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AC magnetic helicity injection is a technique to sustain current in plasmas in which the

current distribution relaxes by internal processes. The dissipation of magnetic helicity is

balanced by magnetic helicity injected by oscillating the surface poloidal and toroidal loop

voltages. The technique is considered for steady-state current sustainment in the reversed

field pinch (RFP). The resulting current profile, and the accompanying magnetic fluctua-

tions in these configurations are determined by 3-D MHD dynamics. We have completed a

comprehensive 3-D MHD computational study of Oscillating Field Current Drive (OFCD),

a form of AC helicity injection, in the RFP. Our results are compared with both 1-D

computations and quasilinear analytical solution. The one-dimensional model provides a

benchmark for comparison to the full 3-D plasma response. In a classical 1-D plasma, the

oscillating voltages produce a steady current in the plasma, driven by the dynamo-like effect

associated with the oscillating axisymmetric velocity and magnetic fields. This current is

localized to the plasma edge region. With full 3-D dynamics, tearing fluctuations relax the

plasma current toward the core, by the tearing mode dynamo, yielding a steady plasma

current over the entire cross-section. The tearing fluctuations are comparable in magnitude

to those that occur in standard RFP plasmas, although a global mode resonant at the edge

occurs.

We have also studied current profile control by OFCD, as a separate application. We find

that OFCD at appropriate frequency flattens the current density profile such that magnetic

fluctuations are reduced. The current modification by OFCD is better understood when

the effect of poloidal and toroidal oscillating electric fields are studied separately. We find

that in OFCD, through the combination of poloidal and toroidal oscillating fields, a more

favorable parallel electric field results which causes the reduction of magnetic fluctuations
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for most part of the cycle.

We have performed MHD simulations of a standard RFP at high Lundquist number

up to S = 5 × 105. Since in OFCD plasmas the axisymmetric oscillations decrease with

S, using high Lundquist numbers is crucial for determining the viability of OFCD. It is

also important for a more realistic picture of the MHD dynamics in the standard RFP.

High-S computation elucidates the dynamics of sawtooth oscillations and the associated

m=0 fluctuations. The effect of m=0 nonlinear mode coupling on the sawtooth oscillations

is investigated by eliminating m=0 modes in the MHD computations. The sawtooth oscil-

lations are not observed without m=0 modes. The m=0 mode is driven by the m=1 mode

(the trigger for the sawtooth), leading to energy transfer from the m=1 mode to the m=0

mode and a rapid decay of the m=1 amplitude (the sawtooth crash).

As the RFP moves toward improved confinement conditions and high-beta plasmas,

finite pressure effects become important. We have performed a linear MHD stability analysis

for the pressure-driven instabilities in conditions exceeding the Suydam limit. We found

that the transition from the resistive to ideal pressure-driven modes occurs only at high

beta values, several times the Suydam limit.
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1 Introduction

Magnetic helicity is a measure of the degree of structural complexity of the magnetic field

lines in both laboratory and astrophysical plasmas. In the plasma within a magnetic flux

surface, magnetic helicity characterizes the field line topology, and represents the linkage

of lines of force with one another. It can be shown that the magnetic helicity is a measure

of the knottedness of the magnetic field lines. Magnetic helicity decays on the resistive

diffusion time. However, if helicity is created and injected into a plasma configuration, the

additional linkage of the magnetic fluxes can sustain the configuration indefinitely against

the resistive decay. Injection of magnetic helicity into the plasma is closely related to

current drive. Thus, in a magnetically confined laboratory plasma, in order to drive current,

magnetic helicity must be injected. Both conventional inductive ohmic current drive and

non-inductive current drive techniques can be used to inject helicity into plasmas.

Inductive ohmic current drive technique is not steady-state. For steady-state reactor

scenarios, inductive ohmic current drive alone is not sufficient. Various techniques such

as DC and AC helicity injection can be used for steady-state current drive. Both DC

and AC helicity injection techniques can sustain current in plasmas in which the current

distribution relaxes by internal processes. In AC helicity injection, the magnetic helicity

dissipation is balanced by magnetic helicity injection by oscillating the surface poloidal

and toroidal loop voltages. Internal relaxation processes are expected to enable current

penetration to the core. The technique is considered for current sustainment in the reversed

field pinch (RFP), and similar helicity injection schemes are being studied for the spherical

tokamak and spheromak. The resulting current profile, and the accompanying magnetic

fluctuations are determined by nonlinear 3-D MHD dynamics. In this dissertation, we

present a comprehensive 3-D MHD computational study of helicity injection in the RFP.

Our objective for this research is to investigate the MHD dynamics of AC helicity injection

for steady-state current drive and current profile control.

The reversed field pinch is a toroidal magnetized plasma characterized by relatively

small magnetic field where both magnetic field components are comparable (BT ∼ Bp).
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The direction of the toroidal magnetic field in the plasma edge is opposite to that in the

core, making this configuration highly sheared. The safety factor q = rBT
RBp

, is less than unity

in the RFP, which cause nonlinear interaction of a large number of tearing resonant modes

with poloidal mode number m=1 and relatively small radial spacing. The mode overlap

can cause the magnetic field lines to wander chaotically, leading to rapid energy loss. In the

standard inductive RFP, parallel electric field is small near the edge, and large in the core

and has a steep gradient. As a result, the current profile is linearly unstable for current

driven long wavelength tearing modes. The tearing mode amplitudes become large enough

to relax the current from the core toward the edge through a fluctuation induced dynamo

process. Therefore, current drive techniques which depend upon plasma relaxation process

are more effective in this configuration.

The DC and AC helicity injection techniques rely upon magnetic fluctuations to relax the

current density profile. In a plasma fully sustained by AC helicity injection, fluctuations are

generated by the edge-driven current, that then generates current in the plasma core via the

fluctuation induced MHD dynamo. Thus, the asymmetric tearing fluctuations transport the

current from the plasma edge to the core region, opposite to standard ohmically sustained

RFP.

In recent years, RFPs have advanced toward improved confinement conditions. Profile

control, steady-state sustainment and single helicity state are the features currently be-

ing investigated both experimentally and theoretically. In conventional RFPs the energy

confinement is limited by the resistive current-driven magnetic fluctuations which lead to

enhanced transport. To improve confinement, parallel current profile control is required.

Several profile control techniques have been developed to suppress magnetic fluctuations

and transport. A surface poloidal electric field in addition to toroidal loop voltage pro-

gramming have been experimentally applied to modify parallel current profile. [1, 2] The

long wave-length core tearing modes have been substantially reduced through inductive

current profile control and a dynamo free RFP configuration has been obtained. Tokamak-

like energy confinement conditions have been achieved in the MST RFP experiment at low
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Figure 1.1: Two interlinked flux tubes

toroidal magnetic field. [3] Non-inductive current drive techniques such as RF have poten-

tial for localized profile control and auxiliary heating, which have not been used in RFP to

date. RF current drive techniques are also being tested experimentally. [4]

In addition to profile control, steady-state current sustainment is important and desir-

able for reactor type operations. One promising candidate for steady-state current sustain-

ment is AC helicity injection which is computationally investigated in this thesis.

The inductive current profile techniques, non-inductive current drive and auxiliary heat-

ing, quasi-single helicity states, and steady-state current sustainment by AC helicity injec-

tion are the new features of RFP configuration being explored both experimentally and

theoretically. The present research aims to provide understanding of AC helicity injection

dynamics using MHD computation.

1.1 AC magnetic helicity injection

Magnetic helicity is a measure of the knottedness of the magnetic field lines, and is defined

as Kl =
∫

A ·Bdvl, where A is the magnetic vector potential and the integral extends over
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the volume of a flux tube whose closed, bounding surface is sl (flux tube is the volume swept

out by all the field lines passing through a given closed curve l). [5] Helicity, a topological

concept, represents the linkage of the magnetic field lines. Consider two flux tubes that

follow two closed space curves l1 and l2, with magnetic fluxes Φ1 and Φ2, and volumes v1

and v2. The flux tubes link each other once, as shown in Fig. 1.1. For the first flux tube,

we can use Bdv1 = B · n̂ds1dl1 = Φ1dl1, and helicity then becomes, K1 =
∫

A · Bdvl =

Φ1

∫
A · dl1 = Φ1Φ2; similarly for the second flux tube, we obtain K2 = Φ1Φ2. Thus, K1

and K2 measure the linkage of the two flux tubes. If the tubes are not interlinked, the line

integrals would vanish, and if they link N times, we would get K1 = K2 = − + NΦ1Φ2,

where the sign shows the right or left handed of the relative orientation. It can be shown

that for an ideal MHD plasma, the integrals Kl are invariant for each flux surface.

However, in a plasma with small resistivity, under some conditions, total magnetic he-

licity over the plasma volume is approximately conserved and a specified class of solutions

called Taylor states is obtained. After an initial unstable phase, a slightly resistive turbu-

lent plasma inside a conducting boundary spontaneously relaxes to the minimum magnetic

energy state subject to the constraint of conservation of total magnetic helicity (Taylor

1974). [6] In this particular model, it can be shown analytically that the magnetic helicity

is closely related to the plasma current. Magnetic helicity, K, is defined as K =
∫

A ·Bdv,

where the integral extends over the plasma volume. The relaxed Taylor state is obtained

from the following equation,

∇×B = λB, (1.1)

where, λ = J‖/B is a constant. The cylindrical symmetric solution to Eq. 1.1 is the well-

known Bessel function solution; Bz = B0J0(λr), Bθ = B0J1(λr) It can be shown that the

final relaxed state only depends on λ ∝ K/φz
2; thus the final state is completely determined

by the two invariants magnetic helicity K and toroidal flux φz. We note that helicity closely

relates to plasma current density through this ratio λ ∝ K/φz
2 obtained from the Taylor

theorem. During the relaxation, the magnetic energy decays while the total magnetic

helicity remains constant. This is because magnetic energy and helicity have different
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decay rates. The decay rates are Ẇ ∼ −η
∫

J2dv and, K̇ ∼ −2η
∫

J · Bdv. The Fourier

transformation of B (Bk) and J (kBk) gives Ẇ ∼ −η
∑

k2Bk
2 and, K̇ ∼ −2η

∑
kBk

2

indicate that the high k small scale fluctuations tends to dissipate the magnetic energy

faster than the helicity. The experimental measurement of helicity during relaxation has

been examined in Ref. [7].

Under a gauge transformation A → A + ∇χ, the change in the helicity K is K →
K +

∫
χB · ds, which for the boundary conditions with Bn 6= 0, gauge invariance may be

violated. To maintain gauge invariance for a toroidal plasma, helicity is redefined as,

K =
∫

A ·Bdv− φpφz, (1.2)

where, φz =
∫

A · dlθ and φp =
∫

A · dlz, and the line integrals are along the azimuthal

and axial paths. The second term represents the linkage of toroidal flux within the plasma

(φz) with poloidal flux (φp) that passes through the center of the torus. The second term is

subtracted from the volume integral to maintain gauge invariance. [8, 9, 10] From Eq. 1.2,

the rate of change of helicity for a resistive MHD plasma is

∂K

∂t
= 2φzvz − 2

∫
ΦB · ds− 2

∫
E ·Bdv (1.3)

where Φ is the electrostatic potential on the plasma surface and vz is the toroidal loop

voltage. Any technique to sustain the plasma current must also maintain helicity constant

in time. In the usual toroidal induction, as in a tokamak, helicity dissipation is balanced

by the DC toroidal loop voltage present in the first term on the right hand side. In DC

electrostatic helicity injection helicity is maintained by the second term, which represents

the intersection of a field line with a surface held at a constant electric potential.

In AC helicity injection the helicity is provided by oscillating fields in the first term. In

steady-state,

φ̂z v̂z = η

∫
J ·Bdv (1.4)

where the over-bar denotes a time average over a cycle of the oscillating fields, φ̂z and v̂z (the

“hat” denotes an oscillating quantity). The oscillation in the poloidal flux is provided by

an oscillating surface toroidal loop voltage. Hence, if toroidal and poloidal surface voltages
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are oscillated, with a 90 degree phase difference, then helicity is injected steadily, even in

the absence of a DC loop voltage. This technique was suggested by Bevir and Gray [8] to

sustain the current in an RFP. It has also been referred to as F−Θ pumping or oscillating

field current drive (OFCD). In this thesis, we will use the acronym OFCD.

Both DC and AC helicity injection have been examined experimentally. Spheromaks

have been formed by electrostatic helicity injections. [11] Electrostatic helicity injection has

also been studied experimentally in spherical tokamaks [12, 13]. In both electrostatic and

AC helicity injection, the core current penetration relies on relaxation process and is more

effective in configurations close to relaxed Taylor states. However, electrostatic helicity

injection has also been used for edge current drive and non-inductive startup current drive

in spherical tokamaks. [14] OFCD has been examined in in the ZT40-M RFP and is being

tested in the MST experiment. [15] The technique was shown to demonstrate a small amount

of current (about 5% of the total) in the ZT40-M RFP [16], with a phase dependence in

agreement with theory. However, plasma-wall interactions generated by the oscillating

plasma position precluded tests with larger voltages.

Considerations of helicity balance provide little information on the dynamics of the

current drive. A somewhat more complete view is obtained through examination of the

effect of the applied voltages on the fields within the plasma, using the mean-field parallel

(to the cycle-averaged mean magnetic field) Ohm’s law,

E‖ + (V00 ×B00)‖ + < Ṽ× B̃ >‖ = ηJ‖ (1.5)

where V00 and B00 are the oscillating velocity and magnetic fields with poloidal and toroidal

mode numbers m = n = 0, Ṽ and B̃ are the fields with m, n 6= 0, <> denotes an average

over a magnetic surface, ()‖ = () ·B/B, and B is the cycle-averaged mean (0,0) magnetic

field. The first term E‖ is the ohmic toroidal electric field which is zero for the full current

sustainment by OFCD in the absence of a DC loop voltage. We see that there are two

dynamo-like current drive terms on the left hand side, one arising from the one-dimensional

oscillating fields that occur at the OFCD frequency (the second term) and one that arises
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from non-axisymmetric plasma fluctuations and instabilities (the third term). In the absence

of fluctuations (neglecting the third term) a current is driven by the symmetric oscillating

fields. The oscillating radial velocity combines with the oscillating magnetic field to produce

a DC current. This current is confined to within a classical resistive skin depth near the

plasma surface, and decays to zero at the plasma center. It is a classical effect, although one

that is absent in a plasma without flow. Considering that V00 = E00×B/B2, the first two

terms can also be combined and written as (E00 ·B00)/B. Hence, we can consider the first

two terms on the LHS of Eq. 1.5 as a time-averaged parallel component of electric field which

has both (AC) oscillating and DC components. The fluctuation induced dynamo term (the

third term on the LHS) transports the OFCD-driven edge current into the plasma core.

For the partial current sustainment by OFCD, the cycle-averaged parallel current density

is sustained by all the three term on the LHS. However, the two dynamo terms from the

axisymmetric oscillations and the asymmetric fluctuations can steadily sustain the plasma

current through AC helicity injection in the absence of an ohmic DC loop voltage i.e. full

sustainment by OFCD.

1.2 Overview of this Thesis

The objective for the research presented in this thesis is to understand the MHD dynamics

of AC helicity injection for steady-state current drive and current profile control in RFP.

We have investigated the full nonlinear dynamics of OFCD, using 3-D nonlinear MHD

computation. We have employed 3-D nonlinear MHD computations, the DEBS code, to

study the dynamics of AC helicity injection for both steady-state current sustainment and

for controlling the current profile.

MHD computations at high Lundquist number provide more regular and pronounced

oscillations similar to the experimental observations of sawtooth oscillations. Chapter 2 pro-

vides 3-D MHD simulations of a standard RFP at high Lundquist number up to S = 5×105.

The goals are to examine the effects of high Lundquist numbers and to provide a bench-

mark for OFCD plasmas. The dynamics of sawtooth oscillations and the associated m=0
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magnetic fluctuations can also be studied using high-S computations. The code descrip-

tion is presented in this chapter. The linear computations of both core tearing modes and

edge-resonant modes are also investigated. Simplified linear computations show the local-

ized radial tearing mode structure around the resonant surface as S is increased (shown up

to S = 106). Because edge-resonant modes, resonant outside the reversal surface, can be

excited in 3-D full current sustainment by OFCD, these modes are particularly discussed,

and the linear S-scaling of these modes is presented. The dependence of the radial profiles

and the magnetic fluctuations on S are also examined. The effect of m=0 nonlinear mode

coupling on the sawtooth oscillations is investigated by eliminating m=0 modes in the MHD

computations. It is shown that the sawtooth oscillations are not observed without m=0

modes and the transfer of energy from m=1 modes to m=0 modes through the dynamo

relaxation (the sawtooth crash phase) does not occur.

The classical OFCD effect, which occurs in the absence of fluctuations, is calculated

in chapter 3, both through 1-D computation and analytic quasilinear calculation. This

calculation provides a benchmark to which the additive effect of the fluctuations can be

compared. In a 1-D classical plasma, OFCD generates a steady-state current confined to

within a resistive skin depth of the plasma surface. The current is generated by the cycle-

averaged dynamo-like (V00×B00)‖ effect from the axisymmetric velocity and magnetic field

oscillations. We also find that, at large amplitude of the oscillating voltages, transient fields

are generated that persist for about a resistive diffusion time.

We employ 3-D, resistive MHD computation to study the nonlinear dynamics of OFCD.

This permits us to address two key questions: what is the effectiveness of OFCD as a current

drive technique and what is its effect on plasma fluctuations? The full 3-D results of full

current sustainment by OFCD are presented in chapter 4 for Lundquist numbers of 105 and

5× 105. Investigation of the cycle-averaged quantities reveals that the plasma current (and

helicity) can indeed be sustained by OFCD. Examination of the surface-averaged quantities

throughout a cycle indicates that the plasma current oscillates substantially, although the

magnitude of the oscillation decreases with Lundquist number. Plasma fluctuations increase
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significantly with OFCD; however the increase is concentrated mainly in a global mode that

is nearly ideal (resonant at the extreme plasma edge). The core-resonant tearing modes are

not increased significantly.

In recent years, improved reversed field pinch (RFP) confinement conditions have been

achieved through inductive current profile control using surface electric fields. In chapter

5, we investigate AC helicity injection as an alternative technique for partial current drive

and current profile control. We present 3-D MHD simulations of AC helicity injection

demonstrating both partial current sustainment and significant shaping of ohmic current

profile. It is shown that tearing fluctuations are reduced with the modification of the

current profile. The detailed MHD dynamics including both the cycle-averaged quantities

and the temporal variations of axisymmetric fields and asymmetric fluctuations during a

cycle are studied. The current modification by OFCD is better understood when the effect of

poloidal and toroidal oscillating electric fields are studied separately. The detailed dynamics

of oscillating poloidal electric field (OPCD) in which only poloidal electric field is oscillated

and oscillating toroidal electric field (OTCD) in which only toroidal electric field is oscillated

are also studied. The optimal driving frequency range for effective current relaxation with

low modulation amplitudes is also discussed.

The current-driven tearing modes are typically the dominant instabilities in the RFP

core region. However, as present RFP experiments can operate at high beta using auxil-

iary heating techniques and current profile control in the improved confinement regimes,

pressure-driven instabilities are expected to increase and the stability limit become impor-

tant. In Appendix B, the linear MHD stability of local and global resistive pressure-driven

instabilities is examined computationally in a cylinder. We find two results. First, the

high-k localized interchange is resistive (in growth rate and radial structure) at beta values

up to several times the Suydam limit, transitioning to an ideal mode at extremely high

beta. Only at very high beta values is the mode ideal in its radial structure and its growth

rate (which becomes independent of S). No sudden changes in growth rate occur at the

Suydam limit. Second, we find that global pressure-driven modes (of tearing spatial parity)
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are equally unstable and have a similar transition from resistive to ideal as beta increases.

Since the localized modes are more subject to stabilization mechanisms beyond MHD (such

as finite Larmor radius stabilization), the global modes will likely be more influential in

RFPs at high beta.
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2 High Lundquist number MHD simulations of standard RFP

2.1 Introduction

In the past two decades, numerical simulations within the framework of the resistive MHD

model have successfully demonstrated the RFP dynamo effect and the characteristics of

the magnetic fluctuations. Most of the past MHD simulations have been performed at

Lundquist numbers, S, about two order of magnitude lower than the values of the operat-

ing experiments, limited by computer speed and memory. A more realistic picture of the

RFP dynamics requires computations at parameters closer to experimental values. The

extended MHD models with two-fluid and kinetic closures need to be explored numerically

for an even more detailed picture of experimental observations. MHD computations at high

Lundquist number provides more regular and pronounced field reversal oscillations similar

to the experimental observations of sawtooth oscillations. In this section, the result of non-

linear MHD computations at more realistic Lundquist number, close to the experiment are

presented. The goals are to examine the effects of high Lundquist numbers and to provide

a benchmark with which to compare plasmas with OFCD.

The Lundquist number scaling of fluctuations in conventional RFP has been explored

both experimentally and numerically. Experimental scaling of standard RFP fluctuations

with Lundquist number up to 106 indicated a weak dependence on S (Stoneking 1998). [1]

A computational study by Cappello and Biskamp obtained a magnetic fluctuation scaling

of S−0.22 in the range 3 × 103 ≤ S ≤ 105. [2] Sovinec studied the Lundquist number

scaling of the magnetic fluctuation level using 3-D MHD computations without plasma

pressure. [3] A weak scaling of S−0.18 for the total magnetic fluctuation level (rms of the

total volume averaged magnetic field including all poloidal and toroidal modes) for S from

2.5×103 to 4×104 was obtained. A more recent numerical study of the confinement scaling

with finite pressure effects indicates that the magnetic fluctuation level remains high at

Lundquist number up to S = 7 × 105 (Scheffel and Schnack 2000). [4] These simulations

were performed at low aspect ratio R/a=1.25 and while the scaling laws were presented, the
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detailed dynamics and the radial profiles at high S were not shown. It is worth mentioning

that all the past experimental and numerical S scaling have been obtained for the standard

RFP. The S scaling for RFP plasmas with improved confinement conditions using current

profile control which might result a strong S dependence, remains for future investigations.

Here, we present the temporal evolution and radial profiles of both axisymmetric and

asymmetric quantities at Lundquist number up to S = 5× 105 and aspect ratio R/a=2.88

at zero pressure. Because of the need for high temporal and spatial resolutions for high

S computations, these computations are numerically challenging and require both a large

amount of CPU time and memory. The results presented here agree with the previous

study by Sovinec at lower S (S ≤ 4×104), but here high S computations show more regular

temporal behavior of magnetic fluctuations and reversal parameter similar to the sawtooth

crashes observed experimentally.

Some of the experimental observations such as sawtooth oscillations and m=0 bursts

are not fully understood and require both analytical and computational studies. The ob-

servation of sawtooth oscillations at high S computations presented here enable studying

and understanding of the sawteeth dynamics. Here, we study the behavior of sawtooth

oscillations regarding with m=0 fluctuations. We find that m=0 modes have significant

effect on the sawtooth oscillations.

