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Abstract
At anticipated high electron temperatures in ITER, the effects of electron thermal motion on phase measurements
made by the toroidal interferometer/polarimeter (TIP) and poloidal polarimeter (PoPola) diagnostics will be
significant and must be precisely treated or the measurement accuracy will fail to meet the specified requirements for
ITER operation. We calculate electron thermal corrections to the interferometric phase and polarization state of an
electromagnetic wave propagating along tangential and poloidal chords (Faraday and Cotton–Mouton polarimetry)
and incorporate them into the Stokes vector equation for evolution of polarization. Although these corrections are
small at electron temperatures Te ! 1 keV, they become sizable at Te ! 10 keV. The precision of the previous lowest
order linear in the τ = Te/mec

2 model may be insufficient; we present a more precise model with τ 2-order corrections
to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. Proper treatment of temperature effects
will ensure more accurate interpretation of interferometric and polarimetric measurements in fusion devices like
ITER and DEMO. The use of precise analytic expressions is especially important for burning plasmas where various
interferometric techniques will be used for direct real time feedback control of device operations with time resolution
∼1 ms to regulate the rate of the thermonuclear burn and monitor/control the safety factor profile.

1. Introduction

A key issue for advanced optical plasma diagnostics is the
gap between the increasing accuracy of the experimental
phase measurements by interforometric and polarimetric (I/P)
systems and slow progress in the theoretical models used
for data analysis and evaluation of the physical quantities
of interest. Deficiencies in the models arise from both the
insufficient treatment of the physics of laser–plasma interaction
and the precision of equilibrium reconstruction methods.
This paper addresses the physical issues and investigates the
influence of intensive electron thermal motion on propagation
of high-frequency electromagnetic waves in magnetically
confined plasmas.

Several major laser diagnostics are under development
for measurement of plasma density, temperature, magnetic
field and current control in ITER: Thomson scattering (TS
LIDAR system), toroidal interferometer/polarimeter (TIP) and
poloidal polarimeter (PoPola). Each of these measurements
is based on the electron response to laser light propagating
through the plasma. For a long time, the interpretation of
the I/P diagnostics was based on the cold plasma dispersion

relation without taking into account corrections caused by the
electron thermal motion. This approach starts from derivation
of the cold plasma dielectric tensor, the wave dispersion
relation and plasma refractive indices. The magnetized
plasma exhibits birefringence, and two orthogonal states of
wave polarization with different refractive indices are present.
Important examples of plasma birefringency are the Faraday
(FR) effect of rotation of the polarization plane and the
Cotton–Mouton effect (CM) that involves both rotation and
deformation of the polarization ellipse [1]. The model which
adequately describes these two effects and resulting evolution
of polarization in non-uniform plasma and magnetic field is
known as the Stokes vector equation. It is derived in the WKB
approximation and represented by a differential equation for
the three-component unit Stokes vector of polarization which is
characterized by the orientation angle and degree of ellipticity
of the polarization ellipse.

At anticipated ITER parameters as well as in future
burning-pasma devices, the effects of electron thermal motion
will be significant and must be accurately treated or the
measurements will fail to meet the requirements for basic
machine operation and safety. The primary focus of our work is
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to examine the effects of electron thermal motion on the plasma
dielectric tensor, refractive indices and polarization of high-
frequency electromagnetic waves (specifically laser light). We
calculate electron thermal corrections to the interferometric
phase and polarization state (FR and CM polarimetry) of the
wave propagating along both tangential and poloidal chords
in ITER and incorporate them into the Stokes vector equation
for evolution of polarization. Although these corrections are
small at electron temperatures Te ! 1 keV, they become sizable
at Te ! 10 keV. The use of accurate analytic expressions is
especially important for fusion devices like ITER and DEMO
where various interferometric techniques will be used not only
to determine physical plasma parameters but also for direct real
time feedback control of device operations with time resolution
∼1 ms to regulate the rate of the thermonuclear burn and also
to monitor/control the q profile. This determines the high
accuracy (∼1%) required for line-averaged interferometry-
polarimetry in ITER (see, ITER diagnostic specifications [2]).

Earlier analytical results [3] have already been included
in the error analysis and design projections of the ITER TIP
and PoPola systems [4, 5]. However, the precision of the
previous lowest order linear in τ = Te/mec

2 model [3]
may be insufficient; using the same iterative technique we
derive now a more precise model with τ 2-order corrections
to satisfy the high accuracy required for ITER TIP and PoPola
diagnostics. With this model and electron temperature known
from Thomson scattering measurements, finite Te effects can
be properly treated. The use of simple analytic expressions
is critical for plasma feedback control in real time. Ray
tracing codes with fully relativistic dispersion functions and
exact temperature dependences can be potentially used for
these purposes. However, integrations over velocity space and
summation of the Bessel functions required for evaluation of
the dielectric tensor elements are computationally intensive
and not feasible on ∼1 ms time scale. The second order
corrections are also important for determination of the limits
of applicability of the linear approximation.

