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A three-wave coupling model with complex linear frequencies is investigated for the nonlinear

interaction in a triad that has linearly unstable and stable modes. Time scales associated with linear

and nonlinear physics are identified and compared with features of the frequency spectrum. From

appropriate time scales, the frequency spectra are well characterized even in the transition to the

steady state. The nonlinear time scales that best match spectral features are the nonlinear frequency

of the fixed point and a frequency that depends on the amplitude displacement from the fixed point

through the large-amplitude Jacobian elliptic solution. Two limited efforts to model the effect of

other triads suggest robustness in the single triad results. VC 2011 American Institute of Physics.

[doi:10.1063/1.3640807]

I. INTRODUCTION

The wave triad interaction is the smallest irreducible ele-

ment of the nonlinear dynamics of plasmas and fluids with

quadratic nonlinearity.1–3 Even though the isolated triad inter-

action has limitations in its ability to represent turbulence,

where many triads couple to each other, the dynamical prop-

erties of this coupling have been studied in the context of

intrinsic three wave processes (i.e., parametric instability4), as

a test bed of a turbulent closure theory,5,6 and for probing

energy cascades (or more generally, inferring the direction of

nonlinear energy transfer among modes in turbulence).7,8

Most importantly and comprehensively, this interaction has

been investigated as a conceptual building block for under-

standing turbulence, both weak3,9 and strong.5,6,10,11 Three-

wave coupling models show a variety of dynamics depending

on the specification of parameters. Often, stochasticity5,12 and

integrability13 have been the focus of attention. Weiland and

Wilhelmsson1 can be referred to for a comprehensive

description of the coherent aspects of nonlinear wave-wave

interactions.

One area where the study of the isolated triad interaction

potentially has much to offer is in understanding the turbu-

lent frequency spectrum at fixed wavenumber. This quantity,

which in principle, is easy to measure in plasmas because of

the relative ease of collecting ensembles in the time domain,

has been underutilized. Such measurements are not as com-

mon as they could be, despite the potential for providing

detailed information on turbulent dynamics, and stringent

tests of model fidelity for validation. One reason for the

underutilization of this measurement is the lack of theoretical

understanding. The wavenumber spectrum has mappings

from scales of known processes and, in cases where it is

most used, power law behavior that relates directly to nonli-

nearity through familiar theoretical constructs. The fixed

wavenumber frequency spectrum is constructed to have simi-

lar points of contact with physical processes. However, it has

never been settled what frequencies ought to apply, or what

imprint is imposed by the nonlinearity. Features, like spectral

widths that significantly exceed the nonlinear decorrelation

rate, do not square with theory, and are common. Attempts

to develop theoretical underpinnings have been sparse,

limited, and not very satisfactory (for a discussion see Sec. I

of Mattor and Terry14).

Recent studies of plasma turbulence that account for the

spectrum of “damped” modes offer important new insights

about the mode frequency input to plasma turbulence. These

studies have shown that damped modes play a key role in

saturated turbulence even at the length scales of instability,

far from dissipation ranges.15–20 Damped modes can produce

significant effects not before anticipated, like ergodization of

the magnetic field.18 At each wavenumber, damped modes

are excited by the nonlinearity in large numbers,18 and most

carry a real frequency (see Fig. 2 of Hatch et al.20). Conse-

quently, there are far more linear frequencies potentially

entering the frequency spectrum at fixed wavenumber than

previously believed. An effort to match the anomalously

broad fixed-wavenumber frequency spectrum of ion temper-

ature gradient mode (ITG) turbulence in GYRO (Ref. 21)

with the limited number of damped mode frequencies pro-

vided by a reduced gyro Landau fluid model22 has showed

some promise.16 If damped mode frequencies could be defin-

itively matched to frequency spectrum features, it would pro-

vide a diagnostic for the damped mode spectrum. However,

comparisons of the frequency spectrum with the much larger

number of damped mode frequencies provided by a gyroki-

netic eigenmode solver23 have indicated that the link is

much more complicated. It appears that more work is needed

in understanding the effect of the nonlinearity in the fre-

quency spectrum arising from a spectrum of damped modes.

