Using approximate

MST parameters (ne ≤ 1.0 × 10
19

m
−3

, |B| ≈ 0.25), we can produce Figure 1.8. Qualitatively

speaking, increasing the magnetic field causes the cutoff region to become narrower, i.e. the cutoff

n� is lower for a given density.

This plot demonstrates several important features. First, it can be seen that while the slow

wave propagates in most of the plasma volume (excluding the very edge), the fast wave has a

cutoff (the R-mode cutoff, n
2
�

= S + D) which prevents it from propagating throughout most of

the plasma. Thus we need not concern ourselves with unintentionally coupling to the fast wave,

as the propagation region is too distant from the antenna to allow a significant amount of power to

tunnel through. Conversely, for the slow wave, the non-propagation region is likely on the order of

a few millimeters, and easily coupled to by an evanescent wave coming from a very low density or

vacuum region.
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Figure 1.8: Plotted here are the regions of solution space for n⊥. Magnetic field magnitude is

fixed to 0.25 T, typical for MST discharges in the region of interest. Regions I and IV

represent purely imaginary solutions (no propagation), region II supports the fast wave and

slow wave solution, and region III allows the slow wave only. Detail of the low density

section of the slow wave plot is shown.
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If the full cold plasma dispersion relation is plotted in the more traditional way (on an ω versus

k plot), the relative group velocities can be estimated. Because our profiles increase most dramati-

cally in the radial (perpendicular) direction, we will restrict this discussion to k⊥ (though we do not

preclude interesting physics in the parallel direction). Plotted in Figure 1.9 are the solutions of the

dispersion equation at three different densities, with the experimental frequency marked. Numbers

have been intentionally suppressed in this plot because the exact size varies greatly with plasma

conditions, and this is only meant to provide a qualitative impression. The two modes correspond

to the two places where the marked frequency intersects the dispersion curve (notice sometimes

this only corresponds to one mode). Recall that the larger solution branch from Equation 1.12

[n⊥ = (B + F )/2A] was referred to as the slow wave. We see that the group velocity (the slope

of this plot) is smaller for this mode than it is for the fast mode, hence the names. We can also

see by examining the slope of the plot that the slow wave and the fast wave have oppositely di-

rected group velocities, and that the group velocity is smoothly varying over the mode conversion

region. Thus, one wave is approaching the cutoff point and the other leaving. We can conclude

from this that all the power must be transferred from one wave to the other, otherwise there would

be nowhere for the power to go. It should be noted that another possibility exists, that of cou-

pling to the opposite frequency branch of the slow wave. However the ingoing slow wave phase

velocity matches the outgoing fast wave phase velocity so it is more fitting to think of the slow

wave propagating through this region and finding that it has become a fast wave, as opposed to

jumping (possibly inefficiently) from one branch to another. This phenomenon has been treated

more rigorously elsewhere. [41]

1.3.2.3 Raytracing

In order to determine the motion of a launched wave in the plasma it is necessary to employ

the WKB method, also called ray-tracing. It can be shown that for wavelengths and wave periods

sufficiently smaller than the length and time scale of changes in the dielectric tensor D, the group
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Figure 1.9: Here we see the dispersion relation for Cold Plasma waves plotted at three densities.

The blue curve only supports a slow wave (gently sloped) at the experimental frequency.

The green curve represents the region that supports both fast and slow waves, and the

red curve represents the density at which the two modes converge. The exact magnitudes

involved depend highly on the plasma conditions.
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velocities and wave number rate of change can be determined by the equations

dx

dt
= −∂D/∂kx

∂D/∂ω

dkx

dt
=

∂D/∂x

∂D/∂ω

dy

dt
= −∂D/∂ky

∂D/∂ω

dky

dt
=

∂D/∂y

∂D/∂ω

dz

dt
= −∂D/∂kz

∂D/∂ω

dkz

dt
=

∂D/∂z

∂D/∂ω
(1.18)

The requirements for use of the raytracing equations are easily satisfied for our wave. During

propagation, the wavelength is a fraction of a millimeter and the period is near one nanosecond,

whereas MHD activity takes place at length scales near a centimeter and time scales on the order

of hundreds of microseconds.

1.3.2.4 Resounding Chambers

The first model to apply the raytracing equations to is the stratified slab. The stratified slab

contains a density profile in the x direction and a uniform magnetic field that points in the z-

direction. The x direction is analogous to the radial dimension in a toroidal plasma. Using this

model, an expression for the trajectory of a ray can be derived. The chain rule allows us to say

dx

dz
=

∂D/∂k⊥

∂D/∂k�
=

∂D/∂n⊥

∂D/∂n�
, (1.19)

which, using 1.8, reduces to

4An
3
⊥
− 2Bn⊥

4Pn
3
�
+ 2 [(P + S)n

2
⊥
− PS] n�

. (1.20)

We also note that since no profiles are dependent on z, ∂D/∂z = 0, so (by our raytracing equations)

n� is constant. Because n⊥ can be determined at all locations in space by using 1.12, this equation,

while analytically insuperable, is quite readily solved by simple numerical methods. Taking a

profile from a reconstructed MST discharge (which will be explored in detail later) and using

n� = 5.0 we get the plot seen in Figure 1.10. The red launched slow wave travels from the P = 0

surface, inward to the F = 0 mode conversion point. It is then converted into a fast wave. The fast

wave propagates outward until it hits the n
2
�

= S + D surface, where it is reflected as an inward
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going fast wave until it returns to the F = 0 surface to mode convert back into a slow wave. The

slow wave will either reflect off the P = 0 boundary, or couple to a surface mode. Thus this wave

is incapable of leaving this region of the plasma between the P = 0 and F = 0 surfaces, trapping

the wave in a resounding chamber.

1.3.2.5 Poloidal Upshift

Exploiting the simplified dispersion relation given by Equation 1.14, more complicated geome-

try can be studied, and more features of LH wave propagation in MST can be explained. Modifying

the raytracing equations for toroidal geometry we get

dr

dt
= −∂D/∂kr

∂D/∂ω

dkr

dt
=

∂D/∂r

∂D/∂ω

dθ

dt
= −∂D/∂κ

∂D/∂ω

dκ

dt
=

∂D/∂θ

∂D/∂ω

dφ

dt
= − ∂D/∂η

∂D/∂ω

dη

dt
=

∂D/∂φ

∂D/∂ω

where κ = rkθ and η = Rkφ. The effect typically considered is that of poloidal lensing, specif-

ically, in the cylindrical approximation, no profiles are dependent on poloidal angle, so it can be

said that
dκ

dt
=

∂D/∂θ

∂D/∂ω
= 0, (1.21)

i.e. κ is a constant. If this is true then kθ = κ0/r. This says that as radius decreases, k will

increase. The physical reason for this can be seen in Figure 1.11. This effect is indeed seen in

wave propagation, but this simple analysis obscures another important effect, namely the upshift

in the wave number due simply to the wave propagating around poloidally. Naively, we might

assume that there is a similar toroidal lensing effect. This is in fact true, but it affects kφ which for

our experiment is a small number, and a component of k⊥ in any case. Reexamining the raytracing

equations and employing the chain rule we get the equation

dκ

dθ
= −∂D/∂θ

∂D/∂κ
(1.22)
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Figure 1.11: The Poloidal lensing effect. A perturbation with a constant poloidal wave number

at two different radii will have two different wave lengths simply due to the reduced arc

length.
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Further assuming that k� ≈ kθ and dr

dθ
≈ 0, this simplifies to

dκ

dθ
= −

−κ

r

∂

∂θ

�
ωce
ω

�

−1
r

ωce
ω

= −κ
d

dθ
ln

�
ωce

ω

�
(1.23)

i.e.

kθ =
r0

r

ωce0

ωce

kθ0 =
ρ0

ρ

ωce0

ωce

kθ0 (1.24)

Notice that this retains the poloidal lensing effect, however it further states that kθ is inversely

proportional to B - higher on the outboard side and lower on the inboard side. This still ignores

the significant effect of the radial profiles. More complete analysis of wave propagation requires

the use of a raytracing code. This will be discussed in more detail in Chapter 4.

1.3.3 Quasilinear absorption

Recall in the earlier discussion of Landau damping that it was predicted that depending on the

phase of the electrostatic wave as the electron entered the Landau damping region, it could either

be sped up or slowed, with roughly equal probability. When examining a distribution function,

this means particles will be driven away from a point in velocity space, either to higher or lower

velocities. Collisionality will prevent a divot from forming in the distribution function, so the most

heavily distorted distribution function that can be expected is a distribution with a “flat spot”. Fur-

thermore, once the distribution function has been completely flattened in a given region of velocity

space, no more flattening can occur, and therefore no additional Landau damping can be induced.

It seems reasonable to conclude that when the distribution is slightly flattened, the effects of Lan-

dau damping will be somewhat reduced. Therefore, it is critical to consider the absorption process

in terms of quasilinear behavior. That is to say, although we still evolve the linearized Boltzmann

equation, we allow whatever operator represents Landau damping to be based on the perturbed

distribution function as well as the unperturbed distribution function. This seems quite complex

for analytic calculations, and indeed it is, but a sufficiently abstract model can still be employed to

provide some insight into the effects of Landau damping. A more complicated model is used as

the backbone of CQL3D, a quasilinear Fokker-Planck code discussed and used in Chapters 3 and

4. The abstracted model of choice is the one proposed by Fisch [16], using a simplification of the
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Lenard-Bernstein Fokker-Planck equation given by (using the notation followed by [36] in Section

16-7)
∂f

∂t
=

∂

∂v

�
ν

�
vf +

kT

m

∂f

∂v

��
+

∂

∂v
DQL

∂f

∂v
. (1.25)

where ν is the collision frequency (a simplified representation of the Coulomb collision operator)

and DQL is the velocity space diffusion coefficient for the damping mechanism, in this case the

Landau resonance. A velocity space diffusion coefficient can be interpreted as a force, as it repre-

sents the statistical net effect of either making electrons faster or slower. Restricting our discussion

to only the equilibrium behavior we can say

∂f

∂v
= −v

�
kT

m
+

DQL

ν

�−1

f (1.26)

which has the concise solution

f = Exp

��
−v

�
kT

m
+

DQL

ν

�−1

dv

�
(1.27)

Notice that for DQL = 0, i.e. no acceleration, the solution is simply

f = CExp

�
−mv

2

2kT

�
, (1.28)

which is as we would hope, a Maxwellian (note the C comes from the constant of the integration).

Returning our attention to 1.27, we first substitute vn =
�

kT/m (the thermal velocity in one

dimension), and then assume that ν(v) = ν0v
3
n
/v

3, which is consistent with velocity dependent

collisionality reduction observed in plasmas.

f = Exp

��
− v

v2
n

�
1 +

DQLv
3

v5
n
ν0

�−1

dv

�
(1.29)

Defining Dred = DQL/v
2
n
ν0 and w = v/vn, this becomes

f(w) = CExp

�
−

�
w

0

w

1 + w3Dred

dw

�
(1.30)

For the final step in the analysis, we examine the case

Dred =





δ v0 ≤ v ≤ v1

0 otherwise

(1.31)
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There is a temptation to use a more complicated model, for instance, using the Landau res-

onance velocity dependence from Figure 1.6, especially when numerical methods are used. It is

important to remember however, that the simple Coulomb collision model used above (ν ∼ v
−3)

breaks down as the distribution function flattens, Therefore, in some ways the top hat model em-

ployed here is in fact more realistic (albeit more abstract), as the collisionality will eventually come

into equilibrium with wave damping. In this way we are presented with the fundamental conflict in

analytic lower hybrid theory. A simple model provides some insight but more complicated models

require careful accounting of more complicated effects. This often means a model which adds only

a slight complication is in practice less accurate than a simple model.

For δ →∞ the distribution is flat in the resonance region. This flat distribution function gives

rise to a current density of [16]

J ≈ 6.5× 10
8
n20T

1/2
10 f(w0)w0(w1 − w0) A/m

2
. (1.32)

where n20 is the density in units of 1 × 10
20

m
−3 and T10 is temperature normalized to 10 keV.

Assuming that collisions with the bulk are balancing power deposition, we can calculate the depo-

sition as

PD ≈ (5× 10
9
)n

2
20T

−1/2
10 (2 + Z)f(w0)w0(w1 − w0) W/m

3 (1.33)

Taking the ratio of these two values we derive an efficiency parameter

J

PD

=
0.13

(2 + Z)n20
T10 (A/m

2
)/(W/m

3
) (1.34)

Interpreting the meaning of this parameter is somewhat complicated. As we are talking about a

power density being converted into a current density, the interpretation is largely dependent on

the propagation geometry. Moreover, the amount of power absorbed is entirely dependent on the

amount of power which has successfully propagated inward (i.e. not already been absorbed). Nev-

ertheless, this is a fairly concise expression which provides some insight into scaling. In particular

it shows that there is a linear relationship between the temperature of a plasma and the efficiency

of current drive.

Something can be learned by plotting these solutions (this is done in Figure 1.12). Before

proceeding to read too much into this plot, note that I have declared the resonance region by
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Figure 1.12: A plot of the solutions of Equation 1.30, for varying values of δ. Note that there

is nothing particularly special about the length and location of the resonance region, as

that is input into the model (I have based it on the Landau resonance). Also note that the

normalization is not perfect, and in fact we expect that the extra electrons on the right hand

side of the plot will be sourced from the left hand side of the plot.

fiat which is why it is in the region we expect it to be. Moreover, since a numerical integral

was used to normalize the plot, the normalization is not perfect - we expect the high δ curves to

exhibit some depletion left of the resonance region which will act as a source for the additional

particles seen right of the resonance region. It can be see that there is not only a flattening in

the resonance region, but also an additional tail which develops on the high speed side. One is

entitled to wonder why that might be. The intuitive explanation is that while quasilinear diffusion

enforces flatness in the region of resonance, some particles will be forced out by acceleration, or

by collisions (remember our model does include collisions, albeit in a simplified form). These will

be continuously sourced by electrons coming from the resonance region until the slowing-down of

very fast electrons balances out ejection. Thus, LH acceleration does not only directly accelerate a

small population of electrons in the region of resonance, it also acts as a sort of electron conveyor,

pumping electrons from the low speed end of the distribution function to the high speed end. This
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process becomes more important when an electric field is applied, and these electrons are allowed

to run away.

A somewhat more complicated version of this type of analysis was undertaken by Uchimoto

for MST like parameters. [30] He found that 1 MW of LH power was sufficient to drive a peaked

current with a maximum of 100 A/cm
2. This study was based on the Brambilla ray tracing code,

[42] following the trajectory of a single ray until 90% of the power is deposited and approximating

the current drive based on an analytic approximation of current drive efficiency. However, in his

authoritative work, [43] Fisch asserts that a complete understanding of LH current drive requires

a consistent solution of the (quasilinear) Fokker-Planck equation in at least 2 dimensions. Forest

et al. extended Uchimoto’s work to include quasilinear effects, employing the raytracing code

GENRAY and the Fokker-Planck code CQL3D. [44] This led to a prediction of 2 MW required to

drive stabilizing current. Although this did not include diffusion or electric field effects, the results

provided a sound foundation for further experimentation. This last work also separately examined

the effects of radial diffusion on driven current. Uchimoto found that the LH driven current had a

very narrow radial extent. Forest however showed that while the LH wave can drive current with

a great degree of radial localization, radial diffusion will smear this current out, and this effect can

be devastating to the peak driven current. Wedding the effects of radial diffusion with quasilinear

absorption was left as a tantalizing direction of future research. CQL3D now has a self-consistent

radial diffusion operator, and so the approximation of Forest can be improved upon. Moreover, the

diffusion coefficient and plasma equilibria in MST are more exactly known. Finally, Forest did not

account for the amplifying effects of an electric field working in concert with the electron conveyer

effect described above, which is expected to mitigate the effects of radial diffusion somewhat.

These complications underscore the need to revisit these studies. [45] It should also be noted that

these earlier studies focused on the launch of a single ray at the expected centroid of the launch

spectrum, rather than the broader launch spectrum of a real antenna. This affects the efficiency of

absorption as the width of the resonance region in velocity space is directly related to this spectral

broadening. This is discussed further in §4.2.3.
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1.3.4 Inductive effects

In any study of current drive it is important to consider the plasma response. An ideal (per-

fectly conducting) plasma would not allow current drive, because it would be induced to create an

electromotive force exactly canceling any current from fast electrons. In a real plasma, this effect

is typically approximated by a simple circuit model. This leads to the simple formula [43]

dJ

dt
+

J

τL

=
Jrf

τL

, (1.35)

where τL = L/R is the so-called “inductive time”. Before continuing, it is important to note that

this model assumes that current is being driven in a filament in free space (i.e. plasma response

is not modeled). This is not an accurate representation of the physics, but is used for simplicity.

Placing this filament in a conductive medium will increase the inductance, most likely by a fairly

large amount. Honestly account for this is best done with a full 3-D MHD model, in order to

measure the current associated with the injected current, which is beyond the scope of this work.

For constant Jrf , this is solved by J(t) = Jrf

�
1− e

−t/τL
�

+ J0. Notice that as R → 0,

τL →∞ and J(t)→ J0. Now, current filaments created by rf deposition can be considered. These

can be divided into two categories. At or very near the reversal surface, the toroidal pitch of the

field lines is near zero. As long as these filaments feed back on themselves in one poloidal transit,

they can be considered to be isolated loops, dubbed “poloidal filaments”. A poloidal filament

wraps once around the magnetic axis and reenters the deposition region immediately. In this case,

the inductance of the poloidal filament can be calculated by approximating it as a simple circular

current loop. The inductance of a loop of wire is given by Jackson, [46] (page 234)

Lp = µ0r [ln(
8r

δ
)−7/4] (1.36)

where r is the minor radius at which the filament sits, and δ is the radius of the filament cross

section.

For filaments which nearly reconnect with themselves (henceforth “helical filaments”), the

situation is more complicated, and seemingly less favorable. Consider a pie-slice shaped Amperian

loop (Figure 1.13). The inherent toroidicity of these filaments, while small, is vitally important,



36

Figure 1.13: Amperian loop used in inductance calculation

as we are now dealing with an induced field that increases every time the filament crosses the

midplane, which will be quite a lot for a filament that only barely misses itself.

On the first toroidal transit this is somewhat like a toroidal solenoid. Ampere’s law tells us
�

B · dl = µ0Ienc (1.37)

using B.4, the toroidal angle covered by a field line in a single poloidal transit is approximately

∆φ = 2πq (1.38)

Therefore, for an Amperian loop that subtends a toroidal angle of ∆φ,

BφR∆φ = µ0NIrf = µ0
∆φ

2πq
Irf . (1.39)

Note this calculation is isolated to only the induced magnetic field, not the background plasma

field. Also notice that we are implicitly using a symmetry argument to cancel out the field in the

major radius direction along the two straight legs of the loop.

Therefore

Bφ(R) =
µ0Irf

2πqR
(1.40)
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Notice, it is not dependent on ∆φ. The total poloidal flux from this field is

ψp =

�
B · da = 2

�
rrf

0

�
Rright

Rleft

BφdRdz (1.41)

=
µ0Irf

πq

�
rrf

0

log

R0 +

�
r
2
rf
− z2

R0 −
�

r
2
rf
− z2

dz (1.42)

=
µ0Irf

πq
G (1.43)

where G is

G =

�
− 2

�
R

2
0 − r

2
rf

tan
−1



 R0z�
R

2
0 − r

2
rf

�
r
2
rf
− z2





+z log





�
r
2
rf
− z2 + R0

R0 −
�

r
2
rf
− z





+2R0 tan
−1



 z�
r
2
rf
− z2




�rrf

0

, (1.44)

an intimidating expression, but there is a great reduction of complexity at the limits of integration,

as the arctangent terms reduce to π/2 at z = rrf and 0 at z = 0. Furthermore the log term becomes

0 at z = rrf , so G reduces to

G = π

�
R0 −

�
R

2
0 − r

2
rf

�
(1.45)

This makes the inductive electromotive force

E = −dψ

dt
= − d

dt

�
µ0GIrf

πq

�
= −

�
µ0G

πq

�
dI

dt
(1.46)

i. e.

L =
µ0G

πq
(1.47)

Notice this indicates that the inductance is highest just off of the reversal surface, whereas (as

shown earlier) at the reversal surface, the inductance is quite low. This is consistent with intuition,

since a nearly closed loop will have many more midplane crossings in a single toroidal transit than a
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more toroidally oriented loop. This however is not the end of the story. On any surface which does

not satisfy single rotation symmetry in the toroidal direction (meaning q = m/n, m = 1, n ∈ Z),

the filament continues around the machine, amplifying the inductive field leading to an integer

amplification factor m. Indeed, on an ergodic surface (of which there are infinite in any given

region), the filament will never come back to itself. However, and crucially, when calculating the

inductive time, the factor of m which the inductance is multiplied by is cancelled out by the factor

of m used for the length of the filament in calculating the total resistance. In any event, at some

point the finite width of the current channel comes into play and the process is arrested.

Interestingly, the inductive time is not affected much by the distinction between poloidal and

helical filaments. Using the simplified formula for field line length (B.15) the inductive time (for a

filament of radius δ) is

τL/R =
Lmπδ

2

ηlm
=

µ0mG

πq

πδ
2
q

η2πmr
=

µ0Gδ
2

2πηr
(1.48)

We approximate the resistivity using the well known formula derived by Spitzer and Härm [47–49]

ηsp =
πe

2
m

1/2
e

(4π�0)
2T

3/2
e

lnΛ (1.49)

An estimate for the inductive time can be approximated using MST-like parameters of Te =

200 − 300eV, lnΛ ≈ 12 − 14, r ≈ 0.4m,δ ≈ 0.01 (2.241µΩm ≤ ηsp ≤ 4.803µΩm). The length

of helical field lines is derived in Appendix B. This gives us a poloidal filament inductive time

at 52.6 - 113 µs, and an off-poloidal inductive time of 0.565 - 1.21 µs. This is 1-3 orders of

magnitude lower than that found in similarly sized tokamaks. [20] The inductive load is similar to

that experienced in a tokamak but the length of the filament is so much larger that the resistance

more than compensates. It must be stressed however that is by no means clear that this simple

1-D model can capture the complex interplay of the real fields, particularly since the impact of the

plasma response to the injected current is ignored. In order to understand dynamics at a deeper

level a more complex 3D model should be used and that is beyond the scope of this work, however,

the importance of this issue specifically concentrating on the RFP cannot be overstated, and it is

not a problem merely for the lower hybrid current drive scheme. Nevertheless, the 1-D circuit

model has been observed to be a reasonable approximation in tokamaks. [20]
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1.3.5 System Design

With a complete set of tools at our disposal, we can now move on to design a real-world LH

system for an MST-like RFP. The first step is to determine the target n� based on Figure 1.6.

Our goal is to drive current just inside of the reversal surface. For the plasmas of interest, this

corresponds roughly to 250 eV. Since our wave will be approaching the Landau resonance from a

colder area of the plasma, vφ/vthe will go from a large number to a small number. Therefore we

expect the wave to begin damping at approximately vφ = 3vthe (based on Figure 1.6). This leads

to

vφ = 3vthe (1.50)
c

n�
= 3

�
2kT

mec
2
c (1.51)

n� =

�
mec

2

18kT
≈ 10.65 (1.52)

The next step is to construct a wave propagation diagram for this plasma, that is a diagram like

Figure 1.8 but tailored to our specific equilibrium. The best way to construct a meaningful diagram

is to create a plot with the flux surface on the y-axis and n� on the x-axis. The salient features to

include are the F = 0 cutoffs for the high field and low field side, and the Landau resonance,

specifically n� =
�

mec
2/18kT . In order to do this we must choose a frequency. Due to the

availability of sources, 800 MHz was chosen for MST, but the procedure would be identical if a

different frequency was chosen. If the design space is completely unrestricted, then the process

would be carried out several times at different frequencies. Using these results and an equilibrium

generated for a typical MST discharge, Figure 1.14a can be constructed. In this plot, the vertical

axis is the (normalized) square root of the area of a given flux surface, which would be equivalent

to the radius in the cylindrical limit. This parameter is used frequently and is called ρ. Examining

this graph, it can be seen that if the wave veers too closely to the left (low n�) side, it will be mode-

converted into a fast wave, and be directed out of the plasma, resounding as described above. If on

the other hand the wave veers too closely to the right hand side of the diagram before getting to the

target region, power will be absorbed before the desired radius is reached. Thus we are attempting
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to “thread a needle” with our wave. The importance of this plot cannot be overstated. It contains

almost all of the essential elements for LHCD accessibility. Because of this, it will be revisited in

a later section, with more elaborate description.

Alternatively, or rather, concurrently, a simulation can be run to discover reasonable launch

parameters. The principle of reciprocity states that emitted waves should travel along the same

trajectory as injected waves. This is because the plasma does not differentiate the origin of the

two waves, and the wave equation has time reversal symmetry. Figure 1.14b was generated by

launching waves at the approximate radius where deposition is desired with the n� required to

deposit power. These waves are tracked out of the plasma and the value of n� at the edge is plotted

versus the poloidal angle that the wave exits the plasma. Multiple reflection and higher order

effects are ignored, so this should be regarded as somewhat approximate. Moreover, n⊥ is simply

assumed to be directly radial when these waves are initialized, which is not necessarily true at this

depth within the plasma. This plot should not be taken to imply non-propagation at any point in the

spectrum as waves not moving from the core to a particular angle of the edge does not mean they

cannot be launched from the edge and subsequently make into the plasma by some complicated

path. Figure 1.14 shows the results from this analysis for 400 kA standard plasmas.

From these two plots, n� ≈ 7 is chosen for inboard launch so that F-S reflection can be avoided,

and n� � 12 is chosen for outboard launch to be consistent with the anticipated n� shift. It is

important to note that we can increase n� slightly beyond the number that Figure 1.14b indicates,

as a higher n� corresponds to a lower vφ, and therefore more efficient absorption at the target region.

The key aspect of off-axis current drive is exploiting the sharp gradient in the temperature profile.

This allows us to launch a fairly broad collection of rays that will all damp at roughly the same

radius due to the sharp decrease in resonant n� right in the region which we are most interested in.

This also allows us to drive current in very different conditions. Because the plasma temperature

increases rapidly, so long as we choose a wave not resonant in the very edge of our machine,

higher temperature plasmas will have a peak absorption radius only slightly larger than the design

specification. Since higher temperature plasmas also tend to exhibit either lower densities or higher

magnetic fields, the difference in the cutoffs are not a concern.
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Figure 1.14: The profiles from an equilibrium reconstruction of a 400 kA standard plasma are

used to make diagram (a). The temperature profile is used to draw the resonance line (at

vφ = 3vthe and the magnetic field strength on the high field and low field side are used to

mark the F=0 Fast-Slow mode conversion point. Launched waves must stay in the region

of n� ∼ 7. The second plot gives us an idea of the launch n� at a given launch angle which

should correspond to n� ∼ 10.65 near the absorption region, generated by launching waves

from the absorption layer of the plasma toward the plasma edge
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Having established the launch conditions for our wave, attention now turns to the radiative

element (antenna). The essential purpose of a radiative element is to create a 2-D perturbation

on the electric field at the plasma edge, at high power, and with known wavelength such that it

produces the desired n� spectrum. The au courant antenna in fusion devices is the multiseptum

waveguide grill, shown schematically in Figure 1.15. [50] Essentially, the strategy employed by

this design is to launch TE0,1 modes down the waveguide, with an interseptum phase staggering

which creates a pseudo-sinusoid at the plasma face.

