Simple chaotic systems and circuits
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Many new chaotic systems with algebraically simple representations are described. These systems
involve a single third-order autonomous ordinary differential equajenk equation with various
nonlinearities. Piecewise linear functions are emphasized to permit easy electronic implementation
with diodes and operational amplifiers. Several new simple and robust chaotic electrical circuits are
described and evaluated. @00 American Association of Physics Teachers.

[. INTRODUCTION ity, and choose random initial conditions in the rargel.5,
1.5). The equations were iterated for 32 000 time steps using
In 1963, LorenZ published a seminal paper in which he a fourth-order Runge—Kutta algorithm with a step size of
showed that what we now call chaos can occur in systems of t=0.05, while calculating the Lyapunov exponéhA dif-
autonomous ordinary differential equatiof@DES with as  ficulty is that the coefficients can range from minus to plus
few as three variables and two quadratic nonlinearities. Ifnfinity, but most of the chaotic solutions occur when the
1976, Raslef found a similar system, but with a single qua- coefficients are of order unity. Consequently, the coefficient
dratiC nonlinearity. BO'[h the Lorenz and mr SyStemS Va'ues were Chosen using the function bame)' Wherer is
contain seven terms when written as three first-order ODE$; random number uniform in the interviat 1, 1). Note that
In 1979, Reslef found a toroidal chaotic system with six o of the coefficients can generally be settd by renor-
terms and one quadratic nonlinearity. In 1994, SPrPEr-  majizing the variable andt. The remaining coefficients
formed an extensive computer search in which he foungyere arbitrarily put into the leading terms for most cases.
fourteen additional chaotic systems with six terms and ong;npounded solutions were eliminated by requiring theat
guadratic nonlinearity and five systems with five terms ancM’ and [ never exceed 10, a voltage that will typically

tsvgcr)nglﬁdtﬁgsce nsor?slégfnasm(l;%i] dGl?ét“V%ﬁ:gfdaéhgts?; llzatsk:ir saturate an operational amplifier. After several days of com-
y 9 dEuting, those cases with Lyapunov exponents greater than

order ODE and posed the question “What is the simples . . :

jerk function that gives chaos?” By “jerk function,” he 001 (basee) were ex?‘m'”?d with a smaller step sizkt( .

means a functiord such that the third-order ODE can be =0.01) for at least 1Diterations to ensure that the chaos is

written in the forms = J(x,%,x), whereJ can be considered not a numerical artifact or transient. The program was tested
e, with ¢(x) =x? to verify that Eq.(2) emerged. In the process,

the time derivative of an acceleratidn In response, Lirfz other simple quadratic functions with chaotic solutions were
howed that the Lorenz and the originals®Rer models have . =~ . ! o -
showed that the Lorenz and the originalsRter models have identified and listed in Table I. Many additional cases with

rather complicated functional forms f t that Sprott’ . . " X o,
ather complicated functional forms fof but that Sprott's multiple nonlinearities, functional redundancy, or additional

modelR can be written as terms were found but are omitted from Table I.
X=—X—0.9%+xx—0.4. (1) Note that the cases in Table | can be grouped into dissi-
pative and conservative systems depending on whether the
Lyapunov exponents sum to zero. The sum of the Lyapunov
exponents is the rate of volume expansion averaged along
the orbit and, for systems such as these, is given simply by
X=—2.01%+X*~X. (2 NN+ Ag=(dX/dX)=a;+ay,(de(X)/dX). If the system
Eichhornet al? further showed that all fourteen of Sprott's IS chaotic, the largest Lyapunov exponantmust be posi-
original models with six terms and one quadratic nonlineartive, A, must be zero, and; must be negative. Hence a
ity as well as Eq.2) and Rasler's toroidal model can be calculation of\; and(dX/dx) suffices to determine all the
grouped into seven classes of polynomial functions with in-Lyapunov exponents. Dissipative systems have a strange at-
creasing complexity. Fu and Heid®H showed that qua- tractor with dimension between two and three, while conser-
dratic functions with fewer than three terms cannot be chavative systems fill a three-dimensional volume. In either
otic, and so Eq.(2) with its variants appears to be the case, the initial conditions must be chosen appropriately to