When fluctuations are decomposed into unstable and

damped mode components, it is found that energy injected

by linearly unstable modes is nonlinearly transferred to sta-

ble modes at comparable wavenumbers. The direction of

energy transfer seems to be extremely consistent in the ener-

getically dominant wavenumbers, such that time averages

are not required to see a consistent directionality. The consis-

tency hints that a coherent nonlinear dynamics can bea)Electronic mail: jkim282@wisc.edu.
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uncovered. The coherent dynamics are part of the effect of

the nonlinearity in the frequency spectrum, and represent a

primary focus of this paper.

To make the complexities intrinsic to the frequency

spectrum more manageable, it is sensible to examine the fre-

quency spectrum of an isolated triad as it relates to the linear

frequencies of each mode and the triad interaction’s more

transparent nonlinear time scales. Hence this paper under-

takes an inventory of frequencies, linear and nonlinear, that

can be identified in triad interactions, and examines their

relationship with the frequency spectrum of stationary three-

wave evolution. We investigate the three-wave frequency

spectrum among linearly unstable and stable modes using a

simple model where only coherent nonlinear dynamics is

present and stochasticity is absent. This system is “self-

consistent” in the sense that the amplitudes of the modes in a

triad are determined by the nonlinear interactions among the

modes. Consequently, the nonlinear time scale, given

approximately by N(/)=(d/=dt), where N is a nonlinear term

in the evolution of the amplitudes /, is not prescribed. The

system evolves into an energetically steady state by adjusting

its phase evolution and amplitudes. Each mode has a nonlin-

ear frequency x̂ that is nonlinearly shifted from the linear

frequency x. The nonlinear frequencies of a triad satisfy the

frequency matching condition Dx̂ ¼ 0, even though the lin-

ear frequencies Dx= 0 do not. (The notation will be clearly

defined later.) Only certain three-wave couplings can have a

stable equilibrium state (which we henceforth call a stable

fixed point of a triad). Near the fixed point, the frequency

modification of each mode can be heuristically estimated by

the distance of the mode amplitude from the fixed point. It is

shown that a stable fixed point can be robust to certain per-

turbations. This work answers what a dynamically coherent

feature is when the nonlinear energy transfer is subjected to

the balance between linearly unstable and stable modes.

The paper is organized as follows: the model is pre-

sented in Sec. II; the fixed point and its linear stability are

examined in Sec. III; the saturation and the relaxation are

given numerically in Sec. IV; the frequency comparison is

presented in Sec. V; and the triad perturbed by an external

fluctuation and two triad interactions are treated in Sec. VI.

The conclusion and discussion are given in Sec. VII.

II. MODEL EQUATION

Isolated triad interactions with quadratic nonlinear

coupling satisfy the general equation

d/i

dt
ðtÞþiki/iðtÞ ¼ Mi/

�
j ðtÞ/�kðtÞ; i ¼ 1; 2; 3; (1)

where (i, j, k) are the permutations of (1, 2, 3) and / is com-

plex. A complex linear coefficient ki¼xiþ ici represents the

linear frequency xi and the linear growth rate ci of a mode i.
Each mode i interacts nonlinearly with modes j and k, with

the interaction strength governed by the complex nonlinear

coefficient Mi¼Mijk. No summation over the indexes i, j, k
is assumed. For concreteness, we label modes so that

c1> c2> c3. This model equation has been used to study the

triad interaction of drift wave turbulence5 and turbulence

closure theory.6

The quadratic function j/ij2 is called the energy, and its

temporal evolution is governed by

1

2

d

dt
/ij j2¼ ci /ij j2þRe Mi/

�
i /
�
j /
�
k

n o
: (2)

The energy evolution of a mode is governed by the linear

energy growth or damping and the nonlinear energy transfer.

A necessary and sufficient condition for preserving

energy conservation by the nonlinearity is that the nonlinear

interaction strength Mi satisfy

Re M1 þM2 þM3f g ¼ 0 and Im M1 þM2 þM3f g ¼ 0: (3)

