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Many new chaotic systems with algebraically simple representations are described. These systems
involve a single third-order autonomous ordinary differential equation~jerk equation! with various
nonlinearities. Piecewise linear functions are emphasized to permit easy electronic implementation
with diodes and operational amplifiers. Several new simple and robust chaotic electrical circuits are
described and evaluated. ©2000 American Association of Physics Teachers.
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I. INTRODUCTION

In 1963, Lorenz1 published a seminal paper in which h
showed that what we now call chaos can occur in system
autonomous ordinary differential equations~ODEs! with as
few as three variables and two quadratic nonlinearities
1976, Rössler2 found a similar system, but with a single qu
dratic nonlinearity. Both the Lorenz and Ro¨ssler systems
contain seven terms when written as three first-order OD
In 1979, Rössler3 found a toroidal chaotic system with si
terms and one quadratic nonlinearity. In 1994, Sprott4 per-
formed an extensive computer search in which he fou
fourteen additional chaotic systems with six terms and
quadratic nonlinearity and five systems with five terms a
two quadratic nonlinearities. Gottlieb5 noted that at leas
some of these systems could be written as a single th
order ODE and posed the question ‘‘What is the simpl
jerk function that gives chaos?’’ By ‘‘jerk function,’’ he
means a functionJ such that the third-order ODE can b
written in the formx̂5J( ẍ,ẋ,x), whereJ can be considered
the time derivative of an accelerationẍ. In response, Linz6

showed that the Lorenz and the original Ro¨ssler models have
rather complicated functional forms forJ, but that Sprott’s
modelR can be written as

x̂52 ẍ20.9x1xẋ20.4. ~1!

Meanwhile, Sprott7 found several other simple functionsJ
that lead to chaos with a single quadratic or cubic nonline
ity, including one8 with only three terms:

x̂522.017ẍ1 ẋ22x. ~2!

Eichhornet al.9 further showed that all fourteen of Sprott
original models with six terms and one quadratic nonline
ity as well as Eq.~2! and Rössler’s toroidal model can b
grouped into seven classes of polynomial functions with
creasing complexity. Fu and Heidel10,11 showed that qua-
dratic functions with fewer than three terms cannot be c
otic, and so Eq.~2! with its variants appears to be th
simplest quadratic jerk function that exhibits chaos.

To make further progress, we consider systems of
form:

x̂5a1ẍ1a2w~ ẍ!1a3ẋ1a4w~ ẋ!1a5x1a6w~x!1a7 ,
~3!

wherew(x) is a simple nonlinear function chosen to perm
electronic implementation with diodes and operational a
plifiers, some examples of which are shown in Fig. 1. T
procedure was to specify a form for the nonlinearity, ra
domly choose three or four of the coefficientsa1–a7 to be
nonzero with random values including at least one nonline
758 Am. J. Phys.68 ~8!, August 2000
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ity, and choose random initial conditions in the range~21.5,
1.5!. The equations were iterated for 32 000 time steps us
a fourth-order Runge–Kutta algorithm with a step size
Dt50.05, while calculating the Lyapunov exponent.12 A dif-
ficulty is that the coefficients can range from minus to p
infinity, but most of the chaotic solutions occur when t
coefficients are of order unity. Consequently, the coeffici
values were chosen using the function tan(pr/2), wherer is
a random number uniform in the interval~21, 1!. Note that
two of the coefficients can generally be set to61 by renor-
malizing the variablesx and t. The remaining coefficients
were arbitrarily put into the leading terms for most cas
Unbounded solutions were eliminated by requiring thatuẍu,
uẋu, and uxu never exceed 10, a voltage that will typical
saturate an operational amplifier. After several days of co
puting, those cases with Lyapunov exponents greater t
0.001 ~base-e! were examined with a smaller step size (Dt
50.01) for at least 108 iterations to ensure that the chaos
not a numerical artifact or transient. The program was tes
with w(x)5x2 to verify that Eq.~2! emerged. In the process
other simple quadratic functions with chaotic solutions we
identified and listed in Table I. Many additional cases w
multiple nonlinearities, functional redundancy, or addition
terms were found but are omitted from Table I.

