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Origin of tearing mode excitation in the MST

Reversed Field Pinch

Seung-Ho Chot

Under the supervision of Professor Stewart C. Prager and Dr. Darren Craig

at the University of Wisconsin-Madison

In this thesis we investigate the origin and coupling between different modes,
focusing primarily on modes resonant near the edge of the plasma. We investigate mode
stability by direct measurement of the terms in MHD which represent the energy flow
between the modes and the equilibrium field. We also examine the nonlinear coupling
between modes with bi-spectral techniques. This information could be useful in efforts to
reduce the dominant fluctuations and improve the fusion energy potential of the RFP.
These studies also yield new insight into the origin of reconnection in these plasmas. The
cause for reconnection mode growth is determined experimentally for three cases:
standard RFP sawtooth crash, enhanced confinement (EC) m=0 bursts, and slow growth
quasi-single helicity (QSH). We measure the term in MHD equations which represents
the driving (or damping) of tearing modes due to the equilibrium magnetic field. With
sawtooth crash, the term is negative for modes with m=0, indicating that energy flows
from the mode to the axisymmetric fields. A significant measured bi-spectrum between
the m=0 and m=1 modes indicates that nonlinear coupling is present. This supports the
standard picture that m=0 modes are stable, but m=0 reconnection is driven by nonlinear

coupling to other modes. In the EC m=0 bursts, an opposite picture holds: m=0 modes
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ii
derive energy from the axisymmetric fields indicating they are unstable, corresponding to
spontaneous reconnection. Such a picture awaits theoretical study and more complete
equilibrium profile measurements. In the slow growth QSH plasmas, the term for the
m=1 mode in the poloidal component is very weak and mostly negative and for the
toloidal component is strong and mostly positive. Because of the large noise, we cannot
determine with certainty the sign of the linear term for either component and the result
for the QSH case is inconclusive. These results support the possibility that nonlinear
mode coupling could be important in reconnection in other laboratory and astrophysical
venues. These techniques might also be useful to examine and understand how these

modes are produced and may lead to improved ways to control them.
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1 INTRODUCTION

Reversed field pinch (RFP) plasmas are characterized by many fluctuations in the
magnetic field due to the weak magnetic field used to confine the plasma. These
fluctuations are connected with reconnection of magnetic fields inside plasma and affect
much of the macroscopic dynamics in the RFP. The ﬂuctuatioris can be decomposed into
Fourier modes and only a few modes are dominant in the RFP. The origin of these
dominant modes has been studied for many years but open questions remain. In this
thesis we investigate the origin and coupling between different modes, focusing primarily
on modes resonant near the edge of the plasma. We investigate mode stability by direct
measurement of the terms in MHD which represent the energy flow between the modes
and the equilibrium field. We say the mode is stable if the‘ mode loses energy to the
equilibrium field. We say the mode is unstable if the mode gains energy from the
equilibrium field. We also examine the nonlinear coupling between modes with bi-
spectral techniques. This information could be useful in efforts to reduce the dominant
fluctuations and improve the fusion energy potential of the RFP. These studies also yield
new insight into the origin of reconnection in these plasmas.
1.1  Reversed Field Pinch (RFP)

The reversed field pinch (RFP) is an axisymmetric, toroidal magnetic
configuration. The RFP is an excellent candidate for the core of a compact, economical

fusion reactor. The Madison Symmetric Torus (MST) is a toroidal reversed field pinch
device with a minor radius of a=0.52m and a major radius of R=1.5m used for plasma

physics and fusion research (Fig. 1.1).
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Figure 1.1 Reversed field pinch configuration

The plasma is confined by both a toroidal magnetic field (BT or B¢) and a poloidal
magnetic field (Bp or B8) and the toroidal magnetic field is reversed at the edge of the
plasma (Fig. 1.1). The poloidal magnetic field is produced by the toroidal current density

(J1) (Fig. 1.1). In figure 1.1, ¢ is the toroidal angle and 0 is the poloidal angle. Like the
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tokamak, the RFP is a toroidal, magnetically confined plasma system, but the applied
toroidal field strength is about ten times smaller.
1.2  Dominant modes in the RFP

The presence of even a small resistivity allows the magnetic field lines to
reconnect resulting in a change in magnetic topology. Tearing modes [1,2], so named
because the magnetic field “tears” and reconnects at singular surfaces, are the dominant
instabilities in the RFP. Singular surfaces are toroidal surface where the mode wave
number parallel to the equilibrium magnetic field vanishes and are called singular
because the MHD differential equation for the mode evolution is singular there. Many

tearing modes are observed in experiment. Figure 1.2 shows the safety factor profile for

rB¢

an MST plasma. The safety factor is defined as ¢ = and the singular surfaces for

9

several modes, where g = _n , are labeled.
n

0.2F 5
£ oif 2
BIY: f
= 3 3
-0 3
-0.2E — —— . — .
0.0 0.2 0.4 0.6 0.8 1.0

r/a

Figure 1.2 Safety factor profile in RFP and location of singular surfaces for several modes
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The m=0 modes are called edge modes and the m=1 modes are called core modes
because of the location of their singular surfaces (or resonant surfaces). The tearing
modes are very important for RFP dynamics. These modes produce MHD dynamo [3,4]
and affect transport [5]. The temporal behavior of the m=0, 1 modes differsvfor different
plasmas. In the next section, we describe 3 particular types of mode excitation that will
be examined in this thesis.

1.3  Behavior of m=0 and m=1 modes in sawteeth, EC, and QSH plasmas.

Three kinds of plasmas are examined in this thesis: normal RFP plasmas (sawteeth),

Enhanced confinement (EC) plasmas, and Quasi-single helicity (QSH) plasmas.

200 -
o mode excitation
Bt(m=0) o sawteeth
150
Gauss |-
100
sof—
0
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QE 3
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10E- 7
oE 3
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3
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&

time{msec)

Figure 1.3 m=0,1 modes vs time, showing time periods of mode excitation examined in this thesis
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Figure 1.3 shows the m=0, 1 modes during a typical shot for each plasma type. In each
case, one or more tearing modes are excited and grow in time. In this thesis we
investigate the cause of this growth which corresponds to reconnection at the singular
surfaces.

The sawtooth, in which the magnetic flux is self-generated, is a common feature
of standard RFP plasmas (Fig. 1.4). The sawteeth are superimposed on a slow time
evolution of the total toroidal magnetic flux (or volume averaged toroidal magnetic field)
that is largely determined by the Madison Symmetric Torus (MST) external circuit. The
flux rises with the plasma current during the initial portion of the discharge and enters the

flat-top region of the shot before decaying and terminating (Fig. 1.4).

016 U'l’“'"'l!" LI ] "l!".!!l"'Il'!!'!"'l‘lll"'

.Magnetic '_ ;
flux R o
(Tesla) | sawtooth crash o
:i-ramp -up -b-!q—ﬂat-mp —>|<—ramp-down :j
0.0
0 20 30 40 50
time(ms)

Figurel.4 Volume averaged toroidal magnetic flux in whole shot

The sawtooth oscillation represents a discrete manifestation of the dynamo which
maintains the reversed configuration in the MST. During the sawtooth crash, the volume
averaged toroidal magnetic field rapidly jumps by around 5~10% of its mean value and
modes with poloidal mode number m=0 and 1 are strongly excited. The sawtooth crashes

are global events affecting all observable quantities (electron density, temperature,
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magnetic field etc.) in a reproducible fashion. The reproducible fashion means that we
can make a large ensemble [3] of the sawtooth crashes. This is a key capability of MST,
important for the analysis in this thesis. As an example, we can characterize the current
profile flattening at a sawtooth crash with the alpha parameter, related to the parallel

current by the following equation:

HoJy rY
=2 =A0-{—=1).
B o (a) )

alpha at normal sawtooth crash
6T T——T— T T T T T T

TTTTTT

alpha-

pialasiiiing,

n
T

NYTNETENE FRENRSUENE INUNENSRES Ry ASURRUNE SUNENT!

T T T T T T T T T e T

(o] PR SN W | - ' L i L L . 1 i

-1.0 —0.5 0.0 0.5
crash time{ms) -

(o]

Figure 1.5 Alpha (o)) parameter is jump up at sawtooth crash

Figure 1.5 shows an average of a over 1000 sawtooth crashes and one can see that the
current profile broadens and the system moves closer to the Taylor relaxed state [7] with
flat current profile.

The sawtooth cycle in the RFP has been studied for many years in MHD
computation [6]. A prediction of this work is that the m=0 growth at a sawtooth crash is

not due to linear instability, but rather is the result of the nonlinear coupling of core
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resonant m=1 modes. Figure 1.6 (a) shows the sawtooth cycle average behavior of both
m=0 and m=1 modes and clearly both are excited together, consistent with the idea that
nonlinear coupling may be the cause for m=0 growth. In this thesis, we test this idea
experimentally and find that indeed the m=0 modes are stable throughout the crash and
that the m=0 and m=1 modes exhibit strong nonlinear coupling.

EC plasmas are relatively newer and have not been studied in computation. In EC
plasmas, the confinement spontaneously improves and the sawtooth cycle time is
extended [9]. Between normal sawteeth smaller bursts in m=0 modes are observed (Fig.
1.3). The EC bursts of m=0 modes are not accompanied by bursts in the core resonant
m=1 modes as shown in figure 1.6 (b). Similar m=0 bursts are observed in PPCD plasmas
[8]. We focus our attention in this thesis on the spontaneous enhanced confinement
obtained at very deep reversal and low density. The origin of these bursts is unknown but
there is speculation that they are due to changes in the edge profiles of current or pressure
and subsequent linear instability[9]. We find experimentally that the m=0 modes are
unstable during these bursts, in contrast to the sawtooth crash in normal RFP plasmas.