Meanwhile, Sproft found several other simple functiords
that lead to chaos with a single quadratic or cubic nonlinear
ity, including oné& with only three terms:

simplest quadratic jerk function that exhibits chaos. ensure that they are in the basin of attraction for the dissipa-
To make further progress, we consider systems of théive systems and in the stochastic sea for the conservative
form: systems. Although conservative systems are included in

Table |, the interest here is primarily in dissipative systems
since they lead to more robust electrical circuits. Avoiding
dissipation in an electrical circuit is equivalent to construct-
where ¢(x) is a simple nonlinear function chosen to permiting a frictionless mechanical system.

electronic implementation with diodes and operational am-

plifiers, some examples of which are shown in Fig. 1. The. ABSOLUTE VALUE CASES

procedure was to specify a form for the nonlinearity, ran-

domly choose three or four of the coefficiemts—a; to be One simple nonlinearity ig(x) =|x|. It can be considered
nonzero with random values including at least one nonlineara piecewise linear approximation te(x) =x? with the non-

X: a1§.(+ az(,D(X) + a35(+ a4QD(X) + a5X+ a.e(,D(X) + a7,
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Fig. 1. Some mathematical operations that can be performed with opera-

tional amplifiers and ideal diodes. In each case the inveftingnput to the
op amp is used, and the noninvertifig) input is grounded.

linearity confined to the point=0. It has been implemented
electronically with a full-wave rectifier with two diodes and
an inverting unity-gain amplifier and also with a single diode
as shown in Fig. (c). Althoughde/dx is discontinuous, the

Table I. Some simple chaotic third-order ODE systems and their Lyapunov

exponents.
Initial conditions Lyapunov exponents
System (X, X, X) (basee)

%=—2.017%+X>—x (0,0,%1) 0.055, 0,-2.072
X=—2.8X=x+x2 (¥05,-1,1 0.002, 0,—0.002
X=—0.44%— 2%+ (x*—1) 0,0,0 0.105, 0,—-0.545
X=—0.5%—X*tx*=x? 0, *1,0 0.094, 0,-0.594
¥=-2%=*(|x|—1) +(-1,-1,1 0.003, 0,—0.003
=—0.6%—x=(|x|—1) (0,0,0 0.036, 0,—0.636
X=—-0.3%x—0.3Xx—D(x)+1 0,0,0 0.042, 0,—0.342
X=-0.3%x—0.3x—R(x)—1 0,0,0 0.042, 0,—0.342
X=-29%x*(0.7x—D(x)+1) =(0,-0.5,0.5 0.003, 0,—0.003
X=-2.9%*+(0.7x—R(x)—1) =*(0,0.5,-0.5 0.003, 0,—0.003
X=—0.5X—X—x+sgn{) 0,1,0 0.152, 0,—0.652
X=—0.5%—X+Xx—sgn) 0,1,0 0.601, 0,—1.101
X=—0.7X—X—X+H(x) 0,1,0 0.085, 0,—0.785
K=—0.4%—X—Xx+2S5(x) 0,1,0 0.072. 0,—0.472
X=—0.4%—X+x—25(x) 0,1,0 0.091, 0,—0.491
X=-0.19x—X—x+2 tanhg) (0, 1, 0 0.128, 0,—-0.318
X=—-0.19x—x+x—2tanh&) (0,1,0 0.067, 0,—0.257
)'('=—3.7)'(i(x—x3) (0, £0.5, 1 0.002, 0,—0.002
%=—0.6%+2.8x—x3—x 0,1,0 0.034, 0,—0.634
X=—0.7X—X+x—x3 0,1,0 0.138, 0,—0.838
X=—0.35%—X—x+x3 0,1,0 0.082, 0,—0.432
X=—0.2%x—X*sin(x) 0,1,0 0.123, 0,—0.323
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Fig. 2. Chaotic circuit implementation of E¢) using inverting op amps.
The diodes are germanium, the battery is 1 V, the capacitors aypeF).dnd
the resistors are 1(k except for the variable resistor, which should be
adjustable from 1 to 2 Q.

flow is continuous(and in fact relatively smoojhin the
space ofx, X, andX, since the discontinuity occurs only in
the fourth derivative ok.

