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Abstract
This paper reviews the polarization properties of Thomson scattered (TS) light as applied to
electron temperature measurement. The theoretical background is based on Stokes vector
transformations and Mueller matrices. The review starts from scattering on a single electron and
proceeds to the combined effect of many particles. Then, this general approach is subdivided into
frequency-integrated and frequency-resolved applications. For each of them, the exact relativistic
analytical solutions are presented in the form of Mueller matrix elements averaged over the
relativistic Maxwellian distribution function. The dependencies of the elements on the scattering
angle, electron temperature, and frequency of the scattered radiation (in the frequency-resolved
case) are presented. These solutions form the basis for accurate analysis of the degree of
depolarization of TS radiation. Results obtained for the frequency-integrated regime are reviewed
and new solutions for the frequency-resolved case are reported, making a bridge between the two
limiting cases. Experimental setups for polarization-based TS diagnostics are compared. A
combination of polarization-based and spectral-based techniques are also described.

Supplementary material for this article is available online

Keywords: incoherent Thomson scattering, electron temperature, measurement

(Some figures may appear in colour only in the online journal)

1. Introduction

The incoherent Thomson scattering (TS) of monochromatic laser
light is the basis for a plasma diagnostic widely used to measure
electron temperature. The electron temperature, Te, is propor-
tional to the square of the frequency width of the scattered
spectrum [1]. The finite spectrum width is produced by the
Doppler shift of the frequency of the incident monochromatic
wave in the reference frame of an electron moving with a
thermal velocity vTe. At small photon energies compared to the
electron rest mass energy the scattering in this reference frame
occurs almost elastically but with a change in the photon

propagation direction. Due to the change of direction, the inverse
transformation to the laboratory reference frame results in a
scattered photon frequency different from the original incident
frequency, and the difference is proportional to the electron
thermal velocity. Thus, the Doppler effect and the corresponding
frequency shift lead to the spectrum broadening observed in the
standard frequency-based TS method of Te measurement.

An electromagnetic wave is characterized not only by wave
frequency but also by wave polarization. Instead of frequency
spectrum broadening, we analyze in this paper the polarization
properties of TS radiation as a method of electron temperature
measurement. The change in the polarization of the scattered
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light is significant in high-temperature plasmas, and must be
accounted for when analyzing the scattered radiation for temp-
erature measurement. It has been typically characterized in TS
literature by the relativistic depolarization factor q (see [1–4]).
When the scattered light collection system selects for a specific
orientation of linear polarization, as is often the case, the factor q
quantifies the reduction of the collected spectral intensity due to
changes in the polarization of the incident linearly polarized laser
light. The factor q arises from relativistic terms µv cTe

2 2 in the
polarization part of the scattering operator. The origin of the
relativistic terms is thoroughly analyzed in [5]. The full set of
equations of special relativity is used to transform the scattered
electromagnetic fields from the reference frame of the electron at
rest to the observer where the electron is assumed to move with
an arbitrary relativistic velocity.

Although q is referred to as a depolarization factor, this
nomenclature differs from the use of depolarization in the
present paper. For example, the previously mentioned reduction
in scattered light intensity occurs even for scattering from a
single moving electron. In such a case, the scattered electro-
magnetic wave is Doppler-shifted in frequency but remains
monochromatic and completely polarized. The transition from
fully-polarized incident light to partially-polarized scattered
light is caused by the superposition effect of a large number of
randomly moving electrons. It results in broadening of the
frequency spectrum and also renders the scattered radiation
partially polarized even though the incident light is fully
polarized. We focus our attention on this mechanism of loss of
polarization in the process of incoherent TS.

It is generally applicable to quantify the loss of polarization
by the degreeofpolarization P, or equivalently by the degree
of depolarization = -D P1 . The possibility of determining
the plasma electron temperature by measuring the degree of
depolarization was suggested as early as 1968 in [6] and more
recently in [7]. If the degree of polarization dependence on
electron temperature is accurately known from theory, the
accuracy of such a diagnostic could potentially exceed that of
the conventional spectrum-based TS method. First order in
T m ce e

2 effects were analyzed theoretically in [6, 8, 9].
The most general and complete description of TS radiation

is based on Mueller matrix formalism. The 4× 4 Mueller
matrix links the Stokes vectors of the incident and scattered
light and gives full information about the power and polariza-
tion of the scattered wave for arbitrary polarization of the
incident wave. The use of this formalism for the TS applications
was first suggested by Segre and Zanza in [9] in 2000.
Although their calculations were limited to first order terms in

T m c 1e e
2 and performed with an incorrect form of the

scattering operator, the paper was of a fundamental importance
as it illustrated the powerful capabilities of the Mueller matrix
approach. This work motivated further interest and progress in
theoretical studies devoted to polarization effects and their
application to advanced polarization-based TS diagnostics.

Reference [10] was built on this previous work and pre-
sented exact analytical relativistic solutions for the frequency-
integrated Mueller matrix elements. This result was applied to the
LIDAR ITER Thomson scattering system. The analytical solu-
tions enable optimization of a polarization-based TS diagnostic

setup over multidimensional parameter space. These solutions
were used to study the general properties of the degree of
depolarization in a wide range of Te and scattering angle θ var-
iations [11, 12]. Possible implementations of a polarization-based
Te diagnostic were discussed in [13].

Earlier publications [10–12] were mostly devoted to para-
metric studies of the degree of polarization. In all these papers,
expressions for the Mueller matrix elements were used without
derivation. A self-consistent theoretical model of TS polarization
and the method of derivation of the exact relativistic expressions
were described recently in [14]. The frequency integrated Mueller
matrix solutions are expressed in a compact form after analytical
integration of the three-dimensional, relativistic scattering
operator over a relativistic Maxwellian distribution function and
universally valid for the full range of electron thermal motion
from non-relativistic to ultra-relativistic.

The topic of the TS polarization is not well known in
plasma community. We present many details in order to make
the article self-contained and readable without the need for
frequent use of references. A description of the general
polarization formalism is given in section 2. In section 3, the
review begins with the key elements of the theoretical
approach presented in [14].

The polarization properties for incoherent Thomson scat-
tering from a single electron provide a convenient starting point,
and are described in section 3.1 by the Lienard–Wiechert
solution for the scattered electric field re-emitted by an electron
moving along an unperturbed trajectory with arbitrary relati-
vistic velocity and oscillating in the field of the incident
monochromatic wave. The important element of the Mueller
matrix formalism developed in [14] is a transformation of the
time averaging in the definition of the Stokes vector components
to integration over the spectrum. The resulting expressions are
linked with the frequency-integrated products of the Fourier
components of the truncated fields. A set of three Mueller
matrices and corresponding Stokes vectors (auxiliary, spectral,
and frequency integrated) are introduced in section 3.2. They
describe the change of polarization in the process of scattering
on an individual electron moving in unbounded space.

The zero-component of the spectral Stokes vector corre-
sponds to the spectral intensity from a single electron. The result
of [14] for this component is consistent with the expression in
the first part of [15] devoted to the infinite scattering volume
(infinite transit time, ITT) case. It yields the spectral intensity on
the detector w d w w bµ - -( ) ( ) ( )( )P 1d s

single 6 scattered
by a single electron moving with the velocity b = cv in the
infinite scattering volume where bs is the projection of b on the
scattered wave direction andwd is the Doppler shifted frequency
of the wave. The key dependencies of w( )( )P single on ω and bs

are also identical to equation (7.2.19) in [2] and equation (4.35)
in [16]. According to the terminology of [2] the spectral
intensity w( )( )P single represents the time-at-observer power from
a single electron. The complicated polarization factor in the
expression for w( )( )P single was additionally verified in [14] by
comparison of the frequency integrated solution with the scat-
tering cross section presented in the classical book by Landau
and Lifshitz [17].
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This special attention paid to verification was caused by
disagreement about proper solution for w( )( )P single (see, for
example, [1, p 53 and 5, p 488] and the opposite conclusion
made in [14]). The confusion arose because the result of [15]
was declared in [18] to be incorrect due to improper handling
of the square of a δ-function in the derivation of the spectral
power equation. The arguments in [18] were reviewed
recently in a detailed tutorial article [16]. In point of fact, the
square of the δ-function is properly treated in [15]. The
inconsistency between [18] and [15] originates not from a
mathematical mistake in [15] but from the erroneous com-
parison of the time-at-particle power treated in [18] with the
time-at-observer power analyzed in [15]. This issue is
reviewed in section 3.3 with mathematical arguments shown
in appendix A.3.

The single electron Mueller matrices obtained in section 3
are used as an elementary process to account for the combined
effect of many particles as reviewed in section 4. The effect of
many electrons was originally expressed in [15] by two different
weighting factors used for averaging over Maxwellian dis-
tribution function: by the weighting factor bµ - -( )P 1 sITT

6

presented in the first ITT part of [15] and another scaling,
bµ - -( )P 1 sFTT

5, derived in the second part of [15] devoted
to the finite scattering volume (finite transit time, FTT) regime.
The ITT scaling corresponds to the instantaneous spectral
intensity w( )( )P single multiplied by the number of particles
(assumed stationary) residing in the scattering volume. This
operation is invalid in the case of a finite scattering volume due
to the interruption of radiation caused by the boundaries of the
scattering zone. The FTT scaling has an additional factor

b-( )1 s compared to the ITT expression. This factor takes into
account modification of the mean power on the detector due to
the impulsive character of the scattered radiation. The quanti-
tative justification of this effect is illustrated in section 3.1. The
FTT form of the weighting factor is generally accepted in all
present-day relativistic treatments of TS radiation. This
expression was used in [14] while the incorrect ITT weighting
factor was used for averaging over Maxwellian distribution
function in [9].

The method of exact integration over the relativistic
Maxwellian distribution function is presented in detail in [14]
for the case of the frequency integrated Mueller matrix. It is
discussed briefly in section 5.1. The frequency integrated
quantities and the properties of the corresponding degree of
depolarization are reviewed in section 5.2. The technique of
exact integration can also be formally applied to the ITT
weighting factor used in [9]. This also yields Mueller matrix
elements valid at all temperatures, and are discussed in
section 5.3 and appendix B. Their low temperature limits
verify the first-order expansions in Te obtained in [9] for the
ITT model, and increases confidence in both the first-order
calculations in [9] and the correctness of the scheme of exact
analytical integration.

The general formalism of the Mueller matrix and Stokes
vectors is subdivided into the frequency-integrated and
frequency-resolved applications. The frequency-integrated
analysis is fully covered in [14]. For completeness new exact
relativistic solutions are obtained and presented in section 6

for the frequency-resolved Mueller matrix. The verification of
these new results is confirmed analytically and numerically by
integrating over the entire frequency interval and comparing
with the frequency-integrated quantities [14]. The correctness
is also confirmed by full consistency of the spectral powers
calculated from the newly derived general equations with the
previous exact relativistic spectral power calculations reported
in [3].

The present overview is focused on theoretical results
obtained during the last two decades and practical realiza-
tions of polarization-based TS diagnostics. There are a
number of publications [13, 19–22] describing the optim-
ization of their potential capabilities. Variations of polar-
ization-based TS diagnostics are compared, searching for the
variant with the smallest experimental error bars. Combi-
nations of polarization-based and spectral-based techniques
are discussed in section 7, including the hybrid method
suggested recently by Giudicotti and co-authors [22] for the
ITER core TS system.

Brief concluding remarks related to the ITER core TS
system are made in the summary. The polarization TS method,
however, is not applicable only to high electron temperature
burning plasmas such as in ITER. In addition to the ITER core
TS application there are a number of other opportunities for
implementing polarization-based Thomson scattering diag-
nostics. Although these methods have not yet been fully
investigated in experiments, an attempt to measure the depo-
larization effect has recently been performed on JET. In addi-
tion to JET, an experiment to measure the depolarization of the
TS radiation has been proposed on the Frascati Tokamak
Upgrade (FTU). This information as well as a possible exper-
imental test of a polarimetric Thomson scattering diagnostic
technique on the W7-X stellarator are briefly discussed in the
summary. Finally, we conclude by identifying the various
problems that still remain open to investigation in this area.

2. General description of polarized light

TS radiation is always contained in a finite frequency
bandwidth wD . Consider a plane wave propagating along
the z-axis and let ω be some average frequency such that the
wave electric field is proportional to w-( ) ( )t tE exp i where
the complex amplitude ( )tE is some slowly varying function
of time responsible for the frequency broadening wD . For a
pure monochromatic wave ( )tE is a constant. In this case,
the tip of the electric field vector rotates in the xy-plane
describing an ellipse that is called the polarization ellipse.
Thus, every pure monochromatic wave is, by definition,
completely polarized.

For a non-monochromatic wave, the electric field vector
at a given point z is a superposition of oscillations with dif-
ferent frequencies. Since ( )tE determines the size and the
inclination angle of the polarization ellipse, its shape changes
with time. Such a wave is partially polarized. The resulting tip
of the electric field vector describes, as a function of time, a
trajectory like that shown in figure 1. The polarization prop-
erties of a non-monochromatic plane wave are characterized

3

Plasma Phys. Control. Fusion 59 (2017) 063001 Topical Review



by a 2×2 complex Hermitian coherency matrix J, called
also the polarization tensor. The matrix is constructed from
time averaged quadratic combinations of the field components
(see [23]). It is represented, in general, by four real quantities
which are equivalently expressed by four Stokes parameters
or the 4-component Stokes vector S

 

 =
á ñ á ñ

á ñ á ñ
=

+ +
- -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟ˆ ( )

E E E E

E E E E
S S S S
S S S S

J
1

2

i
i

. 1
x x x y

y x y y

0 1 2 3

2 3 0 1

The S0 component is a measure of the total intensity I of
the wave and the remaining components describe the polar-
ization properties. For a purely monochromatic, fully polar-
ized incident wave, the amplitudes and the phases of Ex and
Ey are independent of time so that á ñ = ∣ ∣E E E ,x x x

2

á ñ = ∣ ∣E E E ,y y y
2  á ñ =E E E E ,x y x y

 á ñ =E E E Ey x y x . In this

case, det =∣ˆ ∣J 0 is equivalent to the relationship
= + +S S S S0

2
1
2

2
2

3
2. Due to this connection between the

components, the state of polarization of the incident laser light
used in Thomson scattering systems, and the evolution of the
polarization of monochromatic laser light used for interfero-
metric/polarimetric diagnostics, is often described by the
three-component unit Stokes vector =( )S S i 1, 2, 3i 0 . This
unit vector is characterized by the azimuth (orientation angle)
of the polarization ellipse  y p<0 and the ellipticity angle
c =  ( )b barctan 2 1 determined by the ratio of the minor and
the major semi-axis ( p c p- <4 4). In this paper, we
use the full four-component Stokes vector ( )S i to characterize
monochromatic incident laser light with arbitrary elliptical
polarization described by equation (11). Following the
transformations in appendix A.1 yields ( )S i in the form

y c y c c= ( ) ( )( ) ES 1, cos 2 cos 2 , sin 2 cos 2 , sin 2 . 2i
0
2

Consider now the opposite case of fully unpolarized or
natural light. The complete absence of polarization means that
all directions in the xy-plane are equivalent,  á ñ = á ñE E E Ex x y y ,
and the Ex and Ey components are uncorrelated, á ñ =E Ex y

á ñ =E E 0y x . Correspondingly, a fully unpolarized wave is
characterized by zero values of the three Stokes vector compo-
nents = = =S S S 01 2 3 . Any partially polarized wave can be
decomposed into completely unpolarized and polarized portions.
As they are statistically independent, the 4-component Stokes
vector of the mixture is a sum of the respective vectors of
the separate waves. Defining the unpolarized and polarized parts

as = - + +( )( ) S S S SS , 0, 0, 0unpol
0 1

2
2
2

3
2 and =( )S pol

+ +( )S S S S S S, , ,1
2

2
2

3
2

1 2 3 yields the degrees of polariza-
tion and depolarization of the total wave field of intensity

=I Stot 0. The degree of polarization is determined by the rela-
tive intensity Ipol of the polarized component

= =
+ +

= - ( )P
I

I

S S S

S
D P, 1 , 3

pol

tot

1
2

2
2

3
2

0

where =D I Iun tot is the degree of depolarization defined as the
relative intensity of the unpolarized component [23].