Note that the cases in Table I can be grouped into di
pative and conservative systems depending on whether
Lyapunov exponents sum to zero. The sum of the Lyapu
exponents is the rate of volume expansion averaged a
the orbit and, for systems such as these, is given simply
l11l21l35^d x̂/dẍ&5a11a2^dw( x̂)/dẍ&. If the system
is chaotic, the largest Lyapunov exponentl1 must be posi-
tive, l2 must be zero, andl3 must be negative. Hence
calculation ofl1 and ^d x̂/dẍ& suffices to determine all the
Lyapunov exponents. Dissipative systems have a strang
tractor with dimension between two and three, while cons
vative systems fill a three-dimensional volume. In eith
case, the initial conditions must be chosen appropriately
ensure that they are in the basin of attraction for the diss
tive systems and in the stochastic sea for the conserva
systems. Although conservative systems are included
Table I, the interest here is primarily in dissipative syste
since they lead to more robust electrical circuits. Avoidi
dissipation in an electrical circuit is equivalent to constru
ing a frictionless mechanical system.

II. ABSOLUTE VALUE CASES

One simple nonlinearity isw(x)5uxu. It can be considered
a piecewise linear approximation tow(x)5x2 with the non-
758© 2000 American Association of Physics Teachers
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linearity confined to the pointx50. It has been implemente
electronically with a full-wave rectifier with two diodes an
an inverting unity-gain amplifier and also with a single dio
as shown in Fig. 1~c!. Althoughdw/dx is discontinuous, the

Fig. 1. Some mathematical operations that can be performed with op
tional amplifiers and ideal diodes. In each case the inverting~2! input to the
op amp is used, and the noninverting~1! input is grounded.

Table I. Some simple chaotic third-order ODE systems and their Lyapu
exponents.

System
Initial conditions

(x, ẋ, ẍ)
Lyapunov exponents

~basee!

x̂522.017ẍ6 ẋ22x ~0, 0, 61! 0.055, 0,22.072
x̂522.8 ẋ6x1x2 ~70.5, 21, 1! 0.002, 0,20.002
x̂520.44ẍ22ẋ6(x221) ~0, 0, 0! 0.105, 0,20.545
x̂520.5 ẍ2 ẋ6x6x2 ~0, 61, 0! 0.094, 0,20.594
x̂522 ẋ6(uxu21) 6~21, 21, 1! 0.003, 0,20.003
x̂520.6 ẍ2 ẋ6(uxu21) ~0, 0, 0! 0.036, 0,20.636
x̂520.3 ẍ20.3 ẋ2D(x)11 ~0, 0, 0! 0.042, 0,20.342
x̂520.3 ẍ20.3 ẋ2R(x)21 ~0, 0, 0! 0.042, 0,20.342
x̂522.9 ẋ6(0.7x2D(x)11) 6~0, 20.5, 0.5! 0.003, 0,20.003
x̂522.9 ẋ6(0.7x2R(x)21) 6~0, 0.5,20.5! 0.003, 0,20.003
x̂520.5 ẍ2 ẋ2x1sgn(x) ~0, 1, 0! 0.152, 0,20.652
x̂520.5 ẍ2 ẋ1x2sgn(x) ~0, 1, 0! 0.601, 0,21.101
x̂520.7 ẍ2 ẋ2x1H(x) ~0, 1, 0! 0.085, 0,20.785
x̂520.4 ẍ2 ẋ2x12S(x) ~0, 1, 0! 0.072. 0,20.472
x̂520.4 ẍ2 ẋ1x22S(x) ~0, 1, 0! 0.091, 0,20.491
x̂520.19ẍ2 ẋ2x12 tanh(x) ~0, 1, 0! 0.128, 0,20.318
x̂520.19ẍ2 ẋ1x22 tanh(x) ~0, 1, 0! 0.067, 0,20.257
x̂523.7 ẋ6(x2x3) ~0, 60.5, 1! 0.002, 0,20.002
x̂520.6 ẍ12.8 ẋ2 ẋ32x ~0, 1, 0! 0.034, 0,20.634
x̂520.7 ẍ2 ẋ1x2x3 ~0, 1, 0! 0.138, 0,20.838
x̂520.35ẍ2 ẋ2x1x3 ~0, 1, 0! 0.082, 0,20.432
x̂520.2 ẍ2 ẋ6sin(x) ~0, 1, 0! 0.123, 0,20.323
759 Am. J. Phys., Vol. 68, No. 8, August 2000
flow is continuous~and in fact relatively smooth! in the
space ofx, ẋ, and ẍ, since the discontinuity occurs only i
the fourth derivative ofx.