This paper is based on the report [6] presented at
the IAEA Fusion Energy Conference (2012) in ITER
category and devoted to the analysis of advanced optical
diagnostics. That report covered two different topics:
interferometry/polarimetry (I/P) and Thomson scattering,
unified by the importance of relativistic (quadratic in vTe/c)
electron kinetic effects in a high Te plasma. The present
paper focuses on the I/P applications and contains detailed
description of this topic. The full treatment of polarization
for Thomson scattering, with all derivations and complete
multi-parametric analysis of two important polarization
characteristics (change of state of polarization and loss of
degree of polarization), will be presented in a separate paper
now in preparation. Section 2 is devoted to the analytical
approach based on the iterative scheme of solution of the
relativistic electron kinetic equation. This approach yields
the Jones matrix with thermal effects. To the best of our
knowledge, the quadratic in τ corrections to the relativistic
dielectric tensor of a magnetized plasma have not been
calculated previously. They are incorporated into the Stokes
vector equation for evolution of polarization with τ 2-accuracy.
Brief discussion and conclusions are included in the Summary
while the details of calculations are given in appendix A.

2. Electron thermal effects on I/P diagnostics

The ITER TIP system is designed for tangential plasma density
measurement from both traditional interferometry and FR
polarimetry. It is based on the use of laser beams with the
wavelengths 10.6/5.3 µm propagating along five chords in
the toroidal plane which are double-passed by retro-reflection
from corner cube reflectors mounted in the ITER walls. In a
cold plasma, the interferometric phase " and the FR rotation
angle of polarization ψF are proportional to the line integral
of the electron density and the line integral of the electron
density multiplied by the parallel component of the magnetic
field, respectively. For the ITER TIP system parameters,
n ! 1020 m−3, B‖ ! 5.3 T, L ! 21 m, λ = 10.6 µm, they
are as follows:

"(cold) (rad) = 2.82 × 10−21λ (µm)

×
∫

ne(z) (m−3) dz (m) ! 63, (1)

ψ
(cold)
F (rad) = 2.62 × 10−25λ2 (µm)

×
∫

ne(z) (m−3)B‖(z) (T) dz (m) ! 0.33. (2)

The ITER PoPola diagnostic is based on the FR and CM effects
and provides a unique method for measurement of the internal
magnetic field and current profile as well as the electron
density. It is anticipated to operate with long wavelength far-
infrared laser beams (118/50 µm) propagating in the poloidal
plane along nine chords via an equatorial port and six chords
via an upper port. In this case, with propagation largely
perpendicular to the magnetic field, the CM effect becomes
significant and leads to a change in the ellipticity characterized
by the ellipticity angle χ . For the PoPola system parameters,
n ! 1020 m−3, B⊥ ! 5.3 T, L ! 8 m, λ = 118 µm, the
induced ellipticity of radiation initially linearly polarized at
45◦ to B⊥ is given by

χ (cold) (rad) = 2.46 × 10−29λ3 (µm)

×
∫

ne(z) (m−3)B2
⊥(z)(T) dz (m) ! 0.91. (3)

Finite electron temperature effects are neglected when
using the cold plasma dispersion relation as given in
equations (1)–(3). At high electron temperatures in a fusion
plasma, this will lead to significant errors. There are two
physically different sources of thermal corrections which are
comparable in magnitude but contribute with opposite signs:
non-relativistic Doppler-like effects (NR) and the relativistic
electron mass dependence on the velocity. The effects of
finite electron temperature have been addressed in the non-
relativistic limit in [7] where the lowest order linear corrections
in τ were calculated on the basis of the non-relativistic
dielectric tensor for magnetized plasmas. Our reevaluation
of this problem [3] has shown that relativistic effects cannot be
ignored. They are also linear in τ , opposite in sign compared
to the non-relativistic corrections for the interferometric phase
and the FR rotation angle and reduce the magnitude of the
thermal correction for the CM effect. The relativistic model
combines both non-relativistic Doppler-like and relativistic
electron mass effects. According to [3], at Te = 25 keV
and N ! 1, the resulting thermal corrections for ", ψF,
and the CM effect relative to their values in cold plasma
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are, respectively, −7.5%, −10% and +22.5%, while the non-
relativistic model yields overestimated values , +5%, +15%
and +60%, correspondingly.

For formal analysis of electron thermal effects on the
I/P diagnostics we have developed an iterative technique
of solving the relativistic electron kinetic equation. It is
based on the assumption that the wave frequency ω is
much higher than the electron cyclotron frequency ωce. A
numerical check on the linear in τ analytical results was
performed by using the GENRAY ray tracing code [8] with full
relativistic electron dielectric tensor that describes temperature
dependences exactly. The results presented in [3] (see figure 5)
show good agreement between the analytical model and
numerical simulations. The signs of the small deviations
observed at high electron temperatures Te > 20 keV are
consistent with τ 2 corrections reported below.

Comparison with the experimental results has been made
by analysing data from more than 1200 pulses collected during
the 2003–2007 period from high-Te JET discharges. That
includes a large number of measurements of induced ellipticity
made by the JET poloidal polarimeter and illustrated in figure 4
of [9]. The cold plasma theory was shown to underestimate
the induced ellipticity, while the non-relativistic model [7]
was shown to overestimate it. Measurements in the range of
3 keV < Te < 12 keV demonstrated good agreement with the
relativistic model [3], confirming the importance of relativistic
effects for the evolution of the polarization during high Te JET
discharges. These findings were interpreted by the JET team
as the first experimental observation of relativistic effects in
plasma polarimetry. Note, the observations were made on the
basis of a weak CM effect that required large statistics for
reliable identification of the dependence on Te. Of course,
the electron thermal effects are much more pronounced and
easily observed for the FR effect, which is much stronger than
the CM effect. Thus, the JET experiments have confidently
demonstrated the effect of electron thermal motion on plasma
polarimetry.