The degree of polarization P varies from the value P=0
for unpolarized to P=1 for fully polarized light. The fact
that P 1 for any arbitrary polarization is equivalent to the
inequality det ∣ˆ ∣J 0. To prove this general property, con-
sider the complex quantity  defined in [24] by

  = á ñ - á ñ( ) ( ) ( ) ( ) ( ) ( ) ( )E t E t E t E t E t E t . 4y x x x y x

For the average value of its square modulus we obtain

   

   
á ñ = á ñ á ñá ñ

- á ñá ñ = á ñ
( )

∣ ∣ ( ) ( ) ( ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ) ( ) ( ) ∣ ∣
5

E t E t E t E t E t E t

E t E t E t E t E t E t Jdet 0.

x x x x y y

x y y x x x

2

It is clear that det = - - -∣ˆ ∣ ( )S S S SJ 40
2

1
2

2
2

3
2 is non-

negative, i.e., P 1 in equation (3).
The Stokes vector components and, correspondingly, the

degree of polarization or depolarization can be measured by
several different techniques. The usual measurement method is
illustrated in figure 2 which shows a monochromatic wave (A6)
incident on a polarization element called a retarder. The retarder
has the property that the phase of the Ex component is advanced
by f 2 and the phase of the Ey component is retarded by f 2.
Then, the electric field components Ex and Ey emerging from

Figure 1. Example of trajectory of the tip of the electric field vector
at given point z, as a function of time, for partially polarized non-
monochromatic wave with w wD  0.1 and P 0.85. The electric
field is in arbitrary units.

Figure 2. Schematic representation of the experimental setup for the
measurement of the Stokes vector polarization components.
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the retarder are modified as f¢ = ( )E E exp i 2x x , ¢ =Ey

f-( )E exp i 2y . The modified electromagnetic wave is incident
on a polarizer which has a transmission axis that forms an angle
α with the x-direction. Only the component of the electric field
¢E aligned with the α-direction is transmitted perfectly while

there is a complete suppression of all other components. Thus,
the total electric field transmitted along the α-direction is the
sum of the two contributions a a= ¢ + ¢aE E Ecos sinx y . Tak-
ing the complex conjugate of aE and forming the product

a f = a a( )I E E, yields the intensity of the passing light in
terms of the Stokes vector components (1)

a f a f a

f a

= + +

-

( ) ( ( ) ( )

( )) ( )

I S S S

S

,
1

2
cos 2 cos sin 2

sin sin 2 . 6

0 1 2

3

The first three components can be measured without the
retarder by rotating the transmission axis of the polarizer to the
angles a =  0 , 45 and 90◦. The last component is measured
with the use of the quarter-wave retarder with f = 90 and the
polarizer placed at a = 45 . Solving four equations obtained
from (6) by specifying different angles in arguments of a f( )I ,
yields all Stokes vector components

=   +  
=   -  
=-   -   +  
=   +   -  

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

S I I

S I I

S I I I

S I I I

0 , 0 90 , 0 ,
0 , 0 90 , 0 ,

0 , 0 90 , 0 2 45 , 0 ,
0 , 0 90 , 0 2 45 , 90 . 7

0

1

2

3

Detailed information about other measurement techniques is
presented in [25, 26].

For any superposition of uncorrelated oscillations the
polarization matrices add up. The inverse expansion into a
sum of uncorrelated oscillations is not unique. As pointed out
in [27] the inverse expansion can be made unique with the
addition of some constraints. An important example of this
type of constraint is the representation of a given vector field
as a sum of two uncorrelated oscillations: completely unpo-
larized and completely polarized, such that

= + = =( ) ( )ˆ ˆ ˆ ˆ ˆ

( )

( ) ( ) ( ) ( )A
A

B D
D C

J J J J J, 0
0

, ,

8

un pol un pol

where A B, and C are nonnegative and the determinant of the
fully polarized part, ˆ ( )J pol

, is required to be zero,
- =BC DD 0. This relationship together with four com-

ponents of the matrix equation leads to five equations for five
unknown coefficients in equation (8). Of the two roots of the
quadratic equation for A (both of them are real and non-
negative) there is only one root for which B and C are non-
negative. This yields a unique decomposition of an arbitrary
field as a superposition of the completely unpolarized and
polarized fractions.

The factors B C, and D in the polarized part ˆ ( )J pol
are

functions of the elements of the matrix Ĵ or, equivalently, of
the Stokes vector components of the total field. They are
given in explicit form by equation (A5). This alternative
derivation confirms the validity of expression (3) for P. The
second product of the derivation is the characteristics of the

polarization ellipse associated with the completely polarized
part ˆ ( )J pol

. They are expressed in terms of the Stokes para-
meters of the total radiation field as follows

c y=
+ +

=( ) ( ) ( )S

S S S

S

S
sin 2 , tan 2 . 93

1
2

2
2

3
2

2

1

When applied to the fully polarized incident radiation (11),
these solutions are reduced to identities confirming con-
sistency of the approach but they give non-trivial information
for partially polarized TS radiation.

This brief review illustrates the main ideas and computa-
tional steps needed for decomposing arbitrary electromagnetic
radiation to fully unpolarized and completely polarized compo-
nents. In practical terms, it gives expressions for the degree of
polarization and characteristics of the polarization ellipse asso-
ciated with the fully polarized fraction. In the case of Thomson
scattering, the Stokes vector of the scattered radiation depends on
the geometry of the experiment, plasma parameters and polar-
ization of the incident laser light. We consider now how the
Stokes parameters of the scattered field ( )S s are connected with
the properties of the incident light. The most general method for
the calculations ( )S s is based on the 4× 4 Mueller matrix that
expresses the Stokes vector of the scattered radiation in terms of
the Stokes vector ( )S i of fully polarized incident laser light.
Following [14], we will discuss the key elements of the method
and review the results obtained within the scope of classical
electrodynamics, where the scattering of the waves is treated as a
re-emission of electromagnetic radiation by free electrons oscil-
lating in the electric and magnetic fields of the incident laser light.

3. Thomson scattering from a single electron

3.1. Electric field from a single electron

Using the Lienard–Wiechert potentials, the scattered electric
field in the far-zone ( )tE r,s is expressed by a 2×2 matrix P̂
transforming the incident field components (E E,ix it) to the
scattered field components (E E,sx st) in the process of inter-
action with a single electron moving with velocity v (see
appendix A.4). The electric fields are projected, respectively,
on the unit vectors ( )e t,x i and ( )e t,x s which are orthogonal to
the wave propagation directions = ∣ ∣i k ki i and = ∣ ∣s k ks s

q
q

q
q

= + = +

= ´ =
-

= ´ =
-

( )

E E E EE e t E e t

t i e
i s

t s e
i s

, ,
cos

sin
,

cos

sin
,

10

i ix x it i s sx x st s

i x s x

where θ is the scattering angle in the scattering plane deter-
mined by the vectors i and s while the unit vector

q= ´[ ]e i s sinx is normal to the scattering plane. The
Stokes vector of the incident wave is calculated in the incident
wave reference frame (e t i, ,x i ) while the Stokes vector of the
scattered wave is defined by equation (A1) in the scattering
wave reference frame (e t s, ,x s ). A schematic illustration
showing orientation of the vectors s i t, , s and ti in the
scattering plane and vector ex perpendicular to the scattering
plane is presented in figure 3.
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The fully polarized incident monochromatic wave is
assumed to have an arbitrary elliptical polarization, with semi-
major axis b1 and semi-minor axis b2, and complex amplitude Ei

 w¢ ¢ = ¢ - ¢

= ¢ + ¢ +

( ) ( · )

( ) ( )

t t

E b b b b

r E k r

E e e

, exp i i ,

i , 11

i i i i

i x y0 1 2 1
2

2
2

where E0 is the magnitude of the incident wave. The two
mutually perpendicular unit vectors ¢ex and ¢ey are orthogonal to i
and aligned with the semi-axes of the polarization ellipse. Their
position with respect to the scattering plane is characterized by
the azimuth ψ (orientation angle) between ex and
¢ex ( y = ¢·e ecos x x).

The prime symbol for variables ¢t and ¢r indicates the
retarded time and electron position inside the scattering
volume while the variables t and r are related to the time at
the remote detector (observer) localized at the position r. The
radius vector r connects the origin of the coordinate system
chosen somewhere in the center of the scattering volume with
the point of observation. At large r one can approximate the
distance R between an individual electron at the position ¢ ¢( )tr
and the point of observation as ¢ - ¢ ¢( ) ( ) ·R t r tr s. The
fields at the point of observation are determined by the
position of the electron at the earlier time ¢t such that
= ¢ + ¢( )t t R t c. Differentiating this relation over t and ¢t

yields the relationship for the time intervalDt between arrival
at the observer of signals which were emitted by the electron
over an interval D ¢t in the scattering volume

bD = - D ¢( ) ( )t t1 , 12s

where b = · cv ss . The change of the interval is caused by
both the effect of retardation and electron thermal motion toward
or away from the observer. This leads to different powers emitted
by the electron and received by the observer. If the scattered
power at the observer is ( )P observer then the energy received by
the observer during the time interval Dt is D( )P tobserver . Since
the same energy is emitted by the electron during the time-at-
particle intervalD ¢t , the time-at-particle power introduced in [2]

is different from the time-at-observer power

b= -( ) ( )( ) ( )P P 1 . 13s
particle observer

Consider, for example, a single electron moving from left to
right through the scattering volume. The scattering volume is
defined by the intersection of the region occupied by the laser
beam in the direction perpendicular to the beam and the region of
observation determined by the collection optics. Each electron re-
emits the wave when it enters the section of the length L inside
the scattering volume. The duration of the re-emission equals the
transit time L/v which corresponds to the time-at-particle inter-
val D ¢t . The mechanism of the pulse length change on the
detector is illustrated graphically in figure 4 for the case b > 0s ,
from which it follows that the duration at the detector,

bD = -( )t L v1 s , is shorter than L/v. Indeed, far from the
scattering volume, the leading and the trailing edges are almost
perpendicular to the propagation direction. The rectangular area
occupied by the emitted radiation is shown by red color in
figure 4. Subtracting coordinates of the leading ( +Lc v ct) and
trailing ( a +L ctcos ) edges yields the length of the rectangular

b-( )cL v1 s and the time bD = -( )t L v1 s during which
the radiation passes through the detector. This time is consistent
with the general relationship (12).

During time interval Dt, the detector receives the
instantaneous power denoted as ( )P observer in equation (13).
When the first electron leaves the scattering volume a second
one enters this area and starts emitting radiation shown by the
red triangle in figure 4. The replacement of the electrons
forms a gap of the length aL cos between the propagating
pulses. As a result, the radiation is not continuous on the
detector but has the form of discrete pulses. During the gap,
the detector receives no power so that the mean power

Figure 3. Basic unit vectors used for electric field projection and
Stokes component calculation of the incident (e t i, ,x i ) and scattered
(e t s, ,x s ) waves.

Figure 4. Snapshot of the area occupied by radiation (red) emitted in
the direction s toward the remote detector (yellow) during one
passage through the scattering volume (blue) of a single electron
moving with velocity b = cv such that ba b= >· scos 0. L is
the length between the entrance and the exit points of the scattering
volume (suggested by Stupakov [28]).
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( )P observer for the whole cycle is

a
b

=
D

D +
= - =( ) ( )

( )
( )

( ) ( )

P
P t

t L c

P P

cos

1 . 14s

observer
observer

observer particle

Note that the electrons moving in the opposite direction with
the velocity b- such that bb = <· s 0s result in partial
overlap of the pulses with >( ) ( )P Pobserver observer .

The modification of the mean power on the detector com-
pared to its instantaneous value ( )P observer is caused by the finite
size of the scattering volume and referred as to the finite transit
time effect (FTT). The FTT effect and a physical explanation
similar to figure 4 were described in [15]. Following [14] we
first discuss the scattering on a single electron moving in
unbounded space filled with an incident homogeneous plane
electromagnetic wave of infinite extent. The correction factor

b-1 s due to the FTT effect is incorporated into the calculations
at the stage of averaging over electron distribution function.

An infinitely long wave packet of incident monochromatic
radiation (11) is characterized by non-zero incident and scattered
electric fields at  -¥ ¥t . Instead of using the time-
dependent scattered field ( )tE r,s , we operate with the Fourier
transformed truncated electric field w( )( )E r,s

T . The Fourier
expansion is formally applicable only for functions decaying
sufficiently fast at infinity (square integrable). In order to apply
the Fourier transform to our case, the method of truncated
functions [23] is used. It is performed by defining a new function

( )( ) tEs
T that is equal to ( )tEs for ∣ ∣t T , but zero otherwise


=

⎧⎨⎩( ) ( ) ∣ ∣
∣ ∣

( )( ) t
t t T

t T
E

E ,
0 ,

15s
T s

where t is the time at the remote detector (time-at-observer). The
superscript T indicates parametric dependence on the width T of
the truncation interval. Instead of the superscript, the dependence
on T is sometimes shown in the arguments of the function.

The use of the truncation method is a substantial element
of this approach. The truncated signals are square integrable
with a well defined Fourier transform

òw
p

w=
-

( ) ( ) ( ) ( )( ) t t tE E
1

2
exp i d . 16s

T

T

T

s

Consider, for example, a monochromatic dependence
w= -( ) ( )t tE E exp is d0 with Doppler shifted frequency

w w b b= - -( ( ))1 1d i i s caused by Thomson scattering.
The Fourier image of the truncated field

w
p

w w
w w

=
-
-

( ) [( ) ] ( )( ) T
E E

2 sin
17s

T d

d
0

depends on ω and the truncation variable T. This is a smooth
analytical function of ω at finite T and a singular δ-function at
 ¥T

w w pd w w= = -
¥

( ) ( ) ( ) ( )( )E E Elim 2 . 18
T

s
T

s d0

Thus, the truncation method resolves the δ-function singu-
larity in the Fourier transformed electric field of the radiation
scattered by a single electron and characterized by a

monochromatic wave with a Doppler shifted frequency. This
allows for calculating quadratic field combinations without
the uncertainty caused by the treatment of the square of a δ-
function. We perform intermediate quadratic transforma-
tions at finite T with the limiting transition in the final
expressions.

For the general case of arbitrary time dependence, the
truncated field is expressed by the inverse Fourier integral

òp
w w w= -

-¥

¥
( ) ( ) ( ) ( )( ) ( )t tE E

1

2
exp i d . 19s

T
s
T

The time averaged quadratic combinations (A1) are expressed
by double integrals over the frequencies w1 and w2. Consider,
for example, the ( )S s

0 component









ò

ò ò
p

w w w w

w w
w w
w w

=

+ =

´

+
-
-

¥ -

¥

-¥

+¥

-¥

+¥

( ( ) ( )

( ) ( ))

( ( ) ( )

( ) ( )) [( ) ] ( )

( )

( ) ( )

( ) ( )

S
T

E t E t

E t E t t
T

E E

E E
T

lim
1

2

d lim
1

2

d d

sin
. 20

s

T T

T

sx sx

st st
T

sx
T

sx
T

st
T

st
T

0

1 2 1 2

1 2
2 1

2 1

At sufficiently large T the integral kernel is approximated by
the δ-function

w w
w w

pd w w
-
-

 -
¥

[( ) ] ( ) ( )Tsin
. 21

T

2 1

2 1
2 1

Performing integration over w1 or w2, the time averaged
quadratic combinations take the form of an integral over the
spectrum

 

ò w w w
w

w w w w w

= =

= +
-¥

+¥

¥
( ) ( )

( )

( ) ( ) ( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( ) ( )

S S S
S T

T

S T E E E E

d , lim
,

2
,

, .

22

s

T

s

s
sx

T
sx
T

st
T

st
T

0 0 0
0

0

These transformations are equivalent to Parseval’s theorem
for spectral intensities.