The nonlinear 3-D resistive MHD code, DEBS, is described in Sec. 2.2. In Sec. 2.3,

the equilibrium models used both for linear stability analysis and the nonlinear simulations

throughout this thesis are reviewed. The linear radial structure of the tearing modes ob-

tained from the linear computations are shown in Sec. 2.4. The high-S nonlinear MHD

computations are discussed in Secs. 2.5 and 2.6. The magnetic fluctuation dependence on

Lundquist number, including the detailed radial profile variations with S and the temporal

evolution, are presented in Sec. 2.5. The detailed dynamics during sawtooth oscillations,

such as m=0 fluctuations, at high-S are discussed in Sec. 2.6. The sawtooth oscillations

associated with the plasma relaxation and dynamo activity are illustrated. The linear and

total magnetic energy for m=0 modes are calculated in Sec. 2.6.1 and the energy drive for
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the growth of m=0 mode is shown for standard plasma. To understand the dynamics of

sawtooth oscillations, the m=0 modes are artificially removed from the computations. The

dynamics in the absence of m=0 modes and nonlinear m=0 mode coupling are examined in

Sec. 2.6.2.

2.2 The DEBS code

Resistive MHD instabilities are important in the analysis of the nonlinear dynamics of fusion

plasmas; examples include the reconnection dynamics in tokamaks through the growth and

saturation of resistive modes and the tearing dynamo relaxation in RFPs and spheromaks.

However, these instabilities evolve on times scales that are long compared to ideal time

scales (e.g., fast compressional and shear Alfvén). Therefore, the simulation of phenomena

governed by these low frequency and long wavelength dynamics is difficult and requires

algorithms that eliminate the rapid ideal time scales. The explicit algorithms are restricted

by stability limits associated with wave propagation (small time steps) and are not suitable

for studying the nonlinear evolution of resistive MHD modes. Incompressible models have

been used to remove fast compressional (Aydemir and Barnes, 1984), [5] and larger time

steps are possible in these models. However, some important physics may be eliminated in

these models, for example the incompressibility assumption is not strictly valid in the RFP.

By using compressible and incompressible codes, Aydemir et.al. showed that compressibility

is an important feature of RFP physics and the symmetric radial pinch flow Vr(r) can be

important in the RFP dynamo effect and field reversal sustainment. [6]

Implicit schemes which allow time step larger than the compressional time scale, are

more complicated to implement and require the solution of large block matrix equations

(Aydemir and Barnes, 1985). [7] Using implicit algorithms on nonlinear equations leads

to a nonlinear system, and direct solvers are not applicable, an iterative solver has to be

used. Recently, fully implicit, nonlinear time differencing of the resistive MHD equations

have been explored using a 2-D reduced viscous-resistive MHD model, supporting shear

Alfvén and sound waves(Chacon et al. 2002). [8] Newton-Raphson iterative algorithm and
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Krylov iterative techniques has been used for the implicit time integration and the required

algebraic matrix inversions. A physics-based preconditioning has also been employed for

the efficiency of the Krylov method. The implicit algorithm allows time steps much larger

than the explicit stability limit. In 2-D reduced MHD, the magnetic field component in

the ignorable direction Bz is much larger than the magnitude of the poloidal magnetic field

Bp (Bz ∼ constant and the poloidal velocity is incompressible). Thus, the reduced MHD

model is limited to configurations like tokamaks and is not applicable for RFPs in which

magnitudes of the poloidal and toroidal magnetic fields are comparable. The 3-D version

of the fully implicit scheme is under development (Chacon et al.)

The semi-implicit algorithm used in DEBS [9] and NIMROD [10] for long time sim-

ulations, allow time steps larger than the explicit stability limit by eliminating both fast

compressional and shear Alfvén waves time restrictions. Fully implicit treatment of the

nonlinear convolution terms, (V ×B)m,n and (J ×B)m,n, result in a coupling of all Fourier

coefficients and requires the inversion of large matrices. In the semi-implicit method, a

linear MHD term (semi-implicit operator) is added to the original momentum equation to

relax the stability limit. In this method, only the dissipation terms are treated implicitly.

Since in the semi-implicit schemes, only part of the equations is integrated implicitly at a

given time step, this method requires less work than a full implicit integration. The com-

bination of leapfrog and predictor-corrector methods are used for time discretization of the

wave-like terms and advective terms, respectively.

We have employed the 3-D resistive MHD code, DEBS, to study the nonlinear dynamics

in the RFP both for standard and OFCD plasmas. The DEBS code solves the compressible

nonlinear resistive MHD equations in periodic cylindrical geometry. The code also evolves

the energy equation and can be used for finite pressure studies. The pressure equation is

not included in most of the computations, except in Appendix B where we study the linear

pressure-driven instabilities using the adiabatic pressure equation. The set of the resistive

MHD equations evolved in the code are,
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∂A
∂t

= SV×B− ηJ

ρ
∂V
∂t

= −SρV · ∇V + SJ×B + ν∇2V− S
β0

2
∇P

∂P

∂t
= −S∇ · (PV )− S(γ − 1)P∇ ·V + 2

(γ − 1)
β0

ηJ2 −∇ · q

B = ∇×A

J = ∇×B

(2.1)

where time and radius are normalized to the resistive diffusion time τR = 4πa2/c2η0 and

the minor radius a, respectively, velocity to the Alfvén velocity VA, and magnetic field B to

the magnetic field on axis B0. S = τR
τA

is the Lundquist number (where τA = a/VA), and ν

is the viscosity coefficient, which measures the ratio of characteristic viscosity to resistivity

(the magnetic Prandtl number). β0 = 8πP0

B2
0

is the initial β on axis. Table 1 summarizes the

normalizations used in the code. The mass density ρ is assumed to be uniform in space and

time. The resistivity profile has been chosen to resemble the experimental profiles (increas-

ing near the plasma edge), η = (1 + 9(r/a)20)2. The vector potential is advanced directly

and magnetic field and current are then calculated. The time advance is a combination

of the the Leapfrog and semi-implicit methods. The code uses a finite difference method

for radial discretization and pseudospectral method for periodic azimuthal and axial coor-

dinates. Both fast compressional ( τ = a
VA

) and slow shear Alfvén modes (τ = R
VA

) can

be resolved by this code. However, the semi-implicit method allows large time steps and

elimination of the Alfvén modes.

2.3 Equilibrium models

The equilibrium force balance equation (J ×B = ∇p) and Ampere’s law can be combined

to obtain the dimensionless equilibrium equation

∇×B = λ(r)B + β0
B×∇p(r)

2B2
(2.2)
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Normalized quantity Units

B, magnetic field B0(gauss) initial toroidal field (r=0)

r, length a (cm) minor radius

t, time τR = 4πa2/c2 η0 (s) (resistive diffusion time)

E, electric field E0 = aB0/cτR ([V]/cm)

V, voltage V0 = E0a ([V])

ρ, mass density ρ0 (g.cm−3) (initial density on axis)

P, pressure P0 (erg.cm−3)

(initial pressure on axis)

T, temperature T0 = P0/min0k (kev) (initial temperature on axis)

V, velocity VA0 = B0/
√

4πρ0 (cm.S−1) (Alfvén velocity)

S = τR/τA τRVA0/a (Lundquist number)

Pm = ν/η ν0τR/a2 (Prandtl number)

β0 β0 = 8πP0
B2

0
(initial beta)

Table 1: The normalization of the fields and quantities used in the DEBS code.

where λ(r) = J · B/B2. This equation is written in terms of parallel and perpendicular

components (∇ × B = J‖ + J⊥). Equation (2.2) yields equilibrium magnetic field profiles

close to experimental equilibrium profiles by allowing the λ profile to vary with radius

and including a finite pressure gradient. In the limit of small β, ∇p can be neglected in

the equilibrium force balance equation and current flows parallel to the magnetic field line

(J = λB) or,

∇×B = λ(r)B (2.3)

Equation (2.3) presents the force free model. The θ and z components of Eq. 2.2 are

dBθ

dr
= λBz − Bθp

′

B2
−Bθ/r

dBz

dr
= −λBθ − Bzp

′

B2

(2.4)

In the alpha equilibrium model, the parallel current profile and pressure profile are given

as λ(r) = J · B/B2 = 2θ0(1 − rα) and p(r) = p0(1 − p1r
δ) respectively, where α, θ0, δ, p0
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and p1 are free constants. Other equilibrium quantities can be computed from Eq. 2.4.

The typical equilibrium profiles from this model are shown in Fig. 2.1. In this model the

free parameters can be chosen to obtain equilibrium profiles very close to the RFP profiles

with toroidal field reversal. Further, by varying these free parameters, stable and unstable

equilibrium profiles are found for resistive current-driven and pressure-driven instability

analysis. The pressure term could also be ignored for the current-driven instabilities. The

(α−Θ0) stability diagram obtained in the past (Antoni et al. 1986) [11] makes this model

convenient to use for stability analysis based on ∆′ theory. Throughout this thesis, we use

the alpha model for linear stability analysis when needed.

Another equilibrium model is the paramagnetic equilibrium model commonly used as an

initial equilibrium for nonlinear RFP simulations. In steady state, there is a uniform electric

field in the z direction (Eθ ∼ 0) and using parallel Ohm’s law E‖ = ηJ‖, λ is obtained

λ(r) = E0Bz/(ηB2) (2.5)

Equations (2.5) and (2.4) can be solved to obtain the paramagnetic equilibrium fields.

The equilibrium magnetic field profiles obtained from the paramagnetic model are shown

in Fig. 2.2. Although, this model gives rise to equilibrium profiles close to RFP profiles, it

does not produce toroidal field reversal.

The modified Bessel function model (MBFM) can also be used as an equilibrium model.

In this model, λ(r) profile is constant to a break radius,rb, (λ(r) = λ0 for r ≤ rb) and falls

linearly to zero (λ(r) = λ0(1− r)/(1− rb) for r > rb). The λ profile from MBFM is used in

Eq. 2.4 to yield the equilibrium profiles.

2.4 Linear computation

The linear stability of current-driven and pressure-driven instabilities is numerically studied

using the DEBS code in the linear regime. The ideal and resistive pressure-driven instabil-

ities will be discussed in Appendix B. Here, the radial profile features of the linear tearing

instability are presented. For almost every nonlinear 3-D computation of standard or OFCD
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Figure 2.1: Equilibrium magnetic field and pressure profiles (BZ , Bθ , p) from the alpha

model.

plasmas presented in this thesis, we have performed the linear stability analysis using single

mode computation. We have also studied the quasilinear effects by allowing the equilibrium

quantities to evolve. The linear and quasilinear studies are important to understand the

3-D nonlinear behavior in the presence of all the tearing modes.

The free energy from the plasma current (or pressure) gradient can give rise to MHD

instabilities. The ideal MHD theory provides a thorough description of the plasma equilib-

rium and stability in the limit of zero resistivity. In ideal MHD, the magnetic field lines are

frozen to the fluid and the solutions may become singular at the resonance surface (K · B
=0, where K is the wave vector). The ideal stability limit can be determined using the
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(a) (b)

Figure 2.2: Paramagnetic equilibrium model (a) Bz and Bθ magnetic fields, (b) q(r) and

λ(r) profiles.

energy principle (based on the loss or gain of potential energy of the plasma ). [27] The

ideal current-driven instability (kink modes) and pressure-driven instabilities (interchange

modes) grow on a fast time scale (the Alfvenic time scale) and can cause plasma disruption.

The inclusion of a small resistivity (or dissipation) in the plasma introduces another class of

the instabilities called resistive instabilities. The resistive instabilities grow on a time scale

much slower than the Alfvén time (τA) and much faster than the resistive diffusion time (τR).

The small resistivity allows the magnetic field lines to break and reconnect. The singularity

at the resonant surface is removed in resistive MHD. The Faraday equation and Ohm’s law

can be combined to give the following equation for the reconnected component of magnetic

field (in the r direction in cylindrical geometry) γB̃r = iBθ
r (m−nq)Ṽr +η∇2(rB̃r)/r, where

at the resonant surface q=m/n (F = K ·B =0). In the ideal limit (η = 0) Ṽr = −iγB̃r/F .

At the resonance surface, F=0, so that for Vr to be well-behaved, Br must vanish and recon-
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nection can not occur. Resistivity clearly becomes important around the resonant surface.

With the addition of resistivity at the resonance surface (F=0), reconnection can occur.

Linear resistive MHD stability has been studied both numerically and analytically. Furth

et al. [12] classified the resistive MHD instabilities into the tearing modes cause by the

current gradient, gravitational interchange modes (g-modes) cause by the pressure gradient

in the bad curvature region and the rippling modes caused by the resistivity gradient.

The growth rate of resistive modes can be calculated by matching the solutions in the

outer regions (ideal regions, η = 0) to that in the inner resistive layer. Equating ∆′ =

(B′
r|r+

s
− B′

r|r−s )/Br|rs , the jump in logarithmic derivative of Br across the resistive layer,

with ∆′
in gives the growth rate for tearing modes,γtearing ∝ S−3/5∆

′4/5. The mode is

unstable if ∆′ > 0. ∆′ is a measure of the magnetic energy to be gained by the perturbed

magnetic field at the resonant surface. The S-scaling of the growth rates of resistive MHD

modes using linear analytical calculations are given as, γtearing ∝ S−3/5, γg−mode ∝ S−1/3

and γrippling ∝ S−3/5. The linear numerical calculations of growth rates of resistive MHD

instabilities (by several authors) yield the same asymptotic S-scaling.

2.4.1 m=1 core tearing modes and m=0 modes

Here, we examine the radial mode structure of the tearing modes resonant in the core region

using linear computations, to compare later with the nonlinear radial structure. In these

linear computations, the alpha equilibrium model (see Sec. 2.3) has been used with α = 3

and λ0 = 3.2. Equilibrium profiles that are unstable for tearing modes have been chosen

according to the linear ∆′ theory in RFPs (∆′ > 0 for instability) reported by Antoni et

al.. [11] The equilibrium profiles are fixed during the evolution of a single mode. Here,

we denote the core tearing modes, resonant inside the reversal surface, with negative axial

mode number (kz = n/R < 0) and the edge-resonant modes, resonant outside the reversal

surface, with positive axial mode number (kz = n/R > 0). The m=0 modes are resonant

at the reversal surface. We find that the radial mode structure around the resonant surface

become more localized as the Lundquist number increases.
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Figure 2.3(a) shows the linear radial profile of the reconnected magnetic field, Br, and

the radial flow velocity, Vr, at S = 104 for the m=1, kz = −1.8 tearing mode in cylindrical

geometry. The resonant location is shown with a vertical line. As is seen, the mode

has tearing parity. The growth rate for this mode is γτA = 0.0165 and ∆′ = (B′
r|r+

s
−

B′
r|r−s )/Br|rs calculated from the unstable eigenfunction (Br) is positive (∆′ = +0.82),

where rs is the resonant surface radius. The magnitude of Br is nonzero at the resonant

surface indicating a reconnecting resistive mode. The eigenfunctions for S = 106 are shown

in Fig. 2.3(b). It is seen that the radial velocity is more localized at higher S. This is

because at high S the plasma gets close to the ideal regime (with singular solutions at the

resonant surface), and the radial structure of the modes become more localized around the

resonant surface. The resistive layer width equation, δ = [ ρηγr2

B2
θn2q′2

]1/4, obtained from the

linear theory also indicates the reduction of δ with inverse resistivity. For the tearing modes

(γ ∝ S−3/5), the resistive layer width S-scaling is obtained as δ ∝ S−2/5. Thus, the resistive

layer becomes narrow at higher S, as seen from the numerical eigenfunctions. The growth

rate at S = 106 is γτA = 0.74 × 10−3 as expected from linear S-scaling for tearing modes

(γ ∝ S−3/5). The magnetic Prandtl number, P, used in the linear computations is of the

order of unity. However, here for comparison with the nonlinear eigenfunctions, P = 10 is

used for the linear tearing mode at S = 106 (Fig. 2.3(b)).

The single mode dynamo terms < Ṽ × B̃ >‖ are shown in Fig. 2.4. More local fea-

tures around the resonant surface is seen at S = 106. Using linear computations, we have

confirmed that the linear radial mode structure becomes more localized as S increases. Ex-

perimental measurement of the dynamo term show a global total dynamo effect which may

arise from the superposition of the single mode dynamo terms (Fontana et al. 2000). [13]

Nonlinear dynamo mode structure is discussed further later.

Tearing modes resonant at the reversal surface are the m=0 modes and contribute to the

nonlinear fluctuation induced dynamo in the edge region (will be shown in Sec. 2.5). The

tearing m=0 modes are linearly stable in a plasma surrounded by a perfectly conducting

wall. As we will discuss later, m=0 is nonlinearly driven in the nonlinear simulations.
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Here, we use a resistive wall with a constant resistive time scale τwall placed at r = a and

the perfectly conducting wall placed at r > a as the boundary condition to drive m=0

mode linearly unstable. Figure 2.5(a) shows the eigenfunctions for m=0, kz = 0.3 mode at

S = 104. The radial flow velocity has odd parity and is confined near the edge region. The

linear m=0 dynamo term for this mode is also shown in Fig.2.5(b).

2.4.2 Resistive edge-resonant modes

Tearing modes resonant outside the reversal surface, edge-resonant modes, can also become

unstable in RFPs. However, the amplitudes of short wavelength edge-resonant modes are

generally small in the edge region of standard plasmas. With the application of surface

inductive electric fields, the oscillations of the axisymmetric field can be large and longer

wavelength edge-resonant modes may be excited. As will be shown in chapter 4 , the current

sustainment of plasma current by OFCD causes the fluctuation amplitudes to increase

mainly because of the excitation of the long wavelength edge-resonant modes (m=1, n=+2)

in low-S plasmas.

Here, we examine resistive edge resonant modes under extremely unstable equilibrium

conditions. The equilibrium profiles obtained from the alpha model with α = 4. and θ0 = 2

are shown in Fig. 2.6. The eigenfunctions for m=1, n=+6 are also shown in Fig. 2.6. The

magnitude of Br is nonzero at the resonant surface and the flow velocity is localized around

the resonant surface. These modes have also the same S-scaling as the core tearing modes.

We have also performed the S-scaling for the resistive edge-resonant modes and obtained

γ ∝ S−3/5 asymptotic scaling. The result is shown in Fig. 4.25.

2.5 Dependence on Lundquist number

In the previous section, the linear MHD computations for tearing modes were examined.

Here, the nonlinear high S MHD computations are presented. The radial profile variations

with S, magnetic fluctuations dependence on S, and the temporal behavior of axisymmetric

and asymmetric quantities are investigated. The computations are started with a specified
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(a) S = 104 (b) S = 106

Figure 2.3: The linear tearing mode structure obtained from the linear computations for

(a) S = 104, (b) S = 106 (m=1, kz = −1.8).

(a) (b)

Figure 2.4: The single tearing mode dynamo term < Ṽ × B̃ >‖ obtained from the linear

computations for (a) S = 104, (b) S = 106 [m=1, kz = −1.8 (n=6)]. The vertical line

denotes the location of the resonant surface.
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(a) (b)

Figure 2.5: The linear mode structure for m=0, kz = 0.3 (n=1) mode obtained from the

linear computations at S = 104. (a) the eigenfunctions (b) the linear dynamo term.

time-independent axial electric field at the wall, Ez(r = 1). The boundary condition on

Ez(r = 1) can be a fixed value or such that the pinch parameter Θ is kept constant.

The paramagnetic equilibrium is used. In these simulations, the nonlinear resistive MHD

equations are evolved with nonzero asymmetric fluctuations which affect the axisymmetric

profiles. The parallel electric field is small near the edge and has a steep gradient. This

parallel electric field results in a current profile which is linearly unstable against current-

driven resistive MHD instabilities. The resulting tearing fluctuations grow and through

nonlinear mode coupling a quasi stationary-state forms. The tearing fluctuations distribute

the plasma current through the dynamo process. The net volume average dynamo effect is

almost zero.

We have performed computations for the two aspect ratios of 1.6 and 2.88. For low aspect

ratio (less than 2), the radial spacing of m=1 resonances is more sparse and fewer Fourier

modes make contributions to the dynamo process. For high aspect ratio, there will be more
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(a) (b)

Figure 2.6: (a) The unstable edge-resonant equilibrium profiles chosen from the alpha model.

(b) The linear eigenfunctions for m=1, kz = +1.8 (n=+6) resistive edge-resonant mode

obtained from the linear computations at S = 105.

unstable m=1 modes (resonant in the core region) which are more closely spaced. The

toroidal mode numbers of the dominant m=1 modes are found near n ∼ 2R/a; thus higher

spectral resolution is needed at high aspect ratio. For the aspect ratio 1.6, the axial mode

resolution −42 ≤ n ≤ 42 is found to be sufficient, and for aspect ratio 2.88, −84 ≤ n ≤ 84

has been used. The poloidal mode resolution 0 ≤ m ≤ 5 has been employed for all the

cases. A large number of radial mesh points is needed to resolve the small-scale fluctuations

at high S. The largest number of radial grid points used is 260. Some of the computations

require expensive diagnostics and need to be run for a large fraction of diffusion time.

These computations are performed at lower aspect ratio 1.6 with lower resolution to save

CPU time and memory. In numerical simulations some form of dissipation is required to

avoid energy cascade into small scale fluctuations (short wave length modes). An artificial

viscosity is therefore used for numerical stability. The minimum magnetic Prandtl number
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P = ν/η = 10 is used for high S = 5 × 105 computations. For some cases, larger P (50-

100) have been used for smoother eigenfunctions. With the dissipation coefficients used

here, sawtooth oscillations are observed at high S and the results are largely independent

of the magnitude of viscosity used in these simulations. The radial profiles at S = 105 and

S = 5× 105 are presented in the following section. The results in Sec. 2.5.1 are for aspect

ratio R/a = 2.88. The temporal evolution and the modal magnetic energies are shown in

Sec. 2.5.2. Some of the results presented in Sec. 2.5.2 are for aspect ratio R/a = 1.6.

2.5.1 Radial profiles

The computations at S = 105 and S = 5 × 105 are performed for aspect ratio R/a = 2.88

with the constant boundary electric field Ez(r = 1) = 5 which results a pinch parameter

Θ ∼ 1.67. The three terms in parallel Ohm’s law are shown in Fig. 2.7 for S = 5× 105. As

is seen, the fluctuation induced dynamo term S < Ṽ × B̃ >‖ suppresses current in the core

region and drives current near the edge. The λ profile and parallel current density profile

J‖ are shown in Fig. 2.8. It is seen that the current on axis is reduced at higher S and

increased near the edge region. The dynamo terms for these two cases are also shown in

Fig. 2.9. The dynamo activity is higher both in the core and in the edge at S = 5 × 105

which explains the current density profiles in Fig. 2.8. Although the magnetic fluctuations

are reduced at higher S, the dynamo effect (the contribution of all the modes) is larger at

higher S and is transporting more current.