It is interesting to note that it is physically impossible to construct a vacuum filled waveguide

capable of launching a wave like the one we are interested in without exploiting a multiseptum

design. This can be seen by examining the cutoff frequency for a rectangular wave guide, given in

Jackson [46] (equation 8.44) by the expression

ωm,n ≥ cπ

�
m2

a2
+

n2

b2
(1.53)

which is the frequency at which the wave’s phase velocity in the waveguide becomes infinite and

below which the phase velocity is imaginary, i.e, the mode is evanescent. In this equation, m

and n are the mode numbers in the two waveguide cross section directions, and a and b are the

respective waveguide wall lengths in those directions. In order to create a perturbation with a

dominant n� = 7 Fourier component, the wave must have a wavelength in one direction equal to

λ = c/n�f . Therefore, the length of one side of the wave guide (we will choose a) is determined,

a = mλ = mc/n�f . Equation 1.53 then gives us a restriction on the size of the other dimension,

specifically

2f ≥ c

�
m2n2

�
f 2

m2c2
+

n2

b2
(1.54)

4f

c
≥

n
2
�
f

2

c2
+

n
2

b2
(1.55)

n
2

b2
≤

�
4− n

2
�

� f
2

c2
. (1.56)

This equation cannot be solved if n� > 2 because n, b and f must be pure real numbers (the speed

of light c is always a pure real number). Therefore a single waveguide is not acceptable.
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B0

plasmavacuum

Figure 1.15: A multiseptum waveguide can produce different spectra for different phasing. Shown

above is π/2 phasing, meaning every 5
th septum has the same phase. This scheme is

favored by most fusion experiments in this frequency region because the design is fairly

simple and robust, and has been shown to have good performance.
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A multiseptum design can be considered however. The multiseptum design has the advantage

of maneuverability, by which I mean the launch spectrum can be modified, by changing the phasing

of the array. In order to exploit this technique with optimal phasing (π/2), the MST system would

need to have an array of λ/4 ≈ 1.33 cm. Unfortunately, in order for a waveguide to support an 800

MHz TE0,1 mode, the cross-field length must be at least half the vacuum wavelength (i.e. 18.75

cm) in order to satisfy the cutoff restriction 1.53. This is unacceptably large for MST, and so a

different solution must be pursued. The solution implemented is a traveling wave antenna, and is

the subject of Section 2.2.2.

1.4 Wave coupling

The process of moving power from the antenna face to the plasma is called wave coupling.

Although a satisfactory analytic interpretation of wave coupling is difficult to develop, a qualitative

understanding of the process is fairly straightforward. This is illustrated in Figure 1.16. The area

around the the antenna is divided into four regions. The antenna itself (I), the vacuum region

(II), a non-propagation region (III), and a propagation region (IV). The vacuum cannot support an

electrostatic wave, and so the field in the vacuum decays exponentially. The first region of plasma

is very low density, and does not support a cold plasma wave. This corresponds to the region where

P > 0, from the cold plasma analysis. It should be noted that width of this layer is likely to be

quite small as P = 0 occurs (at 800 MHz) to a density of ncrit = ω
2
me�0/e

2 ≈ 8× 10
15

m
−3, and

the smallest density measured at MST’s edge is about 1 × 10
17

m
−3. The far edge of this layer,

the point where the evanescent plasma mode turns into a propagating mode (P = 0) is called the

critical layer. What we expect from this simple picture is the farther the critical layer is from the

antenna, the more the mode will decay before coupling, and the less power will radiate into the

plasma.

Difficulties with the critical layer arise in high confinement plasmas as the plasma column is

observed to “pinch” inward, away from the antenna. As this work will show, these plasmas are

of the most interest to us, so it is vitally important to mitigate the effect of this pinching, without

disturbing the plasma stability. It is observed in these high confinement discharges that fueling
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Figure 1.16: Cartoon of antenna coupling. There are four regions in this problem, the slow wave

structure (I), the vacuum between the plasma and the antenna (II), the region of the plasma

without wave propagation i.e. cold plasma P > 0 (III), and the full propagation region

(IV).
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with the main MST puff valves leads to a confinement degradation, though the reasons behind this

are not well understood. Experiments run on JET [51] indicate that edge fueling can improve slow

wave coupling when the local plasma density is low. Some similar coupling studies have been done

on MST, including some studies looking at plasma edge fueling. [52] Unfortunately, these exper-

iments (while promising) were run with the Mark II lower hybrid antenna which did not have the

diagnostic capabilities of the Mark III lower hybrid antenna. Because of these less sophisticated di-

agnostics this work did not allow for sufficient understanding of coupling dynamics, and therefore

could not distinguish between coupling improvement due to doping and coupling improvement

due to plasma destabilization. Both the problem and the solution are not well understood.

1.5 Non-Local Ohm’s Law

One of the more intriguing effects of the stochastic diffusion mentioned in Section 1.2.5 is

the breakdown in the localization of Ohm’s law with respect to flux surface averaged fields. In

traditional derivations of Ohm’s law, the presence of an electric field is observed to create a particle

flow, as charged particles are accelerated by the Lorentz force. The acceleration from the electric

field is resisted by drag imposed on the electrons from Coulomb collisions with other charged

particles in the medium in which the electrons are traveling (a plasma in this case). The net effect

of this is represented by a scalar relationship between the electric field and current (this becomes a

tensor relation when anisotropy due to magnetic field is taken into account), with resistivity being

the relational constant, derived by applying these assumptions to the Boltzmann equation.

It is important to exercise semantic caution when discussing this effect. To clarify this point, the

plasma can be modeled with a litz wire. A litz wire is a bundle of insulated wires braided together

in a random fashion. This is can be thought of as a simple model of field line stochasticity, as (in

a stochastic plasma) electrons are bound to follow magnetic field lines to the first order (hence the

insulation), and like wires, they cannot cross directly, they can only wrap around one another. A

radially dependent potential is applied to one end of the cable bundle and the other end is grounded.

In this case, the standard, local conception of Ohm’s law (simply E = ηJ) holds. What breaks

down is our interpretation of the term local. That is to say, the electric field that determines the
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current at a given point in a wire is dependent on the potential on the ends of that wire, and any

inductive field from the neighboring wires. It is not accurate to claim that an average of the electric

field at a given radius represents the local field at any point at that radius. It is likely not even a

particularly good approximation. This insight can be applied to a stochastic plasma. Unlike wires

however, it is experimentally difficult to determine what measurements occur on connected field

lines. Therefore, from a diagnostic standpoint, this picture is abstracted to some extent, and rather

than imagining a number a field lines that have a definite trajectory in real space (which is what

occurs in the actual system), the model of a random walk of field lines is employed. The transfer

of momentum is conceived of (in some average sense, as described below) as a diffusive process

rather than a direct consequence of following a somewhat erratic path. It is only in this context that

Ohm’s law can be described as non-local.

Rechester and Rosenbluth showed [53] that in a plasma with large overlapping magnetic per-

turbations, field lines are well described by the classic random walk model. Specifically, the radial

deviation of the field lines is given by the formula

�(∆r)
2� = 2LDm (1.57)

Where �(∆r)
2� is the average of the square of the radial displacement of a field line given a step size

of L along the field line. The coefficient Dm is related to the size of the magnetic perturbations in

the plasma. The actual magnitude of this term is dependent on the interpretation of the correlation

length in Rechester-Rosenbluth diffusion, and is given by [54]

Dm = Λ

�
�br�
B

�2
1

(1 +Λ /λ)
(1.58)

(1.59)

Our model assumes that the collisional mean free path λ is much larger than the correlation length

Λ, which we assume must be smaller than the minor radius. This means that Dm = 10
−4

m

corresponds to a radial field that is about 4% of the total field magnitude using the somewhat

pessimistic value of Λ = a the minor radius.

A corrected Ohm’s law can be derived from the Boltzmann transport equation to illustrate the

difficulties posed by the diffusive assumption and non-localized complication. The full Boltzmann
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transport equation is

∂f

∂t
+ v · ∇f +

qE + qv ×B

m
· ∇vf =

∂f

∂t

����
coll

, (1.60)

and (when the equation is solved for all plasma species) describes without approximation, the state

of all the particles in the plasma. This equation can be simplified by dividing it into a Maxwellian

distribution and a perturbed distribution, i.e., f = f
(0)

+f
(1) where f

(0) is a Maxwellian and f
(1) is

a modification to the Maxwellian. Recall that the Maxwellian by definition solves the Boltzmann

equation without the additional force term. So without loss of generality

∂f
(1)

∂t
+ v · ∇f

(1)
+

qE + qv ×B

m
· ∇vf =

∂f
(1)

∂t

����
coll

, (1.61)

Because electrons are constrained to follow wandering field lines, they will radially transfer

momentum at a rate proportional to their velocity. Jacobson and Moses [55] argue that the contri-

butions of this momentum transfer can be accounted for in the Boltzmann equation by averaging

the convective term (v · ∇f ) and the magnetic portion of the Lorentz force [(q/m)v ×B · ∇vf ]

over the spatial scale of the wandering magnetic field lines. Assuming the collision length is

much larger than the correlation length (related to the amount of distortion experienced by field

lines), this transport term takes the form of a Fick’s law like diffusion with the parallel velocity

dependence predicted by Rechester and Rosenbluth. In this simplification of the Boltzmann equa-

tion implicitly requires the assumption that the collision length is much larger than the correlation

length . This gives a kinetic equation (for large spatial scales) of

∂f
(1)

∂t
− eE�

m

∂f
(0)

∂v�
=

∂f
(1)

∂t

����
coll

+ |v�|
∂

∂x
Dm

∂f
(1)

∂x
. (1.62)

Taking the Krook approximation (that collisions can be represented by a collision time such that

∂f/∂t|coll = −f1/τ ), and solving for a steady state solution for f1, we get

f
(1)

= τ
eE�

m

∂f
(0)

∂v�
+ τ |v�|

∂

∂x
Dm

∂f
(1)

∂x
(1.63)

Finally the current density can be calculated by usual formula

J� = −
�

ev�fd
3
v = −e

�
v�f

(1)
d

3
v + Jdrift (1.64)
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where Jdrift is the current from the drift velocity of the electron species. Plugging in the value of

the perturbed distribution (equation 1.63), we get

J� = −e

�
v�τ

eE�

m

∂f
(0)

∂v�
d

3
v − e

�
τ |v�|

∂

∂x
Dm

∂f
(1)

∂x
d

3
v + Jdrift (1.65)

To put this into simpler terms, we define

η ≡
��

v�
τe

2

m

∂f
(0)

∂v�
d

3
v

�−1

(1.66)

making our final Ohm’s law

ηJ� = E� + η

�
ev�τ |v�|

∂

∂x
Dm

∂

∂x
f1d

3
v, (1.67)

For non-stochastic discharges, such as high confinement MST discharges and tokamak plasmas,

this nonlocal portion of Ohm’s law is term is fairly unimportant. This is mainly because the

diffusion coefficient is relatively small, and (more importantly) it does not carry with it an extra

factor of parallel velocity [56, 57]. This extra weighting means fast electrons are preferentially

diffused. The effects of the this diffusive element of Ohm’s law have been studied both numerically

[58] and analytically [54] with assumed current profiles in cylinders (although the profile in the

numerical treatment was allowed to evolve). The effects are seen in Figure 1.17

1.6 Objectives of this work

The main body of this work seeks to address three essential questions for kinetic modeling and

lower hybrid current drive on the RFP. Each of these has secondary questions associated with it.

• Does the Fokker-Planck Model provide a reasonable representation of RFP plasmas?

Inductively stabilized plasmas are shown to be well described by Fokker-Planck Models.

What problems arise when considering Standard RFP discharges? Can Enhanced confine-

ment discharges be described accurately? Can Fokker-Planck Modeling predict the diffusive

portion of Ohm’s law? How does this compare with theory?

• How much LH power is needed to drive the required amount of stabilizing current?

What range/types of discharge is LH good for? Can LH drive sufficient current even when
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Figure 1.17: The effect of diffusion on parallel current, using the model from Martines [54] and

MST like electric field and density profiles. Notice as diffusion is increased, edge current

will eventually run opposite the edge electric field. The black line is the current profile

assuming Spitzer resistivity.

radial diffusion is taken into account? Can the required amount of current be driven with

a physically realizable system? How is this effected by using a realistic launch spectrum

instead of a single ray? What physical effects are important for LH deposition?

• Can antenna coupling be controlled in the RFP? What are the primary impediments to

antenna coupling? Can these be overcome without compromising the plasmas under consid-

eration? What are the primary constraints on the conditions of the plasma edge?
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Chapter 2

Experimental Setup

2.1 The Madison Symmetric Torus

This work was done at the Madison Symmetric Torus (MST), a world class RFP facility lo-

cated in Madison, Wisconsin. The MST is a long running plasma physics experiment, having

operated continuously for more than 20 years. MST is involved in a large number of basic plasma

science experiments, with applications to astrophysics and fusion energy science. Figure 2.1 is a

photograph of the MST machine area. A rundown of typical parameters is given in Table 2.1.

MST Parameters

Major Radius 1.5 m

Minor Radius 0.52 m

Plasma Current 200− 600 kA

Core Electron density 0.4− 2× 10
19

m
−3

Core Electron Temperature 200− 2000 eV

Core Ion Temperature 100− 1000 eV

Magnetic Field on Axis 0.3 - 0.6 T

Edge Magnetic field 0.1 T

Plasma β 5-10 %

Table 2.1: Approximate experimental parameters in MST

Unlike many other plasma experiments, MST’s vacuum vessel plays a vital role in MST oper-

ations beyond providing a low pressure environment [59]. The close fitting shell stabilizes surface
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Figure 2.1: A picture of the Madison Symmetric Torus. The Lower Hybrid antenna is below the

boxport on the left side of the picture, and the X-ray array can be seen on the box port on

the right side of the picture.
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instabilities. Image currents on the inner surface of MST’s shell passively provide the vertical field

which stabilizes the hoop force. Finally the toroidal field is formed by passing current through the

shell of MST. Because of these vital tasks performed by the shell, MST cannot have large holes

bored in it because of the field errors that arise. This is an important constraint for RF experiments

since it provides a limitation to the usage of waveguides.

2.1.1 Operational Modes

MST has several different operational modes, of which the most interesting for this work

are standard RFP mode, Enhanced Confinement mode and Pulsed Poloidal Current Drive mode

(henceforth Standard, EC and PPCD respectively). Standard plasmas are traditional RFP plasmas

as described in the introduction. Experimental profiles for standard plasmas are shown in Figure

2.2. PPCD and EC are discussed in detail below.

2.1.1.1 Pulsed Poloidal Current Drive

In an attempt to stabilize RFP plasmas, a secondary inductive circuit has been attached to MST.

This circuit is used to induce an additional poloidally-directed electric field, after a shot is already

underway. This in turn leads to reduced magnetic fluctuations, reducing the effect of the MHD

dynamo. [11] These so called Pulsed Poloidal Current Drive (PPCD) discharges are shown to have

improved confinement characteristics, hotter electron and ion temperatures and reduced magnetic

fluctuations. [10] Additionally, hard x-ray diagnosis has been used to determine that transport is

velocity independent in PPCD plasmas, [60] implying reduced stochastic field line wandering, and

possibly restored flux surfaces. PPCD plasmas provide good experimental evidence of the theory

of RFP tearing mode stabilization using current drive. Unfortunately the current driven in this

manner is inherently pulsed as induction is used, and so it is not acceptable for the very long pulse

lengths, usually considered required for power plant operations. Profiles from PPCD plasmas are

shown in Figure 2.3.
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Figure 2.2: Reversal Parameter (Bφ(a)/�Bφ�), n=4 mode activity (a mode which does not have

an m=1 resonant surface), core line-averaged density and core temperature for a typical

MST discharge. Core temperature is typically between 200 and 350 eV. A regular sawtooth

pattern is seen with a period near 8 ms, though this is not particularly regular. Fast electrons

are lost at the peak of the sawtooth. This discharge (the most studied) had a plasma current

of 400 kA.
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Figure 2.3: Pertinent profiles form a PPCD discharge. Plasma temperature is typically between

800 and 1000 eV (for 400 kA PPCD plasmas). Density typically increases in the core, and

the plasma column is observed to pinch inward. Magnetic activity is greatly reduced. The

bottom plot is a contour plot of the density across the major radius from interferometry.
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2.1.1.2 Enhanced Confinement

Like the tokamak’s H-mode, MST has an operational mode that is associated with anomalously

improved temperature and reduced magnetic mode activity. This so-called Enhanced Confinement

(EC) regime is shown to have strong E × B flow shear [61] as is observed in tokamak H-mode

plasmas. [62] The reduction in mode activity in EC plasmas is strongly correlated with quasiperi-

odic m = 0 MHD activity (denoted by Chapman as ”Small Dynamo Events”), separated by quiet

periods. Enhanced Confinement plasmas are observed in MST when running low densities and

deep reversal. The thresholds for this transition vary with plasma current. Enhanced confinement

is observed to onset at densities of around 6 × 10
18

m
−3 and a reversal parameter (F) of around

−0.3 for 0.4 MA plasmas, and are seen to become more dramatic as F or the density are reduced.

It has not been previously established whether EC plasmas exhibit stochastic transport in the same

way that standard plasmas do. The electron temperature increases observed in these plasmas are

(in the best conditions) comparable to those achieved during PPCD discharges. The large scale

sawtooth oscillations seen in standard plasmas are seen in EC plasmas however, which is found to

limit their temperature. EC plasmas have been observed to have a density pinch in the same way

as PPCD plasmas. Plasma profiles for EC plasmas are displayed in Figure 2.4.

2.1.2 Diagnostics

MST has a comprehensive diagnostic suite, only a portion of which are discussed here. The

following diagnostics provide crucial constraints for Grad-Shafranov reconstructions which are

used extensively in this work.

2.1.2.1 Faraday Rotation Diagnostic

Faraday rotation is used help constrain the magnetic field profile. A laser is fired directly down

into the MST plasma. It travels nearly perpendicular to the plasma magnetic field. There are two

wave modes available to electromagnetic waves in plasmas, with different polarizations and phase

velocities (these were discussed in the last chapter). When a laser of appropriate wavelength hits

the plasma, it decomposes into an R-mode wave and an L-mode wave. These waves have different
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Figure 2.4: Profiles from a EC discharge. Core plasma temperature is seen to increase to well

above the levels seen in standard plasmas, sometimes reaching that seen in PPCD plasmas,

although the density is quite a bit lower. Magnetic activity is generally confined to small

bursts separated by relative quiet periods. Again, the bottom plot is a density profile from

the FIR interferometry diagnostic. Notice the decay in the density.
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dispersion relations, and consequently, travel through the plasma at different rates (the R-mode is

faster). The discrepancy in the speeds of the waves leads to a shift in polarization when the wave

recombines on the other side of the plasma. From this, the magnetic field can be inferred. MST is

equipped with an 11 chord far-infrared laser system which can be used for Faraday rotation. The

chords of this laser system are vertically oriented and span the torus midplane from major radius

of 1.18 m to 1.93 m. This translates into coverage of 75 cm of MST centered near the presumed

magnetic axis, as shown in Figure 2.5. [63] This beam can be run as a traditional interferometer

to measure high frequency (> 250 kHz) density fluctuations [64], or as a polarimeter [63]. More

recently the system has been used to measure current profile evolution and the Hall dynamo effect.

[65, 66]

Figure 2.5: A poloidal cross section of MST showing the FIR chords.

2.1.2.2 Motional Stark Effect

The motional Stark effect (MSE) is used as a diagnostic for direct measurements of the plasma

magnetic field on axis. [67] The Stark effect is a perturbative quantum effect, whereby an applied

electric field breaks the spin degeneracy of the excited states of the atom. For the plasma diagnostic,

a beam of neutral particles is injected. When considered in the atom’s frame of reference, the lab
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frame’s v ×B Lorentz force appears as an electric field. Stark splitting is calculated in this frame

(hence the term “motional”) and then boosted into the lab frame, where it is measured. Thus by

determining the polarization of the emitted light near the Hα Balmer line, the magnetic field can be

determined. In high field devices, this is sufficient on its own, however in a lower field device such

as MST, the line separation is not large compared to the profile broadening due to finite temperature

effects and large sampling volume. Thus a more complicated model must be used. [68] In practice

this means that the MSE spectrum is fit with a model Doppler broadened profile. This diagnostic

is unique in the RFP community, and it provides vital information on RFP dynamics due to the

pivotal role of magnetic perturbations. This work only concerns itself with the longer time scale

behavior of the magnetic field for Grad-Shafranov reconstructions.

2.1.2.3 Thomson Scattering Diagnostic

Plasma temperature is measured using a Thomson scattering system. [69] The process of

Thomson scattering can be understood with a fairly simple quasiclassical model. When photons

are fired at an electron, they are reflected off at some angle (more properly quantum physics tells

us they are absorbed and re-emitted). When this scattering occurs, for a static electron, the emit-

ted photon will have a wavenumber equal to the projection of its original wave number along the

scattering chord (see Figure 2.6). Motion causes a Doppler shift in the emitted light. When a laser

is applied to a Maxwellian distribution, the reemitted spectrum will have a Gaussian shape, and

the width of that Gaussian will be related to the temperature. Optical ingenuity can be used to

isolate photons from a small volume. Thus the temperature across the plasma can be determined.

The core of MST’s Thomson scattering system is a pair of Nd:YAG lasers. Recent advances in the

system allow [70] for a total of 30 2 J pulses at a rate of 1-12.5 kHz [71], allowing for multiple

well diagnosed reconstructions [72] of MST discharges when combined with FIR data. The data

from the Thomson scattering system is vital to this work as both input for reconstructions and as

a measurement of absorption regions. The Thomson lasers enter MST vertically from the top, and

a lens is used to focus and disperse photons coming from different radii. These photons are then

picked up by fibers and fed into polychrometers for spectral analysis (see Figure 2.7).
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Figure 2.6: Here an incident wave (on the left) scatters off of a charged particle. if the the particle

is stationary then the emitted photon is just a projection of the incident photon. Particle

motion causes a doppler shift in the emitted light. The aggregate of this Doppler effect

on an entire distribution gives information about the thermal portion of the distribution

function. This image is in the public domain.
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Figure 2.7: The viewing chords of the Thomson scattering diagnostic on MST. The laser scatters

at various points along a vertical line and is picked up by fibers and fed to polychrometers

where the data is analyzed, and the temperature at different radii is determined.
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2.1.3 Reconstructions

The temperature, density and magnetic field measurements from these diagnostics are lever-

aged to gain a more complete understanding of the configuration of the plasma in an MST dis-

charge. They can be combined to predict F and P profiles, which constrain the current profile in

the plasma by the Grad-Shafranov equation. It should be noted that Grad and Shafranov’s model

ignores the effects of large magnetic fluctuations, which are an important factor in standard RFP

discharges. However, it is generally accepted that any oscillations in the plasma must be centered

around a Grad-Shafranov equilibrium, otherwise the plasma will collapse fairly rapidly. It must be

stressed that reconstructions are based on real, measured data, and therefore, they can be consid-

ered as at least an “Educated Guess” splining routine, if not completely accurate. As will be shown

later, standard plasmas are not the most important discharges for rf experiments.

MSTFit [73, 74] is a plasma equilibrium code which reconstructs the state of the plasma at a

given time using experimental data to constrain the fit. A close fitting conducting shell is assumed,

as is required for RFP stability against external mode activity. The grid is initialized (usually with

one of the cylindrical analytic models of RFP discharges). This is used to reconstruct values for F

(the toroidal field times the major-radial coordinate R) and p, the plasma pressure, as well as the

poloidal flux ψ. The grid solution is then adjusted in order to minimize a chi-squared goodness-of-

fit statistic. The results are then transposed to a rectangular grid for use in other codes.

2.1.4 X-ray Spectroscopy

X-ray observations can be used to study electron bremsstrahlung. X-ray detectors aim to deter-

mine the emission from an infinitely thin column of plasma (traditionally called a pencil beam). In

practical experiments, this is accomplished by placing a detector and a series of apertures near the

plasma. A realistic detector will not see a pencil beam but will see a cone whose size is determined

by the size of the apertures and the distance from the plasma. This cone is characterized by a value

called etendue (G), which is a Lagrange invariant for any optical system with two apertures. [75]

An example of this setup is given in Figure 2.8
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(a)

(b)

Figure 2.8: A cartoon of the x-ray detectors. Figure (a) shows a typical setup. The aperture nearest

the the plasma is called the collimator and the aperture nearest the detector is called the

pupil. Figure (b) shows the observation cone of a given aperture setup
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MST is equipped with an array of single photon x-ray detection equipment, utilizing either the

XR-100CR from Amptek for soft x-ray detection, or the ev-CZT detectors from eV Microelec-

tronics (now EI Detection and Imaging Systems, a division of Endicott Interconnect Technologies,

Inc.) for the detection of hard x-rays. These are primarily located on a boxport flange at 135
◦

toroidal. This boxport allows detection of x-rays at many different radial locations (see Figure

2.9). Each detector chain consists of a PIN photodiode operated in avalanche mode, a pream-

plifier, and an amplifier. The diode material determines the sensitivity of the crystal at different

x-ray energies, Silicon (Si) for x-rays from 3-10 keV and Cadmium Zinc Telluride (CdZnTe) for

x-rays from 10-150 keV. Although there is some variation in the specifics, the general operation

of all avalanche PIN photodiodes is essentially the same and is described in many references, for

example [76], and is summarized here.

A diode is placed in the path of photons in the correct energy range. A bias is applied to the

diode so that it is nearly in breakdown. An incoming x-ray interacts with the photoactive material,

either through the photoelectric effect or Compton scattering, creating a hole-electron pair in the

intrinsic semiconductor layer. The hole and electron are drawn in opposite directions by the electric

field. During this process, the hole and electron will collide with the atoms of the crystal, releasing

electrons or holes in proportion to their energy. These will then be accelerated by the field and

the process will repeat, leading to an avalanche of holes and electrons. The total charge released

in this avalanche is proportional to the energy of the original electron/hole pair, and therefore to

the energy of the incoming photon. The diode is then connected to a charge sensitive preamplifier

which conditions the signal into a more useful form. This preamplified signal is then shaped with a

Gaussian pulse shaper and digitized. Raw data from the soft x-ray detector are presented in Figure

2.10. A fitting routine determines the time center and energy peak of each individual photon. The

results are used for spectroscopy, using the scheme outlined in §3.3.2.

X-ray spectra have traditionally been analyzed in terms of intensity, i.e. total power generated

by x-ray emission within a certain energy range. This can be attributed to the limitations of technol-

ogy. In the past, most commercially available x-ray detectors were integrated, that is they produced

an output current proportional to the total amount of power deposited within the diode at a given
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Figure 2.9: Hard x-ray viewing chords shown in a cutaway, and detectors in place. Marked with the

viewing chords is the geometric axis (in blue) and the presumed magnetic axis at Rmaj =

1.56m. Detector positions are numbered starting with 1 at the inboard-most chord. Chord

8 looks at the presumed magnetic axis.
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Figure 2.10: Raw data for the Amptek soft x-ray detector. Figure (a) shows raw data with many

pulses. Figure (b) shows an individual x-ray, with the time relative to the time of incidence.

Individual points from the digitizer are also plotted. Note the change in scale.
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time. With a system of this type, energy discrimination can be achieved by using filters of various

materials and thickness, with known transmission properties. Thus, an array of x-ray detectors can

detect an entire spectrum, assuming they are looking at the same plasma volume. Alternatively,

many shots can be ensembled together with the filters being altered in order to produce a full,

energy resolved spectrum. Since there is no way to determine the energy of individual incoming

photons within a given energy bin, the only rational way to analyze these data is to consider the

total deposition power over a certain period of time in a detector binned for certain energies.

More recently, single photon detectors have become available on the commercial market. Al-

though the data can be readily analyzed using a similar method to the integrated detector (by

binning the photons detected and summing their energies), we are free to interpret the data in a

variety of other ways. The method of most relevance to this work is calculation of the number flux

(or counting flux, henceforth flux), i.e., the number of photons contained in a given bin defined in

energy and time. These two methods must be compared for relative accuracy. This point will be

returned to in Section 3.3.2.