Here we will assume that Mi is real. The complex nonlinear

coefficients Mi due to the ion polarization drift in the Terry-

Horton model for trapped electron mode turbulence lead to a

stochastic system.5 Purely real or purely imaginary nonlinear

interaction coefficients Mi describe advection of vorticity in

the Navier-Stokes equation or the E�B advection in the

Hasegawa-Mima model of electron drift waves in strongly

turbulent plasmas.24

Let us compare the coupling model to the Hasegawa-

Mima equation and a two-field plasma turbulence model in

order to make its limits clear. The Hasegawa-Mima equation

is a one-field model of electron drift wave turbulence. It has

negative growth rate ci< 0 and real Mi for all i. Allowing

for instability requires the additional inclusion of an ad

hoc positive linear growth rate. A two-field model can have

instability. However each wave vector k has two linear

eigenvectors, either stable-stable or stable-unstable. Two

waves of the same k are not orthogonal so that the minimum

unit of self-sufficient nonlinear interaction is among six

modes, two modes per each k. The resulting equation for

mode evolution then has two nonlinear terms with nonlinear

coefficients that depend on the linear eigenvectors. Our

model with real Mi can be thought of as a modified

Hasegawa-Mima equation that avoids intrinsic stochasticity

and higher order wave interactions.

Separation of time scales in wave turbulence studies

generally requires weak growth relative to linear frequency,

clin � x0 and a stochastic phase distribution (random

phases), represented by / ¼ U tð ÞeihðsÞ, where s¼ t=� and � is

small. Resonant mode interactions with Dx¼ 0 thus play a

role in the dynamics. Wave action is conserved on the slow

time scale. However, to achieve the saturation, nonlinear dif-

fusion should be included. Saturation is then achieved by a

balance between the unstable mode growth rate ci and the

nonlinear diffusion. In comparison, no separation of time

scales is assumed in this study and xi� ci is allowed.

The total energy DE of the triad evolves as

dDE

dt
¼ d

dt

1

2

X3

i¼1

/ij j2
" #

¼
X3

i¼1

ci /ij j2: (4)

In the steady state, this reduces to the algebraic relation

c1 /1j j2þ c2 /2j j2þ c3 /3j j2¼ 0: (5)
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To reach a steady state within a triad, the triad must consist

of two unstable modes and one stable mode (uus) or one

unstable mode and two stable modes (uss). A triad (uus) or

(uss) is the smallest unit of nonlinear interaction that can

satisfy the steady state energy relation, Eq. (5).

We introduce the representation

/iðtÞ ¼ WiðtÞe�iwiðtÞ; (6)

where two real quantities Wi and wi represent the amplitude

and the phase of the complex mode amplitude /i. Equation

(1) can be rewritten as

dWi

dt
¼ ciWi þWjWkMi cos Dw (7)

dwi

dt
¼ xi �

WjWk

Wi
Mi sin Dw: (8)

Notice that the nonlinear evolution of the mode amplitude

Wi and the mode phase wi are governed not by the individual

phase of a mode, but by the triad phase, DwðtÞ ¼
P

i wiðtÞ.
The evolution of the triad phase is given by

dDw
dt
¼ Dx�

X
Pði;j;kÞ

WjWk

Wi
Mi sin Dw; or (9a)

dDw
dt
¼ Dxþ tan Dw Dc� d

dt
logðW1W2W3Þ

� �
; (9b)

where the total linear frequency Dx and the total growth rate

Dc are

Dx ¼
X

i

xi and Dc ¼
X

i

ci:

The Eqs. (7) and (9) are sufficient to represent the evolution

of the triad, Wi and Dw.

III. TRIAD FIXED POINT AND STABILITY

To find a fixed point, Eq. (7) is set to zero, which

requires that Eq. (9) be zero. The mode amplitudes W0i at the

fixed point are given by

W2
0i ¼

cjck

MjMk cos2 Dw
¼ Mi

ci

����
���� jC3j

H2
1þ Dx2

Dc2

� �

¼ p
Mi

ci

jC3j
H2

1þ Dx2

Dc2

� �
; (10)

where C3¼ cicjck, H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMiMjMkj

p
, the triad phase is

tan Dw0 ¼ �
Dx
Dc

or cos Dw0 ¼ p
jDcjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2 þ Dc2
p ; (11)

and p¼ sgn(tan Dw0)¼ sgn(�Dx=Dc). It can be verified that

steady state requires Mi=ci¼ pjMi=cij, or equivalently,

p ¼ sgnðc1M1Þ ¼ sgnðc2M2Þ ¼ sgnðc3M3Þ ¼ 61: (12)

These expressions guarantee that cjck=MjMk � W2
0i > 0, con-

sistent with real amplitudes W0i.