The contributions of the m=0, m=1 and m=2 modes in the dynamo term are shown

in Fig. 2.10. As is seen the suppression of the current in the core is mostly due to the

m=1 dynamo and the m=0 dynamo drives current near the edge. The contribution of all

other modes, including the m=2 dynamo, is rather small. These results agree with the

prior results at lower S [Ho 1990 and Sovinec 1995]. [14, 3] Both m=0 and m=1 dynamos

increase at higher S. The increase in current density profile (Fig. 2.8) near the edge r/a =

0.8-1 at S = 5× 105 is therefore caused by the increased m=0 dynamo activity. Although

the dominant m=1 mode amplitudes are reduced at higher S, the m=1 magnetic spectrum
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become broader at higher S as shown in Fig. 2.11(a). Because of enhanced mode coupling,

the amplitudes of high-n modes increase with S. Similarly, the m=0 magnetic spectrum is

broader at higher S (see Fig. 2.11(b)). The magnetic spectrum broadening at higher S will

lead to larger total dynamo term at higher S. [15]

The single mode dynamo of the dominant mode is reduced with S. Using a simple

argument from Ohm’s law, S < Ṽ × B̃ >‖= ηJ , and assuming current of the order of

unity, the single mode dynamo product scales as < Ṽ × B̃ >‖≈ S−1. When the relative

phase between Ṽ and B̃ is ignored, individual velocity and magnetic fluctuations scales as

B̃ = Ṽ ≈ S−1/2. The experimental measurement of the single mode dynamo products m=1,

n=-7 and m=1, n=-9 yields S-scaling of < ṼθB̃ >≈ S−0.64 and < ṼφB̃ >≈ S−0.88 which is

much stronger than the individual empirical scaling of the fluctuation amplitudes B̃ and Ṽ ,

indicating the role of phase effects. [16]

The nonlinear computations also show the reduction of the single mode dynamo with S.

The dynamo term for the dominant m=1 modes (1,-6) and (1,-7) at S = 104 and S = 105

are shown in Fig. 2.12. As is seen the (1,-6) mode dynamo is reduced on axis at higher S and

the (1,-7) mode dynamo is also smaller at S = 105. According to linear theory, the radial

mode structure for higher-n modes is more localized which is also seen for the nonlinear

single mode dynamo (1,-7) in Fig. 2.12. The nonlinear dynamo structure can be compared

with the linear mode dynamo shown in Sec. 2.4. The nonlinear (1,-6) dynamo term shown

in Fig. 2.12 is broader than the linear (1,-6) dynamo in Fig. 2.4. We also note that at higher

S the nonlinear single mode dynamo becomes more localized. As shown in Sec. 2.4 using

linear computations, at high S as plasma get close to ideal regime, the mode structure

becomes very localized around the resonant surface. As seen in Fig. 2.12, the nonlinear

mode structure also show slightly higher localization at higher S. We can then conclude

that at high S plasma, the total global dynamo effect results from the superposition of the

localized high-n single mode dynamo. Further investigation of the nonlinear mode dynamos

requires computations at higher S.

The experimental measurements of fluctuation-induced dynamo by Fontana et al. 2000 [13]
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indicate that m=0 fluctuations are responsible for the dynamo at the edge, which is consis-

tent with the results obtained here. Further, the velocity fluctuation measurements show

that the radial flow velocity has odd parity around the reversal surface consistent with the

linear MHD theory discussed in Sec. 2.4 (Figs. 2.3, 2.4, 2.5), and as is seen in Fig. 2.10 the

nonlinear m=0 dynamo term changes sign near the reversal surface.

The time-averaged q profile shown in Fig. 2.13 indicates that at higher S the reversal

becomes stronger. Deeper field reversal at higher S is also seen from the reversal parameter

F (will be shown in the next section) indicating stronger nonlinear dynamo activity at higher

S.

2.5.2 Temporal nonlinear evolution

The temporal behavior of the non-axisymmetric fluctuations and the toroidal field reversal

are discussed here. The radial average modal magnetic energies of the dominant m=1

modes and m=0, n=1 are shown in Fig. 2.14. The sawtooth oscillations in both m=1

modal magnetic energy and field reversal are more pronounced at higher S = 5× 105, and

resemble the experimental measurements (see Fig. 2.19(a)). The m=0 mode starts to grow

as the amplitudes of dominant m=1 modes become large. The energy drive of the m=0 is

discussed further in the next section.

As mentioned before, the detailed empirical and numerical calculations of S-scaling

of magnetic fluctuations obtain weaker scaling than B̃ ∝ S−1/2 (from the simple Ohm’s

law). As expected, the core modal magnetic energies are reduced at higher S as shown

in Fig. 2.14. The total magnetic fluctuation S-scaling for the few points obtained here is

between B̃/B ≈ S−0.18 and B̃/B ≈ S−0.2 that have been obtained in the past calculations

of S-scalings. Figure 2.15 illustrates the magnetic spectrum for m=1 and m=2 modes with

84 toroidal mode numbers for S = 5× 105.

The oscillations of reversal parameter F around its time-averaged negative value, are

shown in Fig. 2.16 for three different S computations which have fixed pinch parameter

Θ = 1.8 for aspect ratio R/a=1.6. The low aspect ratio simulations can be performed with a
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Figure 2.7: The time averages of the three terms in E‖+S < Ṽ ×B̃ >‖= ηJ‖ at S = 5×105,

R/a = 2.88.

smaller number of Fourier modes. As is seen in Figs. 2.14 and 2.16, the field reversal becomes

deeper at higher Lundquist number and the oscillations become more regular. The reversal

is also deeper at higher current (Θ = 1.8) as seen in Fig. 2.16. The period of the sawtooth

oscillations have been roughly calculated and the S-scaling of τF /τR ≈ S−0.4 is obtained

which has a resistive-MHD hybrid character. The result obtained here is consistent with

that found for quasi-periodic oscillations in Ref. [2]. The sawtooth period is not governed

by a pure resistive diffusion time scale and doesn’t scale linearly with S, the scaling which

was reported in Ref. [17]. The experimental scaling of the sawtooth period in MST also

shows scaling as ≈ S−1/2 (Stoneking 1998) which is governed by the resistive-MHD hybrid

time (τsaw ≈ √
τRτA). [1] We should note that the collapse or crash time is much faster than

the resistive MHD hybrid time and might be governed by the time scales beyond MHD time

scales.
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Figure 2.8: Time-averaged λ(r) and J‖ profiles (R/a = 2.88,Θ = 1.67).

Figure 2.9: Time-averaged dynamo term, S < Ṽ × B̃ >‖ profile (R/a = 2.88,Θ = 1.67).
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S = 10
5

5
S = 5 x 10

Figure 2.10: The m=0, m=1, m=2 dynamo terms, S < Ṽ × B̃ >‖. (a) S = 105 (b)

S = 5 × 105. <> denotes surface averaged and sum over all toroidal mode numbers, n

(time-averaged).

Figure 2.11: Toroidal mode number spectrum for m=1 and m=0 magnetic energy for S =

104 and S = 105 (time-averaged over ten data points).

33



S=105

S=104

S=10
S=10

5
4

(1,−6)

(1,−7)

Figure 2.12: The nonlinear time-averaged single mode dynamo term for the dominant modes

(1,-6),(1,-7).

2.6 Sawtooth oscillations and m=0 modes

Most of the experimental observations related to large-scale magnetic fluctuations of RFP

plasmas have been successfully explained through resistive MHD computations. Observa-

tions such as the relaxation process and the fluctuation-induced dynamo effect in RFPs

have had strong computational support and have been computationally demonstrated over

the last two decades. However, some of the important features of the experiments such

as sawtooth oscillations and the source of m=0 bursts in RFPs have not yet been fully

understood. Further theoretical models and computations are required to explain these

observations. Here we study the physics of sawtooth oscillations and m=0 modes, using

high Lundquist number MHD computations. Regular sawtooth oscillations which can only

be obtained in high S computations are discussed in the following section. The linear and
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Figure 2.13: Time-averaged q profile.

total magnetic energy drive for m=0 modes are calculated in Sec. 2.6.1. The effect of m=0

and m=1 mode coupling on sawtooth oscillations is investigated by eliminating the m=0

modes in the MHD computation. The dynamics in the absence of m=0 modes is presented

in Sec. 2.6.2.

Sawtooth oscillations of core temperature and magnetic field occur in both tokamaks and

RFPs. The measurement of sawtooth oscillations in MST were performed by Prager et al.

1990. [18] Sawtooth crashes are interpreted as a sudden reconnection event due to resistive

MHD activities. The first theoretical model to explain the sawtooth crashes in tokamaks

was proposed by Kadomtsev (1975). In this model the sawtooth oscillation was explained

through the nonlinear evolution of the resistive m=1 kink mode. The nonlinear evolution

of the resistive kink mode is characterized by the nonlinear time scale τ ∼ S1/2 which can

be obtained from the equation for the time evolution of a magnetic island. However, this

model could not explain some of the features of the sawtooth disruption including the fast
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Figure 2.14: The magnetic modal energy, Wm,n = 1/2
∫

B̃2
r(m,n)d

3r, for modes (1,-6) =

—, (1,-7) = – –, (1,-5) = – ·, (0,1) = – ··, and field reversal F vs.time, for S = 105 and

S = 5× 105 [F = −0.118 for S = 105 and F = −0.14 for S = 5× 105].
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Figure 2.15: The magnetic energy spectrum for m=1 and m=2 (R/a=2.88).

reconnection time scale during the crash which is much smaller than the time predicated

above. Other mechanisms such as two fluid effects and collisionless kinetic effects have

been proposed to shorten the long time scales associated with resistive reconnection. The

inclusion of the Hall term, electron inertia and electron pressure in the generalized Ohm’s

law [E +V ×B = ηJ +J×B + dJ
dt +∇Pe] allows shorter reconnection times. [19] Therefore,

the collisionless and two fluid effects provide time scales not too far from the observed

collapse times.

In the RFPs, however, the broad spectrum of Fourier modes coupling nonlinearly affect

the dynamics of the sawtooth crashes. The sawtooth oscillations in RFPs are associated with

the plasma relaxation and turbulent dynamo activity. Experimental observations show that

plasma relaxation (i.e. the minimization of the ratio W/K, where W is the magnetic energy)

occurs during the sawtooth crash phase [20] in RFP. The relaxation event was explained

through three nonlinear processes by Ho and Craddock 1991. [21] First, free energy provided
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Figure 2.16: The field reversal parameter, F, at three different S. The sawtooth oscillations

are more regular at higher S. The time averaged F and τF are also shown. For all three

cases, Θ = 1.8 and R/a=1.6.

by the current gradient leads to the linear instability and transfer of energy to the m=1

modes. In this phase, the profiles have been driven away from the relaxed state as a result

of resistive diffusion. Second, the transfer of energy from the low-n core m=1 modes to

the higher-n modes resonant near the reversal surface through the nonlinear coupling with

m=0 modes. And finally the transfer of energy from the m=1 modes resonant near the

reversal surface to the mean toroidal field through the dynamo effect and the field reversal

is sustained. During the last two dynamo phases, the nonlinear dynamo has the major role

of rearranging the current distribution and transporting the current from the core to the
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edge region. The dynamo relaxation and the sawtooth crashes occur in the last two phases.

The three nonlinear phases can be interpreted using the m=0 and m=1 modal energies,

F, W/K and q(0) oscillations during the sawtooth crash shown in Figs. 2.17 and 2.18.

During the first phase (marked in Figs. 2.17 and 2.18 by t1), the current density on axis

gradually peaks and m=1 mode amplitudes become large enough to cause nonlinear growth

of the m=0 mode and reduction of q on axis. The dynamo relaxation occurs during the

crash time (between t1 and t2), the energy is transferred from dominant m=1 modes to m=0

and m=1 with higher n, the ratio of W/K is minimized, toroidal flux is generated and field

reversal is maintained (time t2). The current density is flattened in the core through the

m=1 dynamo relaxation and q on axis is increased. The reduction of m=1 mode activities

after the relaxation cause the m=0 to decay. The experimental decay of m=0 mode after

relaxation is faster than the decay observed in Fig. 2.18.

We compare the characteristic of the magnetic fluctuations and the sawtooth oscillations

of an MST shot with the MHD computation at S = 5 × 105 and aspect ratio R/a=2.88.

Figure 2.19(a) shows the magnetic fluctuation amplitudes for the dominant core mode m=1,

n=-6 [bn=6 in Fig. 2.19(a)] along with the m=0,n=1 modal amplitude (bn=1) obtained

experimentally from an MST shot. The magnetic modal energies obtained from MHD

computations at S = 5× 105 for the core mode m=1,n=-6 and m=0,n=1 are also shown in

Fig. 2.19(b) for comparison. As is seen the periodic sawtooth oscillations of the fluctuations

from the code are similar to the experimental measurement. The core mode amplitudes

reveal a linear growth and a rapid damping in both experiment and the code. However, the

m=0 bursts observed experimentally (shown in Fig. 2.19(a), bottom graph) damp faster

than the computational m=0 mode.

2.6.1 Calculations of linear magnetic energy for m=0 modes

The question of whether m=0 modes are driven linearly or nonlinearly in standard plasma

is investigated using the calculation of m=0 linear and nonlinear magnetic energies in time.

As is seen in Figs. 2.17, the rapid growth of m=0 mode amplitudes follows the growth of
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m=1 dominant modes; suggesting that m=0 modes are driven by nonlinear mode coupling.

The fact that m=0 modes are driven nonlinearly is known from previous low S MHD

computations and linear stability analysis shows that m=0 is linearly stable with a close

fitting conducting wall boundary condition. To further illustrate this, we calculate the

linear contribution to the volume average radial magnetic energy drive for the m=0, n=1

and m=1, n=-4 modes for S = 5× 105 . The sawtooth oscillations of F and the energy of

these modes are shown in Fig. 2.20. The energy terms can be calculated from the following

equation,

∂B2
1r

∂t
= S[(B0 · ∇)V1 − (V1 · ∇)B0]r ·B∗

1r + C.C + N.L. (2.6)

where, subscript ’0’ and ’1’ denote equilibrium and linear perturbed quantities, respectively,

and N.L. denotes the nonlinear terms. The dissipative terms on the RHS are small over

most of the plasma and have been ignored. The linear contribution of the linear energy

terms on the RHS shown in Fig. 2.21 is negative during the m=0, n=1 mode, indicating

that m=0 mode is nonlinearly driven. The linear contribution during the m=0 decay is

also negative and is different from the total energy contribution indicating that the decay is

partially nonlinear (see Fig. 2.22). The linear energy contribution for m=1 and n=-4 mode

has also been calculated in Fig. 2.23 which shows the linear contribution is positive during

the slow growth of this mode ; thus the m=1 mode is linearly driven as expected from the

linear stability analysis. The same result is obtained for the other dominant core modes [i.e.

(1,-3)]. The core mode energy decay is mostly due to the nonlinear energy contribution. The

linear energy terms for the m=0 mode have been measured and calculated experimentally

in MST for standard RFP plasma, [22] and is consistent with the numerical results obtained

here. However, the energy drive for m=0 modes in plasmas with the auxiliary current drive

is not known and needs to be examined both experimentally and computationally.
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2.6.2 The dynamics in the absence of m=0 modes

To understand the dynamics of sawtooth oscillations, we have performed computation with-

out m=0 modes. In this case m=0 fluctuations are artificially suppressed at every time step.

The nonlinear coupling between m=1 core modes and m=0 modes are removed in the ab-

sence of the m=0 modes. As is seen in Fig. 2.24, m=0 modes are set to zero in the case

shown in Figs. 2.17 – 2.20 at time t/τR = 0.16 . As a result the field reversal F begins to

weaken and the sawtooth oscillations are not observed. The field reversal becomes smaller

but the plasma remains reversed and saturates to almost a fixed value of field reversal and

magnetic fluctuations (Fig. 2.24(b)), a steady non-oscillatory state. The sawtooth behavior

of magnetic fluctuations is also not seen in the absence of m=0 modes, which prove the

important role of m=0 modes in the regular behavior of symmetric and asymmetric fields

observed experimentally. Similar behaviors have also been studied by Ho and Craddock for

lower-S computation (S = 3 × 103). However, they did not observe the sawtooth oscilla-

tions at low S computation. Therefore, we find that at high-S computation shown here

(with more regular sawtooth behavior), m=0 modes determine the dynamics of observed

sawtooth oscillations.

Since m=0 modes are responsible for driving the edge dynamo, the dynamo radial

profile and the current profile would change in the absence of the m=0 dynamo. Figure

2.25 illustrates the change of λ(r) and parallel current density profiles when m=0 modes

are eliminated. Because of the absence of m=0 modes and edge dynamo, the peak in the

current density profile near the edge region is not observed. The current density gradient is

larger in the plasma core which might cause other m=1 core modes with higher n numbers

to grow. The safety factor on axis q(0) is lower without the m=0 modes as seen in Fig. 2.26.

This allows stronger nonlinear mode coupling because of the closer (less sparse) resonant

surfaces and cause growth of higher-n core modes. However, the q profile near the edge

region becomes flatter in the absence of m=0 mode coupling. As expected without m=0

modes the contribution of the dynamo term near the edge region is not significant (see

Fig. 2.26(b)) and the dynamo term does not drive current near the edge (outside the reversal
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surface) which can explain the zero current density near the edge in Fig. 2.25. The dynamo

is reduced everywhere in the absence of the m=0 fluctuations resulting in weaker toroidal

field reversal and higher current on axis. The radial profile of the dynamo term for the

dominant core modes has been shown in Fig. 2.27. Similar to the symmetric quantities,

the mode dynamo profile also becomes stationary as the plasma settles into a steady state.

This behavior is not observed for the standard case in the presence of m=0 modes and the

sawtooth oscillations of the magnetic fluctuations. In addition to the n=-3 and n=-4 core

modes for R/a=1.6, n=-7 develops the largest amplitude and dynamo term (see Fig. 2.27).

Figure 2.28 shows the m=1 and m=2 magnetic energy spectrums at time t1 with m=0

modes (standard case) and time t3 when the plasma saturates to a steady non-oscillatory

state (t1 and t3 are marked in Fig. 2.24). Because of the removal of m=0 modes and their

nonlinear coupling with other modes, the small scale fluctuations ( high n fluctuations,

n > 10 and n < −30) have been reduced. The core mode (1,-7) has the largest amplitude

for the steady nonoscillatory state without m=0 modes. The addition of the (1,-7) core

mode to the standard dominant core modes (1,-3) and (1,-4) (for R/a=1.6) cause the total

magnetic fluctuation level to increase (Fig. 2.24). It is expected that by eliminating m=0

modes (experimentally operating with F > 0), the nonlinear coupling between m=0 and

m=1 is removed and lower fluctuation amplitudes may result. However, here we see that

the elimination of m=0 nonlinear mode coupling only suppress the small scale fluctuations

with high n but the m=1 nonlinear mode coupling becomes stronger resulting in excitation

of other core modes. The m=2 spectrum also shown in Fig. 2.28(b) similarly saturates to

a state with reduction of high-n fluctuations and increase in the core m=2 modes [with the

dominant m=2, n=-10 mode generated from the nonlinear coupling of (1,-3) and (1,-7)].

The magnetic fluctuation and the spectrum does not change as the plasma settle into

the steady non-oscillatory state. However, before this saturation there is a transition from

the quasi-oscillatory state to a non-oscillatory state. The spectrum during this transition

(at time t2) is seen in Fig. 2.29. The spectrum is similar to a quasi single helicity state and

has a narrow structure in the absence of m=0 modes. When the m=1 modes reach larger
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amplitudes, the magnetic fluctuations settle into a broader spectrum shown in Fig. 2.28

without m=0 modes. We conclude that the elimination of m=0 modes removes the sawtooth

oscillations but does not reduce the total magnetic fluctuation level in spite of the absence

of m=0 mode nonlinear coupling. Although the magnetic spectrum during the transition

from the oscillatory to the non-oscillatory state becomes narrow and resembles a quasi

single helicity state, the stochasticity of the magnetic field lines does not improve when

the plasma reaches the final steady state. Figure 2.30 illustrates the magnetic field lines

intersections with a fixed RZ plane (toroidal plane) at time t1 (standard RFP case), t2

(during the transition to the narrow spectrum) and t3 (final non-oscillatory steady state).

The stochasticity of the magnetic field lines is proportional to the magnetic fluctuation

amplitude. The stochasticity parameter is described by [Rechester and Rosenbluth], [25]

s =
1
2
(Wmn + Wm′n′)/|rmn − rm′n′ | (2.7)

where Wmn is the width of the separatix of an island near the resonant surface and is given

by

Wmn = 4

√
rq

q′
B̃r(r)
Bθ

1
m

(2.8)

m,n and m′, n′ are the mode numbers for two neighboring resonant surfaces. The magnetic

field lines become highly stochastic (s >> 1) when the resonant surfaces are closely spaced

(dense), such as in RFPs, and when magnetic fluctuation amplitudes are high resulting in

large magnetic islands (W ∼
√

B̃r). Because of a safety factor less than unity, the resonant

surfaces are closely packed causing high magnetic stochasticity in most of an RFP. At

high Lundquist number, the magnetic fluctuation amplitudes and associated stochasticity

decrease, as seen in Fig. 2.30(a). For S = 5 × 105 the field lines in the plasma core

are more ordered out to about radius 0.2. At lower S stochasticity develops over the

whole plasma region. When the magnetic spectrum becomes narrow, island overlapping

and the subsequent stochasticity decreases. As is seen in Fig. 2.30(b), the core region is

less stochastic and the n=-3 and n=-4 islands structure are more distinct. The magnetic

surfaces are also more ordered near the edge region. As the m=1 nonlinear coupling increases
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Figure 2.17: The magnetic modal energy, Wm,n = 1/2
∫

B̃2
r(m,n)d

3r, vs time for (1,-3),

(1,-4), (1,-5) and (0,1) modes (S = 5× 105 and R/a=1.66).

(evidenced by the growth of (1,-7) island) and the plasma reaches a non-oscillatory steady

state, the stochasticity increases (Fig. 2.30(c)).

2.7 Summary

We have investigated MHD computations of standard RFP at high Lundquist number. A

more realistic picture of RFP dynamics close to the experimental observations is studied

using high S MHD computations. One of these observations is sawtooth oscillations which

have not been fully understood. These oscillations are observed in high S computations.

The goal is to understand the dynamics of sawtooth oscillations and the associated m=0

magnetic fluctuations.