There is a major caveat that merits further study. Both of the above mentioned interpretations

rely on the ”pencil-beam” assumption. That is, we assume that the emission coefficient is constant

regardless of the size of the detection cone (i.e. doubling the etendue of the optical system will

merely double the detected emission). This assumes that our viewing cone is smaller than any per-

turbations in the plasma. While likely true in some average sense, this can feasibly be a significant

source of error which will be amplified for setups with larger etendues.

2.2 The Lower Hybrid System

Although the focus of this thesis is on the interactions of electrostatic waves with plasmas, the

challenge of providing hundreds of kilowatts of high frequency rf power with a precisely controlled

wave number presents its own difficulties and requires some innovative solutions. The electrical

system at the MST facility cannot support the service required to power a full 800 MHz trans-

mission system directly. In order to facilitate experiments therefore, energy must be stored and

quickly discharged. This was accomplished by building a pulse forming network (PFN). The PFN
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provides a high voltage DC signal to the klystron which generates the rf for the system. The lower

hybrid system is therefore naturally divided schematically into the power generation system and

the rf transmission system.

2.2.1 Support Systems

2.2.1.1 Power System

The lower hybrid PFN (Figure 2.11) is an LC network used to supply a DC square pulse as a

power source to the system klystrons. When charged to 100 kV the capacitors hold a total of 70 kJ

which is discharged over the course of 30 ms, leading to a power supply rate of about 2.3 MW.

This power supply is designed to power three klystrons with a 40 kV 20 A pulse and so there

is a water resistor in parallel with the current klystron to dissipate the extra energy. The PFN is

controlled by a novel switch stack made up of thyristors. [77,78] When a trigger is sent to the PFN,

the first (main) thyristor stack is triggered and the stored energy is discharged into the klystron and

the water resistor. If the current from the PFN spikes above the expected amount (indicating an

internal arc) or the optical arc detector inside the klystron cavity sees an arc then the crowbar stack

will discharge in order to prevent further damage.

2.2.1.2 The Klystron

The klystron used primarily in this work is a Varian 7955 S (S stands for super), reconditioned

by Freeland Products to provide higher output power. A schematic of a klystron is shown in

Figure 2.12a. Before LH operations, the filament is turned on. This provides a small number of

hot source electrons, which strike the emission medium and liberate many times more electrons,

which are relatively low energy, but exist for a reasonable amount of time because the klystron

interior is evacuated. When a shot occurs, the large DC voltage supplied by the PFN is applied

between the cathode and the modulating anode, accelerating the electrons into the main cavity

section. This high velocity electron beam is held focused by an axial magnetic field. A low power

rf input signal is applied to the first cavity. As the AC signal enters the cavity walls, an electric

field is induced between the left and right sides of the cavity. This causes bunching of the electron
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Figure 2.12: (a) shows an operational schematic of a klystron. Notably absent are the magnetic

field coils which provide an axial field which focuses the electron beam. Figure (b) shows

a cutaway view of a cavity
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beam which is progressing rapidly down the center of the klystron. When the slightly bunched

beam enters the second cavity, the electrons induce a voltage at the cavity entrance. The entrance

is capacitively and inductively coupled to the exit. The magnitude of capacitance (and to some

extent the inductance) can be altered by moving the tuning plungers inward or outward. If the

capacitance and inductance are tuned correctly, then the voltage peak will reach the cavity exit in

resonance with the bunched electrons, causing further bunching. This process is repeated in each

of the cavities until the electrons are extremely bunched. Because the field induced in the cavity is

proportional to the beam current, a higher DC voltage will lead to a larger amount of bunching. The

bunched beam is passed through a loop, inducing a high power, quickly oscillating voltage wave.

The beam is then dumped into the collector, which is simply a large hunk of metal surrounded

with a great deal of copper to aid in cooling. This system is very robust, and can be run rather

hot (they are typically “cooled” with high pressure steam at 400
◦ F). Because of this robustness,

and the short pulse duration (∼ 30 ms), the klystron can be overdriven, meaning the applied DC

voltage is substantially higher than the specification, so long as the resonant cavities are tuned for

such operation.

2.2.1.3 Lower hybrid transmission system

The signal input to the klystron is a fairly low power (< 10 W) rf signal generated by a bench

sized signal generator (an Anritsu MG3641N), which is amplified by a 50 W amplifier. The input

signal can be modulated, and in this way the power supplied to our antenna can be varied dramat-

ically during a shot. This functionality is only used in practice to turn the antenna off for periods

of time and to allow for a ”soft start up”, gently ramping the power up to maximum instead of

dumping the full power immediately in order to prevent arcing in the antenna. The rest of the

transmission system is sketched out in Figure 2.14. Power from the klystron is directed to a circu-

lator, which efficiently moves the power around once clockwise. This is done so that any reflected

power can be redirected away from the klystron (in order to protect it) to a 50 Ω dummy load,

essentially a large, cooled resistor which is capable of dissipating up to 300 kW of power. From

the circulator, the power is brought into the MST machine area where the ground is stripped to



73

Klystron

Transmission Line

Circulator
50 Ω Dummy Load

DC Break

4 Port Switch

Antenna

50 Ω Dummy Load
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prevent a ground loop. This is followed by set of bidirectional couplers, power diagnostics which

are capable of separately measuring the forward going and backward going waves, allowing us to

measure both the input power to the antenna, and the power reflected from the antenna. Power

then travels to a 4-port switch, allowing us to control the direction that power is flowing down the

antenna face. Whatever fraction of power is not coupled to the plasma or reflected at this point is

fed into a dummy load (after being measured). This is done to prevent a reflection, which would

cause the antenna to launch a wave in the direction opposite the main launched wave, canceling

out a portion of the driven current.

2.2.2 The Interdigital Traveling Wave Lower Hybrid Antenna

Power is coupled to the plasma using an interdigital traveling wave antenna. This antenna

is similar in design to the stripline and combline antennas used on several other fusion devices

[79, 80], but is somewhat novel in many ways. A closer analogue is the bandpass filter described

by Cristal. [81] The structure of the slow wave antenna can be seen in Figure 2.15. It is composed of

an array of cylindrical molybdenum rods (“digits”), each attached to opposite sides of the antenna

structure (hence “interdigital”). There is a copper back plane which has been coated in silver, and

copper side rails. A copper aperture is place over the antenna face to provide a second ground

plane, and has a molybdenum cover to protect it from damage. Each digit has an open side and

a grounded side, and thus can support a wave of a fixed wavelength, just as a length of rope can

sustain a standing wave when one side is fixed. Power is transmitted down the face of the antenna

by capacitive and inductive coupling of neighboring rods, and of rods to the ground plate, which

sets up a perturbation on the antenna face. The wavelength down the antenna’s length is fixed

by the spacing of the digits. The cross face wavelength is fixed by the length of the digits. The

large copper sections at either end are impedance matching elements, meant to ease the transition

from the load in the transmission line to the load on the antenna. It is interesting to note that

the antenna cannot support a DC voltage, as there is a direct electrical connection between the

transmission line’s center conductor and outer conductor. A more detailed explanation of basic

antenna operation can be found in Kaufman. [52]
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Figure 2.15: Slow wave antenna structure, shown partially completed (a) and in exploded view (b).
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2.2.2.1 Theoretical launch spectrum

The spectrum of waves launched from this type of antenna design is easily predicted. A circular

grid representing a poloidal slice is constructed. The electric field is assumed to be zero all around

the grid, except where the antenna aperture is. For the traveling wave design, as power moves

down the face of the antenna, a fraction of it is coupled to the plasma. Thus the electric field

magnitude is assumed to decay exponentially from one side of the aperture to the other in a plasma,

and is assumed to not decay in a vacuum. In order to compare this scheme with, say the Brambilla

waveguide [50] scheme mentioned in the last chapter, we must construct some meaningful statistics

which describe the spectrum. Here I introduce Directivity, Unanimity, and Centrality. Each is an

important efficiency parameter. A perfect LH system should have a reasonably narrow peak (not

infinitely narrow) centered around a single n� that corresponds to the desired launch n�. The

broadness of the peak (Centrality) can aid in damping as it distributes the resonance region, but if

the peak is too broad then power is lost to less desirable waves. For the same reason, the relative

magnitude of the primary peak to the secondary peaks (Unanimity) is also an important quantity.

Finally and perhaps most importantly, any power launched counter to the specified direction (e.g.

n� > 0 for experiments attempting to launch n� < 0) will drive current against the desired current,

and therefore is specifically deleterious. Therefore, we must also be interested in the relative

amount of power on the desired half of n� space (Directivity).

The theoretical curves for our antenna and four and ten septa Brambilla-type wave guides

with π/2 phasing firing in a vacuum are plotted in Figure 2.16, and the various parameters are

summarized in Table 2.2.

2.2.2.2 Spectral Measurements

The Mark III MST Lower hybrid antenna (the current incarnation, so named because it replaces

two previous versions) is equipped with 20 pickup loops set into the antenna backplane. These

loops are aligned to pickup the electric field in the down-face direction. The 800 MHz signal is

brought from the antenna to phase electronics which downsample the data to a more manageable

frequency. This is accomplished by the use of a set of rf mixers (one for each pickup loop), which
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Figure 2.16: The spectra for various antenna types. The interdigital antenna is in black, the 10

element waveguide is in blue and the 4 element waveguide is in red. The waveguide is seen

to have broader main peaks and more secondary peaks, leading to a reduced total power in

the main peak.

Antenna Directivity Unanimity Centrality Secondary Secondary

Peak n� Peak Power

Interdigital 98.4 % 90.3 % 0.924 8.79 2.3 %

Brambilla 4 π/2 76.3 % 71.4 % 3.2 -20.9 12.1%

Brambilla 10 π/2 79.5 % 71.0 % 1.33 -22.3 10.9%

Brambilla 10 π/4 80.3 % 78.4% 2.42 -47 5.08 %

Table 2.2: A Comparison of various waveguide setups to the interdigital antenna. n� was chosen

to be near 7. The interdigital line antenna is seen to have better directivity, unanimity and

centrality. Additionally, the secondary peaks are clustered near the primary peaks, which

is preferred to the waveguide spectrum.
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take two high frequency signals in and output the product of the two signals. One of the input

signals is the pickup loop and the other is called the local oscillator, with a known power and

frequency. In the case of the MST LH antenna, the local oscillator frequency is 800.1 MHz. The

resulting signal (as shown in Figure 2.17) consists of two waves, one at a frequency of 1600.1

MHz and one at a frequency of 100 kHz. A high pass filter is then used to eliminate the high

frequency component. The resulting signal is then processed in order to determine the relative

power and phase at each loop. Relative phase is used because the phase of the local oscillator is

not recorded (and phase is only defined up until an arbitrary constant), and relative power is used

because the absolute pickup efficiency of the loops is unknown (though they are calibrated against

one another).

The phase and power are used to reconstruct the relative electric field along the face of the

antenna. The signal measured from the pickup loops is an AC voltage wave, so the power is

proportional to the square of the magnitude of the field at the pickup face. Thus we assume

that, if the relative phase and power measured are φl and Pl, Elf ∝
√

Ple
ıφl . The electric field

is Fourier transformed so that the parallel launch spectrum can be seen, and the loop power

value is fitted with an exponential curve to help determine the coupling efficiency, the parame-

ter α = (1/αohm + 1/αcoup)
−1, as will be discussed in §2.2.2.3. Figure 2.18 shows the the vacuum

spectrum measured from this technique compared with the theoretical vacuum spectra. The direc-

tivity, unanimity and centrality of the measured data are 95%, 88% and 0.989 respectively com-

pared with the theoretical values of 98%, 90% and 0.925. The difference should not be considered

significant.

The extra exponential decay present on the wave in a plasma is expected to distort the spectrum

somewhat. This is calculated in terms of damping angle, but is converted into an arc length (λdamp)

for spectral calculations. Significant distortion does not occur in the model until the arc length of

the damping parameter is comparable to the wavelength. Experimental measurements and the

corresponding theoretical curves are shown in Figure 2.19



79

loop

Vl cos (φl − ωat)

L. O.

VLO cos (φLO − ωLOt)

VLOVl cos (φLO − ωLOt) cos (φl − ωat)

= 1/2VLOVl [cos (φLO + φl − [ωLO + ωa] t) + cos (φLO − φl − [ωLO − ωa] t)]

Figure 2.17: The LH Phase electronics take a local oscillator signal (L.O.) and multiply the signal

with the 800 MHz signal from the pickup loop in the back of the antenna. The local os-

cillator is set to a known power and 800.1 MHz. The multiplicative rule of trigonometric

functions shows that this creates a high frequency and low frequency wave which are used

to calculate the relative phase and power at the loop.
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Figure 2.18: The vacuum spectrum of the antenna. The theoretical curve is in black and the

measurement is in red.
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Figure 2.19: Experimental (a) and theoretical (b) antenna spectra. The black curve is for λdamp ≈
20 cm, the blue curve is λdamp ≈ 6 cm, the green curve corresponds to λdamp ≈ 4 cm and

the orange curve represents λdamp ≈ 2 cm. For comparison, the wavelength at n� = 7 is

5.3 cm, and the aperture is 17.8 cm long.
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2.2.2.3 Radiated Power Fraction

The important figure of merit for LH experiments is the power radiated from the face of the

antenna. Radiated power for the traveling wave antenna is derived from the measurements of

forward (F), reflected (R) and through (T) power. The method of doing so has been a matter of

considerable debate due to uncertainty in representation of the Ohmic loss fraction. I will first

present the previous model and then introduce a more sophisticated model which will be used for

the remainder of this work.

The conservative (pessimistic) model assumes that the measured reflected power is reflected

from the far side of the antenna. Thus we assume that the amount of power detected has been

reduced by a factor of the Ohmic loss fraction as it propagated back through the antenna. Therefore,

in order to discover the true amount of reflected power, we must divide it by the Ohmic loss

fraction. Furthermore, we assume that all Ohmic losses occur instantaneously, before the radiative

portion of the antenna. So the total expression for radiated power becomes (with β being the power

radiation fraction)

Prad = βF −R/β − T (2.1)

It is further assumed that in a vacuum little or no power is emitted because our wave is elec-

trostatic, so the Ohmic loss fraction can be measured by measuring the power characteristics in a

vacuum, and solving equation 2.1 with Prad = 0, i.e.

β =
T +

√
T 2 + 4FR

2F
(2.2)

where we discard the negative branch since it is less then zero. This leads us to a radiated power

fraction of about 35%. This was the approach used by Kaufman. [52]

A more sophisticated model depends on exploiting the antenna geometry. We can safely as-

sume that the two most reflective parts of the antenna are the impedance matching elements at

either end, because that is where the wave experiences the most dramatic propagation barrier.

When a plasma is present, it seems reasonable to assume that only the impedance matching sec-

tion at the high power end of the antenna is relevant because, assuming they both reflect roughly
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the same power fraction, the power at the far end of the antenna is quite a bit lower due to wave

damping. Thus we can safely discard it.

We also reason that the Ohmic power loss is something that we can directly estimate. In order

to test this we use the lower hybrid test antenna, which is a replica of the antenna in the machine,

except that it is longer and has type-N feedthroughs. First the power attenuation through the test

antenna is measured, along with the reflection coefficient. In order to make sure the antenna isn’t

radiating, a copper cover is placed over the aperture. When this was done, new reflections were

setup within the antenna, and the antenna reflection coefficient went up, causing the transmission

to go down. The final test was to place a copper mesh in front of the antenna, as a second, hope-

fully less obtrusive method of preventing reflection. The results are shown in Table 2.3. The mesh

aperture appears to reflect less power, but we can deduce by the missing power fraction that either

complicated internal reflections are being setup, or that the mesh induces an electromagnetic com-

ponent, acting as a secondary antenna. We see that the aperture free setup has the least lost power,

which is interpreted to mean that the small radiation assumption is reasonable.

cover type T/F R/F Ploss/F

none 59.26 % 14.64 % 26.10%

solid 34.71% 35.57% 29.28%

mesh 34.23% 12.22% 53.55%

Table 2.3: The power measurements for the three different aperture setups. Ploss is the power that

is not accounted for by the two measurements (no radiation is assumed).

Using this result we attempt to build a better model. We assume the power decays exponentially

down the face of the antenna due to Ohmic losses at a constant rate. In plasma conditions, this is

assumed to be in addition to the losses from wave coupling. An initial reflection is also assumed

as discussed above. Therefore the power at the beginning of the antenna structure is F − R, and

the power at the end of the structure is T . The power along the structure (as a function of angle) is
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given by

P (θ) = P0Exp(−θ [1/αohm + (Θ (θ − θap1)−Θ(θ − θap2)) /αcoup]) (2.3)

where αcoup is the power coupling angular damping length, αohm is the Ohmic loss angular damp-

ing length, and Θ(θ−θ0) is the Heaviside function. It is also important to define the angular length

of the antenna, αant = 37
◦, and the aperture αap = 20.7

◦, as well as the angular positions of the

beginning and end of the aperture, θap1 = 7.7
◦ and θap2 = 28.3

◦. The power at the beginning of

the aperture is then given by

P (θap1) = (F −R)e
−θap1/αohm ≡ P1 (2.4)

at the end of the aperture by

P (θap2) = (F −R)e
−(θap2/αohm−αap/αcoup) ≡ P2 (2.5)

and the power that leaves the antenna is given by

T = (F −R)e
−αant/αohm−αap/αcoup . (2.6)

Notice that for a vacuum shot αcoup →∞, so

T = (F −R)e
−αant/αohm (2.7)

ln

�
F −R

T

�
= αant/αohm (2.8)

αohm = αant/ ln

�
Fvac −Rvac

Tvac

�
(2.9)

and for a plasma shot

αcoup =
αap

ln
�

F−R

T

�
− αant/αohm

(2.10)

To solve for radiated and Ohmic power, we deploy our damping assumption

dPohm

dθ
=

P

αohm

(2.11)

and

dPrad

dθ
=

P

αdamp

(Θ( θ − θap1))−Θ (θ − θap2)) (2.12)
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Therefore

Pohm =

�
θap1

0

P

αohm

dθ +

�
θap2

θap1

P

αohm

dθ +

�
θant

θap2

P

αohm

dθ (2.13)

Pohm = (F −R)(1− e
−θap1/αohm)

+P1
αcoup

αcoup + αohm

(1− Exp [−αap (1/αohm + 1/αcoup)])

+P2(1− e
−(θant−θap2)/αohm) (2.14)

For the radiated power it is only necessary to consider the middle integral since power cannot

be radiated where there is no aperture, so

Prad = P1
αohm

αohm + αcoup

(1− Exp [−αap (1/αohm + 1/αcoup)]) (2.15)

Using a high power vacuum shot (1081003017) and Equation 2.9, αohm is calculated to be

27.8 ± 0.2 degrees. It is possible to determine the angular power loss parameter α = (1/αcoup +

1/αohm)
−1 independently using the power/phase diagnostics in the back of the antenna. The re-

sults are presented in Figure 2.20. The agreement between the technique just outlined (the 0-D

technique) and the direct power measurements far exceeds expectations. This indicates that the

loop diagnostics (1-D) are not necessary for radiation measurements and could be left off of future

antennas in favor of robustness, although they provide a lower uncertainty for the radiated power,

and are also important for measuring the launch spectrum. This analysis leads us to two important

figures of merit for antenna coupling experiments, namely the coupling efficiency and the damp-

ing parameter. The coupling efficiency, defined as η = Prad/(F − Pohm) represents how much

of the available power has been launched into the plasma. Ohmic losses are excluded to make

interpretation simpler and more intuitive, however before dismissing them it should be noted that

they typically represent 30-40% of the applied power. While important for interpreting data for

a given experimental setup, it should also be noted that if the coupling efficiency is unacceptably

low for a given plasma setup, a longer antenna can be used. Therefore, we also consider the damp-

ing parameter (simply αcoup as defined above) because it is applicable to general antenna design

considerations.
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Figure 2.20: Shown in figure (a) is the damping parameter measured with the radiated power es-

timation (in black) and the antenna backplane pickup loops (in red), with great agreement.

The second plot shows the relative proportion of power for this particular shot. The blue

area represents the radiated power, the red area represents the Ohmic losses and the green

area represents the reflected power.
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Chapter 3

Kinetic Simulations and Radial Transport in the RFP discharges

Before examining the effects of lower hybrid excitation on RFP plasmas, it is important to

explore some key concepts about transport in RFPs. These will form the basis for studies involving

lower hybrid. The results discussed here will be revisited in the next chapter, because lower hybrid

excitation can be exploited to help resolve some of the questions posed below. RFP kinetics may be

investigated with the Fokker-Planck code CQL3D. Although interesting in its own right, the rf-free

distribution functions are vital to interpreting experimental data during rf operations. Moreover,

transport plays a vital role in the efficiency of fast electron based current drive techniques (such as

rf current drive). This will be discussed in more detail in the next chapter.

3.1 CQL3D

CQL3D is a code which models electron distributions in plasmas. In order to do this, a sim-

plified version of the Fokker-Planck equation (itself a simplification of the Boltzmann equation) is

employed. Three Maxwellian species are modeled (ions, electrons and impurities) along with one

species of electrons that is allowed to evolve. CQL3D is capable of modeling a non-Maxwellian

evolving ion species, but that was not done in this work in favor of numerical stability. The

Fokker-Planck equation is averaged over an electron gyroperiod, allowing us to couple the two

perpendicular directions, reducing the order of the equation in velocity space from three to two.

The equations are then again averaged over a bounce period, assuming zero banana width (how-

ever particle trapping effects are retained). Finally the distribution is assumed to be axisymmetric

and so can be averaged over a flux surface. This results in a 3 dimensional quasilinear model with
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the deceptively simple form

v�
∂f0

∂lB
= 0 (3.1)

∂f0

∂t
+ v�

∂f1

∂lB
= −qE�

me

∂f0

∂v�
+ C(f) + Q(f) + R(f) (3.2)

where lB is the bounce path, E� is the inductive electric field, and C, Q, and R are the major

quasilinear operators acting on the distribution f . f is ordered by the ratio of the bounce time (τb)

over the collision time (τcoll) such that O (fi) = (τb/τcoll)
i. Note that the velocity in this equation

(v�) is meant to represent the guiding center motion of electrons, as the convective term arising

from drift velocity has already been used by ansatz in the radial diffusion operator (covered in

the next section). C represents the Coulomb collision term, Q is the rf quasilinear operator, and

R is the radial diffusion operator. Here f is a function of ψ, a normalized radial-like coordinate,

v� and v⊥ and implicitly of time. Specifically, CQL3D uses the coordinates ψ, v (speed) and θv

(pitch angle). A sample speed - pitch angle grid is shown in Figure 3.1. The type of coordinate

used for ψ can be selected, and for these experiments the square root of the area of the poloidal

cross section of a given flux surface is used. Notice that if Shafranov shift and toroidicity are

ignored then this reduces to the normalized radius, r/a. CQL3D assumes up-down symmetry

(which is reasonable for MST because of its circular cross section) and axisymmetry. Magnetic

field information is determined by reading in a Grad-Shafranov equilibrium (generated by MSTfit).

Density and temperature are separately input, as is the effective ion charge, Zeff , given by the

formula

Zeff =

�
niZ

2
i�

niZi

, (3.3)

where the summation is over all ion species. Although this can be given any sort of profile through

a splining algorithm, it is held at a constant value across the plasma because it is not a well known

parameter, and many RFP profiles are observed to be fairly flat. CQL3D uses Zeff to determine the

concentration of the impurity species. The inductive electric field can either be specified or deter-

mined from the MSTFit equilibrium current profile (as discussed below). The electron distribution

function is divided into a Maxwellian component which is held fixed, and a general component

which is discretized onto the solution grid, and allowed to evolve. The total grid then has some
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Figure 3.1: A distribution function from CQL3D with the grid overplotted. The grid is normalized

(here it is normalized to the speed of a 150 keV electron). Dreicer runaways can be seen

on the right side of the plot, caused by reduced collisionality and the electric field. Also,

the trapped-passing boundary can be seen (at approximately 60 and 120 degrees). Notice

the pitch angle (θ) grid has extra packing near this area.

radial-like component (which identifies the surface), and a speed and pitch angle of the general

distribution function at the outboard midplane on each surface. CQL3D then evolves Equation 3.2

from a Maxwellian until steady state is achieved. Speed is normalized to a specified energy which

defines the highest speed tracked by the grid. It is also important to note that CQL3D is a relativis-

tic code, and so rather than traditional Newtonian speed, the momentum over mass is used (this

reduces to speed in the non-relativistic limit). For the sake of brevity this will be called speed in

this work.

3.1.1 Radial Diffusion

As mentioned above, the convective term connected to the drift velocity in the Boltzmann

equation is used by ansatz to create the radial diffusion operator for CQL3D . This operator takes a
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Fick’s law-like form, specifically

R(f) =
1

r

∂

∂r
r

�
D

∂

∂r
− Vr

�
f (3.4)

where D = D(r, v�, v⊥) is called the diffusion coefficient, and Vr is a model pinch velocity, which

acts to balance the particle loses due to diffusion. This ansatz has a long history of usage in kinetic

studies. [56, 57, 82–84] It has also been used as part of CQL3D successfully to model cylcotron

absorption [85, 86], and runaway current in “killer pellet” experiments in DIII-D. [87] The pinch

term is an ad-hoc addition, but it is reasonable to include it because the electron density has been

determined by a measurement (and reconstruction) and so (neglecting model beam/pellet injection)

it is reasonable to mandate ∂n/∂t = 0. This term also naturally accounts for a radial electric field.

Comparing the radial diffusion operator given in 3.4 to our previous derivation of the non-local

approximation of Ohm’s law (specifically equation 1.63, we postulate another ansatz, namely that

this diffusion operator can be made to model stochastic field line wandering by replacing D with

|v�|Dm. Recall this earlier derivation required the assumption that the collision length was much

longer than the stochastic correlation length. This is a reasonable assumption for CQL3D to make

because it has already implicitly assumed a long collision length when the Fokker-Planck equation

was ordered, using the ratio of bounce time to collision time. The final general form of D used in

the code is

D = DrDrr(ψ)Dvv(v) (3.5)

Drr(ψ) = (c1 + c2ψ
c3)

c4

�
ne

ne0

�c5
�

Te

Te0

�c6
�

Zeff

Zeff0

�c7

(3.6)

Dvv

�
v�, v⊥

�
=

����
v�

vthe0

����
b1

(1 + lac/λmfp)
−b2

�
v⊥

vthe0

�b3

γ
b4 (3.7)

The scaling for Drr is given enough free parameters that most any shape can be made. Dvv

is constructed so that the first two terms (each with a coefficient of 1) give momentum transport

as predicted by Rechester and Rosenbluth for a stochastic plasma, [53] and as discussed in the

introduction The third term is used to test the capabilities of the code, and the fourth term gives
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relativistic retardation of diffusion. Neither the third nor fourth term are relevant to the work at

hand. Notice that for stochastic diffusion, Dr = vthe0Dm.

It should be noted that though I have separated D into velocity and spatial components, this

is not a restriction of the code, as D is calculated on the entire domain grid (ψ, v,θ v), and in fact

Dvv has a radial dependence which enters through the thermal velocity, autocorrelation length and

mean free path. For non-stochastic simulations, the coefficients used for the radial operator are

c1 = 1, c2 = 3, c3 = 3, c4 = 1, c5 = −1, and c6 = c7 = 0, which are found to be consistent

with many experiments, as discussed in O’Connell. [60] In simulations of plasmas with stochastic

transport, these are set to zero due to the ambiguity in the true value (though other profiles have

been tried). The velocity coefficients (b1 − b4) are all set to zero, except in stochastic simulations

where b1 = b2 = 1.0, consistent with Rechester-Rosenbluth transport (this is what defines them to

be stochastic from CQL3D’s point of view).