One might expect chaos in a system like Eq.~2! with the
ẋ2 term replaced withuẋu, but no such cases were foun
However, there is a conservative case with three terms g
by

x̂522ẋ6~ uxu21!, ~4!

albeit with very small Lyapunov exponents. The simple
dissipative chaotic flow withw(x)5uxu appears to be

x̂52Aẍ2 ẋ6~ uxu21! ~5!

with a typical value ofA50.6. This case was described
detail by Linz and Sprott,13 and its behavior resembles th
quadratic cases found here and elsewhere.4 It bears the same
relation to the quadratic flows as the tent map does to
logistic map. Its attractor resembles the one found
Rössler.2

Equation ~5! is well suited for solution using inverting
operational amplifiers and diodes. The general strategy i
start with a voltage2 x̂ and generateẍ, 2 ẋ, and x with
successive inverting integrators. The weighted sum of
three signals and a constant term generated with a dc vol
source~a battery! are then fed back to the input of the fir
integrator as shown in Fig. 2. The circuit can be conside
an oscillator with three 90° phase shifts and nonlinear po
tive feedback. If the resistors are 1V, the capacitors are 1 F
and the battery is 1 V, the circuit should work in real tim
and should produce chaotic oscillations when the varia
resistor is adjusted to a value of 1/A'1.67V. However, the
frequency at the first Hopf bifurcation atA51 is only 1/2p
Hz.

A more practical implementation uses resistors of 1V
and capacitors of 0.1mF, giving a fundamental frequency o
f 5104/2p'1592 Hz at the first Hopf bifurcation. This fre
quency is well into the audio range so that the period d
blings, periodic windows, and chaos are easily heard.14 The
period doublings are even more pronounced when the si
x is integrated before amplification to enhance the low f
quencies. Audio frequencies allow fast response to chan
in control parameters, rapid accumulation of large data s
easy display on an oscilloscope, and inexpensive digitizat
The circuit has been constructed using inexpensive and n
critical components and could presumably be scaled to

ra-

Fig. 2. Chaotic circuit implementation of Eq.~5! using inverting op amps.
The diodes are germanium, the battery is 1 V, the capacitors are 0.1mF, and
the resistors are 1 kV except for the variable resistor, which should b
adjustable from 1 to 2 kV.

v
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frequency from millihertz to megahertz and beyond. It h
also been successfully simulated with theSPICE circuit
simulator.15

One difficulty is that these circuits have a basin of attr
tion outside of which the dynamics are unbounded, wh
manifests itself in saturation of the op amps. If the op am
saturate, it is necessary to restart the circuit or otherw
bleed the charge off one or more of the capacitors. The
amps also need to have a relatively high slew rate. Oth
wise, no difficulties were encountered in constructing any
the circuits. In particular, stray capacitance and inducta
are not a problem at audio frequencies, and no parasitic
cillations were encountered.

