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The linear and nonlinear evolution of a single-helicity tearing mode in a cylindrical, force-free

pinch are investigated using a fluid model with first-order finite-Larmor-radius corrections. Linear

results computed with the NIMROD [nonideal magnetohydrodynamics (MHD) with rotation, open

discussion] code [Sovinec et al., J. Comput. Phys. 195, 355 (2004)] produce a regime at small qs

where the growth rate is reduced relative to resistive MHD, though the Hall term is not significant.

The leading order contributions from ion gyroviscosity may be expressed as a drift associated with

rB0 and poloidal curvature for experimentally relevant b ¼ 0:1, S � 105 � 106 force-free

equilibria. The heuristic analytical dispersion relation, c4 c� ix�gv

� �
¼ c5

MHD where x�gv is the

gyroviscous drift frequency, confirms numerical results. The behavior of our cylindrical

computations at large qs corroborates previous analytic slab studies where an enhanced growth rate

and radially localized Hall dynamo are predicted. Similar to previous drift-tearing results,

nonlinear computations with cold ions demonstrate that the Hall dynamo is small when the island

width is large in comparison with the scale for electron–ion coupling. The saturation is then

determined by the resistive MHD physics. However, with warm ions the gyroviscous stress

supplements the nonlinear Lorentz force, and the saturated island width is reduced. VC 2011
American Institute of Physics. [doi:10.1063/1.3571599]

I. INTRODUCTION

Standard operation of reversed-field pinch (RFP) experi-

ments relies on macroscopic magnetohydrodynamic-like

modes to distribute the parallel component of the current

density over the profile. The resulting broad distribution

gives the configuration its characteristic reversal of the toroi-

dal magnetic field near the wall. With some possible excep-

tions, the dominant unstable modes of standard RFP profiles

are tearing modes1 that saturate nonlinearly by coupling to

stable resonant modes2 and by reducing their drive through

profile modification.3 Mean-field analysis4 for fluid models

shows that part of the parallel-current-density profile can be

sustained against resistive dissipation by an electromotive

force (emf) produced from the correlation of fluctuations. In

single-fluid models, the correlation of fluctuating flows and

magnetic field induces the MHD dynamo effect.5 Two-fluid

models allow a Hall dynamo effect from the correlation of

the fluctuating current density and magnetic field,6,7 in addi-

tion to the MHD dynamo effect. Laser polarimetry measure-

ments in the Madison Symmetric Torus (MST, see Ref. 8)

RFP show that the Hall dynamo effect is very important dur-

ing the intermittent relaxation events known as RFP

“sawteeth.”9,10 To provide a basis for understanding two-

fluid effects in MST, the computations presented here con-

sider linear and nonlinear properties of individual tearing

modes in cylindrical pinch profiles with uniform density and

temperature. These equilibrium conditions approximate the

core of relaxed pinches that largely confine particles and

energy in their outer region.

In the parameter regimes of interest, important non-MHD

effects arise from particle motions as finite-Larmor-radius

(FLR) contributions. For example, in the MST discharges

described in Ref. 9, the ion-sound gyroradius is approximately

1 cm, less than a tenth of the minor radius but also larger than

a tearing layer width. The FLR effects may be included in a

fluid model, to first order, with a two-fluid Ohm’s law and ion

gyroviscosity. Their influence on tearing modes has been the

subject of many theoretical studies over more than four deca-

des. A review is beyond the scope of this paper, but the most

relevant previous work begins with Coppi’s analysis of ion

FLR effects, which identifies drift-tearing behavior resulting

from pressure gradients at the resonant surface.11 This study

ordered both the pressure and the reconnecting component of

magnetic field to be small, as appropriate for large-aspect ratio

tokamaks. A linear stabilization effect from warm ions in the

computations presented here is similar to Coppi’s analysis.

However, our computations do not consider equilibrium dia-

magnetic flow, and the drift effect arises from poloidal curva-

ture and the gradient of the magnitude of the equilibrium

magnetic field, both of which are important in RFPs.

Regarding the magnetic-field evolution, Drake and

Lee identified the importance of electron responses to the

parallel component of the perturbed electric field in colli-

sionless and semi-collisional regimes that occur when thea)Electronic mail: jacobrking@gmail.com.
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reconnection scale is smaller than the ion gyroradius.12 Their

discussion emphasizes competition between parallel electron

acceleration, magnetic shear that limits the spatial scale of

acceleration, electron–ion collisions that impede acceleration

and broaden the layer, and ion perpendicular drifts at radial

scales where the ions are magnetized. That the separation of

the electron and ion responses is not specifically dependent

on ion thermal energy but also arises at scales below qs from

electron thermal energy was emphasized in Ref. 13 for the

m¼ 1 tokamak mode. This type of separation is discussed in

general terms for reconnection in Ref. 14 as a kinetic-

Alfvén-wave (KAW) type dispersive response that maintains

reconnection outflows at scales below qs. A limitation on the

electron response due to diffusion of the perturbed magnetic

field that is parallel to the guide field at large plasma-b is

identified in Ref. 15. The relations among different limits of

two-fluid reconnection with respect to b and the tearing sta-

bility parameter D0 for slab equilibria with uniform pressure

are also described. These results were made yet more general

to include the MHD regime in Ref. 16 by assuming minimal

values of b.

The linear computations presented here confirm that elec-

tron-fluid separation increases tearing growth rates in cylindri-

cal pinch profiles when qs exceeds the resistive skin depth. In

addition, our computations that include warm-ion effects

through fluid gyroviscosity show an intermediate drift-regime

with reduced growth rates at qs-values that are smaller than

the resistive skin depth. In warm-ion conditions where qs is

comparable to the resistive skin depth, the electron dynamics

are decoupled, and the tearing mode becomes less sensitive to

the ion dynamics. Thus, first-order FLR modeling for warm

ions should provide at least a semi-quantitative description of

tearing through the transition from MHD to electron-MHD.

Our nonlinear two-fluid computations with cold ions

show magnetic islands that evolve to the same saturated

width found with resistive MHD modeling. This is expected

from early nonlinear results on drift-tearing modes that apply

large-aspect ratio tokamak ordering. In particular, Refs. 17

and 18 include fluid gyroviscous effects where the dominant

contribution is related to the ion pressure gradient. In Ref.

17, a quasilinear mixing-length argument is applied to justify

an assumption of particle density and ion temperature flatten-

ing over magnetic island flux surfaces, which leads to resis-

tive-MHD evolution at finite island width in quasilinear

computation. In Ref. 18, density is not assumed to flatten

over the evolving island in nonlinear computations. While

this affects rotation during the evolution, the helical flux evo-

lution is shown to be independent of rotation, and the satu-

rated state again matches resistive MHD predictions. More

complete nonlinear modeling confirms the density-flattening

effect through sound-wave mixing.19

In contrast, our computations with warm ions show that

the ion-gyroviscous stress in pinch configurations affects

nonlinear island evolution and saturation. The gyroviscous

stress supplements the nonlinear Lorentz force20 that occurs

in resistive MHD and reduces saturated island widths. More-

over, the magnetic curvature and the gyrofrequency profile,

which lead to the important gyroviscous contributions in

pinch profiles, are largely unaffected by the nonlinear evolu-

tion, unlike the pressure-gradient effects considered in other

studies. Perpendicular current density and the Hall dynamo

effect are, therefore, nonzero at saturation. Our computations

do not consider thermal conduction effects. The spatial scale

of the temperature profile is larger than the magnetic shear

scale in the core of standard RFPs, which reduces the impor-

tance of thermal conduction linearly21 and for small pertur-

bations.22 In addition, temperature profile effects are not

important for large nonlinear perturbations,22 and large per-

turbations occur in the RFP.

In standard RFP discharges, the confinement time is pri-

marily limited by the magnetic islands overlapping which

produces a stochastic magnetic topology, and particles and

energy are poorly confined along radially wandering field-

lines. However, magnetic self-organization leads to

improved confinement in quasi-single-helicity (QSH) states

where magnetic perturbations of a single-helicity domi-

nate.23 Additionally, significant progress has been made

though RFP profile control, whereby the free energy avail-

able to the instabilities and ultimately the island sizes are

limited and the confinement is greatly improved compared to

traditional RFP scaling.24 Although our studies of single

tearing-mode dynamics are not directly applicable to inher-

ently multimode discharges, a clear understanding of the

physics governing the mode growth rate and island satura-

tion width is essential in order to characterize the tearing ac-

tivity in RFPs. How the two-fluid effects studied here may

influence the performance of QSH and profile-control experi-

ments is considered in the conclusions.