A third case of mode excitation recently observed in experiment is the quasi-
single helicity (QSH) plasma [10]. In QSH, one m=1 mode becomes dominant and grows
very slowly (Fig. 1.3). We examine QSH plasmas in which the edge q=0. Therefore, the
edge mode (m=0) is resonant just near the conducting shell of MST and is strongly
suppressed. (QSH can also be obtained in fully reversed plasmas but we do not consider
these here.) Figure 1.6 ( ¢) shows the average behavior of the m=1, n=5 during QSH with
slow steady mode growth. The' core resonant m=1 modes are expected to be slightly

unstable or marginally stable. We explore this possibility experimentally in this thesis.
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Figure 1.6 Ensemble averaged magnitude of typical m=0 and m=1modes in each plasma

14  Measurement approach

To explore the cause of mode growth in each case, we use the novel approach of
directly measuring terms in the MHD equation for the mode energy evolution. The MHD
energy drive terms can give the information about how the energy flows between the
modes and equilibrium fields and between different modes. For example, the equation for

m=0, n=-1 mode evolution in MHD is:
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The first two terms on the RHS represent energy exchange between the mode and
axisymmetric fields. The summation represents nonlinear interaction between modes.
The last term represents resistive dissipation. The second and last terms are measured
with probes to be small relative to the first term. The sign of each drive term in the MHD
equation gives important information about stability. If the first term in the RHS is
negative, it means the mode is losing energy to the equilibrium fields. Hence the mode is
stable. If it is positive, it means the mode is gaining energy from the equilibrium fields.
Hence the mode is unstable. We will assume that the sign of the linear term is
independent of radius.
1.5  Outline and overview

This thesis is divided into 5 chapters and an appendix. In Chapter 2, diagnostic
methods for magnetic field and electrostatic potential (used to infer MHD velocity) are
discussed. The method for determining mode numbers m and n from probe data and the
ensemble average method used to approximate a poloidal and toroidal average are
explained in Chapter 3. The bi-spectrum is also described in Chapter 3. The experimental
application of the bi-spectrum shows that there is a strong nonlinear coupling between
m=0 and m=1 modes at the edge of MST. The fluctuation measurements used to evaluate
terms in the MHD equations are presented in Chapter 4. The MHD velocity is determined
from the Langmuir probe floating potential measurement assuming the velocity is equal
to the E x B velocity. In Chapter 5, the fluctuation data are combined to form the terms

in the MHD equations for mode evolution. This is done for three kinds of mode
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excitation; sawtooth crash, EC m=0 burst, and QSH. The m=0, n=-1 mode is shown to be

stable during a normal sawtooth crash. The presence of large bi-spectrum between m=0

and m=1 modes during the crash strongly implies that the energy source for the m=0 is

nonlinear coupling to m=1 modes. The m=0, n=-2 mode is shown to be unstable during

the EC burst. This is consistent with the observed absence of m=1 mode excitation during

the EC burst. The m=1, n=-5 mode in QSH is examined but the stability measurement is

inconclusive. The slow mode growth in QSH and the fact that the velocity fluctuations at

the edge are not well resolved result in a large error. The error analysis in various order

correlation functions is explained in the appendix.

References

1. P.H. Rutherford, The Physics of Fluids 16, 11 (1973)

2. H.P. Furth et al., The Physic of Fluids 16, 7 (1973)

3. J.T. Chapman, Ph.D thesis, University of Wisconsin, Madison, 1998

4, P.W. Fontana et al., Phys. Rev. Lett 85, 3 (2000)

5. M.S. Stoneking et al., Phys. Rev. Lett 73, 4 (1994)

6. Y. L. Ho, G. G. Craddock, Physics of Fluids B vol 3 pp721-734 (1990)

7. J.B. Taylor et al., Phys. Rev. Lett 33, 139 (1974)

8. J.S. Sarff, S.A. Hokin, H. Ji, S.C. Prager, and C.R. Sovinec, Phys. Rev. Lett 72,
3670 (1994)

9. B.E. Chapman, C.S. Chiang, S.C. Prager, J.S. Sarff, and M.R. Stoneking, Phys.
Rev. Lett. 80, 2137 (1998)

10.  P. Martin et al., Nuclear Fusion 43, 1855 (2003)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

2 Diagnostics
2.1  Introduction

To measure the mode driving terms in the MHD equation we must measure the
fluctuating magnetic field and velocity (deduced from the measured electric field). The
magnetic and electric fields are measured with a variety of probes. Magnetic sensors are
commonly used to measure the magnetic properties of plasma experiments. Probes
consist of copper wire coils encased in a non-conducting heat shield and one or more
layers of conducting material such as graphite, stainless steel or a thin layer of silver paint
as an electrostatic shield. Magnetic sensors are used both inside and outside of the plasma
to measure the equilibrium and fluctuating field in MST. For measurement of the linear
term in the MHD equation, two kinds of magnetic sensor probes are used. One is the
movable magnetic coil probe for measurement of the magnetic field inside MST. The
other is the magnetic coil array located at the edge of MST to measure the magnetic
fluctuation spectrum. These coils must be calibrated for useful measurements.

We also measure the electric field in the plasma to deduce the Ex B velocity.

=
—_—

The electric field fluctuation , E=-V P, aa—f, is dominantly electrostatic (6;5 >> o4

ot >
We measure the electrostatic potential with a triple Langmuir probe using the relation ,
¢, =¢, +al,, where ¢, is the plasma potential, ¢, is the floating potential, and 7, is

the electron temperature [1,2]. We use a =2.2 for MST corrections. The value of a in
MST have been studied and derived in many past theses in MST group. The parallel
component (to magnetic field) of velocity is not needed in the MHD equation for mode

energy evolution because the vx B term is the important term.
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Measurements at two different radial points are needed to find the radial derivative for
the electric field. Below we describe the edge magnetic coil array and its calibration
(section 2.2), the movable B-dot probe and its calibration (section 2.3) and the Langmuir
probe (section 2.4).

2.2  Magnetic coil array

Figure 2.1 Top view of MST showing the location of edge toroidal array of magnetic coils

An array of 64 magnetic coil triplets is mounted on the inner surface of the
vacuum vessel. Each coil set consists of three orthogonal magnetic sensors, oriented to
measure the magnetic field in poloidal, toroidal and radial directions. The radial

component of the magnetic field is very small at the edge of MST because the wall of
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MST is a conductor. These encapsulated coil forms are mounted on the inside of MST as
shown in figure 2.1. The electrostatic and heat deposition shield is a graphite box. The
large coherent structure of the dominant magnetic modes allows edge coils to be used to
characterize magnetic fluctuations throughout the plasma. Because these coils do not
interfere with the plasma, edge fluctuating magnetic field measurements may be made at
multiple positions and then correlated to derive information about the spatial structure of
the modes. One common technique employs coil arrays to sample the magnetic
perturbation at regularly spaced intervals enabling Fourier decomposition of the
measured fluctuations. We employ the toroidal array of 64 coil sets evenly distributed in
toroidal angle and at a poloidal angle of 241 degrees (relative to the outbound midplane).
These 64 coil sets can provide the resolution of the toroidal or poloidal magnetic field
fluctuations up to n=32 (n is toroidal mode number). Since the coils are all at the same

poloidal angle (241°), the decomposition into different m number (poloidal mode

number) is impossible. We can write the magnetic field at 241° as

B$) =Y a, sin(ng,) + B, cos(ng) = 3 ¢, cos(nf, - 5,)
n=0 2 n=0 (22)
/4
(f—-4)=A¢= w

where B(¢g, ) denotes the poloidal or the toroidal magnetic field measured by the coils and
N is the number of coils in use. The toroidal angle ¢, has discrete values according to the

number (N) of coils in use. The relations between a, b, ¢, and 5 are

a, =c,sin(d,)

b, =c,cos(5,) (23)
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The N coil measurements and N/2 modes give N equations with N unknowns

(a,,0y5ccces@y 15 15D4,B,,b, ... by, ), Where two unknowns a, and a,,, disappear

because the sine term in the equation 2.2 is zero for n=0 and N/2 due toA¢ =2—ﬂ.

Therefore we have the resolution up to n=N/2 when we use N coil sets.

gauss

: : s L M
-1.0 ~0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0 -1.0 —-05 0.0 0.5 1.0
ms ms . ms

-1.0 -~08 0.0 0.6 1.0 -1.0 -05 0.0 0.5 1.0
ms ms

5 n=8

N N N o N N . o N N
-t0 -05 0.0 0.5 1.0 -1,0 =05 0.0 0.5 1.0 -10 -05 0.0 0.5 1.0
ms ms ms

Figure 2.2 Magnitude of toroidal modes of Bp from edge magnetic coils, the time t=0 marks the time of the

sawtooth crash.
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n=7 3 n=8

Figure 2.3 Magnitude of toroidal modes of Bt from edge magnetic coils, the time t=0 marks the time of the

sawtooth crash.

Figure 2.2 shows the magnitudes of poloidal magnetic fields with toroidal mode numbers
n=-1~-9 and they are all excited at the burst time t=0. Figure shows time period before 1
ms and after 1 ms of burst time t=0. The y-scale in figure 2.2 is larger for n=-5 and
above. This is because the modes with n=-5,-6,-7...are resonant modes and they have
m=1 to satisfy the resonance condition g=-m/n (Fig 1.6). Figure 2.3 shows the magnitude
of toroidal magnetic fields with toroidal mode number n=-1~-9 and they are all excited at
the burst time t=0 as same as in the figure 2.2. The magnitude of the n=-1 mode is the
biggest and the mode amplitude decreases with n number. The modes with n=-1,-2,-3,-4

are resonant modes and have m=0. The n=-5,-6,-7... are a mixture of m=0 and m=1. This
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can be established by using the fact that the radial current density nearly vanishes at the
wall and is explained clearly in chapter 3. Table 2.1 summarizes the relative size of the

different components for the resonant modes of interest.