The circuit in Fig. 2 provides three points of detailed co
parison with theory—the frequency of oscillations, the v
ues of A at which the various bifurcations occur, and t
amplitude of the output voltagex(t). All three agree with
numerical calculations to within the precision of the elec
cal components~typically 10%! provided the forward volt-
age drop of the diodes~about 0.25 V for germanium! is taken
into account by usingw(x)5max(uxu20.25,0), which makes
the bifurcations occur at a slightly lower value ofA. Circuits
that more accurately implement theuxu operation with diodes
are possible, but they generally require additional com
nents, and their operation is less transparent. If the cir
were constructed with precision components~<1%!, it
should be possible to make a very detailed quantitative c
parison of a chaotic experiment with theory. When the f
ward voltage drop of the diodes is taken into account,
circuit should permit automated bifurcation plots using
swept voltage source as the bifurcation parameter in plac
the battery, which otherwise just determines the size of
attractor.

One simple way to digitize the signal is to feed it into t
microphone or line input of a computer sound card. T
signal can be displayed in oscilloscope fashion, or as a po
spectrum or sonogram using theAUDIOSCOPEprogram.16 Al-
ternately, one can capture the signal to a WAV file using
Windows Sound Recorder. If the sound is recorded in 8
mono, the file will consist of a short header followed by
string of bytes representing successive data samples.
easy to write a program to extract and manipulate the d
Most sound cards can also record with 16-bit resoluti
which is much more accurate, but it generates larger fi
and it is more difficult to extract the data. Since sound ca
usually have stereo input, it is possible to record simu
neouslyx and ẋ, for example, to produce phase-space plo
or ẋ(t) can be numerically integrated. One problem is th
the input to most sound cards is ac coupled, and so the
low-frequency information is lost, making it hard to produ
bifurcation plots. It might be possible to bypass the inp
capacitors on the sound card and restore the dc level.

This circuit is similar in spirit to Chua’s circuit,17,18which
uses two capacitors, an inductor, and diodes with operati
amplifiers or transistors to provide a piecewise linear
proximation to a cubic nonlinearity. Chua’s circuit has
much more complicated jerk representation with many m
than four terms, involving step functions, delta function
and their products with derivatives ofx. Because of the delta
functions, the dynamics are not continuous in the space
(x,ẋ,ẍ). Since the contraction is not constant along the t
jectory, it is more difficult to verify the Lyapunov exponent
Chua’s circuit is more difficult to construct, scale to arbitra
frequencies, and analyze because of the inductor with
760 Am. J. Phys., Vol. 68, No. 8, August 2000
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frequency-dependent resistive losses, although a varian
Chua’s circuit with only capacitors is possible.19 Three reac-
tive components~capacitors or inductors! are required for
chaos in systems with continuous flows so that the Kirchh
representation of the circuit contains three first-order OD

The realization of chaos in such a circuit raises the qu
tion of what is the simplest circuit using only operation
amplifiers, resistors, capacitors, and diodes that exhi
chaos. The circuit in Fig. 2 with 18 components serves a
good starting point. It is not necessarily true that the simp
equations lead to the simplest circuits and vice versa,
they provide guidance for what circuits are worth explo
tion.

III. SINGLE-DIODE CASES

A simple variant of the circuit above uses a single diod
We need to distinguish between a forward diode for wh
w(x)5D(x)5max(x,0) and a reversed diode for whic
w(x)5R(x)5min(x,0). Note that D(x)5(uxu1x)/2 and
R(x)5(uxu2x)/2, which implies that Eq.~5! can be solved
in a circuit with a single diode. Such a circuit has the virt
that there is no dead zone~range ofx over which neither
diode conducts!, although the attractor is displaced inx by
the forward voltage drop of the diode. With such a circu
the dc voltage source and resistor can be omitted. The s
plest cases found with a single diode were

x̂520.3ẍ20.3ẋ2D~x!11 ~6!

and

x̂520.3ẍ20.3ẋ2R~x!21, ~7!