The remainder of this paper is organized as follows. In

Sec. II, we describe our two-fluid model that includes a gen-

eralized Ohm’s law and ion gyroviscosity in a system for the

evolution of particle density, center of mass flow velocity,

temperature, and magnetic field. In Sec. III, we describe the

equilibrium profiles, physical parameters, and the numerical

implementation. Our linear computations are presented in

Sec. IV with analysis of the gyroviscous contribution and

evaluation of linear dynamo effects for comparison with pre-

vious studies. Results on the saturated island width and the

nonlinear gyroviscous force are described in Sec. V. Our

conclusions regarding single-helicity tearing are given in

Sec. VI, followed by additional information on the analysis

of linear gyroviscous effects in the Appendix.

II. TWO-FLUID MODELING

For readability, we define all quantities before proceed-

ing. Following convention, B and E are the magnetic and

electric fields, respectively, and J is the current density. We

denote the center of mass flow velocity as v, and n,

p ¼ pe þ pi, and Te=i are the density, pressure, and species

temperature, respectively. The subscript “i” indicates an ion-

species quantity, and the subscript “e” indicates the electron

species. The ideal gas law relates the pressure and tempera-

ture for each species, pa ¼ nkBTa. We use g=l0;Dn; m, and v
for the magnetic, particle, viscous, and thermal diffusivities,

respectively. Finally, me is the electron mass, e is the ele-

mentary charge, kB is the Boltzmann constant, and C is the

ratio of specific heats.
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Our two-fluid model uses Faraday’s law,

@B=@t ¼ �r� E, and Ampere’s law without displacement

current, l0J ¼ r� B, as appropriate for low frequency dy-

namics. We assume quasineutrality and solve the electron

momentum equation for the electric field to produce a gener-

alized Ohm’s law,

E ¼ �v� Bþ J� B

ne
�rpe

ne
þ gJþ me

ne2

@J

@t
; (1)

where the first and second terms on the right-hand side

(RHS) are the ideal-MHD and Hall contributions. From the

definition of current density, ve ¼ vi � J=ne, and with

v ffi vi, the combination of the first two terms is equivalent to

�ve � B. When J=ne is large in comparison with vi, it signi-

fies decoupling of the electron and ion fluids. To the extent

that the last three terms of Eq. (1) are small, E ffi �ve � B,

and the magnetic flux is frozen into the electron fluid.

The continuity, momentum, and energy equations

describe the temporal evolution of the density, center of

mass fluid velocity, and temperature,

dn

dt
¼ �nr � vþ Dnr2n; (2)

min
dv

dt
¼ J� B�rp�r �Pgyro �r � mminW; (3)

n

C� 1

dT

dt
¼ �pr � vþr � vnrT; (4)

using the total time-derivative d=dt � @=@tþ v � r. We

model the electron and ion temperatures as remaining at a

fixed fractions of T, i.e., Ti ¼ fTiT and Te ¼ ð1� fTiÞT, where

fTi is a specified parameter. Separate sets of computations

reported in Secs. IV and V consider the cold-ion ðfTi ¼ 0Þ
and rapid-equilibration ðfTi ¼ 0:5Þ limits. The last terms on

the RHS of Eqs. (2)–(4) are diffusive terms included for

numerical stability. In cases presented here, their coefficients

are chosen to be small with respect to resistivity, such that

the magnetic Prandtl number, Pm ¼ l0m=g ¼ 0:1, and

Dn ¼ v ¼ m. Note that with uniform equilibrium temperature,

we do not include realistic thermal conduction effects in the

present work. The force from the ion-gyroviscous stress is

the second to last term on the RHS of Eq. (3). It represents

gyro-orbit frequency shifts and ellipticity resulting from rE

and is nondissipative.25 The gyroviscous stress derived for a

collisional plasma in the small ion gyroradius ðqiÞ limit26 is

Pgyro ¼
mipi

4eB
b̂�W � Iþ 3b̂b̂

� �
� Iþ 3b̂b̂
� �

�W� b̂
� �

;

(5)

where W ¼ rvþrvT � ð2=3ÞIr � v is the rate of strain

tensor, and b̂ is the unit direction vector for an arbitrarily ori-

ented magnetic field. For flows of the order of the ion ther-

mal speed, the gyroviscous force scales as qi=L times the

pressure-gradient force, where qi ¼ vTi=xci, L is a character-

istic gradient length, vTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi=mi

p
, and xci ¼ eB=mi.

Therefore, the force is important with warm ions.

After prescribing the relation among diffusion coeffi-

cients, a set of five dimensionless parameters describes the

plasma in our model: (1) fTi, (2) the plasma-b ð2l0p=B0Þ, (3)

and (4) the normalized ion and electron skin depths,

da=a ¼ c=xpaa, where xpa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne2=�0ma

p
is the plasma fre-

quency for species a and a is the minor radius, and (5) the

Lundquist number, S ¼ sR=sA, where sR ¼ l0a2=g is the

resistive time and sA ¼ a=vA ¼ a
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
=B0 is the Alfvén

time. In experiment, the ion and electron skin depths are not

independent, as their ratio is determined by the electron and

ion masses.

In the MST discharges analyzed in Ref. 9, the electron

and ion temperatures are approximately 300 eV,

n ’ 1019m�3, B ’ 0:4T, the minor radius is a ’ 0:5 m, and

the major radius is R ’ 1:5 m. The ion sound gyroradius is

evaluated as qs ¼ cs=xci ¼
ffiffiffiffiffiffiffiffiffiffiffi
Cb=2

p
di, where the sound

speed is cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CkB Ti þ Teð Þ=mi

p
, and the MST conditions

have di ’ 0:2a and qs ’ 0:02a. Using linear growth rates

reported here to estimate the resistive skin depth,

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=csAS

p
, in the MST discharges shows that d ’ qs for

core modes in an unrelaxed current profile. In more relaxed

profiles, the growth rate is smaller, which would put the lin-

ear behavior more in the MHD regime. However, nonli-

nearly driven modes may grow faster and have skin depths

that are significantly smaller than qs; though, semi-colli-

sional ðd >> deÞ conditions12,27 are still expected. Under-

standing the transition from MHD to two-fluid tearing is

therefore important for MST. From the discussion in Ref. 15,

we also find that conditions for the linear behavior are in the

transition region from small to large stability-parameter, as

measured by D0d. Here, we examine the two-fluid transition

by varying di hence qs while keeping b, S, and D0 fixed so

that the MHD response does not change for a given S-value.

Our linear computations have S ¼ 8� 104 or 1� 106, while

in MST, S ’ 8� 106Z�1, where Z is the effective ion charge

number, which is at least 2. Our nonlinear pinch computa-

tions have the same low Pm-value of 0.1, and computational

practicalities presently limit them to S. 1� 105.

III. METHODS AND PARAMETERS

A. Numerical methods

We solve Eqs. (2)–(4) plus Faraday’s law with the gen-

eralized Ohm’s law, Eq. (1), using the initial-value,

extended-MHD NIMROD (nonideal MHD with rotation, open

discussion) code.28 The implementation evolves perturba-

tions from a prescribed steady equilibrium, and the computa-

tions may be either linear or fully nonlinear. Results on

pinch tearing modes reported in Sec. IV are computed with

the linear option. In Sec. V, we describe results from fully

nonlinear computations, including modification of the sym-

metric profiles. The two-fluid implicit leap-frog time-

advance has been benchmarked with analytic tearing results

in slab geometry without ion gyroviscosity and on plane-

wave propagation and slab interchange with ion

gyroviscosity.29,30

The code’s spatial representation is spectral finite ele-

ments over a two-dimensional plane and finite Fourier series

for a periodic coordinate. In the cylindrical-pinch computa-

tions described here, we use the Fourier representation for

the azimuthal angle and the finite-element representation for
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the rz plane. We impose periodic boundary conditions in the

axial direction of the cylinder, with periodicity 2pR. Most of

our nonlinear computations have 0 	 m 	 2 Fourier compo-

nents and finite-element basis functions of polynomial

degree four in a 240� 30 (radial� axial) mesh that is

packed about the rational surface. Numerical convergence

has been checked by running computations with polynomial

basis functions of degree five and six Fourier components,

0 	 m 	 5. Apart from an effective axial voltage, boundary

conditions in the computations represent a conducting wall

with no-slip conditions on flow at r¼ a. Dirichlet conditions

are also used for the evolving number density and tempera-

ture. Edge-peaked profiles for the resistivity and isotropic

viscosity increase by a factor of 10 or 20 and spread bound-

ary-layer effects over a narrow region adjacent to the wall.