One might expect chaos in a system like E2). with the
%2 term replaced withx|, but no such cases were found.
However, there is a conservative case with three terms given
by

%= — 2= (|x| - 1), (4)

albeit with very small Lyapunov exponents. The simplest
dissipative chaotic flow withp(x)=|x| appears to be

K= —Ax—x=(|x|—1) (5)

with a typical value ofA=0.6. This case was described in
detail by Linz and Sprott® and its behavior resembles the
quadratic cases found here and elsewfdtdears the same
relation to the quadratic flows as the tent map does to the
logistic map. Its attractor resembles the one found by
Rossler?

Equation (5) is well suited for solution using inverting
operational amplifiers and diodes. The general strategy is to
start with a voltage— X and generat&, —X, and x with
successive inverting integrators. The weighted sum of the
three signals and a constant term generated with a dc voltage
source(a battery are then fed back to the input of the first
integrator as shown in Fig. 2. The circuit can be considered
an oscillator with three 90° phase shifts and nonlinear posi-
tive feedback. If the resistors are(), the capacitors are 1 F,
and the battery is 1 V, the circuit should work in real time
and should produce chaotic oscillations when the variable
resistor is adjusted to a value ofAE 1.67(). However, the
frequency at the first Hopf bifurcation at=1 is only 1/2r

Hz.

A more practical implementation uses resistors of(1 k
and capacitors of 0.L4F, giving a fundamental frequency of
f=10*/27~1592 Hz at the first Hopf bifurcation. This fre-
quency is well into the audio range so that the period dou-
blings, periodic windows, and chaos are easily héAfthe
period doublings are even more pronounced when the signal
x is integrated before amplification to enhance the low fre-
quencies. Audio frequencies allow fast response to changes
in control parameters, rapid accumulation of large data sets,
easy display on an oscilloscope, and inexpensive digitization.
The circuit has been constructed using inexpensive and non-
critical components and could presumably be scaled to any
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frequency from millihertz to megahertz and beyond. It hasfrequency-dependent resistive losses, although a variant of
also been successfully simulated with tlseice circuit ~ Chua’s circuit with only capacitors is possibfeThree reac-
simulator?® tive componentgcapacitors or inductoysare required for

One difficulty is that these circuits have a basin of attrac-chaos in systems with continuous flows so that the Kirchhoff
tion outside of which the dynamics are unbounded, whictrepresentation of the circuit contains three first-order ODESs.
manifests itself in saturation of the op amps. If the op amps The realization of chaos in such a circuit raises the ques-
saturate, it is necessary to restart the circuit or otherwiséion of what is the simplest circuit using only operational
bleed the charge off one or more of the capacitors. The opmplifiers, resistors, capacitors, and diodes that exhibits
amps also need to have a relatively high slew rate. Othershaos. The circuit in Fig. 2 with 18 components serves as a
wise, no difficulties were encountered in constructing any ofgood starting point. It is not necessarily true that the simplest
the circuits. In particular, stray capacitance and inductancequations lead to the simplest circuits and vice versa, but
are not a problem at audio frequencies, and no parasitic oghey provide guidance for what circuits are worth explora-
cillations were encountered. tion.