Specifying the dependence on T in the quadratic com-
binations (22) the expression for w( )( )S s

0 takes the form

w
p

w w
w w

=
-

-¥
( ) ∣ ∣ [( ) ]

( )
( )( )S

T

TE
lim

sin
. 23s

T

d

d
0

0
2 2

2

This function tends to zero at w w¹ d and to infinity at
w w= d , exhibiting properties of a delta-function of ω. Exact
integration over ω yields

ò w w =
-¥

+¥
( ) ∣ ∣ ( )S Ed 240 0

2

indicating that

w d w w= -( ) ∣ ∣ ( ) ( )( )S E . 25s
d0 0

2

Thus, the truncation method allows us to perform the limiting
transition  ¥T without uncertainties caused by the treat-
ment of the square of a δ-function (see appendix A.3).
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The above example with a given amplitude E0 illustrates
derivation of the spectral dependencies. The amplitude of the
scattered signal is determined by the linear relationship
between the Fourier image of the truncated scattered field and
the amplitude Ei of the incident field. It is described by the
matrix P̂ and amplitude factor bw( )( )f ,T derived in detail in
[14] and briefly reviewed in appendix A.4

bw w P=( ) ( ) ˆ · ( )( ) ( )fE E, . 26s
T T

i

The spectral characteristics ω and T and spatial dependence
on r are included in bw( )( )f ,T defined by (A18) while the
matrix P̂ is given in its general vector form by (A17). The
explicit form of P̂ is obtained by substituting the electric field
projections (10) in (A17)

b
w

w
w

b b b b q
b b

q
b b b q

b q b b
q

=
-

= + + - -
+

+
= - - - + -

= + - -

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟( )( )

( )
( )

( )

( )( ) ( )

( ) ( )

( )

( )
( )E

E
f a b

b c
E
E

c

a

b

, ,

cos
1 cos

,

1 1 1 cos ,

1 cos tan
2

. 27

sx
T

st
T

T ix

it

i s i s
i s

i s x

x i s

2

2

The matrix (27) consists of three elements a b, and c which
are functions of the velocity components bb = · i,i

bb = · ss , and bb = · ex x and the scattering angle θ

where b = cv .

3.2. Mueller matrix formalism

The matrix P̂ allows us to present quadratic combinations of
the scattered field components included in definition (A1) of
the Stokes vector ( )S s in terms of the incident electric fields.
As a first step, the products of the time-dependent scattered
fields are expressed in terms of quadratic combinations of
their Fourier images w( )( )Esx

T and w( )( )Est
T . This is illustrated

by equations (20)–(22) for the particular case of the zero-
component ( )S s

0 but generalization to all other components is
straightforward. The integration over t associated with the

time averaging is converted to integration over ω. The inte-
grand of this expression is defined as a spectral density of the
auxiliary Stokes vector w( )( ) TS ,s . The wt transformation
and transition to the spectral density of the Stokes vector is an
important element of the Thomson scattering polarization
formalism [14]. It forms a unified basis for consideration of

the frequency-integrated and frequency-resolved cases and
shows the relationship between them.

The spectral density of the Stokes vector w( )( )S s is
defined by the limiting transition  ¥T

w
w

=
¥

( ) ( ) ( )( )
( ) T

T
S

S
lim

,

2
. 28s

T

s

The full frequency integrated Stokes vector ( )S s is obtained by
integrating the spectral density w( )( )S s over the spectrum of
the scattered radiation

ò w w=
-¥

+¥
( ) ( )( ) ( )S S d . 29s s

We do not use additional indices to distinguish between fre-
quency-integrated quantities such as ( )S s and frequency-
dependent spectral density functions such as w( )( )S s , except
for explicit indication of ω as an argument of all functions of
the second type.

Using the matrix P̂, the auxiliary vector w( )( ) TS ,s can
be expressed in terms of quadratic combinations of the inci-
dent electric fields. The rhs of the resulting expressions
contains the square of the absolute value of bw( )( )f ,T ,
quadratic combinations of the factors a b, , and c, and dif-
ferent quadratic combinations of the Ei components.
Expressing the products of the Ei components in terms of the
components of ( )S i from (1) allows us to obtain the 4×4
auxiliary Mueller matrix wˆ ( )( )

TM ,
single caused by scattering

on a single electron moving with velocity b. This matrix
connects the auxiliary Stokes vector of the scattered radiation
with the Stokes vector of the incident wave

w w=( ) ˆ ( ) · ( )( ) ( ) ( )T TS M S, , 30s isingle

and can be conveniently expressed as a product
bw w=ˆ ( ) ( ) ˆ ( )( ) ( )T CM W, Tsingle

, where the scalar function
w( )( )C T is proportional to the square of the absolute value of

the function bw( )( )f ,T (A18)

w
b
b p

w w
w w

=
-
-

-
-

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )
( )

( )
( )( )C

r E

r

T1

2 1

2 sin
. 31T

s

d

d

0
2 2

0
2

2 6

2

2

The 4× 4 matrix bˆ ( )W is a function of quadratic combina-
tions of the coefficients a b, and c
The amplitude E0

2 is taken from expression (2) for ( )S i and
included in (31). Correspondingly, the modified Stokes vector
of the incident wave ( )S i is treated as a dimensionless
normalized vector (2) without the E0

2 factor ( ( ) ( ) ES Si i
0
2).

b

=

+ + - -
- - + +
- - + -

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

ˆ ( )
( )
( )

( ) ( ) ( )
( )

( )

a b c a c b a c

a c a b c b a c

b c a b a c ac b

b ac

W

2 2 0

2 2 0

2 2 2 0

0 0 0 2

. 32

2 2 2 2 2

2 2 2 2 2

2

2
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The renormalized vector ( )S i describes the dependence on the
polarization characteristics of the incident light such as the
orientation ψ and ellipticity χ angles. The factor 1/2 in (31)
originates from the similar factor in the rhs of (1).

Performing the limiting transition  ¥T in (30) yields
the spectral density of the Stokes vector w( )( )S s as a product
of the spectral Mueller matrix wˆ ( )( )M single and ( )S i

w w=( ) ˆ ( ) · ( )( ) ( ) ( )S M S . 33s isingle

The limiting transition modifies the scalar function (31) but does
not affect Ŵ so that the spectral Mueller matrix takes a form

bw w

w
b
b

d w w

=

=
-
-

-

ˆ ( ) ( ) ˆ ( )

( ) ( )
( )

( ) ( )

( )
C

C
r E

r

M W ,

1

2 1
. 34

s
d

single

0
2 2

0
2

2 6

The form of the δ-function in (34) and the negative six power of
the factor b-1 s are rigorously determined by the limiting
transition  ¥T without the uncertainty associated with
the phenomenological ‘recipe’ for treatment of the square of a
δ-function.

The full frequency integrated Stokes vector (29) is
determined by integrating w( )( )S s over the entire frequency
spectrum. This yields ( )S s as a product of the frequency
integrated Mueller matrix ˆ ( )M single

and ( )S i

= ˆ · ( )( ) ( ) ( )S M S . 35s isingle

Explicit integration over ω in (34) removes the δ-function
dependence in w( )C and yields the frequency integrated
Mueller matrix

b
b
b

= =
-
-

ˆ ˆ ( ) ( )
( )

( )( )
C C

r E

r
M W ,

1

2 1
36

s

single 0
2 2

0
2

2 6

that describes the transformation of the Stokes vector caused
by scattering on a single electron moving with velocity b. All
three Mueller matrices describe linear connections of the
corresponding Stokes vectors of the scattered radiation with
the incident Stokes vector ( )S i . They are identical in structure
with different amplitude factors w( )( )C T , w( )C or C while the
fundamental matrix bˆ ( )W is the same in all cases.

The velocity b as well as the polarization parameters ψ,
χ are arbitrary in equations (35) and (36). The single electron
Mueller matrix ˆ ( )M single

is tested in [14] by comparing with
the solution to problem 6 in section 78 in [17]. It represents
the angular distribution of the scattering power for a linearly
polarized incident wave scattered by a charge moving with
velocity b in the direction of the incident wave. In this
particular case, the fully relativistic acceleration is perpend-
icular to the velocity yielding an expression for the scattering
cross-section

s
b b
b

b b

=
- -
- Q F

´ - Q F - - Q W

⎛
⎝⎜

⎞
⎠⎟

( )( )
( )

[( ) ( ) ]
( )

e

m c
d

1 1

1 sin cos

1 sin cos 1 cos d ,

37

e

2

2

2 2 2

6

2 2 2

where sd is the ratio of the power scattered into the solid angle
Wd to the energy flux density of the incident radiation. The

scattering direction s is characterized in [17] by the polar and
azimuthal anglesQ F, relative to a spherical coordinate system
with z-axis along Ei and x-axis along b. Putting c = 0 for a
linear polarized incident wave allows us to express the vari-
ables θ and ψ in terms of Q F, (see (A2) and (A4))

q y= Q F =
Q F

- Q F
( )cos sin cos , cos

sin sin

1 sin cos
382

2 2

2 2

and to obtain the total scattering power ( )S s
0 given by (35) and

(36) in terms of the variables Θ and Φ. Calculating a, b, and c
factors in Ŵ by putting b b b b q b= = =, cos , 0i s x yields

( )S s
0 and the corresponding cross-section which is identical to
the solution (37) increasing confidence in the correctness of the
Mueller matrix calculations.

All three variants of the Mueller matrix correspond to
scattering on a single electron moving with velocity v. Scat-
tering from a single electron changes the frequency and
polarization but the scattered wave continues to be mono-
chromatic and fully polarized. Indeed, all three Mueller
matrices conserve polarization and transfer fully polarized
incident light to fully polarized scattered radiation for an
arbitrary electron velocity. This property is proved by the
remarkable identity [14]

- - - = +

´ - - - =

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

S S S S b ac C

S S S S 0 39

s s s s

i i i i

0
2

1
2

2
2

3
2 2 2 2

0
2

1
2

2
2

3
2

which is a direct consequence of equations (11), (32), (35)
and (36).

3.3. Comments on the ‘square of a δ-function’

The zero-component of the spectral Stokes vector represents
the power spectrum at the remote detector

bw
b
b

d w w=
-
-

-( ) ( )
( )

( ˆ ( ) · ) ( )

( )

( ) ( )P
r E

r
W S

1

2 1
.

40
s

i
d

single 0
2 2

0
2

2 6 0

The result (40) is consistent with the expression used for
averaging over the electron distribution function in the first
part of [15] dealing with the infinite scattering volume (infi-
nite transit time, ITT) case. The key dependencies on ω and
bs, w d w w bµ - -( ) ( ) ( )( )P 1d s

single 6, are identical to
equation (7.2.19) in [2] and equation (4.35) in [16].
According to the terminology [2] w( )( )P single represents the
time-at-observer power ( )P observer given by (13).

The expression w( )( )P single used in the ITT part of [15]
was declared in [18] to be in error due to improper handling
of the square of a δ-function in the derivation of the spectral
power. The arguments of [18] have been recently reviewed
in a detailed tutorial article [16]. The argument in [18] has
been repeated in many other TS publications including, at
least, five more papers during the 1984–2011 period, and
appears in section 3.5 in [1, p 53] as a comment about an
error made in the original monograph [29]. In other pub-
lications (see, for example, [2]), the derivation [15] is
accepted and used as a starting point for calculation without
discussion of the issue claimed in [18]. As a result of
these uncertainties, the controversy caused by the square of
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a δ-function issue has created long-standing confusion in
the literature.

A resolution of the problem is suggested in [14]. It was
found that the square of a δ-function was properly treated in
mathematical transformations in the first ITT part of [15]. The
inconsistency between [18] and [15] originates not from a
mathematical mistake in [15] but from the erroneous com-
parison of the time-at-particle power treated in [18] with the
time-at-observer power analyzed in [2, 14, 15].

Indeed, the mean spectral power w( )( )P single is obtained
by taking the total energy collected by the detector during the
time interval of truncation and dividing it by the length of the
interval T. Here, the interval T represents the time on the
detector associated with the variable t. Contrary to this time-
at-observer power, the mean power in [18] is defined by
dividing the total emitted energy by the laser pulse length T.
Thus, the same symbol T is used to define physically different
time-on-particle interval associated with the variable ¢t . This
is the time during which the electron is exposed to the inci-
dent laser light and re-emits the radiation in the scattering
volume. As a result, the mean spectral intensity scattered by a
single electron in [18] represents not the time-at-observer but
the time-at-particle power. As expected they differ by the
factor b-( )1 s according to (13). The difference was
explained in [18] as a mathematical mistake made in [15].
The corresponding mathematical transformations are not well
specified in [18]. Following this general line we compare the
results for two cases and suggest a possible resolution of the
issue in appendix A.3. To the best of our knowledge this
mathematical analysis of the ‘square of a δ-function’ problem
has never been discussed in the TS literature.

4. Combined effect of many electrons

Equations (34) and (36) describe the elementary process of
scattering on an individual electron moving in unbounded
space filled with an incident homogeneous plane electro-
magnetic wave of infinite extent. They are used now to
account for scattering from many electrons, illustrated by
calculations for the zero-component of the Stokes vector.

Although the cross section for Thomson scattering is
small (proportional to r0

2) the intensity of the scattered
radiation is measurable due to the large number of electrons
N 1 participating in scattering. The total electric field of

the scattered radiation is a sum of the electric fields emitted by
the individual electrons. The coherency matrix is constructed
from time-averaged quadratic combinations of their compo-
nents. The products of the field components are subdivided
into two groups. There is a large number µ -( )N N 1 of
cross-terms originating from the electrons characterized by
different positions ( )R i

0 and ( )R j
0 with ¹i j where the vectors

( )R i
0 ( =i N1, 2 ,... ) are introduced in (A15) and serve as

labels of the unperturbed electron trajectories. Summing over
many electrons, we assume the condition of incoherent
Thomson scattering l q k sin 2 1D i , where the Debye

length l p= T e n4D e e
2 represents the mean spatial electron

correlation length. As an example, the regime of incoherent
scattering is relevant to the ITER plasma with a conventional
TS diagnostic where laser wavelength l m= 1.06 m,
q  130 and typical value of l m 150 mD . Collective TS
regimes with large wavelengths or small scattering angles are
used for measurements of the bulk and fast ion characteristics
(see, for example, [30] and detailed review [31]). Some
interesting aspects of collective scattering related to momen-
tum conservation are considered in [32]. This work is based
on comparative analysis of wave-particle momentum redis-
tribution in the process of Thomson scattering on electrons
and ions. The role of scattering on ions is emphasized in the
paper as an important mechanism needed for correct
accounting for the momentum balance.

In the incoherent regime, the cross-terms are proportional
to rapidly oscillating factors - -[ · ( )]( ) ( )q R Rexp i i j

0 0 with
= -q k ks i and, therefore, vanish after summation. Then,

the products of the sum of the electric fields are reduced to the
sum of the products characterized by equal indices i=j.
Even in a case where radiation scattered at finite angles
q  90 is strongly incoherent (l q k sin 2 1D i ), the
radiation scattered at forward angles q  0 will be coherent,
with all the electrons radiating coherently. This leads to the
summation of the electric fields scattered by the individual
electrons so that the resulting scattered field amplitude is
proportional to n e E me e

2
0 where ne is the electron density

and E0 is the primary wave amplitude. Rigorous summation
of the fields is performed in [33]. It takes into account dif-
ferent phases of the radiation coming from individual elec-
trons. The sum of the scattered and primary electric field
obtained from this microscopic approach is shown to be
identical to the primary wave modified according to macro-
scopic theory based on the concepts of dielectric tensor and
refractive index. Thus, the coherent solution localized at small
θ represents an incident wave passing through a plasma.
Within the scope of the microscopic model the effect of
the plasma dispersion is self-consistently explained by the
superposition of the far zone electric fields emitted by
the individual electrons. The small deviation of the incident
wave phase velocity from the speed of light can be ignored at
high frequency of the incident radiation.

For scattering at larger angles θ, coherent solution drops
quickly to zero when the scattering angles lie outside the
narrow cone q l L where L is a linear dimension of the
scattering volume. The rate of the coherent solution decay
with θ is evaluated, for example, in exercise 4.9.7 in [34].
Outside the cone, the contribution from the coherent solution
vanishes. In this zone, the incoherent solution for the scattered
wave is dominant in the regime that is used for Thomson
scattering diagnostic purposes.