B. Equilibrium configuration

Our computations use the force-free (Jeq � Beq

¼ rpeq ¼ 0), cylindrical, paramagnetic-pinch equilibrium31

with peq 6¼ 0 to investigate finite-b two-fluid effects without

equilibrium diamagnetic flow. Effects from nonzero equilib-

rium x�i are left for future work. We include a radial pinch

flow, veq ¼ Eeq � Beq=B2
eq such that r� Eeq ¼ 0 with uni-

form axial electric field, so the equilibrium is an Ohmic

steady state. The particle and energy compression from

r � veq are not considered in these simulations; we assume

that they are balanced by transport processes that are outside

the scope of the model. Moreover, the pinch flow scales as

1=S, and in the experimentally relevant high-S regime, it is

likely to be just a small part of overall transport. The paral-

lel-current profile, kðrÞ ¼ al0J0 � B0=B2
0 has kð0Þ ¼ 3:3 in

the computations discussed here. This results in a pinch pa-

rameter value of H ¼ Bh0ðaÞ=Bz0 ¼ 1:38, where the overbar

indicates the volume average. The equilibrium parallel-cur-

rent profile is shown in Fig. 1(a). This pinch-parameter value

is roughly 10%–15% below that of the MST discharges

described in Ref. 9. At larger pinch parameter values, the

parallel-current-density gradients of the paramagnetic pinch

are larger, which is less representative of relaxed RFP

profiles.

We limit the fluctuation spectrum of our nonlinear com-

putations, which are three-dimensional, by using a reduced

aspect ratio of R=a ¼ 0:505. This value makes the first axial

wavenumber, kza ¼ 1:98, comparable to that of the domi-

nant m¼ 1, n¼ 6 mode in MST. The safety factor

[q rð Þ ¼ rBz0=RBh0 in a cylinder] for the computations is

shown in Fig. 1(b), and the primary mode is resonant at the

q¼ 1 rational surface, rs ¼ 0:35. Unlike MST, however, the

next axial wavenumber is twice as large as that of the domi-

nant mode, which limits nonlinear coupling and allows us to

focus on single-helicity behavior in this study. The dominant

m¼ 1, kza ¼ 1:98 mode in the computations has the tearing

stability parameter D0a ¼ 15:2, according to an independent

eigenvalue computation for tearing modes. The only other

MHD-unstable mode for this equilibrium has m¼ 1 and

kza ¼ 3:96. Its stability parameter value of D0a ¼ 3:0 leads

to a smaller resistive-MHD growth rate, and the stabilizing

gyroviscous effect described in Sec. IV is considerably stron-

ger for this mode. It is not observed to be significant in our

nonlinear computations. Our computations allow the domi-

nant mode to couple with its higher harmonics, m ¼ 2; 3; :::,
so single-helicity shaping and spectral broadening are per-

mitted numerically, but these effects are not observed to be

significant for these cases. Finally, we note that the paramag-

netic pinch is not a reversed state; reversal is achieved via

the full RFP dynamo, which is not present in these low-H,

reduced aspect ratio cases.

C. Parameter scans

Summarizing the parameters used in our computations,

the cylindrical geometry has R=a ¼ 0:505, the force-free

equilibrium has kð0Þ ¼ 3:3, and we set b ¼ 0:1. In our linear

computations, we vary di=a from very small values to larger

than unity, to cover the transition from resistive-MHD to

electron-MHD. The Lundquist number, S, in the linear com-

putations reported here is either 8� 104 or 1� 106. For con-

venience, the electron mass is artificially increased by a

factor of 10 in most computations relative to the physical

value, thus the mass ratio is me=mi ¼ 2:72� 10�3, and the

ratio of the skin depths is de=di ¼ 5:21� 10�2. Computa-

tions near the electron-MHD limit have more realistic mass

ratios such that de ¼ min 5:21� 10�2di; 9:0� 10�3að Þ, so

that all tearing conditions are in the semi-collisional regime.

As noted earlier, the magnetic Prandtl number is Pm ¼ 0:1.

In our nonlinear computations, the S-value is either 5� 103

or 8� 104. Varying di in the nonlinear computations allows

us to study single-helicity tearing and subsequent magnetic

island evolution in the single-fluid and two-fluid regimes. To

examine the effect of warm ions, i.e., ion gyroviscosity, we

run each case twice: once with warm ions ðfTi ¼ 0:5Þ and

once with cold ions ðfTi ¼ 0Þ.

IV. LINEAR TEARING ANALYSIS

A. Linear growth rates

Figure 2 shows linear growth rates vs qs for calcula-

tions with cold ðfTi ¼ 0Þ and warm ions ðfTi ¼ 0:5Þ at

S ¼ 8� 104. From analytical theory for tearing in slab ge-

ometry, we expect electron–ion decoupling to be important

when qs exceeds the resistive skin depth.15,16 Using the sin-

gle-fluid growth rate to compute the skin depth, we have

d ¼ 0:067a and the cold-ion trace shows growth rates that

depart from the MHD result by about 20% at qs ¼ d. Thus,

our cylindrical results with cold ions are consistent with
FIG. 1. The (a) parallel-current profile and (b) safety factor vs radius for the

paramagnetic pinch with k0 ¼ 3:3 and R=a ¼ 0:505.
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expectations from the analytical theory. Our results with

warm ions show a more complicated transition. In the small-

qs limit, both the warm- and cold-ion results approach the

single-fluid growth rate. At large-qs values, the electron flow

decouples from the ion flow such that the warm-ion effects

are not important. Thus, the warm- and cold-ion growth rates

also converge at large qs. In the intermediate regime, the ion

response is modified by a drift effect from the ion gyrovis-

cosity. This drift effect leads to growth rates that are smaller

than the single-fluid result when qs is not large enough for

the KAW response to decouple the tearing from the ion fluid.

Numerical results for similar warm-ion conditions in slab ge-

ometry do not show this drift regime, so the important gyro-

viscous effect is associated with the cylindrical geometry

and equilibrium.

We examine the gyroviscous effects in our pinch pro-

files by considering the parallel component of the vorticity

equation,

b̂ � r � q
dv

dt
þr �P

� �
¼ b̂ � r � J� Bð Þ: (6)

As discussed in Chapter 7 of Ref. 32, a stress tensor makes

two contributions. The first appears directly on the left-hand

side of Eq. (6), and the second appears when eliminating

r?B after writing the Lorentz force on the RHS in terms of

the curvature vector j. With uniform background mass den-

sity and dropping the small inward pinch flow, the linear ver-

sion of this vorticity equation for exp �ixtð Þ time

dependence is

�ixmin0
~U ¼ �min0v0 � r ~U þ B0 B0 � rð Þ

~Jk
B0

þ B0
~B � r
� � Jk0

B0

þ 2b̂0 � j0 � r~pþr � ~P
� �

� b̂0 � r � r � ~P; (7)

where j0 � b̂0 � rb̂0 ¼ �r̂b2
h=r, bh ¼ Bh0=B0, and the paral-

lel vorticity is ~U ¼ b̂0 � r � ~v. The tilde here indicates per-

turbed fields. We assemble a heuristic dispersion relation

using resistive-MHD magnetic-field evolution and just the

component of the flow that is associated with tearing vorti-

ces, ~v ¼ b̂0 �r ~/ with a streamfunction ~/. A complete dis-

persion relation would include both the finite-b effects that

couple parallel flows and the two-fluid Ohm’s law. However,

through comparison with the results from NIMROD, we show

that our heuristic model explains the stabilizing gyroviscous

effect in the drift regime at intermediate-qs values.