The circuit in Fig. 2 provides three points of detailed com-
parison with theory—the frequency of oscillations, the val-
ues of A at which the various bifurcations occur, and the

amplitude of the output voltage(t). All three agree with A simple variant of the circuit above uses a single diode.
numerical calculations to within the precision of the electri-We need to distinguish between a forward diode for which
cal componentstypically 109 provided the forward volt-  (x)=D(x)=maxk0) and a reversed diode for which
age drop of the dlo_de(about 0.25V for germanlu_)ns taken  ,(x)=R(x)=min(x,0). Note thatD(x)= (Ix|+x)/2 and
into account by using(x) =max(x|—0.25,0), which makes R(x) = (]x| —x)/2, which implies that Eq(5) can be solved
the bifurcations occur at a slightly lower value&fCircuits iy 3 circuit with a single diode. Such a circuit has the virtue
that more accurately implement the operation with diodes  that there is no dead zorfeange ofx over which neither
are possible, but they generally require additional compogjipde conducts although the attractor is displaced xrby
nents, and their operation is less transparent. If the circuifhe forward voltage drop of the diode. With such a circuit,

were constructed with precision componer(ts1%), it  the dc voltage source and resistor can be omitted. The sim-
should be possible to make a very detailed quantitative comjest cases found with a single diode were

parison of a chaotic experiment with theory. When the for- ) .

ward voltage drop of the diodes is taken into account, the ~X=—0.3—-0.3—D(x)+1 (6)
circuit should permit automated bifurcation plots using agng

swept voltage source as the bifurcation parameter in place of _

the battery, which otherwise just determines the size of the X=—0.3%—0.3x—R(x)—1, (7)

attractor. o , _ o which have the same form as E@). Thus with an appro-
One simple way to digitize the signal is to feed it into the yiate change in the values of two resistors in Fig. 2, the
microphone or line input of a computer sound card. Thejoyer diode can be removed. Alternately, the polarity of the
signal can be displayed in oscilloscope fashion, or as a POWEfattery can be reversed and the upper diode removed, giving
spectrum or sonogram using thebloSCoPEprogram-” Al- circyits with 17 components. In a practical circuit, it is some-
ternately, one can capture the signal to a WAV file using th&jmes necessary to reduce the battery voltage to avoid satu-
Windows Sound Recorder. If the sound is recorded in 8-bit4ting the operational amplifiers or to increase it to improve
mono, the file will consist of a short header followed by ahe signal-to-noise ratio. The battery is usually replaced with
string of bytes representing successive data samples. It {fe yoltage source used to power the operational amplifiers,
easy to write a program to extract and manipulate the datgyith the series resistor chosen appropriately to produce the
Most sound cards can also record with 16-bit resolutiongesjred input offset current. Some operational amplifiers
which is much more accurate, but it generates larger file,aye an offset adjustment that can be used in place of the
and it is more difficult to extract the data. Since sound cardgg|tage source and resistor. These single-diode examples are
usually have .stereo input, it is possible to record S'mU|ta‘rnathematicaIIy interesting because they are unique among
neouslyx andX, for example, to produce phase-space plotsthose cases in Table | with the nonlinearity in théerm in
or X(t) can be numerically integrated. One problem is thatthat they have only a single fixed point and no localized
the input to most sound cards is ac coupled, and so the verxtremum.
low-frequency information is lost, making it hard to produce Since all the terms in Eq(7) are negative, it might be
bifurcation plots. It might be possible to bypass the inputpossible to replace the second two active integrators with
capacitors on the sound card and restore the dc level. passive integratorgsingle RC circuity thereby producing
This circuit is similar in spirit to Chua’s circult/ *®which  chaos in a circuit with a single operational amplifier. In an
uses two capacitors, an inductor, and diodes with operation@xtensive numerical search for such solutions, none were
amplifiers or transistors to provide a piecewise linear apfound, presumably because the irreducible damping in the
proximation to a cubic nonlinearity. Chua’s circuit has apassive integrators is too severe. However, it is possible to
much more complicated jerk representation with many moreonstruct a circuit with three operational amplifiers, a single
than four terms, involving step functions, delta functions,diode, and one passive integrator as shown in Fig. 3 that
and their products with derivatives &f Because of the delta solves Eq.(7). This circuit with 15 components has been
functions, the dynamics are not continuous in the space afonstructed and tested. With passive integrators, one should
(x,X,X). Since the contraction is not constant along the trabe especially careful that the operational amplifiers don’t
jectory, it is more difficult to verify the Lyapunov exponents. saturate, since the signal levels at each may be rather differ-
Chua’s circuit is more difficult to construct, scale to arbitrary ent. Elwakil and Solima? have also devised a chaotic cir-
frequencies, and analyze because of the inductor with itsuit with 15 components using two operational amplifiers,