In the incoherent solution, the Stokes vector of the
scattered radiation is the sum of the Stokes vectors of the
radiation scattered by the individual electrons. The summa-
tion of these b-dependent quantities is equivalent to inte-
gration over ¢rd and bd in coordinate and velocity space. The
equilibrium electron distribution function is defined as the
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number of electrons b= ( )N n fd e M b rd d with velocities in
the interval b,b b+ d contained in a volume element rd ,
where b( )fM is the relativistic Maxwellian distribution
function normalized to unity

b
m m b
p m b
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, 41M e e
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and m( )K2 is the modified Bessel function of the second kind
[35]. We first select a group of electrons having equal velo-
cities b in the velocity element bd but different initial posi-
tions R0 in coordinate space. The spectral powers (40)
registered by the detector from each of these electrons are the
same (do not depend on R0). The intuitive way of accounting
for the effect of many electrons is to multiply the power from
a single electron w( )( )P single by the total number of electrons

bn Vf de M in the scattering volume V. The resulting total
spectral power

b
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is equivalent to equation (10) derived in section II.C of [15]
devoted to the infinite scattering volume or ITT case.

This intuitive approach can fail to accurately characterize
the scattered power. As was pointed out by Stupakov [28], a
more consistent approach is not a summation of the instan-
taneous powers but a summation of energies emitted by the
electrons and accumulated by the detector during time inter-
val long compared to the particle transit time through the
scattering volume. The problem was formally treated in
section II.D of [15] devoted to the finite scattering volume or,
equivalently, to the FTT case, by applying the Fourier
transform in coordinate space leading to the result

b

b
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The only difference between the ITT power spectrum
(42) and the FTT case (43) is an additional factor b-( )1 s in
the numerator of the FTT intensity spectrum. The FTT
weighting factor is generally accepted in all present-day
relativistic treatments of TS radiation. A qualitative physical
explanation of the FTT effect similar to the picture shown in
figure 4 is suggested in section III of [15] based on a single-
bounded particle model. The distortion of the signal caused
by the finite size of the scattering volume has a twofold effect.
First, since an electron spends a finite time L vTe within the
scattering volume it broadens the spectrum (40) to the finite
width dw w p w ( )v L2 Te . The transit time broadening is
much less than the Doppler thermal broadening
w wD  v cTe at l  L and, therefore, can be ignored in

the case of practical interest with l  L [1, 15, 16]. The
second effect is less obvious and impacts the amplitude of the
spectrum rather than its shape such that there appears an
additional factor b-( )1 s in the numerator of the FTT
intensity spectrum (43) compared to the ITT power spectrum
(42). This result is consistent with equation (14).

An alternative geometrical interpretation of the FTT
effect was suggested in [14]. The area of ¢rd -integration
corresponds to the summation over those electrons whose
pulses of scattered radiation pass through the detector at a
given time t (the time-averaging variable in (A1)) on the
detector. Consider the electrons passing through the narrow
stream tube of length L and cross-section dS shown in
figure 4. Visualization of the positions and distances between
the successive electromagnetic pulses emitted by the indivi-
dual electrons and counting the number of pulses passing
through the remote detector at a given moment of time t on
the detector shows that it corresponds not to the number of
electrons n L Sde inside the stream tube, but to the modified
number b-( )n L S1 ds e . This justifies the use of the fifth
power weighting factor for averaging of the Stokes vector
components.

To sum up, if the radiating particles are in a bounded
volume the radiation intensity at the remote detector is deter-
mined not by the single particle time-at-observer power
P(observer) = ( )P single but by the time-at-particle power

b= -( )( ) ( )P P1 s
particle single multiplied by the number of

emitters inside the scattering volume. For synchrotron radia-
tion, this conclusion was, for the first time, obtained and
extended from the intensity to all the components of the Stokes
vector in [36]. A similar, but more succinct analysis of syn-
chrotron radiation was presented, approximately at the same
time, in [37]. The analogy with synchrotron radiation was used
in [2] to explain the need for the additional factor b-( )1 s to
account for the combined effect of many electrons.

5. Frequency-integrated Mueller matrix

The procedure of integration over the spectrum corresponds
to a transition from spectrum-based characterization of
Thomson scattering to polarization analysis based on the total
frequency-integrated Stokes vector spectral intensities. Inte-
grating over all frequencies results in an increased number of
detected photons with better statistics and accuracy of mea-
surement. This is a key element of the polarization-based TS
diagnostic compared to the traditional spectrum-based TS
method. Since the purpose of these studies is to investigate
the optimal capabilities of depolarization diagnostics, we will,
first, focus on the characteristics of the frequency-integrated
radiation and then consider the frequency-resolved case.

5.1. Averaging over β with the FTT weighting factor

Averaging over velocity space is equivalent to integration of
the Mueller matrix (36) over the relativistic Maxwellian dis-
tribution function (41). The combined effect of many elec-
trons and finite size of the scattering volume are taken into
account by adding the total number of electrons in the scat-
tering volume =N n Ve and the factor b-( )1 s to the scat-
tering operator. Both these factors are missing in [9]. The final
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expression has the form
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For compact notation, we present the results of integration for
the normalized dimensionless matrix m qˆ ( )m ,

m q m q=ˆ ( ) ˆ ( ) ( )Cm M, , , 450

where the dimensionless factor =C r E N r20 0
2

0
2 2.

The integration (44) is performed in spherical coordinates
with the vz and vx axes directed along s and ex, respectively,
such that b b a= ( sin f b a f b a)cos , sin sin , cos , where
α is the polar angle and f is the azimuthal angle measured
from ex in the orthogonal plane. The factors a b, and c in

bˆ ( )W depend on three components of the electron velocity:
b bb b= =· ·i s,i s and bb = · ex x, where b = cv .

They are expressed as functions of the polar angle α and
azimuthal angle f. Averaging over the relativistic Maxwellian
distribution function (44) consists of three successive inte-
grations
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Four elements of the matrix Ŵ are proportional to bµb x.
Indeed, from (27) it follows that factor c does not depend on
bx while factor a is even and factor b is odd in bx. Since the
Maxwellian distribution function as well as all other
weighting factors are even functions of bx, these four ele-
ments average to zero after integration over the velocity
space. The remaining five elements are integrated in analy-
tical form according to (46) yielding functions of the scat-
tering angle, q=u cos , and electron temperature via the
factor m2 and function m m m m=( ) ( ) ( ( ))G K K1 2 , where K1

and K2 are modified Bessel functions of the second kind (see
[35])
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The details of this calculation are described in [14].
The matrix elements (47) present an exact analytical

solution for the state of polarization of incoherent Thomson
scattering radiation. In contrast to [9] where only the lowest
order linear in Te analytical results were obtained, expressions
(47) are valid for the full range of scattering angles and
electron thermal motion from non-relativistic to ultra-relati-
vistic. The first terms in (47) describe the change of polar-
ization in cold plasma (m  ¥), the second terms yield first
order corrections in the weakly relativistic limit at m  1, and
the third terms dominate at ultra-relativistic tempera-
tures m  1.

The Mueller matrix m qˆ ( )m , does not conserve polar-
ization and transfers fully polarized incident light to partially
polarized scattered radiation. This property is intrinsically
connected with the broadening of the scattered spectrum,
which by definition is no longer fully polarized. The degree of
depolarization D is defined by equation (3) as a ratio of power
flux in the unpolarized component to the total power flux.
Since D is a ratio of two fluxes, the normalization factor C0

cancels in the final expression for D. Thus, the degree of
polarization/depolarization is completely determined by the
elements of the matrix m qˆ ( )m , and the components

y c( )( )S ,i . Detailed information about the properties of this
function of four variables is presented in [12] and reviewed in
section 5.2.

5.2. Degree of depolarization for frequency integrated Mueller
matrix

The degree of depolarization (3) depends on Te, scattering
angle θ, and polarization characteristics of the incident light ψ
and χ. In spite of the large number of variables and com-
plexity of the dependencies, the exact analytical results allow
us to describe in a compact form the general properties of the
degree of polarization [12]. One particular example illustrat-
ing a maxima of D as a function of ψ and χ is shown in
figure 5 for =T 10 keVe and q = 90 . There is a peak of D at
y  82 for linear incident polarization but the absolute
maximum is reached at y = 90 for elliptically polarized
light. This extreme regime with the absolute maximum of D
close to unity corresponds to small scattered power S0 and
results in large error bars for polarization-based Te measure-
ments. The smallness of S0 is caused by the incident wave
electric field vector being almost parallel to the scattering
plane at y = 90 . This electric field direction is in turn almost
parallel to the propagation direction q = 90 of the scattered
wave. Since the scattered wave must be transverse, the

Figure 5. Degree of depolarization versus orientation and ellipticity
angles ψ and χ at q = 90 , =T 10 keVe . There is a local maximum
of D at y  82 and c = 0 (linear polarization), but the absolute
maximum is reached at y = 90 and c  9 (elliptical polarization)
(D is an even function of ycos ). Reproduced from [12], with the
permission of AIP Publishing.
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efficiency of the scattering and intensity of the re-emitted
radiation are small. Correspondingly, the weakness of the
signals in this regime leads to their poor measurability.

At T 0e , the peak of y c( )D , profile is strongly
localized in the vicinity of y = 90 and c = 0. The absolute
maximum of y c( )D , tends to unity forming almost singular

profile quickly decaying outward. Away from this irregularity
the degree of depolarization is of order T m ce e

2, which is
consistent with the similar result (C17) for the frequency-
resolved degree of depolarization. In some cases, a combi-
nation of the numerical factors amplifies the degree of
depolarization up to 25%–30%.

At any given θ and Te, extrema of D as a function of ψ
and χ are reached at the boundaries of the rectangular area
 y p0 2,  c p0 4. This allows us to finding the

absolute maximum q( )D T ,emax , and minimum q( )D T ,emin ,
with respect to all possible polarization states of the incident
radiation, and to set upper and lower limits on D at given θ

and Te. Quantitative picture of the dependencies of these two
functions on Te and θ is shown in figures 6 and 7, respec-
tively. The red curve in figure 6 illustrates a boundary in
( qT ,e ) space that determines which of the two maxima shown
in figure 5 provides the absolute maximum. The area above
the curve corresponds to the absolute maximum realized at
elliptic incident polarization with y = 90 . The absolute
maximum of D for forward scattering (q < 90 ) takes place at
linear incident polarization with  y 0 90 . A good test of
correctness of the matrix elements m̂ is that for all values of
the variables  <D0 1.

The ITER LIDAR TS system was planned to detect
backscattered radiation at q ~ 180 [38, 39]. For such back-
scattered light, the degree of depolarization is quadratic in

T m c 1e e
2 and, therefore, small (~ –3% 5%) at the tem-

peratures expected in ITER. The effect is about five times
smaller than for perpendicular scattering and is, therefore,
difficult to exploit for Te determination in LIDAR. Under
LIDAR conditions the degree of depolarization is almost

Figure 6. Contour lines of the maximum value of the degree of
depolarization q( )D T ,emax (maximized with respect to all possible
polarization states of the incident light). The red curve is a boundary
in ( qT ,e ) space that determines which of the two maxima shown in
figure 5 provides the absolute maximum. Reproduced from [12],
with the permission of AIP Publishing.

Figure 7. Contour lines of the minimum value of the degree of
depolarization q( )D T ,emin (minimized with respect to all possible
polarization states of the incident laser light). Reproduced from [12],
with the permission of AIP Publishing.

Figure 8. Degree of depolarization versus Te for three scattering
angles: 60◦ (green), 90◦ (red) and 120◦ (blue) (solid lines: circular
polarization at c = 45 ; dashed lines: linear polarization at
y c= = 0). Reproduced from [12], with the permission of AIP
Publishing.
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insensitive to the orientation angle ψ and reaches its max-
imum for a circularly polarized incident laser beam.

For a conventional TS system with q  90 , the situation
is much more favorable with average ~ –D 20% 25%. The
cases of practical interest of circular and linear incident
polarizations are illustrated in figure 8 at three scattering
angles. Although circular incident polarization yields stronger
depolarization of scattered radiation, rigorous minimization of
the error bars shows that linear incident polarization is pre-
ferential for polarization-based diagnostics [12].

5.3. Mueller matrix averaged over β with the ITT weighting
factor

The technique of analytical integration over b can also be
applied to the ITT weighting factor b bµ - -( ) ( )1 1 s

2 6

that was used in [9]. This also yields Mueller matrix elements
valid at all temperatures. Although the sixth power scaling is
irrelevant for TS applications, it is useful for the purpose of
comparison to illustrate the importance of the specific form of
the weighting factor. The corresponding Mueller matrices Ĥ
and ĥ are introduced as

m q m q=ˆ ( ) ˆ ( ) ( )CH h, , , 480

where Ĥ is defined by the integral (44) with the factor
b-( )1 s

6 in the denominator. The result of exact calculation
of the matrix ĥ is presented by equation (B1) in appendix B.
Comparison of the two Mueller matrices m̂ and ĥ shows that
they differ in essentials. For example, the off-diagonal ele-
ments =m m01 10 do not depend on electron temperature
while the same elements of the matrix ĥ are substantial
functions of Te. The temperature independence of the off-
diagonal elements =m m01 10 is a unique consequence of the
fifth power weighting factor. The same integration performed
for any other weighting factor would result in temperature-
dependent off-diagonal elements.

A good test of the exact analytical calculations is compar-
ison with the first-order expansions in Te presented by equation
(44) in [9]. Ignoring small terms proportional to m -2 and m -4

and taking into account that m m =( )G T m c1 e e
2 yields

the first order correction in Te to the cold plasma Mueller matrix.
Comparing this correction with expressions (44) in [9] at
b = T m c3 e e

2 2 shows that they are identical. This verifies the
first-order expansions in Te obtained in [9] for the ITT model,
and increases confidence in the correctness of the exact analy-
tical calculations.

6. Frequency-resolved Mueller matrix

Realistic experimental constraints require detecting scattered
photons within a limited wavelength range. This necessitates
understanding the frequency-resolved degree of polarization
first discussed in [9]. From the theory side, significant dif-
ferences arise because the time averaging included in the
definition of the polarization matrix and the Stokes vectors
assumes existence of a broad frequency spectrum. From the
experimental side, the finite wavelength response band of

optical instrumentation reduces the accuracy of polarization-
based measurements if the TS spectrum is wide. Rigorous
analysis of polarization characteristics in a finite spectral band
does not seem to be present in polarization literature (see, for
example, [40–42]). As suggested in [14], some quantitative
steps in this direction can be made on the basis of
equation (29).

Consider a partial contribution D ( )S s to the spectrum
integrated Stokes vector (29) from a narrow frequency
interval wD , such that w wD = D( )( ) ( )S Ss s . Formal substitu-
tion ofD ( )S s to the equation for the degree of polarization (3)
yields w( )P which is determined by the spectral density

w( )( )S s and does not depended on wD

w
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The Stokes vector components w( )( )S s are determined by the
single electron spectral Mueller matrix (34) averaged over the
relativistic Maxwellian distribution function with the
weighting factor (44) and δ-function spectral dependence
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To evaluate the feasibility of frequency-resolved TS
polarimetry, an expression similar to (50) but with incorrect
sixth power weighting factor was suggested in [9]. Two
angular variables qcos s and qcos i and bb = ∣ ∣ were used for
integration where qs and qi are the angles between b and the
propagation directions s and i . The result in its final form is
presented by the integral over two variables. This allows the
authors to obtain the lowest order linear in Te analytical
expressions at w w= i. Using numerical methods yields more
information about dependencies of the resolved degree of
polarization w( )P on ω at some specific values of Te and ψ

shown in [9].
The original idea [9] and the method of integration

suggested in this paper were further developed computa-
tionally with the use of the correct fifth power weighting
factor. Numerical codes for the frequency-resolved polariza-
tion and analysis of the experimental technique were recently
developed by Giudicotti et al [21]. They benchmarked their
numerical results by computing the frequency-resolved
Mueller matrix elements, integrating them over the spectrum
and comparing with the frequency integrated analytical results
(47). Thus, the exact relativistic expressions (47) were used
for benchmarking and verification of numerical codes for
frequency-resolved TS polarization. The results of this code
verification show good agreement with the analytical
expressions.