The gyroviscous effects on the tearing vortices are most

significant near the resonant surface, rs, where q rsð Þ ¼ m=n
for helical perturbations that vary in h and z as

exp imh� inz=Rð Þ. We therefore expand the gyroviscous

stress operator about rs. Variation of the direction and mag-

nitude of the equilibrium magnetic field are important for

pinch profiles, so they are expanded about the resonant

surface: b̂0 ¼ b̂0 rsð Þ þ xb̂00 þ ð1=2Þx2b̂000 þ � � �, for example,

where x � r � rs and we consider jxj � �rs with �
 1. The

wavenumber vector, k ¼ ĥm=r � ẑn=R, is similarly ex-

panded about rs. For these equilibrium and geometric quanti-

ties, primes indicate differentiation with respect to r,

evaluated at r ¼ rs. For the perturbed streamfunction, ~/ðxÞ,
primes indicate derivatives with respect to x. The localized

nature of the tearing response leads to an ordering with

respect to x with each derivative of ~/ lowering the order of a

term by �. Unlike a flute ordering, the wavenumber of the

tearing mode, k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=rð Þ2þ n=Rð Þ2

q
, is order 1. Thus the

leading-order radial flows ~vr ¼ �ik? ~/ are order � smaller

than the leading-order perpendicular flows, ~v? ¼ ~/0, where

perpendicular (?) and parallel (k) refer to the magnetic coor-

dinates (r̂, ê? ¼ b̂0 � r̂, êjj ¼ b̂0) at r ¼ rs. Higher-order

contributions result from the expansions of b̂0 and k.

While forces from the gyroviscous stress of the tearing

vortices include terms as large as order ��3, many do not

contribute to the parallel vorticity. The leading-order force,

ðpi0
~/000=2xci0Þ r̂, for example, does not have a component in

the b̂0 � j0 direction. Including terms of order ��2, the force

is

�r � ~P ¼ pi0

2xci0

~/000 þ
~/00

r

 !
þ pi0

2xci0

� �0
~/00 þ x ~/000

	 
" #
r̂

þ pi0

2xci0
ik? ~/00b̂0 � r̂þO ��1

� �
: (8)

From this, we find the leading-order curvature induced modi-

fication to b̂0 � r � J� Bð Þ,

2b̂0 � j0 � r � ~P ¼ pi0

xci0

b2
h

r
ik? ~/00 þ O ��1

� �
: (9)

The leading-order forces in the radial and perpendicular

directions, of order ��3 and ��2, respectively, in Eq. (8), may

be viewed as

�r � ~P ffi pi0

2xci0
r2~v?
� �

r̂� r2~vr

� �
b̂0 � r̂

� �
: (10)

Figure 3 shows that when the expression on the RHS is com-

puted with the flow velocity of the warm-ion tearing mode, it

provides a good approximation to the full gyroviscous force.

FIG. 2. (Color online) Growth rates (csA) vs the ion sound gyroradius (qs)

for linear computations with cold ions (fTi ¼ 0, diamonds) and warm ions

(fTi ¼ 0:5, triangles). The single-fluid result is shown as the solid horizontal

line, and heuristic x�gv-model growth rate is the dashed line. These qs scans

are performed at S ¼ 8� 104 and b ¼ 0:1.
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The order ��3 terms proportional to ~/0001 ’ r2~v? cancel in

�b̂0 � r � r � ~P, where this cancellation is related to the

nearly incompressible nature of the tearing flows, i.e., the

lowest-order terms become � pi0=2xci0ð Þr2 r � ~vð Þ. Thus, to

calculate the parallel gyroviscous torque to order ��2, we cal-

culate the force to order ��1. After this calculation, detailed

in the Appendix, we find

�b̂0 � r � r � ~P ¼ pi0

2xci0

b2
h

r
ik? ~/00 þ pi0

xci0

� �0
ik? ~/00

þ O ��1
� �

; (11)

which is of the same order as the leading contribution from

2b̂0 � j0 � r � ~P. Using ~U ’ ~/00 to order ��2 and ignoring

contributions from the relatively small isotropic viscosity,

we rewrite the parallel-vorticity equation as

�min0iðxþ x�gvÞ ~U ¼ B0B0 � r
~Jk
B0

 !
þ B0

al0

~B � r
� �

k0

þ 2b̂0 � j0 � r~p; (12)

where

x�gv ¼
k?

min0

pi0

xci0

3

2

b2
h

r
� B00

B0

� �

¼ k?fTibdivA
3

2

b2
h

r
� B00

B0

� �
: (13)

For conditions with an ion diamagnetic drift, v0 ¼ b̂0

�rpi0=xci0min0, the advective term of Eq. (7) becomes

�ik?p0i0 ~U=xci0 and cancels with the contribution from the

ion-gyroviscous torque that is proportional to p0i0 in Eq. (11).

Thus, even though we study cases without an equilibrium-

pressure gradient, we recover the general lowest-order

effects with respect to qi=L in the ion-flow equation.

The x�gv term from gyroviscous stress has the form of

an ion-drift effect in the parallel vorticity equation, and it

provides stabilizing effects that are generally observed with

drift-tearing.11 To demonstrate the stabilizing effects, we

ignore terms from the perturbed pressure and equilibrium

flow in the parallel-vorticity equation, Eq. (12), and combine

it with resistive-MHD evolution of the perturbed magnetic

flux, ~w, using ~B ¼ r ~w� B0 þ ~Bkb̂ where each derivative

with respect to x � �rs of ~w xð Þ is ordered as ��1. This results

in a coupled pair of second-order differential equations,

c� ix�gv

� �
~U ¼ �v2

Aik0kx
~w00;

c ~wþ ik0kx
~/ ¼ g

l0

~w00; (14)

where c ¼ �ix and ~Jjj ffi � B0=l0ð Þ ~w00 to leading order as in

Ref. 32, for example. Using these as our inner-layer equa-

tions for the tearing mode, the resulting heuristic dispersion

relation is c4 c� ix�gv

� �
¼ c5

MHD, where cMHD is the growth

rate in the MHD limit.

In Fig. 4, we compare the growth rate and real frequency

of the heuristic dispersion relation with results from three

sets of linear computations from NIMROD with S ¼ 106 and

Pm ¼ 10�3. The first set uses a resistive-MHD Ohm’s law

with the cylindrical geometry and parameters of our pinch

case, and b is very small in order to reproduce the simplified

response assumed for the heuristic model. Thus to capture

the effects of ion gyroviscosity, an ad hoc gyroviscous coef-

ficient is scaled to vary x�gv. Although the numerical compu-

tations include more than just the leading-order effects with

respect to jxj=a, we see that there is good agreement between

our heuristic model and the growth rate and real frequency

computed with NIMROD, and a strong stabilizing effect from

the gyroviscous stress is apparent. The second set of numeri-

cal computations shown in the figure are computed with

b ¼ 10% and fTi ¼ 0:5; the Ohm’s law is again resistive

MHD. Although the heuristic model does not include cou-

pling between parallel flow and perturbed pressure, we

observe that there is semi-quantitative agreement with the

heuristic model underpredicting the stabilizing effect at

large-x�gv values. The third set of computations uses the

generalized Ohm’s law, Eq. (1), and essentially the same pa-

rameters as the computations shown in Fig. 2 except that

S ¼ 106 and Pm ¼ 10�3. The results are similar to those with

b ¼ 10% and the resistive-MHD Ohm’s law up to

x�gv=cMHD ’ 10 where the real frequency changes sign as

the KAW-type effects become important. Note that x�gv is

FIG. 3. (Color online) The perpendicular, (a), and radial, (b), ion-gyrovis-

cous stress as well as the leading-order terms expressed in Eq. (10) for a lin-

ear computation with S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a, and warm ions.

