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Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches.

To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic

field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustain-

ment experiments were conducted where the two voltage oscillations were superimposed on the

standard MST power supplies. Supplementary current drive of about 10% has been demonstrated,

comparable to theoretical predictions. Maximum current drive does not coincide with maximum

helicity injection rate - possibly due to an observed dependence of core and edge tearing modes

on the relative phase of the oscillators. A dependence of wall interactions on phase was also ob-

served. Experiments were conducted at 280 and 530 Hz. 530 Hz yielded little or no net current

drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict

the performance of OFCD and to optimize the design of hardware. Predicted current drive was

comparable to experimental values, though the aforementioned phase dependence was not. Com-

parisons were also made with a more comprehensive 3D model which proved to be a more accurate

predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via

OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An en-

trainment of the natural sawtooth frequency to our applied oscillation was observed as well as a

slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the

ion temperature was also observed that can be partially accounted for by collisional heating via

magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

Stewart Prager
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ABSTRACT

Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches.

To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic
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ment experiments were conducted where the two voltage oscillations were superimposed on the

standard MST power supplies. Supplementary current drive of about 10% has been demonstrated,

comparable to theoretical predictions. Maximum current drive does not coincide with maximum

helicity injection rate - possibly due to an observed dependence of core and edge tearing modes

on the relative phase of the oscillators. A dependence of wall interactions on phase was also ob-

served. Experiments were conducted at 280 and 530 Hz. 530 Hz yielded little or no net current

drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict

the performance of OFCD and to optimize the design of hardware. Predicted current drive was

comparable to experimental values, though the aforementioned phase dependence was not. Com-

parisons were also made with a more comprehensive 3D model which proved to be a more accurate

predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via

OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An en-

trainment of the natural sawtooth frequency to our applied oscillation was observed as well as a

slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the

ion temperature was also observed that can be partially accounted for by collisional heating via

magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.
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Chapter 1

Introduction

1.1 Motivation

Like most toroidal plasma confinement schemes, the Reversed Field Pinch relies on induction

to provide the toroidal current, which in turn provides the poloidal magnetic field that aids con-

finement. A large magnetic flux, φ, is driven through the region that threads the center of the torus.

Growing with time it induces a toroidal loop voltage via Faraday’s law (φ̇ = −V ), which in turn

drives the toroidal current, which in turn provides the poloidal field. But the current that creates

the flux cannot ramp up forever, so eventually the flux stops growing, the toroidal electric field

and current die off, and the plasma is quenched. Transformers don’t work at DC. So a tractable

pulsed or steady-state current drive scheme is needed if the RFP is to become a viable candidate

in the quest for fusion. RF and neutral beam injection current drive may provide solutions but are

invasive, inefficient in reactor regimes, and expensive.

Bevir and Gray [3] first suggested that applying AC toroidal and poloidal loop voltages to the

plasma could overcome the natural resistive decay of helicity, an important geometric attribute of

the field lines. Helicity is a measure of the ’knottedness’ of the magnetic field lines within some

volume. Maintaining global helicity would, presumably, translate into maintaining the current in

the plasma. The result would thus provide a more-or-less steady-state solution. On the physics

end, the usual fields that maintain the RFP are static. Time varying magnetic fields, especially

fields that oscillate on a time scale between the extremes of Alfvenic propagation and resistive

dissipation, provide a new avenue for studying reconnection, transport, and the MHD dynamo in
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the RFP. The oscillating edge fields are expected to have a significant impact on the current profile

that drives tearing instabilities, pushing the dynamics of RFP plasma’s into unexplored territory.

1.2 Oscillating Field Current Drive

In Oscillating Field Current Drive(OFCD), also known as AC helicity injection, two oscillating

electric fields, one toroidal and one poloidal, are applied to the surface of the plasma. Together,

they drive a current in the edge with a significant DC component, altering the radial current profile.

The plasma responds to this imposed current gradient by exciting tearing fluctuations near the core

which feed an MHD dynamo (ṽ× B̃) that drives current in the core, thus redistributing the parallel

current from the edge to the core of the plasma. The long term hope is that this injected current

can take over as the power supply after the conventional power supply saturates.

Figure 1.1 shows a high level diagram of how OFCD is implemented on MST. Two high-power

audio-frequency oscillators are magnetically coupled to the toroidal and poloidal field circuits.

They are tuned to the same frequency. The phase difference between them is adjusted for maximum

current drive.

Bp
Power
Supply

Bt Oscillator

Power
Supply

Bt

I

Bp Oscillator

Figure 1.1 OFCD schematic
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1.3 History

OFCD was first proposed by Bevir and Gray [3] in 1981 as a means of overcoming the transient

nature of toroidal pinches. Theoretical and computational studies by Jensen and Chu[7] showed

that a consequence of injecting helicity (by any means) is the generation of parallel current. In 1984

Schoenberg[5] et al reported numerical studies supporting Bevir and Gray using a 0-D model.

Also reported was initial experimental data from the ZT-40 RFP but oscillating only one loop

voltage at a time. In 1984 Schoenberg et al [14] further described computational studies detailing

the nonlinear interactions between the toroidal and poloidal loop voltages and the ramifications

for OFCD. In 1985 Bevir[8] reported optimistic results of a 0-D RFP model and a 1-D resistive

diffusion model and even provided a prediction of the additional current drive assuming OFCD is

turned on after the usual starting voltage. In 1985 Bellan[9] disputed Bevir and Grays contention

that relaxation (described in chapter 2) was necessary for helicity injection but that it was necessary

for redistribution of the edge current to the core. Bellan argued that the helicity injection resulted

from a beating of a compressional Alfvén mode with a resistive diffusion mode in the edge. In 1986

Finn[11] reported still more optimistic results using a 1-D model assuming relaxation within the

plasma and a resistive decay of skin currents in the edge. Not to be outdone, Nebel[12] and crew

instilled even more theoretical confidence in OFCD by using six (count em six) different models

including a hyper-resistivity model that included the effects of tearing mode interactions. Finally,

inspired by the unending optimism of all these theorists, Schoenberg[14] et al tested OFCD with

real hardware in the ZT-40 RFP at Los Alamos. They met with mixed results. Some effects as

predicted by theory were experimentally verified. As much as 5% current drive was observed at

low power operation. But no positive current drive was observed at higher power levels, precluding

full sustainment by OFCD. This was probably due to wall interactions driving the resistivity up and

a frequency of applied oscillation that was too high. These are problems we hope to avoid on MST.

MST is better suited for OFCD experiments since the plasma is larger and hotter which translates

into lower required voltages. MST has the added advantage of being well instrumented in the

diagnostics most relevant to studying OFCD physics.
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OFCD is not the only way to inject helicity into a toroidal plasma. Any scheme that drives

current will inject helicity. In electrostatic helicity injection[16], the intersection of the magnetic

field and two electrodes is explicitly controlled so that B · n̂ #= 0 at the probes. The probes are

biased with a fixed potential, driving a current across the field lines. The obvious disadvantage

of electrostatic helicity injection is that hot particles will follow the field lines into the probes. A

variation of electrostatic heicity injection is coaxial helicity injection[17]. A small blob of plasma

with a spheromak-like magnetic field is fired into the plasma from a coaxial gun. The blob carries

its own field line knottedness adding to that of the torus. The entangled field lines of the blob

spread out and magically arrange themselves within the pre-injection toroidal plasma. The method

saw a brief surge of current after which the plasma cooled having merged with the relatively cooler

blob.

1.4 Summary of Experimental and Theoretical Results

Two audio frequency high-power oscillators were designed, built, and integrated into MST’s

toroidal and poloidal circuits. Each oscillator delivered up to about 2 MVA of reactive power

to satisfy the enormous power requirements of OFCD. In an effort to determine the optimum

frequency for current drive, experiments have been conducted at 530 and 280 Hz.

The toroidal field oscillator came online before the poloidal field oscillator so the first set of

experiments studied the plasma’s response to it. Since an oscillating toroidal field induces an oscil-

lating poloidal current these experiments came to be known as OPCD (Oscillating Poloidal Current

Drive). Control variables included oscillator amplitude, coupling coefficient between oscillator and

MST, and equilibrium plasma current and density. We found that as much as 30 kW of the avail-

able power was absorbed by the plasma, presumably to simple resistive dissipation. Interesting

effects observed in OPCD experiments include an entrainment of the sawtooth instabilities to the

applied oscillation, decoupled entrained bursts of core and edge fluctuations, and a substantial but

difficult-to-reproduce oscillation in the ion temperature. We also found that the plasma was far

from the relaxed state at 530 Hz. This ultimately led to experiments at the lower frequency.
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Once the poloidal field oscillator was brought online we again conducted experiments with

just this one oscillator running. Since an oscillating poloidal magnetic field yields an oscillat-

ing toroidal current these experiments came to be known as OTCD (Oscillating Toroidal Current

Drive.) Since the equilibrium poloidal field in an RFP is substantially larger than the toroidal field

our OTCD perturbation was much less significant than OPCD and we saw little discernable effect

on the plasma.

With both oscillators running we began OFCD experiments. Control variables included oscil-

lator amplitudes and relative phasing, equilibrium plasma current and density. We found effects on

the plasma fluctuations and instabilities were similar to those of OPCD. The most interesting effect

was that of the relative phase between the oscillators. According to theory, there is an optimum

phase (90◦) for helicity injection and, presumably, current drive. We measured the mean current

at this optimum phase (Drive) and 180◦ from it (Antidrive) and found that the difference was very

nearly the difference predicted by theory, offering a ray of hope that the plasma was at least to some

extent responding as expected. As far as current drive, at 530 Hz we saw no consistent increase

in the plasma current even at the optimum phase. In fact, OFCD appeared to actually decrease

the mean current from its equilibrium value. We suspect two confounding effects may be at play.

First, the F − Θ trajectory indicates that the oscillation rate is too high for the plasma to remain

in its usual nearly-relaxed state. Second, as with ZT-40, we are seeing a slight increase in plasma

impurities after the oscillation begins.

In the final set of experiments, in order to allow the plasma to strive to achieve the relaxed

minimum-energy state throughout the period of oscillation, the frequency of both oscillators was

decreased to 280 Hz. The control variables were the same as at 530 Hz. At the lower frequency

we saw oodles1 of current drive, easily maintaining a steady state RFP with no ohmic drive for

hours and hours. Fusion was readily achieved until the vacuum vessel melted. Actually, we saw as

much as 20kA of additional current drive on top of the nominal 255 kA. This was about what we

expected/hoped-for from theoretical studies.
1An industry term.
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As for those theoretical studies, two tools were employed not only to predict the plasma’s

behavior but to optimize the applied oscillation to maximize the current drive without upsetting

the plasma too much. One was the nonlinear 3D plasma simulation tool DEBS, an acronym whose

meaning no one seems to know. Studies by Ebrahimi[22] showed current drive and a plasma

response comparable to experimental results. They showed a phase dependent current drive and

a modification of the tearing instabilities. The other tool was a macroscopic relaxed state model

that presumed a current profile described by the alpha model (described later,) an energy balance

equation derived from Poynting’s theorem, and nothing else. The algorithm predicted current drive

also comparable to experimental results - remarkable for such a simplified model. The relaxed state

model was also employed in an effort to optimize the shape of the applied oscillation to maximize

current drive and minimize the modulation of the toroidal field at the wall. This effort met with

disappointing results due to the plasma’s persistent ability to filter any waveform down to a single

low frequency sine-wave.

1.5 Outline

In chapter 2 we briefly review the physics of the RFP that are most relevant to OFCD. We’ll

introduce the concepts of magnetic helicity and relaxation culminating in Taylor’s theorem. In

chapter 3 we discuss the physics of OFCD including one and three dimensional numerical studies.

In chapter 4 we describe the experimental setup including MST, the oscillators, and diagnostic

instruments used to study the plasma. In chapter 5 we discuss the experimental procedures and

results for various hardware configurations and plasma control variables. Chapter 6 wraps it up.
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Chapter 2

Review of magnetic helicity and relaxation

To understand the physics of OFCD we need to introduce some relevant plasma physics. In

section 2.1 we discuss the Reversed Field Pinch, the platform on which we will apply OFCD. This

leads to section 2.2 and the concept of magnetic helicity, a key geometric attribute of the magnetic

field lines in a toroidal pinch that plays a pivotal role in OFCD. Section 2.3 discusses Taylor’s

theorem which describes the ideal equilibrium state of toroidal pinches, an equilibrium we hope to

sustain (on average) with OFCD. Sections 2.5 through 2.8 describe the dynamics that lead to the

Taylor state.

2.1 The Reversed Field Pinch

Most toroidal pinch devices start with the same recipe. 1) Take a large hollow steel or alu-

minum torus and suck the air out of it. 2) Squirt in a little hydrogen or deuterium gas along with a

few loose electrons to start ionizing the gas. 3) Run a large poloidal current around the perimeter

of the vessel. In MST the vacuum vessel itself carries the poloidal current. This generates the

toroidal magnetic field. 4) Run a large toroidal current through the plasma, induced via trans-

former action. This toroidal current finishes ionizing the gas, heats the plasma, and generates the

poloidal magnetic field. The poloidal and toroidal components of the magnetic field combine to

create a corkscrew pattern characteristic of toroidal pinches and linear screw pinches. The field

lines arrange themselves on concentric toroidal surfaces called flux surfaces. Those flux surfaces

on which the field lines close on themselves are called rational surfaces since the ratio of the
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poloidal turns/toroidal turns for one field line is a rational number. Rational surfaces are especially

important for reasons explained later.

In a tokamak the toroidal field is far stronger than the poloidal field. In the RFP they are

comparable, the poloidal field being somewhat stronger over most of the plasma cross-section.

This eventually leads to the peculiar magnetic field configuration shown in figure 2.1. At some

radius (the reversal surface) the toroidal field spontaneously reverses direction giving the RFP its

name.

Figure 2.1 Magnetic field lines in an RFP

Taylor[2] explained this unexpected plasma state by starting with the postulate that a magneti-

cally confined plasma left to its own devices while in electrical contact with a perfectly conductive

boundary (the vessel) would ’relax’ to the state of lowest magnetic energy while conserving to-

tal magnetic helicity, a measure of flux linkage. Note that Taylor describes an equilibrium state.

Taylor’s theorem tells us nothing about how the plasma gets there.

In MHD, the dynamics required to achieve the Taylor state is driven by the MHD dynamo, to

be discussed in the section on the MHD Dynamo.
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2.2 Magnetic Helicity

Magnetic helicity is a measure of magnetic flux linkage. Imagine two ’tubes’ of magnetic flux

φ1 & φ2 linked as in figure 2.2. The magnetic helicity of this picture would be 2φ1φ2.

φ

φ

1

2

Figure 2.2 Linked tubes of magnetic flux

The formal definition of helicity is

K =

∫

A · B dV

where A is the magnetic vector potential, B is the magnetic field, and the integral is taken over the

volume of all space. For the example above, consider a section of one tube as in figure 2.3

K =

∫

A ·B dV =

∫ ∫

A · B da dl

Since B · da = dφ1 where da is the cross sectional area:

K =

∫ ∫

A dφ1 dl = φ1

∫

A · dl

= φ1

∫

∇× A · da

where
∫

da is the area encircled by tube 1 (thus intersected by tube 2)

K = 2φ1

∫

B · da = 2φ1φ2
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dl

Φ 1

da

Figure 2.3 Differential element of flux tube 1
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The 2 is thrown in to account for the volume integral over the other flux tube.

The toroidal current in a magnetically confined toroidal device is driven by transformer action.

A large magnetic flux is ramped up in an iron or air core that threads through the center of the torus

inducing a large toroidal electric field which drives a large toroidal current which provides a large

poloidal magnetic field. To maintain gauge invariance the linkage of this imposed flux and the net

toroidal flux have to be removed from our definition of K.

K =

∫

A · B dV − φTφext (2.1)

where φext is the flux that threads the central hole of the torus[6]. For a linear or toroidal pinch the

integral is taken over the entire volume of the plasma to yield the global magnetic helicity.

2.3 Taylor’s theorem and relaxation

For a pressure-free plasma in equilibrium the momentum equation

ρ
dv

dt
= J × B−∇p (2.2)

becomes just J × B = 0 implying J is everywhere parallel to B or, in terms of just B,

∇×B = ΛB (2.3)

where Λ is some scalar function of radius.

In 1974 Taylor[2] derived a minimum magnetic energy equilibrium for a pressure free linear

screw pinch in contact with a perfectly conducting boundary assuming a conservation of global

magnetic helicity, and conservation of toroidal flux. The result was a flat normalized current pro-

file1 Λ = J(r)/B(r) = constant and magnetic field profiles Bz = B0J0(µr) and Bθ = B0J1(µr)

where J0 and J1 are the zeroth and first order Bessel functions of the first kind. With the right

values of µ this equilibrium state has a peculiar property; the toroidal field reverses direction near

the edge.
1Reader beware. J/B is often erroneously referred to as the current profile. We may slip from time to time in this

thesis and call it that.
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Figure 2.4 The magnetic field profiles according to Taylor.
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2.4 Magnetic and Current Profile Models

The magnetic field profile of a plasma in the Taylor state is described by the Bessel Function

Model (BFM) (even though it is more a conclusion than a model.) The BFM profile is shown in

figure 2.4. The shape of the magnetic field profile in the BFM can be (and usually is) characterized

by the pinch parameter Θ = Bθ(r = a)/ < Bz >.

Taylor’s results describe a normalized current profile, J/B, that is flat across the radius. In

reality, the current profile cannot be flat. Since the plasma rests against a cool wall the resistivity is

so much higher at the edge that J/B at r=a must go to zero. Also, the parallel electric field, E‖, drops

below zero at the wall where the toroidal field is reversed. Also the electric field in any torus driven

by a central flux trails off with 1/R (or thereabouts) where R is the distance from the center of the

donut hole. So, for a variety of reasons the current profile is never flat. To coerce Taylor’s results

into accommodating reality, various models of either the magnetic field or the current profile have

been used in the past to account for this, including the Modified Bessel Function (MBFM)[4] which

assumes the current profile J/B is flat out to some point (typically r/a = .7) then drops linearly to

zero at the edge. Another is the Polynomial Function Model (PFM)[15] that smoothly drops to zero

at the edge and includes the effect of the pressure profile. Like the BFM, the PFM is characterized

by Θ (but at r=0.) Another is the less restrictive Modified Polynomial Function Model[19] that

does the same but is characterized by both Θ and the reversal parameter F = Bz(r = a)/ < Bz >

yielding a more accurate shape. Finally there is the alpha model that is characterized by the value

of λ0 = J/B on axis and a shape factor α. Figure 2.5 shows the sundry models using experimental

values for the characteristic parameters. The alpha model is the most fashionable model in MST

because it comes closest to reality and can be fitted exactly to the edge measured values of F and

Θ. It will be used throughout this thesis.