The spectral Stokes vector components, w =( )( )S s

w m qˆ ( )M , , y c· ( )( )S ,i , are functions of five variables. In
view of the difficulties caused by the multidimensional
parameter space of the problem it is highly desirable to have
analytical expressions for w m qˆ ( )M , , . We show in this
section that the frequency-resolved Muller matrix elements
can be calculated analytically and expressed as a combination
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of four simple 1D integrals which are the only functions that
require numerical integration at the final stage of calculation.
To the best of our knowledge the exact analytical solution for
the frequency-resolved Mueller matrix has not been obtained
yet. We describe the main steps of the derivation and the final
results while the technical details are given in appendix C and
supplementary material.

6.1. Exact relativistic expressions for bm ðωÞ

Contrary to the previous section devoted to the frequency-
integrated Mueller matrix, the integration over b is performed
in (50) in a different coordinate system (e e e, ,x y z) with the
z-axis directed along -k ks i such that = -( )e k kz s i

- = + -∣ ∣ ( ( ) )X kk k s i1s i , = ´e e ey z x where =ex

q´[ ]i s sin is the unit vector normal to the scattering plane.
The dimensionless wave vector k and frequency shift X
relative to the incident wave frequency are defined as

w
w
w

=
-

= + + - = -
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k
c

X X u X
k k

2 1 1 , 1.

51

s i
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In this coordinate system, the argument of the δ-function
in (50) takes a form which allows for immediate integ-
ration over bz: d w w b- -( ( )1i i b-( ))1 s b d= -( )1 s

bw w- - -[ · ( ) ]ck ki s i b d b b w= - -w( ) ( ) ( )k1 s z i ,
where b =w X k . Performing bz-integration yields a double
integral of a function of two variables bx and by over a circular
area b b b+ - w1x y

2 2 2 while the bz component is fixed in

the integrand, b b= wz . Four elements of the matrix Ŵ are
proportional to bµb x. They average to zero after integration
over bx using the same arguments as in section 5.1. The
remaining five elements are integrated in the polar coordinate
system b f^( ), such that b b f= ^ cosx and b b f= ^ siny

where  b b- w^0 12 2 and  f p0 2 . We briefly com-
ment here on the integration over f and b̂ for the dimen-
sionless matrix w m qˆ ( )m , , which is the same as the original
matrix (50) after integration over bz and normalization similar
to (45) but with the different normalization constant wC i0 .
The details of the derivation are given in appendix C.

The result of integration over f is defined by the matrix
w bf

^ˆ ( )( )m ,

òw b
b f f

b
=

-
f

p
^

^ˆ ( )
ˆ ( )
( )

( )( )m
W

,
, d

1
. 52

s0

2

4

Explicit dependencies on f are presented in (52) by four
different combinations which are integrated exactly in ana-
lytical form. Indeed, the f-dependencies enter Mueller matrix

b f^ˆ ( )W , through the factors b b,i s and bx in a b, and c
functions given by (27). Expressing bi and b x

2 in terms of the
whole combination b-( )1 s and substituting in b f^ˆ ( )W ,
gives fourth order polynomial functions of b-( )1 s . Dividing
by the factor b-( )1 s

4 in the denominator of (52) leads to
fourth order polynomials of the inverse ratio b-( )1 1 s with
the coefficients depending on X u, and b̂ . Thus, all depen-
dencies on f in (52) are reduced to four certain combinations
of the form bµ - -( )1 s

n where = ¼n 1, 4. In the coordinate

system (e e e, ,x y z), the expression for b-( )1 s takes the form,
b b f- = -^ ( )s H1 sins y , where b b= - w ^( )H s s1 z y

while = = + -( · ) ( )s X u ks e 1z z and = =( · )s s ey y

- u k1 2 . Integrating the fourth order polynomial function
of b-( )1 1 s over f leads to the integrals of the form
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where -Gn 1 are -n 1 order polynomials of H.
The next step of calculation is the integration over the

‘radial’ variable b̂ according to
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It is useful to introduce a new variable of integration t such
that b b= - -w^ ( )( )t1 1 12 2 2 where   ¥t1 . This
variable represents the relativistic factor g b= - -( )1 2 1 2

normalized to b- w1 1 2 . After corresponding transforma-
tions the argument of the fractional exponents in
equation (53) takes a form - µ-( )( )H 1 n2 2 1 2

+ -( )( )r t n2 2 2 1 2, where = + +( )( )r X u k2 1 12 2. Then,
the final result of integration over t yields five non-zero ele-
ments of the frequency-resolved Mueller matrix. They are
presented in a compact form of a superposition of four well
converged integrals with 25 coefficients, 13 of which are
different rational functions of X and u given by
equation (C12) in appendix C
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The coefficients ( )Cij
n were calculated in analytic form both

manually following the steps described in appendix C (see
also the supplementary material) and with the use of analytic
capabilities of Mathematica software [43]. At = ¼n 1, 4, the
integrals ( )( )E p r,n are defined as follows
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while at n=0 the corresponding function ( )( )E p r,0 is a
function of only the first argument p, = -( ) ( )( )E p pexp0 . For
backscattered radiation with = -u 1 the argument r=0.
In this particular case, the integrals ( )( )E p r,n coincide
at = ¼n 1, 4 with the exponential integral functions

= +( ) ( )( )E p E p, 0n
n2 1 described in the literature (see [35]).

At low temperatures, the factor m = m c Te e
2 and the

corresponding value of the variable p are large. In this case,
the main contribution to ( )( )E p r,n comes from the narrow
interval -t p1 1 in the vicinity of the low limit of inte-
gration. This provides smallness (µ p1 ) of the integral terms
with = ¼n 1, 4 compared to the first non-integral terms

=ˆ ( )( ) ( ) ( )C E pmij ij
0 0 0 related to n=0. The dominant at m  1
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first part ˆ ( )mij
0 is proportional to the ratio m( ) ( )( )E p K0

2 . The
limiting value of this μ-dependent ratio tends at m  ¥ to
the δ-function of X

m b
m

d
- -

= -
m

w

¥

( )
( )

( ) ( ) ( )
K

u Xlim
exp 1

2 2 1 . 57
2

2

Taking into account the δ-function properties by putting
X=0 in ( )Cij

0 and ignoring small (proportional to T m ce e
2)

integral terms with =n 1 ,... 4 yields the asymptotic expres-
sion for the frequency-resolved Mueller matrix in cold plasma

d=

+ -
- +



⎛

⎝
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⎞

⎠
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T

ij
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2 2

2 2

e

Integrating (58) over the spectrum removes the δ-function.
The resulting expression is identical to the cold plasma limit
of the frequency integrated Mueller matrix (47). This is a
good test of consistency of the analytical expression (55) for
the frequency-resolved Mueller matrix. More systematic
verification of (55) is performed numerically by integrating

mˆ ( )X um , ,ij over the entire frequency interval  - ¥X1 .
The differences between the numerical values and corresp-
onding exact results (47) do not exceed - -( – )10 10 %2 3 in a
broad range of Te and u variations.

At finite temperatures, the spectral profiles (58) are broa-
dened and shifted to blue part of the spectrum. As an example,
the profile of the ( )m X00 element is illustrated by black lines in
figure 9 at =T 10 keVe and =T 40 keVe while q = 150 in
both cases. Blue lines describe contribution ˆ ( )( ) Xmij

0 from the

first n=0 term while red lines illustrate more accurate
approximation (59) with the next order correction in

T m c 1e e
2 . The spectral profiles of all other elements of

ˆ ( )Xmij are similar to ( )m X00 but have different amplitudes and
signs. Their frequency integrated values are in a good agreement
with the elements of the cold plasma matrix (58). For example,
at =T 40 keVe and =  = -u cos 150 0.87 the elements m22

and m33 are negative with peak values - 1.2 while m01 is
positive with a peak value 0.12. A more accurate approx-
imation ˆ ( )mij

1 is obtained by integrating by parts in (56) with the
use of the identity - = - -( ) ( ( ))t pt pt pd exp d exp and
ignoring the integral terms left after this operation

å

m
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Performing integration by parts in (56) many times leads to the
analytical presentation for mˆ ( )X um , ,ij in the form of the series
expansion in powers of T m ce e

2. Another method of expansion
is described in appendix C.

6.2. Spectral power and depolarization factor

The fully relativistic frequency-resolved Mueller matrix (55)
gives a general description of the polarization and spectral
properties of the scattered radiation at arbitrary polarization of
the incident light. To illustrate the connection of this form-
alism with previously developed approaches we will consider
the power spectrum of the scattered TS radiation. Power
spectrum characteristics are the key element of the standard
spectral TS method of electron temperature measurement.
There are a large number of publications devoted to different
approximate treatments of the relativistic effects in the scat-
tering operator [3, 4, 44–50]. An exact analytic formula for
fully relativistic Thomson scattering spectrum was first
derived in [3] including a term called the depolarization term
(which differs from the degree of depolarization). As in most
previous publications, it was assumed that the incident
polarization is linear and perpendicular to the scattering plane,
and only this component of the scattered wave electric field is
measured. In this particular case, the scattered power is
described by the well-known expression (see equation (5) in
[44])

ò b bw
w
w

b

b
b b

d w

µ -

´ -
-

- -
D -

⎛
⎝⎜

⎞
⎠⎟

( )( )

( )
( )( )

( · )
( )

P f

u
k v

d d d 1

1
1

1 1
,

60

x
i

M

x

s i

2

2
2

2 2

where w w wD = - i (note a misprint in (4.1.5) and (4.1.6) of
[1] for this expression). If the detector measures all the
components of the scattered electric field, then expression
(60) is modified according to equation (4) of [44] with

Figure 9. Frequency resolved Mueller matrix element m00 given by
(55) versus frequency w w= -X 1i at =T 10e keV (narrow black
curve) and =T 40e keV (broad black curve) while q = 150 . The
thin blue lines illustrate the contribution to m00 from the first n=0
term ( )m00

0 dominant at low temperature. The approximation ˆ ( )( ) Xmij
1

given by (59) with the T m ce e
2 linear correction is shown by a thin

red line.
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pQ = 2
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This situation is realized, for example, in Thomson scattering
diagnostic system used for Madison symmetric torus reversed
field pinch experiments. The spectral density wPd dtotal

includes all polarizations and is, therefore, larger than wPd dx

related to one selected direction. The difference between them
is proportional to the factor b2 in equation (27) integrated over
the velocity space. This makes the difference of the powers
relatively small (µT m ce e

2).
The common feature of both expressions (60) and (61) is

that the terms in the large brackets reduce the scattered power
due to relativistic factors bµ x

2. Evaluation of their integral
effect on the spectral powers requires full integration over b
and is characterized in the literature by the depolarization
factor w m <( )q u, , 1. Using this notation, the final result of
exact calculations performed in [3] is presented in the form

m mµ ( ) ( )P X S X u q X ud d , , , ,x Z x . The spectral power den-
sity m( )S X u, ,Z refers to the function derived previously in
[45] and related to ( )( )E p0 as m= +( ) ( )( )S X E kK1Z

2 0
2 .

In [45], the factor qx was assumed constant, i.e., unity. A
variety of other approximations for qx have been suggested.
For example, the relativistic corrections to first order in
b  1 were calculated in explicit form in [46]. The effect of
the relativistic factors on blue line shift error analysis was
performed in [47]. The relativistic corrections were extended
to second order in [48]. The values of qx were found with
better precision in [49] for several electron temperatures and
u=0. The exact result for m( )q X u, ,x is presented in [3] as a

superposition of the two integrals similar to ( )( )E p r,1 and
( )( )E p r,2 . These calculations were reproduced and the cor-

rectness of the results [3] was confirmed in [4] devoted to the
special case q = 180 for LIDAR scattering system. This
work has been recently extended in [50] to a fully relativistic
calculations valid for all scattering angles and both coherent
and non-coherent regimes. The results are derived in a general
form so further transformations are needed to present them in
the explicit form relevant to the incoherent regime for com-
parison with already known cases. We will show now how
both aforementioned spectral densities can be obtained from a
general approach based on the frequency-resolved Mueller
matrix (55).

Within the scope of the Mueller matrix formalism, the
spectral density P Xd dx measured by the detector in the x-
direction is determined by a sum of the Stokes vector com-
ponents +( )( ) ( )S S 2s s

0 1 (see equation (1)). Assuming that the
incident wave is linearly polarized in the same direction,

= ( )( )S 1, 1, 0, 0i , gives the spectral power in terms of the
Mueller matrix elements µ + +( ( ) )P X m m md d 2x 01 00 11 .
Substituting (55) in this combination shows that the integrals

( )E 3 and ( )E 4 cancel out in the final expression for
µP X S qd dx z x. The depolarization factor qx is presented in a

compact form by ( )E 1 and ( )E 2 integrals only

= +
+
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+

⎛
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The spectral power density µP X S qd d ztotal total is determined
by a different combination µ +( )P X m md dtotal 00 01 . In this
case, the matrix elements (55) lead to the expression con-
taining three integrals
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+ + + +
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Comparing (62) with equation (5) in [3] shows that after
matching the variable of integration in ( )( )E p r,1 and ( )( )E p r,2

with the one used in [3] the results are identical. Together with
the numerical verification, this gives an additional argument for
the correctness of the exact relativistic solution (55).

The dependencies of the depolarization factors q 1x
and q 1total on X are shown in figure 10 at =T 40 keVe and
two values q = 150 and q = 180 confirming, as expected,
that >q qxtotal . Both q-factors reduce with θ and are smallest
for the backscattered radiation with q = 180 , indicating that
suppression of the spectral powers caused by the relativistic
terms is the largest in this direction. This is a straightforward
consequence of the -( )u1 dependencies in (60) and (61).

At a given Te and θ the minima of both factors as
functions of X is reached in the vicinity of X=0. This is
different from the spectral powers P Xd dx and P Xd dtotal

Figure 10. Depolarization factors qtotal(X) (red) and qx(X) (black)
versus frequency w w= -X 1i at =T 40 keVe and two values
q = 150 (solid lines) and q = 180 (dashed lines).

17

Plasma Phys. Control. Fusion 59 (2017) 063001 Topical Review



shown in figure 11 at =T 40 keVe and q = 150 where both
extrema are blue shifted to X 0.5. In figure 11, the blue line
illustrates the contributions from the dominant part

mˆ ( )( ) X um , ,ij
0 of the Mueller matrix. They are the same for

both spectral densities and coincide with the function Sz(X).
At =T 40 keVe and q = 150 the depolarization factors qtotal
and qx result in ( – )18 20 % reduction of the peak values of the
spectral power.

To illustrate the effectiveness of the Mueller matrix we
consider now the more general problem of optimization
(maximization) of the spectral power densities P Xd dx and
P Xd dtotal with respect to all possible polarizations of the
incident light and directions of measurement of the scattered
light. The universal character of the Mueller matrix method
allows us to avoid kinetic calculations similar to (60) for each
specific case of the incident or measured polarizations. After
being calculated once, the five Mueller matrix elements (55)
contain full information about the kinetic part of the problem.
Then, the properties of the scattered radiation are fully
described by simple algebraic products of five functions of X,
μ and u already known, and trigonometric combinations of
the polarization angles ψ and χ. This separation of variables
is a key element of the method allowing performance of
different optimizations in a general form without kinetic
calculations.

The optimization (maximization) of the spectral densities
can be done at some specific frequency, or for the entire
frequency-integrated power, or for the spectral density inte-
grated over a finite frequency band. To illustrate the approach,
we show the results of optimization of the total frequency-
integrated powers Px and Ptotal described by (47). The same
procedure, but based on consideration of the peak values,
gives similar results. Analyzing the power Px, we abandon the
assumption that it is measured with a polarizer that selects the
scattered wave electric field component in only one x-direc-
tion perpendicular to the scattering plane. Instead, the more
general case is considered of an arbitrary orientation of
the polarizer that selects the scattered wave electric field in
the ae -direction perpendicular to s but having some angle
 a p0 between ex and ae . In the new reference frame,

the power aP is proportional to the product of the components
á ñ = ¢ + ¢

a a ( )( ) ( )E E S S 2s s
0 1 (see equation (1)). The total

power consists of this term and similar products of the
components orthogonal to ae , µ ¢( )P S s

total 0 . The prime symbol

for the scattered Stokes vector ¢( )S s indicates that it is calcu-
lated in the reference frame obtained by a rotation of the axes
through the angle α over the scattered direction s (different
from the reference frame (11) with the unit vectors orthogonal
to the incident direction i and characterized by the azi-
muth ψ).