Ill. SINGLE-DIODE CASES
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Fig. 3. Chaotic circuit implementation of Eq7) using three op amps. =

Capacita_mces are in microfara(_is, and all resistors arﬁ.lThe_ resistor in  Fig. 5. Chaotic circuit implementation of Et@) with the plus sign. Capaci-
series with the battery can be increased to prevent saturating the op ampgances are in microfarads, and all resistors areQdekcept forR, which

should be adjusted to give a current of 1 mA when the upper op amp is
saturated.
three capacitors, two diodes, and eight resistors, but the
equations required to model it are much more complicated.
Two other single-diode circuits with chaotic solutions previously discussed. With the minus sign, a double-scroll
have been developed and tested that use the noninvertiragtractor similar to the Lorenz attractor is possible.
input of one of the amplifiers. Both have only 12 compo- With the plus sign, a particularly simple chaotic circuit is
nents. Figure 4 shows one of these circuits that solves thgossible as shown in Fig. 5. This circuit has 11 components
equation and is the simplest circuit of this class that was found. Al-
— , . . though this circuit has been successfully tested, its operation
X==0.2%~0.2%—R(x+0.25) — 1, ®) is somewhat delicate because of its small basin of attraction.
which is very similar to Eq(7). This circuit has been con- It exhibits hysteresis because of the finite gain-bandwidth
structed, and its chaotic operation has been verified. Any gproduct and slew rate of the operational amplifier. With the
the components can be made adjustable to serve as a bifuninus sign, an additional inverting amplifier is required in
cation parameter. The chaotic region is very narrow, a 5%he feedback loop, but the operation is more stable and pre-
change in the constant 0.25 will eliminate the chaos, but thélictable. Because of the variety of attractors that can be ob-
forward voltage drop of the diode is not problematic. In thistained, this case offers a good opportunity for detailed com-
case, the battery voltage and series resistance cannot be jparison of theory with experiment. Figure 6 shows
creased arbitrarily since the inverting input is not a virtualoscilloscope traces in the-x plane of some of the attractors
ground. produced by a circuit that simulates the equation
IV. STEP FUNCTION CASES X=~ 0.3 x=Bxtsgrix) (10
Given that operational amplifiers are necessary for chaotic
oscillations in circuits of this type, it is natural to consider
using the inherent nonlinearity in the amplifier itself. With-
out feedback, a good operational amplifier acts as a compara-
tor, abruptly switching output from a large positive to a large
negative value as the input voltage crosses zero as shown in
Fig. 1(f). In a real op amp, the switching speed is limited by
the finite slew rate, and the saturation values are usually
somewhat asymmetrical. The latter problem can be over-
come by adjusting the positive and negative power supply
voltages appropriately. This behavior suggests exploring sys-
tems in which the nonlinearity is sg)( which is +1 for x ;
>0,—1 for x<0, and 0 forx=0. The simplest such cases |
found numerically were of the form

X=—0.5k—X*=[x—sgnx)]. 9
This system has very different attractors for the plus and
minus signs. With the plus sign, the attractor is a single-
folded band similar to the Rsler attractor and the examples

((©@) o

(©)