It bears emphasizing that the alpha model and company cannot really be placed on the same

plane as the Bessel Function Model. The BFM is a product of Taylor’s theory. The others are just

parameterizations of reality used for numerical studies and toroidal equilibrium reconstruction.
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Whatever model is used, the RFP equilibrium state can be completely characterized by the

two dimensionless parameters F and Θ. A curve in figure 3.18 of F vs Θ shows the locus of

points available to the RFP. Roughly speaking, F is proportional to the toroidal field, and hence

the poloidal current while Θ is proportional to the poloidal field, and hence the toroidal current.

So the relation between F and Θ represents a nonlinear coupling between the toroidal and poloidal

circuits of the RFP. We exploit this nonlinearity in OFCD.

It bears repeating that the Taylor state is an equilibrium state. The dynamics of getting there is

another question entirely.
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Figure 2.5 The various models of magnetic field profile. The black curves are the toroidal field vs
radius. The blue curves are the poloidal field.

2.5 Rational Surfaces, fluctuations, and instabilities

Every gradient in a magnetized plasma is a source of free energy. The gradient in the current

profile in the RFP drives waves that fluctuate both the plasma velocity v and the magnetic field,

distorting the flux surfaces. Because of the periodicity in the poloidal and toroidal directions and
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the boundaries in the radial direction, waves in any torus are of the form

f(r)ei(k·r)eiωt = f(r)ei(mθ+nφ)eiωt (2.4)

where k is the wave number, m and n are the poloidal and toroidal mode numbers, ω is either

their frequency of oscillation (Im(ω) = 0), growth rate Re(ω) = 0, Im(ω) > 0, or both. At the

rational flux surfaces, waves that propagate everywhere perpendicular to the equilibrium magnetic

field lines, with

k · B0 = 0 →
rBφ

RBθ
= −

m

n
(2.5)

can grow without bound causing all sorts of problems including increased transport. This is be-

cause, on a rational surface, there is none of the field line bending that would otherwise stabilize

any perturbation. Magnetic field lines have tension like a rubber band. Those modes that require

a lot of field line bending are more stable than those that don’t. Compounding that, magnetic re-

connection (described later) can occur at the rational surfaces. The ratio rBφ/RBθ is the safety

factor q(r). On a rational surface q(r) = m/n, hence the name. There are obviously a countably

infinite number of rational surfaces each with its own m/n fluctuations but modes beyond m = 1

are stable[28] and n values beyond about 32 are of such short wavelengths that they are suppressed

by viscous and resistive damping and magnetic field line bending (short wavelengths require more

bending.) Figure 2.6 shows a typical q profile for MST. Marked are the m=1 rational surfaces.

Take note of the crowding of the m=1 surfaces near the reversal (m=0) surface.

In MST, the first m = 1 flux surface is at n = 5, at about r=10 cm (though, as the plasma

profile evolves with time, q(0) < 1/5 more often so the n=6 mode is usually dominant.) In any

toroidal magnetized plasma, instabilities occur wherever q < 1. Unfortunately q < 1 everywhere

in the RFP. The shear of the plasma, the rate of change of adjacent field lines with r, is the slope

dq/dr. The steeper the shear the more difficult it is for instabilities to grow.

The fluctuations have components in all directions, but of particular interest are the radial

components

B̃r, ṽr ∼ ei(m θ+n φ)eiωt (2.6)
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Figure 2.6 A typical q profile in MST
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since the radial direction is exactly where we do not want the plasma to go. We will usually

approximate the torus as a periodic cylinder so that the toroidal angle φ = z/R.

Of the sundry fluctuations that can occur in an RFP the ones of most interest are the resistive

tearing modes. These are long wavelength modes that displace the entire plasma, have frequency

content up to tens of kilohertz due to toroidal rotation, and growth periods at a hybrid time scale

of √τRτA where τR is the resistive diffusion time and τA is the Alfvèn time. On a rational surface

they are resonant giving these surfaces the synonym, oddly enough, resonant surfaces.

2.6 MHD dynamo

Looking at Ohm’s law from the MHD equations

E + v × B = ηJ (2.7)

we see there are two terms driving current in the plasma, the applied electric field and the v × B

term. Dynamo action is prevalent in the RFP both as a means of approaching the relaxed state

and as an irritant driving transport. The dynamo is driven by fluctuations in v and B arising from

current-driven instabilities within the plasma and flow driven by the applied fields.

We can break v and B up into their equilibrium and fluctuating components:

v = V0 +
∑

m,n

ṽmn where ṽmn = |ṽmn|ei(mθ+nφ−wmnt) (2.8)

B = B0 +
∑

m,n

b̃mn where b̃mn = |b̃mn|ei(mθ+nφ−ωmnt) (2.9)

where V0 and B0 are the equilibrium values. The v× B term then becomes

v ×B = V0 × B0 +
∑

mn

[V0 × b̃mn + ṽmn ×B0] +
∑

mnm′n′

ṽmn × b̃m′n′ (2.10)

The spatial average of the second term is 0. Most important are the third terms where m = 1

(ṽ1n × b̃1n′ .) These make up the MHD dynamo that is essential to the plasmas effort to achieve

a relaxed state. As important as they are, the magnetic fluctuations b̃mn are only about 1% of the

equilibrium field strength. The need for the dynamo is illustrated in figure 2.7 which shows the
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parallel (to B0) time and magnetic surface averaged(¡¿) component of Ohm’s law

E‖ +
〈

ṽmn × b̃mn

〉

‖
= ηJ‖ (2.11)

E‖ is the applied parallel electric field, and J‖ is the net current driven. Note that they are not

equal. A third term is required to balance them. The balance is supplied by the MHD dynamo

ṽ × b̃.

2.7 Reconnection

In an ideal resistance-free plasma the magnetic field lines are frozen in the fluid. Any displace-

ment of the plasma carries the field lines with it. In this idealism there exists a singularity at a

resonant surface that can only be resolved by introducing at least a small resistivity to the plasma.

Picking a rational surface where the fluctuations are resonant and hence unstable, we look at the

effect of the growing radial component b̃r on the equilibrium field. Looking down at a horizontal

cut we first subtract the equilibrium helical field strength at the surface as shown in figure 2.8(a).

figure 2.8 (b) shows the beginning of the instability. In (c) the field lines on opposite sides of the

surface touch. Because of the resistivity in the plasma the field lines lose their identity and can

break. Because ∇ · B = 0 dictates that no field line can have a loose end flopping about, the lines

have to either break away and return to their original geometry or reconnect and form islands as in

(d). They form islands because that geometry has a lower magnetic field energy than the original

state. As a cheap analogy, imagine the field lines were stretched rubber bands. When they meet at

the separatrix, with a little glue, they lose their identity. Cutting them so that they can relax into

smaller circles would obviously reduce the net tension in the system compared to cutting them so

they end up as they were before they met.

Reconnection in the RFP is driven by the aforementioned tearing modes (hence the name.) In

MHD the modes are stationary (0 frequency). In the two-fluid model of plasma physics and in the

experiments, the modes are travelling waves and carry the islands with them. As the m=1 islands

grow and begin to interact their coupling ’locks’ them together so they all move at about the same

velocity; so the above picture works. This interaction is a major source of momentum transport.
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Figure 2.7 The MHD dynamo balances the difference in Ohms law by driving current in the edge
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Figure 2.8 Evolution of magnetic reconnection at a resonant surface.
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As the islands grow they eventually overlap. The island widths are

Wm,n =

√

16B̃rm,nrs

nBθ(rs)

1

‖dq/dr‖
(2.12)

where B̃rm,n is the (m,n) component of the radial magnetic fluctuation amplitude, rs is the radius

of the rational surface, and n is the toroidal mode number. The islands are shown superimposed in

the q profile in figure 2.9. Note that the island widths are smaller at higher n where they are almost

stabilized by the higher shear.
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Figure 2.9 The q profile with island widths at the resonant surfaces

2.8 Dynamics of RFP relaxation

When the islands overlap, the nice orderly flux surfaces between them are destroyed and the

magnetic field becomes stochastic as shown in figure 2.10. Note that while the higher shear might

render them more stable, overlap of the modes at higher values of the toroidal mode number n is

nevertheless unavoidable since the islands are packed so much closer together. In a typical plasma

the mid-region of MST is always stochastic.
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Figure 2.10 Puncture plot from DEBS simulation showing stochastic field after m=1 islands
overlap
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In MST, the overlap of the modes is accompanied by a violent reorganization. As they approach

each other the islands start to interact. The nonlinear coupling between the m=1 modes causes

them to combine creating new modes. For instance, an m = 1 n = 6 mode may beat against an

m = 1 n = 7 mode to create m = 0 n = 1, m = 0 n = 13, m = 2 n = 1, and m = 2 n = 13

modes. The m ≥ 2 modes and high values of n are small (at least they appear small at the edge)

leaving m = 0 n = 1 the dominant mode. A cascade of such interactions drives a burst of dynamo

activity in the m = 1 modes that in turn drives a burst of the normally stable(ish) m = 0 modes

at the m = 0 reversal surface. The result is an effort by the plasma (via the MHD dynamo) to

flatten the current profile to eliminate the free energy in the gradient that is driving instabilities

and to inject toroidal flux lost to resistive decay. The slow growth and violent decay of the mode

amplitudes is called a sawtooth. Figure 2.11 shows the evolution of a sawtooth as measured at the

edge.

Note the sudden increase in toroidal flux at the expense of poloidal flux. Figure 2.12 shows a

shot that is less common but more descriptive of the process.

To sum up, and because I have ink to kill: The RFP starts with well defined flux surfaces and

a current profile flat enough to stabilize the tearing modes (or at least it could if it just sprang into

existence at t = 0.) Due to resistive dissipation near the wall and a gradient in the driving electric

field, the current profile starts to peak with time, exciting the m = 1 tearing modes on the resonant

surfaces in the plasma. The toroidal flux also suffers resistive decay. The modes grow until they

overlap, at which point the flux surfaces are destroyed and the field lines become stochastic. Cur-

rent is driven via dynamo action in the edge by strong nonlinear interactions between the m = 1

modes exciting a burst of m = 0 modes and an injection of toroidal flux. As the current profile flat-

tens, the instabilities decay away and field lines fall into a more orderly arrangement. The process

repeats.
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Figure 2.11 Evolution of a sawtooth crash using measured data from MST. Top left:m = 1 mode
slowly grows before sawtooth. Top right:m = 0 mode is stable before sawtooth and gets kicked

by nonlinear interaction of m = 1 modes. Bottom left:toroidal flux decays before sawtooth
restores it. Bottom right:poloidal flux is sacrificed to feed toroidal flux restoration.
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Figure 2.12 Less common but more illustrative version of figure 2.11
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Chapter 3

The Physics and Modelling of OFCD

To gain some insight into the physics of OFCD and optimize the applied oscillations we ex-

plored the plasma’s response to OFCD with two models. The first is a simple 1D model that

assumes only energy balance and that a particular shape of the normalized current profile, J/B,

is maintained throughout each cycle of the applied oscillations. The assumed shape is described

by the α model mentioned in the previous chapter. The other was a more comprehensive model

that self-consistently solves the full 3D MHD equations in a cylinder. Both predicted about the

same amount of current drive so the emphasis here is on the simpler, faster 1D model. This model

was used to optimize the frequencies, amplitudes, phase difference, and waveform shapes of the

applied oscillations.

3.1 Helicity Injection

As mentioned in chapter 1, total global magnetic helicity plays a key role in the RFP and hence

in OFCD. Like anything else, magnetic helicity is subject to resistive decay. To sustain the RFP is

to sustain magnetic helicity (subject to the minimization of magnetic energy.) Reiterating:

K =

∫

A · B dV − ΦφΦθ (3.1)

where Φφ is the toroidal magnetic flux inside the plasma and Φθ is the poloidal magnetic flux that

threads through the center of the torus. To sustain an RFP requires some mechanism to overcome
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the resistive dissipation of K. If K is conserved dK/dt = 0.

∂K

∂t
=

∫
∂A

∂t
︸︷︷︸

−E

·B dV +

∫

A ·
∂B

∂t
︸︷︷︸

−∇×E

dV − Φφ
∂Φθ

∂t
︸︷︷︸

−vφ

−Φθ
∂Φφ

∂t
︸︷︷︸

−vθ

where we have applied the Coulomb gauge ∇·A = 0 and Faraday’s law. vφ and vθ are the toroidal

and poloidal loop voltages respectively. Rearranging,

∂K

∂t
= Φφvφ + Φθvθ −

∫

E · B dV −
∫

A · ∇ ×E dV

Using the vector identity ∇ · A × B = B · ∇ × A −A · ∇ × B

A · ∇ × E = E · ∇ ×A −∇ · (A× E) = E · B −∇ · (A × E)

leaving
∂K

∂t
= Φφvφ + Φθvθ − 2

∫

E · B dV −
∫

∇ · (A× E) dV
︸ ︷︷ ︸

R

(A×E)·dS

where we have used Stoke’s theorem to convert the volume integral into a surface integral. We’ll

now switch to a cylindrical approximation of the torus so the surface is that of the cylinder (not

including the caps) of radius a. The toroidal direction of the torus becomes the longitudinal direc-

tion of the cylinder z = R0φ, where R0 is the major radius of the torus. At the edge of the cylinder

(r=a) the area element dS = a dθ dz r̂. So (A × E) · r̂ = AθEz − AzEθ. By symmetry, nothing

varies with z or θ so we can safely rearrange the surface integral into,
∫ ∫

(A × E) · r̂ a dθ dz =

∫

Aθ a dθ
︸ ︷︷ ︸

Φz

∫

Ez dz
︸ ︷︷ ︸

vz

−
∫

Az dz
︸ ︷︷ ︸

Φθ

∫

Eθ a dθ
︸ ︷︷ ︸

vθ

Where we have used magnetic flux Φ =
∫

B · dS =
∫

∇ × A · dS =
∮

A · dl and loop voltage

v =
∫

E · dl. Bringing it all together

∂K

∂t
= 2vzΦz − 2

∫

E · BdV (3.2)

From the MHD Ohm’s law, E · B = ηJ · B , where η is the plasma resistivity.

∂K

∂t
= 2vzΦz − 2

∫

ηJ · BdV (3.3)
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So, when in equilibrium ∂K
∂t = 0 and,

vzΦz
︸︷︷︸

Helicity injection

=

∫

ηJ · BdV
︸ ︷︷ ︸

Resistive decay

(3.4)

3.2 Oscillating Field Current Drive

In normal operation, the toroidal loop voltage, vz, and flux, Φz, have static values until the

driving power supply saturates. But if each was a sinusoidal voltage (or any cyclic voltage) their

product would yield a time averaged constant value. The poloidal loop voltage is the time derivative

of the toroidal flux (a 90◦ phase shift). So two sinusoidal loop voltages 90◦ out of phase applied

to the plasma could offset the helicity lost to resistive decay, and, presumably, the parallel current

that goes with it. Consider,

vz = V1sin(ωt) vθ = V2sin(ωt + δ) (3.5)

Φz =

∫

vθdt =
V2

ω
cos(ωt + δ) (3.6)

yielding a time average helicity injection rate of
〈
∂Kinj

∂t

〉

=
V1V2

ω
sin(δ) (3.7)

So maximum helicity injection occurs if the phase between the oscillators is +90◦. Note also that

if the phase difference between the oscillators is −90◦ helicity will be subtracted from the plasma.

We’d expect the toroidal current will also be reduced.

Note that for fixed loop voltage amplitudes, the lower the frequency the more helicity we can

inject. Intuitively we expect there to be some frequency below which OFCD will work poorly or

stop working altogether. It will obviously stop working at DC because there’d be no ”O” in OFCD.

Very low frequencies would be no different than dialing the usual loop voltages up and down as in

normal operation, causing wide swings in the macroscopic parameters like F, Θ, and the toroidal

plasma current. So the period of oscillation τω should be shorter than the resistive diffusion time

τR or the L/R time constant of the entire plasma. These are the longest timescales governing the

settling time of the RFP. Likewise, if the frequency is too high we’d expect the plasma would not
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have time to respond (by respond I mean relax to a minimum energy state) and the currents would

remain within the skin depth at the edge. Compounding this would be the natural inductance of

the plasma suppressing any response at high frequencies. So the period of oscillation should be

longer than the relaxation time τH =
√
τRτA of the plasma (where τA is the Alfvèn time.) In the

numerical studies section, we’ll see that these and other effects imply some optimum frequency of

operation.

We have only considered the time average values of the plasma response. There is also a

sizable modulation on top of each plasma attribute, e.g. the toroidal current. We will go into the

consequences of that modulation later.

So far all we’ve shown is that helicity decay can be balanced to achieve what appears to be a

quasi-equilibrium state. It is presumed that injecting helicity will inject current. But all this says

nothing about the dynamics of OFCD and how we achieve this quasi-equilibrium state.

Figure 3.1 shows the bare essentials of OFCD. We can’t actually drive the loop voltages

throughout the plasma (especially the toroidal loop voltage) so we drive them at the edge, at the

gaps of the vacuum vessel. The applied electric fields in turn modulate the bulk flow, Vm=0,n=0 =

E00 × B00 of the plasma and the equilibrium magnetic field Bm=0,n=0. This drives a large scale

breathing dynamo V00 × B00 at the edge of the plasma, driving an edge current. The edge current

could soak into the plasma by resistive diffusion, but given the conductivity of the plasma that

process is too slow. Another mechanism will be required to get current into the core.

Figure 3.1 OFCD applies voltages at the edge of the plasma
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Recall figure 2.7 that showed the MHD dynamo balancing E and ηJ in Ohm’s law by driving

current in the edge. OFCD relies on a similar effect to get current into the core. The large current

in the edge peaks the current profile there (rather than at the core) flipping the current profile that

upsets normal RFP operation. Now the dynamo that once drove current in the edge at the expense

of the core is doing just the opposite. Figure 3.2 shows the expected current profile and dynamo

contribution during OFCD as predicted by 1D modeling.

Figure 3.2 Parallel Ohm’s law during OFCD sustainment. Dynamo drives current into core

3.3 Numerical Studies

Numerical models were employed to predict what to expect and to optimize the operating

parameters for OFCD. A simple 1D relaxed state model provided an expectation of time-averaged

current drive and incidental modulation of macroscopic parameters like the reversal parameter. It

also provided a platform for studying non-sinusoidal waveforms for OFCD. Results from a prior

study [23] using a fully nonlinear 3D model offered the same plus a more detailed look at the

dynamics of OFCD, including an expectation of the behavior of the m = 1 and m = 0 modes and

their efficacy in driving current in the core.
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3.3.1 The 1D model

MST can be viewed as a black box that takes power from the toroidal and poloidal field circuits

(applied at the gap), stores some of that energy, and dissipates the rest.

v
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field
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Poloidal
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power
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Figure 3.3 A macroscopic ’black box’ view of MST

Energy balance dictates:

∂W

∂t
︸︷︷︸

stored

= vziz + vθiθ
︸ ︷︷ ︸

injected

− PΩ
︸︷︷︸

dissipated

(3.8)

where W is the magnetic energy stored in the plasma (the thermal energy in MST is typically

about one tenth the magnetic energy, so we ignore it), vz(t) and vθ(t) are the voltages applied at

the insulated gaps in the conducting shell, iz and iθ are the currents that result, and PΩ is the power

dissipated in the plasma. It’s not obvious from figure 3.3 but iz is the toroidal plasma current. The

ohmic power loss is

PΩ =

∫

ηJ2
‖dV (3.9)

where η is the resistivity of the plasma and the integral is taken over the volume of the plasma.