which have the same form as Eq.~5!. Thus with an appro-
priate change in the values of two resistors in Fig. 2,
lower diode can be removed. Alternately, the polarity of t
battery can be reversed and the upper diode removed, gi
circuits with 17 components. In a practical circuit, it is som
times necessary to reduce the battery voltage to avoid s
rating the operational amplifiers or to increase it to impro
the signal-to-noise ratio. The battery is usually replaced w
the voltage source used to power the operational amplifi
with the series resistor chosen appropriately to produce
desired input offset current. Some operational amplifi
have an offset adjustment that can be used in place of
voltage source and resistor. These single-diode example
mathematically interesting because they are unique am
those cases in Table I with the nonlinearity in thex term in
that they have only a single fixed point and no localiz
extremum.

Since all the terms in Eq.~7! are negative, it might be
possible to replace the second two active integrators w
passive integrators~single RC circuits!, thereby producing
chaos in a circuit with a single operational amplifier. In
extensive numerical search for such solutions, none w
found, presumably because the irreducible damping in
passive integrators is too severe. However, it is possible
construct a circuit with three operational amplifiers, a sin
diode, and one passive integrator as shown in Fig. 3
solves Eq.~7!. This circuit with 15 components has bee
constructed and tested. With passive integrators, one sh
be especially careful that the operational amplifiers do
saturate, since the signal levels at each may be rather di
ent. Elwakil and Soliman20 have also devised a chaotic ci
cuit with 15 components using two operational amplifie
760J. C. Sprott
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three capacitors, two diodes, and eight resistors, but
equations required to model it are much more complicat

Two other single-diode circuits with chaotic solution
have been developed and tested that use the noninve
input of one of the amplifiers. Both have only 12 comp
nents. Figure 4 shows one of these circuits that solves
equation

x̂520.25ẍ20.25ẋ2R~x10.25ẋ!21, ~8!

which is very similar to Eq.~7!. This circuit has been con
structed, and its chaotic operation has been verified. An
the components can be made adjustable to serve as a b
cation parameter. The chaotic region is very narrow, a
change in the constant 0.25 will eliminate the chaos, but
forward voltage drop of the diode is not problematic. In th
case, the battery voltage and series resistance cannot b
creased arbitrarily since the inverting input is not a virtu
ground.

IV. STEP FUNCTION CASES

Given that operational amplifiers are necessary for cha
oscillations in circuits of this type, it is natural to consid
using the inherent nonlinearity in the amplifier itself. Wit
out feedback, a good operational amplifier acts as a comp
tor, abruptly switching output from a large positive to a lar
negative value as the input voltage crosses zero as show
Fig. 1~f!. In a real op amp, the switching speed is limited
the finite slew rate, and the saturation values are usu
somewhat asymmetrical. The latter problem can be ov
come by adjusting the positive and negative power sup
voltages appropriately. This behavior suggests exploring
tems in which the nonlinearity is sgn(x), which is 11 for x
.0,21 for x,0, and 0 forx50. The simplest such case
found numerically were of the form

x̂520.5ẍ2 ẋ6@x2sgn~x!#. ~9!

This system has very different attractors for the plus a
minus signs. With the plus sign, the attractor is a sing
folded band similar to the Ro¨ssler attractor and the example

Fig. 3. Chaotic circuit implementation of Eq.~7! using three op amps
Capacitances are in microfarads, and all resistors are 1 kV. The resistor in
series with the battery can be increased to prevent saturating the op a

Fig. 4. Chaotic circuit implementation of Eq.~8! using three op amps
Capacitances are in microfarads, and all resistors are 1 kV.
761 Am. J. Phys., Vol. 68, No. 8, August 2000
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previously discussed. With the minus sign, a double-sc
attractor similar to the Lorenz attractor is possible.