(N

(@

ﬂ

0.025 1@

Fig. 6. Attractors produced by E@LO) in the x—X plane. In the left-hand
column are oscilloscope traces for a circuit like Fig. 5 but with an extra
Fig. 4. Chaotic circuit implementation of E¢8) using three op amps. inversion, and in the right-hand column are the corresponding numerical
Capacitances are in microfarads, and all resistors af@.1 k solutions on the same scale.
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for various values 0B along with the corresponding numeri- VI. DISCUSSION
cal prediction, plotted on the same scale. o _ o
The sgn function is closely related to the Heaviside func- Most of the dissipative chaotic systems found in this study
tion H(x)=[sgn§)+1]/2 (+1 for x>0 and zero otherwige  are of the general form
which can be emulated electronically as shown in Fig).1 %4 AX+ X = G(x 13
The direction of the diode can be reversed to produce 0. (13
—H(—x)=H(x)—1. Circuits based on this nonlinearity Integrating each term reveals that this system is a damped
have been successfully tested, but they require two extrB@rmonic oscillator driven by a nonlinear memory term that
componentsa diode and input resistoand thus offer no involves the integral o5(x). Such an equation often arises
particular advantage. in the feedback control of an oscillator in which the experi-
mentally accessible variable is a transformed and integrated
version of the fundamental dynamical variable. Despite its
V. OTHER CASES importance and the richness of its dynamics, this system,
The operational amplifier comparator as shown in Fig. 1 With a nonlineaiG(x), seems to have been studied relatively
is a limiting case of a more general function little. Coulett, Tresser, and Arneodo observed chaos in nu-
sgn&min(ax),b) in which a is the gain of the op amp ard ~ Merical simulations with a cubié and a special piecewise
: i i i i dinear®?* form of G(x), and Rul’kovet al*>% devised an
is the saturation value. Typical operational amplifiers hav oo ' ' =t al. -V
open-loop gains of 16-1CF. To test the sensitivity of the RLC circuit with an unspecified nonlinear amplifier to pro-
results to the quality of the comparator, cases were examined!Ce chaos with a particular form Gf(x). _
numerically in which the nonlinearity has the simple form Many forms ofG(x) lead to chaos. For bounded solutions,
S(x)=sgn&)min(x/,1). This case corresponds to a unity- G(X) must average to zero along the orbitwhich means
gain amplifier that saturates at an output of 1 V. Chaotidhat any continuou$(x) must have at least one zeroat
cases analogous to E¢P) were found, albeit with slightly =x*. The stability of the fixed point atx¢, 0, 0 is deter-

different values of the coefficients: mined by the solutions of the eigenvalue equatidi A\?
K= —0.4¢—X+[x—2S(x)]. (11 +A—G'=0, whereG’'=dG/dx evaluated ak=x". This
point is locally stable fo- A<G’=<0 and undergoes a Hopf

The factor of 2 in front ofS(x) ensures thax—2S(x) is a  pifyrcation atG’ = — A, wherex=*i. Thus one would ex-
nonmonotonic function ok, without which chaos is more pect chaotic systems of this form to require a nonlinearity
difficult to achieve. Circuits baseq on thIS. nonl_mgarlty h,avewith either a positive slope at its zero crossing or a sizable
been successfully tested, and their behavior mimics their SORegative slope, implying a negative resistance in the corre-
counterparts. A numerical search for circuits in which the ponding circuit model. Systems wit' >0 apparently re-
chaos results from saturation of the op amp integrators difh ie ot jeast two fixed points for chaos, but systems with
not reveal any such examples, although their existence cans, __a only need one. All the cases étudied have these
no_tr:: ?uxrfclzgﬁ%(x) can be considered a piecewise Iinearfeature:s. Chua and Ayrdthdescribe saturating op-amp cir-
imation to the h bolic t ¢ tp h(Not cuits with a variety of piecewise linear characteristics.