The same equation can be derived by a laborious calculation using Poynting’s theorem. vφ is a

little hard to visualize as a gap voltage given it’s applied by induction. When we stretch the toroid

out into a cylinder the toroidal loop voltage vφ = vz can be thought of as being applied to caps at

either end of the cylinder. Lest we forget, the toroidal current iz is our desired response. We need

the time-averaged value 〈iz〉 > 0.

In the energy balance equation, the voltages are given but the remaining four quanitities come

from the plasma response. So a model of the plasma must be assumed. The α model described in
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chapter 2 will be used in a periodic cylinder. Added to that is a fixed parabolic pressure gradient.

From chapter 2 the magnetic field profile (+ the pressure term) is the solution to

∇×B = λB + B ×∇p/B2 (3.10)

Due to symmetry ∂
∂z = ∂

∂θ = 0. So B = Bθ(r)θ̂ + Bz(r)ẑ. The α model describes the current

profile J/B = λ(r) = λ0(1 − (r/a)α). From experiments it’s known that α is usually around 4

and λ0 hovers around 6 m. We can either fix α and let λ0 roam free or vice versa or even let both

α and λ0 vary in time. We’ll do each. Writing everything out in cylindrical coordinates, including

some needed auxiliary equations:

∂W

∂t
= vziz + vθiθ − PΩ (3.11)

∂Bz

∂r
= −λ(r, t)Bθ −

Bz

B2

∂p

∂r
(3.12)

∂Bθ

∂r
= λBz −

Bθ

r
−

Bθ

B2

∂p

∂r
(3.13)

iz =
2πaBθ(a)

µ0
(3.14)

iθ =
2πR0Bz(a)

µ0
(3.15)

PΩ =

∫

η(r)J2
‖dV (3.16)

J‖ =
λB

µ0
(3.17)

∂Φz

∂t
= −vθ (3.18)

W =

∫
B2

2µ0
dV (3.19)

The inputs to our model are α for the fixed α model or λ0 for the fixed λ0 model, the imposed

edge voltages vθ and vz, and the initial conditions taken from real data. The outputs include the

’toroidal’ and poloidal currents iz and iθ, the magnetic energy W and the ohmic dissipated power

P . To solve for Bz and Bθ requires two boundary conditions. Ideally we’d have the core value of
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both but we don’t know Bz(r = 0). What we do have is Bθ(r = 0) = 0, the toroidal flux Φz, and,

from the energy equation, W (after each time step.) The resistivity profile η(r) is taken from real

data and assumed fixed in time. It’s worth noting that the only assumptions in the 1D model are

energy balance and the α model profile. There is no mention of flow velocities or temperatures or

such.

So, starting with initial values taken from real data just before the real oscillators turn on, the

recipe for solving the fixed α model is

1. Advance W and Φz.

2. Using W and Φz find the field profile. For this an optimization routine was used to find the

best value of Bz(0) and λ0 (α for the fixed λ0 model) that yields W and Φz.

3. From the new field profile get new values of iz , iθ , and PΩ.

4. Repeat.

The differential equation solver was the improved Euler method1. It’s robust, easy to code, and

almost as fast as Runge-Kutta. For the fixed α and fixed λ0 versions, most of the calculations in

step 3 were bundled into a lookup table for speed.

The fixed α/variable λ0 is probably the most accurate approximation of Taylor-like relaxation

since the shape of the J/B profile stays constant, as it would in the true Taylor state. The variable

α/fixed λ0 is a better model of the effects of shallow current penetration since oscillations in the

shape factor α are most visible near the edge. Finally, we expect the variable α/variable λ0 to enjoy

the benefits of both effects and provide the most accurate depiction of real MST behavior. We’ll

examine each model and later compare the results with experimental findings.

3.3.1.1 Fixed α

We use our model by driving it with realistic parameters from current MST experiments where

OFCD is applied in addition to the normal loop voltages. This is partial sustainment. This allows
1also known as the predictor-corrector method
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a direct comparison with existing results before we start making predictions of full sustainment

where the background DC loop voltage is shut off and OFCD carries the day.

NOFCD Our standard case is a flattop (oscillators off) toroidal current of 255kA and DC toroidal

loop voltage of 26V. For brevity (and levity) we’ll call this the NOFCD mode. The α value used

was the average taken from real data over the duration of flat-top operation tweaked to ensure the

NOFCD simulation matched the real data. The resistivity was calculated from electron temperature

profiles measured by Thomson scattering experiments [24]. It too had to be tweaked to get the

right current but the result was still within the error bars on the original resistivity measurements

(so who’s to say we’re not right?) Table 3.3.1.1 shows the results of the NOFCD simulation and

experimental values for comparison.

Take note that in this discussion we’re treating the relaxed state model as a predictor of what to

expect and a tool for optimizing the experimental setup and to gain some insight into the plasma

behavior. We’re pretending the hardware has not been built yet and the tense taken here reflects

that. This is cheating somewhat because we know from experience the maximum voltages the

oscillators can apply to the gaps without blowing up any more frequently than they normally do.

Comparisons to experimental data will be made in chapter 5.

Partial sustainment Our reference firmly established, the virtual oscillators were turned on. Past

studies by Sprott [15] have predicted optimum current drive occurs when the ratio of the applied

gap voltages was between 8 and 10. Knowing in advance what our hardware can deliver we set

the voltages of the toroidal and poloidal oscillators to 98 and 13 volts respectively. The frequency

was set to 280Hz for starters (clairvoyance.) This yields a cycle average helicity injection rate

〈VθVΦ/ω〉 of .72 V Wb, which is about 28% of the DC injection rate. The increase in current is

less than the increase in K̇ because of the nonlinear relationship between K and Iz. The duration

of the simulation is longer than a real discharge to make sure the L/R time constant of the plasma

has been overcome.
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Value Model Actual

Toroidal current Iz 255 kA 250 kA

Magnetic energy W 80 kJ 73 kJ

Reversal parameter F -.33 -.37

Pinch parameter 1.67 1.76

Ohmic power PΩ 6.7 MW -

Toroidal flux 0.05 Wb 0.05 Wb

Toroidal field at wall -196 G -204 G

Shape factor α 3.65 -

J/B on axis λ0 6.4 A/Wb -

Helicity injection rate 1.3 V Wb -

Table 3.1 Results of NOFCD simulation with relaxed state model. Second column shows
experimental values.
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Figure 3.4 shows the results of two phase shifts of the oscillating gap voltages (±90◦), the

so-called drive and anti-drive phases. The dark lines are the cycle average values. The faint oscil-

lations superimposed on the cycle averages are the modulations that are an unavoidable byproduct

of OFCD. We usually emphasize the cycle average values because that’s what we care most about

and the relaxed state model is a pseudo-equilibrium model, so we have more faith in long term

averages than short time scale behavior. The graph shows current drive of 13 kA (+5.1%) and

antidrive of 14 kA (-5.5%). At the drive phase the modulation of the current is about 8%. Note that

the L/R time appears to be about 30 msec. This is important because we expect our real oscillators

will only run about 25 msec. So the values we see in the experiment may be smaller than their

potential values.

Theory (eqn 3.1) says the cycle average helicity injection goes with the sine of the phase dif-

ference between the oscillators. Presumably the current does the same. Figure 3.5 shows the

expected sinusoidal dependence. Drive and antidrive occur 180◦ out of phase as expected. The

slight distortion is probably an artifact of the optimizer or the coarseness of the lookup table used.

Figure 3.6 shows the normalized parallel current density (J‖/B) scale factor λ0 vs time. It’s no

surprise that the curve follows the toroidal current Iz so we are injecting parallel current.

Key parameters describing the RFP plasma are the reversal parameter,F, and pinch parameter,

Θ. Figure 3.7 shows both vs time for the maximum drive phase. Θ exhibits about a 13% mod-

ulation while F has a 68% modulation. The plasma very nearly comes out of reversal even with

such a small perturbation. This bodes not well for higher power solutions in MST. It means our

pinch might oscillate between being a very deep RFP and a crummy tokamak. 3D simulations say

otherwise. As the electron temperature of the plasma goes up, these modulations are lessened for

the full sustainment case. According to Taylor, being in the relaxed state, the F − Θ trajectory

should follow a nearly straight line during a cycle. Figure 3.8 shows that indeed it does.

Figure 3.9 shows the magnetic energy, W, stored in the plasma. About 11 kJ of additional en-

ergy is injected by OFCD accompanied by a 17% modulation. Figure 3.10 shows the ohmic power

dissipated by the plasma. About 1.1MW (16%) of additional power is dissipated accompanied by

a 21% modulation.
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Figure 3.4 The toroidal current for the drive and antidrive phases during 280 Hz partial
sustainment using the fixed α model. The upper curve is the drive phase and the lower the

antidrive phase.
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Figure 3.5 Current drive vs the phase difference between the oscillating voltages for 280 Hz
partial sustainment using the fixed α model.
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Figure 3.6 Normalized parallel current density λ0 during 280 Hz partial sustainment using the
fixed α model.
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Figure 3.7 The reversal and pinch parameters for the maximum drive phase during 280 Hz partial
sustainment using the fixed α-model.
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Figure 3.8 The F − Θ trajectory for maximum current drive phase during 280 Hz partial
sustainment using the fixed α-model.
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Figure 3.9 Magnetic energy W during 280 Hz partial sustainment using the fixed α -model.



40

0 10 20 30 40 50 60 70 80
5

6

7

8

9

10

msec

M
W

Figure 3.10 Ohmic power dissipation during 280 Hz partial sustainment using the fixed α -model.



41

With newfound confidence in our model we start applying it to the task of optimizing the

applied oscillations. We start first with the frequency, holding the oscillating voltage amplitudes

constant. Figure 3.11 shows the current drive vs frequency referenced to the nominal 255 kA. The

curve has a bandpass filter like shape. This is to be expected. The inductance of the relaxed plasma

is evident in the R/L rise times of time domain curves like figure 3.9. At high frequencies this

inductance combined with the 1/f dependence of the injection rate (eqn 3.7) suppresses everything,

and at DC there can be no induction so there must be a maximum somewhere in between. Also

plotted is the 1/f dependence of the helicity injection rate from chapter 2 (normalized to match

at 280 Hz.) At higher frequencies they almost exactly match. Maximum current drive of 38 kA

occurs at about 115 Hz. That’s nearly four times the current we expect at our test frequency of

280Hz. There is, however, a price to pay at that lower frequency. The modulation of both the

current and the reversal parameter rise rapidly below 250Hz. Figure 3.12 shows the modulation of

F vs frequency. A respectable mean value of F is about -0.3, so, to avoid coming out of reversal, the

lowest frequency we can use for partial sustainment at these voltages is about 280 Hz. We might

have to go to higher frequencies for full sustainment to avoid losing reversal. This will decrease

the efficiency of OFCD if not hinder it’s application altogether. In the experimental results we’ll

discuss experiments in partial sustainment OFCD where the plasma was intentionally allowed to

come out of reversal during part of the cycle.

Figure 3.13 shows the added (beyond the NOFCD value) ohmic power dissipated in the plasma

for these voltages vs frequency. It too rises rapidly below 250 Hz. The rise is likely due to the

increase in I2Rp loss (where Rp is the equivalent plasma resistance.) What’s peculiar about the

plot is that PΩ appears to rise without bound as the frequency approaches 0. We’d expect it to drop

to zero as Iz did. This inexplicable rise casts some doubt on the model.

So, for the voltages we expect our oscillators to apply to the edge of the plasma, it looks like

280 Hz is the best compromise between current drive, modulation of the reversal parameter, and

ohmic power dissipation.
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Figure 3.11 Current drive vs frequency for partial sustainment using the fixed α model.
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Figure 3.12 Modulation of reversal parameter vs frequency for partial sustainment using the fixed
α model.
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Figure 3.13 Ohmic power dissipation vs frequency for partial sustainment using the fixed α
model.
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We now look at the voltage amplitude ratio vz/vθ to see if lowering one of the voltages can

lower the modulation of F without compromising too much current. Figure 3.14 shows the mod-

ulation of the reversal parameter vs the ratio while holding the current to within 5% of our 13kA

maximum drive. Since the current was held constant, vθ had to be increased at lower ratios to

compensate for lower vz. Since vθ is the dominant contributor to the toroidal field at the edge, the

modulation rises rapidly at low ratios. It looks like anything above 7 will keep the plasma from

coming out of reversal.
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Figure 3.14 Modulation on F vs vz/vθ during 280 Hz partial sustainment in the fixed α model.

Now we consider the waveform itself. A sinusoid is the first waveform to come to mind when

talking about oscillations but with modern high power solid-state technology we can generate

almost any waveform we can get through the MST power supply circuits.

A Fourier series spread from 250 to 1000Hz was fed to an optimizer that adjusted the coef-

ficients for maximum current drive balanced equally with minimum modulation of the reversal

parameter F. A variety of waveforms was used as the starting point: sawteeth, exponentials, recti-

fied sinusoids, ... . The complete bestiary is shown in figure 3.15. But no matter what the starting

point was, the optimizer always whittled the Fourier series down to the lowest harmonic unless

the modulation of F was grossly overweighted. The reason is seen in figure 3.11. The frequency

response of the plasma is so steep that anything above a few hundred Hz is filtered out. Even
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bunching frequency components within the range 115 to 250 Hz resulted in one harmonic: at the

peak of the curve. So, after months of trying to find some excuse to justify dumping our current

oscillator design in favor of a programmable supply it looks like we’re stuck with sinusoids, at

least according to the 1D model. There are still good reasons to switch. The 1D model doesn’t

cover short timescale events so high frequency terms might have some favorable effect at least

in the edge. It also might be easier to build a nonsinusoidal high power source. Finally, the fre-

quency and phase can be much more easily changed with a programmable supply. They can even

be modulated within a discharge.
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Figure 3.15 Various waveforms used as the starting point in waveform optimization for 280 Hz
partial sustainment with the fixed α model.

So, for partial sustainment, the optimal parameters according to our relaxed state model are

280Hz sine waves with a +90◦ phase difference and ratio vz/vθ greater than 7.

3.3.1.2 Full sustainment

We now shut off the DC toroidal sustainment voltage, dial up our oscillator voltages, and see

if OFCD can sustain the toroidal current. Once again our control variables include the applied

oscillations amplitudes and frequencies and the shape factor α. The desired quantities are plasma

current, ohmic power dissapation, F, and Θ. We need to know the voltages required and just how
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much these larger voltages will upset the plasma. Of particular concern is whether the modulation

will push the plasma out of reversal.

Figure 3.16 shows the toroidal current for full sustainment. The DC toroidal loop voltage cuts

off at 15 msec leaving OFCD to sustain Iz. The initial ramp up is due to the presence of both. By

trial and error the oscillator voltages were scaled up until the time averaged current was held at

our NOFCD current, 255kA. Both voltages had to be scaled up by only a factor of 2.85 (16 MVA

reactive power) from their partial sustainment values to 280V on the poloidal gap and 37 V on the

toroidal gap. Three times the voltages means only nine times the helicity injection rate but yields

19 times the current drive. This is surprising and speaks to the nonlinearity of the plasma response

to OFCD. It’s also encouraging since the hardware for full sustainment shouldn’t be much more

difficult than our low power solution. The resulting current has a sizable 21% modulation. Note

that the L/R time of the plasma is vividly illustrated after the DC loop voltage cuts off.
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Figure 3.16 Fully sustained current drive during 280 Hz full sustainment using the fixed α model.
DC loop voltage cuts off at 15 msec.

Figure 3.17 shows the reversal and pinch parameters vs time. Unfortunately the plasma does

come out of reversal but only for about 20% of the cycle. It remains to be seen what effect this will

have on the plasma. In figure 3.8 the F −Θ trajectory still follows the requisite straight(ish) curve

during the oscillation.
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Figure 3.17 Reversal and pinch parameters during 280 Hz full sustainment using the fixed α
model.
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Figure 3.18 The F − Θ trajectory for during 280 Hz full sustainment using the fixed α model.
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Figures 3.19 and 3.20 show that the normalized current and magnetic energy also settle to their

NOFCD values. In Figure 3.21 the ohmic power settles to 400 kW more (1.5 MW) than its NOFCD

value.
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Figure 3.19 Normalized parallel current density λ0 predicted by the fixed α model during 280 Hz
full sustainment.

Our results are encouraging. According to the one-dimensional relaxed-state fixed-alpha model

full sustainment is possible for MST and requires only about 280 Volts on the poloidal gap and 37

Volts on the toroidal gap. If they’ll just stop blowing up, the ignitron based oscillators now in use

could be scaled up to these voltages.

3.3.1.3 Fixed λ0, variable α

We now fix the scale factor λ0 and let α roam free. As the two gap voltages oscillate in the real

plasma we expect intuitively that the plasma will ’breathe’ in and out so that the reversal surface

oscillates back and forth about it’s nominal position. We might also expect the core value of J/B

to not respond instantaneously to the applied voltages as they do in the fixed α model. In the

fixed α model the entire J/B profile oscillates because, after all, λ0 is a scale factor. So it’s worth

considering the case where λ0 is fixed and the shape factor α is allowed to oscillate. The same

algorithm was used for the fixed λ0 model as in the fixed α case. A lookup table was employed



49

0 8 16 24 32 40 48 56 64 72 80
0

20

40

60

80

100

120

140

160

180

200

msec

kJ

Figure 3.20 Magnetic energy W predicted by the fixed α model for 280 Hz full sustainment.
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Figure 3.21 Ohmic power dissipation predicted by the fixed α model for 280 Hz full sustainment .
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again to speed things up. The fixed value of λ0 was 6.4, the same as the initial value used in the

fixed α model.

Figure 3.22 shows the partial sustainment toroidal current vs time for the two different phases,

drive and antidrive. The results are nearly identical to the fixed α model. Figure 3.23 shows a full

phase scan which again is nearly identical to the phase scan of the fixed α model. There is one

small difference: the anti-drive phase subtracts a few kA more current from the nominal value.
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Figure 3.22 Toroidal current for drive and antidrive phasing predicted by the constant λ0 model
for 280 Hz partial sustainment

Figure 3.24 shows the α shape parameter oscillating in time for the drive phase during partial

sustainment. The cycle average value rises to about 4.2 with the same time constant of everything

else. The peak-to-peak excursion is about 2 which is comparable to the variation of α measured in

experiments (away from the sawteeth) though the α measured in experiments does not oscillate so

nicely, as seen in the ensemble averages in figure 3.25. The initial values for the fixed λ0 model

were the same as for the fixed α model. The initial value of α was 3.65 (estimated just before the

oscillators kick on.) It is interesting that the cycle-average value of α should rise to 4.1 rather than

just oscillate about its initial value. To add current is to flatten the current profile (since λ0 is fixed)

so α should increase. It’s always encouraging to see a simulation agree with intuition.
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Figure 3.23 Current drive vs phase for fixed λ0 model during 280 Hz partial sustainment
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Unfortunately, the fixed λ0 model failed miserably for full sustainment. The current dropped

like a stone after the DC voltage switched off. Many of the variables went off into the weeds and

eventually crashed the simulation. The reason is probably due to the sensitivity of the current to α

and λ0. The total current Iz very roughly goes with the area under the λ = J/B curve. With a little

calculus and using the average values for α and λ0 we see that the area is 3 times more sensitive to

λ0 than to α. This sensitivity was not a problem for the slight perturbations of partial sustainment,

but a more aggressive impact is necessary to drive full sustainment. What we learn from this is

that OFCD must do more than just modulate the flatness of the current profile.
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Figure 3.24 The α shape parameter vs time during 280 Hz partial sustainment using the fixed λ0

model. Rising α means a flattening J/B profile.