Since M1þM2þM3¼ 0, one Mi has an opposite sign to

the other two. The equality p¼ sgn(ciMi) for all i is consist-

ent with Eq. (5), i.e., steady state requires that the triad

should be (uss) or (uus), except for the trivial solution (0, 0,

0). The equality p¼ sgn(ciMi) also provides a possible com-

bination of ki in addition to kiþ kjþ kk¼ 0 when Mi¼Mi(kj,

kk). For example, in the Hasegawa-Mima model,24 the non-

linear coefficient is given by

Mi � �kj � kk k2
j � k2

k

� 	
:

For the triad (uss) where c1> 0> c2> c3, the condition

sgn(ciMi)¼ p for all i leads to

jk2j < jk1j < jk3j or jk3j < jk1j < jk2j:

These relation permit coherent nonlinear transfer from an

unstable mode of intermediate wavenumber to the stable

modes of smaller and larger wavenumbers. This wavenum-

ber relation prevents coherent nonlinear energy transfer from

an unstable mode of small wavenumber to two stable modes

of large wavenumber, i.e., k1< k2< k3. For the triad (uus),

where c1> c2> 0> c3, the wavenumber vectors in a triad

should satisfy

jk1j < jk3j < jk2j or jk2j > jk3j > jk1j:

Coherent nonlinear energy transfer from two unstable modes

to a stable mode is possible only when the wavenumber of

the stable mode is intermediate to the wavenumbers of the

unstable modes.

From Eq. (10), the relative amplitudes of three modes in

the steady state are

W01 : W02 : W03 ¼

ffiffiffiffiffiffiffiffiffiffi
M1

c1

����
����

s
:

ffiffiffiffiffiffiffiffiffiffi
M2

c2

����
����

s
:

ffiffiffiffiffiffiffiffiffiffi
M3

c3

����
����

s
; (13)

and the energy damping (injection) rate of each mode is

proportional to the nonlinear coefficients Mi,

c1W
2
1 : c2W

2
2 : c3W

2
3 ¼ M1 : M2 : M3: (14)

Assuming M1�M2�M3 and 0 > c2 � c3;�c1, the ampli-

tude of the mode 2 is relatively large but its energy damping

rate is of the same order as the rates of the other modes.

We note that the solution of this model is obtained in

Bowman et al.6

The fixed-point amplitudes are dependent on the triad

phase. The triad phase depends only on the ratio of the total

linear frequency Dx to the total linear growth rate Dc. A

non-resonant triad, Dx= 0, has a larger value of tan Dw0

and a smaller value of cos Dw0 than a resonant triad, Dx¼ 0,

assuming the rest of the parameters are equal. For the non-

resonant triad, weak nonlinear interaction due to small cos

Dw0 requires large amplitudes W0i. At the fixed point, the

amplitudes of a non-resonant triad are larger by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dx2=Dc2ð Þ

p
than the amplitudes of a resonant triad.

Because a mode phase is dependent on the mode ampli-

tude and the triad phase, the phase velocity of a mode at the
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fixed point can be obtained by substituting Eqs. (10) and (11)

into Eq. (8). The phase velocity, or nonlinear frequency, of

each mode at the fixed point is the linear frequency xi

shifted nonlinearly by ci tan Dw0,

x̂i �
dwi

dt
¼ xi þ ci tan Dw0 ¼ xi � ci

Dx
Dc

: (15)

In turbulence, finite amplitudes shift mode frequencies from the

linear frequency through amplitude oscillation or wave-phase

modification. Nonlinear frequency shifts are generally obtained

in a perturbative way.25–27 Here, the energy constraint and the

low-order ordinary differential equations (ODEs) of the isolated

three-wave model enable a non-perturbative calculation of the

nonlinear frequency shift. The nonlinear frequency x̂i of the

fixed point is relevant to the eigen-frequency of a nonlinear dis-

persion relation (for example, Hinton and Horton25). Since the

triad phase at a fixed point is constant in time, a non-resonant

triad adjusts individual phase velocities to satisfy nonlinear reso-

nance Dx̂ ¼ 0, as well as the energy balance of Eq. (5). In the

limiting case of Dx� Dc, the nonlinear frequency shift

�ci Dx=Dcð Þ � xi governs the frequency of a mode at a fixed

point. The frequency of the mode in a resonant triad is the linear

frequency of the mode xi with no nonlinear shift. In addition, it

is worth noting that even a zero-frequency mode can have finite

frequency through coherent nonlinear interaction.