We now present an improved analytic model with
quadratic in τ terms that satisfies the 1% accuracy required
for the ITER TIP system. For this purpose, we use the
kinetic equation to calculate the perturbed electron distribution
function and, correspondingly, the linear plasma response as
a superposition of currents induced by the electromagnetic
wave in plasma. Using these results we calculate the plasma
dielectric tensor and analyse electron thermal effects on
refractive indices and polarization states of laser light.

Due to the short wavelength of the electromagnetic waves
used for plasma diagnostics, their typical frequency ω greatly
exceeds the characteristic plasma frequencies such that

ω ( ωpe ! ωce ( ωci ( νei. (4)

Under these conditions, the main contribution to the plasma
linear response is given by the electrons while the ion motion
can be ignored. Formal theory of linear plasma response
is based on the relativistic Vlasov equation for the electron
distribution function F(r, p, t) = f (p) + δf (r, p, t) in a
uniform magnetic field B0 which is perturbed by the fast
oscillating magnetic and electric field E of the wave. The
distribution function is divided into a stationary equilibrium
part f (p) and a perturbation δf (r, p, t). Presenting δf (r, p, t)

as a sum of the Fourier harmonics proportional to exp[i(k ·
r − ωt)] yields a non-homogeneous differential equation
for the Fourier components of δf . Assuming that the
unperturbed function is isotropic, this equation in a spherical
reference frame (p, θ, φ) with the z-axis parallel to B0, p =
p(sin θ cos φ, sin θ sin φ, cos θ) and k = k(sin α, 0, cos α)

takes the form

−i
(

ω − k · p

meγ

)
δf +

ωce

γ

∂δf

∂φ
= −eE · p

p

∂f

∂p
,

ωce = |e|B0

mec
, f (p) = f (|p|) (5)

where the relativistic factor γ describes the relationship
between particle momentum and velocity, p = mevγ and α

is the angle between k and B0. The same notation δf (p)

is used for the Fourier harmonics of δf (p, r, t). The factor
γ = (1 − v2/c2)−1/2 ≡ (p2/m2

ec
2 + 1)1/2 is also a measure

of the relativistic mass increase caused by electron thermal
motion that gives rise to the relativistic corrections to the
plasma dielectric tensor.

The standard method of solving the kinetic equation (5)
is based on the exact integration over φ where the constant
of integration is determined by the periodicity of δf on φ

(see, for example, equation (54) in [10]). The exact solution
leads to a Bessel function series representation of the dielectric
tensor [11]. These expressions should then be expanded over
τ * 1. Because of the infinite series, resonant factors in
the denominator and relatively large value of the argument
of the Bessel functions, this presentation is not suitable for
the expansion. Instead of the general approach based on the
exact solution, we have developed more simple calculation
scheme adequate for high-frequency electromagnetic waves
with ω ( ωce. It allows us to find finite Te corrections by
means of successive differentiations of standard trigonometric
functions. Our approach is based on the recursion relation
(7) suggested in [3]. For formal derivation of the recursion
relation we introduce a new function δg = δf exp(.) where
phase function . is defined by the integral

. = i
∫ φ

0

k · p

meωce
dφ′ = iq(φ cos α cos θ + sin α sin θ sin φ),

q = kp

meωce
. (6)

Expressing δf in terms of δg and substituting into the kinetic
equation (5) yields a differential equation for δg with a small
parameter ε * 1 and source function R:

δg = ε
∂δg

∂φ
+ R, R = − ie

pω
(E · p)

∂f

∂p
exp .,

ε = − iY
γ

* 1, (7)

where standard notation Y = ωce/ω is introduced. This
form allows a power series expansion in ε where next-order
corrections are obtained by differentiating the previous one.
The final solution for δf is presented by a series that is a
periodic function of φ:

δf = − ie
ω

(
∑

n=0

εnQn

)
∂f

∂p
, Qn = exp(−.)

∂n

∂φn
(E exp .) ,

E(φ) = Ex sin θ cos φ + Ey sin θ sin φ + Ez cos θ . (8)
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The recursion procedure is a formal way to derive compact
presentation for the series expansion (8). It is equivalent to
the expansion of the exact solution [10] in powers of ωce/ω by
means of its successive integration by parts over full differential
of the combination dφ′ exp(iγωφ′/ωce). Both methods lead to
the series expansion illustrated by (A1). The terms containing
derivatives of . are proportional to the corresponding powers
of q = kp/(meωce) = (N/Y )(p/mec). This yields a
double series expansion in powers of Y and p/mec with the
convergency conditions Y * 1, τ * 1.