Figures 3.26 through 3.29 show the reversal and pinch parameters, magnetic energy, and power

lost to ohmic dissipation. They are each nearly identical to the results for the fixed α model. The

F −Θ trajectory in figure 3.27 shows a somewhat wider excursion than what we saw in figure 3.8.

Since the fixed λ0 model failed in full sustainment, we’ll eventualy concentrate on the fixed α

relaxed state model.
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Figure 3.25 Measured value of the α shape factor along with the toroidal and poloidal gap
voltages for 280 Hz OFCD.
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Figure 3.26 The reversal and pinch parameters predicted by the fixed λ0 model for 280 Hz partial
sustainment

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

theta

F

Figure 3.27 The F − Θ trajectory predicted by the fixed lambda0 model for 280 Hz partial
sustainment



55

0 10 20 30 40 50 60 70 80
60

66

72

78

84

90

96

102

108

114

120

msec

kJ

Figure 3.28 Magnetic energy vs time predicted by the fixed λ0 model for 280 Hz partial
sustainment
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Figure 3.29 Ohmic power dissipation predicted by the fixed λ0 model for 280 Hz partial
sustainment
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3.3.1.4 Variable α and λ0

Having seen somewhat similar behavior in both the fixed α and fixed λ0 models we are encour-

aged to let both λ0 and α roam free. The algorithm is pretty much the same as with the fixed α

and λ0 cases, but the optimizer that determines the best fit magnetic field profile now controls α as

well as λ0 and Bz(0), the toroidal field on axis. Since we have three unknowns now we need one

more constraint, namely the poloidal flux (from the time integral of the toroidal loop voltage.) For

the fixed α or fixed λ0 models we used a large lookup table rather than calculate everything on the

fly to speed things up. We could use another lookup table for this model but with 3 dimensions the

table would be huge and require a month to generate. So we calculate the magnetic field profiles

on the fly, and the model doesn’t run as fast. The model was not explored as extensively as the

fixed α model because of time constraints.

Partial sustainment: We start, as we did for the fixed α model, with partial sustainment. Figure

3.30 predicts a current drive of about 10 kA, less than predicted by the fixed α model and not as

steady. Narrowing the optimization criteria might smooth the curve out, but it would lengthen the

simulation time unacceptably.
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Figure 3.30 Toroidal current predicted by the free α and λ0 model for 280 Hz partial sustainment .
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Figure 3.31 shows the scale factor of the alpha model λ0 = J‖/B vs time. It unexpectedly

drops with time. But the toroidal current Iz in figure 3.30 is increased by OFCD so the shape

factor α must change with time to compensate. Figure 3.32 shows that α increases with time,

broadening the current profile. It is disturbing that these two quantities don’t settle down within

the L/R time scale of the plasma as everything did in the fixed α and fixed λ0 models. This casts

doubt on the validity of the model. It may be that the optimizer is just not fast enough. Further

studies are needed.
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Figure 3.31 Normalized parallel current density λ0 predicted by the free α and λ0 model for 280
Hz partial sustainment.

Figures 3.33 and 3.34 show that the evolution of the reversal and pinch parameter differ little

from the fixed α model.

Finally, the magnetic energy in figure 3.35 and ohmic power dissipation in 3.36 are comparable,

on average, to the fixed α model, if a bit bumpier. They are slightly smaller reflecting the lower

current drive in figure 3.30.

Full sustainment: Figures 3.37 through 3.43 show the results for full sustainment simulations.

Again the dc toroidal loop voltage cuts off at 15msec. The voltage amplitudes are the same as

for the fixed α full-sustainment case. The results are pretty much same as for the fixed α except
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Figure 3.32 Shape factor α predicted by the free α and λ0 model for 280 Hz partial sustainment .
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Figure 3.33 Reversal and pinch parameters predicted by the free α and λ0 model for 280 Hz
partial sustainment .
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Figure 3.34 The F − Θ trajectory predicted by the free α and λ0 model for 280 Hz partial
sustainment .
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Figure 3.35 Magnetic energy W predicted by the free α and λ0 model for 280 Hz partial
sustainment.
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Figure 3.36 Ohmic power dissipation predicted by the free α and λ0 model for 280 Hz partial
sustainment .



61

for the scale factor λ0 in figure 3.38 and the shape factor in figure 3.39. λ0 settles to a lower

value (6) compared to the fixed α case (6.3). The difference is not insignificant since the model is

particularly sensitive to λ0. Figure 3.39 shows that α appears to compensate for the lower value

of λ0 by settling to a higher value (4.6) compared to the fixed α value of 3.77. Higher values of

α mean a flatter current profile. All the other results (magnetic energy, F-Θ trajectory, etc) are

very nearly the same as for the fixed α model. Admittedly, the peculiar shape of the α vs time is

suspicious and calls into question the variable α , λ0 model, or at least the way I’m solving it.

Since the results of the fixed and variable α models are very nearly the same and because

the variable α model is so much more computationally expensive (4 hours vs 30 sec) any further

studies will be performed using the fixed α model.
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Figure 3.37 Fully sustained current drive as predicted by the free α and λ0 model. DC loop
voltage cuts off at 15 msec.

3.4 Summary

We discussed the physics and optimization of OFCD. With a little math we examine OFCD

from a helicity injection standpoint. From the math we find that, on average, helicity decay can be

overcome by oscillating the toroidal and poloidal loop voltages at the same frequency and the right

phase difference. We saw that the helicity injection rate has a sinusoidal dependence on the phase
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Figure 3.38 Normalized parallel current density λ0 predicted by the free α and λ0 model for 280
Hz full sustainment.
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Figure 3.39 Shape factor α predicted by the free α and λ0 model for 280 Hz full sustainment.
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Figure 3.40 Reversal and pinch parameters predicted by the free α and λ0 model for 280 Hz full
sustainment.
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Figure 3.41 The F − Θ trajectory predicted by the free α and λ0 model for 280 Hz full
sustainment.
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Figure 3.42 Magnetic energy W predicted by the free α and λ0 model for 280 Hz full sustainment
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Figure 3.43 Ohmic power dissipation predicted by the free α and λ0 model for 280 Hz full
sustainment.
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difference between the oscillating volages. We presume this will translate into current drive since

you can’t have one without the other.

With a 1D numerical model we make some assumptions about the current profile (namely, the

α model) and otherwise treat the whole problem as a big black box to which we apply two voltages

and examine the currents that result. We consider three dynamic versions of the α model. The first

is a relaxed state model where the shape parameter α is held constant and the scale factor λ0 is

allowed to vary in time. We examined current drive, effects on the reversal and pinch parameters,

ohmic power dissipation, and magnetic energy. For the case where the usual DC loop voltages

are present and OFCD is only a small perturbation (partial sustainment), this model predicted

additional current drive of about 5% for the hardware we have. The current drive exhibited the

sinusoidal dependence predicted by the math. Using this model we found that the optimum param-

eters for partial sustainment were a frequency of 280 Hz, an amplitude ratio of about 7 (measured

at the gaps), and a phase difference of 90◦. For full sustainment, the optimum values were the same

but the applied voltages were 3 times larger. One disconcerting feature of the full sustainment re-

sults is the prediction that the plasma will be driven out of reversal for part of the oscillation. The

effects of this can’t be predicted by our simple model.

The second dynamic version of the α model holds the scale factor λ0 constant and allows α

to vary, emulating the effect of an edge current. The results for partial sustainment were nearly

identical to the relaxed state model.

The third version allowed both α and λ0 to vary. The results were again nearly the same as

the relaxed state model for both partial and full sustainment, though some observed behavior of

the simulations were unsettling. The results from this third version are suspicious and worthy of

further study (by somebody else.)
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Chapter 4

Experimental Setup

The platform for our OFCD experiments is the Madison Symmetric Torus described briefly

in section 4.1. The two oscillators that provide the oscillating toroidal and poloidal loop voltages

are described in section 4.2. Section 4.3 describes the diagnostics native to MST that were used

to characterize OFCD’s performance and effects on the plasma. Due to power limitations of the

oscillator we were unable to try for full sustainment. The specifications of the oscillator reflect that

limit.

4.1 The Madison Symmetric Torus

MST is an unusual reversed field pinch because the toroidal winding is the vacuum vessel

itself, yielding very little magnetic field error. The vessel is made of 5cm thick aluminum and

serves as the conducting wall required by Taylor’s boundary conditions and to stabilize the ideal

kink. The poloidal loop voltage that creates the initial toroidal field is applied to a toroidal gap

on the inside perimeter of the vessel. The toroidal loop voltage is provided by induction from a

large 2 volt-second iron core threading the machine, giving it its transient nature. The vessel has a

poloidal gap allowing the toroidal electric field into the plasma. Both loop voltages are driven by

pulse transformers fed by a 4 story 5kV capacitor bank. A pulse length is typically about 60 msec

and the flattop lasts for about half that. The vacuum vessel has a soak in time of about 1 sec, so

the vessel confines the magnetic flux throughout the flattop portion of the shot. A crowbar power

supply is switched on after reversal to overcome the resistive loss of the toroidal field circuit.

The important parameters for MST are listed below.
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major radius R0 1.5 m

minor radius a .52 m

peak plasma current Ip 600kA

density 0.5 − 3 1013/cm3

β .1

4.2 The Ignitron Oscillator

For a first stab at OFCD we decided to try a low power partial sustainment system that would

add about 10kA to (or subtract from) the flattop current. This is obviously not nearly enough for

full sustainment but it would give us the opportunity to study the physics of OFCD and see if the

concept would work at all before committing to a high power solution.

So a simple cheap low power (if a million watts is your idea of low power) oscillator was

proposed using ordinary household ingredients. Two would be built, one for the poloidal and one

for the toroidal circuit. They were expected to produce about 1 MVA of power and could be slapped

together in maybe a year. Seven years later they still do not work consistently and have been an

endless source of irritation to the author. An idealized schematic of the oscillator is shown in fig

4.2. For the familiar reader, it looks kind of like a bistable multivibrator. The frequency is set by

the LC tank. Current is fed into a center tap of the inductor from a Pulse Forming Network (PFN.)

The switches commutate back and forth pulling the input current back and forth sustaining the

oscillation in the LC tank. Energy is coupled off the inductor and routed to MST. Each oscillator

is in series with some part of the MST power supplies.

A more realistic schematic of the circuit is shown in figure 4.3. The commutating switches

are ignitrons, a mercury-based switch that prefers to work at DC. The LC tank is broken by an

ignitron/diode combination so that the tank can be precharged to ensure the first cycle is at the full

voltage. Since the timing of the commutation is critical, a sample of the tank current is coupled off

with a Rogowski coil and used as feedback to the ignitron triggers.
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Figure 4.1 The Madison Symmetric Torus
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Figure 4.2 Idealized schematic of the ignitron oscillator
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Figure 4.3 Schematic of the ignitron oscillator version 12.something
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Given that one oscillator drives a poloidal current and the other drives the toroidal current they

are referred to as the Oscillating Poloidal Current Drive (OPCD) oscillator and the Oscillating

Toroidal Current Drive (OTCD) oscillator.

Figure 4.4 shows the OPCD oscillator. It is connected to the Bt circuit through the crowbar

supply. The LC tank is made up of the suitcase sized capacitors in the foreground and a transformer

made of garden hose sized cables wound on a wooden form in the background. The ignitron that

breaks the tank circuit (the connect ignitron) is mounted on a shelf above the transformer. Figure

4.5 shows the connect ignitron assembly. The D-size ignitron is accompanied by stacks of the

white hockey puck-size diodes seen in figure 4.5. The arrangement of diodes attempts to maintain

positive current flowing through the connect ignitron to keep it turned on. The diodes are connected

in series to reduce the voltage across each of them. Nevertheless we frequently kill these diodes

even though together they are rated for much higher voltages than we’ve measured at that point in

the oscillator. Their demise remains an unwelcome mystery.

Figure 4.6 shows the commutating ignitron assembly. The assembly now holds two A size

ignitrons but may be upgraded to larger devices if this design is scaled up for the next step in the

OFCD program. The stack of white hockeypucks next to each ignitron are the diodes in series

with each anode. The glass mica capacitors strung across the anodes of the ignitrons help snuff

out one ignitron when the other fires. Looking at figure 4.3 we see that when one oscillator turns

on the anode is suddenly pulled to ground (minus the voltage drop across the ignitron, which is

small.) The glass mica capacitors carry the jump to the other ignitron pulling the anode negative

(it was already near zero) thereby reverse biasing the device. Since ignitrons only conduct in one

direction (supposedly) the reverse bias snuffs that ignitron out. Half a cycle later the process is

mirrored to the other ignitron. So the commutating ignitrons not only pull the current from the

supply into the tank but in doing so they aid each others efforts to switch off when doing so. From

bitter experience we’ve found that they often conspire against each other to stay on.

Figure 4.7 shows the anode voltages of the two commutating ignitrons and the tank current of

the OPCD oscillator on a good day. The current plot is uncalibrated, so ignore the scale. The actual

amplitude is about 8 kA. Also ignore the start up transients at the beginning. Start at 19.3 msec.
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Figure 4.4 An actual photograph of an actual ignitron oscillator

Figure 4.5 The connecting ignitron assembly.
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Figure 4.6 The commutating ignitron assembly.
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Ignitron 1 has just turned on so the anode voltage holds at zero. Ignitron 2 just turned off so it starts

to fall. As the anode voltage of ignitron 2 nears completion of its half cycle a threshold detector

senses that the voltage is about to cross zero and fires a trigger into that ignitron, turning it on and

clamping the anode to zero. This sends a pulse (visible at 21 msec) through the mica capacitors to

ignitron1 reverse biasing it momentarily and turning it off. The situation is then mirrored for the

other half of the cycle. The result is the clean sinusoidal tank current shown in the bottom plot.

Note that the threshold detector in this plot is firing a bit early in each half cycle.
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Figure 4.7 Anode voltages of the commutating ignitrons and the tank current.

In reality either ignitron is often happy to conduct current in the wrong direction. The result,

at best, is a commutation failure as seen in figure 4.8. The plot shows the anode voltages for the

two commutating ignitrons in the OPCD oscillator. There are two commutation failures, one at

25.5 and one at 32.5 msec. To see what’s happening, start at 24.5 msec. Ignitron 1 has just turned

off and ignitron 2 has just turned on. The anode voltage on ignitron 1 starts to fall, but halfway

through its half cycle ignitron 1 breaks down and turns on, clamping the anode to zero. The mica

capacitors connecting the anodes thus carry a large pulse across to ignitron 2, turning it off. The

cycle has been disrupted. In the next cycle the oscillator recovers until another failure at 32.5

msec. Each time a cycle is disrupted the current dips and the phase of the whole waveform is

shifted. Sometimes an ignitron will just stay on and drain the PFN while the tank rings down.
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Why the commutation failures occur has not been concretely determined. One possibility is

mercury collecting on the anodes. Heating the anodes helped, but not much. We’ve seen more

improvement by cooling the cathodes, which are usually encased in ice. The biggest improvement

in avoiding reversed current came by putting diodes in series with the ignitrons. This helped a

great deal but we frequently kill the diodes (which fail shorted,) nullifying the improvement. Why

the diodes die is a mystery. It takes a large voltage spike to kill one of these diodes and we can find

no voltages in our system that come close to what it takes to kill an entire stack. Heftier diodes are

now in place and are dying less frequently.

Another source of aggravation has been the connect ignitron. It is supposed to stay on once the

oscillation begins, but will sometimes switch off and stay off, bringing the oscillation to a grinding

halt. Or it will switch on and off intermittently either distorting the waveform with sharp transients

or triggering a commutation failure.
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Figure 4.8 The anode voltages of the commutating ignitrons during a failure

Ignitrons are mercury based thyristors that were never meant to be switched on and off while

current is still flowing through them. But they are cheap and can move an enormous amount

of current with very little loss. They work great as long as you trigger them only once, run a

unidirectional current through them, and wait till the current runs out. A schematic of an ignitron

is shown in fig 4.9a. The cathode is a pool of mercury. A voltage is applied to the anode and a
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pulse is fired into the ignitor. The ignitor causes a small arc that establishes a cathode spot on the

mercury. Electrons are boiled off the mercury and hit the anode as with any vacuum tube.
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Figure 4.9 (a) The ignitron switch. (b) one of many tricks employed to make them behave.

Like any thyristor the ignitron is supposed to conduct current in only one direction. But with

enough reversed voltage they can, unfortunately, be pursuaded to carry reverse current. Shown in

fig 4.9b is one of the more clever tricks devised by Paul Nonn to coax the commutating ignitrons to

switch off when the current is reversed. Small horseshoe magnets create a large magnetic gradient

across a cross section of the ignitron. The electron beam is deflected by the J×B force one way or

the other depending on the direction of current flow. When current is flowing in the right direction

it is deflected into the region of weaker magnetic field so the path is only slightly diverted. But

when current is flowing in the wrong direction the beam is deflected into the region of stronger field

where it will eventually hit the wall and be quenched. It helped. But the biggest improvement in

the reliability of the oscillators was still the diodes in series with the commutating ignitron anodes

and the diode arrangement at the feedpoint that almost ensured positive current was always flowing

through the connect ignitron.

After 7 years and all this, one of our not-so-cheap and not-so-quick oscillators works very

consistently and delivers twice as much power as expected for about 30 msec. The other still has a

failure rate of about 50%, primarily due to the connect ignitron switching off in mid-cycle.
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Another problem is the frequency and relative phase of the two oscillators. 1D modeling says

they should be 90◦ out of phase for maximum current drive. We set the phase difference by firing

one oscillator before the other. Unfortunately the resonant frequency of each LC tank changes as

the load on the secondary changes as a function of time. So the frequencies and/or relative phases

of the oscillators can drift a lot during the shot as shown in figure 4.10. Tuning the oscillator

frequency is laborious. The only practical way is to change the inductance in the LC tank by

adding windings or adjusting the spacing between the windings. Either can take hours but it only

has to be done once (hopefully.) There is little that can be done about the phase drift without

sacrificing power coupling. The drift is not consistent so we rely on statistics to give us enough

good shots to do ensemble averaging.