Resonant modes Bt (toroidal magnetic | Bp (poloidal magnetic
q=-m/n field) field)

m=0 Large and decreasing as n | Very small in any n
=-1,-2,-3,-4,-5,-6,.... | gets larger number

m=1 Moderate and decreasing as | Moderate and decreasing

n=-5,-6,-7,-8,..... n gets larger as n gets larger

Table 2.1 Magnitude of toroidal and poloidal magnetic field according to resonant mode number

The magnetic coil array needs the calibration for more reliable measurements. The coil
alignments are not known precisely. Imperfect alignments cause coils, designed to
measure Bt (toroidal magnetic field) or Bp (poloidal magnetic field) signal only, to
measure k*Bt + s*Bp instead. Each coil really has sensitivity to both Bp and Bt fields (s
and k here). Once the above sensitivity (s and k) is taken into account, the Bt and the Bp
signals are converted to Gauss using an effective coii area of 1.5c¢m” taken from
calibrations [4] before mounting inside the MST.
2.3  Movable b-dot probe

The movable b-dot probe [5] is used for measuring the magnetic fluctuations

inside the plasma near the wall. The probe in our experiment has two displaced sets of
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coils (toroidal, poloidal, and radial). Two sets of coils are located at different radial points
near the wall. The number of turns are optimized for the size and the shape of the B-dot
probe resulting in 20 to 30 turns for each coil. The set of all coils is boron nitride
shielded. Electrostatic shield is provided by silver painting inside the wall of the boron

nitride shield.

boron nitride

- b

Magnetic coils-br,bp,bt

Figure 2.4. Schematic of the B-dot probe

The movable b-dot probe also needs éalibration for the effective area of each coil and
alignment because the imperfect alignments cause coils, designed to measure Bt (toroidal
magnetic field) or Bp (poloidal magnetic field) signal only, to measure a mixture of Bt
and Bp instead. There are two kinds» of calibration for the b-dot probe. One is for the
effective area A, and the other is for the coil alignment. Attenuation of signals due to the
thickness of the electrostatic shielding, tension of wire on the coil form, and imprecision
in winding deviates the value of the effective area A from such a simple relation (A=Na).
The effective area is calibrated with a Helmholtz coil [4] set that produces a known

magnetic field. We should apply this method to each coil in the b-dot probe.
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0P
V =—=27fNAB
Pot 2.4)
Here f is the frequency, B is the known magnetic field, and Vp is the probe-measured

voltage. The effective area (NA) of each coil is shown in Table 2.2.

Bp coils 5.768 cm? 6.477 cm?
Bt coils 3.605 cm? 3.742 cm?
Br coils 13.428 cm? 13.938 cm?

Table 2.2 Effective area of each component of coil triplets in movable b-dot probe

For the alignment correction, the b-dot probe is easier than the magnetic coil array,
because we can change the direction of the probe. The three directions of coils of the
probe are orthogonal to each other (see figure 2.5). Thus we need to align only one
direction. It is easy to do Bt coil alignment using the vacuum Bt shots (or the vacuum
field that exists prior to each RFP discharge) after we install the probe in MST. We can

check the alignment by changing the orientation of the probe shot by shot.

magnetic coils

J

Figure 2.5 Magnification of magnetic coil triplets in B-dot probe
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The Br coil calibration needs more careful manipulation because the flux surfaces are not
concentric with the vacuum vessel (except at r = a) but are instead shifted (Shafranov
shift [6] due to the effect of toroidicity) outward from the geometric axis of the machine
(Figure 2.6). This means that when two probes at different poloidal angles are inserted
the same distance from the wall, the probe, that is most outboard will be effectively
deeper in the plasma than others. Imperfect alignments (shifted flux surface outward from
the geometric axis of the machine) cause coils, designed to measure Br (radial magnetic
field that is the field perpendicular to a magnetic surface) signal only, to measure k*Br +
s*Bp instead. From the calculation of outward shift (through the code ‘MSTFIT’), the

angle between the probe br coil axis and the flux surface is known and the Bp part in Br

coil measurement could be subtracted.

Rm

Ro

Figure 2.6. Schematic drawing of flux surface and MST geometry [7]
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using MSTFIT, we find that the parameters in figure 2.6 for our conditions are d=6cm,

a=52cm, A=2cm, 6=57n/12 radian, rm=50.12cm. for a probe depth x cm, we have

tanf. = (50.1231-x)sin(57/12)

= 2.5)
(50.1231-x)cos(57/12) + 4

From equation 2.5, we could find out the angle between the poloidal magnetic field and
the radial magnetic field at the depth of probe (x). The angle between them is 5n/12-6,

at our probe location. The measured radial magnetic field should be corrected by

subtracting poloidal magnetic field pickup (=bp*sin[57/12- 8, ]) at the location of probe.

The correction to the radial magnetic field in different radial points is shown in Table 2.3.

6.5cm 6cm 5.5¢cm 5cm 4.5¢cm

Br- Br— Br— Br- Br-

0.0861948*Bp | 0.0852475*Bp | 0.0843206*Bp | 0.0834136*Bp | 0.0825258*Bp

Table 2.3 Calibration of radial component of magnetic field at various radial depth

2.4  Movable triple Langmuir probe

The triple Langmuir probe is needed to measure the electron temperature and the
floating potential. Figure 2.7 shows the schematics of triple Langmuir probe. The
molybdenum and the boron nitride are chosen to survive in the high heat load
environment inside MST [3]. The probe dimension has to be considered for overheating

and perturbation on the global plasma [3,8].
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Molybdenum

Boron
nitride

\

0.63cm K. 3.3cm

A .
0.31cm { .

+

llf———————  2.54cm——————P»
(a)

Figure 2.7 Langmuir probe used to measure floating potential; showing top view (left) and side view

(right).

Three conductors are used simultaneously with fixed biased voltage on two of them. We
assume that the same probe characteristic curve (I-V curve) applies to all probe tips. Two

of them are biased with respect to each other, but are insulated from ground.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

Plasma
P2 P1 P3 d)s ¢1

—0——]
VPR

P2 P1 P3

Figure 2.8 (a) Simplified probe circuit, (b) Potential of each probe [3]

Figure 2.8 demonstrates the simplified triple-probe circuit and electric potential of each
probe. Probes P1, P2, and P3 are inserted into the plasma. As described above, P1 and P3
are biased with respect to each other with voltage ¢d3, while P2 is floating. The potential
location in the I-V curve of each probe is shown in figure. 2.8(b). Combined with the

potential relation and I-V curve equation, we can have the equation for 7,.

1 _1-exp(-¢d2/T,)

2 1-exp(—¢d3/T,) (2.6)

Plasma density may be inferred by the equation (2.6) and I-V curve equation.
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n, = SOUDL /ﬁ @
Ae T
with 7, = ! and A+ is the area of ion collection, and m is ion

1-exp(¢d2-¢d3)/T)

mass. The relation between floating potential (¢, ) and plasma potential(g,) is

¢p = ¢f +al
where (2.8)

1 A4 , m,
a= {5+ln(A—+ 2me ):|

In order to minimize the noise of measurement of triple Langmuir probe, the power

supply box should be constructed carefully. The bandwidth of the electronics used is
around 50 kHz and the time lag between input signal and output signal is 10 psec.
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3. Analysis Methods

The analysis methods used in our research are explained in this chapter inclilding
the m, n mode identification from one point measurements and the bi-spectrum. The m,n
spectra of the boundary magnetic field is provided straightforwardly from the coil array
(Sec. 3.1). However, to infer m,n spectra from internal single point measurements we
have extended a technique long used in MST research. The technique is described in
Section 3.3, following a description of ensemble averaging (Sec. 3.2). ensemble
averaging is essential to the technique and to all of our results. Bi-spectra are evaluated to
measure three-wave coupling and described in Section 3.4. The noise analysis for various
order correlation is described in the appendix of this report.
3.1 Identification of poloidal and toroidal mode numbers at the boundary

Only the toroidal mode number n can be detected by the toroidal array of coils in
the experiment. To obtain the poloidal mode number the relation between poloidal
magnetic field (B,) and toroidal magnetic field (B,) should be used to arrive at the
poloidal mode number m for a given measured toroidal mode number n. At the boundary

of MST, the radial component of current is almost zero because MST has a vacuum layer

between the plasma and the vacuum vessel. Thus,

J, =0
— (Vxb), =0 G.1)
ob
_)l_d’-_%_—_o
r 80 Ro¢

A cylindrical coordinate system with z = R¢ is used here from the transformation of

coordinate system because the toloidal magnetic field is small at the edge of MST [1]. By

the assumption about the fluctuation magnetic field b,
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b ~ expli(k - r)] = expli(k,r6 + k,R9)] (3.2)
and by the periodicity with 2w in the poloidal and the toroidal angles, we identify mode
number m,n as

m n
k,=—,k, =—
¢ R

From equation (3.1), we find ﬁb¢ = %bo. The ratio a/R is about 0.35 in MST. We get
a

the following equation for the magnetic fluctuations at the wall.

b _p9m (3.3)
b, ~ n
Thus, the m=0 modes do not have a b, field at the plasma boundary in the cylindrical

approximation. The m=1 modes could have both b, and b,.

For resonant modes, which are expected to be dominant, the wave number k

satisfies k- B, =0, or

m rB )

n  RB,

(3.4)

The safety fact rBy
€ salc actor =
ty 4=

, S0 modes are resonant where q = Uy Figure 1.2 show the q
p v n

profile for a typical MST plasma and the location of several resonant surfaces.
Modes with m=1,2,3 and |n| <4 cannot be resonant modes in MST because the q is less

than 0.25. This means that n=-1,-2,-3,-4 modes are dominated by m=0. From this

reasoning, b, for n=-1,-2,-3,-4 from the toroidal coil array should have the poloidal mode

number m=0 and b, for n=-6,-7,-8,-9.... should have the poloidal mode number m=1.
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Since b, is sensitive to m=0 but b, is not (equation 3.3) the b, spectrum has
significantly more power at n=1 ~ -4 than the b, (figure 2.2 and 2.3). As mentioned

previously, the m=0 modes are called edge modes because they are resonant near the
edge and the m=1 modes are called core modes because they are resonant near the core.
From these considerations, we see that the dominant resonant modes are as in table 2.1.
3.2 Ensemble Averages

This section details the techniques employed to produce the ensemble quantities
presented in this project. Ensemble-averaging is necessary in our analysis to infer spatial
averages from single point measurements. The toroidal and poloidal angular average is

needed to measure the terms in the MHD energy equation.