Integrating δf gives the current density j induced in the
plasma

j = n0e

me

∫ ∞

0

p3dp

γ

∫ π

0
sin θdθ

∫ 2π

0

(
p

p

)
dφδf (p, θ, φ),

(9)

where n0 is the equilibrium plasma density. The equilibrium
isotropic distribution function f (p) is characterized by a
relativistic Maxwellian distribution (normalized to unity)

f (p) = µ exp(−µγ )

4πm3
ec

3K2(µ)
, 4π

∫ ∞

0
f (p)p2 dp = 1,

µ = 1/τ = mec
2/Te, (10)

where K2(µ) is modified Bessel function of the second kind
[12]. Using the definition of the displacement vector D and
expressing j as a function of the electric field components
Ex,y,z yields the elements of the dielectric tensor εij

D = E +
4π i
ω

j, Di = εijEj . (11)

The angular dependence of δf is described by the Qn factors.
The terms containing derivatives of . are responsible for
the appearance of higher powers of p in the equation for
δf . Correspondingly, performing integration over p yields
higher moments 〈p2〉 and 〈p4〉 and, thus, forms a power series
expansion of the dielectric tensor in τ * 1. Integration over
angular variables as well as over p is performed analytically
with the use of Mathematica [13]. Seven terms in summation
over n (nmax = 6) is enough to obtain the dielectric tensor
expanded to second order in τ with all relativistic factors
taken into account. These key results (A4) are obtained in
the reference frame x ′, y ′, z′ with z′-axis oriented along B0

and the k vector in the x ′, z′ plane with the angle α between
them. As a next step, we transfer the dielectric tensor to the
laboratory reference frame x, y, z shown in figure 1 with z axis
oriented along k while B0 is arbitrary and has the Cartesian
coordinates B0(sin α cos β, sin α sin β, cos α).

In the WKB approximation, the electric field of the
wave is characterized by slowly varying complex amplitude
E and fast oscillating phase. The homogeneous system of
the Maxwell equations (A8) for three components of E is
reduced by expressing Ez in terms of Ex and Ey from the
z component of equation (A8). The reduction leads to two
coupled equations for Ex and Ey (Jones equations (A13)).
Equating the determinant to zero gives two refractive indices
N2

s and N2
f for slow (O-mode) and fast (X-mode) waves,

respectively

N2
s,f = ηxx + ηyy

2
± 1

2
√

g, g = (ηxx − ηyy)
2 + 4|ηxy |2

(12)

0

0

0

Figure 1. The Stix reference frame x ′y ′z′ with z′ ‖ B0 and k in the
x ′, z′ plane and the laboratory reference frame x, y, z with z ‖ k and
x- and y-axes fixed with respect to the experimental device. The
spatially varying azimuth 0 ! β ! 2π is the angle in the x, y plane
between x and the direction of B0⊥, α is the angle between k
and B0.

where 2 × 2 Jones matrix ηik is defined by (A13). The mean
value of N serves as a measure of the interferometric phase
" (relative to vacuum). The function

√
g determines the

difference between Ns and Nf and, thus, the phase between
two normal modes that is a key factor for the evolution
of polarization. The polarization is characterized by the
polarization factors ρs,f = Ey/Ex :

ρs,f =
ηyy − ηxx ± √

g

2ηxy

. (13)

The phase difference between two normal modes is a function
of the plasma parameters X = ω2

pe/ω
2 * 1, Y = ωce/ω * 1,

τ = Te/mec
2 * 1, the propagation angle α and the optical

path length L. For propagation at an angle α not too close to
90◦ (cos α/Y ( 1), the difference between Ns and Nf is linear
in Y and leads to the FR rotation of polarization characterized
by the phase difference .F. For the quasi-perpendicular case,
cos α * Y * 1, the difference between two refractive indices
is much smaller, ∼Y 2, and the polarization evolves according
to the CM effect with the corresponding phase difference 4.
Final results for the thermal corrections in uniform plasma
and magnetic field are expressed by relative deviations of the
functions ", .F and 4 from their cold plasma values "(cold) =
ωLX/2c, .(cold) = ωLXY/c, 4(cold) = ωLXY 2/2c (see, for
example, appendix A and [1])

5"(T)/"(cold) = 1
2

(
2N2 − 5

)
τ + 1

8 (24N2 − 64N2 + 55)τ 2

! − 3
2τ + 15

8 τ 2,

5.
(T)
F /.

(cold)
F = (3N2 − 5)τ + 3

2 (10N4 − 23N2 + 15)τ 2

! −2τ + 3τ 2,

54(T)/4(cold) = 3
2 (8N2 − 5)τ

+ 15
8 (25 − 96N2 + 72N4)τ 2 ! 9

2τ + 15
8 τ 2, (14)

where N2 = 1 − X ! 1. Contributions from the dispersive
∝(N2, N4) and non-dispersive terms are strongly amplified
by large numerical factors. Since they enter with opposite
signs the final coefficients turn out to be of order of unity at
N = 1. The limit of applicability of the linear approximation
is determined by the condition that the second order corrections

4
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are much smaller than the linear terms. Due to cancelations of
large numerical factors, this condition yields soft restriction
on the electron temperature, τ * 1, that does not differ
from the original assumption. For 5"(T), 5.

(T)
F linear and

quadratic terms in τ have opposite signs and the overall effect
is reduced, whereas for 54(T) the terms add to increase the
effect. At high electron temperatures Te ! 20–50 keV, the
quadratic in τ corrections are in the range 0.3–2% for 5"(T),
54(T) and between 0.5–3% for 5.

(T)
F . Assuming that overall

contribution of all not included in (14) higher order terms is
less than 1%, the first two equations for " and .F meet the
accuracy (<1%) required for ITER TIP system at Te < 30 keV.