Figure 4.10 Drift in the relative phase of the oscillators

One of those rare occasions where both oscillators are working is shown in 4.11 at the gaps.

Other designs The ignitron oscillator has been a long time coming and is still not quite working

properly. One of the two oscillators still has a failure rate of nearly 50%. It may be that ignitrons

were the wrong device for this application. Or it may be that ”OFCD” is a satanic incantation in

some dead language or we built the damn things over an ancient indian burial ground. For future

experiments it is worth knowing that other designs do exist. The HIT-SI[26] device at University of

Washington uses an H-Bridge programmable power supply as shown in figure 4.12 to power their
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Figure 4.11 The toroidal and poloidal gap voltages during a good OFCD shot
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device. The device uses Insulated Gate Bipolar Transistors as switches and pulse width modulation

to make a 500kW arbitrary waveform generator with a bandwidth of about 1kHz. The design is so

robust the HIT crowd simply bolts the outputs together to run them in parallel for higher power. A

lower power version of this supply is already in use in the field error correction system of MST[27].

The H-Bridge can produce a waveform of any shape that will fit within its bandwidth (about 1

kHz). If OFCD is condemned to sinusoids the H-Bridge would at least allow the frequency to be

easily adjusted and even chirped during the discharge to accommodate slowly changing plasma

conditions. There are plans in place to replace the Bt power supply with a programmable supply

perhaps using a collection of H-bridges. The design may accomodate sinusoidal perturbations at

OFCD frequencies. Someday the Bp power supply might be replaced as well, but that is a much

more expensive and long term venture.

I = 1/L   V dt

Can get arbitrary
waveforms by pulse
width modulation of
ganged switches.

Switches are
IGBT s.

Limited to
about 1 MVA.

load

Vsupply

Figure 4.12 H Bridge programmable power supply

4.3 Diagnostics

We here briefly review the diagnostic tools used to gather the data seen in chapter 5.

4.3.1 Edge magnetic probes

To measure the magnetic fluctuations in the plasma, small coils are arrayed around the toroidal

and poloidal direction inside the vacuum vessel as shown in figure 4.13. The diagnostic relies on
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the fact that the radial fluctuations in B are global, so they can be measured at the edge of the

plasma. Each package contains 3 coils, one each for the toroidal, poloidal, and radial directions.

Since a coil only measures Ḃ, each is fed to an integrator. Sampling the fluctuations in the toroidal

(or poloidal) direction is like sampling a waveform in time. You need more than 2 points per cycle

(wavelength) to reconstruct the waveform. There are 32 coils that sample the poloidal component

of the fluctuation. There are 64 that sample the toroidal component. So we can examine the spectra

of the m=0 and m=1 fluctuations up to n=32 with a discrete Fourier transform (DFT.)

Figure 4.13 Artistic cutaway section of MST shows Ḃ coils arrayed in toroidal and poloidal
directions

4.3.2 Rutherford Scattering

In days of yore, Rutherford scattering was used to measure properties of the nucleus by firing

light ions, usually α particles, at a thin foil and measuring the distribution of scattered particles.

The scattering was caused by simple Coulomb repulsion between the two ions. In plasma ex-

periments like MST, Rutherford scattering measures the deuterium ion temperatures by firing a

monoenergetic beam of neutral helium atoms into the plasma and measuring the broadening of the

energy spectrum of particles scattered only a few degrees from the beam.[20] The signals are noisy

and require large ensemble averages to shrink the error bars .
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4.3.3 FarInfraRed interferometer

FIR, or Far Infrared, refers to light with wavelengths between 1 and 10 mm. The FIR system

provides a radial profile of the electron density, plasma current density, and magnetic field. The

FIR system has 2 modes of operation: interferometry and polarimetry.

A plasma has a refractive index that depends on the electron density. The FIR system sends

one laser beam through the plasma (the probe beam), one through the air (the reference beam), and

measures the phase difference between them. The measured phase difference is proportional to the

average plasma electron density along the beam path. In MST, the FIR folks send multiple probe

beams through the plasma at different radii. They then apply an inversion technique to obtain a

profile of the plasma electron density.

When a linearly polarized electromagnetic wave is propagating parallel (or anti-parallel) to the

magnetic field in a plasma, the polarization of the wave exiting the plasma will rotate by a small

angle called the Faraday rotation angle. The FIR system measures the Faraday rotation, which is

proportional to the line average of the electron density times the magnetic field component parallel

to the beam path. The combined interferometer phases and Faraday rotation angles can then be

combined to determine the poloidal magnetic field distribution. Using Ampere’s law, the toroidal

plasma current can be determined as well.

4.3.4 Thomson scattering

Thomson scattering is the result of a collision between a photon and a charged particle, such as

an electron in the plasma. When an electron and photon collide the electron feels a Lorentz force

from the oscillating electric and magnetic fields of the photon and is accelerated. This acceleration

causes the electron to emit a different photon in a different direction. This emitted photon has a

wavelength shifted from that of the incident photon by an amount dependent on the electron energy.

This scattering of a photon by an electron is called Thomson scattering. Since the wavelength of

the scattered photon depends on the energy of the scattering electron, Thomson scattering is good

way to measure the energy of an electron. This is done by creating a photon of known wavelength

and measuring the wavelength of the scattered photon. The wavelength distribution of the scattered



81

photons tells us the energy distribution of the electrons in the plasma, giving us a direct unobtrusive

way of getting the temperature of the electrons. The amount of photons we actually collect can

also tell us something about the electron density of the plasma.

4.3.5 CHERS/IDS

Ion Doppler Spectroscopy (IDS) measures emissions from impurity ions. Emissions from

electron-impurity ion recombination are Doppler broadened by the thermal motion of the ion.

Measuring that broadening and relying on fast equilibration between the impurity and deuterium

ions yields a rough measure of the bulk ion temperature. In Charge Exchange Emission Recombi-

nations Spectroscopy (CHERS) the effect is enhanced by injection of energetic hydrogen neutrals.

4.3.6 Edge probe

A triple-tip Langmuir probe was employed to measure the stability of the m=0 mode. To

understand what the probe measurement mean, we first need to do a little math. Take the curl of

Ohms law (assuming constant resistivity),

∇×E + ∇× v ×B = η∇× J (4.1)

Apply Faradays law on the first term, Amperes law on the third term, and rearrange:

∂B

∂t
= ∇× v ×B −

1

µ0
η∇×∇× B (4.2)

using the vector identity ∇×∇× B = ∇(∇ · B) −∇2B and the fact that ∇ · B = 0

∂B

∂t
= ∇× v × B −

1

µ0
η∇2

B (4.3)

dot the whole thing with B, use a little calculus:

B ·
∂B

∂t
=

1

2

∂B2

∂t
(4.4)

Recall the magnetic energy density is W = B2

2µ0
. So we have an equation for the rate of change

of magnetic energy density
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∂W

∂t
=

1

µ0
∇× v × B ·B +

η

µ2
o

∇2
B ·B (4.5)

The last term is negligible so we’ll drop it. Linearizing the rest, dropping high order terms we are

left with an equation for the rate of change of energy in the m=0,n=1 mode.

∂W01

∂t
= µ0∇× v01 × B00 · B00 (4.6)

The tips of the probe measure the velocity, and a small Bdot coil on the probe measures the local

magnetic field. By measuring the rate of change of the magnetic energy we can determine if the

m=0 mode is linearly stable[25]. The signal from the probe is noisy so a lot of shots are required

to complete a decent ensemble averaged waveform.



83

Chapter 5

The Experiments

The effect of each oscillator was studied seperately before applying both. So there are three

sets of experiments described herein. In Oscillating Poloidal Current Drive (OPCD), only the

oscillator that drives the poloidal edge voltage was turned on. The ensuing poloidal current creates

an oscillating axisymmetric toroidal magnetic field at the edge Bz00. Also, the poloidal electric

field is nearly parallel to the magnetic field at the edge so we expect to have a significant impact

on the parallel current in the plasma, at least at the edge. But since only one oscillator is running,

we expect it (at least on an intuitive level) to have little or no net additional current drive.

In Oscillating Toroidal Current Drive (OTCD), only the oscillator that drives the toroidal edge

voltage was turned on. The combination of this oscillating toroidal electric field and the equi-

librium poloidal magnetic field should yield an oscillating radial velocity V00 = Ez00 × Bθ/B2
θ ,

pinching the plasma in and out. The toroidal electric field is nearly perpendicular to the edge

magnetic field so we expect little contribution to the parallel current when acting alone. As with

OPCD, since only one oscillator is on we expect to have no net effect on anything.

Finally, in OFCD, both oscillators were turned on. The combination of the two effects above

Vr00 × Bθ00 should drive a current in the edge of the plasma. The dynamics of relaxation should

transfer this edge current into the core. Results for each case will be compared to the values when

the oscillators are off (NOFCD.)

We found a lot of unexpected behavior for each, including synchronization of the sawteeth,

decoupling of m = 0 and m = 1 modes, an enormous but fickle modulation of the core ion

temperature, a slow periodic modulation of the m = 0 modes, and significant current drive, some

aspects of which did not conform to expectations.
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The experiments started out at 530 Hz and about 10 V peak-to-peak toroidal loop voltage and

64 V peak-to-peak poloidal loop voltage. As described in the following sections, we found that 530

Hz was too fast for OFCD and the frequency was lowered to 280 Hz and the oscillator amplitudes

increased to about 20 and 200 V at the gaps. We’ll discuss results for both frequencies but the

emphasis will be on the 280 Hz case since it yielded better results and we have studied it more

closely.

5.1 OPCD

In Oscillating Poloidal Current Drive (OPCD) only the poloidal edge voltage oscillator is

turned on. Figure 5.1 shows the gap voltages for 280 Hz OPCD. The peak-to-peak amplitude

on the toroidal gap is about 20 V. Most noticeable in this plot is the entrainment of the sawteeth to

our applied oscillation. More on this later.
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Figure 5.1 The gap voltages measured at the toroidal (top) and poloidal (bottom) gaps during 280
Hz OPCD.

Figure 5.2 shows Bz(r = a), the toroidal magnetic field at the wall (Btw). Since OPCD

drives a poloidal current at the edge it’s no surprise that, at least at the edge, it has a greater effect

on the toroidal field than on the poloidal component. Even at these relatively small amplitudes,
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Btw is modulated nearly 100%. The plasma is very nearly brought out of reversal. Figure 5.3

shows F, the reversal parameter (F = Bz(wall)/ < Bz >), and Θ, the pinch parameter (Θ =

Bθ(wall)/ < Bz >.) Again we see F nearly crosses zero into unwanted territory for an RFP. The

pinch parameter is less affected since the poloidal component of B is less affected. This could be a

problem in higher power experiments. When the plasma comes out of reversal it looks more like a

weak tokamak than an RFP. Later we’ll see how this brief ’unreversal’ will affect the stability and

current drive in MST.
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Figure 5.2 The toroidal field at the wall during 280 Hz OPCD. Thick curve is cycle average.

Figure 5.4 shows the F − Θ trajectory over several cycles. Also plotted is the theoretical

curve from the α-model (the thick black line that’s barely visible.) We can see that the measured

trajectory pretty closely follows theory. The major excursions are caused by sawteeth. This is good

news since it means we’re not perturbing the plasma so much that it cannot remain in it’s usual

pseudo-relaxed(ish) state. For comparison look at the F −Θ trajectory for 530 Hz OPCD in figure

5.5. The blobbish trajectory was a good indication that the frequency was too high for the plasma

to remain in a relaxed(ish) state throughout a cycle.

Contrary to our intuition and 1D modeling, 3D numerical studies [23] say OPCD should drive a

slight increase in the cycle averaged axial current due to a reduction of helicity dissipation. Figure
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Figure 5.3 The reversal and pinch parameters during 280 Hz OPCD.
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Figure 5.4 The F − Θ trajectory during 280 Hz OPCD. Dark line is ideal trajectory from the α
model with α = 4.
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Figure 5.5 The F − Θ trajectory during 530 Hz OPCD. Dark line is ideal trajectory from the α
model with α = 4.



88

5.6 shows the cycle averaged plasma current for a large ensemble of OPCD shots. Also shown

is the current for NOFCD with the same plasma conditions. No such increase is observed. On

the contrary, the current is actually decreased. This might be due to increased wall interactions

dumping impurities into the plasma driving up the resistivity. Figure 5.7 shows the six impurities

measured by MST’s monochromater array. They show an increase of the mean value of between

14% (Carbon V) to 100% (Boron IV). Several show the distinct signature of our applied oscilla-

tion. Increased wall interactions might prove to be a problem for full sustainment. It is one of

the problems that hindered the ZT-40 OFCD experiment. If the impurities are at fault, then it’s

impossible to say for sure whether OPCD would drive a current in the plasma.
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Figure 5.6 Plasma current during and without 280 Hz OPCD.

5.1.1 Sawtooth Entrainment

We start by looking at the most obvious effect OPCD has on the plasma. Recall that a sawtooth

event is accompanied by a jump in the toroidal flux and hence, thanks to Faraday, a jump in the

poloidal loop voltage at the edge. So the voltage across the toroidal gap (which breaks the poloidal

loop) is a good place to watch for sawteeth. Figure 5.8 shows Vtg during a single NOFCD shot.

The sawteeth are placed semi-randomly. There is, on average, a natural sawtooth period that scales

with the resistivity of the plasma. For 250 kA (our usual nominal plasma current) discharges this
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Figure 5.7 Impurity measurements from monochromater array. Black lines are with 280 Hz
OPCD oscillator on. Blue lines are with oscillator off.
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period is a few msec. Whatever the semiperiodic nature of the spacing between them, a sawtooth

can occur anywhere.
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Figure 5.8 The toroidal gap voltage without any applied oscillation.

Now we turn on the OPCD oscillator. Figure 5.9 shows Vtg during 280 Hz OPCD where

the nominal current is about 250 kA. We can clearly see that the sawteeth are entrained in lock

step with our applied oscillation. The reason for the entrainment is simple. Recall that the tearing

instabilities behind sawteeth are driven by the current gradient/q-profile. A steep profile excites the

plasma while a flat profile calms it. Consider the upper and lower halves of one cycle of OPCD.

During the lower half of the cycle, current is being injected into the edge flattening the current

profile just as the Pulsed Poloidal Current Drive (PPCD) experiment does. Flattening the current

profile (and hence the q profile) calms the plasma by separating the resonant surfaces. We call this

the PPCD half of the cycle. During the other half cycle we are driving negative current into the

plasma edge, decreasing it there and hence peaking the profile. Doing so excites a sawtooth event.

We call this the anti-PPCD phase for obvious reasons.

By dialing up the nominal current to 475 kA we increase ohmic heating of the plasma which

increases the temperature which decreases the plasma resistance which increases the natural saw-

tooth period. Figure 5.10 shows Vtg for this high current case. We can see that the sawteeth are
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entrained to about every other cycle. So it looks like the plasma is trying to maintain it’s natural

sawtooth period subject to the phase of the applied oscillation.
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Figure 5.9 Toroidal gap voltage during 280 Hz OPCD. Iz = 250 kA

The picture is the same at 530 Hz. In figure 5.13 we see Vtg during 530 Hz OPCD with a

nominal current of 350 kA. The natural sawtooth frequency at this current is about 4 msec. The

period of our oscillator is 2 msec. As expected the sawteeth occur at about every other cycle. So

again the sawteeth more or less maintain their natural period but are regulated by the phase of the

oscillator.

As our edge current injection oscillates between the PPCD and anti-PPCD phases we believe

the current profile should be flattening and peaking. Recall that a sawtooth marks a violent flatten-

ing of the current profile. The shape factor α from the α-model is a good ’measure’ of the flatness

of the current profile. Large α means a flatter profile. Small α means the profile is peaked. We

’measure’ α by fitting the α-model to edge measurements. Figure 5.11 shows a typical evolution

of the α parameter during a standard (NOFCD) 250 kA discharge. We see that the profile slowly

and smoothly becomes peaked until it hits some threshold (around 2) and a sawtooth is born, flat-

tening the profile and calming the plasma. Now look at figure 5.12. This is the α parameter during
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Figure 5.10 Toroidal gap voltage during 280 Hz OPCD. Iz = 475 kA
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OPCD. An enormous modulation of α is evident. The sawteeth are the narrow spikes between

the large lumps (we’ll discuss those lumps later.) We can see that when α drops below about 3, a

sawtooth is triggered, although the threshold is harder to spot since shot averaging smears things

out. Smeared or not, we can still see that a sawtooth is triggered when the profile becomes too

peaked, with or without OPCD. Also shown in that plot is the scale factor, λ0. Recall from the

discussion of the α model that λ0 is the normalized current density J/B at the core. Since OPCD

drives poloidal current and the core field is toroidal OPCD has little effect on λ0. We’ll compare

this later to OTCD. For now, we take comfort in knowing at least some things behave as expected

during OPCD.
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Figure 5.11 The shape factor α vs time during a standard 250 kA discharge.

5.1.2 Mode Spectra

We now examine the peculiar effects OPCD has on the mode spectra. For comparison, the

modulation of the mode spectra predicted by the 3D model is shown in figure 5.14. The dominant

core mode in MST is m = 1,n = 5. Out of necessity, the 3D model assumed a larger aspect

ratio so the dominant toroidal mode is m = 1,n = 4. The damn curves are plotted on a log scale
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Figure 5.12 The scale factor λ0 and shape factor α vs time during 280 Hz 250 kA OPCD
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Figure 5.13 Toroidal gap voltage during 530 Hz OPCD. Iz = 350 kA
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using normalized variables that were hard to cast into reality but they clearly show a sinusoidal

modulation on, for instance, the m = 0,n = 1 mode, of 2 orders of magnitude synchronized with

the applied oscillation. The mean level of the m = 0 mode also appears to drop about one order

of magnitude when the oscillator kicks on. One disturbing feature of this plot is that, prior to the

oscillation (the ’NOFCD’ region), the average value of the m = 1 modes are about ten times larger

than the m = 0 modes. In MST, the m = 1 modes are typically four times smaller than the m = 0

modes.

5.1.2.1 280 Hz

We start our study of the mode spectra at 280 Hz, our preferred frequency. Figure 5.15 shows

ensemble averages of the m=0 and m=1 modes vs time. There is a visible modulation of the m=1

modes and an enormous modulation of the m=0 modes. Of particular interest are the normally

quiet regions between sawteeth. In NOFCD discharges this region is quiet because the relaxation

event of the previous sawtooth has flattened the current profile and calmed the plasma. With OPCD

there is this enormous bubble of m=0 activity accompanied by a lesser degree of m=1 activity. The

figure is a large ensemble average. Many shots showed immeasurable m=1 activity during the

bubble. This was unexpected because it is normally the m=1 modes beating together that drives

the m=0 mode. The bubbles are usually larger than the sawteeth. We are somehow exciting m=0

modes, possibly by creating a larger current gradient in the edge than expected. We have no current

profile measurements during OPCD to confirm this.

Figures 5.16 and 5.17 show the n (the toroidal mode number) spectra for the m=0 and m=1

modes. The m=1 spectral distribution is not unlike the NOFCD spectra. The modulation is most

prominent at lower n. The m=0 spectral distribution appears to be pretty flat (across n, not time),

implying the mode is localized toroidally. The vertical spikes are error bars, not noise.