We have shown the radial profiles at high S and the profile variations with S. The

results agree with the earlier computations at lower S. The linear and nonlinear single
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t1 t2

Figure 2.18: The regular oscillations of m=0 modal energy, F, W/K and q(0).

mode dynamo are also shown. The radial structure becomes more localized around the

resonant surface at higher S. However, the nonlinear single mode structure is broader than

the linear one. At high S, the total dynamo term is global similar to the experiment, which

arises from the superposition of the single mode dynamo terms. It is shown that because of

the enhanced nonlinear mode coupling at high S, the magnetic spectrum broaden. Strong

nonlinear dynamo activity at high S results in deeper toroidal field reversal. Total magnetic

fluctuations S-scaling similar to the previous computational S-scaling is obtained. We have

also examined the dependence of the period of the sawtooth oscillations on S. It is shown

that the scaling is governed by the resistive MHD hybrid time.

We have also investigated the dynamics of the sawtooth oscillations and m=0 modes
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Figure 2.19: (a) The measurement of magnetic field and magnetic modal amplitudes from

a MST shot (from D. Craig) (b) Magnetic modal energies for the core mode m=1,n=-6 and

m=0 mode obtained from MHD computation.

using high S computations. The m=0 modes which limit the confinement in the standard

RFP experiment require better understanding. We have studied the relaxation process dur-

ing a sawtooth crash using the temporal behavior of m=1 and m=0 fluctuations along with

the ratio W/K, F, and q0. The crash occurs after a resistive diffusion phase when plasma

is driven away from the relaxed state and m=1 modes have reached large amplitudes. The

rapid growth of m=0 mode amplitudes follows the growth of m=1 dominant modes, suggest-

ing that m=0 modes are driven by nonlinear m=1 mode coupling. The dynamo relaxation

occurs during the crash time. The m=1 and m=0 dynamos transport the current from the

core to the edge. To further investigate the growth of m=0 mode, we have calculated the

linear energy term for m=0 mode. We show that the m=0 mode is driven nonlinearly in a

standard plasma, and is consistent with the experimental measurement of the linear energy
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Figure 2.20: The field reversal F sawtooth oscillations and modal energy for m=0, n=1 and

m=1, n=-4 during a sawtooth oscillation.
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Figure 2.21: (a) The radial component of volume averaged magnetic energy for m=0,n=1

during the sudden growth of the mode and the linear contribution (linear part of RHS of

Eq. 2.6) (b) The separate linear energy terms.

term.

To understand the dynamics of sawtooth oscillations, we have performed computation

without m=0 modes. The effect of m=0 and m=1 nonlinear mode coupling on the sawtooth

oscillations is investigated by eliminating m=0 modes in the MHD computations. The dy-

namo relaxation process discussed above is studied when m=0 modes have been removed.

The sawtooth oscillations are not observed without m=0 modes. This proves the important

role of m=0 modes in the sawteeth dynamics. In the absence of the m=0 nonlinear mode
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Figure 2.22: The radial component of volume averaged magnetic energy for m=0,n=1 during

the decay.

coupling, the plasma transitions to a non-oscillatory steady state; however, the total mag-

netic fluctuation level does not reduce. The plasma settles into a steady state and a weak

reversal is maintained. The transfer of energy from high-n m=1 modes to m=0 modes (i.e.

the m=0 dynamo relaxation phase) can not occur; thus the sawtooth crash is not observed

in the absence of m=0 modes. The m=0 modes are necessary for sawtooth oscillations to

occur, but they do not trigger the sawteeth.
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Figure 2.23: The radial component of volume averaged magnetic energy for m=1,n=-4

mode.
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t t t1 2 3
(a)

with m=0

 without m=0

(b)

Figure 2.24: The m=0 fluctuations are removed at t/τR = 0.16. (a) Field reversal parameter

F. (b) Total magnetic fluctuations. (S = 5× 105)
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with m=0

without m=0

Figure 2.25: λ(r) and parallel current density J‖(r) profiles for standard RFP (case shown

in Figs. 2.17 – 2.20) and in the absence of m=0 modes.
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with m=0

(a)

without m=0
with m=0

(b)

Figure 2.26: Time-averaged (a) q profile (b) < Ṽ × B̃ >‖ dynamo term.
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(1,−7)

(1,−3)

(1,−4)

Figure 2.27: The dynamo < Ṽ × B̃ >‖ for separate dominant core modes at time t3 in

Fig. 2.24. (case without m=0 modes)
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(a) (b)

with m=0

without m=0

(1,−7)
(1,−4)
(1,−3)

with m=0

without m=0

Figure 2.28: The magnetic energy spectrum for the standard case with m=0 modes (at t1)

and for the case without m=0 modes (at t3). (a) m=1 spectrum (b) m=2 spectrum.
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Figure 2.29: The m=1 magnetic spectrum at time t2 marked in Fig. 2.24 during the transi-

tion from the standard sawtooth oscillatory behavior to a steady nonoscillatory state when

m=0 modes are removed.
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(a) t1 (b) t2

(c) t3

Figure 2.30: Magnetic field trajectories; (a) at time t1 (standard RFP) (b) t2 - narrow spec-

trum during transition (without m=0 modes) (c) t3 - steady non-oscillatory state without

m=0 modes. (S = 5× 105, R/a=1.6)
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3 One-dimensional classical response to the oscillating fields

3.1 Introduction

To determine the effectiveness of AC helicity injection as a steady-state current drive tech-

nique, 3-D nonlinear computations are required. The role of non-axisymmetric fluctuations

in the current relaxation process can not be explained without 3-D nonlinear treatment of

plasma. However, the plasma 1-D classical response in the absence of asymmetric fluctua-

tions provides a benchmark for comparison to full 3-D plasma response. In this chapter, we

study the classical plasma response to the applied oscillating electric field using both 1-D

computations and quasilinear analytical calculations. Chapter 4 then covers the full 3-D

nonlinear computations of AC helicity injection.

One-dimensional studies, in which all quantities depend on radius only, are performed to

examine plasma behavior with OFCD, but in the absence of asymmetric MHD fluctuations.

This allows us to evaluate the OFCD-driven current, concentrated in the outer region of the

plasma, that occurs in the absence of MHD relaxation. The 1-D model demonstrates some

interesting physics, such as the quasi-linear (V00×B00)‖ effect arising from the axisymmetric

velocity and magnetic field oscillations. The 1-D calculations are also useful for comparison

to 3-D computation to highlight the additional effect of relaxation. In Sec. 3.2 we present

computational solutions to the 1-D MHD equations. Sec. 3.3 contains an analytic quasilinear

treatment for a simple 1-D equilibrium. The dependence of the OFCD-driven current

modulation amplitudes on the key parameters, Lundquist number S, driving frequency ω

and driving amplitudes in a 1-D classical plasma is described in Sec. 3.4.

3.2 One-dimensional computations

We employ the DEBS code with all θ and z dependent fluctuations suppressed. To study

the linear dynamic response of both the mean and oscillating fields, low oscillating field

amplitudes have been imposed on a plasma that is initially current-free (Bθ = 0, Bz =

constant). The time-averaged (over a cycle) magnetic field profiles in steady-state are shown
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in Fig. 3.1. The axial field is little affected by the small oscillating fields. The alteration

in the azimuthal field results from the cycle-averaged current density, shown in Fig. 3.2(a).

The current density is localized to the outer region of the plasma, penetrating a distance

equal to the classical skin depth δ = (η/ω)1/2. The time dependence of the current density

throughout one cycle is shown in Fig. 3.2(b). The oscillatory current density is similar to the

classical penetration that occurs for a solid metal. However, the cycle-averaged component

arises from the cycle-averaged term (V00×B00)‖, a dynamo-like effect due to the classically

penetrating oscillatory fields, similar to that reported in Ref. [1]. This effect is proportional

to the helicity injection rate, (∼ εzεθ/ω), as seen in Fig. 3.3.

At high oscillating field amplitudes (about ten times larger), the oscillatory behavior

of the fields change. The electric field contains both higher harmonics and sub-harmonics

(low frequency) components, as seen in Figs. 3.4(a) and (b). The sub-harmonic component

yields a non-zero cycle-averaged electric field that decays toward zero as the plasma ap-

proaches steady-state. The cycle-averaged dynamo-like effect , (V00×B00)‖, increases with

the helicity injection rate; however its structure remains unchanged (Fig. 3.5).

3.3 Analytical calculation and quasi-linear effects

From the 1-D computation, we see that low amplitude oscillating fields penetrate into the

plasma with the OFCD frequency while both higher and lower frequencies are generated

for higher amplitudes (large forcing amplitudes). To understand the time dependence of

the fields, 1-D linear, resistive MHD equations (Eq. (2.1)) are analytically solved in cylin-

drical geometry. The partial differential equations are solved for uniform magnetic field

B = B0ẑ ,∇p = 0, no viscosity, with initial conditions A1
z(r, 0) = const., A1

θ(r, 0) = 0 and

boundary conditions A1
z(a, t) = (−εz0/ω) cos(ωt), A1

θ(a, t) = (−εθ0/ω) sin(ωt), where the

“1” superscript denotes a linear oscillating quantity. The equations for the vector potential

and velocity fields can be simplified as follows,

∂A1

∂t
= V1 ×B− η∇×∇×A1 (3.1)
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Figure 3.1: Time-averaged profiles for axial and azimuthal magnetic fields, obtained in

steady-state from 1-D computation (εz = 1.0, εθ = 0.1, ω = 600τ−1
R , S = 105).

ρ
∂V1

∂t
= −∇(B ·B1) (3.2)

Using B1 = ∇×A1, J1 = ∇×B1, and B = B0ẑ we can combine equations (3.1) and

(3.2) in the form of axial and azimuthal vector potential (A1
z, A1

θ)

∂A1
z

∂t
= η(

∂2A1
z

∂r2
+

1
r

∂A1
z

∂r
) (3.3)

∂2A1
θ

∂t2
=

S2B2
0

ρ
[
∂2A1

θ

∂r2
+

1
r

∂A1
θ

∂r
− A1

θ

r2
] + η

∂

∂t
[
∂2A1

θ

∂r2
+

1
r

∂A1
θ

∂r
− A1

θ

r2
] (3.4)

The normalization of the equations is similar to the one used in Sec. 2.2. The partial

differential equation (PDE) with non-homogeneous boundary condition for the toroidal

vector potential (Eq. (3.3)) represents a driven resistive diffusion equation. The PDE for

the poloidal vector potential (Eq. (3.4)) consists of Alfvén waves and resistively damped

modes. To solve the PDEs, the Laplace transform method can be applied to Eqs. (3.3)

and (3.4) (see Appendix A). The solution for A1
z and B1

θ can be written as an expansion of

eigenfunctions (Bessel functions):
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Figure 3.2: Radial profiles of (a) cycle-averaged parallel current density, J||. (b) parallel

current density at different times during one cycle (1-D low amplitude computation).

A1
z(r, t) =

−εz0

ω
cos(ωt) +

∞∑

n=1

bn(t)J0(λnr)

B1
θ =

∞∑

n=1

λnbn(t)J1(λnr)

(3.5)

where,

bn(t) = αn(ω, ωn)[ωn sin(ωt)− ω cos(ωt) + ω exp(−ωnt)]

αn(ω, ωn) =
2εz0

λnωn

1
J1(λn)(ω2 + (ωn)2)

(3.6)

ωn = ηλ2
n, and λn are the zeros of J0. Here, we have assumed uniform density and resistivity
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Figure 3.3: Cycle-averaged dynamo-like term (V00 ×B00)‖ vs. radius, for the 1-D compu-

tation. The oscillation frequency ω is 200τ−1
R and 600τ−1

R for the solid and dashed lines,

respectively. The solid line has three times higher helicity injection rate. For both cases

Êz = 1.0 sin(ωt), Êθ = −0.1 cos(ωt), S = 105.

profiles (ρ = η = 1). The solution for B1
θ consists of an oscillating part at the OFCD

frequency and a transient decaying part (Fig. 3.6(a)). Equation (3.4) can be solved for A1
θ

and subsequently for V 1
r as follows,

V 1
r (r, t) =

∞∑

m=1

Cm(t)φm(r) (3.7)

where,

Cm(t) =
2Sεθ0

(ω2 − ω2
m)

[−ωm cos(ωt)
ω

+
ω cos(ωmt)

ωm

]

φm(r) =
1

J1′(λm)

[
λ2

m

4
(J3(λmr)− 3J1(λmr))

+
λm

2r
(J0(λmr)− J2(λmr))− J1(λmr)

r2

]
(3.8)

ωm = SB0/
√

ρλm, and λm are the zeros of J1, (B0 = ρ = 1). The cycle-averaged (V 1
r ×B1

θ )

effect can be obtained from the analytical solutions, V 1
r (r, t)×B1

θ (r, t) =
∑∞

m=1 Cm(t)φm(r)

×∑∞
n=1 λnbn(t)J1(λnr). Figure 3.6(b) shows S(V 1

r B1
θ ) from the analytical calculations,
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Figure 3.4: (a) Axial and (b) azimuthal electric fields vs. time at radius r=0.89, respectively.

Figure 3.5: Cycle-averaged dynamo effect (V00 ×B00)‖ for high driving amplitudes, 1-D

computation (εz = 10.0, εθ = 1.0, ω = 600τ−1
R , S = 105).
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which agrees with the 1-D computation (Fig. 3.3). The sharp edge feature in Fig. 3.6(b)

results from the uniform resistivity profile assumed in the analytical model and the absence

of viscosity. In the 1-D computation of (V00 × B00)‖ (Sec. 3.2) , the resistivity profile is

exponential and the viscosity is finite. At high S, for arbitrary frequency and amplitudes,

the second term cos(ωmt) in Cm(t) (Eq. (3.8)) represents high frequency oscillations. These

high frequency oscillations are also present in 1-D computation (Sec. 3.2) for the field

solutions but dissipate at finite viscosity, and also dissipate due to the fluctuations in 3-D

computation.

To understand the time response of the plasma to large oscillating amplitudes, the quasi-

linear effect is investigated including f(r, t) = V 1
r (r, t)×B1

θ (r, t), as an inhomogeneous source

to the homogeneous PDE for A1
z. The 1-D driven diffusion equation plus the quasi-linear

term is solved numerically using the Crank-Nicholson method. As shown in Fig. 3.7 the

time response is a combination of the OFCD frequency, higher harmonics and a lower

frequency which arises from the product of the exponential decaying component and the

oscillation. The inhomogeneous solution can be found analytically as well, by defining

A1
z(r, t) =

∑∞
n=1 dn(t)J0(λnr), where now dn(t) has a different time dependence, which

is the combination of the OFCD frequency, the harmonics, transient decaying solutions

and the product of exponential decaying and the oscillations, sin(2ωt), sin((ω ± ωm)t),

sin(ωt) exp(−ωnt), exp(−ωnt) ...

Through the sin(ωt) exp(−ωnt) combinations in time, a non-zero cycle-averaged electric

field is generated mainly at high amplitudes when the contribution of the quasi-linear term

becomes important. This electric field decays slowly on a resistive diffusion time scale. A

non-zero mean electric field is similarly seen in large amplitude 1-D computations (Sec. 3.2)

as well as the nonlinear 3-D computations below. However, this electric field becomes small

as the plasma gets close to quasi steady-state.
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Figure 3.6: (a) B1
θ vs. time at radius r/a=0.8 (εz0 = 1.0, εθ0 = 0.1, ω = 200.0τ−1

R , S = 105).

(b) S(V 1
r B1

θ ) vs. radius calculated analytically in 1-D for the same parameter in Fig. 3.3

(solid line).

3.4 Parameter dependences

Here, we present the dependence of the OFCD-driven current modulation amplitude on the

key parameters: Lundquist number S, driving frequency ω and driving amplitude in a 1-D

classical plasma.

We obtained the analytical field solutions in a classical plasma. As discussed in Sec. 3.2,

the azimuthal magnetic field B1
θ is the solution of the 1-D driven resistive diffusion equation
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Figure 3.7: Bθ at r/a=0.65 (dashed) and r/a=0.94 (solid) vs. time, calculated numerically

for the 1-D model with the quasi-linear term.

and is plotted in Fig. 3.8(a). The solution from the 1-D computation shown in Fig. 3.8(b)

agrees with the linear analytical Bθ solution in both the temporal behavior and the mag-

nitude. The viscosity is zero in the solution shown in Fig. 3.8(a) resulting in a sharp edge

feature. We showed that 1-D OFCD-driven current diffuses within the classical skin depth

δ = (η/ω)1/2 and hence that the penetration depends only on the frequency and resistivity.

The cycle-averaged (V00 × B00)‖ dynamo effect shown in Fig. 3.9 does not change with S.

The viscosity effect is seen in this figure. At high viscosity for magnetic Prandtl number ν

=200, the sharp edge becomes smooth.

The magnitude of the OFCD-generated current is proportional to the helicity injection

rate (∼ εzεθ/ω). For the fixed driven mean current (i.e. fixed helicity injection rate)

the modulation field amplitudes should decrease with S. According to the cycle-averaged

parallel Ohm’s law ηJ‖ = S(V00 × B00)‖ it is expected that the product of axisymmetric

velocity and magnetic field oscillations decreases with S. The computation shows that

the azimuthal magnetic field modulation amplitude does not change with S but the radial

velocity modulations are reduced. It is also seen from the linear analytical solution of Bθ

(Eqs. 3.5 and 3.6) that the azimuthal magnetic field is independent of S. However, the
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linear solution for Vr (see Eq. 3.7) shows that radial velocity modulations decrease with ωm

and consequently with S. Fig. 3.10 shows the reduction of the radial velocity modulation

amplitudes (from the 1-D computations) at higher S, which agrees with the analytical

solutions. This S dependency is also seen in the 3-D computations which will be investigated

in chapter 4. Clearly the nonlinearity alters the dependence of the Bθ modulations on S

and for a fixed plasma current generated by both axisymmetric and asymmetric dynamos

we observe the reduction of current modulations at high S.

The field modulation amplitudes scale with another key parameter: the driving fre-

quency ω. The lower the frequency, the greater the classical penetration and the higher

the helicity injection rate. On the other hand, the field modulation amplitudes increase at

low frequency as is seen from the linear field solutions in Eqs. 3.5–3.7 (B1
θ ∼ 1/ω). 1-D

computations show a similar scaling of axial current modulations with ω. Figure 3.11 shows

the peak to peak axial current modulations scaling with ω for two values of εzεθ. The cur-

rent modulations decrease with frequency. The axial current modulations depend linearly

on the axial oscillating electric field amplitude εz (Eq. 3.6). In Fig. 3.11 the triangles and

the diamonds correspond to εz = 3.0 and εz = 1.0, respectively. The current modulation

amplitudes increase linearly only with εz, not with the product of azimuthal and axial os-

cillating electric field amplitudes. Thus, in a classical plasma the axial current modulations

vary linearly both with the frequency (∼ 1/ω) and the axial electric field εz.

The temporal behavior of the axial and azimuthal currents (Iz, Iθ) for two frequen-

cies ωτR = 200 and ωτR = 50, are also shown in Fig. 3.12. Because of the large axial

oscillating electric field amplitude, the axial current Iz has the dominant ω oscillations

[ηJz = S(V 1
r Bθ + VrB

1
θ + V 1

r B1
θ ) + E1

z and B1
θεz]. However, both 2ω and ω oscillations are

present in the azimuthal current Iθ (the azimuthal electric field is ten times smaller than

the axial one). The azimuthal current (Iθ) modulation also decreases at higher frequency

(Fig. 3.12). The axial and azimuthal current density profiles (Jz, Jθ) are shown in Fig 3.13.

Because of the small oscillations of both Bz and Vr (proportional to εθ), the amplitude of

Jθ is much smaller than Jz, and the 2ω oscillation is seen in Jθ. The modulation of Jz
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Figure 3.8: The solution for Bθ(r, t) (a) from the 1-D driven resistive diffusion equation (b)

from the 1-D computation. (εz0 = 3.0, εθ0 = 0.3, ω = 200.0τ−1
R ).

(Fig. 3.13) is three times larger than the one shown in Fig. 3.2 because the frequency is

three times smaller for this case.

3.5 Summary

We have examined 1-D computations and quasi-linear analytical solutions to study the

classical plasma response to the applied oscillating electric fields. The 1-D results are later

compared with the full 3-D MHD dynamics to understand the role of tearing fluctuations.

We have used a simple 1-D equilibrium to analytically solve the linearized resistive MHD

equations with time dependent oscillatory boundary conditions. The analytical solutions

yield a cycle-averaged (V00 × B00)‖ quasi-linear effect which agrees with the 1-D compu-

tations. This dynamo-like effect arises from the axisymmetric velocity and magnetic field

oscillations and generates a steady-state current confined to within a resistive skin depth of

the plasma surface. We also find that at large amplitude of the oscillating transient fields

are generated that persist for about a resistive diffusion time. The dependence of the 1-D
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Figure 3.9: The cycle-averaged (V00 ×B00)‖. The viscosity smoothes out the sharp feature

near the edge. The viscosity coefficient ν is 200 and 4 for the solid and dashed lines,

respectively. (εz0 = 1.0, εθ0 = 0.1, ω = 200.0τ−1
R ).

Figure 3.10: The radial velocity modulations from 1-D computation at different S. The

modulation amplitudes of Vr reduce at high S (εz0 = 1.0, εθ0 = 0.1, ω = 200.0τ−1
R ), but the

modulation amplitudes of Bθ do not change with S which agree with the analytical results.
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Figure 3.11: The peak to peak axial current oscillations calculated from the 1-D computa-

tions vs frequency.

Figure 3.12: The axial and azimuthal current vs time for frequencies ωτR = 200 and

ωτR = 50 (thick line).
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Figure 3.13: The axial and azimuthal current densities vs time and radius from 1-D

computations,(εz0 = 1.0, εθ0 = 0.1, ω = 200.0τ−1
R ).

axisymmetric modulation amplitudes on Lundquist number, the driving amplitudes and the

driving frequency has also been obtained using 1-D computations. The 1-D velocity mod-

ulation amplitudes decrease with S but the axial current modulations remains unchanged

in agreement with the analytical solutions. The modulation amplitudes vary linearly with

both the driving amplitudes and the inverse driving frequency. However, in the presence

of the MHD asymmetric fluctuations the scaling of the modulation amplitudes with the

key parameters will change. The 1-D model provides an approximate dependence of the

modulation amplitudes on the key parameters.
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4 Three-dimensional computation of AC helicity injection

4.1 Introduction

Chapter 3 described the 1-D MHD plasma response to an applied oscillating electric field

in the absence of non-axisymmetric fluctuations. It was shown that a steady-state current

is generated by the cycle-averaged dynamo-like (V00 ×B00)‖ effect from the axisymmetric

velocity and magnetic field oscillations. The current diffuses classically and is confined

to the outer region of the plasma. However, the full nonlinear 3-D MHD treatment is

required to determine the efficiency of the current drive, the resulting current profile and the

accompanying magnetic fluctuations. Here, we employ nonlinear 3-D MHD computations to

examine the full 3-D MHD dynamics of OFCD. The original studies of OFCD assumed that

the plasma relaxes to a Taylor state [8] with J‖/B spatially constant. [9] MHD computation

in which the fluctuations are treated as a hyper-resistivity has been used to treat the 1-

D behavior of the plasma during OFCD. [10, 11] 3-D MHD computation has been used

to study spheromak formation by helicity injection [12] and to model electrostatic helicity

injection in tokamaks. [13]

Here we study the complete dynamics of OFCD using the code DEBS (see Sec. 2.2).