Knowing the electron temperature from Thomson
scattering, the thermal effects can be taken into account.
To estimate the absolute values of these corrections, note
that, for CO2 laser wavelength λ = 10.6 µm, the central
viewing channel optical path length L ! 21 m, plasma density
n ! 1020 m−3 and Te ! 30 keV, the linear correction to
the interferometric phase is large (!0.9 fringes) so that the
quadratic correction is also significant (∼24◦). Of course, in
the TIP case, all plasma parameters in the expressions for " and
.F should be modified according to the WKB approximation
and treated as line integrated quantities of the form

∫
n dz,∫

nTe dz,
∫

nT 2
e dz and so on.

The use of this standard WKB approach for the
polarimetric phases 5.

(T)
F , 54(T) is inappropriate when we

are dealing with the data analysis detected by the poloidal
polarimeter in ITER. The specific feature of the PoPola system
in ITER (and similar diagnostics in other devices) is not only
intensive electron thermal motion but also mutual interaction
of the FR and CM effects caused by quasi-perpendicular
directions of the optical paths in the ITER PoPola system with
the coupling factor Y/ cos α ! 0.7. The origin of the mutual
interaction (coupling) is discussed in the Summary. In this
situation, the interference of the FR and CM contributions
leads to a complicated relation between polarimetric data
and line-integrated plasma and magnetic field parameters [5].
Similar complications caused by mutual interaction between
between the FR and CM effects have been recently reported
by analysing the JET experiments [14]. The model which
adequately describes these relations is based on the Stokes
vector equation [15, 16]

ds

dz
= Ω × s. (15)

We use [16] to derive an expression for 6 in terms of Jones
matrix elements that is suitable for our analysis

Ω = ω

2c

(
ηxx − ηyy, 2Re{ηxy}, 2Im{ηxy}

)
. (16)

Equations (15) and (16) describe rotation of the Stokes vector
s around the spatially varying angular velocity vector Ω.
We are dealing here with fully polarized monochromatic
light and ignore absorption, emission and scattering of
radiation so that the three-component unit Stokes vector
s = S/S0 is used instead of the four-component vector
S = (S0, S1, S2, S3). The position of this vector on
Poincare sphere in characterized by the coordinates s =
(cos 2χ cos 2ψ, cos 2χ sin 2ψ, sin 2χ), where 0 " ψ " π

is the azimuth of the polarization ellipse (orientation angle)

Figure 2. The Cartesian coordinates of the polarization Stokes
vector s in terms of angular positions (ψ, χ) on the Poincare sphere.

and −π/4 " χ " π/4 is the ellipticity angle (tan χ = b2/b1)

(see figure 2).
Linear in τ relativistic thermal corrections were

incorporated in the Stokes vector equation in [3] and used for
ITER analysis in [5]. We now present an advanced version of
Stokes vector equation with τ 2-order corrections for vector Ω
that determines the polarization dynamics

Ω = Ω(c) +
Te

mec2




96

(c)
1 /2

96
(c)
2 /2

−26
(c)
3



 +
(

Te

mec2

)2



156

(c)
1 /8

156
(c)
2 /8

36
(c)
3



 ,

Ω(c) = ω

2c




XY 2 sin2 α cos 2β

XY 2 sin2 α sin 2β

2XY cos α



 . (17)

Equation (17) provides an analytical description that avoids
errors caused by finite Te effects and satisfy ITER accuracy
requirements (<1%). Note a misprint (angle ψ instead of β)
in the same equation in [6]. The detailed calculations of 6 are
presented in appendix A.

3. Summary

Interpretation of polarimetric and interferometric phase
measurements in high temperature fusion plasmas differs from
that in existing tokamaks due to increased importance of
the finite Te effects. This issue is addressed by solving the
relativistic electron kinetic equation and incorporating the
results into the Stokes vector equation in the form of precise
and simple analytical expressions.

The use of the Stokes vector formalism is important for
poloidal polarimetry in tokamak-like magnetic configurations
where interpretation of the phase measurements is complicated
by mutual interaction of the FR and CM effects due to almost
perpendicular to the magnetic field laser beam propagation.
Indeed, vector equation (15) can be transformed to two scalar
equations for two measured values such as the orientation angle
ψ and ellipticity angle χ . This yields exact expressions for
dψ/dz and dχ/dz written in terms of the components of Ω(z)

and variables ψ and χ . They show that in addition to pure
FR rotation effect (2), the orientation angle ψ has one more
term that depends on the ellipticity angle χ while the integrant

5
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of the expression for pure CM effect (3) has an additional
factor that depends on ψ . These mutual dependences are
often interpreted in the literature as a coupling between FR
rotation and CM effect (see, for example, [14]). The Stokes
vector equation (15) with accurate temperature corrections (17)
allows us to address the issue of the coupling simultaneously
with properly accounting for the thermal effects. Preliminary
analysis of the thermal effects on the strength of mutual
interaction between FR and CM contributions shows that
deviation of the FR response from its pure decoupled value
increases with Te while the deviation of the CM response
from its decoupled form becomes smaller. More detailed
consideration of this question requires sophisticated numerical
analysis.