With the plus sign, a particularly simple chaotic circuit
possible as shown in Fig. 5. This circuit has 11 compone
and is the simplest circuit of this class that was found. A
though this circuit has been successfully tested, its opera
is somewhat delicate because of its small basin of attract
It exhibits hysteresis because of the finite gain-bandwi
product and slew rate of the operational amplifier. With t
minus sign, an additional inverting amplifier is required
the feedback loop, but the operation is more stable and
dictable. Because of the variety of attractors that can be
tained, this case offers a good opportunity for detailed co
parison of theory with experiment. Figure 6 show
oscilloscope traces in thex– ẋ plane of some of the attractor
produced by a circuit that simulates the equation

x̂520.3ẍ2 ẋ2Bx1sgn~x! ~10!

ps.
Fig. 5. Chaotic circuit implementation of Eq.~9! with the plus sign. Capaci-
tances are in microfarads, and all resistors are 1 kV except forR, which
should be adjusted to give a current of 1 mA when the upper op am
saturated.

Fig. 6. Attractors produced by Eq.~10! in the x– ẋ plane. In the left-hand
column are oscilloscope traces for a circuit like Fig. 5 but with an ex
inversion, and in the right-hand column are the corresponding nume
solutions on the same scale.
761J. C. Sprott
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for various values ofB along with the corresponding numer
cal prediction, plotted on the same scale.

The sgn function is closely related to the Heaviside fu
tion H(x)5@sgn(x)11#/2 ~11 for x.0 and zero otherwise!,
which can be emulated electronically as shown in Fig. 1~g!.
The direction of the diode can be reversed to prod
2H(2x)5H(x)21. Circuits based on this nonlinearit
have been successfully tested, but they require two e
components~a diode and input resistor! and thus offer no
particular advantage.

V. OTHER CASES

The operational amplifier comparator as shown in Fig. 1~f!
is a limiting case of a more general functio
sgn(x)min(auxu,b) in which a is the gain of the op amp andb
is the saturation value. Typical operational amplifiers ha
open-loop gains of 104– 106. To test the sensitivity of the
results to the quality of the comparator, cases were exam
numerically in which the nonlinearity has the simple for
S(x)5sgn(x)min(uxu,1). This case corresponds to a unit
gain amplifier that saturates at an output of 1 V. Chao
cases analogous to Eq.~9! were found, albeit with slightly
different values of the coefficients:

x̂520.4ẍ2 ẋ6@x22S~x!#. ~11!

The factor of 2 in front ofS(x) ensures thatx22S(x) is a
nonmonotonic function ofx, without which chaos is more
difficult to achieve. Circuits based on this nonlinearity ha
been successfully tested, and their behavior mimics their
counterparts. A numerical search for circuits in which t
chaos results from saturation of the op amp integrators
not reveal any such examples, although their existence
not be excluded.

The functionS(x) can be considered a piecewise line
approximation to the hyperbolic tangent, tanh(x). Not sur-
prisingly, chaos occurs in systems such as

x̂520.19ẍ2 ẋ6@x22 tanh~x!# ~12!

with behavior analogous to those cases above. A gen
feature of Eqs.~9!–~12! is an antisymmetric function ofx
with three zero crossings and a region of negative slo
Such functions naturally arise in cubic polynomials of t
form 6(x2x3) and lead to a number of chaotic examples
shown in Table I. A simple antisymmetric function with in
finitely many zeros and regions of positive and negat
slope is sin(x), for which a simple chaotic system is listed
Table I. The sine function can be approximated by an o
polynomial, sin(x)5x2x3/61x5/1202... . These last few
systems are not ideal for electronic implementation, but t
are listed for interest and completeness. Chaos has also
found in systems withw(x)5cos(x), sinh(x), cosh(x), exp(x),
exp(2uxu), and exp(2x2).