FIG. 4. (Color online) A comparison of <c (top curve, filled symbols) and

=cj j (bottom curve, open symbols) between the heuristic x�gv model and

three sets of numerical computations with S ¼ 106, Pm ¼ 10�3, and ion

gyroviscosity.
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proportional to the ion-sound gyroradius and in our computa-

tions, x�gv=cMHD ’ 1100qs=a. Thus, the gyroviscous

contribution becomes important at qs=a ’ 1� 10�3, before

KAW responses occur, and loses significance for

qs=a>� d=a ’ 2� 10�2.

These scalings are consistent with the results for warm

ions shown in Fig. 2, where the growth rate from the heuris-

tic model is also shown. For S ¼ 8� 104, x�gv ’ cMHD at

qs=a ¼ 0:002, and we conclude that a single-fluid MHD

model captures the physics when x�gv < cMHD, the drift re-

gime begins when x�gv >� cMHD, and KAW decoupling

effects dominate when qs >� d.

B. Linear tearing mode structure

When examining the phase relations and flow patterns

of the two-fluid tearing mode in cylindrical geometry, it is

useful to start by comparing them with tearing in a more

idealized slab geometry with two highly conducting walls at

x ¼ 6a. In standard slab analysis, the force-free equilibrium

current, J0 ¼ k xð ÞB0=l0a, is in the yz-plane, and the func-

tion k xð Þ is assumed to be symmetric with respect to x¼ 0,

where the resonant condition, k � B0 ¼ 0, is satisfied. The

equilibrium magnetic field has no curvature, and with uni-

form pressure, its magnitude is also uniform. The electron

flows of tearing modes in this simple configuration symmet-

rically advect the reconnecting magnetic flux into a magnetic

island, as illustrated schematically in Fig. 5. Because these

vortices are required for reconnection, similar flows occur in

cylindrical geometry. However, field-line curvature, an

asymmetric parallel-current profile with respect to the posi-

tion of the resonant surface, and mathematical regularity

conditions at r¼ 0 affect the eigenfunction. We choose the

phase such that ~Br 0ð Þ is positive and real, as shown in the

schematic. With a single-fluid resistive MHD model, this

choice makes ~Br rð Þ purely real and ~B? rð Þ and ~Bk rð Þ purely

imaginary.33 The x-point inflow is then part of the purely

imaginary ~vr rð Þ, and the x-point outflow is part of the purely

real ~v? rð Þ.
Two-fluid effects alter the phases of the tearing eigen-

function as a function of radius, so the single-fluid phase

relations are not valid. In Figs. 6 and 7, we plot two different

sets of computed eigenfunction components for different

physical parameters. The first set corresponds to the nonzero

perturbations in the single-fluid limit (< ~Br, = ~B?, = ~Bk), and

the second set (= ~Br, < ~B?, < ~Bk) is nonzero only when two-

fluid effects are considered. The linear magnetic components

FIG. 5. (Color online) A schematic of a slab tearing mode. The solid lines

illustrate the magnetic topology of the mode, and the dashed lines show the

flows that transport the reconnecting magnetic flux. Real and imaginary

parts of the Fourier coefficients are equivalent to radial slices of the sche-

matic as indicated.

FIG. 6. (Color online) Eigenmode components of ~B in phase with a single-

fluid eigenfunction for computations with S ¼ 8� 104, b ¼ 0:1 and (a)

qs ¼ 0:01a and cold ions, (b) qs ¼ 0:05a and cold ions, (c) qs ¼ 0:01a and

warm ions, and (d) qs ¼ 0:05a and warm ions.

FIG. 7. (Color online) Eigenmode components of ~B out of phase with a sin-

gle-fluid eigenfunction for computations with S ¼ 8� 104, b ¼ 0:1 and (a)

qs ¼ 0:01a and cold ions, (b) qs ¼ 0:05a and cold ions, (c) qs ¼ 0:01a and

warm ions, and (d) qs ¼ 0:05a and warm ions.
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of the first set at S ¼ 8� 104 are plotted in Fig. 6 for

qs ¼ 0:01a and qs ¼ 0:05a with warm and cold ions. The

amplitude of the eigenfunction has been normalized such

that < ~Brð0Þ ¼ 0:004B0 for comparison with the nonlinear

plots discussed in Sec. V. Note that the profile and relative

amplitude of the (< ~Br, = ~B?, = ~Bk) components are largely

unchanged by the two-fluid effects. A straightforward appli-

cation of Ampere’s law shows that the magnetic perturba-

tions (< ~Br, = ~B?, = ~Bk) produce a current perturbation with

the phase orientation (<~Jr, =~J?, =~Jk). The two-fluid mode

also has magnetic components of the second set, i.e., out of

phase with the single-fluid magnetic field, that become larger

as qs is increased as well as with a warm-ion population.

These out-of-phase components produce a current density

perturbation (=~Jr, <~J?, <~Jk) that is in phase with the flows

associated with reconnection.

The out-of-phase components of ~J demonstrate that the

electron flow required for reconnection decouples from the

ion flow as qs is increased. Figures 8 and 9 compare compo-

nents relevant to a reconnecting electron and ion flow, as

well as their separation, ~J=n0e. At qs ¼ 0:05a, the electron

inflow and outflow are comparable to the relevant compo-

nents of �~J=n0e near the resonant surface, and the ion flows

are much smaller. This is in contrast to the smaller-qs results,

where the ion and electron flows are closely coupled, espe-

cially with cold ions. We note that the x-point outflow veloc-

ity is an order of magnitude larger than the inflow velocity,

consistent with the ordering of Sec. IV A where ~vr � O �0ð Þ
and ~v? � O ��1ð Þ. In the cases with cold ions, the peak of the

outflow velocity is only slightly shifted from the resonant

surface, indicating that the asymmetry of the cylindrical ge-

ometry has only a moderate influence. In the warm-ion

qs ¼ 0:05a case, the peak of ~v? shifts outward, and the ion

flows do not penetrate all the way to the resonant surface.

We surmise that the oscillations in radius are part of the

drift-tearing-like behavior at finite x�gv, where the equilib-

rium curvature and gradient effects are important.

C. Dynamo contribution to the electric field inferred
from the linear mode

With nonlinear evolution, correlated fluctuations of elec-

tron flows and magnetic field can modify the mean field via

the generation of a dynamo emf. The dominant contributions

to the average electric field are

Eh i � E0 ffi �v0 � B0 þ gJ0 � ~v� ~B
� �

þ
~J� ~B

n0e


 �
; (15)

where xh i ¼ 1=4p2Rð Þ
Ð

xdhdz indicates an average over the

poloidal and axial directions. Together, the last two terms on

the RHS of Eq. (15) are the fluctuation-induced dynamo

emf, Ef . The first of these terms represents the MHD-

dynamo effect, while the second is the Hall-dynamo effect.

Figure 10 shows the parallel component of the dynamo

emfs calculated from the linear eigenfunctions, where paral-

lel is with respect to the equilibrium magnetic field. In the

cold-ion small-qs regime, case (a), where ion and electron

flows are coupled, the Hall dynamo is small and the MHD

dynamo dominates. Since the MHD and Hall dynamo are

flux-surface averages, the results follow from the relation-

ship between the phases of the fluctuation components that

determine the cross product in the quadratic dynamo terms.

In the single-fluid limit, the perpendicular component of

reconnecting ion flow, ~v?ðrÞ, and the radial component of

the magnetic perturbation, ~BrðrÞ, as well as the pair of the

functions ~vrðrÞ and ~B?ðrÞ, are in phase and contribute to the

axisymmetric MHD-dynamo electric field. However, as dis-

cussed in Sec. IV B, in the single-fluid limit the perpendicu-

lar and radial components of the current perturbation are out

FIG. 8. (Color online) Linear electron and ion reconnecting flows and the

difference, ~J=ne. The radial components (x-point inflow) are displayed for

computations with S ¼ 8� 104, b ¼ 0:1 and (a) qs ¼ 0:01a and cold ions,

(b) qs ¼ 0:05a and cold ions, (c) qs ¼ 0:01a and warm ions, and (d)

qs ¼ 0:05a and warm ions.