150 ]
wof reversal parameter (F) .
o8- -
oo~ 3

- v ]
-o0.sC -

[¢] 20 40 60 80
1.5%10% - ]
. electron density{cm-3) 3
1.0x10" —
soxt0% |- -]
of .

-5.0x10"L N a .

[ 20 40 [} 80
200 — — =
150~ plasma current (kA) 3
100 - -

sof-- =

op =

ok ) E
[} 20 60 80

40
ms{time)

Figure 3.1 Global plasma parameters used to choose the ensemble
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Ensemble averages replace the magnetic surface averages(toroidal and poloidal). This is
valid if the modes are rotating so that different elements in the ensemble sample different
mode phases. The ensembles presented in this study are selected from the flat-top region
of many similar discharges. The plasma currént, reversal parameter, electron density
(figure 3.1) and rotation (of the n=6 mode) are considered to choose the similar
discharges. To compose an ensemble of sawtooth cycles individual events are selected
for each shot of interest. The IDL software has been developed by the MST group to
analyze signals over a carefully constrained sawtooth ensemble. It is described in
references [2,3]. A number of routines operate together to accomplish the generation of
an ensemble. The first routine generates a simple shot list containing the shot-number,
date of each discharge and times indicating the portion of the discharge to be analyzed.
The crash points in discharge time are selected to make an ensemble in the normal
sawtooth plasmas and the enhanced confinement plasmas. The increasing mode
midpoints in slow growth QSH discharge are also selected to make the ensemble. After
creating the ensemble, a second routine is run to characterize each event by the various
discharge parameters at the time of the event. After the above process, the ensemble
parameters are bounded to exclude outliers and constrain the ensemble to consist of
similar events. Finally, we can make different size of ensembles at each case: 1000
normal sawtooth crashes, 350 enhanced confinement bursts, and 100 slow growth QSH.
33 Identification of modes from one point internal measurements

We cannot identify m and n directly from an one point measurement, such as a
single magnetic or Langmuir probe measurement inside MST. We need multiple point

measurements to deduce m and n spectra. For many years, the MST group has estimated
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the k spectrum of a quantity within the plasma by correlating the single point
measurement with various spatial Fourier modes measured with the edge array of
magnetic probes. This technique produces the component of the internal signal that is
correlated with the quantity at the edge. It would not produce information on k spectra of
quantities that are localized within the plasma and vanish at the edge.

For the m=0 and m=1 tearing modes, the magnetic field is nonzero at the plasma edge;
thus this technique should produce useful k spectra of the quantity within the plasma.
Within the MST group these k spectra are referred to as “pseudospectra”. One limitation
in the technique is that it relies on mode rotation, such that an ensemble average is
equivalent to a toroidal average. In that case, a Fourier harmonic that is present in the
internal signal will only correlate with a harmonic at the edge at the same mode number.
However, if the modes are not perfectly rotating, then the ensemble average is not a
perfect toroidal average. In that case, the correlation in time between different Fourier
modes at the edge will be nonzero, producing an error in the deduced k spectrum of the
internal signal. We have devised a modification to the standard technique to eliminate
this error (for cases where the error is not large). Below we describe the standard
pseudospectrum technique, followed by the modified technique.

Standard pseudo-spectrum technique

The m and n modes of a quantity ®(r,9,¢,¢) inside MST can be measured in the

following way. We decompose ®(r,3,¢,t) into its Fourier modes with coefficients
P(r,t)

(Dtotal (r5 ‘9, ¢, t) = Z¢(r, t)m,nei(m‘g+n¢)
m,n
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The Fourier coefficients #(7,f),,, can be divided into two parts. One is correlated with
the magnetic field fluctuation at the plasma boundary and the other is not.
¢(r,t)m’n = ¢(r,t);:)’t:elated +¢(r’t)’unn;orrelated

c. b
Hrni = (3.5)

Here, b,,, is one complex Fourier component of the magnetic fluctuation at the edge of

MST derived from the 64 toroidal coil array. The unknown ¢ which is in the

mn 2

¢(r, 1) | can be formed from the known b,,, and @, (7,9,0,0).

m,n

i(m3+ng)
b’"’"e Bt e i(P9+99)
pq

(O (r:8,0.0)- 53,17 = S c,,

The bracket < > means the toroidal and poloidal average. Now we can apply the

orthogonality relation for 5,,,

<bm,n _b;,qe}(m.9+n¢)e—i(p.9+q¢)> — |bm,n 25(m _ p)5(n— q) (3.6)

From this orthogonality relation, we can find the unknown ¢, ,:

(q)total *b, e“i(”"9+"¢’)> )

mn

m,n ‘b

The @(r, 1)o7 is deleted when b, is applied because it is not correlated with

magnetic field. If the modes rotate well then we can use an ensemble average to

approximate the toroidal and poloidal average. Let (D(r,g,a, t) be a measurement at a
single point at a specific toroidal and poloidal angle (5,5). Then the unknown c,,,

becomes:
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<(D * b,:,n >e—i(m5+n$)
cm,n = lb

The bracket < > means the ensemble average.
Modified pseudospectrum technique |

In the real experiment, the rotation of each mode is not always good enough for
equation 3.6 to strictly apply. Therefore an error is introduced in estimating each
spectrum from  the standard technique because the orthogonality relation is not
completely satisfied. Figure 3.2 presents the phase distribution of m=0, n=1 mode during
the sawtooth crash ensemble. If the mode rotates well, the histogram should be flat (even
distribution of phase). The orthogonality relation is strictly satisfied only for an even
phase distribution. In real experiments the phase distribution is not perfectly flat as you

can see in figure 3.2.

&

s
=3

1=

number of events

Fig 3.2 Histogram of m=0, n=1 mode phases at sawtooth crash
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The matrix equation below shows the ideal case (orthogonality satisfied) using the

standard technique in a specific mode number m. The ideal case gives us a diagonal

matrix to solve the ¢, .

<(D . b,:,,o> <|bm’0’2>1/2e,-(ms) 0 . . 0 ém’o

< .b;,,l> 0 <|bm1‘2>1/2ei o . o
_ ) - .

(® bm> 0 0 0 <‘bmm 2>”Zef<m9+w> Co

The modified technique that we developed includes the correlation between modes due to
slow or non-uniform rotation. From this, we can reduce the errors caused by the slow

rotation. By the multiplication of complex conjugate of the b_ . into ©®(r,3,9,t), we can

m,n

get the n+1 by n+1 matrix at each specific m value. From this n+1 by n+1 matrix we can

solve for the unknown ¢, , at the specific poloidal mode number m (m=0,1,2,3...).

b |2 2 i) <b'",1 'b"',°> £im9+9) <bm’" 'bm,°> £/ (m5+n0)
m,0 <|b |2>1/2 """ <|b 2>1/2
<d)b;’0> m, mn Cmo
ey TORR O RSP ¢ SN

2>1/2

(©-8,) (B .b;,,,,>ei(m3) <|b,,,,,,

ot
m,0
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Fortunately the careful investigation of the correlation between each mode at the edge of
MST allows us to usually employ a 2 by 2 matrix instead of n+1 by n+1 matrix because
only a few off-diagonal terms are dominant in the n+1 by n+1 matrix. For example, the

m=1 and n=6 mode of the potential from the Langmuir probe measurement is from

N N
- cl,5<b1’6 b1’6> /(5+60) +cl’7<b1’7 b1’6> i(9+79)

(3.7)

This gives a 2 by 2 matrix for two unknown c, s and c,; . In the above equation (equation
3.7), b, with n=6 and 7 could be used for b, ; and b, , because we already know that the

b, with n=6 and 7 should have the poloidal mode number m=1 (see Séction 3.1). In

making the matrix, the degree of correlation between modes is investigated carefully to
choose the most important terms.
34 Bi-spectrum

The bi-spectrum is a powerful statistical concept to analyze data associated with
various nonlinear phenomena, including nonlinear wave coupling [4]. To distinguish
between nonlinear-coupled waves and linear independent waves, a higher order spectrum,
the bi-spectrum, is needed. It measures the degree of phase coherence between waves.
This technique successfully identified three-wave interaction in fluids [5,6] and nonlinear

energy cascading in edge plasma fluctuations [7]. Plasmas in the MST are ideally suited
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for investigating nonlinear wave-wave processes since the largest amplitude fluctuations
strongly interact, band these fluctuations are well resolved using the toroidal coil array at
the plasma surface. The bi-spectrum was applied to_magnetic fluctuations in MST
previously [8] although the quality of the toroidal array data has substantially improved
since that time. Applying the statistical method and the discrete Fourier transform (DFT),k
we can find the bi-spectrum for the magnetic fluctuations. Skipping many steps for the

sampling and DFT, we obtain the following definitions for bi-spectrum [9].

(52838002
Butera]” N[Butbi

nl+n2

72[”1»”2]= < (3.8)

')

The b,, is a magnetic fluctuation with mode number », .

Statistical meaning of Bi-Spectrum

Let us suppose that two waves at wave numbers », and »n, interact nonlinearly to
form a sum wave number n,, i.e.,n, +n, =n,. The corresponding Fourier amplitudes
X,1,X,,,X,; may be modeled by the relationship,

X, = Ax, X, 4 : 3.9)
where A is a measurement of the strengths of the coupling and € denotes any statistically
independent errors associated with the imperfection of the model and a real independent
part. In more physical terms, if the nonlinear interaction of two waves at wave number »,
and n, gives rise to a new wave at wave number n; =n, +n,, there will be a phase

correlation (phase locking) between the three waves. The bi-spectrum is a measurement

of this phase correlation and is a very useful concept with which to detect nonlinearities
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in fluctuation data. In order to clarify the physical meaning of “partially coupled”, we

consider the total power at wave number n;,.