The precise analytical expressions with τ 2-order
corrections are derived to satisfy the high accuracy required for
ITER diagnostics. At electron temperatures Te ! 20–50 keV,
the magnitudes of the corresponding quadratic corrections
relative to their values in cold plasma are 0.3–2% for " and
4 and 0.5–3% for .F. The absolute values of the τ 2-terms in
equation (14) for ", .F and 4 expressed in unites of degree
are, respectively, 10.3–67.3◦, 0.1–0.6◦ and 0.15–0.97◦. The
resolution of the polarimetric diagnostics is determined by
the typical system noise level that is reported as ∼0.01◦ with
250 Hz bandwidth in [17] and ∼0.04◦ with 20 kHz bandwidth
in [18]. It is seen that the quadratic thermal corrections are
larger than the resolution of the I/P detectors and, therefore,
measurable at sufficiently high Te.

Linear in τ corrections have been measured in JET [9], but
required high statistics due to relatively low Te (3 keV < Te <

12 keV) and weak CM effect used for the phase measurements
by JET poloidal polarimeter. Quadratic in τ effects on
polarimetry are unlikely to be detected on JET or other present
day tokamaks/stellarators but will become significant at the
higher Te expected for ITER. However, detecting these effects
on interferometry measurements should be feasible on existing
devices, where the absolute values of the phases are large
and, correspondingly, their quadratic corrections can exceed
sensitivity of the detectors.

Our consideration is specifically focused on exact
analytical equations for high order thermal corrections and
does not take into account other factors (attenuation and
dichroism of the laser beam, normal modes coupling in low
density boundary layers and so on). These effects can be
treated and included in data analysis separately. There are
also higher order terms proportional to Y 2 * 1 and X * 1
that were omitted in equation (17). Comparing small omitted
terms proportional to τ with the factors proportional to τ 2

shows that this is always correct for short wavelength ITER
TIP diagnostics. The omitted small terms are less than 10%
of τ 2 corrections for the 118 µm PoPola diagnostics at Te >

15 keV. For the purpose of brevity, the first ‘cold’ term in
equation (17) is shown in lowest in X and Y order. Since
exact analytical expression for this factor in cold plasma is
well known [7], it is straightforward to improve its accuracy to
any desirable order. For example, next order corrections can
be taken into account by replacing 6

(c)
1,2 → 6

(c)
1,2(1 + X + Y 2),

6
(c)
3 → 6

(c)
3 (1 + Y 2) in the first term of equation (17).

Properly accounting for finite temperature effects, both non-
relativistic and relativistic, is critical for accurate assessment

of planned phase measurements for ITER and future burning
plasma experiments. Stokes vector equation with analytical
expressions for thermal effects enable one to perform both
equilibrium reconstructions [5] (by using I/P signals as input
parameters) and feedback control of ITER (or any burning
plasma) in real time with fast time resolution by avoiding the
need for slowly operating relativistic kinetic ray tracing codes.
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Appendix A. Temperature corrections to the I/P
properties

The angular dependence of δf is determined by the Qn factors.
A typical structure of Qn is illustrated by the first five terms of
the series (8) (up to ε4 order)

δf (p, θ, φ)∝E + ε[E ′ + E. ′]+ε2[E ′′ + 2E ′. ′ + E(. ′2 + . ′′)]

+ε3[E ′′′ + 3E ′′. ′ + 3E ′(. ′′ + . ′2) + E(. ′3 + 3. ′. ′′ + . ′′′)]

+ε4[E ′′′′+4E ′′′. ′+6E ′′(. ′′ + . ′2)+4E ′(. ′3 + 3. ′. ′′ + . ′′′)

+E(. ′4 + 6. ′2. ′′ + 3. ′′2 + 4. ′. ′′′ + . ′′′′)]. (A1)

The terms containing derivatives of . are proportional to
the corresponding powers of q = kp/(meωce). The angular
dependences of δf are presented by the products of the
trigonometric functions of φ and θ . Additional angular
dependences appear in (9) due to unit vector p/p =
(sin θ cos φ, sin θ sin φ, cos θ). Integrating (9) over θ and
φ analytically with the use of Mathematica shows that only
even powers of q contribute to j while terms with odd powers
cancel after integration. To illustrate this properties all non-
vanishing terms are underlined in (A1). Integration over
angular variables results in a vector 〈Q〉 obtained as a function
of p or, equivalently, γ

〈Q〉(γ ) =
∑

n=0

εn

∫ π

0
sin θdθ

∫ 2π

0

(
p

p

)
Qndφ. (A2)

The relativistic factor γ is used instead of p for integration in
equation (9). Vector 〈Q〉 is integrated over γ with the use of
variable of integration ξ = µ(γ − 1), 0 " ξ " ∞

j = in0e
2

meω

exp(−µ)

4πµ1/2K2(µ)

∫ ∞

0
dξ

(2 + ξτ )3/2

1 + ξτ
ξ 3/2

× exp(−ξ)〈Q〉(ξτ ). (A3)

Expanding the integrand and the vector 〈Q〉(ξτ ) in powers of
τ * 1 results in functions of ξ which are further integrated
analytically. This yields elements of the dielectric tensor ε′

ij

with τ 2 thermal corrections in the reference frame x ′, y ′, z′

(with z′-axis along B0 and vector k in the x ′–z′ plane). To
provide τ 2 accuracy seven terms were taken in the sum (8)

6
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(up to ε6 order). Contrary to the case of cold electrons, all six
elements of the Hermitian tensor ε′

ij (ε′
ij = ε′

ji
8) are non-zero

ε′
xx = 1 − X(1 + Y 2) + τX

(
N2 cos(2α) +

9
2
N2Y 2 cos(2α)