Systems involving delta functions~derivatives of the
Heaviside function! also lead to chaotic solutions as Chua
circuit attests. Such systems can be studied numerically
imposing a jump condition where the trajectory crosses
singularity. Another interesting class is hysteretic functio
in which w(x) is multivalued. Since the flow is discontinu
ous for delta functions and hysteretic functions, chaos is p
sible with less than three variables. A two-dimensional c
otic circuit with 13 components based on this idea has b
developed by Tamasˇevičius et al.21
762 Am. J. Phys., Vol. 68, No. 8, August 2000
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VI. DISCUSSION

Most of the dissipative chaotic systems found in this stu
are of the general form

x̂1Aẍ1 ẋ5G~x!. ~13!

Integrating each term reveals that this system is a dam
harmonic oscillator driven by a nonlinear memory term th
involves the integral ofG(x). Such an equation often arise
in the feedback control of an oscillator in which the expe
mentally accessible variable is a transformed and integra
version of the fundamental dynamical variable. Despite
importance and the richness of its dynamics, this syst
with a nonlinearG(x), seems to have been studied relative
little. Coulett, Tresser, and Arneodo observed chaos in
merical simulations with a cubic22 and a special piecewis
linear23,24 form of G(x), and Rul’kov et al.25,26 devised an
RLC circuit with an unspecified nonlinear amplifier to pr
duce chaos with a particular form ofG(x).

Many forms ofG(x) lead to chaos. For bounded solution
G(x) must average to zero along the orbit,13 which means
that any continuousG(x) must have at least one zero atx
5x* . The stability of the fixed point at (x* , 0, 0! is deter-
mined by the solutions of the eigenvalue equationl31Al2

1l2G850, whereG85dG/dx evaluated atx5x* . This
point is locally stable for2A<G8<0 and undergoes a Hop
bifurcation atG852A, wherel56 i . Thus one would ex-
pect chaotic systems of this form to require a nonlinea
with either a positive slope at its zero crossing or a siza
negative slope, implying a negative resistance in the co
sponding circuit model. Systems withG8.0 apparently re-
quire at least two fixed points for chaos, but systems w
G8,2A only need one. All the cases studied have the
features. Chua and Ayrom27 describe saturating op-amp ci
cuits with a variety of piecewise linear characteristics.

It is interesting to ask for what functionG(x) the system
in Eq. ~13! is most chaotic. Of the cases studied, the larg
Lyapunov exponents occur for systems of the form

x̂1Aẍ1 ẋ5B@x2sgn~x!#. ~14!

Using a variant of simulated annealing,28 the parametersA
and B were adjusted to maximize the Lyapunov expone
The result was A50.55 and B52.84, for which the
Lyapunov exponents~basee! are~1.055, 0,21.655!, giving
an attractor with a Kaplan–Yorke dimension29 of DKY

52.637. The attractor is contained within a thin torus th
nearly touches the boundary of its small basin of attract
so that initial conditions must be chosen carefully to produ
bounded solutions. The trajectory is repeatedly thrown b
and forth between the vicinity of the unstable fixed points
x* 561.

It is also interesting to determine the least nonlinear fo
of G(x) for which chaos occurs in Eq.~13!, which we take to
mean the two-part piecewise linear function with the sma
est bend at the knee. Without loss of generality, we can t
G(x)52min(Bx, Cx1B2C), which is scaled so that the un
stable fixed point is atx50 and the knee is atx51. We
minimize the angle at the bend,u5utan21(B)2tan21(C)u, by
the same method as above and conclude that the minimuu
occurs for B'2C, which is equivalent to the case wit
G(x)5Buxu21. For A50 ~the conservative case!, chaos
was found for values ofB as small as 0.01 (u'1.15°) over
762J. C. Sprott
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a very limited range of initial conditions with a very sma
Lyapunov exponent~;0.001!. For A.0 ~the dissipative
case!, the smallestB for which chaos was found hadA
50.025 andB50.468 (u'50.2°). The basin of attraction i
very small, and the chaotic attractor coexists with a nea
limit cycle.

Systems of the form of Eq.~13! are ripe for numerical,
analytical, and electrical exploration and offer exceptio
projects for students. They may also have practical appl
tion in secure communications and broadband signal gen
tion.
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