3.1.2 Electric Field

CQL3D can be run in one of two modes, constant field mode or constant current mode, which

determine how the electric field is calculated. In constant field mode (shown schematically in

Figure 3.2), the electric field is specified in the input file and not allowed to evolve. It is then

simply a matter of letting the surfaces come to equilibrium with the field, any collisions, and the

radial diffusion operator. The magnetic profiles are not adjusted based on this current profile, so the

dynamics are not necessarily accurate. In constant current mode (shown schematically in Figure

3.3), the field is initialized using the current profile from the equilibrium reconstruction multiplied

by Spitzer resistivity. [49] The distribution function is then advanced one time step. Parallel current

is calculated by evaluating the integral

J� = −e

�
∞

−∞

v�fd
3
v

This is then compared to the current from the equilibrium reconstruction. If there is a mismatch,

CQL3D adjusts the electric field and reruns the time step. This mode takes longer to run but is

occasionally preferred because the parallel electric field profile is not well known in MST. Because
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Read in temperature, density, E-field, Zeff , etc.

Calculate Magnetic Quantities from equilibrium

Main Loop (n= 0, ..., nstop)

Calculate QL Coefficients

Evolve f1

Transport Particles/Relax density

Output fe(ψ, v�, v⊥, J�(ψ), X-ray flux, etc

Figure 3.2: Flow chart for CQL3D in constant electric field mode.
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Read in temperature, density, E-field, Zeff , etc.

Calculate Magnetic Quantities from equilibrium

Main Loop (n= 0, ..., nstop)

Calculate QL Coefficients

Evolve f1

Transport Particles/Relax density

Calculate J�(ψ) = −e
�

fv�d
3
v

��J� − Jeq

�� > err

Adjust E; repeat time step

��J� − Jeq

�� ≤ err

Output fe(ψ, v�, v⊥, J�(ψ), X-ray flux, etc

Figure 3.3: Flow chart for CQL3D in constant current mode.
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the electric field is adjusted to fit a known profile however, one must be very careful not to ascribe

too much of the effects of simulation to the underlying physics. For example, two simulations

with different Zeff will settle to two different values of electric field in order to produce the same

current profile. Therefore differences between them may be more closely related to the electric

field difference than Zeff itself. It should also be noted that the dynamics of this method are

somewhat dubious. A serious concern with the model is that the electric field is being evolved

without self-consistently evolving Faraday’s law and taking induction into account. This means

that large electric fields can develop quickly, or that quasi-static states can be reached which are

not physical, where the electric field oscillates up and down near the runaway generation threshold.

It can be hoped however that if the plasma is in some reasonably steady state that this effect will

be minor. This can be tested to some extent by seeding a constant electric field simulation with the

final field from the constant current simulation and seeing if the results match, which is observed

to be true for PPCD plasmas (see Figure 3.4). In order to account for this completely accurately,

the kinetic code would have to be coupled to a nonlinear MHD code. A similar argument also

applies to the current density profile in the constant field case, but this is found not to be a serious

limit unless there is a exceptionally large runaway population.

It must be stressed that CQL3D does not impose Ohm’s law, nor does it employ it in any way

except implicitly in creating an initial guess for constant current mode. Ohm’s law is an integrated

version of the Fokker-Planck equation. In directly solving the Fokker-Planck equation, CQL3D

attempts to accomplish the same task as Ohm’s law, but it does not directly use it.

3.2 Fast Electrons in RFP discharges

An important component of MST’s current is provided by Dreicer runaway electrons. [88] This

process is described rigorously in any good basic plasma physics textbook (see Refs. [47, 89]),

but the key conceptual elements are fairly intuitive. All electrons on a given flux surface are

accelerated equally (regardless of speed) by an applied electric field. The primary source of drag

for plasma particles is Coulomb scattering off of other charged particles. Faster particles are less

likely to experience significant Coulomb collisions, because they spend less time near each particle
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Figure 3.4: This figure shows the parallel current that arises from simulation when the fitted electric

field profile from constant current mode is fed into constant electric field mode. Better

agreement can be found by slightly adjusting the edge field, but it is clear that agreement is

fairly good. This is not true in standard plasmas.

in the plasma. Specifically, the Coulomb collision cross section runs (approximately) like v
−1/3.

Therefore, fast electrons will be accelerated by the electric field, but will experience a smaller drag

force. For electrons moving above a certain critical speed, the force of the electric field overpowers

the drag force, and they continue to accelerate. These electrons will only be arrested when their

population is large enough to increase the drag force, when relativistic effects come into play, or

when they diffuse out of the plasma into the vacuum vessel. The amount of runaways created by a

given electric field strength is usually characterized by the size of the field relative to a value called

the Dreicer field, ED. If the field strength is above a certain critical fraction of the Dreicer field,

a significant population of fast electrons will runaway in this manner. Since they are moving very

fast, a fairly small population can carry a great deal of current. These electrons are particularly

important for rf experiments because (as mentioned in Chapter 1) the electron conveyor aspect of

current drive will pump electrons into this runaway regime. Roughly speaking, the Dreicer field

scales with the number of slow-moving particles in a plasma, because they make up the largest
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contribution to collisionality. That is to say a dense, cold plasma will require a higher electric field

to create a large runaway population than a hotter, more diffuse plasma. CQL3D provides a good

model for exploring the effect of this population in detail. It is important to note however, that

as the runaway current gets larger, it is no longer sufficient to consider kinetic evolution without

also considering the effects of induction. Figure 3.5 shows CQL3D’s predictions for a standard
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Figure 3.5: The electron distribution function for various electric field strengths, versus velocity

normalized to the thermal velocity. As the field gets closer and closer to the Dreicer field

the runaway population increases dramatically.

MST discharge, as the background electric field is increased. The runaway population gets larger

and larger until the current carried by it becomes comparable to the background current (at which

point the simulations become more difficult to converge). This is further clarified by Figure 3.6.

Recall that CQL3D does not impose Ohm’s law. It can be seen however that an Ohm’s law-like

relationship exists for E/ED � 0.09. The blue line on the figure assumes an Ohm’s law with

the resistivity calculated from a simulation with a very low electric field (E = 1 × 10
−8

V/m).

The red line represents Spitzer resistivity with a Zeff correction. The green shaded region can be

described as a “runaway” current, reflecting the anomalous current amplification caused by a large
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Figure 3.6: The impact of a large runaway population on the total current density. The region

where E/ED � 0.09 where Ohm’s law (approximately) holds is described as the “Ohmic”

regime. The region with large runaway currents is described as the “runaway” regime. The

shaded area is called the “runaway” current.

runaway population. Standard MST discharges have a normalized electric field of about 0.25, but

when stochastic diffusion is included, the runaway population is significantly diminished.

3.3 Methods of Experimental verification of Fokker-Planck predictions

Beyond direct comparison with the current density profile from the equilibrium reconstruc-

tion (which is moot in constant current mode), the predictions of CQL3D are best tested by x-ray

emission. Whereas current density reflects electron motion in some average sense, x-ray spec-

troscopy is directly related to the balance of thermal and fast electrons within the plasma. As shall

be seen, this will challenge some of the long standing interpretations of various plasma phenom-

ena. Furthermore, x-ray spectra have a long history as a diagnostic for LH experiments. X-ray

emission was mentioned in the first work to demonstrate LH current drive on a tokamak. [19] Not
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long after these first experiments, x-ray emission was used as a constraint to predict the distribu-

tion function on this same device. [90] LH associated x-ray flux was also used to confirm current

drive on JFT-2M and HT-7. [25, 91] In this work, the distribution functions generated by CQL3D

are used to predict x-ray emission by applying the Born-Sommerfeld approximation [32] of the

bremsstrahlung cross section and integrating over the distribution function on each surface along

a viewing chord. This technique also has a history on MST, however, it has only at present been

applied to non-rf plasmas, and has never used real detector locations. [60, 92] Beyond previous

works, a method of interpreting Fokker-Planck simulation results for stimulated bremsstrahlung

emission is also outlined. Before moving on to data interpretation, a brief discussion of the model

is presented.

3.3.1 Model X-ray flux predictions

A discussion of model x-ray flux can get quite complicated and bogged down in details, and

so what follows should be regarded as somewhat simplified. The aim of this Section is to provide

a qualitative interpretation of these data so some of the details are suppressed. The probability of

x-ray emission at a given energy arising from collisions between an electron and another charged

particle can be determined by the emission cross-section (that is, the likelihood of emission as a

function of energy). This prescription can be generalized to a distribution of electrons and ions by

integrating over the respective distribution functions, i.e.

φ =

� �
fefi

�
dσ

dfi

�

i

+

� �
fefe

�
dσ

dfe

�

e

(3.8)

Where dfα is meant to imply integration over all of the velocity dimensions of a given distribu-

tion function. Further splitting the electron distribution function into a general distribution and a

Maxwellian distribution,

φ =

� �
fe0fi

�
dσ

dfi

�

i

+

� �
(fe0 + fe1) (fe0 + fe1)

�
dσ

dfe

�

e

+

� �
fe1fi

�
dσ

dfi

�

i

(3.9)

CQL3D directly calculates this function, but for the purposes of interpretation, a little manipulation

is in order. The first integral is a constant during the evolution of the simulation because the
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Maxwellian distributions are fixed by measurements. For the middle integral, the fe0fe0 term is

constant. Taking only the time varying components, it is seen that

φ(t)− φ(0) = 2

� �
fe0fe1

�
dσ

dfe

�

e

+

� �
(fe1fe1)

�
dσ

dfe

�

e

+

� �
fe1fi

�
dσ

dfi

�

i

(3.10)

Finally, the perturbed distribution function is split into a perturbation due to rf excitation (frf and

a perturbation which exists before the rf is applied (fe11). Subtracting the no rf flux from the rf flux

we are left with

∆φrf =2

� �
fe0frf

�
dσ

df0

�

e

+ 2

� �
fe11frf

�
dσ

dfe

�

e

+ 2

� �
frffrf

�
dσ

dfe

�

e

+

� �
frffi

�
dσ

dfi

�

i

(3.11)

The important point here is that when the background spectrum is subtracted from the rf spectrum,

there is only one term that relates to the initial perturbed electron density. The largest emission

is expected to come from the ion collision term - due to the large mass of ions, they are not

perturbed much and they do perturb the electrons significantly. Koch and Motz [32] predict a much

smaller cross-section for electron-electron x-ray emission. Due to the dependence of collisionality

on velocity, the largest electron-electron term is the the first one, the scattering of rf generated

electrons off of the Maxwellian distribution. Therefore, it is anticipated that the direct impact

of the non-rf perturbed (NRP) distribution on x-ray emission will be quite small. This justifies

examining the flux difference between rf on and rf off shots even if the NRP distribution function

is not well known (so long as the temperature and density are well known). Note, this is not to

say that the background distribution does not effect rf absorption. There are still quasilinear effects

by which the efficiency of rf absorption is reduced due to the distorted background distribution,

though this is not a significant effect at low power levels.

3.3.2 Data Interpretation

Before presenting results, the method of analysis is presented. As alluded to in the introduction,

there is a finer point often overlooked in this type of analysis, that is the statistical bias in traditional

data interpretation. It is an important first step to clarify what is actually being measured by
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counting individual x-rays. We seek to estimate either the intensity φ, or the flux θ as a function

of energy. We do this by dividing the energy spectrum into a number of bins and calculating the

mean of the quantity of interest in each bin. If a comparison is to be undertaken, then it is equally

important to quantify the statistical and experimental uncertainty in each number.

3.3.2.1 Intensity Method

The intensity method begins by considering the total power absorbed by the detector. Cast in

terms of an emission probability this is

P =

��
d

2
λ

dGdE
E dE dG, (3.12)

where P is the total power, λ = λ(E, t, G) is the Poisson emission rate, E is energy and G is the

etendue of the optical system. Inverting these integrals we get

φ ≡ d
2
P

dGdE
= E

d
2
λ

dGdE
= E

d
3
n

dGdEdt
(3.13)

Due to the discrete nature of x-ray emission, φ cannot be directly measured. Instead, we can only

estimate the mean of φ over an energy and time bin. Therefore, the quantity we are trying to

measure is given by the expression

φmean(E, t) =
1

∆E∆t

�
t1

t0

�
E1

E0

E
d

3
n

dGdEdt
dEdt (3.14)

We simplify this expression by applying the pencil beam assumption, and assuming that λ is not a

function of time (or at least not strongly so). This simplifies our expression to

φmean(E, t) =
1

∆G∆E

�
E1

E0

E
dλ

dE
dE (3.15)

Now we construct a statistical estimator for φ, φ̂. The estimator commonly used is defined as

φ̂ =

�
Ei

∆G∆E∆t
(3.16)
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where the summation is over all photons in a bin.

Before accepting this estimator, it must be checked for statistical bias. Bias is defined as

Bias

�
φ̂

�
= E

�
φ̂

�
− φmean (3.17)

=
E [n] E [E0]

∆G∆t∆E
− 1
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�
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E
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dE
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(3.19)

where (assuming emission to be a Poisson process)

E [n] = (rate)× (time) (3.20)

= ∆t

�
E1

E0

dλ

dE
dE (3.21)

and

E [E0] =

�
E1

E0

EdE ≡ µE (3.22)

So our total bias equation becomes
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So, in order for this to be a bias free indicator, λ(E) must be constant over our energy bin, which

it certainly is not (the form expected is an exponential decay). Nevertheless, we can calculate the

variance in order to estimate the uncertainty, making use of the law of total variance.
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2 (3.28)

= n
�
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2
�
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where Ē is the mean of the detected photon energies and sE is the standard deviation of the incom-

ing photon energies. so we can say the error in φ is

δφ = φ

��
δG

G

�2

+
Var [

�
n
E]

(
�

n
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2 (3.30)

= φ
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+
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�
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2
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+ Ē2
�

(
�

n
E)

2 (3.31)

3.3.2.2 Flux method

In order to construct a bias free statistic, a different formulation must be considered. This can

be accomplished by using the counting flux instead of the energy-biased intensity measurement.

Start by examining the total number of x-rays

N =

��
d

2
λ

dGdE
dEdG (3.32)

Inverting these integrals we can define θ,

θ =
d

2
λ

dGdE
=

d
3
n

dGdEdt
(3.33)

It is helpful to note here that θ = φ/E.

Following the derivation above, we calculate θmean over some range of time and energy

θmean(E, t) =
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θmean =
1

∆G

�
dλ

dE

�

E

(3.36)

where

�x�E =
1

∆E

�
E1

E0

xd E

We declare our estimator to be

θ̂ =

�
1

∆G∆E∆t
(3.37)
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so we can calculate the bias as

Bias
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which is to say that number flux is unbiased regardless of the distribution of λ. Next the error must

be calculated, which is easily accomplished using the well known Poisson counting error (
√

n).

δθ = θ
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�2
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Var [n]

n2
(3.41)

= θ
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3.3.3 Stimulated Bremsstrahlung Emission

Fast electrons can also be observed by stimulating bremsstrahlung with a target inserted into

the plasma. A probe was developed consisting essentially of a tube with a hole in it pointed at a

target. The target (tungsten in these experiments) is struck by an electron beam coming from the

plasma. This is shown schematically in Figure 3.7. Emission can be predicted using the theory of

Kramers. Specifically, the intensity from a thick target struck by an electron of energy Ee is given

by [93]

I(Ee, Eγ) = CZ (Ee − Eγ)
α
, (3.43)

or in terms of number flux

N(Ee, Eγ) =
CZ

Eγ

(Ee − Eγ)
α
, (3.44)

where Ee is the energy of the incident electron, Eγ is the energy of the emitted photon, Z is the

atomic number of the target atom, and C and α are 1.68× 10
−6

keV
−1 and α = 1 in theory, but are

in practice found to be material dependent constants.
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Figure 3.7: A schematic of the x-ray target probe. The tungsten target is in green. Electrons enter

the probe through the hole and strike the tungsten target, which is grounded to prevent

charge accumulation. Ions are prevented from entering the probe because the entrance hole

is designed to be small enough that their cyclotron motion will cause them to be absorbed

in the boron nitride sheath.
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The emission then is simply the emission probability given above, integrated over the incoming

electron flux. Assuming no electrons are lost in the probe and that the hole is directed along the

magnetic field, the flux on the target is equal to the flux at the entrance hole. This is given by

dNel

dv3d3x
= fev · a = av�fe, (3.45)

where a is the area of the entrance hole. It should also be noted that this should only be integrated

over the forward going portion of the distribution function. Also, there is a zero by energy con-

servation for all values Eγ > Ee, so we must restrict our velocity magnitude integral to run from

[vγ,∞] where vγ = 2Eγ/mec
2. Finally, we assume that emission is isotropic, and since we are

looking at a point source, we normalize to the solid angle. This gives rise to quantity ψ, namely

ψ(Eγ) =
a

4π

�
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Assuming no preference in cyclotron phase, the integral over φv becomes 2π, so the final formula

is

ψ(Eγ) =
CZa
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0
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3
f
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2
/2− Eγ

�α
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It is important to note that this analysis assumes non-relativistic motion. In practice, this integral

is typically calculated numerically, and so the relativistic formula (derived in appendix A) is used.

Consider two datasets with slightly different distribution functions, for instance one set con-

taining lower hybrid current drive and the other not, or two sets from different radial locations. We

represent this difference by defining the distribution in the first case as fe = f0 (not necessarily

Maxwellian) and in the second case as fe = f0 + f1. This is still completely general, as f1 is not

restricted in anyway, except that f0 + f1 ≥ 0 everywhere. The difference in the measured flux is

given by

∆ψ =
a

4π

�
∞

vγ

�
π/2

0

� 2π

0

v�f1εv
2
sinθvdφvdθvdv (3.49)

Notice that this value does not depend in anyway on the distribution of the unperturbed electrons,

unlike the plasma bremsstrahlung formula. This makes it a particularly good value for comparing
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perturbative effects in areas of different temperature (for example different flux surfaces), because

it provides insight into the size and speed of the perturbed distribution and does not require an

identical unperturbed distribution. That is to say, the flux change on two x-ray chords looking at

different radii in the plasma (not through a target probe) will be different even if the perturbed

distribution is the same because the one of the scattering targets (the unperturbed electrons) will

have a different temperature. If the flux change from the target probe is different, then this is a

definitive statement that the perturbed population is different.

3.4 Inductively stabilized (PPCD) plasmas

PPCD plasmas have been successfully modeled by several previous authors [60,92], neverthe-

less, as this is the only successful application of Fokker-Planck modeling of MST to date, it bears

revisiting (furthermore, LH absorption predictions focusing on these discharges have not been pre-

sented). CQL3D was first applied to PPCD discharges for comparison with x-ray observations by

O’Connell. [60] It was run in constant current mode and used to predict both Zeff and diffusion

coefficient. This work also presented a simulation of a 400 kA standard plasma, but the results

are not accurate, as the hard x-ray emission of standard plasmas is very close to zero, and so the

uncertainty is very large. PPCD is amenable to a solution of this type, as the relationship between

electric field and current is shown to be direct and simple. PPCD plasmas have very good repro-

ducibility and exhibit consistent x-ray spectra. Therefore modeling them with CQL3D is a fairly

straight forward task. Although both of the previous major works studying PPCD plasmas focused

on a single central x-ray chord, a similar analysis can be performed for a multi-chord setup like

that on MST. The results are in very good agreement, as can be seen in Figure 3.8. This is particu-

larly important when considering LH deposition, because the process of wave damping and driving

current is highly dependent on both the electric field and the background distribution function, and

observing the x-ray spectrum across the plasma builds confidence in these values.
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Figure 3.8: X-ray flux during PPCD discharges, with diffusion coefficient of 5 m
2
/s and a flat

Zeff = 4. Each plot represents a different detector, characterized by the impact parameter

b, which the shortest distance between the viewing chord and the presumed magnetic axis

at R = 1.56 m. It should be noted that these results are qualitatively similar for a range of

diffusion coefficients.
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3.5 Standard plasmas

By far the most complex plasmas studied on MST are standard RFP plasmas. These are not

attractive targets for LH experiments, as will be shown, however they exhibit a lot of unique be-

havior and present many open questions, due to field line stochasticity. The current profile in MST

plasmas is observed to be antiparallel with the magnetic field, across the entire plasma volume.

This presents a serious problem for a localized interpretation of Ohm’s law using the mean electric

field (see Figure 3.9). The mean inductive electric field is directed toroidally, and so (because the
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Figure 3.9: Electric field and current profile from standard plasmas (this data set comes from Jay

Anderson). [11] The measurement of inductive electric field comes from a time derivative

of the magnetic field from reconstructions. The electric field reverses direction relative to

the magnetic field at the edge, but the current profile does not.

toroidal B field reverses direction), the projection of the electric field into the magnetic field direc-

tion reverses sign at the edge (that is the projection becomes parallel instead of antiparallel). The

current is observed to not reverse sign however. A moment should be dedicated to consider the

magnitude of this incongruity. These electrons are moving directly opposite to the direction of the

force being applied to them. This is analogous to observing a waterfall with a net fluid flow that
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is directed upward. Needless to say, some element has not been considered. Recall the nonlocal

form of Ohm’s law for large spatial scales in the RFP from Chapter 1:

ηJ� = E� + η

�
ev�τ |v�|

∂

∂x
Dm

∂

∂x
f1d

3
v. (1.67)

It is proposed that the nonlocality accounts for at least some of this deviation. Several models are

going to be considered here. The two main constraints on our fit are the soft x-ray spectrum and

the current profile.

3.5.1 Diffusive effects in Ohm’s law

Diffusive effects become important in Ohm’s law (and more so for understanding fast electrons)

when the momentum of current-carrying electrons accelerated in a high field area allows them to

maintain their speed even as they diffuse radially to areas with a different field strength. The

most compelling instance of this effect is when these electrons move against the force imposed on

them by the local electric field. This of course can only be maintained if electrons are constantly

being supplied, and if the local electric field is low enough to not immediately redirect diffused

electrons, or the electrons do not remain at a given radius for long. In order for this effect to be

significant, there must be an electron population that carries a significant current and is subject to

high diffusion. This will either be fast electrons in the presence of a stochastic field, where they

are preferentially diffused, or any electrons in the presence of very high radial diffusion.

The first step in understanding the impact of diffusion is to study the impact of a delta func-

tion electric field. With no transport, this is expected to create a delta function current profile. As

stochastic diffusion is added however, the diffusive term in Equation 1.67 will become more and

more prominent, leading to a radially diffused profile as anticipated qualitatively. Examining Fig-

ure 3.10, it can be seen that the peak acts essentially as we expect for diffusion in a cylinder. Note

that any radial fields created by particle diffusion (as theorized by Harvey [94]) are accounted for

by CQL3D’s ad hoc pinch velocity balancing particle density. It is important to note that inductive

fields associated with the motion of these currents are not accounted for in this model. This is

less of a concern when real profiles are being used because the density is held fixed to a measured
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Figure 3.10: Diffusion acting on a delta function electric field (on a linear plot, and then a log

plot) derived by CQL3D. In the highest diffusion case, the location of the original field is

scarcely visible.
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value, acting as a constraint for long term evolution. Nevertheless, a lot of very interesting studies

could be done if Ampere’s law and Faraday’s law were being self-consistently evolved along with

the kinetic evolution. This has proposed as the next major upgrade to CQL3D.

Now that the general action of diffusive effects has been demonstrated, the next step is to

reproduce the work of Martines, [54] whose analytic formulation of the high diffusion RFPs was

used to create Figure 1.17. The simulations (results of which are shown in Figure 3.11) use the

same Zeff profile as Martines, but rather than approximate cylindrical fields, measured fields and

densities are taken from a reconstruction of an MST discharge. Notice that the best match to

the experimental current density profile is observed for the case with Dm = 10
−4

m. The exact

meaning of this magnetic diffusion coefficient is subject to interpretation, but to put it in context, a

commonly used model states that [54]

D
0
m

= Dm (1 +Λ /λ) (3.50)

D
0
m

= a (br/B)
2 (3.51)

Where Λ is the auto-correlation length, λ is the mean free path of particles, and a is the minor

radius. A Dm = 10
−4

m corresponds to a radial magnetic field of a few percent. In the context

of previous experiments, a magnetic diffusion coefficient of 10
−4

m corresponds to a diffusion

coefficient of 1800 m
2
/s for a 1 keV electron. This is a factor of 4 higher than the observations

made by Stoneking, [95] who measured a diffusion rate for fast electrons of 500 m
2
/s.

The plots in Figure 3.11 demonstrate a lot of general information about the impact of diffusive

effects. The largest parallel current in the RFP is generated in the core, because the magnetic

field lines align directly with the inductive field there, i.e. E� is highest. The effect of diffusion

is to reduce this peaked core current (since electron momentum is being drawn away from there),

and increase the current in the midradius. Current is seen to be antiparallel to B across most

of the plasma radius for the high diffusion cases, even beyond the reversal surface, where it is

moving against the electric field. This counter field current is fairly substantial. Figure 3.12 shows

contours of the distribution function on the first surface past the reversal surface for the case of
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Figure 3.11: The effects of the stochastic diffusion with a real MST equilibrium. The simulation

is run with a constant electric field, purely toroidal, with a constant magnitude of 1.5 V/m.

This shows strong qualitative agreement with Figure 1.17. In the lower plot, detail of the

edge of the plasma is shown (note the change in scale). The reversal surface and the zero

point of current are marked. Notice that in the cases where Dm �= 0, there is positive

current even though the electric field reverses direction.
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Figure 3.12: The impact of the stochastic diffusion on the distribution function. This plot shows

contours of the distribution function with electrons whose momentum was transferred from

another surface highlighted in blue. This data is from the ρ = 0.85 flux surface in the

Dm = 10
−3

m.
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just outside the reversal surface, comparing the Dm = 10
−4

m case to the diffusion free

case. This specific current density should be thought of as the contribution to the total

current density from electrons of a given speed. The no diffusion case has a Gaussian like

shape, whereas in the high diffusion case there is a very large contribution to the net current

from very fast electrons, and also a contribution from slow electrons, and both populations

providing these currents originate from other flux surfaces.

Dm = 10
−3

m. The area highlighted in blue represents momentum brought in from other flux

surfaces.

In stochastic plasmas, the impact of diffusion is heavily dependent on fast electron populations.

This is demonstrated in Figure 3.13. For this reason the impact of stochastic diffusion is very much

dependent on the same factors that determine the size of runaway populations, e.g. Zeff and the

Dreicer field. The data from Figure 3.11 were generated with a Zeff of 1, flat across the entire

plasma, which is not very realistic.

As a side note, the non-locality of Ohm’s law interferes with CQL3D’s constant current mode.

In this mode, CQL3D adjusts the electric field at a given radius by determining the difference in

current between the equilibrium being studied and the prediction from the distribution function
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evolution. If (for the real experiment) a substantial amount of current is being created in the core

and is diffusing outward, then CQL3D will erroneously suppress the core field and increase the

edge field to try to match this current by local adjustments. This leads to strange behavior, which

is often unstable and not to be considered accurate.

3.5.2 Enhanced Confinement Plasmas

A special subset of standard RFP discharges are so-called enhanced confinement plasmas,

which have not yet been subjected to a Fokker-Planck treatment. Operationally speaking, En-

hanced Confinement plasmas are distinguished from typical RFP plasmas by their low density and

deep reversal. This is observed to give rise to periods of spontaneous stabilization of magnetic

mode activity (although they are less stabilized than PPCD plasmas). These discharges are about

twice as hot (700-1000 eV) and half as dense (�ne� ≈ 4− 5× 10
18

m
−3

) as standard discharges,

so the Dreicer field is substantially lower. On the other hand, the applied inductive field is the same

as in standard discharges. Thus Enhanced Confinement plasmas will have a large fast electron and

runaway electron population. Indeed, they are observed to have a very substantial hard x-ray flux

compared to the unobservably low flux in their higher density cousins (the previously discussed

standard RFP plasmas). If transport is stochastic or diffusion is high, momentum from these fast

moving electrons should be diffused rapidly across the plasma.