FIG. 9. (Color online) Linear electron and ion reconnecting flows and the

difference, ~J=ne. The perpendicular components (x-point outflow) are shown

for computations with S ¼ 8� 104, b ¼ 0:1 and (a) qs ¼ 0:01a and cold

ions, (b) qs ¼ 0:05a and cold ions, (c) qs ¼ 0:01a and warm ions, and (d)

qs ¼ 0:05a and warm ions.
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of phase with respect to the corresponding magnetic compo-

nents; thus, the quasilinear Hall dynamo vanishes. In con-

trast, the Hall contribution is significant in the two-fluid

regimes (b and d) where the electron and ion fluids decouple

and a fraction of the perturbed current arises in phase with

the corresponding magnetic components. This effect is

described in more detail for slab geometry in Ref. 6.

With cold ions and qs ¼ 0:05a, Fig. 10(b), the Hall

dynamo peaks near the rational surface and adds to the MHD

dynamo. Away from the rational surface, they tend to cancel.

The peaked structure of the Hall dynamo near the rational

surface qualitatively agrees with the analytic prediction at

large qs in Ref. 6. However, the dynamo is an even function

about the resonant surface in slab geometry with a symmetric

k profile, whereas it is an odd function in our cylindrical

cases. The inclusion of warm ions and ion gyroviscosity

results in further decoupling of the ion and electron fluids

and appreciable Hall dynamo even at small qs, as shown in

Fig. 10(c). With warm ions and qs ¼ 0:05a, case (d), the

Hall dynamo is more significant, and strongly peaked at

the resonant surface with fine structure. Figures 8(d) and

9(d) demonstrate that the ions do not penetrate to the reso-

nant surface, and an eddy forms on the outboard side.

Figure 10(d) shows that the resulting MHD dynamo also

shifts outward, but it is largely canceled by the Hall dynamo.

V. NONLINEAR SATURATION

We now consider results from fully nonlinear computa-

tions, where the perturbations modify the mean field via the

dynamo emf and the mode saturates. We run the computa-

tions through the Rutherford stage,20 where the nonlinear

profile modification affects the growth of the mode, to a

nearly steady final state. Figure 11 plots the island width in

time for cold and warm ions at S ¼ 8� 104 with qs ¼ 0:05a.

Early in the nonlinear evolution, the island-width evolution

is characteristic of the Rutherford stage with nearly linear

growth: dw=dt ¼ AD0g=l0 where w is the island width and A
is a coefficient of order unity. Spectral broadening to m � 2

is allowed in the simulations, but it is not observed to be

significant.

A. Saturated island structure

As discussed in Sec. IV B, the linear MHD eigenfunc-

tion can be normalized such that = ~BrðrÞ ¼ < ~B?ðrÞ
¼ < ~BkðrÞ ¼ 0. This relation among the phases of the compo-

nents is approximately valid for the nonlinear saturated

structures. The dominant part of the magnetic-field perturba-

tion, for the qs ¼ 0:05a cases at S ¼ 8� 104, is < ~BrðrÞ,
= ~B?ðrÞ, and = ~BkðrÞ which are in phase with the single-fluid

eigenfunction (see Fig. 12). Including the effect of ion gyro-

viscosity from warm ions reduces the saturation amplitude in

the qs ¼ 0:05a cases, although the shape of the perturbations

is largely unchanged. This result is not sensitive to the Lund-

quist number, at least in the conditions tested numerically

between S¼ 5000 and 8� 104. For both the warm- and cold-

ion cases, the shape of the perturbations is reminiscent of the

linear results in Fig. 6 with the sharper features washed out.

A notable difference is the large peak of = ~B? that is only

present in the linear results. This can be qualitatively

explained through use of the r � B ¼ 0 constraint. One

expects that = ~B? scales like < ~Br=kw in the nonlinear stage,

whereas it scales like < ~Br=kd in the linear stage. Thus,

FIG. 10. (Color online) The dynamo electric fields inferred from the linear

eigenmodes for computations with S ¼ 8� 104, b ¼ 0:1 and (a) qs ¼ 0:01a
and cold ions, (b) qs ¼ 0:05a and cold ions, (c) qs ¼ 0:01a and warm ions,

and (d) qs ¼ 0:05a and warm ions.

FIG. 11. (Color online) The island width as a function of time for computa-

tions with warm- and cold-ion models and qs ¼ 0:05a, S ¼ 8� 104, and

b ¼ 0:1. The lighter colored data points at wðtÞ ¼ 0 represent the earliest

indications of nonlinear evolution.

FIG. 12. (Color online) Components of ~B from a saturated island in phase

with a single-fluid eigenfunction for computations with S ¼ 8� 104,

b ¼ 0:1, qs ¼ 0:05a and (a) cold ions and (b) warm ions.
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relative to < ~Br, the peak of = ~B? is expected to be � d=w
smaller in the nonlinear stage.

The saturated magnetic perturbations which are out

of phase with the single-fluid eigenfunction are plotted in

Fig. 13. The amplitude of the out-of-phase components is 2

orders of magnitude smaller than the saturated in-phase

magnetic components. This contrasts with the linear results

(Fig. 7), where the magnitude of the out-of-phase magnetic

perturbations are approximately one third of the correspond-

ing in-phase component magnitude. In the linear cases, the

large out-of-phase magnetic components are associated with

induction through the relatively large, decoupled, reconnect-

ing flows. In contrast, the flows are much smaller in the satu-

rated state, as they only advect enough flux into the island to

balance the resistive dissipation.

To help visualize the saturated states, we project the sin-

gle-helicity perturbations onto a helical surface that captures

the variations across the magnetic island. We make a para-

metric definition of a set of nested surfaces in cylindrical

coordinates,

r;
2pmf

m2 þ nr=Rð Þ2
� h;

nr2

R

2pf

m2 þ nr=Rð Þ2
þ mR

n
h

( )
; (16)

where 0 	 r 	 a is the radial coordinate, 0 	 f 	 1 is a nor-

malized helical coordinate along a given helical surface, and

0 	 h 	 na=Rð Þ2ð2p=½m2 þ ðna=RÞ2�Þ is a helical-surface

label. The projection of the single-helicity perturbations onto

these surfaces is independent of surface choice. A single hel-

ical surface is given by a fixed value of h and can be defined

as

Hhðr; h; zÞ ¼ nr

R
h� m

r
zþ nr

R
þ m2R

rn

� �
h ¼ 0 : (17)

We note that variations in the k̂ direction are captured on

each helical surface as k � rHh ¼ 0, but variations in r̂ are

not captured on a single helical surface, as r̂ � rHh 6¼ 0. The

surface mapped out at constant f is

Hfðr; h; zÞ ¼ mhþ n

R
z� 2pf ¼ 0 : (18)

As r̂ � rHf ¼ 0, we conclude that variations in r̂ merely

move between the surfaces at constant f. Since all the Hh

surfaces are identical, we choose one (h¼ 0) and project the

r̂ and k̂=L rð Þ vector components, where L(r) is the helix

length at a given radius, onto this surface.

It is illustrative to consider the trivial case of the helical

surfaces for an m¼ 0 mode. The constant-h surfaces then

become the rz planes with h ¼ �h, and for this particular

case r̂ � rHh ¼ 0. The constant-f surfaces are the rh planes

with z ¼ 2pRf=n. Note that 0 	 z 	 2pR=n, thus only one

x-point and one o-point are captured on the surface for any n.

Returning to our m¼ 1 nonlinear results, Fig. 14 shows

the helical projection for the full magnetic-field streamlines.

To verify our helical-projection method, the width measured

from these plots has been compared to the results of a punc-

ture plot produced with magnetic-field-line tracing. As one

would expect from the smaller magnetic perturbation in

Fig. 12(b), the qs ¼ 0:05a case with warm ions exhibits

a smaller island saturation width than the cold-ion case.

Table I lists the saturated island width for a larger parameter

scan at S¼ 5000, as well as the two cases at S ¼ 8� 104. The

scan shows that for the warm-ion, qs ¼ 0:01a case and all the

cold-ion cases, the island width is determined by physics

included in the single-fluid model. However, the island width

decreases as qs is increased in the warm-ion cases.