−21
2

N2Y 2 − 2N2 +
15Y 2

2
+

5
2

)
+ τ 2X

(
6N4 cos(2α)

+
165
2

N4Y 2 cos(2α) − 15
4

N4Y 2 cos(4α) − 495
4

N4Y 2

−9N4 − 8N2 cos(2α) − 135
2

N2Y 2 cos(2α) +
315N2Y 2

2

+16N2 − 375Y 2

8
− 55

8

)
,

ε′
xy = iXY

[
1 + τ

(
−3

2
N2 cos(2α) +

9N2

2
− 5

)

+τ 2
(

− 15N4 cos(2α) + 30N4 +
69
4

N2 cos(2α)

−207N2

4
+

45
2

)]
,

ε′
xz = XN2 sin(2α)

[
− τ

(
1 + 2Y 2) + τ 2

(
15
2

N2Y 2 cos(2α)

−75
2

N2Y 2 − 6N2 + 30Y 2 + 8
)]

,

ε′
yy = 1 − X(1 + Y 2) + Xτ

(
7
2
N2Y 2 cos(2α) − 19

2
N2Y 2

−N2 +
15Y 2

2
+

5
2

)

+Xτ 2
(

285
2

N2Y 2 +
105
2

N4Y 2 cos(2α) − 195
2

N4Y 2

−3N4 − 105
2

N2Y 2 cos(2α) + 8N2 − 375Y 2

8
− 55

8

)
,

ε′
yz = −iXYN2 sin(2α)

[(
15N2 − 69

4

)
τ 2 +

3τ

2

]
,

ε′
zz = 1 − X + τX

(
− N2 cos(2α) +

1
2
N2Y 2 cos(2α)

−1
2
N2Y 2 − 2N2 +

5
2

)
+ τ 2X

(
− 6N4 cos(2α)

+
15
2

N4Y 2 cos(2α) +
15
4

N4Y 2 cos(4α) − 45
4

N4Y 2

−9N4 + 8N2 cos(2α) − 15
2

N2Y 2 cos(2α)

+
15
2

N2Y 2 + 16N2 − 55
8

)
. (A4)

The main purpose of this work is a rigorous expansion in
powers of τ , and, correspondingly, only dominant terms of
order Y 2 (Y = ωce/ω * 1) and lower are kept in (A4). This
is the lowest order needed for correct evaluation of the I/P
responses. Since they are calculated in linear approximation
in X (X = ω2

pe/ω
2 * 1), the refractive index should

formally be set to N2 = 1 in rhs of (A4). However, because
of computational convenience we treat N2 as an arbitrary
parameter in intermediate equations and put N2 = 1 in the
final expressions.

The correctness of (A4) is checked by comparison with
some known limiting cases. As a test, we use [19], devoted
to a fully relativistic dielectric tensor in a plasma without a
magnetic field. The dielectric tensor of a non-magnetized
plasma is isotropic and characterized by its longitudinal εL

and transversal εT components

εij = εT

(
δij − kikj

k2

)
+ εL

kikj

k2
, (A5)

where εL and εT are functions of the absolute value |k| = k

only. Solving (A5) for εT and εL

εL = εij

kikj

k2
, εT = 1

2
εij

(
δij − kikj

k2

)
(A6)

allow us to calculate these two functions from (A4). Putting
Y = 0 in (A4) for limiting transition to zero magnetic field and
taking k = (k sin α, 0, k cos α) yields

εT = 1 − X + τX

(
5
2

− N2
)

− τ 2X

(
3N4 − 8N2 +

55
8

)
,

εL = 1 − X − τX

(
3N2 − 5

2

)

−τ 2X

(
15N4 − 24N2 +

55
8

)
. (A7)

These factors, indeed, are the functions of N2 = k2c2/ω2

only (the angular dependences on α cancel). The specific
dependences on k are consistent with the weakly relativistic
limit of the corresponding non-magnetized expressions in [19].
Since the wave length of the laser light is short and the
effects caused by the magnetic field are small, the dielectric
constant εT can be used for interpretation of the interferometric
measurements. The dispersion relation, N2 = εT, determines
k value in plasma and the interferometric phase compared to
vacuum " = (kv − k)L. Relative deviation of this phase
5"(T) from its cold value "(c) = XωL/2c is caused by the
finite electron temperature effects. The corresponding linear
and quadratic corrections in uniform plasma are given by the
first equation (14).

Based on the well checked dielectric tensor (A4), we
now analyse the case of propagation in magnetized plasma
(Y 2= 0). First, consider two specific propagation directions
in uniform plasma and magnetic field: pure parallel α = 0
and perpendicular α = π/2. The homogeneous system of the
Maxwell equations
(
δijN

2 − ninjN
2 − ε′

ij

)
Ej = 0, n = k/k,

i, j = 1, 2, 3 (A8)

determines the dispersion and the polarization properties of the
waves. In α = 0 case, k = (0, 0, k) and ε′

xx = ε′
yy = ε⊥,

ε′
xz = ε′

yz = ε′
zx = ε′

zy = 0. The dispersion relation for
two circularly polarized normal waves, Ex = ±Ey , reads
N2 = ε⊥ ± |ε′

xy |. This determines the difference between two
refraction indices Ns−Nf = |ε′

xy | and corresponding phase .F

between slow and fast waves that leads to the FR rotation of
the polarization plane. Putting α = 0 in ε′

xy , yields relative

deviation of this phase 5.
(T)
F from its cold plasma value

.
(c)
F = XYωL/c. Linear and quadratic thermal corrections

to the FR phase are presented by the second equation (14).