There is some evidence for this. The current profile evolution during an EC period from recon-

structions is shown in Figure 3.14. It is seen that the core current increases significantly, and this is

associated with a small decrease in the current near the reversal surface. This relationship between

core current and midradius current is characteristic of the diffusive Ohm’s law displayed above

(though it could be explained by other effects as well). As the time elapses from the sawtooth

event, the magnetic fluctuations are reduced, and so the stochastic wandering of field lines should

gradually relax. This would mitigate stochastic diffusion by reducing the flow of electrons from

the core to the midradius. Since mode activity still exists however, it is certainly possible that it is

not eliminated.
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Figure 3.14: The evolution of the parallel current profile during EC periods. The core current

can be seen to increase as the EC period continues. This is correlated with a reduction at

ρ ≈ 0.8. Detail is shown in Figure 3.14b. Time is relative to a sawtooth event.
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This scenario of a strongly non-local Ohm’s plasma can be tested. Two simulations were run

with a constant toroidally directed electric field with magnitude of 1.5 V/m (approximately correct

for MST discharges) and slightly different values of Dm. A flat Zeff = 4 was used. The results

are shown in Figure 3.15. It is satisfying that this model provides a meaningful application of the

diffusive term in Ohm’s law with a realistic Zeff , unlike the very low Zeff required to generate

the fast electrons necessary for standard plasmas. Moreover the diffusion coefficient used is not

unreasonable, again it corresponds to a radial magnetic field on the order of a few percent.

3.5.3 Models of standard plasmas

Standard plasmas are not well modeled by CQL3D. Several models are advanced to demonstrate

how the code fails. These models are primarily differentiated by the method of initializing the

electric field. It is important to note that these stand in for collections of runs, as explained for

each model. Other models were also considered (for instance the Giruzzi high stochastic diffusion

Model [58] and the Martines Model, presented in Figure 3.11), but are not included for concision

(the two mentioned models also depend on a Zeff of 1, and so are unlikely to reflect the actual

plasma conditions). The models considered are (results plotted in Figure 3.16):

• Diffusion free Model: This model assumes that radial momentum transport is not important

in relation to the current profile or the fast electron population. Therefore diffusion is turned

off. Because there is diffusion, this is run in constant current mode to guarantee a good fit

for current profile. This assumes (without justification) that whatever effects are not directly

included in the kinetic model employed by CQL3D can be approximated by amplifying the

additional electric field. This is equivalent to assuming there is some force in the that is not

velocity dependent. The presented results employ a Zeff = 4, although a scan of many Zeff

values was run.

• Diffusion and Inductive field model: The field here is initialized with the inductive field

determined from the time derivative of a succession of reconstructions, take from the data of

Anderson [11]. This model assumes that the plasma electric field is completely represented
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Figure 3.15: Simulations are run with a flat toroidal electric field and Zeff = 4, and two different

values of Dm. Considering the approximate nature of the field, the agreement is very good.
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by the applied inductive field, and that no other effects other than diffusion affect the motion

of electrons. Many simulations of this setup were undertaken, varying Zeff from 3 to 8, and

also varying the central diffusion coefficient. The results plotted were the best fit, Zeff = 3,

flat Dm = 10
−5

m.

• E� = ηneoJ�: This model assumes neoclassical resistivity and uses this value to initialize the

field. Due to the precipitous drop in temperature at MST’s edge, the farthest radial values for

resistivity are very high. This leads to a peak in the electric field, which must be reduced a

little bit in order to produce reasonable results (otherwise it acts as a pumping mechanism for

momentum via the diffusion and throws off the resulting x-ray spectrum). This is a source

of ambiguity for this model.

• J�-Fit: The most complicated simulation to run, this method begins by seeding a simulation

with a guessed electric field. The current profile after the simulation comes to equilibrium

is compared to the profile from the reconstruction, the electric field is adjusted in an attempt

to reduce the difference between these two profiles, and the simulation is rerun. Electric

field adjustments are done manually and in small increments in order to avoid over adjust-

ments, and this process usually takes about 5-10 runs to complete. This is very similar to

constant current mode, but it does not have step to step adjustments and so is able to come

to equilibrium.

Unfortunately, none of these models produce results that match both the background current dis-

tribution and the x-ray spectrum. This can be seen in Figure 3.16. It is important to point out that

both the equilibrium reconstructed current profile and the x-ray spectrum come (of necessity) from

several shots and time periods ensembled together, and so an exact match should not be expected.

The two ensembles do not include the same shots.

Standard RFP plasmas are very complicated and include important dynamics at many levels.

None of these simple models provides reasonable agreement with both constraints (the current pro-

file and the x-ray spectrum), in fact other than the J�-fit model and the diffusion free model (both

of which mandate an accurate current profile) none of the models demonstrate much agreement
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Figure 3.16: Comparison of electric field (a), predicted current profile (b) and x-ray spectra (c)

predictions with the equilibrium current profile and the observed x-ray spectrum for stan-

dard non-EC plasmas. The no KDE model is in blue, the no MHD model is in cyan, the

E� = ηneoJ� model is in green and the J�-fit model is in red.
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with the equilibrium current. The J�-fit model and the diffusion free model predict extremely high

x-ray fluxes however, and therefore are not acceptable. This high spectrum implies that this model

over predicts the fast electron population, i.e. it assumes more current is being carried by fast elec-

trons than is observed in experiment. The best x-ray spectrum fits are the Diffusion and Inductive

field model and the neoclassical resistivity model, but their under prediction of the parallel current

makes them no more correct than the first two models. This current must be being carried by an

electron population that is not observed in the x-ray spectrum. Therefore we conclude that the

simplified CQL3D Fokker-Planck model is deficient when applied to standard plasmas, although it

is seen to have good agreement in Enhanced Confinement plasmas.

Despite not having a completely satisfactory model for the core x-ray flux from standard plas-

mas that produces a current profile consistent with reconstructions, the edge distribution function

can be determined using the x-ray target probe. The most important factors in determining stimu-

lated emission are Zeff (held at 4), diffusion coefficient and electric field. Zeff and Dm are fixed

by estimates from the core x-ray spectrum, and so electric field is the only unknown parameter,

and is determined by the model chosen. The neoclassical resistivity (E� = ηneoJ�) model is used

here. The data are plotted in Figure 3.17. It is found that a simulation using the values that produce

the best fitting core x-ray spectrum also produces a target flux that agrees impressively. This is

important for establishing the effect of lower hybrid current drive experiments.
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Figure 3.17: The x-ray spectrum from the target probe at ρ ≈ 0.875, with the CQL3D prediction

also plotted. The agreement is observed to be much better than the agreement of the core

flux.
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Chapter 4

Lower Hybrid Modeling and Experiments on the MST

As discussed in §1.3, understanding the process of lower hybrid current drive requires studying

the interplay of diverse physics at multiple length and time scales. In order to make accurate pre-

dictions, sophisticated numerical tools must be employed. Since much of the physics is separable

to some degree, individual codes can be used to tackle the different elements in isolation, and the

results can be communicated to the next code forming a simulation chain. Notably absent from

this chain is the coupling of electromagnetic and global MHD effects with the kinetic simulation.

These two physical processes occur on the same time scales, and understanding their interaction

is vital. This is the focus of a major SciDAC effort called the SWIM project. [96] As such, this

work seeks to provide a refinement to current understanding and not the definitive statement of

current drive in the RFP. Methods of exploiting the results of this work will be discussed in the

final chapter.

The simplified simulation chain used in this work consists of an equilibrium solver, a ray tracer

and a kinetic code. First, the non-perturbed background conditions are determined from experi-

mental data with MSTFit. Rf wave propagation physics is then studied with GENRAY, a general

3-D plasma ray tracing code. Finally, wave absorption and x-ray emission are studied using the

Fokker-Planck kinetic code CQL3D, the subject of the preceding chapter. Ideally, the current depo-

sition profile from CQL3D would be coupled to a nonlinear MHD code such as NIMROD, in order

to determine the stability of the resulting configuration, and account for the electric and magnetic

field response to driven current, but this level of complexity is beyond the scope of this work.
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4.1 Wave Propagation

The first task of simulation is to predict wave propagation. Distortion of the background elec-

tron and ion distributions is not accounted for in the cold plasma wave propagation model, and is

found to have minor effects for the slow wave in an RFP. [39] Therefore we apply the cold plasma

model to an equilibrium reconstruction in order to determine the trajectory of the wave. This is

accomplished by use of the code GENRAY.

4.1.1 GENRAY

GENRAY [97] is an general, 3-D, plasma raytracing code. It determines wave trajectories

by taking the WKB (geometric optics) approximation in cylindrical coordinates, leading to the

following set of equations

dR

dt
= − c

ω

∂D/∂nR

∂D/∂ω

dnR

dt
=

c

ω

∂D/∂R

∂D/∂ω

dφ

dt
= − c

ω

∂D/∂M

∂D/∂ω

dM

dt
=

c

ω

∂D/∂φ

∂D/∂ω

dz

dt
= − c

ω

∂D/∂nz

∂D/∂ω

dnz

dt
=

c

ω

∂D/∂z

∂D/∂ω

(where M = Rnφ) as discussed in §1.3, but cast in terms of index of refraction instead of

wavenumber. Recall the left hand side of the left equations are the spatial coordinates, D is the

dispersion relation, and n is the index of refraction. Note that the cylindrical system used is a

system with the axial direction (z) pointing up and the radial direction corresponding to the major

radius (R). The fields and profiles are represented in a fully toroidal fashion.

Although these equations are too complicated to solve analytically, they form a set of coupled

first order ordinary differential equations which are amenable to a Runge-Kutta numerical solution.

GENRAY takes as inputs the antenna location (in radial, toroidal and poloidal coordinates). It

then traces a specified number of discrete rays from the antenna to the point where power has

mostly dissipated (based on an approximation of quasilinear absorption) or until a specified number

of steps have elapsed. The power in each ray in the launch spectrum is set so that when the

initial points of all the rays are taken together, they form a Gaussian when plotted against n�, the
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Figure 4.1: Sample of the n� spectrum launched in GENRAY. Ray power has a Gaussian shape.

These initial powers are fed into CQL3D for the wave absorption calculation. The experi-

mental spectrum is over plotted in black.

characteristics of which are provided as an input, as shown in Figure 4.1. Ray trajectories are then

fed into CQL3D for a 2-dimensional (in velocity space) kinetic treatment of power absorption.

4.1.2 The Real LH Antenna

The lower hybrid antenna in place on MST was designed around the propagation and absorption

of a single ray with n� ≈ 7.5 − 8 (after construction it was discovered that the true n� centroid

was closer to 7). Because the antenna is not infinitely long however, the real spectrum has some

breadth in Fourier space, which has an impact on the propagation of power from the plasma edge

to the absorption layer. This provides an important advantage for absorption as we shall see,

but also carries with it a cost in lost power. In simulations of the real LH antenna, all of the

important propagation effects discussed in §1.3.2 are observed. The poloidal transit of these waves

as determined by simulation for 400 kA standard plasmas is shown in Figure 4.2. The waves can be

seen to move mostly poloidally (essentially parallel to the magnetic field in the region of interest),

and slowly wend their way inward. The spectrum is also seen to disperse as rays with different n�
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Figure 4.2: Wave trajectories projected into the poloidal plane. The color in these plot corresponds

to initial n�. Plot (a) shows positive n� launch and plot (b) shows negative launch. Note

that even though these rays are traced into the core of the plasma, most of the power is

expected to be dissipated in the edge. Waves are traced beyond this point merely to ensure

that the entire trajectory through the absorption region is calculated.
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Figure 4.3: Wave propagation diagrams for the standard plasma equilibrium, with the launch spec-

trum of the current antenna. These plots show the wave’s motion in n� space verses radial

like coordinate. The color represents the relative power in the ray at a given point. The

Fast-Slow Mode conversion point and the region of high Landau Damping are also plotted.

Plot (a) shows the positive n� launch and plot (b) show negative launch.

propagate with different radial velocities as predicted in §1.3. A great deal more can be learned

by examining the wave-space propagation diagram (based on Figures 1.8 and 1.14a). Raytracing

results thus analyzed are presented in Figure 4.3.

In these plots, the horizontal axis represents the parallel index of refraction, on which Landau

damping efficiency and Fast-Slow (F-S) mode conversion are based. The vertical axis represents

the radial-like parameter ρ (the normalized area of a poloidal cross section of a given flux surface),

thus the top of the plot is the center of the plasma and the bottom is the edge. The red line

indicates the Fast-Slow mode conversion point on the high field side and the blue line (mostly

obscured) indicates the F-S conversion point on the low field side. The region of efficient Landau

damping (where 3vthe > vφ||) is demarcated by the green dashed line. The other lines are the wave

trajectories, with the coloration indicating the relative amount of power in that particular wave

at that particular point (using an approximation of the quasilinear absorption rate). Note that the
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n� < 0 direction is expected to drive current opposite the B field, and since J is anti-parallel to B,

this is the net current drive direction.

There are several key aspects to note in these plots. First, note that the wave n� trends generally

upwards and also oscillates up and down. The general upshift is due to the poloidal lensing effect,

and the oscillations are due to the difference in magnetic field on the outboard and inboard sides

as discussed in §1.3.2.5. This section predicted a correction to the poloidal lensing effect, stating

that n� that is inversely proportional to r|B| rather than just r. Similarly, notice that although

the n� > 0 waves immediately increase in n� magnitude, the n� < 0 waves first down shift in

n� magnitude. This is because the parallel wave group velocity is dependent on the sign of n� as

predicted in Equation 1.16. Waves with a positive n� move parallel to the magnetic field, downward

at the inboard midplane and upward at the outboard midplane. Thus, due to the antenna location

(∼ 45
◦ below the midplane on the inboard side), the negative spectrum travels inboard toward a

higher magnetic field for a short while, reducing |n�|, until it crosses the midplane and the trend

is reversed. This is an important effect because it brings the edges of the spectrum into collision

with the F-S mode conversion layer. Since the antenna as constructed has a slightly lower n� than

expected, this effects a larger portion of the spectrum than originally intended.

The impacts of this fast-slow mode conversion can be seen clearly if Figure 4.3 is examined

near the region where power is deposited. The positive launch direction appears to have a broad

spectrum of waves which damp away rapidly, whereas the negative launch direction is missing

almost half of the initial spectrum. These waves are lost to fast-slow mode conversion. One

of these mode converted rays is examined in detail in Figure 4.4. This figure shows the wave

transferring solution branches from the slow mode to the fast mode at F = 0 (from Equation

1.12). The bottom plot indicates that this causes the formerly inward propagating wave to travel

outward, reflecting off of the R-mode cutoff, then mode converting again, never reaching the target

layer. This is identical to the process shown in Figure 1.10.

This mode conversion has profound negative consequences, as the power in that part of the

spectrum is unavailable for current drive. Therefore, when studying full stabilization scenarios,
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more optimal antennas are considered. Because a multi-megawatt system will require many an-

tennas, it stands to reason that such a project could include a refashioning of the current antenna

with a more optimal launch spectrum. Full stabilization analysis is focused around PPCD plas-

mas, because, as will be shown, standard plasmas are not an attractive target for LH stabilization

experiments.

4.1.3 Antennas for full stabilization experiments

Although a full understanding of LH deposition requires a 2-D Fokker-Planck simulation, ray-

tracing results do provide sufficient information to optimize an antenna for propagation (avoiding

the F-S mode conversion layer). The goal is to drive current near the tip of the temperature gradient

(typically just inside of the reversal surface). n� can be expected to have a general upshift due to

poloidal lensing. There will also be further oscillation associated with magnetic field magnitude as

per the modification to poloidal lensing. Increasing n� too much will cause our ray to be absorbed

farther out radially in the plasma than is desired (though this is not nearly as serious as trapping

power in a resounding chamber). Therefore a succinct statement of the objective of antenna pro-

totyping is to design an antenna with the lowest n� that will avoid the F-S mode conversion layer

(perhaps with a little bit of wiggle room), and still be absorbed as near to the end of the temperature

gradient region of an MST discharge as feasible.

Given a constraint on antenna size (roughly 20 cm) and an approximate damping parameter

(∼ 8
◦, based on operations of the current antenna), an educated estimate of the antenna launch

spectrum can be made, using the formalism developed in §2.2.2.2. Equilibria reconstructed from

two PPCD discharges are studied here (with plasma currents of 380 kA and 560 kA) and two recon-

structions of EC periods are also studied (with nominal currents of 400 kA and 470 kA), because

they are interesting targets for transport studies. These studies all focus on the n� < 0 case be-

cause it is the current drive direction. The results of these simulations are presented in Figure

4.5. Notice that for the EC cases and high current PPCD the Fast-Slow mode conversion layer is

less obtrusive. This is because for the EC cases, the density is lower than for PPCD or standard

plasmas by approximately a factor of 2, and the high current PPCD case has a high magnetic field.
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Comparing these cases, it can be seen that the effect of a fairly modest increase magnetic field

(The high current PPCD case has a core magnetic field of about 0.56 T compared with the 380 kA

PPCD case’s 0.37 T) is as dramatic as a substantial decrease in density. Moreover, it is seen that

a system designed for a 380 kA PPCD plasma will provide a spectrum that is at least sufficient to

study transport in EC plasmas, and demonstrate the feasibility of current drive in 560 kA plasmas.

A separate system is considered for 560 kA PPCD plasmas however, because the 380 kA PPCD

optimized system will drive current near or just outside of the reversal surface in a 560 kA PPCD

system, making it less useful for stabilization.

4.2 Wave absorption

In order to study wave absorption, the trajectories predicted by GENRAY are fed into CQL3D,

which calculates a quasilinear diffusion coefficient representing Landau damping, and includes it

in the evolution of the Boltzmann equation. Before considering the full system, several elements of

the model are examined individually to allow us to get a better feeling for their effect. These basic

simulations include a full quasilinear Coulomb collision operator, and (obviously) the rf quasilinear

operator. Diffusion and background electric field are not included except where explicitly stated.

A quick aside on the relative importance of the electric field. In analyzing rf driven current

specifically for RFPs, it is important to separately consider the directly driven current and the

electric field current amplification. Although there is certainly a large electric field in a normal

RFP discharge, it is not clear what an LHCD stabilized RFP would be like. Because the inductive

field is toroidal, the “parallel” inductive field near the reversal surface (where the magnetic field is

mostly poloidal) is expected to be quite small. In a standard RFP discharge, this is supplemented

by the so-called MHD dynamo, which is a nonlinear coupling between velocity perturbations and

magnetic field perturbations). It may or may not be reasonable to consider this as equivalent to an

electric field in some sense, but regardless of whether or not it will aid in the creation of a fast elec-

tron population, the explicit goal of running LHCD experiments is to eliminate this effect. PPCD

experiments rely on applying a poloidal electric field, but again, the entire purpose of LHCD is to

drive current in a non-inductive fashion, and so relying on this field seems counter to the overall
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Figure 4.5: Wave propagation diagrams for optimized antenna in each high confinement case. The

n� launch is centered around 8 for 380 kA PPCD, 6.5 for 560 kA PPCD, and 6 for the two

EC cases.
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mission. Therefore it is important to know the current drive prediction in the absence of an electric

field as well as the current drive prediction with the electric field observed in experiments. These

should provide a best and worst case scenario, with the actual setup lying somewhere in between.

One can imagine a successful experiment pulsing PPCD at intervals and using the residual electric

field for an LHCD experiment only to fill the gaps between PPCD periods. This would not neces-

sarily be an optimal system, but would be an interesting demonstration of LHCD which could (in

theory) require less power and be used as a stepping stone to higher power, full LHCD discharges.

It must be stressed that the case with no electric field is overly pessimistic, because most of the

region where current is being driven has some toroidal pitch, and therefore will have some field

even in the absence of fluctuations and additionally applied poloidal field.

Attention is first turned to the simplest case, rf excitation with no diffusion and no electric field.

Specifically of interest is whether or not the predictions of the Fisch model of distribution flattening

discussed in Section 1.3.3 are reproduced in the full 2-D distribution function evolution using real

quasilinear coefficients. The results can be seen in Figure 4.6. The resonance region can be clearly

seen in both figures; it is the region where the distribution function is approaching a plateau. Figure

4.6a shows the effects of ever increasing rf power on the distribution function. It can be seen that for

this flux surface, 1 MW of power seems to makes the distribution function nearly flat. Figure 4.6b

shows the full 2-D distribution function for the 1 MW case. Notice the increase in the population

of electrons faster than the resonant velocity in the parallel direction. This is the action of the

electron conveyor. It can be seen that there are more high speed electrons generally, in the counter-

current direction as well as the co-current direction. This is due to pitch angle scattering, that is,

fast electrons that undergo Coulomb collisions, but are primarily redirected rather than slowing

down substantially. For the purposes of the no-electric field case, these are merely a curiosity

since they do not represent a significant current, but as will be shown, this situation becomes more

complicated when an electric field is applied.

Two parameters are not discussed below, temperature and magnetic field. Because we are

driving current in a temperature gradient region, increasing the temperature of the plasma has the

effect of moving the resonance region farther out radially, but current is deposited at a location with
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Figure 4.6: Figure (a) shows a slice of the distribution function along the v = v� axis for various

power levels. As anticipated, the distribution function flattens, and this flattening occurs

for v ≈ 2 − 3vthe, perfectly within expectation for Landau damping. Figure (b) shows

a contour plot for the 1 MW case. The contours are essentially logarithmic. The dashed

lines are the unperturbed (Maxwellian) distribution function. The effects of the electron

conveyor can be seen.
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essentially the same temperature. Magnetic field primarily impacts wave propagation as discussed

above - lowering the field makes the antenna vulnerable to fast-slow mode conversion, but the

absorption calculation is not dependent on magnetic field.

It is tempting to then declare that 1 MW of power should then be enough to excite the maximum

amount of rf current drive achievable, but it should be recalled that there are other flux surfaces in

the plasma, and as this distribution flattens, more power is allowed through to the deeper surfaces,

which will (in general) have a larger resonant region. Further, one must recall that the inclusion of

both diffusion and electric field will dramatically alter this situation. This is not to say that 1 MW

is not enough power, just that the problem is more nuanced.

4.2.1 Zeffective

Zeffective also plays a role in moderating LHCD. Just as a high Zeff can mitigate the growth

of a Dreicer runaway population, it also slows electrons expelled from the electron conveyor. In a

high Zeff discharge, electrons which would be ejected and come into equilibrium with collisions

from ions (and each other) on the high speed side of the resonance region will have to contend with

a more potent Coulomb collision force and thus will be prevented from achieving the same speeds

seen with lower Zeff . This relationship is demonstrated in Figure 4.7. Zeff is not well known in

MST but has been estimated at 4-5. This is consistent with the 1/(2 + Z) dependency predicted

by Fisch as in Equation 1.34. An interesting side note is that this has little effect on the x-ray flux.

The x-ray flux increases linearly with Zeff , so even though fewer electrons are accelerated, the flux

does not change substantially.

4.2.2 Radial Diffusion

Radial diffusion is found to have a significant impact on rf driven current. With diffusion, some

electrons will certainly be lost to the walls, but the primary negative consequence is profile broad-

ening. As rf accelerated electrons diffuse away from the deposition layer, they bring their current

with them. Moreover, when these electrons move to surfaces nearer the core, they encounter a

hotter, denser background plasma. This plasma will have a higher collision cross section with fast
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Figure 4.7: Current drive degradation caused by increasing Zeff . Higher Zeff imposes a stronger

Coulomb collision force, increasing the drag on electrons in the same way as Zeff mitigates

Dreicer runaway electrons.

electrons than the previous colder plasma, forcing the reintegration of electrons formerly decou-

pled from the main distribution. Because they are far from the deposition layer, there is no force

driving them back to high speed. The net effect of diffusion is not only to broaden the deposition

profile, but also to reduce the driven current. This effect is shown in Figure 4.8.

In stochastic plasmas, this effect is amplified by the stochastic diffusion As discussed in the

previous chapter, stochastic diffusion is intrinsically tied to the fast electrons. When applied to

core electrons, where there is a large parallel electric field and therefore a large runaway pump,

this amplifies the current in the midradius. That is to say, diffusion is very useful for broadening a

centralized current profile. As one might have guessed by now, this is deleterious when attempting

to drive localized current. Because lower hybrid current drive relies solely on faster-than-thermal

electrons, it is particularly vulnerable to diffusion. The profiles which result are similar to the

highest diffusion case in Figure 4.8, or even worse, illustrated in Figure 4.9.

The net impact of diffusion is summarized in Figure 4.10. It can be seen that about 2/3 of

the current peak is dissipated in high diffusion plasmas. PPCD plasmas are expected to have a

diffusion coefficient between 1 m
2
/s and 10 m

2
/s [60], where an acceptable fraction of the current

is still driven. Stochastic plasmas have too broad of a profile to be considered good targets for
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1− 5 m
2
/s [60].

stabilization. This will be countered to some extent by the electric field. Even if they were an

attractive target, it would be a mistake to optimize a system for stochastic plasmas. Assuming a

successful current drive experiment, temperatures would rapidly begin to increase as confinement

improved, thus distorting the current drive profile.

4.2.3 Broad Spectra

Although broader launch spectra are more at risk for Fast-Slow mode conversion, they are ab-

sorbed much more efficiently than single ray spectra. This is because they have a broader resonance

region (see Figure 4.11). Because the single ray is only resonant very near a single phase velocity,

only so much current is driven by distribution function flattening. This means that few electrons

are pushed out to higher speeds by the electron conveyor effect. Moreover, because the resonance

region is smaller, it takes less power to completely flatten the distribution function. Once it is com-

pletely flat, more power is allowed to progress past the target region, broadening the deposition
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The points represent the peak of the Gaussian driven current curve, and the bars represent
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2
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Dm ≈ 1× 10
−5

m.
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Figure 4.11: The effects of a broad spectrum can be seen here. The left plot shows an individual

flux surface distribution function. The single ray case (in blue) has a much smaller reso-

nance region (in velocity space) than the full spectrum. This means that less current can

be generated directly by distribution flattening and also that the electron conveyor is less

effective. Moreover, the deposited current is broader as seen in the right plot. This is due

to the drop in absorption efficiency.

profile. This process is so deleterious that Figure 4.11b shows two absorption peaks in the single

ray case. Enough power is passing through the resonance region due to the reduction in absorption

efficiency, that a significant portion of the ray’s power is able to travel through the area of high

absorption (the outboard side), having its n� reduced again by modified poloidal lensing. This

wave will circle around poloidally, continuing to propagate inward until it reaches the outboard

side again where Landau damping is efficient, however it is much deeper in the plasma.

4.2.4 Electric Field

The background electric field in an RFP discharge can be exploited to amplify applied current.

Once electrons are pumped into the Dreicer runaway region they are free to accelerate with a

minimal amount of drag. This amplifies the applied current considerably. That is, since all of the

driven electrons are heading the same direction, a number of them will have a low relative velocity.
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Figure 4.12: The current amplification caused by ever increasing electric field. This amplification

will be mitigated considerably by diffusion (see Figure 4.10), however the overall trend

persists. As mentioned, it is not clear what the field will be like in a stabilized RFP.

This will increase the drag, though still not nearly to the level experience by slow moving electrons

in the thermal portion of the distribution. The effects of this can be seen in Figure 4.12.

4.2.5 Fast Electron Routing

The other major impact of the electric field is fast electron routing. When current is driven

against the electric field, it is expected that the electric field will resist the fast electrons and drive

them back into the thermal region. However some of the fast electrons will undergo pitch angle

scattering, as seen in the no electric field case above (Figure 4.6b). Because these electrons retain

their velocity, they still have a low collision cross section, only now the electric field is at their

back. They are then accelerated just as normal runaway electrons. If the electric field is sufficiently

high, the net effect of this is to drive current in the direction of the electric field. This process is

illustrated in Figure 4.13. The picture is only slightly more complicated when trapped particle

effects are included. In this case, the fast electrons which run parallel to the electric field arise

from increased scattering of particles out of the trapped region due to increased collisionality, and

electrons that have undergone a larger deflection and miss the trapped region entirely. In this
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Figure 4.13: An illustration of the process of fast electron routing. First electrons are accelerated by

lower hybrid. Some of them will scatter and be deflected. The electric field then accelerates

them without forcing them through the thermal distribution.

way, a strong background electric field prevents anti-current drive experiments. This should not

be considered an efficient means of driving current - for most plasmas of interest the field is high

enough to drive electrons in this manner, but the overwhelming majority of the electrons are merely

forced back into the thermal distribution. The key insight is that rather than there being a current

drive and an anti-current drive direction, it is more appropriate to consider these an efficient current

drive and an inefficient current drive direction. This effect can be seen in Figure 4.14.