Steady single-helicity conditions require a helical elec-

trostatic-field configuration arising from the reconnecting

flows34,35 as well as helical force balance. Our results show

that the Hall term in Ohm’s law does not significantly mod-

ify this electrostatic configuration when ions are cold. Thus,

the final magnetic field perturbation amplitude is not affected

by qs. However, as discussed in Sec. V C, gyroviscous

effects from warm ions modify the island force balance and

thus the saturated width.

After nonlinear saturation, advection of magnetic flux

into the island continues to balance resistive diffusion. This

flow, plotted in Figs. 15 and 16, is analogous to the

FIG. 13. (Color online) Components of ~B from a saturated island out of

phase with a single-fluid eigenfunction for computations with S ¼ 8� 104,

b ¼ 0:1, qs ¼ 0:05a and (a) cold ions and (b) warm ions.

FIG. 14. (Color online) Streamlines of a helical projection of Beq þ ~B for

computations with S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a and (a) cold ions and

(b) warm ions.

TABLE I. Magnetic-island widths at saturation as a function of qs for cases

with cold and warm ions at b ¼ 0:1.

qs=a S w/a (cold) w/a (warm)

Single fluid 5000 0.36

0.01 5000 0.36 0.36

0.05 5000 0.36 0.24

0.05 8� 104 0.36 0.24

0.20 5000 0.36 0.21
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equilibrium pinch flow in establishing an Ohmic steady state.

Comparing the figures, we note that the general shape of the

electron flows is relatively unchanged by the warm-ion

effects; however, their amplitude is reduced. The eddies are

larger in the cold-ion case to sustain the larger island against

dissipation. The narrow structure of the linear flows is

replaced by a radially broad eddy in the saturated state. The

flows in the saturated nonlinear cases are roughly an order of

magnitude smaller than their linear counterparts, after scaling

by the magnetic-perturbation amplitude. However, we find

that the ratio of the perturbed kinetic to magnetic energy of

the saturated state is only a factor of 2 less that of the linear

state, due to the broad flow structure in the nonlinear state.

In Fig. 17, we project the vectors and streamlines of the

ion flows onto a helical surface, along with the streamlines

of the magnetic field. The contributions from the axisymmet-

ric flows are not included. The eddies in the cold-ion case

support reconnection, and as Figs. 15(a) and 16(a) show,

they are coupled with the electrons. The eddies in the warm-

ion case are decoupled and out of phase with a reconnecting

flow. Plots of the electron-flow patterns are dominated by the

contribution from the current-density perturbation that is out

of phase with the flow supporting reconnection and are not

shown.

B. Dynamo contribution to the electric field

The island structure in the saturated state can be directly

related to the conventional picture of Fig. 5, unlike the linear

cases where the perturbation is too small to affect the mag-

netic topology. The flow pattern of Fig. 17(c) is qualitatively

similar to the flows sketched in Fig. 5 and interacts with the

perturbed magnetic fields to produce the fluctuation-induced

dynamo emf. It is straightforward to qualitatively determine

Ef � � ~ve � ~B
� �

from Fig. 5. One expects a positive Efk at

the rational surface, with contributions from ~Br and ~ve?
above and below the o-point. Away from the rational sur-

face, there is a negative Efk from the interaction of ~B? and

~ver .

In the saturated state, the dynamo emf drives a nonlinear

axisymmetric current density, I0 � Jh i � Jeq (the initial

equilibrium field is denoted by the subscript “eq”), that is

associated with profile changes:

Ef ¼ � ~v� ~B
� �

þ
~J� ~B

n0e


 �
’ �gI0: (19)

FIG. 15. (Color online) Electron and ion reconnecting flows and the differ-

ence, ~J=ne. The radial components (x-point inflow) are displayed for compu-

tations with S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a and (a) cold ions and (b)

warm ions.

FIG. 16. (Color online) Electron and ion reconnecting flows and the differ-

ence, ~J=ne. The perpendicular components (x-point outflow) are displayed

for computations with S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a and (a) cold ions

and (b) warm ions.

FIG. 17. (Color online) Streamlines of a helical projection of Beq þ ~B for

computations of a saturated island with S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a.

The frames also show ion flow vectors for (a) cold- and (b) warm-ion condi-

tions, where the same vector length corresponds to a 10� greater magnitude

in the warm-ion plot. Frames (c) and (d) plot the ion-flow streamlines with

cold- and warm-ion models, respectively.

FIG. 18. (Color online) The fluctuation-induced dynamo electric fields and

mean current modification at island saturation for computations with

S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a and (a) cold ions and (b) warm ions.
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The dynamo emfs and induced current are plotted in Fig. 18.

The combined dynamo emfs produce an axisymmetric cur-

rent perturbation that primarily reduces Jk0 inside the island

and increases it outside. The Hall dynamo is relevant only

when the flows decouple; thus in the saturated cold-ion state

with coupled flows, the MHD dynamo is dominant. In the

warm-ion case, the ion flows are modified, as shown in Fig.

17(b); however, the electron flows maintain a flow pattern

resembling Fig. 5, as demonstrated in Figs. 15 and 16. The

Hall dynamo is significant with warm ions and the mean-cur-

rent modification is smaller, which is consistent with the

smaller island size.

From Figs. 10 and 18, we note that the Hall dynamo

must vanish at some point in the nonlinear evolution when

ions are cold. To examine this effect, Fig. 19 shows the

island size and dynamo emf for the cold-ion case at different

stages of nonlinear growth. The Hall dynamo becomes small

relative to the MHD dynamo approximately when the island

width becomes larger than di ¼ 0:17a. In the linear cases,

the two-fluid scales must be compared with the linear skin

depth, d, which is small, whereas in the nonlinear stage the

two-fluid scales are compared with the island width, w,

which can be considerably larger than d.

C. Warm-ion saturation

In Rutherford theory for the resistive MHD evolution of

islands, the perturbed current produces a third-order J� B

force, where the ordering refers to the perturbation ampli-

tude, that counteracts the linear forces driving the island

growth.20 In order to illustrate this effect, we express the

m¼ 1 force-balance equation as

q0

d~v

dt
ffi ~fd þ ~f3 �r �P; (20)

where ~fd is the driving force, and ~f3 is the third-order force.

The driving force, ~fd ¼ Jeq � ~Bþ ~J� Beq �r~p, is the inter-

action of the tearing perturbation with the initial equilibrium

fields. Whereas the third-order force, ~f3 ¼I0 � ~B1 þ ~J1 �B0

withB0 � Bh i � Beq, is the interaction of the tearing pertur-

bation with the profile modification from the dynamo emf.

Rutherford refers to the profile modification as a second-

order term as it is driven by the quadratic product of the tear-

ing perturbations, as seen from Eq. (19).

The driving, third-order, and ion-gyroviscous perpendic-

ular forces in phase with a reconnecting flow are plotted in

Fig. 20. Contributions from the inertial and isotropic viscous

terms are small. With cold ions, saturation results when the

secondary force balances the driving force. However, with

warm-ion effects, gyroviscosity plays a significant role in

opposing the driving force, as shown in Fig. 20(b). The cur-

rent profile modification required to balance ~fd is smaller as
~f3 and r �Pgv combine to oppose the driving force. Thus

warm-ion cases with qs > 0:01a have a reduced saturation

amplitude and a smaller total dynamo emf at saturation rela-

tive to resistive MHD.

As emphasized throughout the discussion of the tearing

structure, the two-fluid effects mix the phases of the pertur-

bations compared to a single-fluid model. Figure 21 shows

that Eq. (10) is still a good approximation for the gyrovis-

cous force in the saturated state. As the Laplacian operator

does not mix the phases, the stabilizing ion-gyroviscous

FIG. 19. (Color online) The fluctuation-induced dynamo electric fields and

mean current modification for computations with S ¼ 8� 104, b ¼ 0:1,

qs ¼ 0:05a and cold ions at different times: (a) t ¼ 2116sA, (b) t ¼ 2712sA,

(c) t ¼ 3431sA, and (d) t ¼ 3722sA.

FIG. 20. (Color online) The driving, third-order and ion-gyroviscous per-

pendicular forces in phase with a reconnecting flow for computations with

S ¼ 8� 105, b ¼ 0:1, qs ¼ 0:05a and (a) cold ions and (b) warm ions.