Oscillating axial and azimuthal electric fields are imposed at the wall, Êz = εz sin(ωt) and

Êθ = εθ sin(ωt + π/2), where εz and εθ are the axial and azimuthal AC amplitudes, respec-

tively. The oscillation period is required to be long compared to the plasma relaxation time

(the hybrid tearing time scale τhybrid ∼ √
τRτA), and short compared to resistive diffusion

time τR (τhybrid < τω < τR) . [10, 11] Furthermore, the frequency should be low enough for

sufficient current relaxation through tearing dynamo effect, but high enough to avoid cur-

rent reversal. The resistivity profile has been chosen to resemble the experimental profiles

(increasing near the plasma edge), η = (1 + 9(r/a)20)2. As will be shown later, the OFCD

technique relies upon magnetic fluctuations to relax the current density profile. Therefore,

3-D MHD modeling is needed to understand the full MHD dynamics of OFCD. Fluctua-

tions are generated by the unstable OFCD-driven edge current, (V00 × B00)‖. Current is
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generated in the plasma core via the fluctuation-induced MHD dynamo term, < Ṽ× B̃ >‖.

We employ an aspect ratio of 1.66. We examine OFCD at two different Lundquist

numbers, 105 and 5×105. The magnetic Prandtl number, P = 10 is used for both cases. An

assessment of OFCD requires information on scaling with Lundquist number. For example,

it is expected that the oscillation of the total plasma current will decrease with S, as has

been indicated by the relaxed-state modeling in Ref. [20, 21]. The relaxed-state model

provides a description of OFCD sustainment assuming that plasma maintains a stationary

relaxed-state current profile throughout an OFCD cycle. Using a simple argument, by

equating the cycle-averaged AC helicity injection rate to the ohmic helicity injection rate,

the fractional AC current modulation amplitude is predicted to scale as

Îz/Iz ∼ S−1/4ω
−1/2
h ξ1/2(R/a)−1/2 , (4.1)

where ωh is the frequency normalized to the hybrid tearing time and ξ is the ratio of the

driving oscillating voltages (ξ = v̂z/v̂θ). The scaling of the modulation amplitudes with

Lundquist number S, the drive frequency ω, aspect ratio R/a and the relative amplitudes of

the axial and poloidal oscillating fields have also been obtained by the relaxed-state modeling

and have been compared with the predicted scaling in Eq. 4.1. [20, 21] The reduction of

the current oscillation with S in the full 3-D OFCD computations is consistent with the

predicted S-scaling of relaxed-state model (S−1/4). Using the same set of parameters in

high-S 3-D case (section 4.3), the prediction of the relaxed-state model for the current is

in good agreement with 3-D computation. However, because of the stationary feature of

current profile in relaxed- state modeling, this model predicts lower modulation amplitudes.

For both values of Lundquist number (105 and 5 × 105), we first evolve the plasma to

a steady-state in the absence of OFCD. This standard RFP plasma (at pinch parameter

Θ = 1.8) is evolved in the presence of a constant boundary axial electric field (Ez(a) =

constant). It then forms the target plasma for OFCD. The radial profiles for this standard,

relaxed plasma are shown in Fig. 4.1, which displays the parallel components of the current,

electric field, and dynamo effect generated by tearing modes. As shown in chapter 2, the

tearing modes essentially transfer current from the core to the edge, to counter the peaking
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of the current by the applied electric field.

The dynamics of OFCD are presented in details, both through the cycle-averaged quan-

tities and the behaviors during a cycle. We discuss the results at S = 105 in Sec. 4.2 and

S = 5 × 105 in Sec. 4.3. The large oscillations of the axisymmetric profiles can cause the

excitation of the edge-resonant modes. The linear and quasilinear behavior of these modes

and S-scaling will be discussed in Sec. 4.4.

4.2 S = 105

At some time during the steady-state phase of the plasma, the time-independent axial

electric field is set to zero, and the oscillating poloidal and toroidal electric fields that

constitute OFCD are applied. We first examine the effect on the total current and magnetic

helicity in Sec. 4.2.1. In Sec. 4.2.2, we then examine the cycle-averaged terms in Ohm’s law,

including the two dynamo effects – one arising from the axially and azimuthally symmetric

fields (V and B) oscillating at the OFCD frequency and one from the tearing fluctuations.

For a more detailed analysis, we then investigate the behavior of each of the terms in Ohm’s

law, and the magnetic fluctuation spectrum, through an OFCD cycle in Sec. 4.2.3.

4.2.1 The axisymmetric quantities

The target plasma for OFCD, shown in Fig. 4.1, was computed with 147 radial mesh

points, poloidal mode numbers m=0 to 5, and axial mode numbers n=-21 to 21. The target

plasma was sustained at Θ = 1.8 with a helicity injection rate K̇ = φzvz = 50. If the axial

electric field is suddenly set to zero (at t = 0.24τR in Fig. 4.2) then the current decays in a

fraction of a resistive diffusion time (the dashed curve). To study OFCD, at t = 0.24τR we

impose boundary conditions Êz = 80 sin(ωt), Êθ = 8 sin(ωt+π/2). This provides a helicity

injection rate of v̂z v̂θ/2ω = 35. which is lower than the helicity injection rate of the target.

As seen in Fig. 4.2 OFCD sustains the cycle-averaged current at about 2/3 of its initial

value. However, the oscillations in the current are greater than 100%, causing the current

to reverse direction.
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If the OFCD helicity injection rate is increased, the cycle-averaged current increases

and the relative oscillations decrease. We observe in Fig. 4.3 that if the OFCD helicity

injection rate is doubled, then the cycle-averaged current increases by 20% and the cur-

rent oscillations decrease by 10%. The cycle-averaged helicity is also seen to be sustained

(Fig. 4.4). However, the helicity reaches a value that is less than the initial (by about 30%),

despite the fact that the OFCD helicity injection rate exceeds that of the target plasma (by

about 35%). This implies that the total helicity dissipation rate η
∫

J ·Bdv ≈ 67, including

both symmetric oscillation and asymmetric fluctuation contributions, increases with OFCD

(Fig. 4.5). The two components of the helicity dissipation rate are shown in Fig. 4.5(b).

In standard RFP surrounded by a close-fitting conducting shell, the time-averaged helicity

dissipation due to the tearing fluctuations is negligible. As it is seen in Fig. 4.5(b) the tear-

ing fluctuating part of the helicity dissipation increases with OFCD (shown by the thicker

line), resulting in a cycle-averaged value of a few percent of the total helicity dissipation

rate. Axial current (Fig. 4.3) decreases when the helicity dissipation due to the tearing

fluctuations increases. Due to the nonlinear plasma response, both the axial current and

the helicity dissipation rate are not sinusoidal in time (Figs. 4.3 and 4.5). The sudden rise

of the helicity dissipation (Fig. 4.5) indicates large changes in the mean profiles during a

cycle.

The choice of frequency is important for efficient current drive. The frequency should be

low enough that edge current can be transported by the tearing fluctuations into the plasma

core, but high enough to avoid change of direction of the total plasma current through a

cycle. A full frequency scan for a given Lundquist number would therefore be of interest.

A scan is presently infeasible due to the long computational time required. We investigate

OFCD at two frequencies. At low frequency, when the driving period is much longer than the

plasma relaxation time scale, the plasma current (and Θ) changes sign (Fig. 4.6). Whether

the plasma maintains the reversal during the OFCD cycle depends upon the ratio of the

poloidal and toroidal oscillating amplitudes. At higher helicity injection rates and εθ/εz in

the range of 10-15%, the toroidal field reversal parameter, F , is less positive and plasma
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Figure 4.1: Radial profiles of the three terms in parallel Ohm’s law, E‖+S < Ṽ×B̃ >‖= ηJ‖

for a standard RFP plasma. The dynamo term includes contribution from the m=0 and

m=1 tearing modes for all the axial mode numbers, n (S = 105).

Figure 4.2: Total axial current vs. time. The oscillating fields Êz = 80 sin(ωt), Êθ =

8 sin(ωt + π/2) are applied at t = 0.24τR (τω = 1.05× 103τA). The bold points indicate the

cycle-averaged current. The dashed line is the exponentially decaying current that occurs

in the absence of OFCD (Ez(a) set to zero at t = 0.24τR).
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Figure 4.3: Total axial plasma current vs. time for εz = 112, εθ = 11, τω = 1.05 × 103τA,

S = 105. When plasma reaches quasi steady-state, the cycle-averaged current, Iz = 2 is

shown by the solid trace.

Figure 4.4: Helicity vs. time. The solid line with points shows the cycle-averaged helicity.
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Figure 4.5: (a) Total helicity dissipation rate, K̇diss = η
∫

J ·Bdv vs. time. The solid line is

the helicity dissipation before OFCD (about 50). The bold points show the cycle-averaged

total helicity dissipation rate, which at steady-state balances the OFCD helicity injection

rate, η
∫

J ·Bdv ≈ 67. (b) The two terms contributing to the total helicity dissipation rate

, the symmetric mean part η
∫

J00 ·B00dv. and the asymmetric fluctuating part η
∫

J̃ · B̃dv

(m, n 6= 0) are shown. The thicker line indicates the fluctuating part.

Figure 4.6: F−Θ trajectories for two different periods. (a) τω = 1000τA, (b) τω = 1500τA,

(S = 105), where τω = 2π/ω.
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Figure 4.7: F −Θ trajectories for εzεθ/ω = 2.1 (dashed) and εzεθ/ω = 2.7 (solid). The

driving frequency is the same for the two cases. The toroidal field is more deeply reversed

for higher helicity injection.

maintains the reversal (Fig. 4.7).

According to the helicity balance equation, the phase between the axial and poloidal

voltages for maximal helicity injection is δ = π/2. We have also examined δ = 0 and

δ = −π/2. Fig. 4.8 shows that both the cycle-averaged helicity and the cycle-averaged

current decay to zero as expected when δ = 0. The dashed line in Fig. 4.8 shows helicity

and current when the axial electric field is set to zero (no OFCD) and the solid line with

bold points indicates the cycle-averaged current with OFCD with δ = 0. The OFCD cycle-

averaged current decays faster than the ohmic current (dashed line). The opposite phase

(δ = −π/2) leads to helicity ejection and cycle-averaged helicity and current decay more

rapidly during the early cycles.

4.2.2 The cycle-averaged quantities

A large time variation of the parallel current density, J‖, occurs during an OFCD cycle,

shown in Fig. 4.9 for maximum and minimum Θ. Current density is peaked in the interior

of the plasma when Θ is maximum and F is most negative. The OFCD period is in the
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Figure 4.8: (a) Helicity and (b) axial current vs. time when phase between axial and

poloidal oscillating fields is set to zero (δ = 0). The decay of K and Iz, when ohmic axial

electric field is set to zero (without OFCD) are shown with the dashed line. The bold points

are the cycle-averaged quantities (with OFCD).

range of the hybrid tearing time; thus, the current penetrates to the interior of the plasma.

The cycle-averaged λ(r) profile is shown in Fig. 4.10. Non-zero parallel current density on

axis is evidence of the penetration of edge current into the core through the tearing mode

dynamo effect. The time-averaged λ and J‖ profiles of the standard RFP plasma are also

shown.

The dynamics of this current relaxation can be investigated by analyzing the dynamo

terms (from both the symmetric oscillations (V00 × B00)‖ and the tearing fluctuations
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Figure 4.9: Parallel current density at two different times during a cycle, at maximum (solid

line) and minimum Θ (dashed line). εz = 112, εθ = 11 and τω = 1.05× 103τA.

< Ṽ× B̃ >‖) in the cycle-averaged parallel Ohm’s law. As expected, the oscillations drive

a cycle-averaged edge current (Fig. 4.11(a)). The core current is mainly sustained by the

tearing dynamo (Fig. 4.11(b)).

4.2.3 Temporal behavior during a cycle

During one cycle, the plasma is driven to a state which is far from relaxed, with significant

effect on fluctuations. In the standard RFP the current density is controlled by the core

tearing modes, resonant within the reversal surface, with mode numbers m=1, n=-2 to -10,

as shown in Fig. 4.12. The oscillating fields of OFCD broaden the q profile and excite

additional modes. Edge modes, resonant outside the reversal surface, with m=1, n=2, are

excited, as well as additional core modes with n=1, n=-2, as shown in Fig. 4.13. The edge-

resonant mode develops the largest amplitude. The linear and quasilinear computations of

the edge-resonant modes will be discussed in Sec. 4.4.

The plasma experiences two phases of the magnetic fluctuations, the helicity injection

and ejection phases (Fig. 4.14). In the helicity injection phase (K̇ > 0), the total plasma

current (or Θ) increases and core fluctuations transport edge current into the core. In
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Figure 4.10: (a) Cycle-averaged λ = J‖/B and (b) cycle-averaged parallel current density,

J‖, profile without OFCD (dashed) and with OFCD (solid). Since the total current is

smaller with OFCD (see Fig. 4.3), J‖ is smaller as well.

85



Figure 4.11: Cycle-averaged dynamo terms (a) from symmetric oscillations (V00 × B00)‖

and (b) from the asymmetric tearing dynamo terms < Ṽ× B̃ >‖.

the helicity ejection phase, Θ decreases , and the global edge-resonant modes suppress the

current density everywhere. The λ profiles at different times during one cycle, marked by

the vertical lines in Fig. 4.14, are shown in Fig. 4.15. The first three profiles (a)-(c) are

during the helicity ejection phase, while (d)-(f) show the λ profiles during the injection

phase. As is seen, the λ profile varies from hollow (during the ejection phase) to peaked

(during the injection phase) within a cycle. Radial dynamo profiles during a cycle can

provide better understanding of current relaxation process from edge to the core region.

Fig. 4.16 illustrates the surface average dynamo term of the dominant core modes, m=1,n=-

2,-3,-4,-5, at different times marked by the vertical lines in Fig. 4.14. As seen, on average

the < Ṽ × B̃ >|| term suppresses current in the core region during the ejection phase

(Figs. 4.16(a) and (b)) and drives current on axis during the injection phase (Figs. 4.16(e)
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Figure 4.12: Modal magnetic energy (Wm,n = 1/2
∫

B̃2
r(m,n)d

3r) vs time for a standard RFP.

The (1,-4) and (1,-3) modes are the most dominant tearing modes (S = 105 , R/a=1.66).

and (f)).

4.3 S = 5× 105

Although OFCD is able to sustain the plasma current at S = 105, the current oscillations are

large. The relaxed state model predicts that the current oscillations decrease with Lundquist

number. [21] To investigate the effect of higher Lundquist number on current oscillations and

magnetic fluctuations, we have performed a computation at S = 5×105. We have employed

higher spatial resolution (260 radial mesh points, 0 ≤ m ≤ 5 and −41 ≤ n ≤ 41) to allow for

more localized features that accompany higher S values. Ohmic helicity injection is replaced

by OFCD at t=0.035 τR, as shown in Fig. 4.17(a). The current is sustained and the current

oscillations are indeed reduced by about 50% relative to S = 105. The corresponding F−Θ

trajectory is shown in Fig. 4.17(b), where it is seen that the plasma maintains reversal for
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Figure 4.13: Time histories of magnetic energy, Wm,n = 1/2
∫

B̃2
r(m,n)d

3r for the dominant

tearing modes, (m,n)=(1,+2),(1,-3),(1,-4),(1,-2) in an OFCD-sustained plasma. The edge

resonant mode m=1,n=+2, is excited by the oscillating fields and has the largest amplitude.
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~

Figure 4.14: Time histories of helicity K, reversal parameter F , pinch parameter Θ, and

magnetic fluctuation B̃/B (S = 105).

(ejection)  (injection)

r r

Figure 4.15: λ profiles for different times during one cycle (for times marked with vertical

lines in Fig. 4.14).
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Figure 4.16: Profiles of the surface-averaged dynamo,
∑

m=1,n < Ṽ × B̃ >|| including n=-

2,-3,-4,-5, at different times during one cycle (times marked with vertical lines in Fig. 4.14).

most of the cycle.

The cycle-averaged λ profile is shown in Fig. 4.18. For the same helicity injection rate,

the cycle-averaged parallel current density on axis is higher than the S = 105 case, indicating

that current penetrates more effectively into the plasma core at higher S. Similar to the

S = 105 case, there are two phases, the helicity injection (current drive phase) and helicity

ejection phase. In the helicity injection phase, the positive dynamo term from the core

tearing fluctuations, transfers the edge current into the core. Because of the excitation of

the edge-resonant modes, magnetic fluctuations level are enhanced (about the same level of

S = 105 case) during the ejection phase. The λ profiles during the injection and ejection

phases are shown in Fig. 4.19. This profile varies from hollow (during the ejection phase)

to peaked (during the injection phase) within a cycle.

Figures 4.20(a)-(d) illustrates the m=1 magnetic energy spectrum, at different times dur-

ing the OFCD cycle. The corresponding q profiles are shown in Figs. 4.21(a)-(d), including

the cycle-averaged q profile (shown by the thicker line) for comparison. The dominant core
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Figure 4.17: (a) Toroidal plasma current Iz, and (b) F−Θ trajectory for OFCD-sustained

plasma at S = 5× 105 (εz = 140, εθ = 16 and τω = 2.85× 103τA). The F−Θ limit-cycle is

shown by the solid curve.
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Figure 4.18: Radial profile of cycle-averaged λ (S = 5× 105).

modes m=1,n=-3,-4,-5,-6 can be seen in Fig. 4.20(a) with the magnetic fluctuation level

about 0.1-2%. This spectrum is the typical spectrum during the maximum current drive,

maximum Θ, and is similar to the standard inductive RFP spectrum. The q profile at

this time is shown in Fig. 4.21(a). As discussed earlier, when the plasma reversal starts

to deepen, edge-resonant modes become linearly unstable and the dominant modes move

toward the positive part of the spectrum. The q profile on the edge becomes more negative

(Fig. 4.21(b)). The linearly growing m=1,n=+2 mode is seen in Fig 4.20(b). This figure

shows the magnetic spectrum during the growth of edge-resonant mode fluctuations. At this

time the m=1, n=+2 fluctuation level is about 10% and the core mode (m=1,n=-3,-4,-5,-6)

fluctuation level is about 0.1-1%. It can also been seen in Fig. 4.20(c) that the amplitudes

of other edge-resonant modes m=1, n=+3,+4 start to increase to higher values (1-5 %)

during the peak of the B̃/B. The q profile for this spectrum is broader both on axis and

on the edge (Fig. 4.21(c)). The spectrum after the decay of edge-resonant modes begins

to return to the typical standard RFP spectrum with the core dominant mode m=1,n=-3.

Figs. 4.20(d) and 4.21(d) show the spectrum and the q profile at a time during the injection

phase.

92



(ejection) (injection)

Figure 4.19: λ profiles at four different times during OFCD cycle (ejection and injection

phases), S = 5× 105.

4.4 The excitation of edge-resonant modes – linear and quasi-

linear computations

As shown in Sec. 4.2.3, edge-resonant mode with n=1, n=2 develops the largest amplitude.

The edge modes become resonant as the reversal deepens through an OFCD cycle, with F

reaching -2. To determine whether this mode is linearly unstable or nonlinearly driven we

compute the linear drive terms in the equation

1
2

∂B2
1

∂t
= SB∗

1[(B0 · ∇)V1 − (V1 · ∇)B0] + ... (4.2)

where the “1” subscript indicates a perturbed m=1, n=2 quantity and a “0” subscript

indicates a mean (0,0) quantity. We compute the volume integral of the LHS and RHS

of Eq. (4.2). We observe that during the sudden growth phase, the two terms are equal

(Fig. 4.22). Thus, the growth of m=1, n=2 mode is a linear instability and nonlinearity

only affects the saturation and damping of this mode. A linear resistive MHD stability
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Figure 4.20: The evolution of the magnetic energy Wm=1,n=1/2
∫

B2
r,(m=1,n)d

3r spectrum

during an OFCD cycle (S = 5×105). The dominant (m,n) modes are marked in the figures.

94



Figure 4.21: (a)-(d) are the q profiles for the spectrums (a)-(d) in Fig. 4.20, respectively.

The thicker profile is the cycle-averaged q profile.

analysis has also been performed to obtain the growth rate and spatial structure of this

mode. Linear evolution of the mode is studied using the DEBS code (with all other modes

suppressed). Equilibrium profiles are chosen to resemble those of the deeply reversed phase

of OFCD (Fig. 4.23). The global eigenfunctions of the m=1,n=+2 mode are shown in

Fig. 4.24. The growth rate of the mode , γτA = 0.1, is in the range expected for ideal MHD

instability.

As shown in Sec. 2.4.2, edge-resonant tearing mode, resonant outside the reversal surface,

have similar mode structure to core resonant tearing mode and their growth rates follow

the linear tearing S-scaling (γ ∝ S−3/5). There is a spectrum of m=1 edge-resonant modes

that can be excited linearly. With the equilibrium chosen in Sec. 2.4.2, the m=1, n=+6

mode has both resistive mode structure and resistive growth rate. However, if the current

95



gradient around the resonant surface increases, the edge-resonant modes can be driven

harder and approach the ideal regime with ideal growth rates (close to Alfvenic). Edge-

resonant modes can particularly be excited by AC helicity injection. The large modulations

of axisymmetric fields by OFCD in low-S plasmas and deep reversal cause edge-resonant

modes to grow linearly. We therefore here analyze these modes using both linear and

quasi-linear computations.

The edge-resonant modes excited in the 3-D computations with full current sustainment

by OFCD, are mostly low-n modes (m=1, n=+2). The linear and quasi-linear stability

analysis of m=1, n=+2 edge-resonant mode is investigated here. The equilibrium profiles

are chosen to resemble the equilibrium profiles of the 3-D OFCD case. As discussed in

section 2.3 the alpha equilibrium model with extreme reversal profiles has been used with

α = 65, θ = 1.75. The linear eigenfunction of the mode shown in Fig. 4.24 is global and

is different from the resistive edge-resonant localized mode structure shown in chapter 2.

Because of the deeply reversed equilibrium profiles and large gradient around the resonate

surface, this mode has growth rate close to the ideal regime (γτA ∼ 0.1).

We have also studied the S-scaling of the linear edge-resonant modes. The S-scaling of

two edge-resonant modes (1,+2) and (1,+6) is shown in Fig. 4.25. The (1,+6) mode with

mode structure shown in section 2.3 is a resistive edge-resonant mode with growth rate that

scales as S−3/5. The (1,+2) mode however (with deeper reversed equilibrium profiles), has

growth rate close to ideal and does not conform to the tearing S-scaling.

The quasi-linear computations are performed by allowing the same equilibrium profiles

as in the linear cases evolve, but with an oscillating field imposed on the plasma boundary

(εθ = 5.2, εz = 35 and ωτR = 250). The single edge-resonant mode (1,+2) starts to grow

linearly as the mode becomes resonant on the q profile. However, because the equilibrium

can evolve in response to the mode, the mode amplitude saturates as shown in Fig. 4.26.