4.3 Evidence of LH current drive

Although it has a long history of success on tokamaks, lower hybrid current drive has not been

demonstrated on an RFP. Before moving on to more sophisticated uses of LH, it is important to

demonstrate that current is actually being driven. Diagnosing the effects of lower hybrid at low

power is particularly difficult. This complication does not exist for tokamaks - since they are

replacing the inductive field of their plasma by driving toroidal current, either the inductive field

will decay, or the toroidal current will increase (depending on how the inductive field is applied).

Thus, current drive should be evident in either the loop voltage (a measure of the strength of
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Figure 4.14: This plot shows current amplification verses applied field, where current is driven

against the background (negatively directed) current. Note that the field causes the current

to reverse direction when it is sufficiently high, though this process is not nearly as efficient

as in the current drive direction, Figure 4.12.
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the inductive field), or the toroidal plasma current. These are easily measured externally to the

plasma. This is important because it means that they can be measured in a much lower noise

environment, and small changes can be seen easily. The situation is somewhat more complicated

for the RFP. There may be no net change in the applied electric field in the RFP because, as studies

of PPCD suggest, [11] current drive might simply exactly cancel the dynamo effect (not impacting

the inductive field at all). There certainly will be a modification to the measured loop voltage, but

given the fluctuations in this value in standard plasmas, at low powers it is unlikely that this can be

measured. More complex diagnostics must be considered.

Succinctly stated, lower hybrid current drive is used in the RFP to stabilize magnetic mode ac-

tivity by exploiting fast electrons to drive current. Three main quantities of interest are suggested

by this statement of objective: current (or current density), magnetic mode activity, and x-ray flux

(a measure of fast electrons). These diagnostics will be more or less relevant in different regimes

of applied power, and it is important to decide which diagnostics apply to which regime. Magnetic

mode activity, while easily measured, is difficult to use as a diagnostic of lower hybrid current drive

efficiencybecause it is unclear what the impact of driving small amounts of current will be. Along

these lines, it should be noted that occasionally PPCD plasmas are seen to not achieve stabilization,

for various reasons. During these failed PPCD periods, the poloidal inductive field is still applied,

but magnetic mode activity is not observed to be significantly reduced. This implies that mag-

netic mode activity will only be mitigated (at an observable level) very near to full stabilization,

and lends itself more to being a binary diagnostic of stabilization than a quantitative diagnostic

of driven current. Direct measurements of driven current are the next most promising diagnostic.

Unfortunately, this too presents some challenges. Because the primary direction of current drive

is poloidal, most of the anticipated driven current cannot be measured externally. Probes can be

used to directly measure current density, but in order to measure the small amount of current be-

ing driven, fairly delicate probes must be used. Owing the the high fields (and corresponding high

temperatures) required to avoid F-S mode conversion (and thus lost power), these probes cannot be

inserted deeply into plasmas of interest (specifically 400 kA PPCD plasmas, or even 400 kA stan-

dard plasmas). There does remain one possibility for directly measuring current however. Because
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of the kinetic leaching effect for standard RFP discharges which diffuses LH driven current across

the entire plasma, a significant number of fast electrons will be drawn into the core and accelerated

by the inductive field, leading to a toroidal current which could feasibly be measured externally.

This will still be a small amount of current, but if the main plasma current can be held constant

enough, it might be measurable at high powers. Figure 4.15 shows CQL3D’s predicted integrated

toroidal current as a percentage of the background current for a 400 kA standard plasma at various

power levels. Unfortunately, the change in current is small and the power required is large. This

might prove to be a very good diagnostic in the future however, and might help shed light on the

effects of induction.
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Figure 4.15: The toroidally directed current driven in standard plasmas as a fraction of the back-

ground current (400 kA). Although fairly small, this might be measurable at higher powers,

especially given MST’s expanded capabilities with a programmable power supply.

The only candidate diagnostic which remains is x-ray flux. This diagnostic also presents some

difficulties, though they are not insuperable. Examining PPCD plasmas first, difficulty arises due to

the fairly low flux increase relative to the background flux. Figure 4.16 shows CQL3D’s predictions

of integrated x-ray flux from 10-30 keV versus absorbed power. Notice the lowest power case in

this plot has a flux of about 1.6 times the background flux, and this point is about twice the present

launched power level. This situation is further complicated by the fact that gas must be puffed in
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Figure 4.16: The predicted hard x-ray flux (10-30 keV) during PPCD discharges. Notice that at

present power levels (Prad < 60kW ) the predicted flux is less then a factor of 1.5 above

the background flux, shown in blue.
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Figure 4.17: The difference in flux for PPCD plasmas with 100 kW of lower hybrid power at the

antenna face (∼ 60 kW radiated). Predictions from CQL3D are also plotted. This flux

difference is statistically significant.

order to couple significant power to the plasma (the subject of the next chapter). This is observed

to reduce the number of high energy photons, implying a mitigation of fast electrons. The x-ray

detectors cannot be operated in such a way as to view the maximum number of photons during the

puffing-on time without saturating before the puffing is turned on, thus eliminating the data for the

rest of the shot. It is not clear if this effect would impede stabilization experiments. Puffing can be

avoided by using a longer antenna however, so in either case this would not be an insurmountable

obstacle. Nevertheless, x-ray observations were made and a flux increase was observed, and is

reproducible, albeit small. These data are plotted in Figure 4.17. Examining this plot, it can

be seen that the flux increase observed during LH is consistent with the predicted flux increase,

though the difference is not overwhelming. EC plasmas also exhibit an increase in x-ray flux. This

is presented in Figure 4.18.

This provides an interesting constraint on transport in EC plasmas. Recall from the discussion

of enhanced confinement periods that due to a low Dreicer field, there is a risk of explosive runaway

growth. This would certainly be observed during experiments as the plasma current would rocket
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Figure 4.18: The x-ray spectra with and without rf during EC discharges. The rf case is in red and

the no rf case is in blue. This is a fairly consistent factor of 2 increase.

up to some very high level (which it does not), and so it is assumed to not occur in reality. Explosive

runaway generation can only be mitigated in simulations by reducing the electric field or by adding

massive amounts of diffusion. This is natural for stochastic plasmas, where fast electrons (and

hence runways) are preferentially lost, but as mentioned in the last chapter, it is also possible that

these plasmas exhibit very high but not stochastic diffusion.

Lower hybrid waves, injected into these discharges can determine if the transport in these plas-

mas is stochastic or non-stochastic. If transport is not stochastic, fast electrons are expected to

be long lived in these plasmas even with fairly high diffusion. More precisely, all electrons are

expected to be equally short lived, whereas with the stochastic diffusion case fast electrons are

expected to disappear more rapidly than slow electrons. The background subtracted x-ray spectra

from LH experiments is given in Figure 4.19. It is seen that even at low powers (60 kW of radi-

ated power in this case) there is a significant difference in the predictions of the kinetic model for

stochastic and non stochastic transport, and the data are more consistent with the stochastic trans-

port case. Increasing the injected lower hybrid power would make this relationship even clearer.
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non-stochastic diffusion case.
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This provides strong evidence that EC plasmas exhibit stochastic transport, and by extension (vis-

á-vis the previous chapter) are strongly impacted stochastic diffusion.

Finally, attention is turned to standard plasmas. Standard plasmas are known to exhibit stochas-

tic transport, and so it is difficult to build up a substantially localized current. At the power levels

currently used on MST, the hard x-ray flux predicted for these plasmas is very low, although it is

observed (see Figure 4.20). Non-rf standard plasmas have an unobservably low x-ray flux how-

ever, so quantifying the flux increase is not possible. Moreover there is a dispute as to the origin

of these x-rays. It has been previously conjectured by Kaufman [52] that this flux was entirely due

to the so-called near field interaction, where electrons are accelerated because of cyclotron motion

in the presence of an electric field gradient near the antenna face. A very large x-ray flux is indeed

observed directly above the antenna itself, and can likely be attributed to this effect. Near field

electrons are expected to be very energetic, having a very high perpendicular velocity (i.e. a large

cyclotron orbit). Since they are created at the very edge of the plasma, it is expected that they will

be lost very rapidly, striking the vessel wall and emitting a significant hard x-ray flux. They do not

represent a sizable loss of power however.

In order to observe the Landau associated electrons, observations were made toroidally distant

from the antenna (the Landau electron population should be axisymmetric). Furthermore, diag-

nostic capabilities were extended into the soft x-ray spectrum (2.5-10 keV). The flux in this part

of the spectrum is high enough that emission is always observed, whether lower hybrid is on or

not. This means that the difference in magnitude between background emission and LH-associated

emission can be directly quantified. Moreover, because stochastic plasmas have velocity depen-

dent transport, it is anticipated that the longest-lived electrons will be those at lower speed. While

the difference in flux is not overwhelming, if many shots are ensembled together, a statistically sig-

nificant flux difference is observed. The spectrum for these discharges (with a radiated power of

approximately 100 kW) along with predictions from CQL3D are shown in Figure 4.20. Notice the

strong qualitative agreement between the lower hybrid spectrum prediction and observation. The

high energy soft x-rays (5-10 keV) and the hard x-rays are not observed without lower hybrid, as

predicted by the kinetic simulation. Also notice the clear agreement in where the high energy soft
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x-ray data are trending and where the low energy hard x-ray data begins. This is important because

these detectors are at different toroidal angles, and so their relative agreement provides support of

the hypothesis that the population being observed is not toroidally localized, as predicted for near

field electrons. Although this agreement is certainly not perfect, it is impressively accurate given

the uncertainties in the model even for non-rf plasmas. Bear in mind this plot shows rough agree-

ment across 6 orders of magnitude. It is interesting to note that the simulation run here used the

neoclassical resistivity model. Despite the uncertainty surrounding the background electric field,

we are justified in using this model, because for stochastic diffusion, the electric field is unable

to accelerate particles to very high energies without them being rapidly lost. Therefore, the exact

nature of the electric field is of little importance. This is illustrated by comparing the predicted

x-ray flux for a few of the closely agreeing models, shown in Figure 4.21.

The most important piece of evidence supporting the claim that LH x-ray emission far from

the antenna is due to the Landau interaction and not the near field interaction comes from the x-ray

target probe. Since the x-ray target probe makes a radially localized measurement, it cannot be

argued that edge electrons are distorting the measured flux. The flux difference between LH on

and LH off shots from target probe measurements is presented in Figure 4.22. Recall from the

previous chapter that target probe flux and target probe flux difference are both directly related

to the size and speed of the fast electron population. The enhanced x-ray flux is observed to be

consistent shot to shot, and increasing as the probe is inserted deeper into the plasma. The circles

in this plot are taken 180 degrees toroidally distant from the LH antenna and the triangles are taken

90 degrees away from the antenna. The agreement at these two locations provides strong evidence

that this population of electrons is axisymmetric. The CQL3D prediction for 60 kW of absorbed

power is also plotted. This appears to be roughly consistent with the observed population, although

some extrapolation is required. There is an interesting plateau like feature in these plots. Notice

that it can be seen in both the LH on, LH off, and ∆ data points. This feature is resilient, as these

data points represent a very large number of shots, and demands further scrutiny.
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4.4 Current Drive for Full Stabilization

Having established that an LH associated, axisymmetric fast electron population is generated

and increases with plasma depth, a full stabilization scenario can be considered. The most im-

portant computational work dealing with auxiliary current drive for RFP stabilization not directly

focused on PPCD is the work of Sovinec and Prager. [9] In this work, many different current drive

scenarios are simulated, exploring a wide parameter space, the most important of which for the

purposes of this study are those denoted as case B, and I. These two scenarios, (properly unnor-

malized) are presented in Figure 4.23, with the reversal surface predicted by MPFM model also

plotted. This work goes on to say that an RFP with a particularly large Ohmic field will not expe-

rience stabilization of core resonant modes with edge localized current drive. Unnormalizing the

fields quoted, we find that MST operational parameters are very near the region shown to resist

stabilization. It is also stated in this work that drive that is too localized near the reversal layer can-

not stabilize core modes. Because the reversal surface in experiments is observed to be somewhat

deeper than that presented in these simulations, the deposition layer based on experimental profiles

is closer to the reversal surface. Due to the differences in geometry (the inherent toroidicity) and

magnetic topology however, it is difficult to quantify the restriction on current drive location, and

so it is unclear what the impact of this effect will be. However, in the absence of a better approx-

imation, these two cases are assumed to be sufficient. It is the hope of this author to spur interest

in this topic by presenting several realistic current drive profiles based on actual MST discharges.

Finally, the different parts of wave propagation can be assembled and a meaningful prediction of

current drive for real MST plasmas can be presented. The results of these simulations are presented

in Figure 4.24 and Table 4.1. It can be seen in these plots that the case with electric field requires

less power and is broader. This is due to runaway amplification across the entire profile. It can be

seen that between 1.6 and 2 MW of power are needed for full stabilization experiments.

Just as or perhaps more important than the predicted amount of power required for current drive

is establishing a scaling relationship. This relationship is observed to be quite linear for stabilized

PPCD plasmas and is shown in Figure 4.25. It is also consistent with the scaling relationship of
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case P [MW] J0 [A/cm
2] B0 [T] ρ0 σa ρrev

380 kA PPCD No E field 2.0 55.5 0.37 0.70 0.07 0.76

380 kA PPCD E field 1.6 55 0.37 0.72 0.11 0.76

560 kA PPCD No E field 2.4 85 0.56 0.74 0.11 0.8

560 kA PPCD E field 1.8 82 0.56 0.73 0.13 0.8

Table 4.1: Simulations determining the power required for stabilization based on the prediction for

case B in Figure 4.23. J0 is the peak current, B0 is the magnitude of the core field, ρ0 is

the centroid of the peak, σa is the width of the peak and ρrev is the location of the reversal

surface for reference. For comparison, case B requires a current of ∼ 150B0[A/cm
2
/T ],

and case I requires ∼ 110B0[A/cm
2
/T ], but recall there are a lot of inherent assumptions

in this approximation.
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Experiment [ref] η (×10
19

A/m
2
W)

ASDEX [98] 0.168

HT-7 [99] 0.2-0.4

380 kA PPCD 0.275/0.297

560 kA PPCD 0.534/0.78

Alcator C [100] 1.2

JT-60U [101] 1.5-2.3

JET [21] 2.6

Table 4.2: The experimental efficiency of various tokamaks compared to the MST simulation

results. The efficiency parameter is related to the temperature and it can be seen that the

larger, hotter tokamaks have higher efficiencies. The double values listed for MST are with

and without electric field.

Fisch discussed in Chapter 1, whereby rf is more efficient at driving current in higher temperature

plasmas. The density profile for these two cases is quite similar. The exact prediction of the Fisch

model depends on assumptions about the absorption volume, but for absorption layers on the order

of 1 cm the efficiency is approximately 12 A/cm
2
/MW. This is about a factor of 3 lower than the

CQL3D prediction, as Fisch noted for tokamaks. [43]

Accurately measuring radially localized J� and absorbed power (Pabs) in a hot plasma exper-

iment is quite difficult, particularly when trying to measure a narrow band of increased current

density. For this reason, the efficiency parameter usually cited by experiments is η = �ne�IR0/P

(the product of line-averaged density, driven current, and major radius divided by input power),

which can be approximately related to J�/Pabs by the formula η ≈ 0.0002Te(keV )J�/Pabs. [16]

All of this is based on the geometry and scheme of the tokamak however, and it is not clear how

directly relevant it is. Nevertheless, there is good agreement between the predictions of the MST

simulations and some modern tokamaks as shown in Table 4.2. MST lies very near to tokamaks

with similar temperatures.
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Poloidal Angle Peak n� Spectral width

−134
◦ 8.4 4.8

45.6
◦ 8.5 4

86.9
◦ 8 4

Table 4.3: Parameters for an upgraded LH antenna system. Note, this includes a redesign of the

current lower hybrid antenna located at ∼ −134
◦ poloidal.

4.5 Alternative Scenarios

4.5.1 The intermediate system

The above sections assumed antennas placed in the same, fairly optimized location on MST.

This would be a fine idea if one were building a brand new RFP and wanted to run full power

stabilization experiments, however it is impractical in MST as it stands. Port access is limited,

and there are precious few ports of appropriate size with a poloidal angle of −135
◦ (the drilling of

new holes at this poloidal angle would be both technically complex and politically infeasible). The

MST LH group currently possesses three (potentially) 300 kW klystrons, and so, assuming this is

near the limit of antenna power handling (a limit that has not been established), a different, more

realizable system is considered, pictured in Figure 4.26.

The design presented here is optimized for a 380 kA PPCD discharge. Higher current dis-

charges should be fine targets as well (though the deposition layer might be unacceptably far out

radially), as would low density discharges of many different currents (EC plasmas for instance).

This system calls for two additional antennas, located at the same toroidal angle as the current

system. There is already a boxport at this angle, currently used (infrequently) for probes. This

positioning is advantageous, as localized gas puffing is required for coupling to PPCD plasmas

(as will be discussed in the next chapter) and the amount of gas puffed must be limited in order

to prevent interruption of stabilization. Optimal parameters for the three antennas are presented

in Table 4.3. Notice the new antennas are a little longer than the current antenna, leading to a

narrower n� spectrum. Also note that the current antenna is redesigned, to better accommodate the
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temperature profile of a full PPCD plasma (though it should still operate satisfactorily at lower or

higher temperatures). The propagation diagrams of these antennas are presented in Figure 4.27.

Although some of the features in these diagrams are slightly different than for the previous setup,

they are completely within our expectations based on the theory outlined in §1.3.

A system at this power level should produce very significant current drive. Whereas the current

system is not expected to produce much observable x-ray flux during PPCD discharges, an upgrade

system of this sort should provide unequivocally increased x-ray spectra. X-ray emission and

current drive predicted for this system are shown in Figure 4.28. Due to damage to the antenna,

the current system is observed to have a limit of about 50 kW of radiated power. An upgraded

system, operating at modest power levels previously observed with the present antenna when it

was in better health, should be able to provide 450 kW of radiated power, and if the antenna design

specification is reached, could launch 600 kW of rf power, a factor of 10 increase over the present

system. As can be seen, the amount of current driven with the amplification caused by the electric

field is almost half of the required current, in line with the predictions of Figure 4.25. A system

at this power could be coupled with PPCD in order to see global stabilization. Specifically, PPCD

could be initiated and after stabilization is achieved, the applied inductive field could be reduced.

If this is done while rf is fired, the efficacy of current drive will be visible in the magnetic mode

activity as compared to the same scenario without rf. This scenario is called a PPCD-rf handoff

scenario.

4.5.2 The Non-inductive RFP

It has often been speculated [102] that rf current drive is not efficient enough to provide full

current sustainment for an RFP (as opposed to profile control). Of course the term “efficient” is

subject to interpretation, but it is a question worth addressing. In order to facilitate this, two ap-

proaches are considered. In both approaches, the inductive field is set to zero. Although this is not

particularly physical, it is assumed that if an RFP was run for a long time after the inductive field

had shut off, the field would decay away in some fashion, and it is not clear what the magnitude of
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the field which resulted would be. Therefore, these should be interpreted as a worst case scenarios

rather than an optimized scenarios.

First, motivated by the profile shape observed for stochastic transport (Figures 1.17, 3.11 and

4.9), it is speculated that core current could be driven by intentionally driving massive amounts

of edge current and exploiting stochastic diffusion to draw the current into the plasma. Because

lower hybrid current drive exploits fast electrons, these will be preferentially distributed across the

plasma by stochastic transport. This is expected to be a fairly inefficient means of current drive,

but would certainly be interesting scientifically. Stix and Ono proposed a similar scheme for non-

inductive current drive using DC current injection. [103] This could be achieved with a slow wave

antenna array, identical to the current system, albeit much larger in order to accommodate more

power. The results simulations of this scenario are seen in Figure 4.29. This simulation focused on

an Enhanced Confinement plasma because fast electrons are more easily generated due to the low

Dreicer field. Note that even though this simulation is run without a background inductive field,

the Dreicer field is still a critical parameter because it represents the ease of generating runaway

currents. More power would be required for a standard plasma, where a large runaway population

is more difficult to develop. This is shown to require at least 50 MW of power, a large but not

unattainable amount of power. Although this is a lot more power than is currently used by the

Ohmic system on MST (by a factor of 2.5), the advantage of arbitrary pulse length alone would

justify a system of this size. Of course, based on the current antenna, 50 MW of radiated power

would correspond to about 75 MW of provided power, and this is probably unacceptably large.

This would also require 250 antennas operating at the design spec, and with a width of about 5 cm,

the array would have to wrap around the machine twice. This is not as impossible as it sounds, as

two arrays could be placed at different poloidal angles, but it still seems like a Herculean effort to

keep an admittedly poorly confined plasma going.

A second, more viable technique is to focus on a broad deposition profile, restricting the plas-

mas studied to high current (560 kA) PPCD plasmas. The LH slow wave is not a suitable means

of driving current across the plasma core in a stabilized discharge. This is due to the poloidal

upshift, which causes the wave to oscillate back and forth in n� space. Because the wave motion
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is directed mostly parallel to the magnetic field (therefore not radial), it will oscillate many times

before reaching the core (or even the midradius) and will either strike the F-S mode conversion

layer, or damp away in the region of high Landau damping. Rather, the LH fast wave is proposed.

The wave propagation diagram for a broad deposition fast wave is shown in Figure 4.30.

The fast wave will not oscillate as much as the slow wave. The dispersion relation is sig-

nificantly more complicated, but it is sufficient to point out that any poloidal shifting is not as

important as the general poloidal lensing effect as the wave propagates inward radially. Moreover,

because the fast wave is not nearly electrostatic, the picture of absorption is more complicated,

and the polarization must be taken into account. [104] This reduced efficiency makes the fast wave

unattractive when current localization is desired, but is actually a benefit for a non-inductive sce-

nario because the wave is able to propagate in the region of strong Landau damping for a time

without being completely absorbed, penetrating deeper into the plasma. In order to move the R-

mode cutoff closer to the plasma edge (to facilitate launching fast waves) a much lower frequency

(100 MHz) is used. This wave is launched from the outboard midplane, as it is assumed that a lot

of real estate would be necessary in order to accommodate the amount of power that will be re-

quired. The launch spectrum covers the range n� = [−5.5,−9.5]. The results of these simulations

are presented in Figure 4.31.

Based on Figure 4.31 it appears that 20 MW of rf power could replace the inductively driven

current in a high current PPCD shot. If that seems like a lot, it is important to bear in mind that

MST expends approximately 20 MW of power creating discharges anyway. Moreover, a fast wave

driven RFP could be run for arbitrary periods of time, assuming long term MHD stability of an

RFP driven in this way. Perhaps an ancillary system (either slow waves or OFCD) could provide

some smoothing of this profile. Nevertheless in the context of the general efficiency of MST and

the potential benefits of arbitrary pulse lengths, it’s fair to describe this as a possible scenario to

consider, or more likely part of a broad portfolio of current drive devices which could provide

noninductive current. Even the 5 and 10 MW cases demonstrate significant current drive.
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Figure 4.20: The x-ray spectrum for a lower hybrid discharge (co-current direction). Notice the

good qualitative agreement over many orders of magnitude. The current profile in these

simulations does not match the observations in reconstructs, as discussed in Chapter 3.
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Figure 4.22: The flux increase associated with LH excitation versus radial-like coordinate. The

dashed line indicates the CQL3D prediction for 60 kW absorbed power (the approximate

amount of power radiated). The triangles are data 90 degrees away from the antenna and

the circles are data 180 degrees away from the antenna. This perturbation is seen to be

axisymmetric and increasing at deeper radii.
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The reversal surface predicted by the MPFM model is also plotted as well.
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Upgrade Antennas

Figure 4.26: A possible lower hybrid upgrade system. This system would be placed on a boxport

located at 90T, the same location as the current antenna. The total system would be able to

deliver at least 450 kW, and possibly as much as 600 kW.
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Figure 4.27: Wave propagation diagrams for the hypothetical upgrade system. Antennas at poloidal

angles of (a) 45
◦, (b) 90

◦ and (c) −135
◦.
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Figure 4.28: Predicted x-ray flux and current drive for the hypothetical upgrade system. Because

the radiated power is a factor of 10 higher than the current system and the power levels

are still in the near linear regime, both driven current and x-ray flux are about a factor of

10 higher than currently observed. Plot (a) shows the driven current with and without an

applied electric field. Plot (b) shows the x-ray flux with the electric field enhancement.
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Figure 4.29: A plot of the current driven by 50 MW of LH power launched from the same poloidal

angle as the current system, with no electric field, in red, the equilibrium profile is also

plotted in black.
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Figure 4.30: The propagation diagram for a 100 MHz fast wave in a 560 kA PPCD plasma in

MST. Notice the topology is quite different at this different frequency, the F-S cutoff point

is safely tucked away at the edge of n� space. Also notice the less localized deposition.

The oscillating n�behavior is somewhat less pronounced.
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Figure 4.31: Fast wave current deposition for very high power launch. The current from the

equilibrium reconstruction is also plotted (the dashed line). From this plot it appears that

20 MW of power should be sufficient, assuming the profile is stable. More control can be

gained by adding slow waves to the edge.
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Chapter 5

Coupling Power to Improved Confinement Discharges

5.1 Coupling to the slow mode in MST plasmas

Having determined the current drive target and demonstrated the efficacy of the lower hybrid

system, a detailed study of the process of coupling to the lower hybrid slow mode from the plasma

edge is undertaken. Recall the mode cutoff diagram, Figure 1.8. The process of coupling is

essentially the process of creating a perturbation in a vacuum (region IV) with n� near 7, and

forcing that perturbation through the vacuum and low density region where the electric field decays

exponentially, into the propagating zone, where a wave solution is supported. Because of this

exponential decay, the more distant the propagating zone is from the source of the perturbation

(the antenna), the less power will be available to be coupled to the plasma. The borders between

the non propagating regions and the propagating region are the low density cutoff (P=0) and the

Fast-Slow Cutoff, F=0 (which in the cutoff diagram is distant from the plasma edge). Recall that

reducing the magnetic field brings the F=0 surface to lower densities. Therefore antenna coupling

will be less efficient if density is decreased, or if the magnetic field is decreased severely (bringing

the F-S mode conversion zone in front of the antenna face).

5.1.1 Density Dependence

The most comprehensive analytic work dealing with the coupling of this type of slow wave

structure to a plasma was undertaken by Golant, [105] who focused solely on the effects of edge

density (this derivation is briefly summarized in appendix F in a simplified form). Golant attempts

to describe the electric field penetration for the four region problem presented in Figure 1.16,
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Figure 5.1: An ensemble of many shots showing the relationship between line averaged density

and the coupled power fraction. The biggest source of error is most likely the implicit

assumption that the edge density directly tracks the line averaged density.

where the four regions are the slow wave structure, a vacuum region, a low density non propagating

region, and the propagating region. The model derived from this analysis contains many potentially

interrelated free parameters however, and is subject to much interpretation. The prediction of

damping parameter seems to provide the wrong scaling. This can be seen by examining the derived

value of the damping parameter (αcoup), calculated from Golant’s equation 44. Recall that the

power at the antenna face as a function of angle is given by P (θ) ∝ Exp−θ/αcoup (neglecting

Ohmic losses), i.e a large αcoup means the wave at the antenna face damps away slowly and little

power is coupled to the plasma, and a small αcoup means the wave at the antenna face damps very

quickly so coupling is very efficient.