The rules of transformation of the Stokes vector com-
ponents for a rotation of the axes through the angle α are
given by the formulas

a a

a a

¢ = ¢ = - ¢

= + ¢ = ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

S S S S S S

S S S S

, cos 2 sin 2 ,

sin 2 cos 2 , . 64

s s s s s s

s s s s

0 0 1 1 2 2

1 2 3 3

By making use of (64), the function aP is expressed in terms
of the original Stokes vector ( )S s . It is linked, in turn, with the
Stokes vector of the incident radiation (2) by equation

µ( )S s  ˆ · ( )m S i such that y cµ +( ) ( )S m m Scos 2 cos 2 ,s s
0 00 01 1

y cµ + ( )m m Scos 2 cos 2 , s
01 11 2 y cµ m sin 2 cos 222 . This

yields the power aP as a function of ψ, χ and α measured in
the component of the scattered wave electric field along the
arbitrary ae -direction

y c
y c a
y c a

y c

µ + +
+
+

µ +

a (
)

( )

P m m m
m
m

P m m

cos 2 cos 2
cos 2 cos 2 cos 2
sin 2 cos 2 sin 2 ,

cos 2 cos 2 . 65

00 01 01

11

22

total 00 01

In equation (65), the reference direction for α is opposite to
equation (64) (a a - ).

At given Te, u and α the maxima of aP and Ptotal as
functions of ψ and χ are reached at the boundaries of the
polarization region  y p0 2,  c p0 4. They can be
analyzed by plotting aP and Ptotal along four boundaries of the
polarization region. The results are shown in figure 12 as
functions of a parameter  x0 4. The variable ξ is intro-
duced to express the changes of the polarization characteristics

ycos 2 and ccos 2 along the four boundaries as some linear
functions of ξ. The functions are scaled in such a way that each
of four boundaries corresponds to equal interval of ξ variation
xD = 1 (see appendix A.1). The upper curve consists of four

straight lines of different colors. Each of them illustrates var-
iation of Ptotal along the corresponding boundary of the
polarization angles. The variations of Ptotal are relatively weak

Figure 11. Normalized to C0 spectral densities P Xd dtotal (red) and
P Xd dx (black) versus frequency w w= -X 1i at =T 40 keVe and

q = 150 . Blue line is the contributions from the dominant part
mˆ ( )( ) X um , ,ij

0 (coincides with the function Sz(X)). Black and red

horizontal lines illustrate that the depolarization factors shown in
figure 10 are almost constant on this scale.
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and its absolute maximum is reached at x = 0 (linear incident
polarization perpendicular to the scattering plane).

Three lower curves describe the dependence of aP on the
incident polarization state. They are plotted for three different
angles a = -  35 , 0 and 40◦. When the power aP is mea-
sured at a = 40 , there appears a local maximum of aP as a
function of ψ that corresponds to linear incident polarization
with the orientation angle y a . The value of aP at this local
maximum is smaller than the absolute maximum of aP
reached at a = 0 and linear incident polarization perpend-
icular to the scattering plane. Thus, the optimization of the
spectral power with respect to all possible incident polariza-
tions and directions of the scattered wave electric field shows
that the combination y c a= = = 0 provides an absolute
maximum of the scattered signal.

6.3. Frequency-resolved degree of depolarization

The frequency-resolved degree of depolarization is defined as
w w= -( ) ( )D P1 where w( )P is given by (49). The spectral

Stokes vector of the scattered radiation, w =( )( )S s

w m q y cˆ ( ) · ( )( )M S, , ,i , is determined by the frequency-
resolved Mueller matrix (50) and the Stokes vector of the inci-
dent wave. Since w( )P is a ratio of the two ( )S s -dependent terms,
the normalization factor C0 cancels out in the final expression.
Thus, the degree of polarization/depolarization is completely
determined by the elements of the matrix mˆ ( )X um , ,ij (55) and
the Stokes vector of the incident wave (2). It depends on the

angles of the incident polarization ψ and χ, electron temperature,
the scattering angle and the frequency of the scattered radia-
tion X.

If the frequency-resolved Mueller matrix is approxi-
mated by the first dominant term mˆ ( )( ) X um , ,0 with n=0,
then the corresponding degree of depolarization in identi-
cally equal to zero. In spite of the complicated dependencies
of ( )Cij

0 on X and u, the degree of depolarization is zero for all
incident polarizations, electron temperatures, scattering
angles and the frequency of the scattered radiation. This
indicates that finite values of the degree of depolarization are
caused by the integral terms in equation (55) (see also
equation (C17)).

At given X, the properties of D(X) dependencies on Te
and θ are similar to those presented in figures 6 and 7 for the
frequency-integrated Mueller matrix. The spectral depend-
ence of D(X) characterizes the sensitivity of the degree of
depolarization to the frequency of the scattered radiation. In
figure 13, typical examples of the spectral profiles D(X) are
shown at =T 40 keVe and three scattering angles
q =  130 , 150 and 180◦. At all scattering angles, the
functions D(X) have maxima at the frequency approximately
equal to the frequency of the incident wave ( X 0). The
peak values are about 15% higher than the degrees of depo-
larization shown by dashed lines and calculated at the same Te
and θ with the use of the frequency-integrated Mueller matrix.
The right panel illustrates the dependence of the peak values
D(0) on incident polarization by plotting them along four
boundaries of the polarization angles at q = 130 (solid
lines). The values of D determined from the frequency-inte-
grated Mueller matrix are shown by dashed lines. Both solid
and dashed curves demonstrate similar behavior but with
different amplitudes.

Comparing profiles D(X) at different scattering angles in
figure 13 shows that the degree of depolarization is strongest
near perpendicular scattering and drops off rapidly far away
from this direction. As pointed out seemingly by Sheffield
[51], this behavior of the rigorously-defined degree of depo-
larization D(X) contradicts behavior of the depolarization if
we measure it in terms of deviation from unity of the depo-
larization factors q discussed in section 6.2. Considering the
quantity - q1 as an intuitive measure of depolarization
shows that this characteristic increases with θ and reaches its
maximum for backscattered radiation at q = 180 (see
figure 10). This tendency is the opposite of D(X) behavior and
reflects deep physical difference between D and q.

Indeed, as seen from (60) and (61), the reduction of the
intensity caused by the relativistic terms in the q-factors takes
place even for scattering on a single moving electron
( - >q1 0). In the same case of a single moving electron, the
scattered radiation remains monochromatic and, therefore,
completely polarized with D=0 (see equation (39)). Par-
tially polarized TS radiation with >D 0 is caused by the
superposition effect of randomly moving electrons.

Consider, for example, a linearly polarized incident wave
with the Stokes vector ( )1, 1, 0, 0 . After scattering on a single
moving electron the matrix Ŵ yields the scattered radiation

Figure 12. Plots of normalized to C0 frequency-integrated powers Ptotal
(upper curve (a)) and aP (three lower curves (b), (c), (d)) along the
boundaries of the polarization angles ψ and χ at =T 40 keVe and
q = 150 . The solid black line shows variation of Ptotal while three
other black lines show variation of aP as a function of ψ along the first
boundary (  y p c =0 2, 0) at a = 0 (dotted–dashed line (c)),
a = - 35 (dotted line (d)) and a = 40 (dashed line (b)). The red,
green and blue curves describe power variations along three other
boundaries: (  y p c p= 2, 0 4), (  p y c p=2 0, 2)
and (  y p c= 0, 4 0), respectively.
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with µ( )S s
0 + µ( ) ( )a b S2 , s2 2

1 - = -( ) ( )a b S ab2 , 4 ,s2 2
2

=( )S 0s
3 that provides = - + =( ) ( ) ( )D S S S1 0s s s

1
2

2
2

0
2 .

Averaging over randomly moving electrons modifies the
Mueller matrix in such a way that = - =( )S ab4 0s

2 .
This results in non-zero degree of depolarization

= +( )D b a b2 2 2 2 .
The simplest example of linear incident polarization

perpendicular to the scattering plane allows us to express the
degree of depolarization in terms of the depolarization factors
qx and qtotal and analyze the relationship between them

= - = -
= - -

( ) ( )
( ) ( ) ( )

( ) ( ) ( )D S S S P P P

q q q q q

2

2 2 . 66

s s s
x

x x

0 1 0 total total

total total total

Thus, the degree of depolarization is linked not to the depo-
larization factors qtotal or qx but to the difference between
them. Using the expressions in large brackets in (60) and (61)
yields an estimate for this difference to a leading order
approximation in b  1x

2

b b- - - - = - [ ( ) ( ) ] ( )
( )

q q u u u2 1 1 1 .

67
x x xtotal

2 2 2 2

These arguments explain why large depolarization of the
backscattered radiation (q =  = -u180 , 1) measured in
terms of - µ -( )q u1 2 1x and - µ -( )q u1 1total

2 is
accompanied by small depolarization measured in terms of
the degree of depolarization bµ -( )D u1 x

2 2 .
More general analysis of the D(X) dependence is per-

formed in appendix C for the case of arbitrary incident
polarization. The strongly peaked at small Te Gaussian part of
the spectral profile m( ) ( )( )E p K0

2 cancel out in the expres-
sion (C17) for D(X). Residual terms are proportional to dm̂.

They determine the spectral degree of depolarization D(X)
which varies with X on temperature-independent scale of
order unity with the amplitude proportional to T m ce e

2.

6.4. Polarization over a finite frequency band

The aforementioned theoretical analysis is performed for two
limiting cases of the frequency-resolved and frequency-inte-
grated degree of depolarization. Realistic experimental con-
straints require accepting only scattered photons within a
limited wavelength range. To evaluate the feasibility of a
polarimeter under these conditions, we will use the spectral
results (55) to calculate the quantitative effect of the finite
frequency response band of optical instrumentation on the
accuracy of polarization-based measurements.

Consider a partial contribution D ( )S s to the spectrum
integrated Stokes vector from a finite frequency interval wD .
It was evaluated previously in this section at small wD as

w wD = D( )( ) ( )S Ss s and used as a basis for the frequency-
resolved polarization formalism. We treat now the partial
contribution in its precise form

ò w wD =
w w

w w

-D

+D
( ) ( )( ) ( )S S d . 68s s

2

2

In the limit wD  ¥, the integral (68) reproduces the value
of D shown by the dashed lines while in the opposite limit,
wD  0, it corresponds to the profile D(X) shown by the

solid lines in figure 13. Integrating Mueller matrix (55) over
the finite frequency interval according to (68) and comparing
the degree of depolarization w( )D resulting from this
operation with the two limiting cases yields important infor-
mation about characteristic values of wD at which the

Figure 13. Left panel: spectral dependence of the degree of depolarization D(X) for linear incident polarization with y = 0 at
q =  130 , 150 and 180◦ (solid lines); the degree of depolarization at the same angles from the frequency-integrated Mueller matrix
(dashed lines). The right panel: dependence of the peak values D(0) on incident polarization along four boundaries of the polarization
angles at q = 130 (solid lines). The values of D for the frequency-integrated Mueller matrix are shown by dashed lines (all curves
correspond to =T 40e keV).
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transition between frequency-integrated and frequency-
resolved limiting case takes place. Averaging of the Mueller
matrix elements (55) needed for this analysis is performed
numerically by integrating over the interval - DX X 2,

+ DX X 2. This yields the partial contributions to the
Stokes vector (68) and corresponding degree of depolariza-
tion as a function of the central frequency X and the interval
of integration DX .

The results are presented in figure 14 as functions of X at
=T 40e keV and q = 130 for a few values of DX . At

D =X 0, the spectral profiles correspond to the frequency-
resolved curves illustrated in figure 13. When the X-integration
is performed over a finite intervalDX , possible coordinates X
of the center of this window of integration are limited from the
left by the inequality  D -X X 2 1. For this reason, the left
boundaries of the curves shown in figure 14 for increasing
values of DX are monotonically shifted to the right. At
q = 130 , the integration over the relatively large interval
D =X 1 ( w wD = i, blue curve) does not lead to significant
deviation of D(X) from its frequency-resolved profile (red
curve). Only if the frequency band of the optical detectors is
wide ( w-( )3 4 i) then the measured degree of depolarization
approaches its asymptotic value predicted by the frequency-
integrated Mueller matrix theory. Otherwise, a difference of
order of 15% is expected to be observed in the vicinity of the
incident frequency wi.

This conclusion is made for q = 130 and valid for the
broad range of incident polarizations. The results are sensitive
to the scattering angles. Another example with q = 95 and
circular incident polarization shown in the right panel of
figure 14 illustrates an opposite situation. In this case, the
peak value of the frequency-resolved degree of depolarization

is very close to its frequency-integrated analog. Averaging
over different intervalsDX gives slightly irregular curves but
all values of ( )D X turn out to be in the vicinity (0.1%) of
the degree of depolarization calculated from the frequency-
integrated model.

7. Experimental implementation of a polarization
diagnostic for Te

The suggestion that Te might be measured by observing the
depolarization of TS light appears at least as early as 1968
[6]. The first assessment of the practical possibility of this
technique was made by Orsitto and Tartoni in 1999 [7].
They performed a numerical calculation using the scattering
cross section derived in [52], for the case in which the
incident and scattered wave vectors are at 90◦. The incident
light was linearly polarized, with a polarization plane at 45◦

to the plane defined by the incident and scattered wave
vectors. The depolarization of the scattered light was found
to be almost independent of wavelength, and increased
nearly linearly with Te up to a temperature of 20 keV. The
conclusion about independence from the wavelength was
made on the basis of quantum electrodynamics cross section
analysis in [52]. This is consistent with the results obtained
from the classical field theory in section 6 that predict
relatively flat frequency profile of the degree of depolar-
ization for scattering at q = 95 of the incident circularly
polarized light (figure 14 (right panel)).

To exploit these polarization characteristics for Te mea-
surement, the simple apparatus illustrated in figure 15 was
proposed. This device measures the number of photons

Figure 14.Degree of depolarization caused by the partial contributionD ( )S s from finite frequency intervalDX versus position of the center
of the interval X (  D -X X2 1 4): DX = 0 (red), 1 (blue), 2 (green), 4 (black), 5 (brown), 6(pink), 7 (gray), degree of
depolarization for frequency-integrated Mueller matrix (dashed line). Plasma scattering and incident polarization parameters are

=T 40 keVe , q = 130 , y c= = 0 (linear polarization perpendicular to the scattering plane,left panel); q = 95 , c p= 4 (circular
polarization, right panel).
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through polarizers at angles of + 45 , - 45 , and 90◦ with
respect to the plane defined by the incident and scattered
wave vectors. Using incident laser light at 1064 nm and col-
lecting scattered light in the range 660–1050 nm, and with the
assumptions of Poisson statistics for uncertainties, brems-
strahlung for background light from the plasma, and no losses
in the detection apparatus, the uncertainty for a measured Te
of 20 keV was estimated to be competitive with the usual
spectral method of Thomson scattering measurement. This
calculation demonstrated that a Thomson scattering diag-
nostic based on polarization measurement is a realistic pos-
sibility for high-temperature plasmas.

A more complete optimization of this type of diagnostic
scheme was done using an analytic description of the Thomson
scattering process valid for all incident polarization states, scat-
tering angles, and electron temperatures [13]. Expressed in
Stokes vector form, the scattered field, ( )S s , and the incident
field, ( )S i , have four components = ( )S S S SS , , ,0 1 2 3 . For fully
polarized incident light, scattered light from a single electron
remains completely polarized, but due to the nature of the
electron distribution function, light scattered from many elec-
trons will include photons of many different polarization states.
This is described by the degree of polarization, P, which can
range from 0 to 1, and the degree of depolarization,

= -D P1 , given by equation (3).
Figure 16 shows the degree of depolarization across the

full range of scattering angles and fusion-relevant tempera-
tures for linearly polarized light with the orientation angle, ψ
, between the major axis of the polarization ellipse and the
normal vector to the scattering plane equal to zero (light
polarized perpendicular to the scattering plane). Depolar-
ization is strongest near perpendicular scattering, although
not exactly at a scattering angle q p= 2, a result that is
consistent with earlier calculations [8, 9]. For both forward
(θ near zero) and backward (θ near π ) scattering, the degree
of depolarization is only a few percent at expected fusion
reactor temperatures. This means that backward scattering
LIDAR systems of the type initially proposed for the ITER

experiment [38, 39] would be unsuitable for polarization-
based measurement of Te.