5.1.2.2 m=0 bubbles

To better understand what’s happening to the m=0 mode during OPCD a high-frequency triple-

tip Langmuir probe was inserted a few centimeters into the plasma to see if the m = 0 mode is
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Figure 5.15 The m=0 and m=1 mode amplitudes during 280 Hz OPCD. The plots are ensemble
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Figure 5.16 The m=1 mode n-spectra during 280 Hz OPCD.
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Figure 5.17 The m=0 mode n-spectra during 280 Hz OPCD.
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linearly unstable during the bubbles. Repeatability is easy since the sawteeth always occur at the

same time due to entrainment. Figure 5.18 shows the ensemble averaged result during one cycle of

280 Hz OPCD ending in a sawtooth. The top plot clearly shows the m = 0 bubble unaccompanied

by m = 1 activity. The lower plot shows our ∂W01

∂t term. The data is still noisy so the error bars

are large, but it appears that ∂W01

∂t > 0 during the bubble so the m = 0 mode is growing and

hence linearly unstable. Nipple. The results are remarkable. In usual operation the m = 0 mode

is linearly stable. Even during a sawtooth, when the m = 0 mode is created by the interaction of

m=1,n=whatever modes, m = 0 is still linearly stable and dies off as the m = 1 modes calm down.

It appears that the poloidal current we drive in the edge has become the source for the m = 0 mode

energy. It may be that we are driving so much current in the edge that the gradient has reversed

and is strong enough across the m = 0 resonant surface to drive it unstable. It’s easy to make this

claim because it’s hard to verify. The FIR data we have near the edge is inadequate to make any

definitive claim about the current gradient.

As we’ll see later the m=0 bubbles occur in both OTCD and OFCD but are not nearly as strong

as in OPCD. Figure 5.19 shows a single 280 Hz OFCD shot. Both oscillators are on, but the

OTCD oscillator suffers a failure early in the shot and rings down with a time constant of a few

msec while the OPCD oscillator continues unabated. As the OTCD oscillator decays we see the

m = 0 bubbles growing with each cycle. The presence of the OTCD oscillator seems to spoil the

effect by stabilizing the mode.

5.1.2.3 530 Hz

At 530 Hz something peculiar occurs; between sawteeth, the patterns of m=1 and m=0 modes

nearly reverse. Figure 5.20 shows a large ensemble average of the m=0 and m=1 mode amplitudes

during 350 kA 530 Hz OPCD. The shots were chosen so that the entrained sawteeth fall on the

same cycle in each shot. The first 3 sawteeth are at 16.2, 20.1, and 25 msec. In between we see

bubbles of m=1 activity largely unaccompanied by m=0 activity. This is an even more bizarre

result than the mode behavior at 280 Hz. Intuitively we expect 530 Hz to have even less effect

than the lower 280 Hz since the skin depth is less and the plasma has less time to respond to the
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Figure 5.18 Triple tip Langmuir and Ḃ probe indicates m=0 mode may be unstable during bubble
and definitely is during sawtooth.
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Figure 5.19 As the Bp oscillator ramps down the m=0 bubbles show up.
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perturbation (tosc < τH where τH is the hybrid time.) But the m=1 mode amplitude shows an

unmistakable 530 Hz modulation. The triple tip probe used in 280 Hz OPCD was not available

when we were running at 530 Hz, so we have little chance of studying this phenomenon further

until programmable power supplies replace the ignitron oscillator 1.
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Figure 5.20 The m=0 and m=1 mode amplitudes during 530 Hz OPCD.

Figures 5.21 and 5.22 show the n spectra for the m = 0 and m = 1 modes. The distribution of

energy amongst the m = 1 modes is not unlike it is in NOFCD. The 530 Hz modulation is visible

up to n = 10. The modulation is also visible in the m = 0 spectrum. And again it is fairly flat.

5.1.3 Anomalous Ion Heating

One of the most intriguing effects we’ve observed in OPCD has been a large but hard to re-

produce modulation of the deuterium ion temperature. Figure 5.23 shows three occasions where

the modulation appeared. Each occured during a 530 Hz, 350 kA OPCD discharge. Each plot

is an ensemble average of data taken by the Rutherford Scattering system about 16 cm from the

magnetic axis. The temperature swing on the first occasion is about 80 eV. There has been only
1another hint to the powers that be.
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Figure 5.21 The m = 1 mode n-spectra during 530 Hz OPCD.
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Figure 5.22 The m = 0 mode n-spectra during 530 Hz OPCD.
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one attempt to find the OPCD modulation of Ti during 280 Hz OFCD. The diagnostic showed no

modulation that day.

One possible explanation for the temperature swing is collisional heating via magnetic pump-

ing, a combination of adiabatic compression/decompression and collisional equilibration. If the

magnetic field in a plasma is slowly increased a gyrating particle will attempt to maintain it’s mag-

netic moment µ = U⊥/B where the perpendicular kinetic energy U⊥ = 1
2mv2

⊥. The only way to

do so is to increase the gyration velocity v⊥. If the particle were alone that would be it. As the field

decreased (decompression) U⊥ would relax to it’s original value and no net heating would occur.

But if collisions occur during compression, the perpendicular energy (with 2 degrees of freedom)

will equilibrate with the parallel kinetic energy (with one degree of freedom) changing µ. Upon

decompression µ is again conserved to a new value at the original magnetic field, keeping in mind

that U‖ is not subject to the conservation of µ. The transfer of energy from U⊥ to U‖ during com-

pression yields a cycle average increase in temperature as long as the period of oscillation is much

longer than the collision frequency. In MST the collision frequencies are νei , 100kHz for the

electron-ion collisions and νii , 1kHz for ion-ion collisions. The governing equations are given

by Berger, et al [1].

dU⊥

dt
= (

1

B

dB

dt
−

ν

2
)U⊥ + νU‖ (5.1)

dU‖

dt
=

ν

2
U⊥ − νU‖ (5.2)

Where B = B0 + B1sin(ωt) and U⊥

2 + U‖ = kT0. Relaxed state modelling of OPCD shows

that the field at r=16 cm is mostly toroidal and oscillates 160 Gauss (B1) about a nominal value

of 2377 Gauss (B0.) Measurements show kT0 = 200eV at the start of the oscillation. Solving the

above equations (for any collision rate ¿ 1kHz) numerically shows a temperature swing of 20 eV,

which is comparable to at least some of the observations. But for days that saw temperature swings

of 80 eV other dynamics must be at play.
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You’d think such a large effect would be easy to reproduce. It isn’t. We’ve taken about a dozen

ensemble sets over the last 6 years. It may be large and consistent on one day and absent 24 hours

later. The effect appears in about half of the runs.

One corroborating diagnostic for ion temperature is the Ion Doppler Spectroscopy (IDS) system

which measures the temperature of impurity ions. The impurity ion temperature should equilibrate

with the bulk ions so a modulation on one should show up on the other. Of the few days we

had both IDS and Rutherford scattering diagnostics both running we saw no modulation of the

impurity temperature. We have confidence that both are working since they give the right values

immediately before the oscillator kicks on.

We’ve tried to find anything, anything at all that coincides with the appearance of the ion tem-

perature modulation. Figure 5.24 shows the results of that effort. Each cluster of bars corresponds

to some diagnostic. Each bar represents a run day. The first 5 bars (hopefully green) are those days

for which the ion temperature oscillation appeared. The last 4 are days when it did not. The height

of each bar is the amplitude of either the mean value or the appropriate frequency component (280

Hz or 530 Hz) (from an FFT) of that signal. The amplitudes are normalized by the amplitude

observed on the first day we saw the modulation. For each diagnostic, if the ’on’ bars are all high

and the ’off’ bars are all low then we can say there’s a good correlation between whatever that di-

agnostic measures and our ion temperature modulation. No such luck. The closest contender is the

appropriate frequency component of the pyrometer measurement. The pyrometer is just another

gross measure of the temperature.

In a normal MST discharge (NOFCD) it is common to see the ion temperature jump during a

sawtooth. The effect is at least consistent but, as in OPCD, the mechanism remains unexplained.

Future studies of OPCD should shed light on whatever is heating the ions during a sawtooth.
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Figure 5.23 Ion temperature measurements for 3 different occasions.Temperature swing varies
from 20 to 80 eV
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Figure 5.24 Nothing strongly correlates with the presence of Ti oscillation.
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5.2 OTCD

In Oscillating Toroidal Current Drive (OTCD) only the toroidal edge loop voltage is oscillating.

The magnetic field at the wall is mostly poloidal, so we don’t expect to have a large effect on

the parallel current profile. Then again, the applied oscillation is 10 times larger than the OPCD

oscillation. Figure 5.25 shows the gap voltages for OTCD at 280 Hz with a nominal plasma current

of 230 kA. The peak-peak amplitude on the poloidal gap is about 200 V. Looking at the toroidal gap

voltage it appears the sawteeth are still at least somewhat entrained but less consistently than they

were during OPCD and they usually appear in pairs. There also appears to be a slight oscillation

on the toroidal gap voltage. The oscillating voltage on the poloidal gap is so large that, while the

electric field is almost perpendicular to the magnetic field at the edge, there is still a small toroidal

component. Apparently, it is enough to cause a small oscillating poloidal loop voltage as seen at

the toroidal gap and to modulate the parallel current profile enough to create a weak OPCD-like

entrainment of the sawteeth. The picture is different at 530 Hz as seen in figure 5.26. The peak-

to-peak voltage is only about 70 Volts, less than half the amplitude at 280 Hz. If you look closely

(and at a lot of shots) you can see that the sawteeth are well entrained to every other cycle. This

is surprising since the higher frequency and lower voltage should have less impact on the current

profile.

One unresolved concern the author holds is the effect of the wall on the radial displacement

caused by the OTCD oscillator. Recall that the toroidal electric field crosses with the equilibrium

poloidal magnetic field at the edge yielding a radial displacement velocity Vr00 = Ez00 × Bθ/B2
θ .

For our experimental parameters this amounts to a few tens of meters per second. For an oscillation

period of a few milliseconds this translates to a radial displacement of a few centimeters back and

forth. The gap between the wall and the plasma is only about one centimeter so we’re bound to

hit the wall during one half of the cycle. Unresolved is the effect this asymmetric velocity will

have on OFCD performance when both oscillators are turned on. Another concern is whether this

plasma-wall interaction will knock impurities off the wall and into our plasma.
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Figure 5.25 The gap voltages measured at the toroidal (top) and poloidal (bottom) gaps during
280 Hz OTCD.
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Figure 5.26 The gap voltages measured at the toroidal (top) and poloidal (bottom) gaps during
530 Hz OTCD.
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Figure 5.27 shows the poloidal magnetic field at the wall. Since the NOFCD value of the

poloidal field at the wall is so large to start with, the effect of OTCD is not as profound as the

effect OPCD had on the toroidal field at the wall. This is reflected in the oscillation of the pinch

parameter, Θ in figure 5.28
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Figure 5.27 The poloidal field at the wall during 280 Hz OTCD.

The F −Θ trajectory in figure 5.29 does not come even close to following the theoretical curve.

We shouldn’t be too alarmed by this because the trajectory is still small since, again, the magnetic

field at the wall is mostly poloidal. So we’re only oscillating the small toroidal component of the

parallel current density. So the trajectory should be nearly perpendicular to the OPCD trajectory

as it appears to be (ish).

Since the OTCD edge current is nearly perpendicular to the edge magnetic field, the current

that is induced should remain in the edge. An oscillating edge only current, cast in terms of the α

model, implies the shape factor α should oscillate (which would shift the F − Θ trajectory back

and forth) while the λ0 = J(0)/B(0) factor should be less affected since it describes the current

in the core. Figure 5.30 shows both during 280 Hz 250 kA OTCD. α does indeed oscillate but no

more that it did during OPCD. What’s most surprising is the effect on λ0. Extrapolating around the
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Figure 5.28 The reversal and pinch parameters during 280 Hz OTCD.
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Figure 5.29 The F - Θ trajectory during 280 Hz OTCD. Also plotted is the ideal trajectory from
the α-model with α = 4.
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sawteeth, λ0 shows a pretty clear sinusoidal modulation. The magnetic field at the core is toroidal

and λ0 is the normalized current density at the core. This implies the oscillating electric field is

rapidly penetrating into the core. This is encouraging since we’ll need OFCD edge current to get

into the core for the method to be viable.
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Figure 5.30 The scale factor λ0 and shape factor α vs time during 280 Hz 250 kA OTCD

5.2.1 Mode Spectra

Because OTCD attempts to drive a current perpendicular to the magnetic field in the edge, we

might not expect to have much effect on the m=0 and m=1 modes.

5.2.1.1 280 Hz

To study the effects of OTCD on the m=0 and m=1 modes we begin again at our preferred

frequency. Figures 5.31 and 5.32 show the m=0 and m=1 mode amplitudes during 280 Hz OTCD

with a nominal plasma current of 200kA. We see a familiar pattern between the sawteeth in the

m=0 waveform. There are two lumps that look a lot like the m=0 bubbles we saw in OPCD. This

is a large ensemble average. Take my word for it, the first bubble is just the second sawtooth of
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each cycle that we saw in figure 5.25. But the second appears to be the same phenomenon we saw

during OPCD. This is likely due to the small toroidal component of the magnetic field at the edge.

The OTCD voltage is so large that even though the toroidal field at the wall is small there is enough

to yield a small OPCD effect. The n spectra of the m=0 and m=1 modes are shown in figures 5.32

and 5.33. The sawtooth doublets are more apparent but otherwise the distribution of energy is

nothing unexpected. I only include it in case someone asks ”but what about the n-spectra?” and to

kill some ink.
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Figure 5.31 The m=0 and m=1 mode amplitudes during 280 Hz OTCD.

5.2.1.2 m=0 bubbles

We immersed our triple-tip probe a few centimeters into the plasma again to characterize the

instabilities of the m=0, n=1 mode during the m=0 bubble. Unfortunately the effect is so small and

grows so slowly that the probe yielded no results.
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Figure 5.32 The m=1 mode n-spectra during 280 Hz OTCD.
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Figure 5.33 The m=0 mode n-spectra during 280 Hz OTCD.
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5.2.1.3 530 Hz

At the higher frequency, the m=0 and m=1 modes behave more like a standard discharge as

we’d expect them to. Figure 5.34 shows that the m=0 term jumps in sync with the m=1 mode

so it looks like the m=0 mode is driven by coupling of the m=1 modes as nature intended. No

m=0 bubbles appear. Nor do the m=1 bubbles that we saw during 530 Hz OPCD appear. But this

unexpected lack of unexpected behavior may be due to the fact that, at 530 Hz, the OTCD voltage

was less than half of what it was at 280 Hz. The n-spectra of each is blissfully uninteresting as

well, as seen in figures 5.35 and 5.36.

5.3 OFCD

Finally, we get to what this experiment is really about, OFCD. Does it drive current? Will the

wall interactions that tormented ZT-40 do the same to us? How do the bizarre behaviors seen in

OPCD and OTCD combine when both oscillators are turned on?

We’ll answer the most important question up front. Does partial sustainment OFCD drive

current? The short answer is yes. But the behavior and possibly the very mechanism are not what

we expected.

5.3.1 280 Hz

Figure 5.37 shows the gap voltages during 280 Hz OFCD with a nominal plasma current of

about 250 kA. The OTCD and OPCD peak-peak voltage swings are 200V and 24V respectively,

about the same as in the OPCD and OTCD experiments. From the toroidal gap voltage we can see

that the sawteeth are still entrained.

The toroidal and poloidal fields at the wall are shown in figure 5.38. The oscillation of each

is about what we saw in the OPCD and OTCD experiments. Figure 5.39 shows the reversal and

pinch parameters are each modulated together as they were separately. So far so good.
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Figure 5.34 The m=0 and m=1 mode amplitudes during 530 Hz OTCD.
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Figure 5.35 The m=1 mode n-spectra during 530 Hz OTCD.
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Figure 5.36 The m=0 mode n-spectra during 530 Hz OTCD.
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Figure 5.37 The gap voltages measured at the toroidal (top) and poloidal (bottom) gaps during
280 Hz OFCD.
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the cycle average.
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Figure 5.40 shows the very important F − Θ trajectory. While not as close to the theoretical

perfectly relaxed curve as we saw in OPCD the excursion is still small enough that we can say the

plasma is not much further from the pseudo-relaxed state of NOFCD.
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Figure 5.40 The F − Θ trajectory during 280 Hz OFCD. The dark line is the theoretical
trajectory predicted by the α-model for α = 4.

MSTFIT is a software package that finds an equilibrium profile that satisfies the Grad-Shrafonov

equation (read a book) that fits the output of most of the MST diagnostics, including the FIR. One

product of MSTFIT is λ(r, t) = µ0J‖/B, the normalized current profile. An accurate prediction

of λ is important to OFCD since it (and the boundary conditions) fully describe the equilibrium

magnetic field of a relaxed plasma. If we’re to have any faith in any other predictions, the λ profile

predicted by modeling must be a good match to experimental data. The λ profile (normalized by

a) predicted by the 3D model is shown in figure 5.41 for 2 points in a cycle. t1 corresponds to

the point that helicity ejection is maximum (vz at minimum.) t2 corresponds to maximum helicity

injection(vθ at minimum.) It should be noted that the 3D simulation was performed at a slightly

higher frequency than the experimental value. The λ profile from MSTFIT using nearly every

diagnostic on MST is shown in figure 5.42. The match is not very good. Fishing for possible

excuses, the experimental λ profile is not a raw measurement. It’s a fit to an equation that makes
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a lot of assumptions about the plasma. MSTFIT assumes a plasma in equilibrium, which is never

really true in MST. Of course, the 3D model has it’s own set of assumptions, including a cylindrical

geometry and a lower resistivity than is observed. It also assumes a static resistivity profile and

does not take into account a host of realities like transport. It’s just a question of which model is

less presumptive. MSTFIT at least starts with real measurements so it should be a more accurate

representation of the real plasma. Perhaps a better approach is to concentrate on the edge values

predicted by modeling and what we can measure directly rather than debate what’s going on inside

the plasma. This is fine for most considerations, but not very useful for studying confinement, so

we won’t study confinement.

Figure 5.41 Lambda profile at 2 phases of oscillation during partial sustainment OFCD as
predicted by the 3D model.