That is,

P(n) = (o)) =4 (jx(m)xm)) ) + fef) (3.10)

The first part in RHS of equation 3.10 is the power from coupling of x[ #,] and x[ n, ].

From above definition of bi-spectrum, we obtain

2

* *
5 Xn3Xm X2

" (Yol
XX n2 X3

_ PR =|A|2<x,,2x,,1
(ol eal?) - (el

Therefore, the bi-spectrum represents the fraction of power at wave number n, =n, +n,

(3.11)

)

X

xn2xn1 n3

due to the coupling of waves at wave numbers », and n, (Eq. 3.10).

Selection Rule in Bi-spectrum

The bi-spectrum between modes follows the selection rule (», +n, = n,). We find

coupling in MST (figure 3.3(a)) for the triplet of modes with (m, n) = (0,1), (1,6), (1,7),
which satisfies the selection rule in both poloidal mode number m and toroidal mode
number n. The triplet shown in figure 3.3(b) does not satisfy the selection rule in the

poloidal mode number m because it is between (1,6), (1,7), (1,13). As a result, the bi-
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spectrum is as small as the statistical error which is also shown in the figure. The method

for determining the error is discussed in the appendix.

(a) selection rule satisfied
0.6 T T T —r—

(otl )1(1 16)'“:7) '

0.4+
bi B
spectrum

0.2

statistical error

0.6 — ———r——— T - T

5 (16).(17,1,13) 4

0.4} —
bi » 4
spectrum | 4

0.2+ -

-2 -1 0 1 2

Figure 3.3 Bi-spectrum vs time through a sawtooth crash

Resonant mode and Non-Resonant mode in the bi-spectrum

In this section, we provide some information about the nonlinear coupling
between modes when the reversal parameter is larger than zero (non-RFP). In this case,

the poloidal mode number m=0 is not resonant (from safety factor profile). This means
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that m=0 modes are suppressed. The bi-spectrum for the triple (0,1), (1,6), (1,7) can still

be measured and compared with that for the normal RFP.

(a) all resonant modes

0.6 ' T

0.4
bi "
spectrum |
0.2+
0.0k
-2 2
(b) non-resonant mode included
0.6
0.4
bi
spectrum
0.2

Figure 3.4 Bi-spectrum during a sawtooth crash in (a) normal RFP and (b) non-RFP for (0,1),(1,6),(1,7) interaction

Figure 3.4 (a) shows the bi-spectrum for the normal case where all modes are resonant
along with the noise level. Figure 3.4 (b) shows the bi-spectrum in the non-RFP case
where one mode is non-resonant (m=0) and two modes are resonant (m=1) along with a
noise level. The bi-spectrum is larger in the normal RFP than in non-RFP. We can
conclude that the coupling between resonant modes and non-resonant modes exists but

appears to be weaker than in the case with all modes resonant.
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Bi-spectrum of resonant modes with the same resonant surface

The nonlinear coupling between resonant modes which are at the same resonant
surface is shown in figure 3.5. Every m=0 modes resonates at the same resonant surface
(near the edge in MST). Figure 3.5 shows the bi-spectrum between (0,1), (0,2), (0,3)

modes along with the noise level. These modes satisfy the selection rule.

0.4
bi
spectrum

Figure 3.5 Bi-spectrum between (0,1), (0,2), (0,3) toroidal magnetic field modes

We conclude that in MST nonlinear coupling between resonant modes satisfying the
selection rule exists for modes that share the same resonant surface, as well as for modes
with different resonant surface.
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4. Measurement of individual equilibrium and fluctuation quantities
4.1 Introduction

In this chapter, the equilibrium and fluctuation quantities measured by the probes
(b-dot probe and Langmuir probe) in three different plasmas (Sawtooth, EC, QSH) are
presented. Physic conclusions are drawn from products involving fluctuation and
equilibrium quantities. We present a measurement of individual quantities (electric field,
magnetic field, and velocity) in this chapter. The products are evaluated and key physics
conclusion drawn in next chapter. We present three different plasmas in section 4.2. In
section 4.3, we present the equilibrium measurement and in section 4.4 the fluctuation
measurement is represented.

4.2 Three different plasmas-sawtooth , EC, and QSH

200 T
bd(0.-1) - chosen for ensemble E
150~ sawtooth 3
Gauss | 7
100f— E
sof~ 3
ok vt s U e b LTV  SOPNP
10 12 14 18 18 20
150
N chosen for ensemble EC N
bo0.-1)  F E
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- \\ b
10 12 14 16 18 F)
*° 3
chosen for ensemble QsH ‘g‘
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20 -3
10 f
° E
50
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time(msec)
Figure 4.1 Magnetic fluctuation vs time, showing time periods used for ensemble-averaging in each case of plasmas
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Figure 4.1 shows the amplitudes of magnetic fluctuation at the edge and how we pick the
ensemble periods in three different plasmas (Sawtooth, EC, QSH). The large bursts of
m=0 magnetic fluctuations are chosen to make the sawtooth ensemble. The small bursts
of m=0 magnetic fluctuations between large bursts are chosen to make the ensemble for
EC plasmas. The big and slow developing magnetic fluctuations are chosen to make the

ensemble for QSH plasmas.

Sawtooth C1-C4: 2200volts C5:350volts Bt crowbar:60volts

EC C1, C2: 2500volts C5 :110volts | Bt crowbar:90volts
Bp crowbar:200volts

QSH C1-C4 :2200volts C5 :450volts Bt & Bp crowbar:
Ovolts

Table 4.1 Parameters in each plasma (Sawtooth, EC, QSH)

Table 4.1 shows the parameters for the MST capacitors to make each plasma (Sawtooth,
EC, QSH). The reversal parameter is ~-0.2 and electron density is 0.5%10”cm™ in the
sawtooth plasma. The reversal parameter is ~-0.5 and electron density is 0.5*10" c¢m™ in
the EC plasma. The reversal parameter is ~0 and electron density is 0.5*10"”cm™ in the

QSH plasma. The electron density (~0.5*10"cm™) is optimized for fast mode rotation

in MST to make ensemble analysis useful.
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Triple Langmuir probe measurement

Measurements of equilibrium quantities
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Figure 4.2 Equilibrium quantities (floating potential, electron temperature) during one sawtooth

In this section, the equilibrium quantities measured by the probes (b-dot probe
and Langmuir probe) in three different plasmas (Sawtooth, EC, QSH) are presented.
Physic conclusions are drawn from products involving fluctuation and equilibrium
quantities. The equilibrium quantities are derived from the ensemble average over many
similar events. The ensemble average is the same as toroidal and poloidal surface average
because of mode rotation. Figure 4.2 shows the ensemble averaged floating potential and

electron temperature (equilibrium quantities) during the sawtooth at two radial locations
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in the edge of MST. The equilibrium floating potential is negative in the MST edge and
has a very weak radial gradient at this location. The potential drops by about 100 V at the
sawtooth crash. The equilibrium electron temperature is about 40 eV and increase slightly
at the crash. The excitation of electron temperature at the sawtooth crash is less for the

deeper insertion. The plasma potential is @, =®, +2.27,. Hence given these

measurements, the temperature correction is not negligible but small in the MST edge.

0 ' equilit;rium 0 i '
volts floating pot(?ntial volts zg:::ir::::;ential
—100 at4.5cm radial depth 3 —100t at 5.5cm radial depth
q)f (Df
—200 —200
—300 ] — 300
—400 ¢t " " 1 —400 : N .
—0.16-0.050.00 0.05%5 0.10 —-0.16-0.050.00 0.05 0.10
time(ms) time{ms)}
50 24 Y L] g T 50 T T T
eV eV
30F 7 30
20} b : I, 20
Te e;qullnbnum
electron temperature uilib:
10k at 4.5cm radial depth 3 10k :?ecitro:::‘mperature
at 5.5cm radial depth
0 Lo a L i 1 a N O Loa 1 i 1 N N
—-0.16-0.050.00 0.05 0.10 —0.16-0.050.00 0.05 0.10
time{ms) time{ms)

Figure 4.3 Equilibrium quantities (floating potential, electron temperature) during one EC burst

EC plasma has deeper reversal parameter than sawtooth plasma. This means that

the reversal surface is located deeper inside MST. Figure 4.3 shows the ensemble
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averaged floating potential and electron temperature during the EC burst. The cycle time
of EC burst is much shorter than that of sawtooth. The equilibrium floating potential is
negative in the MST edge and has a strong radial gradient at this location. The potential
drops by about 150 V-200 V during the burst. This is more than for the sawtooth crash.
The equilibrium electron temperature is about 40 eV and decreases during the burst.
Therefore, the temperature correction for the electron potential in EC bursts is more

negligible than for the sawtooth crash.

— 80 [T e —80 Ty
volts volts
vav equilibrivom
floating potential
—100 ] QO+ at 5.5cm radial depth
() (Df
/
equilibrium
floati ial
—120|  Lliscmradildepth —-120}
—140 . . . —140 ) . .
—-0.2-0.1 0.0 0.1 0.2 —0.2-0.1 0.0 0.1 0.2
time(ms) time{ms)
40 - - - 40 - , -
ev ev '\/\/\/\/\/\/\/\,\/"‘/\/\h‘
30 W\“/\« 30} :
equilibrium T equilibrium
20¢F electron temperature E e 20 F electron temperature
T at 4.5cm radial depth at 5.5cm radial depth
e .
10 ¢ 3 10
O " 3 1 i 1 O L i i
-0.2~-0.1 0.0 0.1 0.2 -0.2-0.1 0.0 0.1 0.2
time(ms) * time{ms)

Figure 4.4 Equilibrium quantities (floating potential, electron temperature) during QSH
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The modes in QSH plasma grow slowly compared to sawtooth or EC plasmas
(see Fig. 4.1). Hence the time period in QSH used for ensemble averaging is different
from other plasmas. The time period of faster part during the whole slow mode growing
is selected. Figure 4.4 shows the ensemble averaged floating potential and electron
temperature for the QSH plasma. There is not much change during the time window
because the QSH periods are more steady-state and do not have a bursty character (see
figure 1.7). The equilibrium floating potential is negative in the MST edge and has a
radial gradient at this location. The equilibrium electron temperature is about 40 eV.
Unlike other plasmas (RFP and EC), the magnitude of the floating potential is small and
comparable with the electron temperature. Therefore, the temperature correction in QSH

is not negligible, but important.