7
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In α = π/2 case, k= (k, 0, 0) while ε′
xz = ε′

yz =
ε′
zx = ε′

zy = 0. Then, the x-component of (A8) results in the
relation, Ex = −ε′

xyEy/ε
′
xx showing that Ex ! XYEy * Ey .

Ignoring small (∝X2) contribution of this component to two
other projections of (A8), yields two decoupled equations for
Ey and Ez

(
N2 − ε′

yy

)
Ey = 0,

(
N2 − ε′

zz

)
Ez = 0. (A9)

Thus, there are two linearly polarized fast and slow normal
modes with the refraction indices N2

s = ε′
zz and N2

f = ε′
yy ,

respectively. The difference of the refractive indices Ns−Nf =
(ε′

zz − ε′
yy)/2 is proportional to XY 2. The phase between

two normal modes leads to the change of ellipticity, and the
polarization evolves according to the CM effect. Calculating
ε′
zz − ε′

yy with α = π/2, yields relative deviation of the CM
phase 54(T) from its cold plasma value 4(c) = XY 2ωL/2c.
Linear and quadratic finite electron temperature corrections to
the CM phase are presented by the third equation (14).

In the general case of non-uniform plasma and magnetic
field varying spatially on a scale L ( λ/2π , the evolution of
polarization is described by the WKB formalism and expressed
by the Stokes vector equation (15). In order to calculate
Ω, we take equations (71)–(73) from [16] and express Ω
as a function of the Jones matrix elements. To perform
these transformations, we use (13) to derive the following
relationships

1 − ρsρ
8
s = −

(ηyy − ηxx)(ηyy − ηxx +
√

g)

2|ηxy |2
,

1 + ρsρ
8
s =

√
g(ηyy − ηxx +

√
g)

2|ηxy |2
,

ρs + ρ8
s =

(ηyy − ηxx +
√

g)Re{ηxy}
|ηxy |2

,

ρ8
s − ρs =

i(ηyy − ηxx +
√

g)Im{ηxy}
|ηxy |2

, (A10)

where factor g is determined by (12), the Jones matrix elements
ηik are defined by (A13). Substituting (A10) to (71)–(73) (note,
that the factor (−i) is missed in (73)) and taking into account
that Ns − Nf = √

g/2 in linear in X approximation, yields
three components of Ω:

Ω = ω

2c

(
ηxx − ηyy, 2Re{ηxy}, 2Im{ηxy}

)
. (A11)

Equation (A11) is consistent with equation (20) in [20] except
opposite sign of 61 and 62 caused by different definition of s3.
This universal form is suitable for further calculations because
of straightforward relation between ηij and already known
elements (A4). Indeed, the Jones matrix is determined by
the dielectric tensor ε′

ij transferred to the laboratory reference
frame x, y, z introduced in section 2 (see figure 1). The
transformation is achieved by two successive rotations of the
initial reference frame around the y ′ axis by the angle α and
around the z′ axis by the angle π −β. The tensor εij is related
to ε′

ij as follows

ε = T · ε′ · T −1,

T =




− cos α cos β sin β sin α cos β

− cos α sin β − cos β sin α sin β

sin α 0 cos α



 , (A12)

where T is the transformation matrix. Expressing Ez in terms
of Ex and Ey from the z component of (A8) and substituting
into the x and y components yields two coupled equations for
Ex and Ey (Jones equations)
(

N2 − ηxx −ηxy

−ηyx N2 − ηyy

) (
Ex

Ey

)
= 0,

ηij = εij − εizεzj /εzz, i, j = 1, 2. (A13)

All tensors ε′
ij , εij and ηij are Hermitian. Following linear in

X * 1 approximation, we drop small factors εizεzj /εzz ∝ X2

and set ηxx = εxx , ηyy = εyy , ηxy = εxy . For illustration, we
show the results of calculations of the off-diagonal element
ηxy . Although initial element ε′

xy is purely imaginary, the
transformed element ηxy is a complex number

ηxy = i
2
XY cos(α)(τ (30N4τ + N2(6 − 69τ )+5(9τ − 2))+2)

+
1
16

XY 2 sin2(α) sin(2β)(3τ (8N2(15(3N2 − 4)τ + 4)

+5(25τ − 4)) + 8). (A14)

Due to its complex structure, the off-diagonal element ηxy

provides non-zero 62 ∝ sin2 α sin 2β and 63 ∝ cos α

components. All three components of Ω are as follows:

61 = XY 2 sin2 α cos 2β

(
1 +

1
8
(96N2 − 60)τ

+
1
8
(360(3N2 − 4)N2 + 375)τ 2

)
ω

2c
,

62 = XY 2 sin2 α sin 2β

(
1 +

1
8
(96N2 − 60)τ

+
1
8
(360(3N2 − 4)N2 + 375)τ 2

)
ω

2c
,

63 = XY cos α

(
1 +

1
2

(
6N2 − 10

)
τ

+
1
2

(
30N4 − 69N2 + 45

)
τ 2

)
ω

c
. (A15)

Setting N2 = 1 in lowest linear in X order, yields the Stokes
vector equation (15) with linear and quadratic in τ thermal
corrections (17).
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