This figure illustrates the sudden growth as F becomes very deep and the saturation of

this mode in the quasi-linear OFCD simulation at S = 5 × 104. Similar behavior in the

fluctuation amplitude of the (1,+2) mode is seen in 3-D computations (see Fig. 4.13). Thus,
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Figure 4.22: The m=1, n=+2 energy terms (integrated over radius) of Eq. (4.2) vs. time.

The total energy (LHS) is shown by the solid line. The diamonds show the sum of the linear

energy terms in the RHS. The growth period where the total energy (LHS) and linear energy

(RHS) overlap, is marked by the shaded area.

we conclude that the increase in the total magnetic fluctuation in the 3-D computations is

mainly due to the quasi-linear evolution of a single edge-resonant mode. To verify that this

mode is linearly driven, we have suppressed all the tearing fluctuations in the 3-D OFCD

computation case S = 105 except the dominant edge-resonant mode (1,+2). Under this

condition, the mode amplitude of (1,+2) mode still starts to grow as F deepens as shown

in Fig. 4.27, indicating that the mode growth does not depend upon the other modes (i.e.

it is not driven nonlinearly).
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Figure 4.23: Profiles of the equilibrium magnetic fields, Bz and Bθ, and q profile for the

linear calculation of the m=1, n=+2 edge-resonant mode.

Figure 4.24: Linear radial eigenfunctions of the m=1, n=+2 mode.
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Figure 4.25: The Lundquist number scaling of edge-resonant modes. The edge-resonant

mode m=1, n=+2 has growth rate close to ideal. However, there is a slow decrease of the

growth rate with S. The edge-resonant m=1, n=+6 mode is resistive with tearing S-scaling

(γ ∝ S−3/5). The triangles and diamonds are the computational points.
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Figure 4.26: Quasi-linear evolution of edge-resonant mode (1,+2) with OFCD boundary

condition. (a) Modal magnetic energy Wm,n = 1/2
∫

B̃2
r(m,n)d

3r vs time (b) F vs time.
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Figure 4.27: Quasi-linear evolution of edge-resonant mode (1,+2) when all the other tearing

modes have been suppressed in the 3-D OFCD computation. (a) Modal magnetic energy

Wm,n = 1/2
∫

B̃2
r(m,n)d

3r vs time (b) F vs time.
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4.5 Summary

We have investigated the full nonlinear dynamics of OFCD, a form of AC helicity injection,

using 3-D nonlinear MHD computation. 3-D plasma fluctuations and instabilities in large

part determine the effectiveness of OFCD and its influence on confinement. The full MHD

dynamics of OFCD can only be explained using 3-D nonlinear modeling where all the tearing

fluctuations are present and can nonlinearly interact. The 3-D MHD computation provides

understanding of current relaxation through the non-axisymmetric MHD fluctuations.

The 1-D relaxed state model with fixed current density profile reveals the scaling of the

current modulations on the key parameters (see Ref. [20, 21]). Because of the large amount

of CPU time and memory required, investigating the full 3-D scaling of the modulations of

the both axisymmetric quantities and fluctuations is numerically challenging.

The 1-D OFCD-driven edge current excites plasma MHD instabilities and fluctuations

which then drive current in the core through the dynamo effect that arises from non-

axisymmetric velocity and magnetic fluctuations. That is, magnetic relaxation causes the

current to penetrate to the core. This physics is captured through 3-D MHD computation.

We find that OFCD indeed can sustain the plasma current steady-state in the absence of a

DC electric field. There are two causes for concern for the OFCD as a steady-state current

drive technique. First, the effectiveness of the current drive and the oscillations of the

axisymmetric quantities. Second, the effect of OFCD on the non-axisymmetric fluctuations

and transport. The axisymmetric plasma quantities, such as the toroidal current, experience

very large oscillations. For example, at S = 105 the current oscillates by 100%, a value likely

unacceptable in an experimental plasma. However, we find that the current oscillation

decreases to about 50% at S = 5 × 105, consistent with the prediction of the 1-D relaxed

state model that oscillations scale as S−1/4. Thus, at the higher S values of experiments or

a reactor, the current oscillation may be acceptably small. We have also optimized OFCD

with regard to frequency and the relative phase. As expected, the optimum frequency is one

that is sufficiently low to permit relaxation to occur and sufficiently high that the oscillation

in the total current is minimized. We have examined three different phases, −π/2, 0, π/2 in
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the 3-D modeling. As expected, the δ = π/2 results in the maximum AC helicity injection

and current. The zero and −π/2 phases yield no cycle-averaged helicity and current.

We have studied both the spatial and temporal variation of all the terms in parallel

Ohms’s law. We have examined the response of both the oscillating axisymmetric profiles

and the non-axisymmetric fluctuations through a cycle as well as the cycle-averaged re-

sponse. It has been shown that the resistive MHD fluctuations transfer the OFCD-driven

edge current, < V00 ×B00 >‖, into the core of the plasma, generating a non-zero current

density over the entire plasma cross-section. The profiles of the mean fields (such as J‖/B)

and the fluctuations vary significantly throughout a cycle. For example, the J‖/B profile

varies from hollow to peaked within a cycle. The profiles are such that the helicity dissi-

pation is higher than for conventional current sustainment by a DC toroidal electric field.

Hence, the helicity injection rate for an OFCD-sustained plasma is greater than that for

standard Ohmic plasmas.

Plasma fluctuations (and transport) can be affected by OFCD. We identify two parts

of the OFCD cycle. During the helicity injection phase, the current density profile peaks

and the tearing mode dynamo drives current in the core (transporting current from edge to

the core). The fluctuation level is roughly equal to that of the standard RFP. During the

helicity ejection phase, new global modes appear that are resonant at the extreme plasma

edge. These modes produce a “dynamo” effect that suppresses current everywhere. A linear

stability analysis shows that these modes are unstable in plasmas with strong field reversal

(large, negative toroidal magnetic field at the plasma surface). The calculation of the linear

and total modal energy drives in the 3-D computation show that this mode is linearly driven

under the extremely deep field reversal equilibrium condition. Therefore, the instability is

suppressed in high S plasmas where the reversal is weak. Clearly, investigations at even

higher S values, beyond the scope of the present computation, are needed.
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5 Current profile control by AC helicity injection

5.1 Introduction

In conventional RFP devices, a toroidal inductive electric field has been used to drive and

sustain the plasma current. The edge magnetic field is dominantly poloidal in the RFP and

poloidal current drive is required for parallel current profile control. Different techniques

have the potential for current profile control and ultimately for steady-state current sustain-

ment as the RFP configuration advances toward improved confinement conditions necessary

for reactor operation. The main purpose of current profile control in RFPs is to suppress

the magnetic fluctuations. In the past few years, the core tearing fluctuations have been

reduced substantially through inductive current profile control. A surface poloidal induc-

tive electric field has been applied experimentally to drive edge poloidal current and modify

the current profile. [1] Recently toroidal loop voltage programming has also been added to

optimize inductive current profile control and its effect on magnetic fluctuations and trans-

port. [2] Non-inductive auxiliary current drive techniques, such as RF current drive can also

be used for current profile control and fluctuation reduction and are currently being tested

in the MST experiment. [3] AC helicity injection has been studied in the previous chapter

as a method to sustain the current in RFP. It can also be used to modify the ohmic current

profile. Here, we investigate current profile control via AC helicity injection.

In chapter 4, we examined steady-state current sustainment by OFCD using 3-D nonlin-

ear MHD computations. We found that OFCD can sustain the plasma current steady-state

in the absence of an ohmic toroidal loop voltage. We also showed that full current sustain-

ment by OFCD leads to the excitation of the edge-resonant modes and large modulation

amplitudes at low Lundquist number S. As a result the total magnetic fluctuations are in-

creased. However, the core tearing fluctuations did not display a significant change. Here,

we present 3-D MHD simulations of OFCD demonstrating both significant shaping of the

ohmic current profile, partial current sustainment, and reduction of magnetic fluctuations.

Using the concept of magnetic helicity balance, the rate of change of magnetic helicity
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is
∂K

∂t
= 2(φzvz)− 2

∫
E ·Bdv , (5.1)

For partial current sustainment by OFCD, the helicity injection rate φzvz on the RHS of

Eq. 5.1 consists of the contribution from both the ohmic helicity injection rate (φzvz)dc and

the AC helicity injection rate φ̂z v̂z (the “hat” denotes an oscillating quantity). In steady-

state, the dissipation rate (the second term on the RHS) balances the helicity injection rate.

Electrostatic helicity injection, which requires the intersection of magnetic field lines with

biased electrodes, has been simulated using a resistive MHD code and showed stabilization

of the tearing modes. [4, 5]

To inject AC magnetic helicity we impose oscillating fields on a relaxed plasma (standard

RFP) which is ohmically sustained by an axial time-independent electric field. In the

present simulations about 50% of the DC magnetic helicity (ohmic helicity) is injected by

oscillating fields. The computations are at Lundquist number S = 105 and aspect ratios

R/a=2.88 (MST aspect ratio) and R/a=1.66. For high aspect ratio R/a=2.88, we have used

resolutions 220 radial mesh points with 41 axial modes, −41 < n < 41, and 5 azimuthal

modes, 0 ≤ m < 5. Lower resolutions were sufficient for aspect ratio R/a=1.66.

In this chapter we will analyze the details of an OFCD case with significant current

profile modification. In Sec. 5.2 the time-averages of both the axisymmetric quantities and

the non-axisymmetric fluctuations are presented. The time variations of both axisymmetric

fields and the asymmetric magnetic fluctuations throughout an OFCD cycle are discussed

in Sec. 5.3. To understand the dynamics of OFCD for current profile control, we study, first

oscillating poloidal current drive (OPCD) in which only the poloidal surface electric field is

oscillated, then oscillating toroidal current drive (OTCD) in which only the surface toroidal

electric field is oscillated. The detailed dynamics of OPCD and OTCD are presented in

Secs. 5.3.1 and 5.3.2. The AC helicity injection rate decreases with oscillation frequency.

However, the frequency should be low enough that edge OFCD-driven current can be relaxed

by the tearing fluctuations into the plasma core to result in current modification, but high

enough to avoid current reversal. The optimum balance between these two effects is the
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topic of Sec. 5.4.

5.2 Time-averaged quantities

In our simulations, oscillating fields are imposed on a relaxed plasma (standard RFP) with

a DC axial electric field boundary condition providing a pinch parameter θ = 1.68. The AC

helicity injection rate, K̇inj = V̂zV̂θ/2ω = 19, is about 50-60% of the ohmic DC helicity. The

oscillation period is required to be between the hybrid tearing time,τH , and the resistive

diffusion time, τR. Therefore, we choose an OFCD frequency ωτH = 0.16 (τω = 12000τA),

which is low enough for both the relaxation and modification of the current density. The

total axial current for the 60% AC helicity injection is shown in Fig. 5.1. Because of the

low frequency, the modulation amplitudes for this case are large (about 75% of the mean).

The time-averaged total axial current is increased by 10-15%.

The cycle-averaged parallel current density is increased as shown in Fig. 5.2(a). The

modification of the cycle-averaged λ = J‖/B profile with the partial OFCD can be seen in

Fig. 5.2(b). OFCD makes the λ profile flatter around the point r/a=0.8 with the reduction

of the gradient starting around r=0.5.

The dynamics of current sustainment can be investigated using the cycle-averaged Ohm’s

law,

E‖ + (V00 ×B00)‖ + < Ṽ× B̃ >‖ = ηJ‖ , (5.2)

where V00 and B00 are the oscillating velocity and magnetic fields with poloidal and toroidal

mode numbers m = n = 0, Ṽ and B̃ are the fields with m, n 6= 0, and <> denotes an average

over a magnetic surface [()‖ = () ·B/B, where B is the cycle-averaged mean (0,0) magnetic

field]. The second and third terms are the dynamo terms generated by the axisymmetric

oscillations and the non-axisymmetric tearing instabilities, respectively. The first term E‖

is the ohmic toroidal electric field which is zero for the full current sustainment by OFCD

in the absence of a DC loop voltage. [6] The second term is the OFCD dynamo term which

represents the contribution of current driven by partial OFCD. Using V00 = E00 ×B/B2,

the first and second terms can be combined and written as (E00 ·B00)/B. Therefore,
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Figure 5.1: The total axial current with partial OFCD at the frequency ωτH = 0.16 vs time.

The cycle-averaged current boost (shown with dotted line) by OFCD is about 15%.

we can consider the first two terms on the LHS of Eq. 5.2 as the time-averaged parallel

component of the electric field which has both oscillating (AC) and DC components. We

see that the cycle-averaged parallel current is sustained by all the three term on the LHS of

Eq. 5.2. However, as we will discuss in more detail later, the time variation of the current

density profile during a cycle is substantial. The electric field variations and the resulting

parallel current gradients around the core resonant modes during a cycle affects the resistive

MHD instabilities and the tearing fluctuation amplitudes. Thus, the significant effect is

the reduction of the total fluctuation amplitudes. As is shown in Fig. 5.3 the fluctuation

amplitude become zero during part of the OFCD cycle. The time average of the total rms

fluctuation amplitudes decreases by a factor of 2–2.5. Below we present a detailed analysis

of this case during a cycle.
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Figure 5.2: Radial profiles of (a) the cycle-averaged parallel current density J‖ (b) the

λ = J‖/B. The dashed lines denote the same profiles for standard RFP (without OFCD).

Figure 5.3: The magnetic fluctuation amplitude [rms(B̃/B)] with partial OFCD and without

OFCD (standard RFP).
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5.3 Time-dependence

One of the basic features of OFCD sustainment is that the oscillating fields cause large

variations of the axisymmetric profiles during a cycle. As was shown above, large oscillations

of the total axial current are observed. The axisymmetric magnetic and velocity fields

also exhibit large variations throughout a cycle. Therefore, in this section we study the

detailed dynamics of profile variations and magnetic fluctuations throughout a cycle. The

time-averaged magnetic fluctuations exhibit a reduction by a factor of 2 by applying partial

OFCD. The physics behind the modified current profile and the suppression of the magnetic

fluctuations can be explained through detailed study of the profile variations during a

cycle. The three terms in parallel Ohm’s law: the current density, the electric field and the

fluctuation-induced dynamo term will be studied during an OFCD cycle.

To understand the dynamics of OFCD for current profile control, we first investigate

oscillating poloidal current drive (OPCD) and oscillating toroidal current drive (OTCD)

separately. We study the separate effect of OPCD and OTCD on both current profile and

magnetic fluctuations. Then, we present the OFCD dynamics in which both toroidal and

poloidal electric fields are oscillated out of phase to inject a time-averaged magnetic helicity

and to modify the current profile.

5.3.1 Oscillating poloidal current drive (OPCD)

An oscillating poloidal electric field [Êθ = εθ sin(ωt + π/2), εθ = 2.4, τω = 0.126τR] is

imposed at the plasma wall on a target standard RFP plasma (with Θ = 1.68) at time

t = 0.7τR. The poloidal electric field oscillates around a zero mean value, causing the

parallel electric field to become both positive and negative during a cycle. This is different

from the pulsed poloidal current drive (PPCD, a technique for current profile control applied

on MST) in which parallel electric field is experimentally programmed to always remain

positive. The radial component of the total magnetic fluctuations B̃/B and field reversal

F are shown in Fig. 5.4. As is seen, the total magnetic fluctuation oscillates with the

driving frequency. During part of the cycle, the magnetic fluctuation level is higher than
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the standard case but it is lower during the other part of the cycle (see Fig. 5.4(a)). Thus,

the time-averaged magnetic fluctuation level remains roughly the same as in the standard

plasma. Since the frequency is low, the modulation amplitude of the symmetric quantities

is large, as demonstrated by the modulation of the field reversal F shown in Fig. 5.4 (b).

No mean helicity is injected by the oscillating poloidal electric field (K̇OPCD = φ̂zV̂z = 0).

However, because of the change of the axisymmetric profiles and reduction of the helicity

dissipation, there is a slight increase in the time-averaged axial current and helicity. The

time-averaged parallel current density J‖ and λ(r) = J‖/B profiles are shown in Fig. 5.5,

indicating that the radial-averaged current does not change significantly (a small amount

of current is driven near the plasma edge and the current on axis is reduced). However, the

current density gradient is reduced with OPCD from r = 0.6 out to the plasma edge.

Although the time-averaged effect of the oscillating poloidal electric field on both ax-

isymmetric and asymmetric fields is insignificant, OPCD does affect the radial profiles

during a cycle. Figure 5.6 shows the temporal variations of the modal magnetic energies

(Wmn) with poloidal loop voltage (Vp). It is seen that the core mode magnetic fluctuations

are reduced during the positive phase of poloidal electric field (Vp > 0) and enhanced during

the negative phase (Vp < 0). The three terms in parallel Ohm’s law at times t1, t2 and

t3 shown in Fig. 5.7 reveal the profile variations during a cycle. The parallel electric field

(E‖ = Ez · Bz + Eθ · Bθ) is positive everywhere at t1 (while Vp > 0, F < 0) and a more

stable current density profile with smaller gradient is formed (see Fig. 5.7(a)). The current

is sustained by the positive electric field (< Ṽ × B̃ >‖= 0). Because the magnetic field is

mainly poloidal near the edge, during the negative phase with Vp < 0 (t2 is shown), the

parallel electric field becomes peaked in the core and negative near the plasma edge (see

Fig. 5.7(b)). Thus, the current density gradient becomes large which leads to the growth of

core resonant modes[(1,-4),(1,-3)] shown in Fig. 5.6 at t2. The dynamo term becomes large

(both in the core and at the edge) to relax the unstable current density profile at t2 (see

Fig. 5.7(b)). As the poloidal loop voltage changes sign, a positive parallel electric field and

consequently positive current density is generated over the entire plasma radius as seen in
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B̃/B0 K K̇diss Iz
bIz

2Iz
F Fp−p

OPCD 1.23 % 6.6 47.4 2.84 8 % -0.12 0.9 (Fmin = −0.7, Fmax = 0.2)

OTCD 1.1 % 5.1 40.6 2.3 60 % 0.0 2.0 (Fmin = −1., Fmax = 1.)

OFCD 0.6 % 8.6 72 3.0 45 % -0.31 2.0 (Fmin = −1.5, Fmax = 0.5)

Standard 1.25 % 5.71 41 2.6 – -0.12 0.17 (Fmin ≈ −0.2, Fmax ≈ 0.03)

Table 2: Time-averaged quantities.

Fig. 5.7(c). The positive poloidal electric field modifies the current density profile. As a

result the tearing fluctuations are reduced and the cycle repeats. The modification of the

λ = J‖/B profile is shown in Fig. 5.8. The λ profile is flattened in the core at t1 during the

positive phase (edge drive phase Vp > 0) and has larger gradient during the negative phase

(edge anti-drive phase Vp < 0).

Fig. 5.9 illustrates the variation of the q profile at the three different times. Because of

the low frequency, the q profile exhibits relatively large modulations on both axis and at the

edge. The modal magnetic energies shown in Fig. 5.10 oscillate with the driving frequency

and have large modulations but the time-averaged modal energies are comparable to the

standard modal energies. The temporal variation of the total magnetic fluctuations is

mainly in phase with variations of the core modal energies [(1,-3),(1,-4)] and the m=0 mode

nonlinear growth follows after the rapid growth of the dominant core modes (Fig. 5.10).

We conclude that OPCD drives an edge current during the positive phase with Vp > 0 and

suppresses the magnetic fluctuations, and OPCD generates anti-drive near the edge during

the negative phase with Vp < 0 and enhance core modal amplitudes.

5.3.2 Oscillating toroidal current drive (OTCD)

We have also examined the dynamics of oscillating toroidal field current drive (OTCD).

An oscillating axial electric field [Êz = εz sin(ωt), εz = 15] is imposed on the plasma wall

with the same initial conditions as for the OPCD case presented above. The axial electric
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OPCDStandard
(a)

(b)

Figure 5.4: (a) Radial component of the total magnetic field fluctuations B̃/B (b) Field

reversal parameter F. At time t = 0.7τR an oscillating poloidal field is imposed on a standard

plasma. The period of the poloidal electric field is τω = 0.126τR.

field oscillates with large modulations and its time-averaged value is the standard axial

electric field (standard loop voltage). During the part of the cycle with large negative

electric field values the axial current decreases and the fluctuation amplitude increases.

Since the axial flux is time-independent (Êθ = 0), OTCD does not inject mean helicity

(K̇OTCD = φzV̂z = 0, φ̂z = 0) and consequently does not drive mean current. However, the

time-averaged helicity and axial current are reduced with OTCD as shown in Table 2. This

is because of the large modulation amplitudes and negative axial electric field during part

of the cycle, which lead to large variation of the axisymmetric profiles. The time-averaged

parallel current density J‖ and λ(r) are reduced in the plasma core as shown in Fig. 5.11.
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OPCD
STD

OPCD
STD

Figure 5.5: Time-averaged λ(r) and J‖ profiles for OPCD and standard (STD) cases.

The time-dependent axial electric field at the boundary causes a large variation in the

current profile and magnetic fluctuations. The temporal behavior of the field reversal F and

the total magnetic fluctuations B̃/B with the oscillation of toroidal voltage Vz are shown

in Fig. 5.12. The modal magnetic energies Wm,n for the core modes (1,-3), (1,-4) and (1,-2)

and the m=0 mode (0,1) are also shown in Fig. 5.13. Similar to OPCD, the time-averaged

magnetic fluctuation level does not change significantly, but the reduction and enhancement

of the total magnetic fluctuations are larger than for OPCD. Large modulation amplitudes

of the axisymmetric fields and q on axis cause the core mode (1,-2) to become resonant

and develop a mode amplitude comparable to the dominant core mode [(1,-3) and (1,-4)]

amplitudes. The terms in parallel Ohm’s law are shown in Fig. 5.14 at the four different

times marked in Fig. 5.12. At time t1 the axial electric field and toroidal field reversal are

positive (Vz, F > 0) yielding a positive parallel electric field everywhere (E‖ = Ez · Bz,
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Figure 5.6: Oscillating poloidal loop voltage Vp, magnetic modal energy

Wm,n=1/2
∫

B2
r,(m,n)d

3r for the (0,1) mode and the core modes (1,-3), (1,-4) and

field reversal parameter F vs time.

Eθ ∼ 0). At this time core dominant modes [(1,-3),(1,-4)] have small amplitudes (as seen

in Fig. 5.13) and the fluctuation induced dynamo term is zero [E‖ = ηJ‖, Fig. 5.14(a)].

The core modal energies shown in Fig. 5.13 start to grow as E‖ becomes negative near

the edge and the fluctuation amplitudes reach their largest level. The current density

gradient increases as seen in Fig. 5.14(b). At time t2, E‖ becomes negative near the edge

and the dynamo term becomes large to relax the current profile toward a flatter profile by

suppressing the current in the core and driving current at the edge, as seen in Fig. 5.14(b).