B-dot probe measurement

Figure 4.5 shows the ensemble averaged components (radial, toroidal, and
poloidal) of magnetic field at two radial points during the sawtooth. The equilibrium
toroidal magnetic field is negative at edge of MST. The toroidal and poloidal equilibrium
magnetic fields decrease with radius in the edge as expected from Taylor’s theory (see
Fig. 1.1). The poloidal equilibrium magnetic field is positive and is much larger than the
other equilibrium magnetic field component. The radial field is a result of the probe not
being aligned exactly perpendicular to the flux surfaces. Hence a fraction of the poloidal
field is detected in the radial coil. The largest change at the crash is in the toroidal
component which becomes less negative at both radii. It means the m=0 resonant surface

moves toward the wall at sawtooth crash.
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Figure 4.5 Equilibrium magnetic field quantities (br, bt, bp) during one sawtooth at radial depth 5.5cm and 6.5cm

Figure 4.6 shows the ensemble averaged magnetic fields during the EC burst. The
toroidal magnetic field is more negative than for the sawtooth because the EC plasmas
were more deeply reversed. This means the m=0 resonant surface is located at a deeper
radial point than for the sawtooth. The largest change during the burst is in the toroidal
component which becomes more negative at both radii. This means the m=0 resonant

surface moves toward the center at the crash, in contrast to the sawtooth case.
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Figure 4.6 Equilibrium magnetic field quantities (br, bt, bp) during one EC burst at radial depth 5.5cm and 6.5cm

Figure 4.7 shows the ensemble averaged magnetic fields during QSH. The
equilibrium magnetic fields are noisy during the period of mode growth in QSH. This
fluctuation pattern is unique to QSH. The toroidal magnetic field has a value near zero
because the QSH plasmas are obtained with F ~ 0. The m=0 resonant surface is located at

the vacuum vessel in this case.
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Figure 4.7 Equilibrium magnetic field quantities (br, bt, bp) during QSH at radial depth 5.5cm and 6.5cm

4.4  Measurements of fluctuation quantities

Plasma potential and electric field fluctuations

The plasma potential is used to find the electric field at the edge of MST. This
means that the radial, toroidal, and poloidal derivatives of the plasma potential

fluctuations should be considered to get the electric field fluctuations. We use a
cylindrical coordinate system with the z component replaced by Re. The modes of

electric field are then given by
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Figure 4.8 Mode amplitude of plasma potential (D p ) at 5.5cm in three different plasmas. The lower curve in each

case is the statistical noise level.
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The toroidal and the poloidal derivatives are derived from the ¢’™?*" dependence in the
modes of plasma potential ®™". The ®™" is derived by computing the correlation of the

measured @ , with a particular mode in the toroidal array of magnetic coils (described in

chapter 3).

Figure 4.8 shows the ensemble averaged pseudo-spectral mode amplitudes of
plasma potential in thé three different plasma types. The poloidal mode number m = 0,
toroidal mode number n = -1 is shown for the sawtooth; m=0, n=-2 for the EC; and m=1,
n=-5 for the QSH. The most dominant mode in each plasma is presented in figure 4.8. In
chapter 3 it was noted that good mode rotation (uniform sampling of different mode
phases) is needed to estimate the pseudo spectral fluctuation amplitudes. This condition is
satisfied for each of the modes shown in figure 4.8. The (m,n)=(0,-1) mode in EC plasma
has poor rotation but similar magnitude compared to the (0,-2) mode. Hence we use the

(0,-2) mode for the pseudo-spectrum. The noise level for each case is the statistical error.
1/2
. 1 <¢2 a2>
noise =| —
N <a 2 > s

where N is the ensemble size, @ is the total measured fluctuation level and a is the

amplitude of the magnetic fluctuation from the toroidal array. From the measurement of

plasma potential, the electric field is calculated.
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Figure 4.9 m=0 mode amplitudes of electric fields in sawtooth and EC plasmas

Figure 4.9 shows the ensemble averaged mode amplitudes of toroidal electrical
field with m=0, n=1 for the sawtooth and m=0, n=2 for the EC plasma. They are

measured at 6cm and 5.5cm in from the wall respectively. This is just outside the m=0
resonant surface. The electric field is calculated from E;” =k,®"" and ®*" is the (0,n)

mode of plasma potential. We can say that the toroidal electric field is excited near the

burst time in both plasmas from figure 4.9. The toroidal electric field gives rise to the

radial Ex B velocity which is the relevant quantity for MHD mode evolution equation

for bg .
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Figure 4.10 m=1 mode amplitudes of electric fields in QSH plasmas
Figure 4.10 shows the ensemble averaged mode amplitudes of electric field in
three directions (radial, poloidal, toroidal) in QSH with m=1, n=5 at Scm inside the wall.

The radial component of electric field is the largest component and allows the largest

noise level. The radial component is almost the same size as the noise level which, as we
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will see in Chapter 5, makes it difficult to be certain of the sign of the mode driving terms

oo’
o

in the QSH case. Here E,’ =k,®Y, E; =k,0", and E,” = . The radial

derivative is calculated from the difference of measurements at 4.5cm and 5.5cm radial
depth. The poloidal and the toroidal components are from the average of measurements at
two radial points. Unlike the sawtooth and EC burst, QSH shows the slow variation

during mode growing time.

Velocity fluctuations

The velocity fluctuations are derived from the electric field fluctuations and the
equilibrium magnetic fields. In order to measure the linear drive terms in the MHD
equation, we need the component of velocity perpendicular to the magnetic
field(v, ).This velocity is dominantly the E x B velocity. The electrostatic potential is

dominant in MST. For example, the (m,n) = (0,-1) component of velocity is then given by

-0,~1 1 —=o0-1 —00 1 —00 —o0-1

v =—>(FE xB )+—(E xB )
3] |

—0,-1 - 4

£ = _V¢Po, 1

-0 <, 0.0

E =-Vgp~

Figure 4.11 shows the radial velocity for m=0, n=-1 for the sawtooth crashes and

m=0, n=-2 for the EC burst.
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Figure 4.11 m=0 radial component of velocity fluctuation in sawtooth crash and EC burst

The radial location of measurement for the sawtooth crash is 6cm inside the MST wall
and in EC plasma it is 5.5cm deep. The measured velocity fluctuation is well above the

noise level during the burst in amplitude for both sawtooth and EC plasmas.
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Figure 4.12 m=1 mode velocity fluctuations in QSH plasma

Figure 4.12 shows the velocity fluctuations with m=1 and n=5 in the QSH plasma.

The radial location of measurement is Scm deep. The toroidal component of velocity is

dominant. The statistical error is comparable with the measured velocity for the poloidal

and toroidal components. This comes from the error in the radial electric field (Fig. 4.10)
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because the poloidal and toroidal velocity are derived from the radial electric field. The
radial velocity is more reliably measured. The high noise level in poloidal and toroidal
component will lead to uncertainty in the estimation of the linear term in the MHD
equation for QSH plasmas.

Magnetic fluctuations

Each component of magnetic field is measured with the b-dot probe at several
radii. The magnetic field fluctuations are derived from these measurements by correlation
with the Fourier coefficients of the toroidal array of edge coils. Figure 4.13 shows
ensemble averaged m=0 mode amplitude of the toroidal component of magnetic field for

the sawtooth crash (n=-1) and EC burst (n=-2).
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Figure 4.13 m=0 modes of toroidal magnetic field in sawtooth crash and EC burst

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

The radial locations of the measurements are 6cm and 5.5cm deep respectively. The
amplitudes rise at the crash and burst above noise level.

Figure 4.14 shows the ensemble averaged radial, poloidal and toroidal magnetic
field fluctuations with mode number m=1 and n=5 in QSH. The radial location of
measurement is Scm deep for these data. The measurement of magnetic field is well
above the noise level unlike the potential and velocity (see Fig. 4.10 and 4.12). The radial
component of magnetic field is small near the conducting boundary of MST. The
oscillation in fluctuation amplitudes in figure 4.14 are due to errors in the measurements

and finite ensemble size.
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Figure 4.14 m=1 modes of magnetic field in QSH plasma
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S. Stability of m=0 and m=1 modes
5.1  Introduction

In this chapter, we investigate the energy flow between modes using the pseudo-
‘spectrum measurements of velocity and magnetic field fluctuations described in chapter
4. We focus on the modes with poloidal mode number m=0 and toroidal mode numbers
n=1 in sawtooth crash and the n=2 bursts in EC. We also examine the m=1, n=5 in the
QSH plasma where it is the dominant mode. The energy equation for magnetic
fluctuations is considered to find whether each mode is stable. The linear terms in the
magﬁetic field energy equation are measured and the sign of the measured quantity will
determine if the mode is stable or unstable. A negative sign means stable and a positive
sign means unstable. We also examine the nonlinear terms which describe the energy
flow between modes.

From Maxwell’s equations and the simple form of resistive Ohm’s law, we can

find the magnetic induction equation.