Diagnostic simulations using this analytic description for
2-, 3-, and 4-component polarization selection apparatus indi-
cated good performance for all schemes above about 10 keV.
The laser source was at 1064 nm and scattered radiation inte-
grated over the range 200–2000 nm. For optimization, the
diagnostic error bars are calculated and minimized with respect
to polarization characteristics of the incident light ψ and χ and
scattering angle θ. In the general case of elliptically polarized
incident light, four Stokes vector components of the scattered
light should be measured. Modifying the standard scheme of six
measurable intensities [23], four independent intensities aI
given by (7) were selected in [12, 13] to determine ( )S s . Three of
them are measured after the light is separated by beamsplitters
and transmitted by three polarizers that select linear polarization
at the azimuth angles  0 , 45 and 90◦ with respect to the
perpendicular to the scattering plane. The fourth channel con-
tains a quarter-wave plate to create p 2 retardation of the in-
plane component before the light is transmitted by the 45◦

polarizer. The degree of depolarization measurement error, sD,
is related to the error on each of the statistically independent
intensity measurements s aI

ås s=
¶
¶a a

a

⎛
⎝⎜

⎞
⎠⎟

D

I
,D I

2
2

2

where the intensity measurement errors are determined by
Poisson statistics such that s µ aa

II
2 .

The relative error in the electron temperature measure-
ment, s s= ¶ ¶ = ¶ ¶-( ) ( )T T D T W Q T D TT e D e e e e

1
e

, is
presented by a product of two universal functions

y c q( )W T, , , e and y c q¶ ¶ -( ) ( )D T T, , ,e e
1 with a scaling

factor Q1 which does not depend on the polarization
variables (Q is effectively proportional to the total number of
scattered photons). The factorization allows us to perform

Figure 15. Schematic of a simple polarimeter proposed for
measurement of Thomson scattered signal at angles of +45◦,- 45 ,
and 90◦ from the scattering plane. Reproduced from [7], with the
permission of AIP Publishing. Figure 16. The degree of depolarization for linearly polarized

incident light with y = 0, across the full range of scattering angles
and fusion-relevant temperatures. Reproduced from [13]. © IOP
Publishing Ltd. All rights reserved.
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minimization of sTe
analytically for the full range of incident

polarizations, scattering angles, and electron temperatures.
Although figure 8 shows that at q = 90 and q = 120 the
derivative ¶ ¶D Te is the largest for circular polarization, fast
growth of W in this parameter range determines the overall
minimum of the error bars at linear incident polarization with
c y= = 0. This proves that the regime of linear polarization
with y = 0 is optimal not only because of the convenience of
two-channel measurements but due to intrinsic polarization
properties of TS radiation.

A more detailed description of the optimization scheme is
presented in [13]. In particular, the simple 2-component
polarimeter (selecting angles of 0◦ and 90◦ relative to the
electric field with y = 0) performed best across the full range
of temperatures up to 50 keV. Further simulations using the
2-component polarimeter and restricting the range over which
the scattered radiation was integrated are illustrated in
figure 17. Predicted uncertainty in measured Te is relatively
small even for an integration window of only 800–1100 nm.
Such a window rejects a significant number of scattered
photons, but it rejects an even greater fraction of the brems-
strahlung background, thus preserving measurement cap-
ability. This capability to make a measurement with a limited
wavelength window may be of substantial advantage in a
reactor environment where radiation darkening of optical
fibers may limit scattered light collection to wavelengths
above 500 nm [53].

A conceptual design for a polarimetric Thomson scat-
tering diagnostic for ITER has recently been proposed
by Giudicotti et al [21]. The ITER core Thomson scatte-
ring system has a backward scattering geometry with
the scattering angle covering the approximate range

 q 130 160 , with the largest angles for the central
measurement locations in the highest temperature region of
the plasma [54]. Layout of the laser beam inside the plasma
and the collection optics of the core TS system of ITER are

illustrated in figure 18. All seven rays of the scattered
radiation lie in one vertical poloidal plane. Position (1)
corresponds to a scattering angle q = 160 and radial
location = - = -r R R a0.10 . Edge plasma position (7)
has q = 130 and =r a0.84 . The plasma center ( =r a 0)
is between positions (1) and (2). Position (4) (q = 145 ) is
a representative of a typical measurement. It corresponds
to the center of the measurement chord that has a radial
location =r a0.5 . This area is in the middle bet-
ween the plasma center and the outer wall and, therefore,
the temperature will likely be less than 40 keV at that
location.

With these large scattering angles, the TS spectrum
spreads over a wavelength region spanning 200–1500 nm,
with a peak intensity around 550 nm at 40 keV due to the
relativistic blue shift of the scattered light (see figure 19 and
equivalent spectral density profile as a function of frequency
in figure 11). This presents a difficult challenge for spectral
measurement of Te, as optical fiber darkening sets a lower
wavelength limit of about 500 nm, and the responsivity of Si
avalanche photodetectors sets an upper limit around 1100 nm.
This limited detection range causes the uncertainty in Te to
rise dramatically above 20 keV for a spectral measurement
system. This limitation of the spectral measurement approach
is illustrated in figure 20 at the representative scattering angle
q = 145 . The rise in relative uncertainty in Te and electron
density ne is plotted for three different choices of short
wavelength cutoff by the scattered light collection system. By
way of contrast, polarimetric measurement of Te improves for
increasing temperature and is almost independent of wave-
length cutoff. Simulation of polarimetric measurement was
performed using an input laser beam with circular polariza-
tion, as this maximizes the depolarization of scattered radia-
tion in a backward-scattering geometry. The detection system
was assumed a simple two-channel polarimeter measuring the
left- and right-circularly polarized light. Since these corre-
spond to two orthogonal polarization states, all scattered light
is detected in one channel or the other.

Perhaps the best choice for core Thomson scattering
measurement in ITER is a combination of spectral and
polarimetric methods [22]. As proposed, the polychromator
has a standard set of six spectral channels with a short
wavelength cutoff of 600 nm. The scattered light collection
system is arranged to split the light into two mutually
orthogonal polarization states, with the light reflecting the
polarization state of the input laser beam transported to the
polychromator, and the depolarized light sent to a single
polarimetric channel. While this hybrid scheme works well
for linear horizontal (toroidal) input laser beam polarization,
the lowest Te uncertainty is predicted for a circularly polarized
input beam (figure 21). Application of this scheme to the
ITER core Thomson scattering diagnostic would require the
installation of a second set of optical fibers, as the polarization
splitting of the scattered light must be done before the light
enters fibers for transport to the detection systems. Calibration
of a polarimetric Thomson scattering measurement system
would also be required, but this may be possible using the
polarization properties of rotational Raman scattering of laser

Figure 17. Comparison of predicted uncertainty in temperature
measurement using a 2-component polarimeter, integrating over
several different wavelength ranges. Reproduced from [13]. © IOP
Publishing Ltd. All rights reserved.
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light from diatomic gases [19, 20]. Note that even a spectral
measurement Thomson scattering system may require
polarimetric calibration, as a severe plasma environment
(such as in ITER) will change the polarization characteristics
of the plasma-exposed first mirror.

In sum, for measurement of Te in fusion-relevant
plasma conditions, polarimetric techniques are competitive
with the standard spectral measurement technique. The
main advantages of polarimetry in this situation spring
from two factors: (1) scattered light collected in a limited
spectral region can be effectively analyzed because of the
depolarization effect is largely wavelength independent
(versus the need to cover a large wavelength range for
effective spectral measurement), and (2) a basic imple-
mentation requires only a simple two-channel polarimeter
(versus a multi-channel polychromator). As of this writing,
no experimental tests of a polarimetric Thomson scattering
diagnostic technique have been performed, although the
JET tokamak has been suggested as a possible testbed [21],
and temperatures in the W7-X stellarator are also likely to
reach relevant levels.

8. Summary

When a Mueller matrix representation of Thomson scattering
is averaged over electron thermal motion, it does not conserve
polarization and transforms fully polarized incident light to

partially polarized scattered radiation. This property is
intrinsically connected with the broadening of the scattered
spectrum, which, by definition, is no longer fully polarized. If
the dependence of the degree of polarization on electron
temperature is accurately known from theory, the accuracy of
such a diagnostic could potentially exceed that of the con-
ventional spectrum-based TS diagnostic method. Indeed,
when the scattered spectra are broad, as in fusion-grade
plasmas, and the optical instrumentation for scattered light
analysis accepts a broad range of wavelengths, then the
degree of depolarization is determined by the frequency-
integrated components of the Stokes vector ( )S s . These are
linked to the polarization of the incident wave via the fre-
quency-integrated Mueller matrix M̂ derived in section 5. The
capability of a polarization-based TS diagnostic to integrate
over a broad range of the scattered spectrum results in an
increased number of detected photons and improved mea-
surement accuracy. This is a key potential advantage of a
polarization-based TS diagnostic compared to the traditional
spectrum-based TS method.

An additional advantage of a diagnostic method based
on the degree of depolarization arises from the fact that
this quantity is defined as a ratio of the intensity in the
unpolarized component to the total intensity of the scattered
radiation. Both of them are proportional to plasma density
and, therefore, the degree of depolarization is not sen-
sitive to electron density, enabling direct measurement
of electron temperature in a broad range of plasma
conditions.

If the wavelength range of the instrumentation used to
detect polarization is narrow, calculation of the spectrum-
resolved degree of depolarization is relevant to the analysis.
This is calculated from the frequency-resolved components
of the Stokes vector w( )( )S s which are linked to the
incident wave through the frequency-resolved Mueller
matrix wˆ ( )M . An exact relativistic solution for the fre-
quency-resolved wˆ ( )M and the spectral degree of depolar-
ization is obtained and analyzed in section 6. In the
parameter range relevant to the conventional TS system of
ITER, the peak of the spectral degree of depolarization is

Figure 18. Layout of the plasma facing part of the collection optics of the core TS system of ITER. Reproduced from [21]. © IOP Publishing
Ltd. All rights reserved.

Figure 19. Predicted Thomson scattered photon spectra for
temperatures and scattering angle q = 145 relevant to ITER, using
incident laser light at 1064 nm. Reproduced from [21]. © IOP
Publishing Ltd. All rights reserved.
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achieved at a wavelength close to the wavelength of the
incident laser light. The peak value is about 15% larger than
the equivalent constant value of the degree of depolarization
obtained from the frequency-integrated model. Both models
are consistent with each other and both are useful for the
approximate calculations usually required in diagnostic
design scoping exercises. For more precise analysis, the
intermediate case must be considered and serves as a bridge
between these two limiting regimes. The intermediate case
corresponds to a situation in which polarization measure-
ments are made with optical instrumentation having a finite

wavelength acceptance band. Example calculations for one
particular case of =T 40 keVe and two scattering angles
q =  130 , 95 are examined in section 6.4 and illustrate
the transition between the two limiting results as the
wavelength bandwidth of the detection apparatus increases.
This general analytical approach that explicitly includes
the finite wavelength bandwidth of optical instrumentation,
and treats it as an input parameter, is highly desirable for
precise optimization of polarization-based TS diagnostic
systems.

Global analysis of the degree of depolarization in terms
of its dependence on Te and θ shows that at high Te forward
scattering at q < 90 is more favorable for polarization-based
TS diagnosis than backscattering at the supplementary angle

q -180 . In this sense, the planned ITER core TS system
with predominantly backward scattered collection optics is
not optimal for implementation of polarization-based diag-
nosis. This geometrical constraint in ITER reduces the
advantages of a TS diagnostic based solely on polarization
analysis, but opens the attractive possibility of using a hybrid
scheme based on the combination of spectral and polarimetric
methods for Thomson scattering measurement. The hybrid
scheme is most effective for the ITER core TS system, where
the combination of a wide spectrum (due to high Te and a
backward scattering geometry) and spectral cut-off at
l  –550 600 nm (due to poor trasmission of refractive ele-
ments and neutron irradiated fiber optics) is expected to limit
the performance at >T 25 keVe . Under these conditions,
polarimetric TS may effectively improve the performance of
the ITER core TS system.

In addition to the ITER core TS application there are a
number of other opportunities for implementing polarization-
based Thomson scattering diagnostics. As of this writing, an
attempt to measure the depolarization effect on TS radiation
has recently been performed on JET which was used as an
experimental testbed of a polarimetric Thomson scattering
diagnostic technique. During a recent campaign, one of the
filter polychromators of the JET HRTS system was modified
in order to detect the TS signal polarized perpendicularly to

Figure 20. Comparison of the predicted relative error on Te and ne measured by polarimetric and spectral Thomson scattering as functions of
Te and for three different choices of the short wavelength detection cut-off. Reproduced from [21]. © IOP Publishing Ltd. All rights reserved.

Figure 21. Predicted relative uncertainty of Te and ne with spectral
Thomson scattering only (SP), and with an additional polarimetric
channel (SP+POL) for incident laser beam with circular polariza-
tion. Reproduced with permission from [22].
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the direction of the incident laser beam. Data has been col-
lected in plasmas with T 8 keVe , the analysis of the data is
currently under way [55].

Experimental test of a polarimetric Thomson scattering
diagnostic technique could be realized in high Te regimes
on the W7-X stellarator. According to [56], electron tem-
peratures up to 10 keV have already been measured at
relatively low density in the core region during initial
plasma operation phase OP1.1 with the ECR heating system
consisting of six gyrotrons and operating with about
4.3 MW of injected power. These results are consistent
with transport simulations [57] predicting stationary values
of T 9 keVe at 5 MW of ECRH power. At present, the
W7-X machine is under preparation for the next stage of
operation OP1.2 with the test divertor unit. The ECRH
system will be complemented by another 4 gyrotrons,
increasing the heating power from 5 to 9 MW. In this later
operation phase, one can expect a further increase of elec-
tron temperature up to 12–15 keV for low-density
(1019 m−3 range) discharges [58]. These high Te regimes
could be effectively used for verification of the TS polar-
ization concept on W7-X.

In addition to JET, an experiment to measure the depo-
larization of the TS radiation on the FTU has been proposed
[59]. This project is presently in the design phase. In the FTU
machine, plasma with Te as high as 11 keV was obtained by
central electron cyclotron heating [60]. Important features of
the proposed experiments include a scattering angle q  90
and F/2.7 collection optics [61]. The intensity of the unpo-
larized radiation is intended to be optimized by selecting a
suitable polarization of the input laser beam.
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Appendix A. Scattering by single electron

A.1. Stokes vector components

The Stokes parameters of the incident and scattered
radiation are defined by time-averaged electric field

components (1)
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They are determined by the projections of ( )tE onto the
(e t,x i) and (e t,x s) axes for incident and scattered waves,
respectively. Consider, for example, the Stokes vector ( )S i of
the incident monochromatic wave (11)

c c= + = ¢ + ¢( ) ( )E E EE e t e ecos i sin , A2i ix x it i x y0

where the ellipticity angle c =  ( )b barctan 2 1 . Projecting
(A2) onto the ex and ti axes gives the Eix and Eit components

c y c y
c y c y

= -
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Substituting (A3) in (A1) yields the Stokes vector of the fully
polarized incident wave (2).