αcoup =
cnz0

4sωrap (n
2
z0 − 1)

7/6
F

�
ωlc

c

�−1/3

. (5.1)

In this equation, F represents the reduction in wave intensity due to exponential decay of field

magnitude in the vacuum region (and has a somewhat complicated form), nz0 is the unperturbed

(vacuum) launch spectrum peak, rap is the radius at which the antenna aperture is placed, and

lc is the distance of the P = 0 surface from the plasma edge. This scaling can be immediately
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dismissed because it implies that when the non-propagating layer is enlarged (increasing lc), the

damping parameter will decrease, meaning the power at the antenna face will decay faster, leading

to more efficient coupling. Indeed if the critical layer is moved to infinity, this formula predicts

that all the power at the antenna face will be instantly coupled to the plasma. This is in direct

opposition with our physical intuition and experimental observations, shown in Figure 5.1. This is

not necessarily surprising as arriving at this solution is difficult work and requires many expansions

and assumptions about scale and symmetry.

Something can be learned by studying a fairly simple model. Assume for a moment that the

non-propagation region of the plasma acts just as the vacuum. Neglecting the reflected portion of

the wave then, the electric field within the non-propagation region is given by

E ∼ Exp[−
�

n
2
�
− 1

ω

c
x] (5.2)

where x is the radial distance from the antenna (derivation of this is covered in Appendix F). The

power in the launched wave (being electrostatic) is proportional to the square of the electric field

magnitude. The total field decay before a propagating mode is excited will then be related to the

total distance of the propagation region from the aperture face, specifically lvac + lc, the sum of

the length of the vacuum region and the length of the non propagating region. The width of the

vacuum region must be greater than the height of the antenna limiter (approximately 0.8 mm from

the aperture face). As previously stated, it is expected that the non propagation region will be fairly

small, so we estimate its size by Taylor expanding the plasma density around the vacuum - plasma

interface (where the density is zero), i.e.

ne(x) = 0 +
dn

dx

����
x=0

x (5.3)

Holding this to be true, lc can be calculated as

lc = ncrit/(dn/dx)x=0. (5.4)

Finally, the density gradient is approximated by assuming that at some fixed distance ∆, the

plasma has achieved some density ne0 (i.e. we say (dn/dx)x=0 = ne0/∆). This leads to Figure

5.2.
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Figure 5.2: The coupled power fraction predicted by the simple coupling model. These different

curves represent different ∆ parameters in our density profile assumption. For red, ∆ =

1 cm, for blue ∆ = 5 mm and for green ∆ = 1 mm. Notice the density here is edge density

not line averaged density, which is why the magnitude differs from Figure 5.1

While these curves do not lie exactly atop the curves of Figure 5.1, they do give the same

qualitative scaling, approximately the same limiting value of η, and given the number of uncertain

terms (specifically lvac, ∆, and the relation between line-averaged ne and ne0), agree impressively

enough.

It seems prudent to revisit the Golant model, applying the fundamental assumption that the

non-propagation region is not important. Rather than assume (as Golant does) that the plasma

density begins at zero and increases continuously (necessary for the Taylor series expansion for

lc), the plasma is instead considered to have a minimum density, which is roughly constant over

the (very small) region of interest. Thus, our density is zero for a distance of lvac, and then steps up

to a large value, presumably near 1 × 10
18

m
−3, the nominal edge density for these plasmas. The

basic assumption of this interpretation is that the plasma ends abruptly at some value well above

the critical density for non-propagation (ncrit ≈ 8 × 10
15

m
−3). This requires that a plasma with

a high core density will be physically closer to the antenna, which is not altogether unreasonable

since the pressure for a plasma such as this will be larger. Plots exploiting this assumption are
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Figure 5.3: The coupled power fraction predicted from the Golant model with the plasma step

function interpretation. The original width of the boron nitride limiter is marked. This is

found to be generally quite reasonable, as the vacuum gap is expected to be on the order of

millimeters.

shown in Figure 5.3. These results do indicate that as the plasma region is moved away from the

antenna face, coupling is reduced, which is consistent with intuition.

5.1.2 Fast-Slow Cutoff

Determining the possible impact of the fast-slow cutoff is slightly more complicated. Because

the antenna is located in the evanescent region for the density cutoff, moving the P = 0 critical

layer directly inhibits antenna-plasma coupling. For the Fast-Slow equivalence point however, the

wave can exist before encountering the critical cutoff layer, and then be reflected back the way

it came. Again, a simple model is deployed to interpret how this might impact coupling. The

underlying assumption of the model is that if the Fast-Slow cutoff is brought close enough to the

antenna face, a launched slow wave will either undergo the resounding chamber phenomenon on a

small enough spatial scale that (after converting to a fast wave and back) it will re-enter the antenna,

or perhaps more appropriately there is not a large enough propagating region to support a full wave

and so less power is able to couple into the plasma. This situation is sketched in Figure 5.4a. While
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Figure 5.4: Details of the simple model of F-S reflections. Figure (a) shows a sketch of the process

being modeled. Figure (b) shows the portion of the spectrum assumed to be cutoff (the

shaded region). The radiated power is then calculated by integrating over the rest of the

spectrum (assumed to be a Gaussian for simplicity).
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the physical process might be fairly complex, the overall impact can be approximated easily. The

plasma density is estimated at a point near the antenna face (near enough that a reflection will

reenter the antenna). The nominal edge density of MST ∼ 1 × 10
18

m
−3 is a good choice. The

n� that will be cutoff at that density for a given magnetic field strength is then calculated. Finally,

it is assumed that the entire spectrum below that n� is not coupled to the plasma. The integral of

the power in the remaining portion of the spectrum should be what appears to be radiated. This is

illustrated in Figure 5.4b.

An experiment is devised to test this hypothesis. Although low current (and therefore low

field) plasmas can be run to test this effect, it is more efficient to run plasmas with a slow current

ramp down (with an associated field ramp down). The coupling efficiency could then be calculated

fairly easily for a wide range of magnetic fields. It can be argued that the plasma density might be

somewhat dynamic during this period, but the data used in this experiment were selected on the
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Figure 5.5: The results of coupling experiments varying the magnetic field strength. The curves

represent the predictions of the simple model, with three different densities used as the

critical density (green is ne = 8 × 10
17

m
−3, blue is ne = 1 × 10

18
m
−3 and red is ne =

1.2 × 10
18

m
−3). The antenna begins to arc when the coupled power fraction gets below

about 30%. 800 MHz is the cyclotron frequency when B = 28.5 mT
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basis of constant core density, and the results exhibit good agreement, given the relative simplicity

of the model employed (see Figure 5.5).

5.2 Coupling to Improved Confinement Plasmas

This discussion of coupling to a plasma edge gains a new urgency when examining improved

confinement plasmas. It is observed that during periods of high confinement, there is a degradation

in the coupled power fraction. In §4.2.2 it was demonstrated that standard, stochastic RFP dis-

charges do not provide a good target for stabilization experiments, due to the velocity dependence

of the diffusion coefficient, and so coupling power to high confinement plasmas is of the utmost

importance.

The coupling degradation in both PPCD and EC plasmas can be seen in Figures 5.6 and 5.7. As

these plots demonstrate, although the average coupling fraction is certainly reduced, considering

just the mean coupled power fraction over the entire high confinement period obscures a lot of the

physics that is occurring.

In order to mitigate this loss of power coupling, the source must be identified. The discussion

of coupling presented in §5.1 suggests that the two most important parameters are magnetic field

and edge density. It can be seen in Figure 5.6 that during PPCD the field magnitude increases

slightly. This is part of the normal ramping process and also occurs when PPCD does not succeed.

In either case, this should improve coupling, although it should be noted that this field strength is

well above the cutoff field. The pitch of the field line at the antenna face does change dramatically

during PPCD. It is not expected that field direction will have much impact on coupling however,

and indeed, it can be seen that after PPCD ends, the field pitch angle increases at roughly the same

rate that it decreased when PPCD was underway, and yet the coupled power fraction instantly

returns to standard (high) levels. Moreover, as can be seen in Figure 5.7, the pitch angle in EC

plasmas is not all that different than it is during standard periods, like the one occurring right after

EC ends.

In light of this, it is proposed that this coupling degradation is due to an edge particle transport

effect. That is to say, the plasma density at the edge of the plasma column is significantly reduced
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Figure 5.6: Coupled power fraction during PPCD periods. Notice the steady decrease in coupled

power. This cannot be attributed to change in field pitch because after PPCD ends, the field

pitch gradually returns to zero, but the coupled power fraction is restored instantly. Rather,

a density pinch is indicated to be responsible.
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Figure 5.7: Coupled power fraction during Enhanced Confinement periods. Notice this period is

much shorter than the PPCD period. The coupled power fraction is still seen to be signif-

icantly reduced during the high confinement period, and seems to be steadily decreasing,

however (perhaps because the high confinement period is shorter), it is not reduced quite

as much as in PPCD. Notice that the coupled power fraction is somewhat erratic, seeing

increases clustered around the small dynamo events.
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Figure 5.8: The edge density profiles for standard, EC and PPCD plasmas. These data are ensem-

bles of many many shots. The LH antenna limiter radius is marked. Note that these data

are for discharges with significantly lower current then normal LH targets, in order to allow

for Langmuir probe insertion. These data are courtesy of B. E. Chapman. [10, 106]

in PPCD plasmas. This was observed by Chapman, [10] who also observed a very similar effect in

EC plasmas. [106] These data are reproduced in Figure 5.8 (the EC data set is unpublished). This is

believed to be caused directly by the improved confinement, as particles are not driven to the edge

region of the plasma as rapidly. This also means that fewer particles will strike the walls, leading

to a reduction in neutral gas recycling. It is therefore proposed that poor coupling during these

discharges can be mitigated by the puffing of neutral gas. Unfortunately it is generally observed

that fueling both enhanced confinement and PPCD plasmas from the edge tends to degrade con-

finement improvement. Therefore it is not only necessary to study the dynamics of coupling during

these discharges, it is also important to study the mode structure to see if stability is maintained.
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5.3 Localized Gas Puffing Experiments

Additional edge fueling gas is puffed into MST by means of a piezoelectric valve. This valve

is connected to a tube which releases the gas very near to the LH antenna, and at the same toroidal

angle. The system has a maximum flow rate of 33 Torr L/s. Because the field is mostly poloidal at

the edge of MST, the tube outlet is magnetically connected to the antenna face, meaning there is a

field line that directly links the tube and the antenna aperture.In order to preserve the purity of ion

species within the plasma, deuterium gas is used.

When localized gas is puffed during PPCD, it is observed to have a dramatic impact on coupling

behavior, as shown in Figure 5.9. This figure shows that 15.4 Torr L/s of deuterium flow improves

coupling essentially to standard plasma levels, maintaining a coupled power fraction near 90%,

as compared with the undoped minima near 50%. It is interesting to note that the coupled power

fraction is still reduced at the very end of PPCD even with puffing. This is not enough of a

reduction to seriously hinder LH experiments, but enough to indicate a density depletion. This

feature is observed on all shots with doping.

It is important to concurrently consider mode activity. Doping is seen to improve coupling, but

if this is accomplished by derailing the improved confinement state, then it is without value. To

this end, the mode activity for the n = 4 mode is examined. The mode activity is observed to be

low over the entire PPCD period even with puffing.

The improvement of coupling and reduction of mode activity are somewhat more difficult to

discern in Enhanced Confinement plasmas. EC periods arise spontaneously and sporadically. They

differ from one another and vary fairly erratically as they progress. Moreover they occur at different

times in the discharge, with different properties depending on where they occur. Because of this,

the dynamics are even more important to consider than they are in PPCD plasmas, and the effect

is less pronounced. Nevertheless, improvement in coupling associated with doping is observed

(Figure 5.11). While the coupled power fraction in the non-doped EC period varies wildly, the

doped EC period is able to maintain consistently high coupled power.
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Figure 5.9: Coupled power for three different discharges which display large scale PPCD-driven

stabilization, with three different values of puffing. The lines indicate uncertainty. The blue

curve is from a shot with no puffing. The red curve is from a shot with puffing of 6.2 Torr

L/s. The green curve is from a shot with 15.4 Torr L/s of gas flow. It can be see that the

undoped plasma exhibits a coupling fraction as low as 50% whereas the fully doped shot

exhibits almost no coupled fraction reduction at all.
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Figure 5.10: The n = 4 mode is displayed. The top plot is a shot with 15.4 Torr L/s localized

gas flow. This is the very same shot as the green case in Figure 5.9. The second plot is a

no doping shot where PPCD was fired, but failed to achieve stability, for the purposes of

comparison. It can be seen that the shot with doping remains stable despite the additional

edge fueling.
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Figure 5.11: Coupled power during EC periods with and without gas puffing. The red data repre-

sent the gas puffing case and the blue data represent the no gas puffing case. Looking at

the mode activity, it can be seen that the both plasmas achieve EC at about 26 ms. This is

seen to effect the coupled power fraction, although it remains above 80% throughout the

discharge. In the no gas case however, η is observed to fluctuate as low as 60%. These two

discharges were chosen because they have roughly equivalent EC periods based on onset

time, soft x-ray emission, and SDE burst severity.
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It is clear that edge density is the most important factor affecting edge coupling in improved

confinement plasmas, and it is equally clear from these data that localized gas fueling can mitigate

these effects. It is not clear however what impact if any this has on current drive.
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Chapter 6

In Summary

6.1 Review and discussion of original work

Before discussion of the future directions in which this work can be taken, a simple review and

discussion of present original results is given, separated by chapter.

6.1.1 Introductory Material (Chapters 1 and 2)

The theory of plasma wave propagation and some elements of absorption are laid out here.

This chapter contains all the tools necessary to gain a good qualitative understanding of any RFP

LH slow wave system. In particular, the study of accessibility vis-á-vis the F-S mode conversion

layer and the P = 0 cutoff by exploiting wave-propagation diagrams with MST like parameters

provides a means of estimating a required launch n�. These diagrams also provide a simple method

for instantaneously determining the possibilities of reaching a given radial target, once frequency

is fixed. The modified poloidal lensing effect was also derived and explained. This is an important

propagation effect (as demonstrated in later chapters) as it limits the penetration of lower hybrid

slow waves. Because they oscillate back and forth in n� space, they cannot be expected to penetrate

to the core of the plasma without encountering the F-S mode conversion point or damping away

in the region of high Landau damping. This can be mitigated by choosing a lower frequency or

increasing the magnetic field, which would move the F-S mode conversion layer closer to low n�.

However, one must then contend with the problem of encouraging the wave to reach the region of

high Landau damping at a precise radial location without relying on the n� oscillations because are

largest at the plasma edge.
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Inductive effects in the RFP were also studied. It was found that the inductive time scale

shouldn’t be a major impediment if one accepts the simple circuit model. It is not clear if it is right

to do this however, and this problem should be studied more throughly with a 3D MHD code, and

(experimentally) with high power rf before any firm conclusions can be drawn.

Finally, a more complicated model of power radiation is derived, and found to provide a good,

dynamic measurement of power radiated to the plasma. This is vitally important to interpreting the

results of Fokker-planck modeling, and more important for the coupling studies of Chapter 5.

6.1.2 Kinetic Modeling (Chapter 3)

This chapter was directed at the first objective question from the introduction, specifically

“Does the Fokker-Planck Model provide a reasonable representation of RFP plasmas?”. Some

time was spent developing and verifying a bias free statistic for interpretations of x-ray data which

is not the traditional interpretation used. The theory of an x-ray bremsstrahlung stimulation target

probe was developed in order to present predictions from modeling in a meaningful way, and

the qualitative difference between these two measurements was discussed. PPCD plasmas had

previously been studied by other authors, but it is important to point out that studies done in support

of this work indicate that the Fokker-Planck technique can produce reasonable results for a range

of diffusion coefficients, and so a certain amount of ambiguity exists when using this technique as

a constraint on this coefficient.

The Rechester-Rosenbluth model of stochastic diffusion was employed as a model for the

net effect of field line wandering. The impact of this was studied in great detail, starting with

a Green’s function approach (that is assuming the electric field is a delta function). It should be

noted that unlike previous studies, this study used full toroidal fields, reconstructed from actual

discharges. The results of Martines [54] were then reproduced for MST using Martines’s Zeff

profile, to demonstrate some general effects of stochastic diffusion (Giruzzi’s work [58] was also

reproduced, but not presented as it is very similar to Martines’). Enhanced Confinement plasmas

were predicted to have a large fast electron population (because of the low Dreicer field), and also

observed to have a high x-ray flux, which is indicative of this population. CQL3D was shown



185

to have excellent agreement with both the reconstructed current profile and the x-ray spectrum,

exploiting the Jacobson and Moses diffusive term to account for stochastic field line wandering.

Standard plasmas were then studied with several models. CQL3D was shown to be unable to

reproduce both the observed current profile and the observed x-ray spectrum. The general result

of these simulations is that when the model is coaxed to produce the correct current profile, the

fast electron population is overestimated. Correspondingly, when the fast electron population is

appropriately represented, the current profile predicted is too low. I am forced to conclude that

there is a break down in the model. In the experiment there must exist a means of carrying current

that is not observable in the x-ray spectrum. Presumably this arises from a population of electrons

which are not correctly captured by the CQL3D model. .

6.1.3 Lower Hybrid Current Drive experiments and modeling (Chapter 4)

Evidence for an LH associated fast electron population was presented in this chapter, along with

computational studies of wave propagation, absorption, driving stabilizing current and alternative

scenarios. X-ray flux during standard PPCD and EC plasmas is shown to agree well with modeling,

although this agreement is only qualitative for standard plasmas. This chapter contains the most

important plot for establishing the efficacy of the present lower hybrid wave system on MST, that

is Figure 4.22, the results of target probe experiments. These results demonstrate the existence of a

radially localized, axisymmetric population of fast electrons, associated with lower hybrid power,

that is consistent with the absorption of 10s of kW of power. This is not the same as demonstrating

current drive, as fast electrons are directly injected by Landau damping, and any inductive field will

affect all electrons equally. Therefore, fast electrons can be excited, and the inductive field might

slow electrons nearer the thermal velocity, and net current might not yet be driven. Nevertheless,

as the inductive field decays, some net current is expected. The present power level is not high

enough to establish if current is being driven.

Full stabilization scenarios were studied, and it was determined that (depending on the plasma

and applied field scenario), 1.5-2 MW of power would be required for full stabilization of PPCD
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plasmas, allowing for the exploitation of electric field current enhancement. The scaling relation-

ships for peak current density and power were established, and found to be linear with the slopes

given in Table 6.1. This is enough information to begin studying this stabilization scheme with 3D

380 kA PPCD with Electric field 32.8 A/cm
2
/MW

380 kA PPCD without Electric field 29.1 A/cm
2
/MW

560 kA PPCD with Electric field 43.2 A/cm
2
/MW

560 kA PPCD without Electric field 35.4 A/cm
2
/MW

Table 6.1: Slopes for Linear scaling relationship, LH in PPCD.

nonlinear MHD codes, at least in an ad-hoc fashion.

Wave propagation was studied and shown to have strong qualitative agreement with the an-

alytic studies of Chapter 1. Electric field, radial diffusion, spectral broadening, and Z effective

were studied individually to isolate their physical impact. Effects like fast electron routing were

discussed.

A realizable upgrade system was designed employing the tools developed in Chapter 1, using

three antennas and the present rf system. This upgrade would bring MST’s system to 450 - 600

kW and potentially allow puffing as described in Chapter 5 in one location for three antennas

(thus reducing the total amount of required gas). Such a system should provide a large enough fast

electron population that its effects would be easily discernible even in PPCD plasmas. A significant

amount of current is predicted to be driven, enough that a PPCD assisted LH handoff scenario could

be considered. (perhaps this would arise as a sustainment of the PPCD period beyond inductive

field application).

Finally, non-inductive RFP scenarios are considered and found to be plausible, though not

necessarily efficient. As mentioned in the chapter, it is for others to decide what constitutes an

efficient system, however, it should be noted that the Landau interaction (as discussed in Chapter

1) becomes more efficient at higher temperatures such as those anticipated for a reactor. This at

least provides a motivation to explore these scenarios in more detail with a reactor-like equilibrium.
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6.1.4 Gas Puffing to control power coupling (Chapter 5)

This chapter leveraged the radiated power framework developed in Chapter 2 to study the

dynamics of antenna coupling. Radiated power is found to be strongly dependent on the density

in front of the antenna, though there is some ambiguity as to the exact nature of this relationship

since the local density is not measured. Nevertheless, it is theorized that bad coupling during PPCD

and EC periods is due to this density dependence. It is shown that not only is coupling improved

generally by localized gas puffing, but that coupling efficiency, which decays constantly in PPCD

and EC plasmas is maintained as the period develops. That is to say not only is the average

coupling improved, but the dynamic degradation of coupling is mitigated. This provides strong

evidence that the antenna can be made to couple power efficiently regardless of plasma dynamics

- in a reactor for instance, one could imagine a dynamic system which puffed gas whenever the

coupling efficiency dropped below a certain level. This is an important point, as it is unclear if a

fully LH stabilized discharge would exhibit pinching or not, and if it did, it would be self defeating

without some sort of ancillary means of improving coupling (a puffing system).

6.2 Future Work

There has been much discussion about upgrading CQL3D to self-consistently solve Ampere’s

law and Faraday’s law (assuming static background fields) concurrent with distribution function

evolution. This would do much to assuage concerns about the effects of induction during rf exci-

tation and would provide a good model to study the importance of these factors and any possible

time dependence of driven current. Of course a complete study would have to couple time advance

of the kinetic equation with time advance of the MHD equilibrium, but the scope of such a study

would likely demand a substantial team, and it seems unlikely to be pursued in the short term.

Experimentally, there is a strong impetus to follow the upgrade plan laid out in this thesis. A

circa 500 kW launched power rf system should provide almost an order of magnitude increase in

x-ray flux over PPCD background, an impressive amount that should be incontestably observable.

This would also provide a serious amount of current, perhaps enough to stabilize a low current
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plasma (assuming reasonable wave propagation). Perhaps sustainment of stabilization could be

observed. Finally, this large increase in flux could be exploited to further constrain the diffusion

coefficient, as the fast electron population is very sensitive to changes in this number.
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A. Tuccillo and J. E. Contributors, Long distance coupling of lower hybrid waves in JET
plasmas with edge and core transport barriers, Nucl. Fusion 45 (5) page 351 (2005)

[52] M. C. Kaufman Lower Hybrid Experiments Using an Interdigital Line Antenna on the
Reversed Field Pinch PhD thesis University of Wisconsin - Madison(2009)

[53] A. B. Rechester and M. N. Rosenbluth, Electron Heat Transport in a Tokamak with De-
stroyed Magnetic Surfaces, Phys. Rev. Lett. 40 (1) pages 38–41 (1978)



194

[54] E. Martines and F. Vallone, Ohm’s Law for Plasmas in Reversed Field Pinch Configuration,
Phys. Rev. E 56 (1) page 957 (1997)

[55] A. R. Jacobson and R. W. Moses, Nonlocal DC Electrical Conductivity of a Lorentz Plasma
in a Stochastic Magnetic Field, Phys. Rev. A 29 (6) pages 3335–3342 (1984)

[56] P. J. Catto, J. R. Myra, P. W. Wang, A. J. Wootton and R. D. Bengtson, Estimating the run-
away diffusion coefficient in the TEXT tokamak from shift and externally applied resonant
magneticfield experiments, Phys. Fluids B 3 (8) page 2038 (1991)

[57] P. Helander, L.-G. Eriksson and F. Andersson, Suppression of runaway electron avalanches
by radial diffusion, Phys. Plasmas 7 (10) page 4106 (2000)

[58] G. Giruzzi and E. Martines, Kinetic Modeling of Fast Electron Dynamics and Self-
Consistent Magnetic Fields in a Reversed Field Pinch, Phys. Plasmas 1 (8) page 2653 (1994)

[59] J. S. Sarff, Tutorial on the Magnetic Design of MST, MST Internal Report (2006)

[60] R. O’Connell, D. J. D. Hartog, C. B. Forest, J. K. Anderson, T. M. Biewer, B. E. Chapman,
D. Craig, G. Fiksel, S. C. Prager, J. S. Sarff, S. D. Terry and R. W. Harvey, Observation of
Velocity-Independent Electron Transport in the Reversed Field Pinch, Phys. Rev. Lett. 91
(4) page 045002 (2003)

[61] B. E. Chapman, C.-S. Chiang, S. C. Prager, J. S. Sarff and M. R. Stoneking, Strong E x B
Flow Shear and Reduced Fluctuations in a Reversed Field Pinch, Phys. Rev. Lett. 80 (10)
page 2137 (1998)

[62] H. Xia, M. G. Shats and H. Punzmann, Strong ExB Shear Flows in the Transport-Barrier
Region in H-Mode Plasma, Phys. Rev. Lett. 97 (25) page 255003 (2006)

[63] N. E. Lanier, J. K. Anderson, C. B. Forest, D. Holly, Y. Jiang and D. L. Brower, First results
from the far-infrared polarimeter system on the Madison Symmetric Torus reversed field
pinch, Rev. Sci. Instrum. 70 (1) page 718 (1999)

[64] Y. Jiang, D. L. Brower and N. E. Lanier, Interferometric measurement of high-frequency
density fluctuations in Madison Symmetric Torus, Rev. Sci. Instrum. 70 (1) page 703 (1999)

[65] S. D. Terry, D. L. Brower, W. X. Ding, J. K. Anderson, T. M. Biewer, B. E. Chapman, D.
Craig, C. B. Forest, R. O’Connell, S. C. Prager and J. S. Sarff, Measurement of current
profile dynamics in the Madison Symmetric Torus, Phys. Plasmas 11 (3) page 1079 (2004)

[66] W. X. Ding, D. L. Brower, D. Craig, B. H. Deng, G. Fiksel, V. Mirnov, S. C. Prager, J. S.
Sarff and V. Svidzinski, Measurement of the Hall Dynamo Effect during Magnetic Recon-
nection in a High-Temperature Plasma, Phys. Rev. Lett. 93 (4) pages 045002–1 (2004)



195

[67] F. M. Levinton, R. J. Fonck, G. M. Gammel, R. Kaita, H. W. Kugel, E. T. Powell and D. W.
Roberts, Magnetic field pitch-angle measurments in the PBX-M tokamak using the motional
Stark effect, Phys. Rev. Lett. 63 (19) pages 2060–2063 (1989)

[68] D. Craig, D. J. D. Hartog, G. Fiksel, V. I. Davydenko and A. A. Ivanov, First Charge Ex-
canged Recombination Spectroscopy and Motional Stark Effect Results from the Madison
Symmetric Torus Reversed Field Pinch, Rev. Sci. Instrum. 72 (1) pages 1008–1011 (2001)

[69] J. A. Reusch, M. T. Borchardt, D. J. D. Hartog, A. F. Falkowski, D. J. Holly, R. O’Connell
and H. D. Stephens, Multipoint Thomson Scattering Diagnostic for the Madison Symmetric
Torus Reversed-Field Pinch, Rev. Sci. Instrum. 79 (10) page 10E733 (2008)

[70] R. O’Connell, D. J. D. Hartog, M. T. Borchardt, D. J. Holly, J. A. Reusch and H. D.
Stephens, Optimizing a Thomson Scattering Diagnostic for Fast Dynamics and High Back-
ground, Rev. Sci. Instrum. 79 (10) page 10E735 (2008)

[71] D. J. D. Hartog, J. R. Ambuel, M. T. Borchardt, J. A. Reusch, P. E. Robi and Y. M. Yang,
Pulse-Burst Operation of Standard Nd:YAG Lasers, Journal of Physics: Conference Series
227 page 012023 (2010)

[72] D. J. D. Hartog, N. Jiang and W. R. Lempert, A Pulse-burst Laser System for a High-
Repetition-Rate Thomson Scattering Diagnostic, Rev. Sci. Instrum. 79 (10) page 10E736
(2008)