E+vxB=nJ
VxE:-aa—l:
- - (5.1
VxB=pu,J
598 v xB)+-LVE
ot Hyo

The Hall effect can be important in Ohm’s law near resonant surfaces but is measured to

be small in the region of our measurements[1,2]. The second term (iV2 E) on the right
Hy

hand side of the magnetic induction equation represents resistive dissipation and is very
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small near the edge of MST where our measurements are made. Breaking equation 5.1

into the Fourier modes we obtain (neglecting resistive dissipation)

B(r,9,8,0) =Y bua(r,0)exp(im + ing)

B - - L . 62
at’j =V x(vij xboo)+Vx(vooxbi;)+ ZVx(vl,p Xbmyg)
i=l+m
J=p+q

The first two terms [V x (;,—, ;X Bo,o) +Vx (;o,o X Bi, ;)] in equation 5.2 are linear terms and

the last terms [ ZVx (;1, p X l-;m,q)] are nonlinear terms. We use a cylindrical coordinate

i=l+m
J=p+q

system [3]. From equation 5.2, we obtain the magnetic energy equation:

- 2
Jb. . .. I
—87—: Vx(wi,jxboo)+Vx(veoxbij)+ ZVX(VI,p'Xbm,q) ob,; +C.C (5.3)
i=l+m
J=p+q

The complex conjugate term insures that the energy is a purely real quantity. In the
following sections, we combine the measured pseudo-spectral quantities from chapter 4
to derive the terms in equation 5.3 for the different plasma types. We assume that the sign
of the linear term is independent of radius. In linear theory this is true. The nonlinear
computational results show that the sign of the radial integration of the linear term and
the linear term at a specific edge radial point for the m=0, n=1 mode are the same. If the
sign were different at different radii, it would imply that the source of mode energy is
different at different radii. This seems unlikely but cannot be strictly ruled out without
making more measurements beyond the range where our probes can operate.

5.2 Stability of m=0 mode in the sawtooth
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For the m=0 n=1 mode, the magnetic energy equation for the toroidal component,

keeping only the first linear term is;

6’b§’_1‘2 ~0-1 =00 ol
Py =Vx(v xb );-b;7" +CC

1 -~ ~l* a - -1* - a _1#
— B by ) = (v B by v (b0 + CC

(5.4)

We have evaluated the second linear term in equation 5.3 for this case and found it to be
small. Each individual term on the right side of equation 5.4 is measured directly and
added together to infer the stability of the m=0, n=1 mode. Figure 5.1 (a) shows the m=0
linear term (right hand side of equation 5.4). The error bars show the variation possible
given the finite ensemble size and associated error in the correlations. Figure 5.1 (b)

shows the time derivative of magnetic field energy (left side of equation 5.4).
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Fig 5.1 (a) m=0 linear term and (b)time derivative of magnetic energy (left side of Eq 5.3)
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The m=0 linear term is negative during the sawtooth crash. This means that the m=0
mode is stable during the entire sawtooth crash. The negative sign means that the energy
goes from the m=0, n=1 mode to the m=0, n=0 equilibrium. Hence we can say the
equilibrium field gains energy from the m=0 mode during the entire sawtooth crash.
Hence, the sudden growth of the mode at the sawtooth crash does not occur due to
instability. The energy source must be from either other modes or effects not described
by the MHD equations we are considering here.
5.3  Comparison with MHD computation
As pointed out previously, the RFP sawtooth cycle has been studied for many years and
MHD computation has been a very useful tool for understanding the behavior of the
different modes [4]. The DEBS code is a 3D, nonlinear resistive MHD code that solves
the nonlinear, resistive MHD equations in cylindrical geometry [5]. It uses a finite
_difference method in the radial direction and fast Fourier transform in the poloidal and
toroidal directions. The simulation has been used to estimate the same linear term of
equation 5.3 and the result also shows the stability of m=0 modes during the crash(fig
5.2). The linear term is negative during the entire crash phase in computation. The result
from direct measurement and the result from DEBS code are in good agreement (fig 5.1.a
and fig 5.2). The DEBS simulation is done in a parameter regime (Lundquist number and
radial location) similar to the real measurement. In the computation, the growth of the
m=0 mode is due to nonlinear coupling of core resonant m=1 modes. In the next section

we examine this in MST.
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Fig 5.2 Computation result (DEBS code) of m=0 linear term [6]
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5.4  Nonlinear stability of m=0 mode in sawtooth

The bi-spectrum between m=0 and m=1 modes at the edge of MST shows that there is
nonlinear coupling between these modes (see section 3.4). It indicates that coupling exists
but does not give the direction of energy flow. So the m=1, n=-5,-6,-7,-8,-9,-10 modes
have been measured to explore the nonlinear energy flow from m=1 modes to m=0
modes during the sawtooth crash. The m=0 mode evolution, keeping only the nonlinear

drive term is

oy =Vx(Fxb
ok x(Vxb),
obyt L )
[ _ Ln g 1,n+l+ Lz 1,n+l* Lng Ln+ls Lng Ln+l*
at —nz=6: ;(v¢ br —Vr b¢ )+5(V¢ br —V, b¢ ) (5‘5)

1 Ln+l* gz 1n Ln+l*z 1.n a Ln+l* g 1n Ln+l* gz 1n
............. +—(V¢’ br’ -y, b¢’ )+E(V¢’ br’ -y, b¢’ )

The measurement of nonlinear terms includes many more terms than linear measurement.

Converting equation 5.5 to an energy equation, we find
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2
a|b°"‘] 101
¢ _ LapLntls  _ 1ng La+ls 0,-1%
— > — "8, —v;"b," ) xb,
=6
+ i(vl’”bl’"“' _ vl,nbl,n+1t) x bO,—l*
¢ “r r V¢ 4
or
1 * * —1*
+— (", — v, by ) x by (5.6)
r

0 . . -1
+ _a_(v;;nﬂ b:,n _ vl,n+l b;,n) X b:, 1
r

+ Complex..Conjugate

Figure 5.3 (a) shows the m=0 nonlinear terms (right side of equation 5.6) with noise level
and the figure 5.3 (b) shows the time derivative of magnetic field energy (left side of
equation 5.6). For the nonlinear measurement, n=5 and n=6 are chosen in equation 5.6
because they are the dominant modes. A positive sign at the sawtooth crash would mean
that the m=0 mode is nonlinearly driven through the nonlinear coupling between m=1
modes. However, the noise level is too large to confidently assign a positive or negative
sign to the term. The main reasons that the measurement of the nonlinear term is not

resolved are
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Fig 5.3 m=0 nonlinear term (a) and time derivative of magnetic energy (b)

1. Nonlinear term measurement requires many more terms than the linear drive
measurement, and hence the final result is more prove to error.

2. The m=0 modes are strong in the measured signals (potential and magnetic fields)
in the edge near the m=0 resonant surface making the m=1 modes more difficult
to detect.

3. The m=1 mode velocity fluctuations are small in the edge.
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Fig 5.4 Magnitude of dominant modes in floating potential at 6.5cm radial depth

In figure 5.4, we show the pseudo-spectra for the m=1 floating potential used in the
calculation. The noise level is large and a strange bump after the sawtooth crash is
present. The large bump is coming from the slow rotation of the modes and is very
critical in applying the pseudo-spectrum method. Fast mode rotation is necessary to get
the reliable data using the pseudo-spectrum. Although the nonlinear term is not resolved,
the measurement of m=0 stability coupled with a large bi-spectrum between m=0 and
m=1 modes strongly suggests the m=0 is driven nonlinearly, as expected from MHD
computation.

5.5 Linear terms for m=0 mode in EC

In the bursts of m=0 activity during EC periods, many n’s are excited. We focus on the
m=0, n=-2 because it is large and rotates well. The m=0, n=-1 also increases at the burst
but the slow mode rotation results in deformation of the shape of pseudo-spectrum (see

the bump after t=0 in Fig. 5.5 a).
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Fig 5.5 Magnitude of toroidal component of magnetic mode with m=0,n=-1 (a) and m=0,n=-2 (b)

The MHD equation for the toroidal component of the m=0, n=-2 mode is;

0,-2 ~02 =0,
abét =Vx(v0’2xb00),
0,-2|2
P Loy gty e 6D
ot r or or

+ Complex..Conjugate

Each individual term in the right side of equation 5.7 is measured directly and adds up for

stability of m=0 and n=2 mode.
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Fig 5.6 m=0 linear term (a) and time derivative of magnetic energy (b)

Figure 5.6 (a) shows the linear term for the m=0, n=-2 mode (right side of equation 5.7)
with noise level and figure 5.6 (b) shows the time derivative of magnetic field energy
(left side of equation 5.7). Figure 5.6 (a) is positive and this means that thev m=0 mode in
the EC burst is linearly unstable. We might also say that the energy goes from the
equilibrium fields to m=0, n=-2 mode because of the positive sign of the linear term
during the m=0 burst in EC. This result contrasts with sawtooth crash. Recall that one

difference is that the m=0 mode alone is excited in the EC burst (see figure 5.7). Hence, it
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is reasonable to think that it might be unstable. This type of event has not yet been

observed in MHD computation.
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Fig 5.7 Contrast in m=0,1 mode excitation between sawtooth crash (a) and EC burst (b)

5.6 Linear terms for m=1 mode in QSH

The m=1, n=-5 is the dominant mode in the QSH plasmas examined in this thesis. The
m=1, n=-5 mode is appears in each component, poloidal and toroidal. Hence, we can
examine the stability for each component. The MHD equation for the poloidal

component of the m=1, n=-5 mode is;
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1-5 s1,-5 0,0
abast =Vx(v xb ),
a5 o 19
9 _ _5% - 1= —5%
= —g(v:’ *by?) by _—156_¢(v;” by’ — vy b)) by (5.8)

+ Complex..Conjugate

Each individual term in right side of equation 5.8 is measured directly and added up to
obtain the stability of the poloidal component of the m=1 and n=-5 mode. The MHD

equation for the toroidal component of the m=1, n=-5 mode is;

ab;’_s v (-»1,—5 Zo,o )
=V Xy X
ot ¢
ke 14 10
¢ 1 5.9
= ) T b vy by (-9)

+ Complex..Conjugate

Each individual term in right side of equation 5.9 is also measﬁred directly and added up
to obtain the stability of the toroidal component of the m=1 and n=-5 mode. Figure 5.8
(a) shows the linear term for the poloidal component of the m=1 mode (right side of the
first equation in equation 5.8) and figure 5.8 (b) shows the linear term for the toroidal
component of the m=1 mode (right side of the second equation in equation 5.9). The
linear term fluctuates during time because of a coherent noise in the toroidal array signals
during QSH which is not fully understood. The linear drive term for the m=1 mode in the
poloidal component is very weak and mostly negative (fig 5.8a). The linear drive term for

the m=1 mode in the toloidal component is strong and mostly positive(fig 5.8b). Both
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components are noisy due to the uncertainty in the radial electric field fluctuation as
discussed in section 4.4. Because of the large noise, we cannot determine with certainty
the sign of the linear term for either component and the result for the QSH case is
inconclusive. In fact the measurement is more difficult in this case anyway because the

mode growth is very slow in time.