The field reversal is maintained as the tearing fluctuations increase and energy is transfered
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(a) t1 (b) t2

(c) t3

Figure 5.7: The three terms in parallel Ohm’s law at times (a) t1, (b) t2 and (c) t3 (OPCD).

117



t

t

t

2

1

3

Figure 5.8: The λ(r) profile during edge drive phase (t1 and t3 ) and edge anti-drive phase

(t2) (OPCD).

Figure 5.9: The q profile at the three different times t1, t2 and t3 (OPCD).
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OPCDStandard

(0,1)

(1,-4)

(1,-3)

Figure 5.10: Magnetic modal energy for the modes (1,-3), (1,-4) and (0,1) without OPCD

(standard case) and with OPCD vs time.

to the small scale fluctuations and the m=0 modes grow through nonlinear mode coupling

(Fig. 5.13). During the second part of the phase when axial electric field is negative (Vz),

the parallel electric field E‖ = Ez · Bz can become positive again since F is negative. The

positive parallel electric field at time t3 is shown in Fig. 5.14(c). The core tearing mode

amplitudes decrease at t3 as seen in Fig. 5.13 and the dynamo term is weaker due to the

positive edge E‖. As the axial electric field reaches its minimum negative value, the field

reversal becomes positive yielding a negative parallel electric field near the plasma edge as

shown in Fig. 5.14(d). The dynamo term becomes strong again to relax the current density.

As is seen in Fig. 5.14(d), the current density in the core is fairly flat which causes the

reduction of core tearing modes at later times when E‖ begins to become positive again

near the edge. The cycle repeats and returns back to the profiles shown at time t1. Thus,
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OTCD
STD

OTCD
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Figure 5.11: Time-averaged λ(r) and J‖ profiles shown for OTCD and standard (STD)

cases.

we find that the modification of the current profile is significant by OTCD accompanied

by large modulation amplitudes. During part of the OTCD cycle, a positive E‖ profile is

generated and an edge current is driven. OTCD also flattens the current density profile in

the core out to the radius r=0.9. The latter effect is not produced by OPCD.

5.3.3 The combination of the oscillating fields – OFCD

Through the separation of oscillating poloidal field and oscillating toroidal field, we learned

that the time-averaged magnetic fluctuation level remains unchanged in both cases, and

the parallel electric field tends to modify the current density profile toward a more stable

profile (when E‖ > 0) or toward a more unstable profile (when E‖ < 0). However, in OFCD

by oscillating both poloidal and toroidal electric fields out of phase, the time-averaged
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t t t t1 2 3 4

Figure 5.12: The oscillating toroidal loop voltage Vz, field reversal parameter F and total

magnetic fluctuations B̃/B. The period of the toroidal electric field is τω = 0.126τR

magnetic fluctuations are reduced and a time-averaged magnetic helicity is also injected

and partial current can be maintained as shown in Sec. 5.2 (Fig. 5.1). Thus, the net effect

is mainly because of the combination of the two oscillating fields. Here, we study the OFCD

dynamics during a cycle, i.e. the effect of the oscillating fields on the axisymmetric profiles

and asymmetric fluctuations.

The toroidal and poloidal loop voltages Vz and Vp, field reversal parameter F, and the

total magnetic fluctuation B̃/B are shown in Fig. 5.15. The variations of current profile

and dynamo term with regard to parallel electric field are studied during a cycle. The three

terms in parallel Ohm’s law are shown in Fig. 5.16 at different times marked in Fig. 5.15.

Because Vz and F are both negative, the parallel electric field E‖ is positive over the entire
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(1,-3)

(1,-4)

(0,1)
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Figure 5.13: The modal magnetic energy Wmn for (a) (1,-3),(1,-4) and (b) (0,1),(1,-2)

(OTCD).

radius at time t1 as shown in Fig. 5.16(a). As is seen, an edge current is driven by E‖,

the core current density is still fairly peaked even though it is partially suppressed by

the dynamo term. The magnetic fluctuation level is about the same as standard plasma

without OFCD. As the toroidal field loses its reversal (F > 0, Vz < 0 and Vp < 0), the

parallel electric field (E‖ = Ez · Bz + Eθ · Bθ) becomes negative near the edge which is

shown in Fig. 5.16(b). This causes the magnetic fluctuations to increase as seen in Fig. 5.15

at time t2. The dynamo term tends to relax the current density profile by suppressing the

current in the core and driving current near the edge. The current density profile is flat in

most of the core region. This current flattening in the core causes the core resonant mode

amplitudes to reduce at a later time when a positive E‖ is generated as the axial voltage Vz
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(a) t1 (b) t2

(c) t3 (d) t4

Figure 5.14: The three terms ηJ‖, E‖, S < Ṽ × B̃ > in parallel Ohm’s law at times t1–t4

during a cycle (OTCD).
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Figure 5.15: The toroidal oscillating loop voltage Vz, the poloidal oscillating voltage Vθ,

field reversal parameter F, and the total magnetic fluctuation B̃/B vs time.

becomes positive (Fig. 5.15 at t3). The positive parallel electric field is shown in Fig. 5.16(c)

at t3. The dynamo term at this time is zero and E‖ = ηJ‖. The current density on axis

increases as helicity in injected into the plasma as shown in Fig. 5.16(d) at time t4 (E‖

increases and K̇ > 0). The current density starts to peak in the core and the core tearing

modes start to grow again as seen in Fig. 5.15 at t5 and the cycle repeats.

Two phases during a cycle can be distinguished, injection and ejection. During the

ejection phase, the helicity injection rate is negative (K̇ < 0) and the total axial current

decreases (t1, t2 and t5 in Fig. 5.15). The magnetic fluctuation amplitudes are about or

slightly higher than the standard (without OFCD) fluctuations in this phase. Oscillating

fields flatten the current density in the core and the fluctuation level starts to decrease
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(a) t1 (b) t2

(c) t3 (d) t4

Figure 5.16: The three terms E‖, ηJ‖ and S < Ṽ × B̃ > in parallel Ohm’s law at different

times during an OFCD cycle marked in Fig. 5.15.
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Figure 5.17: The λ = J‖/B profiles at times t1 and t3.

toward zero during the second part of the cycle, the injection phase. The helicity injection

rate is positive (K̇ > 0) and the total axial current increases during the injection phase

(t3, t4 in Fig. 5.15). The current profile is mainly sustained by positive E‖ in the injection

phase. However, during the ejection phase, the gradient in the parallel current density

profile drives the tearing instabilities. The fluctuation induced tearing dynamo term is

negative in the core, suppressing the current. Therefore, both the tearing dynamo and the

parallel electric field shape the λ = J‖/B profile. Figure 5.17 shows the modification of

the λ(r) profile at t1 (during the ejection phase) and t3 (during the injection phase). The

current density is hollow near the edge at t1 and is flattened at t3. The gradient of these

profiles changes during a cycle. For instance during the injection phase (after t3) the current

on axis increases and the λ profile peaks. However, these λ profiles are snapshots taken at

the time when the OFCD current profile modification, including current flattening in the

core, is maximal.

To complete the analysis of the OFCD cycle, we next discuss the modal activities based

on the resonant condition on the q profile. As shown before, the time-averaged magnetic

fluctuations are reduced by OFCD. In Fig. 5.18 the effect of oscillating fields on the mode
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amplitudes can be seen. The volume-averaged modal magnetic amplitudes (B̃m,n/B) for the

dominant modes is zero during part of the OFCD cycle and is comparable to the standard

mode amplitudes during the other part of the cycle. The mode amplitudes for the standard

case without OFCD are also shown for comparison. The dominant modes without OFCD

are (1,-3), (1,-4). Because of the large variation of the axisymmetric profiles with OFCD

another core mode (1,-2) reaches an amplitude comparable to the core modes without

OFCD. Since the mode amplitudes shown in Fig. 5.18 are normalized to the mean magnetic

field on axis, the normalized (1,-2) mode amplitude is larger than the other modes.

The magnetic modal activity changes significantly with the q profile variations during

an OFCD cycle. Fig. 5.19 shows the q profiles at times t1 – t4. The q profile at time t1 is a

typical q profile for the standard RFP. At time t2 the q profile is positive everywhere and

m=1, n=-2 and m=1, n=-3 are the core dominant modes with the mode amplitudes shown

in Fig. 5.18. At a later time (t3) the mode amplitudes of (1,-3) and (1,-4) are suppressed

and m=1, n=-2 mode is resonant (Fig. 5.19). The q profile on axis drops again at a later

time t4. The core mode (1,-4) grows linearly when the current density profile peaks in the

core at the time the total fluctuation level is minimum. This linear growth is seen in the

total magnetic fluctuation B̃/B (Fig. 5.15 at time t5) and in the mode amplitude of (1,-4)

shown in Fig. 5.18. Thus a single helicity state is formed (after t4). The single helicity

mode grows until it reaches an amplitude high enough to cause nonlinear coupling. The

field line trajectory during the single helicity state is shown in Fig. 5.20(c). Because of the

nonlinear coupling of this mode with other modes and a cascading process, the magnetic

energy spectrum becomes broad again. The stochasticity of the magnetic field lines increases

to the level of the standard RFP shown in Fig. 5.20(a). As is seen in Fig. 5.20, there is

a transition from stochastic magnetic field lines to ordered and then to the single helicity

state.

The comparison of the oscillation of the single components of electric field (OPCD and

OTCD) with the oscillation of the both components (OFCD) indicates that E‖ is negative

near the edge region for almost half of the OPCD and OTCD cycles causing the enhancement
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Figure 5.18: The volume-averaged mode amplitudes for (a) standard case (without OFCD)

(b) with OFCD.

of the magnetic fluctuations, but E‖ remains positive for three quarter of the OFCD cycle.

This makes OFCD more effective than OPCD or OTCD.

In summary, the current profile shapes significantly during an OFCD cycle. During

the ejection phase the current profile is peaked in the core and has a hollow shape closer

to the edge because of the oscillations of the OFCD-driven current near the edge region.

During this phase the tearing dynamo term distributes the current density by suppressing

the current in the core and driving current near the edge. The q profile and the modal

activity are also similar to the standard RFP. As the total current decreases, the parallel

electric field is modified in the core and also becomes positive near the edge. As a result, the

current density is relaxed to a flat profile. The flattening of the current density profile results

in the suppression of the magnetic fluctuations and the tearing dynamo term vanishes. The

cycle repeats when the current profile peaks.

128



Figure 5.19: The q profiles at times t1 – t4.

Figure 5.20: Field line trajectory (Poincare plots) at times a) t1, b) t4, and c) t5.
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5.4 The frequency dependence

In the previous sections we showed that current can be partially sustained by OFCD and

also that current profile control is possible with OFCD. The partial current sustainment

by OFCD depends on the AC helicity injection rate which is proportional to the ratio of

the AC driving voltages and the oscillation frequency. However, the penetration of the

OFCD-driven current into the plasma and the OFCD modification of the current density

profile also depends upon the frequency. As mentioned before, the oscillation frequency

should be low enough for sufficient current relaxation by the tearing fluctuations, but high

enough to avoid current reversal. Additionally, the frequency should be calibrated to result

in a flattening of the current profile by the oscillating fields. Here, the results of 3-D MHD

computations at different OFCD frequencies are presented when the helicity injection rate

is fixed.

The oscillating fields with frequencies ωτH = 1.2, ωτH = 4.7, and ωτH = 9.8 are

imposed on a relaxed RFP with a constant axial electric field boundary condition with pinch

parameter Θ =1.68 and aspect ratio R/a=2.88. The oscillating field with the frequency

ωτH = 1.6 (discussed in the previous section), and ωτH = 0.8 are also imposed on a target

plasma with the same current but with the aspect ratio R/a=1.66. Fig. 5.21(a) shows

that the oscillating fields inject helicity into the standard RFP plasma at time t=0.34 τR

with frequency ωτH = 1.2 and with the helicity injection rate of 50% of the ohmic helicity

rate (K̇inj = V̂zV̂θ/2ω = 40). As shown in Fig. 5.21(b), total axial current is increased

by 10%. The peak to peak current modulation amplitude is about 35% of the mean total

axial current and it is much smaller than the modulation amplitudes shown in Fig. 5.1

at ωτH = 0.16 . The mean helicity dissipation , K̇diss = η
∫

J ·BdV , is increased with

OFCD (Fig. 5.22) and balances the total helicity injection rate (AC and ohmic injection)

as the plasma get close to the steady-state. However, the fluctuating helicity dissipation,

η
∫

J̃ · B̃dV , remains small (similar to the standard RFP surrounded by a conducting wall).

Table 3 summarizes the results of the OFCD simulations with the same helicity injec-

tion rate but with different frequencies. The current modulation amplitudes Îz/2Iz and the
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peak-to-peak modulation of the field reversal parameter F are reduced at higher frequency.

The reduction of the modulation amplitudes with frequency obtained here is consistent

with the results from the linear 1-D calculations and the relaxed-state scaling of full current

sustainment by OFCD. [6] However, a similar frequency-scaling study using numerically

demanding 3-D computations would require more data points than what is currently feasi-

ble. The time-averaged total magnetic fluctuation B̃/B0 is suppressed by a factor of two at

ωτH = 0.16 as shown in Sec. 5.2. However, B̃/B0 is about the same as the standard fluc-

tuation level at higher OFCD frequency. As discussed before, the reduction of the tearing

fluctuations is mainly due to the modification of the current density profile by the oscillating

electric fields. Here, using 3-D computations we show that the modification of the current

profile depends on the penetration of the OFCD-driven dynamo term – the OFCD edge

driven current – and hence the oscillation frequency range.

The cycle-averaged symmetric OFCD-driven dynamo term (V00 × B00)‖ obtained from

the 3-D simulations is shown in Fig. 5.23 for different frequencies. As is seen, the classical

penetration [δ = (η/ω)1/2] for a fixed helicity input rate increases with the OFCD period.

At lower frequency, ωτH ∼ 1, the OFCD-driven current penetration is deeper into the

plasma. Therefore, the OFCD-driven peak can be further into the cycle-averaged current

density profile depending on the frequency. Figure 5.24 shows the cycle-averaged current

density profile for different frequencies. The ohmic current density profile is modified by

OFCD. At higher frequencies ωτH >> 1 the OFCD-driven current is mostly peaked near

the plasma edge, but at lower frequency (ωτH ∼ 1) the OFCD-driven current is further into

the plasma. At frequency ωτH = 1.2 the current density J‖ is increased everywhere but

mainly near the edge region. We should also note that there is an exponentially growing

resistivity profile near the plasma edge which causes current dissipation near the plasma

edge at high frequencies (ωτH >> 1).

Figure 5.25 illustrates the temporal variation of λ(r) profiles with oscillating fields for

frequencies ωτH ∼ 1 and ωτH >> 1. As is seen the OFCD-driven current is more localized

near the edge region for ωτH >> 1. The modifications of the time-averaged λ(r) and q
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Figure 5.21: a) The magnetic helicity and b) total axial current at the frequency ωτH = 1.2.

Figure 5.22: The helicity dissipation K̇diss = η
∫

J ·B vs time. The total helicity dissipation

is balanced by the helicity injection as the plasma get close to steady-state at time t= 0.5

τR. The fluctuating helicity dissipation is almost zero.

profiles with OFCD at frequencies ωτH . 1 are shown in Fig. 5.26. The current density

gradient between r=0.4 and r=0.8 is smaller in the ωτH = 0.16 case leading to a lower

time-averaged magnetic fluctuation level. The field reversal modulations are higher at

lower frequencies (Table 3) and field reversal is lost during part of the cycle. Thus, the

time-averaged q at the edge is smaller for ωτH = 0.16 than for ωτH = 0.8 as shown in

Fig. 5.26(b).
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Figure 5.23: The cycle-averaged axisymmetric dynamo-like term, (V00 × B00)‖, for partial

OFCD sustainment at three different frequencies.

Figure 5.24: The cycle-averaged parallel current density profiles of standard RFP (solid),

OFCD with the frequency ωτH ∼ 1 (dashed), and OFCD with the high frequency ωτH >> 1

(dash-dotted).
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Figure 5.25: The λ(r) profile vs time (a) ωτH = 9.8 (b) ωτH = 1.2.

Figure 5.26: The cycle-averaged (a) λ(r) profile (b) q profile for standard case and OFCD

with ωτH . 1.
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B̃/B0 K K̇diss Iz
bIz

2Iz
Fp−p

Case I Standard (R/a=1.66) 1.25 % 5.71 41 2.6 – 0.17

ωτH = 0.16 0.6 % 8.6 72 3.0 45 % 2.0

ωτH = 0.8 1.5 % 7.3 71 2.82 21 % 1.58

Case II Standard (R/a=2.88) 1.27 % 9.8 70 2.6 – 0.09

ωτH = 1.2 1.0% 12.2 120 2.8 16 % 1.4

ωτH = 4.7 1.44% 10.2 112 2.6 11 % 0.95

ωτH = 9.8 1.46% 9.8 111 2.6 8 % 0.9

Table 3:

We also examine the penetration of OFCD oscillations into the plasma core. We investigate

the penetration for OPCD and OTCD at the same frequency. We study the penetration

of the oscillations in the plasma core for three cases, OPCD, OTCD and OFCD. At high

frequency, ωτH = 9.8, three simulations have been performed: OPCD (εθ = 12), OTCD

(εz = 90) and OFCD(εθ = 12, εz = 90). The AC component of the axisymmetric parallel

current density, J‖, vs time and radius is shown in Fig. 5.27. It is seen that at this frequency

the oscillations penetrate into the core for both OTCD and OFCD, but the penetration is

only to r=0.8 for OPCD. All the axisymmetric fields oscillate at the OFCD frequency far

into the plasma core. There is no penetration for the poloidal magnetic field Bθ in OPCD

case (εz = 0). This can also be expected from the classical penetration indicating that the

poloidal magnetic field oscillation is proportional to εz ( see Eq. 3.5). However, because of

the large toroidal driving electric field in OTCD, the penetration of OTCD and consequently

OFCD is global into the core as observed in Fig. 5.27. Since the OFCD oscillations penetrate

further into the plasma core at this high frequency, the OFCD penetration at lower frequency

is also clearly into the core region.

We also examine the OPCD penetration a two different frequencies. As shown above, the

oscillation penetration is only into r=0.8 at high frequency ωτH = 9.8. Fig. 5.28 illustrates

the penetration for, ωτH = 9.8 and ωτH = 1.9. The AC component of the axial magnetic
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field Bz vs time and radius is shown in this figure. At high frequency, the penetration

is almost classical and is confined to the edge region, but the penetration at frequency

ωτH = 1.9 is global into the core. Thus, from the 3-D computations we conclude that

at lower frequency (ωτH ≤ 2) the oscillations penetrate into the core for all three cases

(OPCD, OTCD and OFCD).

5.5 Summary

We have examined OFCD current profile control using 3-D MHD computations. In chapter

4, it is shown that time-averaged total current can be sustained in an OFCD plasma. A

separate application of OFCD is the modification of the ohmic current profile. It is shown

that OFCD can control the current profile density and a substantial reduction of the core

tearing fluctuations can be obtained. The effect of OFCD on both the axisymmetric fields

and the asymmetric fluctuations are investigated using 3-D modeling. The 3-D fluctuations

are required to understand the full MHD dynamics.

To better understand the detailed dynamics, OFCD, OPCD and OTCD are examined

separately. The effect of OPCD and OTCD on the axisymmetric profiles and the non-

axisymmetric fluctuations have also been studied. We find that the time-averaged magnetic

fluctuation level remains unchanged in both cases, and the parallel electric field (when

E‖ > 0) tends to modify the current density profile toward a more stable profile or toward

a more unstable profile (when E‖ < 0). However, in OFCD by oscillating both poloidal and

toroidal electric fields out of phase, the time-averaged magnetic fluctuations are reduced and

a time-averaged magnetic helicity is also injected and partial current can be maintained.

Thus, the net effect is mainly because of the combination of the two oscillating fields.

Through the combination of poloidal and toroidal oscillating fields, a more favorable parallel

electric field results which causes the reduction of magnetic fluctuations for most part of

the cycle.

We distinguish two phases during an OFCD cycle. During the ejection phase the current

profile is peaked in the core and there is an OFCD-driven current near the edge region.
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(a) OPCD (b) OTCD

(c) OFCD

Figure 5.27: The AC component of axisymmetric parallel current density, J‖. (a) OPCD

(b) OTCD (c) OFCD. The penetration of the oscillations during five cycles are seen. For

all the cases ωτH = 9.8.
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(a) (b)

Figure 5.28: The AC component of axisymmetric axial magnetic field, BZ for OPCD at

two different frequencies. (a) ωτH = 9.8 (b) ωτH = 1.9

During this phase the tearing dynamo term distributes the current density by suppressing

the current in the core and driving current near the edge . The q profile and the modal

activity are also similar to the standard RFP. As the total current decreases, the parallel

electric field is modified in the core and also becomes positive near the edge. As a result, the

current density is relaxed to a flat profile. The flattening of the current density profile results

in the suppression of the magnetic fluctuations and the tearing dynamo term vanishes. The

cycle repeats when the current profile peaks.

The effectiveness of the current profile control by OFCD depends largely upon the OFCD

frequency, and the effect of the relative phase between the toroidal and poloidal oscillating

electric fields yet to be shown. For the Lundquist number used in these simulations, we have

found the optimum frequency range where the relaxation is sufficient to modify the parallel

electric field and consequently the current density. The modulation amplitudes depend on

the Lundquist number and the computations at higher S should suppress the oscillations.

It is also shown that the penetration of the oscillating fields depends on the frequency. This
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affects the cycle-averaged edge current induced by the dynamo-like (V00 ×B00)‖ effect. A

thorough phase scan has also yet to be performed.
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6 Conclusions and future work

6.1 Conclusions

AC helicity injection is a technique to sustain current in configurations where the current

distribution relaxes by internal processes. Magnetic helicity injection has been tested in

various configurations such as spheromaks, RFPs and spherical tokamaks. In this thesis,

we have investigated the 3-D MHD dynamics of OFCD, a form of AC helicity injection, in

the RFP configuration. In OFCD, toroidal and poloidal surface voltages are oscillated out

of phase to inject magnetic helicity into the plasma. This technique is considered one of

the candidates for driving steady-state current in high-S plasmas such as reactors. OFCD

relies upon magnetic fluctuations to relax the current density profile. Therefore, 3-D MHD

fluctuations and instabilities are required to determine the effectiveness of current drive and

the accompanying magnetic fluctuations and transport. We have employed 3-D nonlinear

MHD computation to capture the magnetic relaxation physics. We have investigated the

two key concerns regarding OFCD as a steady-state current drive technique. First the

physics of the resulting current profile and the oscillations of the axisymmetric quantities.

Second, the effect of OFCD on the non-axisymmetric fluctuations important to transport.