[73] J. K. Anderson, C. B. Forest, T. M. Biewer, J. S. Sarff and J. C. Wright, Equilibrium Recon-
structions in the Madison Symmetric Torus Reversed Field Pinch, Nucl. Fusion 44 (1) page
162 (2004)

[74] J. K. Anderson Measurement of the Electrical Resistivity Profile in the Madison Symmetric
Torus PhD thesis University of Wisconsin - Madison(2001)

[75] W. T. Welford and R. Winston The Optics of Nonimaging Concentrators Academic Press
(1978)

[76] S. Kishimoto, High Time Resolution X-ray Measurements with an Avalanche Photodiode
Detector, Rev. Sci. Instrum. 63 (1) page 824 (1992)

[77] J. G. Kulpin, A 100 Kilovolt Phase Control Thyristor Switch Stack, Proceedings of the 2008
IEEE Internation Power Modulators and High Voltage Conference page 378 (2008)

[78] J. G. Kulpin, High Voltage Switching Device, US Patent Application 12/031,207 (2009)

[79] Y. Takase, A. Ejiri, N. Kasuya, T. Mashiko, S. Shiraiwa, L. Tozawa, T. Akiduki, H. Kasa-
hara, Y. Nagashima, H. Nozato, H. Wada, H. Yamada, T. Yamada and K. Yamagishi, Initial
results from the TST-2 spherical tokamak, Nucl. Fusion 41 (11) page 1543 (2001)



196

[80] R. J. L. Haye, C. J. Armentrout, P. I. Peterson and R. D. Stambaugh, Propagation of very
slow lower hybrid waves in the Octopole Tokamak, Phys. Fluids 23 (9) page 1862 (1980)

[81] E. G. Cristal, Coupled Circular Cylindrical Rods Between Parallel Ground Plates, IEEE
Transactions on Microwave Theory and Techniques 12 (4) page 428 (1964)

[82] I. Shkarofsky and M. Shoucri, Modelling of lower hybrid current drive in the presence of
spatial radial diffusion, Nuclear Fusion 37 (4) page 539 (1997)

[83] A. A. Mirin, J. Killeen, K. D. Marx and M. E. Rensink, A radial transport/Fokker-Planck
model for a Tokamak plasma, Journal of Computational Physics 23 (1) pages 23 – 41 (1977)

[84] G. Giruzzi, Modelling of RF current drive in the presence of radial diffusion, Plasma Physics
and Controlled Fusion 35 (SA) page A123 (1993)

[85] C. C. P. et al. In Proceedings of the 14
th Topical Conference on Radio Frequency Power in

Plasmas(2001)

[86] R. W. Harvey, O. Sauter, R. Prater and P. Nikkola, Radial Transport and Electron-Cyclotron-
Current Drive in the TCV and DIII-D Tokamaks, Phys. Rev. Lett. 88 (20) page 205001
(2002)

[87] R. W. Harvey, V. S. Chan, S. C. Chiu, T. E. Evans, M. N. Rosenbluth and D. G. Whyte,
Runaway electron production in DIII-D killer pellet experiments, calculated with the
CQL3D/KPRAD model, Phys. Plasmas 7 (11) page 4590 (2000)

[88] H. Dreicer, Electron and Ion Runaway in a Fully Ionized Gas, Phys. Rev. 117 page 329
(1960)

[89] J. Wesson Tokamaks International Series of Monographs on Physics v. 118. Oxford Science
Publications 3rd edition (2004)

[90] J. Stevens, S. V. Goeler, S. Bernabei, M. Bitter, T. K. Chu, P. Efthimion, N. Fisch, W.
Hooke, J. Hosea, F. Jobes, C. Karney, E. Meservey, R. Motley and G. Taylor, Modelling of
the Electron Distribution Based on Bremmstrahlung Emission during Lower-Hybrid Current
Drive on PLT, Nucl. Fusion 25 (11) page 1529 (1985)

[91] H. Kawashima, T. Matova, Y. Uesugi, K. Hoshino and T. Yamamoto, Radial Distribution of
the Plasma Current Driven by Lower-Hybrid Waves in the JFT-2M Tokamak, Journal of the
Physical Society of Japan 56 (4) page 1348 (1987)

[92] D. J. Clayton Fast Electron Transport in Improved-Confinement RFP Plasmas PhD thesis
University of Wisconsin - Madison(2010)

[93] G. H. McCall, Calculaion of X-ray Bremsstrahlung and Characteristic Line Emission Pro-
duced by a Maxwellian Electron Distribution, J. Phys. D. 15 pages 823–831 (1982)



197

[94] R. W. Harvey, M. G. McCoy, J. Y. Hsu and A. A. Mirin, Electron Dynamics Associated with
Stochastic Magnetic and Ambipolar Electric Fields, Phys. Rev. Lett. 47 (2) pages 102–105
(1981)

[95] M. R. Stoneking, S. A. Hokin, S. C. Prager, G. Fiksel, H. Ji and D. J. D. Hartog, Particle
Transport Due to Magentic Fluctuations, Phys. Rev. Lett. 73 (4) pages 549–552 (1994)

[96] http://cswim.org, last checked September 27, 2010

[97] A. P. Smirnov and R. W. Harvey, The GENRAY Ray Tracing Code, CompX Internal report
(CompX-2000-01) (2003)
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Appendix A: Derivation of the relativistic target probe formula

Electrons in the unit to tens of keV range are expected to be non-relativistic or mildly relativistic

so (with care) we assume that assumption 3.45 is reasonable so long as we replace v� with u� =

pe/m. Recall that the emission formula has an implied zero due to energy conservation wherever

the photon energy exceeds the maximum possible emission energy. As we anticipate that the

electron will survive impact with the target, we take the maximum final energy to be the rest mass

of the electron. We use this to derive uγ , the cutoff momentum per rest mass

Eγ = ∆E =

�
(cp)2 + E

2
0 − E0 (A.1)

uγ = c

�
E2

γ

E
2
0

+
2Eγ

E0
(A.2)

Notice that for Eγ � E0 (the non-relativistic limit) this reduces to

uγ = c

�
2Eγ

E0
=

�
2Eγ

me

(A.3)

which is our non-relativistic formula.

The other main consideration is that the electron energy referred to in Equation 3.44 is the

total energy the electron can give up, ∆E =

�
(cp)2 + E

2
0 − E0. Finally, plugging this in and

integrating over cyclotron phase, we get the fully (special) relativistic formula

ψ(Eγ) =
CZa

2Eγ

�
∞

uγ

�
π/2

0

u
3
f

����
u

c

�2
+ 1− 1

�
E0 − Eγ

�α

cos θu sin θudθudu. (A.4)

but since we are evaluating our integral numerically, this form is favored. Notice that for u� c,
���

u

c

�2
+ 1− 1

�
E0 ≈

�
1 + 1/2

�
u

c

�2
− 1

� �
mc

2
�

=
mu

2

2
(A.5)

which matches our non-relativistic formula, (3.48).



200

Appendix B: Assumptions about field lines

Understanding parallel current drive requires a few facts about magnetic field lines in a toroidal

system. First we must find a relation between the poloidal angle and the toroidal angle of a field

line.

Recall the field line equations [3]

dxi

dBi

=
dxj

dBj

=
dxk

dBk

(B.1)

In toroidal coordinates this gives us

rdθ

dBθ

=
Rdφ

Bφ

⇒ dφ

dθ
=

rBφ

RBθ

(B.2)

We make use of a cylindrical approximation where we define the safety factor

q ≡ B · ∇θ̂

B · ∇φ̂
≈ rBφ

RBθ

(B.3)

which is a constant for a given flux surface (field line). Therefore we can say

φ = q(θ − θ0) + φ0 (B.4)

Next we use this relation to estimate the length of a field line

dl =

�
(rdθ)2 + (Rdφ)2 (B.5)

dl

dθ
=

�

r2 + R2

�
dφ

dθ

�2

=

�
r2 + q2R2 =

�
r2 + q2(R0 + r cos θ)2 (B.6)

= r

�

1 +
q2R2

0

r2

�
1 +

r

R0
cos θ

�2

(B.7)

Near the reversal surface (q ≈ 0), we can expand this to
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dl

dθ
≈ r

�
1 +

q
2
R

2
0

2r2

�
1 +

r

R0
cos θ

�2
�

(B.8)

= r

�
1 +

q
2
R

2
0

2r2

�
1 + 2

r

R0
cos θ +

r
2

R
2
0

cos θ
2

��
(B.9)

= r

�
1 +

q
2
R

2
0

2r2
+

q
2
R0

r
cos θ +

q
2

2
cos

2
θ

�
(B.10)

l =

�
r +

q
2
R

2
0

2r

�
(θ − θ0) + q

2
R0 (cos θ − cos θ0) + q

2
r
�
cos

2
θ − cos

2
θ0

�
(B.11)

We are most interested in field lines that come back to essentially the same point in m full

rotations. More specifically, θ = ∆φ/q + θ0 = 2πm/q + θ0, or (subtracting out full rotations for

trigonometric functions θ ≈ θ0 +δ where δ is a small parameter. Notice, that this condition is often

not met by field lines, but it is met by either 0 or an infinite number of them in any given region.

lm =

�
r +

q
2
R

2
0

2r

� �
2πm

q

�
+ q

2
R0 (cos (θ0 + δ)− cos θ0) + q

2
r
�
cos

2
(θ0 + δ)− cos

2
θ0

�

≈
�

r +
q
2
R

2
0

2r

� �
2πm

q

�
− δq

2
R0 sin θ0 − 2δq

2
r sin

2
θ0 (B.12)

(B.13)

Assuming that we are looking at field lines at the midplane, this reduces to

lm = πm

�
2r

q
+

qR
2
0

r

�
(B.14)

Finally, for small q this is simply

lm =
2πmr

q
(B.15)
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Appendix C: The Cold Plasma Model

C.1 Derivation

The cold plasma model begins by analyzing Maxwell’s equations. Specifically Faraday’s law

and Ampere’s law, which in differential form are

∇× E = −∂B

∂t
(C.1)

∇×B = µ0J +
1

c2

∂E

∂t
. (C.2)

In our model we assume that our plasma consists of some number of species of charged particles,

moving at constant velocity, with no thermal speed variation. Thus, we can say

J =

�

α

nαqαvα, (C.3)

where alpha ranges over all species. Since our model is collisionless, vα can be easily derived

from Newton’s Second Law for an individual particle. We also introduce the following basic

assumptions about the wave nature of our solution.

E(r, t) = E1(r)e
i(k·r−ωt) (C.4)

B(r, t) = B0 + B1(r)e
i(k·r−ωt) (C.5)

vα(r, t) = vα1(r)e
i(k·r−ωt) (C.6)

Thus, Newton’s Second Law for each species α is reduced to (neglecting second order terms)

qα (E + v ×B) = mα

dv

dt
(C.7)

qα (E1 + v1 ×B0) = mα(−iω)v1. (C.8)
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To simplify this, we take the background magnetic field to point in the ẑ direction. Splitting this

into the component equations (and suppressing the fluctuation subscript) we have

ωvxα =
iqα

mα

(Ex + vyαB0) (C.9)

ωvyα =
iqα

mα

(Ey − vxαB0) (C.10)

vz =
iq

mω
Ez (C.11)

Solving this for the different components of v we get

vxα =
iqα

mα (ω2 − ω2
cα

)
(ωEx + i�αωcαEy) (C.12)

vyα =
iqα

mα (ω2 − ω2
cα

)
(−i�αωcαEx + ωEy) (C.13)

vz =
iq

mω
Ez (C.14)

Where ωcα = |qα|B0/mα and �α = qα/|qα|. Having determined vα, we can easily determine Jα

by C.3

Jxα =

�

α

iω
2
pα

(ω2 − ω2
cα

)
(ωEx + i�αωcαEy) (C.15)

Jyα =

�

α

iω
2
pα

(ω2 − ω2
cα

)
(−i�αωcαEx + ωEy) (C.16)

Jz = i�0

�

α

ω
2
pα

ω
Ez (C.17)

Plugging this into C.2 and applying the assumptions C.4-C.6, we get

ik×B = µ0J−
iω

c2
E

= −i
ω

c2
K · E (C.18)

where

K =





S −ıD 0

ıD S 0

0 0 P




(C.19)
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and

S = 1−
�

α

ω
2
pα

ω2 − ω2
cα

(C.20)

D =

�

α

ωcαω
2
pα

ω (ω2 − ω2
cα

)
(C.21)

P = 1−
�

α

ω
2
pα

ω2
(C.22)

Taking the time derivative of C.18 and plugging it into the curl of C.1 we get
c
2

ω2
k× k× E = K · E (C.23)

n× n× E = K · E, (C.24)

where n = ck/ω. We can then rewrite C.24 as the matrix equation





S − n
2
�

−ıD n�n⊥

ıD S − n
2
�
− n

2
⊥

0

n�n⊥ 0 P − n
2
⊥









Ex

Ey

Ez




= 0 (C.25)

where n� and n⊥ refer to the orientation relative to the magnetic field.

In order for this set of equations to be consistent, the determinant of the coefficient matrix must

equal zero, i.e.

(S − n
2
�
)(S − n

2
�
− n

2
⊥
)(P − n

2
⊥
)− (n�n⊥)

2
(S − n

2
�
− n

2
⊥
)−D

2
(P − n

2
⊥
) = 0, (C.26)

and this is our cold plasma dispersion relation.

Note, C.26 is quadratic in n
2, therefore we can represent it as

An
4
⊥
−Bn

2
⊥

+ C = 0 (C.27)

where

A = S

B = PS + S
2 −D

2 − n
2
�
(P + S)

C = Pn
4
�
− 2PSn

2
�
−D

2
P + PS

2
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This has solutions of

n
2
⊥

=
B ± F

2A
(C.28)

where F =
√

B2 − 4AC.

C.2 Simplifying the Cold plasma dispersion Elements

For further analytic analysis, it is helpful to consider simplifications of the Cold Plasma Ele-

ments for MST parameters. We define MST parameters to be

Quantity order

ω

ωpe
�

ω

ωce
�

me
mi

�
5

This is roughly true throughout MST discharges, except in the very edge where ωpe → 0. This

means near the P = 0 cutoff our approximations breakdown. In practice however, the width of

this region is very small and unimportant except when considering antenna coupling.

Under these approximations, our cold plasma elements reduce as follows:
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S = 1−
ω

2
pe

ω2 − ω2
ce

−
ω

2
pi

ω2 − ω2
ce

= 1−
ω

2
pe

ω2
ce

�
ω2

ω2
ce
− 1

� −
ω

2
pi

ω2
�
1− me

mi

ω2
ce

ω2

�
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ω

2
pe

ω2
ce

�
1− ω2

ω2
ce

� −
ω

2
pi

ω2
�
1− me

mi

ω2
ce

ω2

�

≈ 1 +
ω

2
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ω2
ce

�
1 +

ω
2

ω2
ce

+ O
�
�
4
��
−

ω
2
pi

ω2

�
1 +

me

mi

ω
2
ce

ω2
+ O

�
�
6
��
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ω

2
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ω2
ce

+
ω

2
pe

ω
2

ω4
ce

−
ω

2
pi

ω2
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mi

ω
2
pi
ω

2
ce

ω4
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�
�
5
�
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ω

2
pe

ω2
ce����
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+
ω

2
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ω2

ω
4

ω4
ce� �� �

O(�2)

− me

mi

ω
2
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� �� �
O(�3)

− m
2
e

m
2
i

ω
2
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ω
2
ce

ω4

� �� �
O(�6)
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ω

2
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ω2
ce

D =
ωciω

2
pi

ω (ω2 − ω
2
ci
)
−

ωceω
2
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ω (ω2 − ω2
ce
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ωciω

2
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ωω2
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ωce
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2
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+
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ω

3
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2
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O(�15)
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1
� )

+
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ω
3
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2
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P = 1−
ω

2
pe

ω2
−

ω
2
pi

ω2

= 1−
�

1 +
me

mi

�
ω

2
pe

ω2

P ≈ −
ω

2
pe

ω2

So we end up with these approximations:

Cold Plasma Term Order

S ≈ 1 +
ω

2
pe

ω2
ce

1 (C.29)

D ≈
ω

2
pe

ωωce

1/� (C.30)

P ≈ −
ω

2
pe

ω2
1/�

2 (C.31)
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Appendix D: Electrostatic Dispersion Relation

A simpler dispersion function can be derived by imposing the Electrostatic condition,

(E = −∇φ = −ikφ). Combining this restriction with Gauss’ Law produces

∇ ·K · E = 0 (D.1)

∇ ·K · kφ = 0 (D.2)

k ·K · kφ = 0 (D.3)

Of course in general φ �= 0 so we can simply say k ·K · k = 0. In order to examine the region

of validity for this approximation, we must take a closer look at the Electric field. First we break

the electric field up into longitudinal and transverse components

E = El + Et (D.4)

= (n · E)
n

n2
− n× (n× E)

n2
(D.5)

Next, take the dot product of n and C.24.

n ·K · (El + Et) = 0 (D.6)

n ·K ·
�

(n · E)n

n2
+ Et

�
= 0 (D.7)

Notice for |Et| � |El| this simplifies to

n ·K · (n · E)n

n2
= 0 (D.8)

and since n ·E is simply a number, this is identical to our earlier dispersion relation, k ·K ·k = 0.

Plugging our full expressions for El and Et into C.24 we get

−n
2Et + K · Et + K · El = 0 (D.9)

K · El = n
2Et −K · Et (D.10)
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This implies for a given El, a very large n
2 corresponds to a very small Et. This then becomes

our applicability condition for the Electrostatic dispersion relation. As shown Figure D.1, n⊥ (and

therefore n) is very large for the slow wave when it is not near a cutoff or the mode conversion

layer.

Using this dispersion relation and our approximations, we get a simple form for wave propa-

gation in the bulk of the plasma, namely

k ·K · k = k
2
⊥
S + k

2
�
P = 0 (D.11)

i.e.

k
2
⊥

k
2
�

= −P

S
(D.12)

=
ω

2
pe

ω2
�
1 +

ω2
pe

ω2
ce

� (D.13)

Taking ω
2
ce

/ω
2
pe
� 1, we can further simplify this

k
2
⊥

k
2
�

=
ω

2
pe

ω2
�
1 +

ω2
pe

ω2
ce

� (D.14)

=
ω

2
pe

ω2 ω2
pe

ω2
ce

�
1 +

ω2
ce

ω2
pe

� (D.15)

≈ ω
2
ce

ω2

�
1− ω

2
ce

ω2
pe

+ O
�

ω
4
ce

ω4
pe

��
(D.16)

=
ω

2
ce

ω2
−O

�
ω

4
ce

ω4
pe

�
(D.17)

k
2
⊥

k
2
�

≈ ω
2
ce

ω2
. (D.18)
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Figure D.1: Perpendicular wave number versus density for a fixed magnetic field of 0.25 T and a

parallel wave number of 10. This value is quite large, implying that the slow wave is mostly

electrostatic.
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For MST like parameters, this gives k⊥ ≈ (7 − 15)k�. This simplified dispersion relation can be

used to derive the phase and group velocity.

Vφ =
ω

k
k̂ =

ω

k

�
k�

k
b̂ +

k⊥

k
r̂

�
(D.19)

=
ω

k
2
�
+ k

2
⊥

�
k�b̂ + k⊥r̂

�
(D.20)

=
ω

k
2
�
+

ω2
ce

ω2 k
2
�

�
k�b̂ +

ωce

ω
k�r̂

�
(D.21)

=
ω

k�

1�
1 +

ω2
ce

ω2

�
�
b̂ +

ωce

ω
r̂
�

(D.22)

=
ω

3

k�ω
2
ce

1�
1 +

ω2

ω2
ce

�
�
b̂ +

ωce

ω
r̂
�

(D.23)

=
ω

2

k�ωce

�
1−O

�
�
2
�� �

ω

ωce

b̂ + r̂

�
(D.24)

≈ c

n�

ω

ωce

�
ω

ωce

b̂ + r̂

�
, (D.25)

Notice, when deriving the group velocity, care must be take to ensure that the relative signs remain

correct in so far as our dispersion relation can reveal them. This is best done by considering

∂ω

∂kx

=
1

2ω

∂ (ω
2
)

∂kx

(D.26)

so that

Vg ≡ ∇kω =
1

2ω

�
∂ω

2

∂k�
b̂ +

∂ω
2

∂k⊥
r̂

�
(D.27)

=
1

ω

�
k�ω

2
ce

k
2
⊥

b̂−
k

2
�
ω

2
ce

k
3
⊥

r̂

�
(D.28)

=
1

ω

�
k�ω

2
ce

k
2
⊥

b̂−
k

2
�
ω

2
ce

k
3
⊥

r̂

�
(D.29)

=
c

n�

�
b̂± ω

ωce

r̂

�
. (D.30)

We accept only the solution which has a negative radial component since the initial wave launch

will be at a cutoff (the positive r̂ direction would be outward going, but it cannot go outward and

therefore does not exist)
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Appendix E: The raytracing equations

This work has made extensive use of the raytracing equations. These equations appear some-

what mysterious but can be derived quite easily. Recall the Dispersion relation D (which every one

is used) is a function of (ω,k,x) and is equal to zero everywhere. Here, the discussion is restricted

to one dimension for concision, but the derivation is identical for three dimensions.

Looking at the differential of D,

dD =
∂D

∂ω
dω +

∂D

∂k
dk +

∂D

∂x
dx (E.1)

This means that the full derivative of D with relation to k is

dD

dk
=

∂D

∂ω

dω

dk
+

∂D

∂k
+

∂D

∂x

dx

dk
(E.2)

Because D is equal to zero everywhere, any and all full derivatives are also equal to zero every-

where. Solving this equation for dω/dk (recall this is identical to group velocity, dx/dt)

dω

dk
=

dx

dt
= −∂D/∂k

∂D/∂ω
− ∂D/∂x

∂D/∂ω

dx

dk
(E.3)

Next, apply the geometric optics assumption, that the wavelength varies slowly in space, specifi-

cally dx/dk ≈ 0. This leaves us with the group velocity equation,

dω

dk
=

dx

dt
= −∂D/∂k

∂D/∂ω
(E.4)

In order to study the evolution of the wavenumber, consider the full derivative of D with respect to

time. This gives

dD

dt
=

∂D

∂ω

dω

dt
+

∂D

∂k

dk

dt
+

∂D

∂x

dx

dt
= 0 (E.5)

Finally, we assume the frequency does not change during propagation. Plugging in the previous

derived value of group velocity, we get

dk

dt
=

∂D/∂x

∂D/∂ω
(E.6)
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Appendix F: Lower Hybrid coupling

This derivation follows Golant. [105] Starting with the cold plasma dielectric tensor (C.19) and

the Helmholtz equation (derived by taking the time derivative of Ampere’s law and plugging it into

Faraday’s law), we see that the total expression of the fluctuation fields in a plasma is given by

∇×∇× E +
1

c2

∂
2

∂t2

�
� · E

�
= 0 (F.1)

Now we assume E = E0(x)e
ıkx−ıωt. We also assume the dielectric tensor is not time dependent

- this means we cannot account for pondermotive effects. The Helmholtz equation (F.1) then

simplifies to

x : −c
2
k

2

ω2
Ex − ı

c
2
k

ω2

∂

∂x
Ez + SEx − ıDEy = 0 (F.2)

y : −c
2
k

2

ω2
Ey +

c
2

ω2

∂
2

∂x2
Ey + SEy + ıDEx = 0 (F.3)

z :
c
2

ω2

∂
2

∂x2
Ez − ı

c
2
k

ω2

∂

∂x
Ex + PEz = 0 (F.4)

Define the variable χ =
ω

c
x. Notice ∂χ =

ω

c
∂x, i.e. c

ω

∂

∂x
=

∂

∂χ
and c2

ω2
∂2

∂x2 =
∂2

∂χ2 . Finally, recall

that n ≡ ck

ω
. So our equations become

x : −n
2
Ex − ın

∂

∂χ
Ez + SEx − ıDEy = 0, (F.5)

y : −n
2
Ey +

∂
2

∂χ2
Ey + SEy + ıDEx = 0, (F.6)

z :
∂

2

∂χ2
Ez − ın

∂

∂χ
Ex + PEz = 0. (F.7)

The vacuum solution (S = P = 1, D = 0) is

Ez = CExp

√
n2 − 1χ + DExp−

√
n2 − 1χ (F.8)

Ex =
−ın√
n2 − 1

�
CExp

√
n2 − 1χ−DExp

√
n2 − 1χ

�
(F.9)

where we have imposed a wave polarization of Ey = 0.
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The electric field of the wave within the plasma is given in general by

Ez = Ae
ın⊥χ

+ Be
−ın⊥χ (F.10)

However we can safely set A = 0 because the group velocity must be positive in order for the wave

to continue into the plasma, and the phase velocity is opposite the group velocity, as will be shown

in section D, so we must discard the wave with the positive group velocity.

The wave impedance at the plasma surface can be now be calculated (applying Faraday’s law

and F.5, and normalizing by a factor of µ0c for concision)

Zp ≡ ı
Ez

Hy

= −
n

2
�
− S

S

Ez

E �
z

= −ı
n

2
�
− S

n⊥S
(F.11)

The impedance within the vacuum region is

Z = −
�

n
2
�
− 1

C + De
−2
√

n2−1χ

C −De−2
√

n2−1χ
(F.12)

Placing the antenna at−χa, we use the plasma impedance and the antenna impedance as boundary

conditions

Zp = −
�

n
2
�
− 1

C + D

C −D
(F.13)

Za = −
�

n
2
�
− 1

C + De
2
√

n2−1χa

C −De2
√

n2−1χa
(F.14)

Solving this first of these equations for D, and expanding for small ζ where

ζ ≡ Zp�
n

2
�
− 1

(F.15)

we finally arrive at the transcendental equation

�
n

2
�
− 1 = Za

1 + e
−2

q
n2
�−1lvω/c

1− e
−2

q
n2
�−1lvω/c



1− 4Zplsωe
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 (F.16)

Finally we linearizing in terms of n and solve for the perturbed portion

n�1 =
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where

F (w0) =
e
−2w0

(1− e−4w0) + 4w0e
−2w0

, w0 =

�
n

2
�0
− 1ωlv/c (F.18)

Our damping parameter is given by

|E| ∼ Exp[−θ/2αcoup] = Exp

�
ıcn�1rapθ

ω

�
(F.19)

i.e.
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=
ωn�0n⊥S

4crap

�
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2
�0
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�1/2 �
n

2
�0
− S

�
F (w0)

(F.20)

which can be plugged into equation 2.15 to calculate a radiated power fraction.
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Appendix G: Some key error analysis

Key coupling parameters used in this work are

αcoup =
αap

ln
�

F−R

T

�
− αant/αohm

(G.1)

P1 = (F −R)e
−θap1/αohm (G.2)

P2 = (F −R)e
−(θap2/αohm−αap/αcoup) (G.3)

Pohm = (F −R)(1− e
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+P1
αcoup
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Prad = P1
αohm

αohm + αcoup

(1− Exp [−αap (1/αohm + 1/αcoup)]) (G.5)

The uncertainty in these values is not easily seen, and so the derivations are walked through here.

First, αcoup is a function of F, R, T, and αohm. Thus
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∂R
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2
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(G.7)

∂αcoup

∂T
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2
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(G.8)
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Therefore
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For the intermediate calculated powers,

δP1 = e
−θap1/αohm
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2
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δα
2
ohm

(G.11)

δP2 = Exp [− (θap2/αohm + αap/αcoup)]

×
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For Prad,

∂Prad
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It is not instructive to write this complete expression out, but of course
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(G.16)

Finally, Pohm. Since this has a complicated dependence on several not-independent quantities,

we break it down and analyze it in terms of smaller variables, specifically

Ω1 = (F −R)(1− e
−θap1/αohm)

Ω2 =
αcoup
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Proceeding,
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and
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The convenience of having done error analysis in this way is that the backplane measurements or

the 0-D calculations can be used to determine αcoup, and the error analysis holds either way.