0.05
0.00 [z
~0.05

-0.10

Illlill!l'

teslazlsec 8

time{ms)

Fig 5.8 m=1 linear term in poloidal component (a) and m=0 linear term in toroidal component (b)

5.7 Summary
We have determined the cause for reconnection in a laboratory plasma by measuring the
term in MHD which accounts for the energy exchange between a magnetic fluctuation

and the axisymmetric field. The measurement was made for three types of reconnection
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events in the RFP: the normal sawtooth crash, enhanced confinement m=0 burst, and
slow growth quasi-single helicity. With sawtooth crash, the term is negative for modes
with m=0, indicating that energy flows from the mode to the axisymmetric fields. A
significant measured bi-spectrum between the m=0 and m=1 modes indicates that
nonlinear coupling is present. This supports the standard picture that m=0 modes are
stable, but m=0 reconnection is driven by nonlinear coupling to other modes [7]. In the
EC m=0 bursts, an opposite picture holds: m=0 modes derive energy from the
axisymmetric fields indicating they are unstable, corresponding to spontaneous
reconnection. Such a picture awaits theoretical study and more complete equilibrium
profile measurements. In the slow growth QSH plasmas, the term for the m=1 mode in
the poloidal component is very weak and mostly negative and for the toloidal component
is strong and mostly positive. Because of the large noise, we cannot determine with
certainty the sign of the linear term for either component and the result for the QSH case
is inconclusive. These results support the possibility that nonlinear mode coupling could
be important in reconnection in other laboratory and astrophysical venues. These
techniques might also be useful to examine and understand how these modes are
produced and may lead to improved ways to control them. For example, to control m=0
modes in the normal sawtooth plasmas (the most dominant fluctuation in normal
sawtooth plasmas), it appears one needs to control the m=1 modes which cause them.

However in improved confinement (EC) plasmas, where m=1 modes are already
suppressed, the m=0 bursts should be controlled by the edge current or pressure profiles

which affect the equilibrium fields since they are unstable.
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Appendix ; Error analysis

To completely characterize a fluctuation process requires that we have noiseless
data and access to all possible realizations, which, from an experimental point of view, is
not possible. We are faced with estimating certain features of the underlying fluctuation
process of interest, based on a finite number of realizations. Fluctuation processes are
characterized in part by their mean value, correlation function (coherence), and other
higher order correlation functions (such as bi-coherence and quadro-coherence). For
example, bi-coherence can be used to investigate the non-linearity between the
fluctuation signals (fluctuation processes) which satisfy the sum rule. Every signal in the
experiment includes some errors (randomness) due to limits in the experiment. We also
have a limit in the size of the ensemble. These limits introduce uncertainties in our
analysis. We use artificial data to look at the effect of noise and finite ensemble size on
correlation functions of various orders. We also investigate the error in each correlation
function analytically. We add various magnitudes of randomness to these data. We
investigate the relation between the size of randomness added in the data and the critical
number at each correlation function. The critical number is the size of ensemble where
the correlation function with fully randomized data intersects the asymptotic (analy‘;iCal)

value of the correlation function with infinite number of realization.

Values of correlation functions with fully randomized signals

Any order correlation functions with fully randomized signals give the same
result : (correlation function)*2~ 1/N where N is the size of the ensemble or number of

realizations.. This is shown in graphs (a ) and (b ). Graph ( a ) is the coherence between
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two fully randomized signals, which have oscillating real and imaginary parts, each with
amplitude one. Graph (b)) is the bi-coherence from three fully randomized signals, which

have oscillating real and imaginary parts, each with magnitude one.
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(a)Coherence and (b)bi-spectrum magnitudes with fully randomized signals

This 1/N dependence can be derived analytically. We think about the coherence function

first.
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If the data is fully randomized, the first term is % =71[— because |X,'|v,|" =|Z,|" ,where

Z is fully randomized signal, and the second term tends to zero for fully randomized
signals for large N. We can show this analytically. The same results can be obtained in
the bi-coherence and the quadro-coherence because Y signal (fully randomized) can be
replaced by the product of two or three fuﬂy random signals. We can prove that the

second term is zero as follow.
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Therefore,
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PR DR

Jk=1 Jk=1

S =

=0....for.large.N

b

here.z, =x;x,y;y,..and.® , =¢, - ¢, + 3, -9,

Z is fully randomized signal because X, y, 3, and ¢ are all randomized. Here, j, and k are
all dummy variables. In S, upper part is zero, because <Z>=0 for fully randomized signal

Z.

The asymptotic value of correlation functions with partially randomized signals

We examine coherence(y), bi-coherence(b), and quadro-coherence(Q) in partially
randomized signals. They all go to their analytical values asymptotically, when the size
of ensemble is bigger. The signals used are exponential functions with magnitude of one.
For coherence, two exp(i¢) are used. For bi-coherence, exp(id), exp(2i$), and exp(3ip)
are used. For quadro-coherence, exp(id), exp(2ip), exp(3id), and exp(6i) are used. Here,
¢ is the phase. If no random signal is added to the above signals, all correlation functions

have the value one because above signals in each correlation function satisfy the
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summing rule. When add the random signals of various magnitudes to the above signals
in each correlation function the result is less than one. For example, we add random
signal R(-0.2<R<0.2) to each exponential signal (magnitude=1) in each correlation
function. This is in the graph ( c ).

In coherence, we add fully random signals R to real and imaginary part of test data.

X =cos(¢)+ R +i(sin(g) + R)
Y =cos(@) + R +i(sin(@) + R)

For bi-coherence,

X =cos(@)+ R +i(sin(@) + R)
Y =cos(2¢) + R +i(sin(2¢) + R)
Z =cos(3¢)+ R +i(sin(3¢) + R)

The graph ( d ) is when —1<R<1, in other words the magnitude of the random and non-
random part are equal. The graph (e) is for -3<R<3 in which case the randomized

component is even larger fraction of the overall signal.
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Analytical value of correlation function with partially random signals and the

critical number

We apply the analytical method to various orders of correlation functions. In this
section, we find the asymptotic values of correlation functions for an ensemble of infinite
size. We begin with the simple statistical review.

-What is the expectation value of the fully randomized signal?

E[X]=0 for any random signal x.

Here, E[x]= IP(x)-xdx is the expectation value and P is the distribution function in

signal, where P(x)=1/2a because P should be constant in random signal and jP(x)dx =1.

Here, a is the maximum value of signal in the above equation.

-What is the expectation value of the square of the fully randomized signal?

E(x*)= :[P(x) x’dx = 51; ‘]xzdx

—-a

here, P is the distribution function in random signal.

2
Therefore E[x*]= a? for any random signal x with the maximum a.

We start from coherence function.

2

(xtrem)
(e Y™

X[l =1]=cos(lt) + R+i-(sin(lt) +r)
Y[l =1]=cos(lf) + E +i-(sin(lt) + e)

}/:

for exponential signal with magnitude of 1.
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We used the artificial sinusoidal signal because it is similar to real periodic experimental
function. Every signal can be decomposed into sinusoidal functions by the Fourier
transform if it is periodic or finite. We add random signals(R, E, r, and €) to the real and
imaginary parts of the exponential function. Therefore, the exponential function becomes

partially randomized. R, E, r, and ¢ are all random signals with the same magnitudes.
Therefore, <E> = (R) = (e) = (r) =0. Here, < > means the expectation value coupled by
averaging over an ensemble of realization of the signals. The important terms in
computing ¥ are

(cos t) = cost...... (sin t> =sint

<cos2 t> =COS% tounnnnn: <sin2 t> =sin’¢
(E . cost} = cost<E> =0
(R-E)y=(R-ry=0

By the above equations, the coherence is as follow.

yt= 1
a+2-(r*)y
<r2>=§ ........ |r| <a
1
nyt= 5
2a
(1+T)2

-How about the others?

The bi-coherence is found using similar correlated sinusoidal functions with an additional

random component.
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2

e snpemxem) 1
(e L)Y xuxw ) a+2:(Fpa+s ()

X[l, =1]=cost+R+i-(sint +r)
X[l, =2]=cos2t+E+i-(sin2t +e)
X[, +1, =3]=cos3t+P+i-(sin3t + p)

R, E, P, 1, e, and p are all random with the same magnitudes.

The quadro-coherence is found as follow.

[ s snxcmxe ) !
(et +4, + L WX X IXILT) - Q2 (2 DA+26-(2))

X[l,=1]=cost+R+i-(sint+r)

X[, =2]=cos2t+E+i-(sin2t+e)

X[, =3]=cos3t+P+i-(sin3t+ p)
X[+, +1; =6]=cos6t+ K +i-(sinbt +k)

R,E,P,K, 1, ¢, p, and k are all random with the same magnitudes.

The critical number is the size of ensemble when the analytical value (when ensemble
size is infinite) of correlation function with partially randomized signals ( R <0.2, R <1,
and R <3 in our case) matches the value of correlation function with fully randomized

signal (~1/N in section 1). Therefore critical number is inverse of analytical value or
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1/(analytical value). We test the critical values of each correlation functions (coherence,
bi-coherence, and quadro-coherence) with different values of partially random signals.
We add three different random signals to our exponential functions in each correlation

function. These can be seen in graph ( f).
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( f) critical value vs magnitudes of added randomized signal in each correlation function

If we add bigger error to correlation function, the critical value of correlation function is
increased. The higher order correlation function has bigger critical value for the same size

of error.
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