We have first examined simplified 1-D computations and quasi-linear analytical solu-

tions. 1-D models are compared with the 3-D results to understand the role of non-

axisymmetric fluctuations. In the absence of tearing fluctuations, an edge steady-state

current is generated through the cycle-averaged dynamo-like effect, (V00×B00)‖, from the

oscillations of axisymmetric velocity and magnetic field. This current is localized to the

outer region of the plasma, penetrating a distance equal to the classical skin depth. The

edge OFCD-driven current excites MHD instabilities and fluctuations. These magnetic fluc-

tuations then transport the current into the plasma core through the fluctuation-induced

dynamo < Ṽ × B̃ >‖ effect. 3-D MHD computations show that the OFCD can sustain

plasma current steady-state in the absence of the ohmic toroidal loop voltage. OFCD

causes large modulation amplitudes of the axisymmetric profiles. We obtain current mod-
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ulations about 100% of the mean value at S = 105. However, we find that the current

oscillation decreases to about 50% at S = 5× 105, consistent with the prediction of the 1-D

relaxed state model that oscillations scale as S−1/4. Thus, at the higher S values of experi-

ments or a reactor, the current oscillation may be acceptably small. The large modulation

amplitudes at low S cause very deep toroidal field reversal at the edge and the excitation

of the edge-resonant modes. These modes are linearly driven and can be avoided in high-S

plasmas with smaller modulation amplitudes and weaker field reversal. The core tearing

fluctuations did not display a significant change. The 3-D computations at higher S remain

numerically challenging. We should also note that the effectiveness of current drive largely

depends on the key parameters such as driving frequency and the relative phase. We have

found the optimum frequency range between the hybrid tearing time scale and resistive

diffusion time (τhybrid < τω < τR), for sufficient current relaxation while avoiding current

reversal.

We have also studied current profile control by OFCD as a separate application. Various

techniques for controlling the current profile in the poloidal field dominated RFP config-

uration have been suggested. The main purpose of current profile control in RFPs is to

suppress the core tearing fluctuations to improve the confinement. In this thesis, we have

computationally investigated AC helicity injection as an alternative for current profile con-

trol. We have examined the detailed MHD dynamics of current modification by OFCD

using 3-D MHD computations. The current profile control by OFCD is complex. To bet-

ter understand the OFCD, we separate the dynamics into oscillating poloidal current drive

(OPCD) in which only poloidal surface electric field is oscillated, and oscillating toroidal

current drive (OTCD) in which only toroidal surface electric field is oscillated. The effect

of OPCD and OTCD on the axisymmetric profiles and the non-axisymmetric fluctuations

have been studied. We find that the time-averaged magnetic fluctuation level remains un-

changed in both cases, and the parallel electric field tends to modify the current density

profile toward a more stable profile (when E‖ > 0), or toward a more unstable profile (when

E‖ < 0). However, in OFCD by oscillating both poloidal and toroidal electric fields out
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of phase, the time-averaged magnetic fluctuations are reduced and a time-averaged mag-

netic helicity is also injected and partial current can be maintained. Thus, the net effect is

mainly because of the combination of the two oscillating fields. Through the combination of

poloidal and toroidal oscillating fields, a more favorable parallel electric field results which

causes the reduction of magnetic fluctuations for most part of the cycle. During part of

the cycle, an edge current is driven by OFCD near the plasma edge and current is peaked

in the plasma core. The magnetic fluctuations during this phase are still as high as in a

standard plasma. During the other part of the cycle, the current density is relaxed to a

flat profile. The flattening of the current density profile results in the suppression of the

magnetic fluctuations and the tearing dynamo term vanishes. The effectiveness of current

modification by OFCD largely depends upon the driving frequency, and the effect of the

relative phase between the toroidal and poloidal oscillating electric fields yet to be shown.

We have found the optimum frequency for current modification through relaxation during

part of the cycle. A thorough phase scan has also yet to be performed.

Throughout this thesis, we have performed MHD computations at the highest Lundquist

numbers to date for RFP computations. Using high Lundquist numbers is crucial for

determining the viability of OFCD. It is also important for a more realistic picture of

the MHD dynamics in the standard RFP. MHD computations at high Lundquist number

provide more regular and pronounced oscillations similar to the experimental observations of

sawtooth oscillations. We have also performed high-S computations for the standard RFP.

We obtain behavior closer to the experimental observations, such as more regular sawtooth

oscillations. High-S computations also allows studying and understanding the dynamics of

sawtooth oscillations and the associated m=0 fluctuations. The effect of m=0 and m=1

nonlinear mode coupling on the sawtooth oscillations is investigated by eliminating m=0

modes in the simulations. The sawtooth oscillations are not observed without m=0 modes,

indicating the important role of m=0 modes in the sawteeth relaxation dynamics. In the

absence of the m=0 nonlinear mode coupling the plasma transitions to a non-oscillatory

steady state. However, the total magnetic fluctuation level is not reduced.
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6.2 Future work

As the RFP moves toward improved confinement conditions and high-beta plasmas, finite

pressure effects become important. The linear and nonlinear pressure-driven instabilities at

high beta and techniques to control the pressure profile are physics issues that need to be

further studied. We have performed linear MHD stability analysis for the pressure-driven

instabilities in conditions exceeding the Suydam limit. We found that the transition from

the resistive to ideal pressure-driven modes occurs only at high beta values, several times

the Suydam limit. The mode structure of both high-n and low-n pressure driven modes has

also been studied. The nonlinear behavior of the small-scale and large-scale fluctuations at

finite pressure remains a topic for future investigations.

We have shown that in an OFCD plasma the core tearing fluctuation level is roughly

equal to that of the standard RFP. Thus, in an OFCD plasma, important concerns about the

transport and confinement will be raised, just as for the standard RFP. Different techniques

to improve the confinement in high-S plasmas (such as future reactors) sustained by OFCD

should thus be investigated. The application of other complementary current drive methods

might suppress the magnetic fluctuation level and improve the confinement. Inductive or

non-inductive current profile control techniques might be applicable in combination with

OFCD to both sustain steady-state current and suppress the fluctuations. In this thesis, we

did not consider the finite pressure effect in the MHD computations of OFCD. To further

investigate the OFCD MHD dynamics, the finite pressure effect and transport should be

included in future studies.

Most of the important features of RFP physics, such as magnetic fluctuations, tearing

dynamo relaxation and axisymmetric profiles have been understood through MHD compu-

tations. High-S MHD computations provide an even more detailed picture of experimental

observations such as sawtooth oscillations. However, some features, such as the Hall dynamo

and the effect of energetic particles on fluctuations and transport can only be explained us-

ing models beyond MHD. Therefore, physics beyond MHD, such as two-fluid and kinetic

effects are of great interest for future investigations.
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Appendix A

The driven diffusion equation with time-dependent boundary condition can be solved using

the method of eigenfunctions [1]. In this method it is assumed that a solution of the

homogeneous problem L[u] = cut can be represented by a series of eigenfunctions of the

associated eigenvalue problem L[φ] + λcφ = 0 with φ satisfying the boundary conditions

given by u. We assume the solution A1
z(r, t) =

∑∞
n=1 bn(t)φn(r), and substitute this solution

into Eq. 3.3, then the eigenvalue problem is

∂bn(t)
∂t

+ ηλ2
nbn(t) = 0

∂2φn(r)
∂r2

+
1
r

∂φn(r)
∂r

+ λ2
nφn(r) = 0

(A.1)

The corresponding eigenfunction φn(r) is the zeroth order Bessel function, and we obtain

A1
z(r, t) =

∑∞
n=1 bn(t)J0(λnr), where λn s are the zeros of J0. We assume a solution the form

A1
z(r, t) = A1

z1(r, t) + A1
z2(r, t), where Az2 satisfies the time-dependent boundary condition

such that A1
z2(a, t) = (−εz0/ω) cos(ωt). Thus the new problem to solve is

∂A1
z1

∂t
+ εz0 sinωt = η(

∂2A1
z1

∂r2
+

1
r

∂A1
z1

∂r
) . (A.2)

After we substitute a solution of the form A1
z(r, t) =

∑∞
n=1 bn(t)J0(λnr) into Eq. A.2 the

result is

J0(λnr)
∂bn(t)

∂t
+ ηλ2

nJ0(λnr)bn(t) = −εz0 sinωt . (A.3)

We multiply Eq. A.3 by J0(λnr) and integrate over radius, and using the Bessel integrals

(ref.qq),
∂bn(t)

∂t
+ ηλ2

nbn(t) =
−2εz0 sinωt

λnJ1(λn)
. (A.4)

The special solution of this ordinary differential equation is obtained by evaluating the

following integral

bn(t) =
−2εz0

ηλ3J1(λn)

∫ t

0
sinωτ exp[−ηλ2

n(t− τ)]dτ . (A.5)

Therefore, the solution is given by,

A1
z(r, t) =

−εz0

ω
cos(ωt) +

∞∑

n=1

bn(t)J0(λnr) , (A.6)
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where bn(t) is given in Eq. 3.6.

The Laplace transform method can be applied to Eqs. (3.3) and (3.4). By defining

Ω2 = S2B2
0/ρ, and performing Laplace transformation on Eq. 3.4, we obtain

∂2A1
θ(r, s)

∂r2
+

1
r

∂A1
θ(r, s)
∂r

−
[

1
r2

+
s2

(Ω2 + ηs)

]
A1

θ(r, s) = 0 , (A.7)

where A1
θ(r, s) is the Laplace transform of A1

θ(r, t). The equation A.7 now is an ODE. The

solution of Eq. A.7 can be written as A1
θ(r, s) = bI1(kr), where k = s/(Ω2 + ηs)1/2. The

coefficient b is obtained by b = f(s)/I1(k), where we have used the boundary condition

at the wall (r = 1), A1
θ(1, s) = bI1(k) = f(s) [where f(s) is the Laplace transform of the

f(t) = A1
θ(1, t) = (−εθ0/ω) sin(ωt)]. We write the solution as the convolution A1

θ(r, s) =

f(s)g(s), where g(s) = J1(ikr)/J(ik). The real space solution can be found by performing

the inverse Laplace transform on the convolution

A1
θ(r, t) = L−1[f(s) · g(s)] =

∫ t

0
f(τ)g(r, t− τ)dτ (A.8)

and the inverse transform of g(s) is calculated by evaluating the following integral

g(t) =
∫

exp(st)
J1(ikr)
J1(ik)

ds . (A.9)

The poles of this integral are λn = is/(Ω2 + ηs)1/2. The solution of g(t) is obtained from

the sum of residues of the two poles s1 = −iλnΩ and s2 = iλnΩ (Ω2 >> ηs). Using

lims→s1(s − s1)exp(s1t)
J1(λnr)
J1(λn) , the residue of s1 is −iΩexp(−iλnΩ)J1(λnr)

J1′(λn) , and similarly

for s2 we get, iΩexp(iλnΩ)J1(λnr)
J1′(λn) . Therefore, using Eq. A.8 the solution can be written as

follows

A1
θ(r, t) =

∞∑

n=1

Cn(t)
J1(λnr)
J1′(λn)

, (A.10)

where

Cn(t) = −2εθ0Ω[Ωλnsinωt− ωsin(λnΩt)]
ω(ω2 − λ2

nΩ2)
(A.11)

and to obtain the temporal coefficient Cn(t) we have to evaluate the integral 2Ωεθ0
ω

∫ t
0 sinωτsin[λnΩ(t−

τ)]dτ . Now that we have calculated the solution for the azimuthal vector potential, the so-

lution for the radial flow Vr can also be obtained using the following equation:

∂V 1
r (r, t)
∂t

= −SB0

ρ

[
∂

∂r

(
1
r

∂

∂r
(rA1

θ(r, t))
)]

. (A.12)
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The solution for V 1
r is then given by Eqs. 3.7 and 3.8.
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Appendix B

The linear stability of ideal and resistive pressure-driven interchange modes is an old sub-

ject that has received extensive analysis. Its relevance today is somewhat heightened, as

experiments with unfavorable magnetic curvature, such as reversed field pinches (RFP) and

stellarators, are operating with pressure at or above the ideal interchange stability limit.

In stellarators beta values above the Mercier limit are obtained in experiment, with no

observation of instability. [1] Investigation of global resistive modes have been examined in

stellarators in currentless equilibria applicable to the Heliotron DR device. [2] In the RFP,

control of the current density profile has succeeded in substantially reducing current-driven

tearing instability and increasing beta to the point that pressure-driven modes may begin

to be consequential. [3] Here, we examine the behavior of the linear resistive interchange

instability in current-carrying cylindrical plasmas, as beta varies from less than the ideal

stability (Suydam) limit to much larger than the ideal limit.

The ideal interchange instability in a cylinder has been examined in some detail, follow-

ing the calculation by Suydam that a localized pressure-driven instability in a bad curvature

region, is excited if the stability parameter DS = −(8πp′/r)(q/Bzq
′)2|rs > 0.25 [4], where

q is the safety factor, p is the pressure and ()′ = d/dr. Subsequently , the dependence of

the analytic growth rate on DS (in the limit of large wave number, k) has been treated by

several authors. [5, 6] In many of these treatments the inertial term is included in a layer

around the resonant surface only. Eigenfunction solution in the outer region is matched

to that obtained in the layer. [7, 8, 9] The result is that the growth rate depends on DS

(which is proportional to beta) as γmax ≈ Cexp(−2π/
√

σ), where σ = DS − 0.25 . Thus,

the growth rate is exponentially small near the ideal limit (DS = 0.25), becoming large for

DS values well above this limit. Numerical values for the growth rate of ideal interchange

modes have also been obtained in a diffuse linear pinch. [10, 11]

The addition of small resistivity defeats the shear stabilization and resistive interchange

modes become always unstable in a cylinder. [12] Matching the outer solution to a layer

that includes resistivity yields an analytical growth rate that scales with Lundquist number,
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S, as γ ∼ S−1/3. [13] Numerical studies of the growth rate have been accomplished using

eigenmode analysis (matrix shooting). [14, 15, 16]

In the present work, we employ initial value computation to evaluate the growth rate

and radial structure, for arbitrary wave number, of the resistive pressure-driven instability.

We find two results. First, for a rather wide range of beta, from zero to several times the

Suydam limit, the high-k interchange mode is resistive. It is resistive in its radial structure

(which results in reconnection), and its growth rate, which is small and scales as S−1/3 at

low DS , and more weakly with S as DS increases. The instability transitions to an ideal

mode at very high beta values (DS), several times the Suydam limit. Only at these very

high beta values is the mode ideal in its radial structure and its growth rate (which becomes

independent of S and scales with DS as described by ideal MHD). Second, we find that for

the RFP global pressure-driven modes are important. These modes transition from resistive

to ideal as beta increases, similar to that of the interchange.

The three dimensional nonlinear Debs code [17] is used to solve the following set of

compressible resistive MHD equations in cylindrical geometry in the linear regime,

∂A

∂t
= SV ×B − ηJ

ρ
∂V

∂t
= −SρV .∇V + SJ ×B + ν∇2V − S

β0

2
∇P

B = ∇×A

J = ∇×B

∂P

∂t
= −S∇.(PV )− S(γ − 1)P∇.V ,

where time and radius are normalized to resistive diffusion time τR = 4πa2/c2η0 and minor

radius a, S = τR
τA

is the Lundquist number, ν is the viscosity coefficient, which measures

the ratio of characteristic viscosity to resistivity (the magnetic Prandtl number), and β0 =

8πP0/B2
0 is the beta normalized to the axis value. The mass density ρ is assumed to be

uniform in space and time. The equations are fully compressible and describe both shear

and compressional Alfvén waves, as well as resistive instabilities. To resolve the ideal and
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resistive interchange modes in the linear computation, the maximum timestep has been

examined for convergence. The growth rate solutions are converged in timestep and spatial

resolution to the level of 2% and 1% respectively. The code uses the finite difference method

for the radial coordinate.

To isolate the pressure driven modes, an equilibrium which is stable to resistive current

driven modes is chosen (by the 4′ criterion). The equilibrium parallel current profile and

pressure profile are λ(r) = J · B/B2 = 2θ0(1 − rα) and p(r) = p0(1 − p1r
δ) respectively,

where α, θ0, δ, p0 and p1 are free constants. Other equilibrium quantities can be computed

from the θ and z components of ∇×B = λ(r)B + β0B ×∇p(r)/2B2 (see Fig. B.1).

First, we examine highly localized interchange modes by choosing modes with high axial

wave number, k. The dependence of growth rate on DS = −(8πp′/r)(q/Bzq
′)2|rs is shown

in Fig. B.2. The mode selected (azimuthal mode number m=1, k=10.5) is resonant at r/a=

0.78. We see that the growth rate is always non-zero and increasing with DS , but follows the

analytical ideal value only at DS > 1.0. The growth rate at lower DS values is much greater

than the ideal growth rate. It increases smoothly through the Suydam limit (DS = 0.25),

which plays no role for resistive instability. As expected, the growth rate depends on DS

only, rather than its constituents, β0 or magnetic shear, separately.

The radial structure of instability also indicates that a transition from a resistive to ideal

interchange mode occurs at DS ∼ 1.0 (for this particular m, k and S). Ideal and resistive

instabilities can be distinguished by the magnitude of the radial magnetic field Br. The

radial field is non-zero at the resonant surface only for a resistive mode. We see that the

mode structure is resistive for DS < 0.9 (Fig. B.3 a, b) and ideal for DS > 0.9 (Fig. B.3 c,

d), in agreement with the growth rates of Fig. B.2.

The transition from resistive to ideal modes is also evident in the S dependence of the

growth rate γ (Fig. B.4). At low DS , γ scales as S−1/3 (resistive scaling), whereas at very

high DS , γ is roughly independent of S (ideal scaling). The DS value at which the mode

transitions from a resistive to an ideal mode depends upon S. The transition value for DS

decreases with S. This can be inferred from Fig. 4. The triangles are resistive modes
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(from the radial structure) and the square boxes are ideal. For values of S (106 − 107) of

present experiments, the transition occurs at DS ∼ 0.7− 1.0 (or β0 ∼ 40− 60%) well above

experimental beta values.

High-k localized modes can be stabilized by finite Larmor radius effects. [8],[18] Thus,

global, low-k pressure-driven modes may be more important for the RFP. The ideal stability

of global pressure-driven modes have been examined in the past and it has been shown that

these modes become unstable with the violation of Suydam criterion as well and have kink-

like behavior. [11] Prior calculation of the growth rate for the resistive global pressure-driven

modes also show an explicit dependence on the local parameter, DS (as well as the global

parameters). [12] Here, we have examined the growth rate and radial structure of global

modes, and find that they also display a transition from resistive to ideal instability as

beta increases. The growth rate for the m=1, k=1.8 mode is shown in Fig. B.5. The

triangles correspond to resistive modes (as judged from the radial structures), while the

boxes correspond to ideal modes. The mode is unstable at low beta values (less than

the Suydam limit) and transitions to ideal modes at high beta (several times the Suydam

limit). The radial structure for low and high DS values (Fig. B.6) shows the change from a

resistive to an ideal structure. These modes differ from the localized modes in their parity.

The global mode structure for the radial magnetic and velocity fields (Fig. B.7 a,b) show

tearing mode parity (Br even about the resonant surface, vr odd). The parity is opposite

for the localized interchange modes (Fig. B.7 c,d). The k spectrum of the growth rate of

all pressure-driven modes (Fig. B.8) illustrates the transition from tearing parity modes

(depicted by triangles) to interchange parity (boxes) as k increases. We also observe that

the growth rate for the global modes is about equal to that of the localized interchange.

The resistive-ideal transition of the localized modes is similar to that calculated for

the stellarator. [2] However, there are significant differences between the behavior of global

modes. In the currentless stellarator, the global, low-k modes have interchange parity and

do not display a transition to a distinct ideal structure. In contrast, for the current-carrying

plasmas examined here, modes with tearing parity are the most unstable and evolve from
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resistive to ideal at high beta.

In summary, motivated by the advance of present day experiments toward high beta

regimes, we have revisited the behavior of linear local and global resistive pressure-driven

MHD instabilities over a wide range of beta and resistivity (Lundquist number). We find

that the Suydam criterion is not very relevant, in agreement with earlier analytical calcula-

tion of ideal growth rates. The localized interchange is resistive (in growth rate and radial

structure) at beta values up to several times the Suydam limit, transitioning to an ideal

mode at extremely high beta. No sudden changes in growth rate occur at the Suydam limit.

This result may be consistent with the apparent absence of localized instability onset in

experiments operating at or above the Suydam (or Mercier) stability limit. [1] For the RFP,

we find that global pressure-driven modes (of tearing spatial parity) are equally unstable

and have a similar transition from resistive to ideal as beta increases. Since the localized

modes are more subject to stabilization mechanisms beyond MHD (such as finite Larmor

radius stabilization), the global modes will likely be more influential in the reversed field

pinches at high beta. In future studies we will examine the nonlinear behavior of these

instabilities.
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Figure B.1: Equilibrium magnetic field and pressure profiles (BZ , Bθ , p).
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Figure B.2: The growth rate, γτA, of the m=1, k=10.5 mode vs. DS . S = 106, θ0 = 1.6,

α = 4, δ = 3, p1 = 0.9 . The triangles are computational results corresponding to resistive

modes and the square boxes correspond to pure ideal modes. The solid line is the analytical

growth rate of ideal interchange modes. The transition from resistive to ideal interchange

modes occurs at high DS ∼ 1.0. The dashed vertical line is the Suydam limit.
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Figure B.3: Radial magnetic field magnitude vs. radius for a) DS = 0.23, γτA = 6.5× 10−3

, b) DS = 0.756, γτA = 3.3 × 10−2, c) DS = 0.95, γτA = 5.4 × 10−2 , d) DS = 1.72,

γτA = 0.35. For all cases S = 106, m=1, k=10.5.
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Figure B.4: Growth rate scaling of localized interchange mode m=1, k=10.5, with Lundquist

number S, for various values of DS . At low DS (< 0.25) this scaling is resistive and at high

DS (high β) is ideal.
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Figure B.5: Growth rate of low-k pressure driven mode, m=1 k=1.8 mode vs. β0. The

triangles denote resistive modes and the square boxes denote pure ideal modes. Some of

the points are computed at S = 104 (dashed curve), and while some are at S = 105 (solid

curve).

Figure B.6: Radial magnetic field Br vs. radius for global modes (m=1, k=1.8) at S = 105

for a) DS = 0.24, γτA = 3.4× 10−3 , b) DS = 1.3, γτA = 7.3× 10−2
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Figure B.7: Radial magnetic field (Br) and radial velocity (vr) eigenfunctions for global

kink (m=1, k=2) and localized interchange (m=1, k=45) modes in the ideal limit (S = 106,

DS = 0.9). a) Br for k=2, b) vr for k=2, c) Br for k=45, d) vr for k=45.

Figure B.8: Wave number spectrum of ideal pressure-driven modes at Ds ∼ 1.0, S = 106.

Triangles denote modes with a radial structure with tearing mode parity; boxes denote

interchange parity.
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