5.3.1.1 Current Drive

We start, as usual, at our preferred frequency, 280 Hz. Recall that there should be a phase differ-

ence between the oscillators that maximizes the added current drive (the drive phase.) There should

also be a phase that maximizes the subtraction from the plasma current (anti-drive), presumably

180◦ from the drive phase. Figure 5.43 shows the maximum current drive, maximum antidrive,

and the nominal NOFCD current. The current drive for this ensemble average is about 17 kA. The

antidrive yields about -50 kA. The fact that one phase adds current and another subtracts current is

encouraging by itself. It confirms theoretical expectations at least qualitatively.
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Figure 5.42 The λ = µ0J‖/B ∗ a profile for two points in a cycle according to MSTFIT.
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Figure 5.43 The cycle averaged current drive, antidrive, and nominal current during 280 Hz
OFCD.
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What was not expected was the phase dependence. The math and 1D model both say the

helicity injection rate should vary sinusoidally with the phase difference. We presume current

drive would do the same. The 1D relaxed state model showed a maximum current drive of 13

kA (5% referenced to 250 kA) at 90◦ phase difference and maximum antidrive current of -14

kA (6%) at −90◦. 3D modeling saw maximum current drive of about 20 kA (8%) at 45◦ phase

difference and antidrive of -40 kA (-16%) at −90◦. Since the simulations take so long we dont

yet have enough points from the 3D model for a detailed phase scan. Figure 5.44 shows that the

actual phase dependence of current drive is not at all sinusoidal. The best fit curve is left to the

readers imagination. This is probably the most unusual phenomena we’ve seen thus far. Nothing

in the theory suggests such an ugly curve. The maximum current drive occurs at about 25◦ and is

about 20 kA (8%) on top of the nominal value of 268 kA by the end of the shot. The maximum

antidrive is -50 kA (-19%), enough to occasionally quench the plasma. The 1D model prediction

of maximum current drive is within spitting distance of experimental results (albeit at a different

phase.) The maximum antidrive of 14 kA predicted by the 1D model is not even close to the

experimental value. Also plotted are 2 points from the 3D model. The 3D model did a much better

job predicting antidrive current of -40 kA at −90◦. More points from the 3D model are on order.

The curve is distinctly asymmetric implying something beyond the classical OFCD dynamics is at

play. Figure 5.45 shows the cycle averaged helicity injection rate from eqn 3.7 appears to have the

expected sinusoidal dependence with a maximum injection rate at least close to the expected 90◦

and a maximum ejection rate at −90◦. So maximum current drive does not occur during maximum

helicity injection. But the curve is offset. The magnitude of the helicity ejection rate is larger than

the largest injection rate. This could account for some of the large antidrive current.

Most unusual/disturbing is that it doesn’t look like the result will be the same at ±180◦ unless

the curve takes a sharp dive on the right or a U-turn on the left. A broader phase scan is needed.

Looking back at figure 5.37 we see that the waveforms for the two oscillators are identical(ish) in

that they start at the same absolute phase and they both start with a sharp transient. To shift the

phase between the oscillators we start the OTCD oscillator before or after the OPCD oscillator. So,

for up to 1.8 msec, one oscillator is running alone. The asymmetry of the current drive might be
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Figure 5.44 Current drive vs phase difference for 280 Hz OFCD. The blue curve is the prediction
by the 1D model. The large circles are two points from the 3D model. The curve bears little

resemblence to the sinusoidal dependence seen in the 1D model but is in good agreement with the
3D model for the two points available. Maximum current drive occurs at about 25◦
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due to this timing difference instead of the phase difference. But for such a short time interval to

have such a large effect implies that OPCD (or OTCD) has a far greater impact on the plasma than

seen in the OPCD/OTCD experiments. Looking back at figure 5.6 we see that OPCD alone does

indeed reduce the plasma current. But it takes 20 msec, not 1.8, to drive the current down 20 kA.

The current degradation of figure 5.6 could be due to some monstrously deleterious and lasting

effect of the large transient at the start of the waveform. It would be better if the two oscillators

could be started at the same time but with truly different phases, at least as seen at the gap. There is

a plan to try isolating the OPCD oscillator from the gap when it is first fired so that both oscillations

appear at the gap at the same time but at different phases. The SCRs of the Bt crowbar bank will

be used as a crude switch.

It was suggested that the shape of the curve might be influenced by the nominal plasma current.

Figure 5.46 shows a phase scan with a nominal (NOFCD) current of 300 kA. There wasn’t much

data available and the frequency differences between the two oscillators is a few Hz larger, but the

shape appears to be nearly the same, if not quite as asymmetric.
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Figure 5.46 Current drive vs phase difference for a 300 kA nominal plasma current for 280 Hz
OFCD.
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To learn what is driving the phase dependence we’ll look at how other plasma behavior depend

on the phase difference between the oscillators.

Impurity levels The obvious first culprit to consider is the plasma-wall interaction. Impurities

dumped into the plasma will raise the resistivity and thus hinder current flow. This is what ham-

pered the ZT-40 OFCD attempts. Our only measure of wall interaction are the emissions from CIII,

CV, OIV, BIV, and NIV (spectral lines of carbon, oxygen, boron, and nitrogen) measured by the

impurity monochromater array (IMA.) This is not to say the IMA is a particularly good measure of

wall interactions. Other factors like bulk ion temperature and density can affect the IMA results.

The effective value of the charge factor, Zeff , would be better but we don’t have a Zeff meter. The

IMA is all we’ve got. Impurity emissions vary from day to day as probes and such are inserted and

withdrawn from the plasma. So we use the difference between the OFCD and NOFCD waveforms.

Figure 5.47 shows how the mean value of each impurity measurement varies with the phase

difference. Each point is the difference between the time-averaged values of the OFCD and base-

line NOFCD waveforms. Again, the best fit curve is left to the imagination of the reader. Except

for the carbon V line, each shows a vaguely parabolic shape with a minima right at (or very near)

our maximum current drive phase. The telltale shape is most apparent in the boron IV line. Many

of the probes are coated with boron. There is also a small amount of boron on the wall of MST.

Note that the boron curve displays the same asymmetry as the current drive.

This correlation does not necessarily mean plasma-wall interactions are driving up the resistiv-

ity of the plasma. As mentioned before, the IMA is not a great measure of wall interactions. But if

extraneous factors like confinement were driving the IMA waveforms we’d expect to see the same

effect on each. When the one spectral line that happens to come from the most prevalent impurity

on the wall shows such a familiar shape we have cause to be concerned. More study is needed

here.

Mode amplitudes: The m = 0 and m = 1 mode amplitudes play an important role in con-

finement in MST. Confinement affects resistivity which obviously affects current drive. So we
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Figure 5.47 Mean value of impurity measurements vs phase difference of the oscillators for 280
Hz OFCD
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need to know if the modes amplitudes vary with oscillator phase. Figures 5.48 and 5.49 show

how the m=0 n=1..4, and m=1 n=6..11 vary with phase. Each point is the time-averaged value

for one shot. The m = 0 curve shows the most obvious dependence, with a minima right where

our maximum current drive occurs. The m = 1 curve shows a barely visible dependence, with a

rough minimum in the same place. Reduced fluctuations mean better confinement which means

increased core temperature which means lower resistivity which means increased current drive.

This is likely a contributing factor to maximum current drive. Temperature measurements will be

discussed shortly. Whether and how much confinement improves is a subject of ongoing research.

Pedestrian factors like temperature and confinement are beyond the OFCD dynamics you find

in papers and what we’ve studied in 1D and 3D simulations. But these factors apparently depend

on the phase of the oscillators and must be considered as at least possible conspirators in the

odd shape in figure 5.44. The question then becomes why should these factors depend on phase?

Which is cause and which is effect? How much of the current drive and antidrive we see is driven

by classical OFCD dynamics and how much by factors like temperature and resistivity? And, most

of all, how will all of this impact full-sustainment OFCD? These are all important questions that

remain definitively unanswered as of this writing. There are at least three more doctoral theses

in just these questions. But we have at least answered the most important question: Does OFCD

drive current? The answer, at least for the partial sustainment case, is yes. But some aspects of the

mechanism that makes it happen are unclear.

5.3.1.2 Mode Spectra

The m=0 and m=1 mode amplitudes are shown in figures 5.50 and 5.51 for the drive and

antidrive phases of 280 Hz OFCD. Also shown are the NOFCD values, though the lack of sawteeth

is only because sawteeth are randomly placed in NOFCD and average away in a large ensemble

average. There’s obviously a tremendous difference in the behavior of the tearing fluctuations in

the drive and antidrive phases. In the antidrive phase the m=0 mode amplitude looks a lot like

it did during OPCD, with enormous slow growing ’bubbles’ of m=0 activity. Also recall that

OPCD caused a lot of current degradation, nearly 20kA as seen in figure 5.6. Since the OPCD
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Figure 5.48 The time-averaged m = 0 mode amplitude vs oscillator phase.
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oscillation is the dominant component in the edge, the strange shape of figure 5.44 may be due

to a combination of classical OFCD dynamics plus the peculiar effects of OPCD. Further study

of OPCD may yield the reason for the excess antidrive of OFCD. A programmable power supply

will (hopefully) soon replace the OPCD ignitron oscillator. The tunability and capacity for other

waveforms will no doubt be mighty useful for studying OPCD.

The n-spectra of the m=0 and m=1 modes for drive and antidrive are shown in figures 5.52

through 5.55. Note the larger scale for m=0 antidrive.

5.3.1.3 m=0 bubbles

As with OPCD and OTCD we immersed our triple tip Langmuir probe into the plasma to

monitor the stability of the m=0, n=1 mode. Unfortunately, as explained in the OPCD section, the

bubbles were too small and slow for us to detect any net positive or negative change in the energy

of the mode.

5.3.1.4 Helicity dissipation

Harken back to chapter 3 and equation 3.2, the rate of change of global magnetic helicity

injection,
∂K

∂t
= 2vzΦz − 2

∫

E · BdV (5.3)

where vz is the toroidal loop voltage (at the edge) and the volume integral is over all space. The

first term on the right hand side is the helicity injection rate. The second term is the rate of helicity

dissipation (through ohmic loss.) In this section we’ll examine the second term. We’ll reconstruct

E and B as directly as we can from edge measurements. We’ll assume, as we did in the 1D model,

that the α model accurately describes the internal normalized parallel current (J‖/B) profile.

J‖

B
= Λ(r) = λ0(1 − (

r

a
)α) (5.4)

From measurements of the toroidal magnetic field at the wall, the plasma current, and the

toroidal flux we can find the values of α and λ0 that best fit these edge measurements. From α, λ0,
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Figure 5.50 The m=0 mode amplitudes for 280 Hz OFCD for: (a) NOFCD (b) OFCD maximum
current drive phase, (c) maximum antidrive phase.
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Figure 5.51 The m=1 mode amplitudes for 280 Hz OFCD for: (a) NOFCD (b) OFCD maximum
current drive phase, (c) maximum antidrive phase. The NOFCD curve is smoothed by the

ensemble average and random placement of the sawteeth.
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Figure 5.52 The n-spectra of the m=0 mode during 280 Hz OFCD. Oscillator phase difference set
for maximum current drive. The vertical spikes are error bars.
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Figure 5.53 The n-spectra of the m=0 mode during 280 Hz OFCD. Oscillator phase difference set
for maximum current antidrive. The vertical spikes are error bars.
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Figure 5.54 The n-spectra of the m=1 mode during 280 Hz OFCD. Oscillator phase difference set
for maximum current drive. The vertical spikes are error bars.
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Figure 5.55 The n-spectra of the m=1 mode during 280 Hz OFCD. Oscillator phase difference set
for maximum current antidrive. The vertical spikes are error bars.
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and the toroidal flux we can reconstruct the magnetic field profile by solving

∇×B = Λ(r)B +
B ×∇p

B2
(5.5)

in cylindrical coordinates. The pressure profile is assumed parabolic with a poloidal β = 0.07.

From the time varying values of B we can get the electric field profile using Faradays law

∇× E = −
∂B

∂t
(5.6)

taking care to include the poloidal magnetic flux from the central iron core that threads the center

of MST. This boils down to two integrals for the two components of E.

Ez(r, t) =
vz

2π(R0 − a)
−

1

R0 − r

∫ a

r

Ḃθ(r
′, t)(R0 − r′)dr′ (5.7)

Eθ(r, t) = −
1

r

∫ r

0

Ḃz(r
′, t)r′dr′ (5.8)

where R0 and a are the major and minor radii of the torus. In MST vz is measured at the poloidal

cut in the vacuum vessel.

The helicity dissipation and injection rates are

∂Kdiss

∂t
= 2

∫

E · BdV =

∫ a

r=0

∫ 2πR0

z=0

∫ 2π

θ=0

(EzBz + EθBθ)rdrdzdθ (5.9)

∂Kinj

∂t
= 2vzφz = 2vz(2π)

∫ a

r=0

Bzrdr (5.10)

Figure 5.56 shows the helicity injection and dissipation rates during a normal (NOFCD) MST

discharge. We can see that the dissipation rate slightly exceeds the injection rate, implying helicity

is being lost to ohmic dissipation. Figure 5.57 shows the two rates with the OFCD oscillators on

and the phase difference between them set for maximum current drive. The thick curves are the cy-

cle average values. We see that the cycle average injection rate closely matches the dissipation rate

implying that OFCD does a slightly better job sustaining helicity than do the standard discharge

power supplies. Finally, figure 5.58 shows the rates with OFCD on and the phase difference set for

antidrive of -40 kA. There are more extreme antidrive cases but the plasma is often literally snuffed

out by those phases. The chosen phase and current drive closely matches the antidrive case studied
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in the 3D model. For the antidrive phase there is clearly more dissipation than injection. The final

value of the dissipation rate is nearly double the final value in the drive phase. The injection rate

is also decreased. This isn’t too surprising. As antidrive OFCD decreases the plasma current, the

plasma runs cooler so the resistivity is increased.

5.3.2 530 Hz

The higher frequency experiments were conducted earlier in the OFCD program. Back then

the oscillators were horribly unreliable. The failure rate was over 90%. So we didn’t have enough

data for a decent phase scan. We were able to get only the two extremes: drive and antidrive shown

in figure 5.59. At this high frequency, no appreciable current is driven in the drive phase. In fact,

there may be a slight degradation. The antidrive phase yields a subtraction of 30 kA from the drive

phase at the end of the shot. This lackluster performance is what inspired us to lower the frequency

to 280 Hz even though it means fewer cycles within the shot.

Figures 5.60 and 5.61 show the m=0 and m=1 mode amplitudes for NOFCD, drive, and an-

tidrive. The only noteworthy feature here is that the difference between the m=0 amplitudes during

drive and antidrive phase is not nearly as pronounced as the difference at 280 Hz. This may be

because the higher frequency oscillation does not penetrate the plasma deep enough to excite the

mode.

5.3.3 Anomalous Ion Temperature Modulation

As in OPCD experiments, the ion temperature measured by the Rutherford scattering diagnos-

tic can show a significant modulation at our oscillator frequency. But with OFCD we have one

more knob to turn - the phase between the oscillators. Figure 5.62 shows the ion temperature vs

time for 4 phases: −90, 0, 45, 90◦. 45◦ is closest to the maximum current drive phase and −90◦

is closest to the maximum antidrive phase. Also plotted are the best fit sinusoids near 280 Hz as

found with a DFT. There’s little apparent difference between the drive and antidrive cases. In fact,

it’s debatable whether the modulation exists for antidrive. But the modulation is most apparent

between these two cases, at 0◦ and 90◦. We might be inclined to read something into this. But this
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Figure 5.56 Helicity injection and dissipation rate during a standard 250 kA discharge. Helicity
dissipation slightly exceeds the injection rate, implying helicity is slowly being lost.
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Figure 5.57 Helicity injection and dissipation rate during 280 Hz 250 kA OFCD. The oscillators
are set for maximum current drive. Cycle averaged helicity injection rate closely matches

dissipation rate, implying helicity is being conserved.
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Figure 5.58 Helicity injection and dissipation rate during 280 Hz 250 kA OFCD. The oscillators
are set for maximum current antidrive. Cycle averaged helicity dissipation rate greatly exceeds

the injection rate, implying helicity is rapidly being lost.

15 17 19 21 23 25 27 29 31 33 35
250

260

270

280

290

300

310

320

330

340

350

Plasma current

msec

kA

Figure 5.59 Off, Drive, and Antidrive plasma current for 530 Hz OFCD.
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Figure 5.60 The m=0 mode amplitudes for (a) NOFCD, (b) drive, and (c) antidrive for 530 Hz
OFCD. The NOFCD curve is smoothed by the ensemble average and random placement of the

sawteeth.
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Figure 5.61 The m=1 mode amplitudes for (a) NOFCD, (b) drive, and (c) antidrive for 530 Hz
OFCD. The NOFCD curve is smoothed by the ensemble average and random placement of the

sawteeth.
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temperature modulation has been so sporadic that we really need to repeat this experiment several

times to say with confidence that there is a phase dependence in the ion temperature modulation.

Looking at the best fit sinewaves, notice that the phase of the modulation is always the same (or

nearly so) even between the extreme phase differences +90◦ and −90◦. To set the phase difference

between the two oscillators we fix the OPCD oscillator start time and change the OTCD oscillator

start time. The fact that the phase of the modulation stays put for each phase difference indicates

that the ion temperature modulation is driven almost entirely by the OPCD oscillator. This isn’t

too surprising. Since the magnetic field is mostly poloidal at the edge, we’d expect the oscillator

that drives poloidal current to have the greater influence, whatever the mechanism. Look back at

the section on Anomalous Ion Heating in the OPCD section for more on this.

5.3.4 Temperature profiles

The electron temperature profile is measured with the Thomson scattering diagnostic, which

takes a snapshot of the temperature profile at several different chords. Electron temperature is

particularly important to OFCD since current drive goes with resistivity and resistivity (according

to Spitzer) goes with T−1.5
e . Changes in Te vs time and phase difference could explain the unusual

phase dependence in figure 5.44. Figure 5.63 shows the temperature profile for 3 time points in

one cycle for drive and antidrive modes of operation. Figures 5.64 shows the electron temperature

vs time for 3 different radii, the core (r=0), the m=1 n=6 resonant surface, and the reversal surface

for drive and antidrive phases.

Evidence of a sinusoidal modulation is not easy to see until the 9 chords are put together in the

contour plot shown in figures 5.65 and 5.66. The horizontal axis is time. Shown underneath are

various waveforms. In the maximum current drive phase, the closest correlation to the temperature

appears to be the helicity injection rate. In antidrive it appears to be the plasma current. The latter

is believable since the temperature is (mostly) driven by ohmic dissipation of the toroidal current.

Why Te should be correlated with dK/dt in the drive phase is unclear, especially considering the

phase difference for maximum current drive is not the phase difference that maximizes helicity
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Figure 5.62 Ion temperature for 4 oscillator phases during 280 Hz OFCD.
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injection. Confounding this effort to find a corelation is the fact that whatever the driving force,

the temperature response is probably going to be delayed, especially near the core.

Whatever the temperature does or what it correlates with is not as important to OFCD as what

it means for the resistivity.

5.3.5 Resistivity profile

Given the electron temperature profiles we can get a measure of the resistivity of the plasma vs

time. The Spitzer equation is used along with an effective value of the atomic number Z that varies

with radius.