FIG. 21. (Color online) The perpendicular, (a), and radial, (b), ion-gyrovis-

cous stress as well as the leading order terms expressed in Eq. (10) for a

computation of the saturated island with S ¼ 8� 104, b ¼ 0:1, qs ¼ 0:05a
and warm ions.
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force in phase with the reconnecting flow, such as in Fig. 20,

is out of phase with the flow eddy that produces it. Figures

17(b) and 17(d) demonstrate that the dominant ion eddies are

out of phase with the reconnecting flows with warm ions.

Thus the force balance out of phase with the reconnecting

flow is significant. These flow eddies are produced by the

interaction of the ion-gyroviscous force produced by the ion

flow in phase with reconnection and the Lorentz forces

related to the decoupling, where the perturbations have the

phases (= ~Br, < ~B?) and (=~Jr, <~J?). Figures 13, 15, and 16

show that the perturbations with these phases are nonzero in

the warm-ion saturated state.

VI. CONCLUSION

Our computations demonstrate that first-order FLR

effects such as ion–electron decoupling and ion gyroviscos-

ity impact tearing mode dynamics at parameters that are rele-

vant to RFP experiments. With warm ions, linear modes are

modified by a drift from the gyroviscous stress that is associ-

ated with the gradient and poloidal curvature of the magnetic

field. The growth rate of the tearing mode is reduced in an

intermediate drift regime where x�gv � c, which occurs at

lower-qs values than the transition from the collisional re-

gime to the semi-collisional regime for the electron response.

These x�gv-drift contributions are much larger in pinch pro-

files than they are in large aspect-ratio tokamaks, where cur-

vature and the variation of ion gyrofrequency are weaker. In

the large-qs regime, the decoupled electron fluid governs the

dynamics of the mode, and our numerical results show that

the cold- and warm-ion cases approach the same growth rate

for qs > d. Therefore, the modeling of ion dynamics is less

important where qs is largest, and the first-order ion FLR

modeling should provide a reasonably good approximation

over the entire parameter range.

In the nonlinear regime for these conditions, the island

width and characteristic scale lengths are significantly larger

than qs, so first-order modeling is well justified. With warm

ions, the nonlinear gyroviscous force supplements the per-

turbed nonlinear Lorentz force and reduces the island satura-

tion width. This contrasts with our cold-ion results and with

previous drift-tearing studies for large-island evolution with

diamagnetic drift.17–19 The curvature and gradient of the

magnetic field are not greatly modified by the nonlinear

island evolution, so the gyroviscous-drift effects are also rel-

atively unchanged, unlike the pressure gradient that is impor-

tant for diamagnetic-drift effects. Additionally, because the

gyroviscous forces balance Lorentz forces, the Hall terms

remain significant with warm ions, unlike the results com-

puted for cold ions. With warm ions, the ion flows are sub-

stantially distorted by the gyroviscous stress, and the

dominant eddy is out of phase with the flow responsible for

reconnection.

Our linear and nonlinear single-helicity cases do not rep-

resent the dynamic relaxation events observed in RFPs,

which result from strong nonlinear interaction among tearing

perturbations of multiple resonant helicities. However,

because ion and electron temperatures are comparable in the

experiment, we expect that the x�gv drift influences island

widths, possibly reducing the mode coupling and magnetic

stochasticity that occurs during relaxation events. An experi-

mental measurement of the relative phase between the mag-

netic perturbation and the ion flow could be compared to the

predicted phases from this study in order to empirically

determine the importance of the x�gv drift to a particular

discharge.

Our findings may have more direct relevance to RFP

discharges achieving QSH and to profile-control experi-

ments.23,24 As ion temperature increases with improved con-

finement, it may lead to a self-reinforcing process where the

x�gv drift increases, further limiting the magnetic perturba-

tions. Additionally, QSH discharges are often associated

with the dominance of the innermost resonant mode, and we

note the poloidal curvature and the gradient of the magnetic

field are relatively weak near the magnetic axis. Other modes

would be subject to a larger drift effect, so there may be a

natural tendency to produce QSH. Further study with the

FLR model is needed to clarify the influence of the x�gv drift

effects on these improved confinement discharges and in

standard multihelicity RFP dynamics.
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APPENDIX: GYROVISCOUS TENSOR CALCULATIONS

Our heuristic linear model considers the effect of nearly

incompressible flows represented by a steam function,

~v ¼ b̂�r ~/, orders radial derivatives of ~/ as ��1, and

makes Taylor expansions of the axisymmetric quantities in

x ¼ r � rs, where xj j is of order �. All other quantities,

including the wavenumber k, are of order �0. Thus, we may

write

b̂! b̂s þ xb̂0s þ
1

2
x2b̂00s þ � � � ; (A1)

k! ks þ xk0s þ
1

2
x2k00s þ � � � ; (A2)

1

rs
! 1

rs
� x

r2
s

þ x2

r3
s

þ � � � ; (A3)

where the subscript s indicates evaluation at the resonant sur-

face and kks ¼ b̂s � ks ¼ 0. Dropping the subscript s, we write

the cylindrical ordered operators

r/! /0r̂|{z}
���1

þ ik/|{z}
��0

þ ik0x/|ffl{zffl}
��

þ ik02

2
/|fflffl{zfflffl}

��2

þO �3
� �

; (A4)
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rv!
X

j

v0jr̂êj|fflfflfflffl{zfflfflfflffl}
���1

þ ikvþ 1

r
vrĥĥ� vhĥr̂
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��0

þ ixk0v� x

r2
vr ĥĥ� vhĥr̂
	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��

þO �2
� �

; (A5)

r � Tð Þr! T0rr|{z}
���1

þ ik � Tð Þrþ
1

r
Trr � Thhð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��0

þ ik0x � Tð Þr�
x

r2
Trr � Thhð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��

þO �2
� �

; (A6)

r � Tð Þh! T0rh|{z}
���1

þ ik � Tð Þhþ
1

r
Trh þ Thrð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��0

þ ik0x � Tð Þh�
x

r2
Trh þ Thrð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��

þO �2
� �

; (A7)

r � Tð Þz! T0rz|{z}
���1

þ ik � Tð Þz|fflfflfflffl{zfflfflfflffl}
��0

þ ik0x � Tð Þz|fflfflfflfflfflffl{zfflfflfflfflfflffl}
��

þO �2
� �

; (A8)

b̂ � r � A! bzA
0
h � bhA0z|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
���1

� ikAr þ bz
Ah

r
þ x b0zA

0
h � b0hA0z

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��0

� ik0xAr þ xb0z
Ah

r
þ x2

2
b00z A0h � b00hA0z
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
��

þO �2
� �

; (A9)

where the order of the operator, not the result, is

indicated.

The gyroviscous force contains at most three radial

derivatives from differential operations: the divergence of P,

the r~v in the rate of strain tensor, and the gradient of ~/.

Thus, the gyroviscous force has lowest-order terms at ��3

and is given to O ��2ð Þ in Eq. (8). For the parallel ion-gyro-

viscous torque, the radial derivatives in the curl operation act

only on the perpendicular force, which is of O ��2ð Þ, so there

is no contribution to the torque at O ��4ð Þ. In fact, as dis-

cussed in Sec. IV A, the radial derivative of the lowest-order

perpendicular force, O ��2ð Þ, cancels exactly with the O ��3ð Þ
term ik r �Pð Þr from the radial force during the curl opera-

tion. This cancellation is related to the nearly incompressible

nature of the flows, and thus there are at most terms of

O ��2ð Þ in the gyroviscous torque. This requires evaluation

of the perpendicular gyroviscous force to O ��1ð Þ, where the

additional terms at O ��1ð Þ are

pi0

2xci0
ik0? 3 ~/0 þ x ~/00
	 


þ 4ik? ~/0

r
1� b2

h

2

� �" #

þ pi0

2xci0

� �0
ik? 2 ~/0 þ x ~/00
h i

: (A10)

Applying the b̂ � r� operation to the gyroviscous forces

through O ��1ð Þ, we find the O ��2ð Þ gyroviscous torque,

Eq. (11). This result has been confirmed with a Mathematica

computation.
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