The dependencies of all quantities on the polarization
state of the incident light are analyzed by plotting them along
four boundaries of the polarization region  y p0 2,
 c p0 4. The scattered field characteristics are expres-

sed as functions of a parameter  x0 4. It describes the
changes of the polarization angles ycos 2 and ccos 2 as some
linear functions of ξ: y ax b c gx d= + = +cos 2 , cos 2 .
The coefficients are selected in such a way that each of four
boundaries corresponds to equal interval of ξ variation
xD = 1:  x 0 1   y p c x=( )0 2, 0 ; 1

   y p c p =( )2 2, 0 4 ; 2  x p (3 2
  y c p x= )0, 4 ; 3 4  y p c =( )0, 4 0 .
The particular case of a linearly polarized incident wave

with c = 0 is considered in solution (37). The corresponding
electric field amplitude ¢E ei x. The scattered wave propagation
direction s is characterized by the polar and azimuth angles Θ
and Φ which are defined with respect to the spherical system
of coordinates determined by the unit vectors
= = ¢ ´ = ¢ˆ ˆ ˆx i y e i z e, ,x x. The relationships between the

variables θ and y and the angles Θ and Φ are as follows
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A.2. Unpolarized and polarized parts of the coherency matrix

The principle of decomposition is specified by equation (8).
Expressing four unknown coefficients B C D D, , , in terms
of A and four elements of the matrix Ĵ and substituting in
equation - =BC DD 0 yields quadratic equation for A. It
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has a unique solution for nonnegative A B, and C



= + - + -

= - + +

= - + - +

= + + +

= - + - +

= + + -

= = + = = -

( ( ) ∣ˆ ∣ )

( )

( ( ) )

( )

( ( ) )

( )

( ) ( ) ( )/ /

A J J J J

S S S S

B J J J J J Jyx

S S S S

C J J J J J Jyx

S S S S

D J S S D J S S

J
1

2
4det

1

2
,

1

2
4

1

2
,

1

2
4

1

2
,

i 2, i 2. A5

xx yy xx yy

xx yy xx yy xy

yy xx xx yy xy

xy yx

2

0 1
2

2
2

3
2

2

1 1
2

2
2

3
2

2

1
2

2
2

3
2

1

2 3 2 3

The intensities of the unpolarized ( A2 ) and polarized (B+ C)
components are consistent with the degree of polarization/
depolarization defined by equation (3).

Consider the state of polarization described by the fully
polarized part ˆ ( )J pol

. The corresponding electric field can be
treated as monochromatic with constant real amplitudes and
phases
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The size (semi-axes ratio c=b b tan2 1 ) and the angle of
inclination ψ of the polarization ellipse are expressed in terms
of the parameters of equation (A6)
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Taking electric field components (A6) in a complex form and
substituting into the polarization matrix (1) yields
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Comparing (A8) and (A7) shows that characteristics of the
polarization ellipse associated with the fully polarized part are
expressed in terms of the elements of ˆ ( )J pol

as follows
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Rewriting these elements in terms of A B C, , and D results
in equation (9).

A.3. Treatment of the square of a δ-function

If the limiting transition  ¥T was performed for linear
quantities such as the electric field vector (18), then the singular
δ-function would lead to a problematic square of a δ-function
for quadratic combinations which must be correctly resolved.
The problem has been treated by applying a phenomenological
‘recipe’ (see, for example, equation (10) in [15]) where one
δ-function in the product is left as is while the second one is
presented in the integral form

òw
d w w

w w

d w w

=
-

-

 -

¥ -
( ) ∣ ∣ ( ) [ ( ) ]

∣ ∣ ( )
( )

S
T

t tE

E

lim
2

d exp i

.

A10

T

d

T

T

d

d

0 0
2

0
2

Due to the first δ-function one should put w w= d in the int-
egral kernel. This yields the desired limiting transition after
integration over t.

In spite of its seeming effectiveness, formal use of this
recipe does not provide a unique answer. The uncertainty
originates from freedom in choosing the limits of integration
in the integral presentation for the second δ-function. The
integral presentation for any δ-function is still valid if, instead
ofT , the limits of integration are chosen as l T where λ is
some constant. This invariance does not hold for the quadratic
combination. Indeed, putting w w= d in the integral kernel
yields, after integration over t, the result l d w w-∣ ∣ ( )E d0

2

which depends on λ and, therefore, is not a unique function of
ω. It becomes a well-defined quantity when the limits of
integration are not arbitrary but determined by the specific
problem under consideration. Consider, for illustration, two
different forms of the problem analyzed in [15, 18].

The original equation (4) in [18] for the Fourier component
w( )[ ]Es

18 scales with the factors of b-( )1 s and ω as follows
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The variable T is renamed Tlaser to emphasize that the laser pulse
length is used as the interval of integration over ¢t . The same
time interval =T Tlaser is used in the denominator of equation
(7) in [18] to determine the mean power which, by definition, is
the spectral time-at-particle power. According to the ‘recipe’
(A10), the product of the function d w b w b- - -[ ( ) ( )]1 1s i i

and its integral form (A11) yields the spectral intensity which
represents the spectral time-at-particle power (consistent with
equation (14) in [18])
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In [15], the time interval T is the time at the detector. The
original integral form with the T-dependent limits of integration
is not shown explicitly in [15]. Instead, its limiting δ-function
form is presented by equation (7) which is identical to the
limiting expression in the rhs of (A11). The original integral
form is also the same as (A11) but with the limits of integration
expressed in terms of T from the substitution

b= -( )T T 1 slaser given by the retardation equation (12)
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This substitution is crucial for the mean spectral power calcul-
ation because the time interval at the detector T, rather than Tlaser,
is in the corresponding denominator in [15].

The limits of integration in (A13) are rescaled compared
to (A11). This situation is equivalent to the illustrative
example (A10) with l b= -( )1 1 s . Using the phenomen-
ological recipe for treatment of the square of a δ-function
yields the scaling of the spectral time-at-observer power on
the detector

d w b w b
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This result for [ ]
( )P15
single is different from [ ]

( )P18
single . The difference

was mistakenly interpreted in [18] as a result of the mathe-
matical error in transforming the square of a δ-function in
[15]. In point of fact, both expressions (A12) and (A14) are
correct representations of the two different time-at-particle
and time-at-observer powers which are in agreement with the
general relationship (13). This justifies the set of transfor-
mations (7)–(10) in [15] performed by the extraction of a
factor b-( )1 s from within the δ-function.

A.4. Amplitude of the TS field

The starting point is the Lienard–Wiechert expression for the
scattered electric field Es emitted by an electron moving along
the unperturbed trajectory

¢ = + ¢( ) ( )( )t tR R v A150
i

and oscillating in the field (11) of the incident monochromatic
wave  ¢ ¢( )tr ,i
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We consider here an elementary process of scattering within
the scope of the infinite scattering volume model treated in
section II (A, B, C) of [15]. The tensor P̂ describes the
transformation of polarization in the process of scattering on a

single electron
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where bb = ·E i.
The electric field ( )tE r,s represents the scattered field at

the remote position r on the detector at time t. We truncate the
field ( )tE r,s within a time interval ∣ ∣t T according to (15).
The Fourier image of the truncated signal is obtained by
integrating over t from -T to T. Performing integration over
¢t as shown in [14] yields the final result in the form (26),
where the scalar function bw( )( )f ,T is
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Appendix B. Mueller matrix for averaging with the
ITT weighting factor

To illustrate the importance of the specific form of the
weighting factor the technique of exact analytical integration
is applied to the case of the weighting factor

b bµ - -( ) ( )1 1 s
2 6 that was used in [9] for calculations to

the lowest linear order in T m c 1e e
2 . The analytical results

for the sixth power weighting factor are represented by the
Mueller matrix ĥ defined by equation (48)
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Comparing the two Mueller matrices m̂ and ĥ shows that they
are sensitive to the specific form of the weighting factor. For
example, the off-diagonal elements q= =m m sin01 10

2 are
the same as in cold plasma while the equivalent elements of
the matrix ĥ are substantial functions of Te.

Appendix C. Frequency-resolved Mueller matrix

The integration over b is performed in (50) in a coordi-
nate system (e e e, ,x y z) with the z-axis directed along -k ks i

such that = -( )e k kz s i - = + -∣ ∣ ( ( ) )Xk k s i1s i

k, = ´e e ey z x where q= ´[ ]e i s sinx is the unit vector
normal to the scattering plane while the dimensionless
wave vector k and the frequency shift X are, respectively,

w w= + + - = -( )( )k X X u X2 1 1 , 1i
2 . In this refer-

ence frame, the argument of the δ-function in (50) takes a
form which allows for direct integration over bz: d w w-( i

b b- -( ) ( ))1 1i s bb d w w= - - - -( ) [ · ( ) ]ck k1 s i s i

b d b b w= - -w( ) ( ) ( )k1 s z i , where b =w X k . This leads
to a double integral of a function of two variables bx and by

over a circular area b b b+ - w1x y
2 2 2 while the bz comp-

onent is fixed in the integrand, b b= wz . Four elements of the
matrix Ŵ are proportional to bµb x. They average to zero
after integration over bx using the same arguments as in
section 5.1. The remaining five elements are integrated in the
polar coordinate system b f^( ), such that b b f= ^ cosx and
b b f= ^ siny where  b b- w^0 12 2 and  f p0 2 .

Consider, first, integration over the polar angle f in the
dimensionless matrix w m qˆ ( )m , , obtained after integration
over bz in the integral (50) and normalized similar to (45) but
with the different normalization constant wC i0 . The result of
integration over f is defined as the matrix w bf

^ˆ ( )( )m ,
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The five non-zero elements of the matrix w bf
^ˆ ( )( )m , are

determined by the corresponding elements of the matrix
b f^ˆ ( )W , . The f-dependencies enter these elements through

the factors b b,i s and b x
2 in a b, and c functions given by

(27). Instead of expressing b b,i s and bx in terms of f we
express bi and b x

2 in terms of the whole combination b-( )1 s

by making use of the two additional relationships. First, due
to the δ-function in (50), the combination b b- -( ) ( )1 1i s

is equal to the f-independent quantity w w = +X 1i so that
the factor bi can be expressed in terms of b-1 s

b
w
w

b b b- = -  = - + -( ) ( )( ) ( )X1 1 1 1 1 . C2i
i

s i s

Secondly, the vector b can be decomposed as
b bb= +ex x sc, where bsc is the projection of b on the
scattering plane. This component is presented as a
superposition of its non-orthogonal projections on i and s
such that b = +r rs isc s i . The non-orthogonal components
are expressed in terms of the orthogonal components

bb = ( · )ss sc and bb = ( · )ii sc : b b= - -( ) ( )r u u1s s i
2 ,

 b b= - -( ) ( )r u u1i i s
2 . Then, equation b x

2 = b b- =sc
2 2

b - - -r r ur r2s i i s
2 2 2 yields an expression for b x

2 in terms of

b b,i s and b̂

b b b b b b b= + - + - -w^ ( ) ( ) ( )u u2 1 , C3x i s i s
2 2 2 2 2 2

where b2 is written as b b b= +^ z
2 2 2 in the coordinate sys-

tem (e e e, ,x y x) while the δ-function is taken into account by
putting b b= wz .

The factors a and c are quadratic, and b2 is fourth order
polynomial functions of the variables b bandi s. Because of
these interrelations, expressing bi and b x

2 in terms of b-( )1 s

and substituting in b f^ˆ ( )W , gives fourth order polynomial
functions of b-( )1 s . Dividing by the factor b-( )1 s

4 in the
denominator of (C1) and performing straightforward alge-
braic transformations gives fourth order polynomials of the
inverse ratio b-( )1 1 s with the coefficients ( )Bij

n depending

on X u, and b^
2 . Thus, all dependencies on f in (52) are

reduced to the form bå -=
= ( )( )B 1n

n
ij

n
s

n
0
4 with four f-

dependent terms at = ¼n 1, 4 and one f-independent term
related to n=0. For illustration, typical values of the ( )Bij

n

coefficients related to the particular case of fˆ ( )m00 element are
as follows
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In all other non-zero elements of the matrix b f^ˆ ( )W , , the
coefficients ( )Bij

n do not depend on b b b= + w^
2 2 2 at

=n 0, 1, are linear functions of b2 at =n 2, 3 and quadratic
functions of b2 at n=4 (see supplementary material). These
general properties of the ( )Bij

n coefficients are important for
further integration over b̂ .

In the coordinate system (e e e, ,x y z), the expression for
b-1 s takes the form, b b b- = - - =s s1 1s y y z z

b f-^ ( )s H siny , where b b= - w ^( )H s s1 z y while =sz

= + -( · ) ( )X u ks e 1z and = = -( · )s u ks e 1y y
2 .

Integrating the fourth order polynomial function of
b-( )1 1 s over f leads to the integrals of the form
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where -Gn 1 are -n 1 order polynomials of H. Explicit form
of the polynomials and the structure of the rhs of (C5) are
determined by the exact analytic integrals
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from which follows that the products b̂ -
-( )s Gy

n
n

1
1 do not

depend on b̂ at =n 1, 2 and are linear function of b^
2 at

=n 3, 4. Combining these dependencies with the
b^

2 -dependent coefficients ( )Bij
n shows that the resulting

coefficients of the fractional exponents in equation (53),
b= ^
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-( )( ) ( )A s G Bij

n
y

n
n ij

n1
1 , do not depend on b^

2 at n=1, are

linear functions of b^
2 at n=2, quadratic functions of b^

2 at
n=3 and cubic functions at n=4. Using example (C4)
shows how these general properties are realized in the part-
icular case of the fˆ ( )m00 element
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where the factor ( )A00
0 is added to describe the contribution

from the f-independent term at n=0.
The next step is the integration over the ‘radial’ variable
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Instead of the integration over b̂ it is useful to introduce a new
variable of integration t such that b b= - -w^ ( )( )t1 1 12 2 2

where   ¥t1 . This variable represents the relativistic factor

g b= - -( )1 2 1 2 normalized to b- w1 1 2 . With the new
variable of integration the argument of the fractional exponents
in (53) is transformed to a compact form +( )r t2 2
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where = + +( )( )r X u k2 1 12 2. In the numerator of the
rhs of (C9), the transformation to the variable t leads to a

combination = - ( )( ) ( )Q t A tij
n n

ij
n2 1 . Due to the properties of the

b̂( )( )Aij
n dependencies this combination can be expressed in

the general case as a product of the linear function t and
-n 1 (or less) order polynomial function of t2. As an

example, the values of ( )Q n
00 are shown below at = ¼n 1, 4

for the particular case of fˆ ( )m00 element considered in
equation (C7).
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Expressing t2 in the polynomial functions as a combi-
nation  + -( )t t r r2 2 2 2 allows us to eliminate the t2-
dependencies in the numerators by combining them with
the fractional exponents + -( )( )r t n2 2 2 1 2 in the denomi-
nators. This determines the structure of the resulting integral
over t
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where ˆ ( )( ) X uw ,n are t-independent 4× 4 matrices. The
first term is integrated exactly while the second propor-
tional to t term is integrated by parts with the use of the substi-

tution m m b- - w( )t td exp 1 2 b= - - w1 d2 m-[ ( texp

b- w )]1 2 . The factors proportional to t2 that appear after
integration by parts are elimiated by combining them with the
fractional exponents in the corresponding denominators. This
yields five non-zero elements of the frequency-resolved
Mueller matrix in a compact form (55) of a superposition of
well converged integrals ( )( )E p r,n with 25 coefficients, 13 of
which are different rational functions of X and u
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Consider an alternative derivation of the approximate
solution (59) by using a different method of expansion of (55) in
powers of T m ce e

2. Equation (55) can be rewritten as follows
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Due to the exponential function, the main contribu-
tion to the integral comes from z 1. Then, the factor
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corresponds to the linear in T m ce e
2 term in large brackets in

(C13) that reproduces the approximate solution (59). This
solution is presented as a sum of the two terms,

m d= ¢ +ˆ ( ) ( ˆ ˆ ) ( )( ) X u E pm m m, ,1
0 , where

å

m d m¢ =

=
+=

=

+

ˆ ( ) ˆ ( )

( )
( )

( )

( )

( )

( )

X u C X u

p

C X u

r

m m, , , , ,

1 ,

1
. C16

ij ij ij

n

n
ij

n

n

0

1

4

2 2 1 2

The degree of depolarization caused by small dm̂ term is also
small, ( )D X 1. Then, function D(X) can be approximated as
follows
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1
2 ¢( ˆ · )( )m S i

1
2 - ¢ º( ˆ · )( )m S 0i

3
2 . The Gaussian

part of the spectral profile ( )( )E p0 cancels out in expression for
D(X). The characteristic values of D(X) scale with the temper-
ature as T m ce e

2 and vary with X on a scale of order unity.
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