approximation to the hyperbolic tangent, tagh(Not sur- It is interesting to ask for what functioB(x) the system

prisingly, chaos occurs in systems such as in Eg. (13) is most chaotic. Of the cases studied, the largest
X=—=0.1K—X*[x—2tanhx)] (12 Lyapunov exponents occur for systems of the form

with behavior analogous to those cases above. A general X+ AX+X=B[Xx—sgnXx)]. (14

feature of Eqs(9)—(12) is an antisymmetric function of . . . .
with three zero crossings and a region of negative sIopeL.JSIng a variant of simulated annealiffythe parameters\

Such functions naturally arise in cubic polynomials of theand B were adjuste_d to maX|m|ze_ the Lyapunov. exponent.
form = (x—x%) and lead to a number of chaotic examples as-ll_—he result wasA=0.55 and B=2.84, for Wh'ch _the
shown in Table I. A simple antisymmetric function with in- yapunov expo_nentébasee) are(1.055, Q’_1'655’ gving
finitely many zeros and regions of positive and negative®" attractor with a Kaplan—Yorke Q|mens'?8nof Dy
slope is sinf), for which a simple chaotic system is listed in =2.637. The attractor is contained within a thin torus that

Table I. The sine function can be approximated by an oddrearly touches the boundary of its small basin of attraction
polynomial, sing)=x—x%/6+x%/120—.... These last few so that initial conditions must be chosen carefully to produce

systems are not ideal for electronic implementation, but the ogr}dﬁﬂ ZOItl\JAE'On;'tJ h(\a/itri?i?d%ri/h's rtra]pteagled%(trérowir:]tbacr
are listed for interest and completeness. Chaos has also be B_E etween the vicinity of the unstable fixed points a

) ; - : X*=+1.
found in systems Wltth(x) = cosk), sinht), coshk), exp), It is also interesting to determine the least nonlinear form
exp(—[x)), and expEx?).

Systems involving delta functiongderivatives of the of G(x) for which Chaos oceurs i E¢L3), Wh'Ch we take to
Heaviside functionalso lead to chaotic solutions as Chua’s mean the two-part piecewise linear function ‘.N'th the small-
circuit attests. Such systems can be studied numerically b st bend at. the knee. Without I'oss. of generality, we can take
imposing a jump condition where the trajectory crosses thé&>(X)=—min(Bx Cx+B—C), which is scaled so that the un-
singularity. Another interesting class is hysteretic functionsStable fixed point is ak=0 and the knee is a=1. We
in which ¢(x) is multivalued. Since the flow is discontinu- Minimize the angle at the bend:=|tan “(B)—tan (C)|, by
ous for delta functions and hysteretic functions, chaos is poghe same method as above and conclude that the minithum
sible with less than three variables. A two-dimensional chaoccurs forB~—C, which is equivalent to the case with
otic circuit with 13 components based on this idea has bee(x) =B|x|—1. For A=0 (the conservative casechaos
developed by Tamasidus et al? was found for values oB as small as 0.014~1.15°) over
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a very limited range of initial conditions with a very small *°S.J. Linz and J. C. Sprott, “Elementary chaotic flow,” Phys. Lett28¢,
Lyapunov exponent~0.001). For A>0 (the dissipative 2402451999

. More detail about the system in E¢p), including a sound file of the
Casé’ the smallest8 for which chaos was found had bifurcations as ¥ is increased can be found at http:/

=0.025 andB=0.468 (#~50.2°). The basin of attraction is  sprott.physics.wisc.edu/chaos/abschaos.htm.
very small, and the chaotic attractor coexists with a nearbysrorsrice a PC version of thespice circuit simulator is available from
limit cycle. Penzar Development. A demo version can be found at hitp://

Systems of the form of Eq.13) are ripe for numerical, =~ www.penzar.com/topspice.htm. ' _
analytical, and electrical exploration and offer exceptional!"G. Marlow, AudioscopaPhysics Academic Software, Raleigh, NC, 1899

. . . 17- n ”
projects for students. They may also have practical applica- - Matsumoto, L. O. Chua, and M. Komoro, “The double scroll,” IEEE
Trans. Circuits SystCAS-32 797-818(1985.
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