η(r) =
πZeff(r)e2m1/2

(4πε0)2(kTe)3/2
lnΛ (5.11)

Where lnΛ is the Coulomb logarithm and is about 10 for most plasmas. Zeff(r) is an offset sinu-

soid with an average value of 3, Zeff(r) = 2.5 + sin(2πr/2). The shape of Zeff is a neoclassical

correction provided by Anderson[24]. The bulk resistance, Rp, the volume integral of the resistiv-

ity, is shown in figure 5.67 along with the gap voltages and plasma current (all normalized for easy

comparison.) With a little imagination we can say the resistance in the top plot vaguely resembles

a sinusoid. But it doesn’t fall in phase with either of the gap voltages or the plasma current. We’d

expect the resistance to depend on the plasma current since higher current means more dissipated

power means higher temperature means lower resistivity. The time difference may be because the

oscillating current deep in the core, where resistance is lowest, might be slightly out of phase with

the total current measured by the Rogowski coil at the edge of the plasma.

5.3.6 Penetration

The current generated by OFCD in the edge has got to find its way into the core to be a candidate

for full sustainment. We expect this to happen via the same dynamo action that MST normally uses

to drive current into the edge, only backwards. The Far InfraRed interferometer yields a measure

of the toroidal current density and poloidal magnetic field profiles. From these the parallel current

density is derived. Figure 5.68 shows the parallel current density J‖ at various radii. Our oscillation
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Figure 5.65 Electron temperature vs radius and time. In the contour plot at the top, the horizontal
axis is time in msec and the vertical axis is radius. The middle plot shows the normalized gap

voltages, the plasma current, and the helicity injection rate. The bottom plot shows the normalized
m=0 and m=1 mode amplitudes. The oscillator phase difference is set for maximum current drive.
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Figure 5.66 Electron temperature vs radius and time. In the contour plot at the top, the horizontal
axis is time in msec and the vertical axis is radius. The middle plot shows the gap voltages, the
plasma current, and the helicity injection rate. The bottom plot shows the m=0 and m=1 mode

amplitudes. The oscillator phase difference is set for maximum current antidrive.



155

20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5
20

24

28

32

36

40
Bulk Resistivity vs time vs t

msec

m
ic

ro
O

hm
s

20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5
−1.0

−0.5

0.0

0.5

1.0
Iz, Vpg, & Vtg scaled

msec

Vtg

Vpg

Ip

Figure 5.67 The top plot shows bulk resistivity of the plasma. The bottom plot shows the gap
voltages and plasma current. The resistance appears to oscillate out of phase with applied

voltages and plasma current.



156

is obvious. The oscillators start at 15 msec. We see a sizable modulation of the current near the

core and almost no current at the edge.

There is a puzzling feature in the very last plot in figure 5.68. It shows very little current density

near the edge. The conductivity of the plasma goes to zero at the very edge of the plasma so we

expect the current to go to zero at r=a. But we should see a sizable current at least near the edge.

The standard OFCD picture is an edge current driven by V00 ×B00 that finds its way into the core

by dynamo action, presumably during discrete sawtooth events. A relaxation mechanism that is

marked by a sawtooth normally takes about 100 usec to redistribute current from the core to the

edge of MST during a normal discharge. We had expected the same mechanism would carry our

edge current to the core on the same time scale. When a sawtooth occurs, there would be sudden

drop in the edge current and jump in the core current. Instead, it looks like the oscillating current

appears almost immediately in the core. The edge current holds steady near zero and the core

modulation holds steady at 0.5MA/m2 peak-to-peak while the cycle average value gradually rises

up from 1.25MA/m2 to 1.5MA/m2. So the mechanism that carries current into the core appears

to be a gentle continuous process unlike the usual violent method of current redistribution durring

a sawtooth.

This what we expected to see in the 1D relaxed state model because it assumes the plasma

is always relaxed. But we dismissed this part of the 1D results and emphasized long time-scale

predictions just because we expected the current redistribution to occur in discrete events during

sawteeth. The results of the 1D model are included in figure 5.68. The agreement is very good,

especially near the edge. So, even on a short time scale, our simple 1D relaxed state model is better

than we expected.

Bellan [10] suggested that the edge current in OFCD was not as Shoenberg and company had

suggested but was instead the product of a compressional Alfv́en mode and a resistive diffusion

mode (Ṽalf×Bres) rather than from any relaxation dynamics. He did, however insist that relaxation

was required to get current from the edge into the core. Bellan may have been right but in the wrong

region. He assumed B had no radial component. The field in MST is stochastic throughout most of

the cross sectional area. So an Alfv́enic mode driven in the edge could propagate into the core and
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beat with modes in or near the core and driving current modulated by our oscillators. That would

explain the large oscillation in the core and small oscillation in the edge. It would also explain

why the core oscillation starts so quickly. But Bellan also predicted more current drive at higher

frequencies. We’ve seen just the opposite.

Whatever the mechanism, this is all very encouraging for future prospects like full sustainment.

The usual mechanism that reorganizes current in MST is brief and violent. Any violence is bound

to have nasty effects on a plasma. For MST, a sawtooth is accompanied by a sudden loss of

confinement. If the mechanism that distributes OFCD current across the plasma is continuous and

gentle, a plasma fully sustained by OFCD may have no sawteeth at all.

Finally, figure 5.68 shows the parallel current density profile for 6 points in one cycle of the

helicity injection rate. Also plotted are the profiles predicted by the 1D model. Again, agreement

is very good. Note that the FIR curves are only so smooth because of the fitting routine used by

the FIR team.

5.3.7 What happens if F > 0 ?

Looking back at the 1D model results we see that, for full sustainment, the reversal parameter is

positive for a small portion of each cycle. Positive F has ominous implications for MST; it means

we’ve lost the R in RFP. MST would, albeit briefly, look more like a poorly designed tokamak

than an RFP. When the plasma goes out of reversal the stabilizing effect of shear is weakened.

As F cycles up and down the m=0 resonant surface alternately enters and leaves the plasma, and

we expect the m=0 mode amplitude to fluctuate as it does. To measure the potential impact of

briefly losing reversal, the standard parameters of MST were modified to increase F enough that

the plasma was able to come out of reversal for about 120◦ of a cycle. Figure 5.70 shows F and Θ

and the F − Θ trajectory for 280 Hz OFCD with a density of 0.5 × 1013/cc and a starting current

of about 230 kA. It’s clear that the plasma is out of reversal for a significant portion of each cycle.

Despite having only a third of the cycle above zero the effect on the plasma is pronounced.

Figure 5.71 shows the m=0 and m=1 mode amplitudes for a normal case where F is always below

zero. Figure 5.72 shows what happens when F goes positive. First notice that the m=0 mode
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Figure 5.68 Parallel current density at various radii during 280 Hz OFCD. Oscillators begin at 15
msec. Penetration appears to occur within 1 msec. Also shown (in blue) is prediction of J‖ by the

1D relaxed state model.
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cycle of the helicity injection rate. Also shown (in blue) is prediction of J‖ by the 1D relaxed state

model.
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amplitudes are significantly reduced when F is above 0. This is because the m=0 resonant surface

is outside the plasma. Without a resonant surface the m=0 mode amplitudes are understandably

reduced. The most dramatic effect is on the m=1 mode amplitude. The plot is an ensemble average

so some of the finer details were averaged out, namely the rapid-fire sawteeth group that appears

on the downhill side of the applied poloidal loop voltage. The ensemble averaging mushes them

together into the square shapes seen in the plot. The mean value of the m=1 mode has increased

50%. This is going to reduce energy confinement and probably increase the resistivity of the

plasma. Figure 5.73 shows the mean value of the m=1 mode amplitude vs the maximum value of

the reversal parameter. There are only 7 points, but the trend is unmistakable.

Figure 5.74 shows the first 5 toroidal components (n=5 to 9) of the m=1 mode amplitude for

the case where F is positive during part of the cycle. Since the q profile is raised and flattened the

n=5 mode is probably resonant in the plasma so it is included. We can see that the n=5 component

is comparable to the n=6 component. Other than that, the spectrum decays away at higher n as it

normally does.

Most disturbing of all is the effect on current drive. Figure 5.75 shows the plasma current for

a normal OFCD data set (F ¡ 0.) At this density and starting current the current drive is about

7 kA. Figure 5.76 shows the effect of letting F go positive. Our 7 kA current drive became -11

kA of antidrive. This is obviously unacceptable. There is hope however. All the data shown thus

far in this section have been at a plasma density of 0.5 × 1013/cc. Figure 5.77 shows the plasma

current for a nominal density of 1 × 1013/cc. The 5 kA of drive is still far below the 20 kA we

usually get (F < 0) at this density, but at least it’s positive. The lesson learned from all this is

that, for full sustainment OFCD to work, the density should be as high as possible and, if possible,

reversal should be maintained throughout each cycle. The excursion of F is due almost entirely

to the OPCD oscillator, which is due to be replaced with a programable power supply. With the

flexibility to create arbitrary waveforms, the solution may be simply to lop off the top of the OPCD

voltage to forcibly maintain reversal.
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Figure 5.71 The m=0 and m=1 mode amplitudes during a normal 280 Hz OFCD with F always
negative.
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Figure 5.72 The m=0 and m=1 mode amplitudes during 280 Hz OFCD. Letting F go positive for
even a portion of the cycle causes the m=1 mode amplitude to significantly increase.
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Figure 5.74 The toroidal n spectrum for the m=1 mode vs time during 280 Hz OFCD. Letting F
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Figure 5.75 The plasma current during a normal (F¡0) 280 Hz OFCD. The nominal density is
0.5 × 1013/cc. The vertical spikes are error bars.
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Figure 5.77 The plasma current during a normal 280 Hz OFCD with higher density. F is positive
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Chapter 6

Summary and Conclusions

The first phase of Oscillating Field Current Drive (OFCD) experiments has been conducted

on MST and compared to numerical predictions. A low-power system was built and integrated

with the toroidal and poloidal circuits of the MST main power supplies to provide two oscillating

toroidal and poloidal loop voltages on top of the usual supply voltages. The oscillators consist of

a Pulse Forming Network feeding a resonant LC tank driven by two temperamental commutating

ignitrons. The oscillator that supplied an oscillating loop voltage was labeled OTCD (Oscillating

Toroidal Current Drive) and the other was labeled OPCD (Oscillating Poloidal Current Drive.)

A simple one dimensional model was used to make long term cycle averaged predictions of the

current drive as well as other macroscopic parameters like power dissipation and field reversal. The

model employs only energy balance and an assumed shape of the J‖/B profile. Several variations

of the model were studied and each yielded comparable results. The model used for predictions

and optimization was the relaxed state model, where a shape factor of the J‖/B profile was held

constant and a scale factor was free to roam. The model predicted that current would be maxi-

mized when the helicity injection rate was maximized which occurs when the toroidal oscillator

is +90◦ out of phase with the poloidal oscillator. It also predicted the current drive would exhibit

a sinusoidal dependence on the phase difference and that a maximum negative current would be

driven in the plasma when the oscillators were −90◦ out of phase. The model predicted that with

decreasing frequency the current drive would increase but the power dissipated in the plasma and

the modulation of the reversal parameter would rise rapidly. The model predicted current drive

would immediately appear in the core but that result was dismissed because of the simplicity and
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assumptions built into the model. On that score, the 1D model’s prediction proved to more closely

match experimental results than any other prediction it made.

The model was used to optimize the amplitude, frequency, and waveform shape of the applied

voltages. For partial sustainment, the criterion for the optimal frequency was that the plasma

never go out of reversal. The optimization of the waveform shape proved fruitless because of

the filtering effects of the plasma and the helicity injection process. The model did provide the

optimal relative voltage amplitudes. The results of the optimization effort using the 1D relaxed

state model was that the optimum frequency should be about 280 Hz, the phase difference between

the oscillators should be +90◦, and the applied toroidal loop voltage should be about 10 times larger

than the applied poloidal loop voltage. Using these parameters and the voltage levels attainable

with available hardware, the model predicted a supplementary current drive of 13 kA (5%) in

MST for the partial sustainment case where OFCD is superimposed on the usual power supplies.

It predicted a maximum antidrive current of -15 kA if the oscillators were phased for it. It also

predicted that full (OFCD only) sustainment was achievable at this frequency if the voltages were

increased by a factor of 3 but that the plasma would go out of reversal for a small fraction of each

cycle.

Where available, results of a prior study using a 3D MHD model were compared to both the 1D

model and to experimental results. The 3D model predicted maximum supplementary current drive

would occur when the phase difference between the oscillators was about +45◦, which proved to

be closer to the experimental results than the prediction by the 1D model. The 3D model also

predicted the sawteeth events in MST would be entrained to the applied oscillation, which also

proved to be true. It also predicted that current drive would decrease with increasing frequency, as

predicted by the 1D model and verified in the experiments.

To isolate the effects of each oscillator, initial experiments were conducted with one of the

two oscillators turned off (usually because it hadn’t been built yet.) The results of the OPCD

experiments included a significant but difficult to reproduce modulation of the ion temperature. The

ion temperature modulation can be at least partially explained by collisional heating by magnetic

pumping though the results of some experiments greatly exceeded this predictor. Also observed
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was a very large excitation of the m = 0 modes accompanied by little or no excitations of the

m = 1 modes. The modulation of the current profile by the OPCD oscillator caused an entrainment

of the sawteeth events that mark an ordinary MST discharge. These effects all proved useful to

other MST experiments for studying the MHD dynamo. The most extensive of these experiments

were edge probe studies designed to determine the stability of the m = 0 modes. The results of that

study suggest that the m = 0 mode might be linearly unstable during those intervals where OPCD

excites the m = 0 modes, though the error bars of that experiment were too large to make any

decisive judgement. OTCD experiments were also conducted and similar behavior was observed,

but the effects were much weaker than observed in OPCD.

When both oscillators came online, OFCD experiments were conducted at two frequencies and

a variety of plasma conditions. The most important question, ’Does OFCD drive current?’, has

been answered. Supplementary current of about 8% was consistently observed - more than pre-

dicted by 1D modelling and about what was predicted by 3D modelling- though there are still open

questions about the mechanism of that current drive. The amount of supplementary current exhib-

ited little or no dependence on the nominal (oscillators off) current. Current drive was dependent

on density, higher densities being preferred.

While current drive did display a dependence on the phase difference of the oscillators, the

shape of that dependence was not the sinusoid predicted by modelling. Maximum current drive

does not occur when the phase difference is set to maximize the helicity injection rate. Whereas

helicity injection rate is maximized at a phase difference of +90◦, the current was maximized at

about +30◦. Nevertheless, the amount of positive current drive was comparable (within a factor of

2) to that predicted by both 1D and 3D numerical studies. When the phase difference between the

oscillators was set to maximize negative helicity injection, the amount of negative current driven

(that is, current subtracted from the nominal value) was much larger than predicted.

It is unclear how much of the observed current drive was due to classical OFCD dynamics and

how much was due to modification of nominal plasma parameters like confinement. The m = 0

and m = 1 fluctuation amplitudes exhibited a significant dependence on the phase between the

oscillators. Greater fluctuation levels usually mean less confinement. More pedestrian factors like
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plasma-wall interactions may also be contributors. Emisions from impurities did exhibit a visible

dependence on the phase between the oscillators.

Why the mode amplitudes and impurity emisions should depend on the phase difference be-

tween the oscillators as they do is an unanswered question as is the peculiar shape of the current

drive dependence. But from an engineering perspective, the conclusion from the experimental

phase dependence studies is that the phase difference between the oscillators should be about +30◦

to maximize performance.

One objective of the experiments was to optimize the frequency of the applied oscillations.

Higher frequencies mean more cycles within the duration of the MST plasma, so experiments

were conducted first at 530 Hz. It was determined that 530 Hz was too high for the relaxation

dynamics OFCD relies upon to have the desired effect. Lower frequency experiments at 280 Hz

proved more fruitful as predicted by the 1D model. Adequate current penetration well past the

reversal surface was observed in keeping with predictions by both the 1D and 3D model, though

the measured current profiles differed substantially from the predictions of the 3D model. It was

a pleasant surprise to find that the current drive penetrated to the core much faster than expected

by intuition. It appears the mechanism that redistributes OFCD current from the edge to the core

was more continuous than the discrete and violent method the MST plasma normally employs to

redistribute current from the core to the edge.

The helicity injection and dissipation rates were ’measured’ using the α-model fitted to exper-

imental edge data. Just enough positive helicity injection to balance dissipation was observed for

maximum drive phase OFCD. Dissipation substantially outpaced injection during antidrive exper-

iments.

Also studied was the effect of allowing the plasma to travel briefly out of reversal as it is

expected to do in future full sustainment experiments. The effects of allowing even brief intervals

on nonreversal were pronounced. The m=1 mode amplitudes nearly tripled at their peak values.

The effect greatly hindered current drive, eliminating it altogether at low densities. The damage is

somewhat alleviated by higher densities. Some means of maintaining reversal would be preferred.
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A programmable power supply may offer hope. Increasing the frequency of oscillation should also

help but it would come at the expense of current drive.

6.1 Future plans

Future experiments will focus on explaining the strange phase dependence of current drive and

extrapolating what we can to full sustainment OFCD. Of particular interest will be the plasma-wall

interactions that confounded the ZT-40 experiments. Also of interest are the effects on confinement

and stability when the plasma is pressed out of reversal by future higher power experiments.

We will continue to take advantage of our ability to isolate the effects of the OPCD and OTCD

oscillators. We hope to determine whether the OPCD ion temperature oscillation is real or a prob-

lem with the Rutherford scattering diagnostic. If the diagnostic proves true, we hope to determine

the mechanism that drives such an enormous temperature oscillation and why it doesn’t show up

in corroborating diagnostics like IDS and why it’s appearance is so sporadic.

The reliability of the ignitron oscillators has improved but is still not as good as we hoped

for some seven years ago. The failure rate of the ignitrons has been our greatest impediment to

progress in this experiment. Some diagnostics, like Rutherford scattering and probe work require

enormous ensembles. Every shot counts at 1 O’clock in the morning. Work continues in preventing

ignitrons that are supposed to stay on from turning off and ignitrons that are supposed to switch off

from staying on. The author would prefer that all ignitrons be gathered from the four corners of

the earth, forcibly if necessary, and either thrown into the sun or buried deep with nuclear waste.

The next generation medium power oscillators will likely be beefed up versions of the current

ignitron oscillator design. By using bigger ignitrons, we hope to double or even triple our available

power. This will get us closer to a full sustainment system with minimal investment. The only risk

is blowing up what we already have, a win-win scenario either way.

Also in the works are programmable power supplies that will allow arbitrary waveforms (within

some bandwidth) supplementing the existing supplies. The flexibility of programmable supplies

will broaden OFCD experiments considerably. We can play with sine waves, square(ish) waves,

triangles, whatever. One experiment of particular interest to the author is a chirped sinewave that



174

sweeps across some frequency band during the discharge, accommodating long term changes in

the plasma. Only the toroidal field supply (OPCD) will be implemented first. But we’ve seen that

OPCD has greater impact on the plasma than OTCD so OPCD studies should yield insights into

what to expect with programmable supplies in each circuit.

Someday, God willing, the entire MST power supply system will be replaced with megapower

programmable supplies with enough juice to attempt full-sustainment OFCD. By that time the

medium power experiments should have yielded enough results to predict the viability of full-

sustainment.

I might even graduate by then.
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