The next step is to investigate the stability of the fixed

point. The steady state is a fixed point in the four dimen-

sional phase space of (W, Dw), but it is a limit cycle in the

six-dimensional phase space of (W, w). Here the linear stabil-

ity of the fixed point is explored. The linearized equations

are given by

d

dt

dWi

W0i
¼ ci

dWi

W0i
� dWj

W0j
� dWk

W0k
þ dDw tan w0

� �
; (16a)

d

dt
dDw ¼ DcdDwþ

X
i

Dc� 2cið Þ dWi

W0i
tan w0: (16b)

The fourth order characteristic polynomial equation for the

frequency r of the normal mode solution dWi=W0i¼Aiexp

(rt) is

r4 � 2Dcr3 þ sec2 w0Dc2 � 4 tan2 w0C2


 �
r2

þ 4C3 1þ 3 tan2 w0

� 

r� 4C3Dc 1þ tan2 w0

� 

¼ 0;

(17)

where C2¼ c1c2þ c2c3þ c3c1. When Dc> 0, the fixed point

is always unstable. The stability depends not on the individ-

ual linear frequencies xi but only on the linear growth rates

ci and the ratio Dx=Dc, which determines the strength of the

nonlinear interaction, and the nonlinear frequency shift.

From now on, we assume that Dc< 0.

A. Resonant triad Dx 5 0

Because tan w0¼ 0 and sec2 w0¼ 1, the characteristic

polynomial becomes

r� Dcð Þ r3 � Dcr2 þ 4C3

� 

¼ 0: (18)

There are three characteristic frequencies in addition to

r¼Dc< 0. These consist of a real root r1< 0, and a complex

conjugate pair r2 and r�2. For the triad (uss), C3> 0, yielding

r1 < 0 and Re r2 > 0;

since c1jc2j2< 0 and 2r1Rer2 þ r2j j2¼ 0. For the triad

(uus), C3< 0, yielding

r1 > 0 and Re r2 < 0:

We conclude that there is always at least one characteristic

frequency with a positive real part. Hence the fixed point of

a resonant triad is always unstable.

B. Non-resonant triad Dx= 0

The stability of non-resonant triads is more difficult to

solve. In the limit of Dcj j � Dxj j, the non-resonant triad is

unstable like the resonant triad. In the opposite limit of

Dcj j � Dxj j, we assume that

Dc;C2 � Oð�Þ; C3 � Oð�2Þ; and Dx � Oð1Þ; (19)

where � is a small parameter. The set of the parameters in

Sec. IV satisfy this ordering assumption. In this case, there

are fast and slow pairs of characteristic frequency solutions.

Fast and slow refer to the imaginary part Imr of the charac-

teristic frequencies for motion near a fixed point. The fast

frequency is rf ¼
P

n¼�1;1 r̂f ;n=2�
n=2, where

r̂f ;�1=2 ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

Dx2

Dc2

s
;

r̂f ;0 ¼ 0;

r̂f ;1=2 ¼ �
Dx2

2r̂f ;�1=2

;

and

r̂f ;1 ¼ Dc� 3C3

2C2

:

The fixed point is unstable with a large real positive

eigen-frequency Re r � O 1=
ffiffi
�
p

ð Þ for C2> 0, and stable with

a fast eigen-frequency Im r � Oð1=
ffiffi
�
p
Þ for C2< 0. For

C2< 0, the stability condition is determined up to O(�) �Dc
as Dc2< 3C3=C2.

The slow characteristic eigen-frequencies for motion

near a fixed point are rs ¼
P

n¼1;1 r̂s;n�
n, where

r̂s;1 ¼
3C36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ð9C3 � 4DcC2Þ

p
2C2

; and

r̂s;2 ¼
r̂2

s;1Dc2

8C2ðr̂s;1 � 3C3=ð2C2ÞÞ
:

Since C2< 0, the stability condition is C3> 0, which holds

only for the triad (uss). Combining the analysis of the fast

and slow frequencies, the stability condition for a fixed point

of the triad under the ordering assumption of Eq. (19) is

Dc <
3

2

C3

C2

;C2 < 0; and C3 > 0: (20)
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The stability diagram is shown in Fig. 1. Generally there is a

necessary range Dclower<Dc<Dc upper for a stable fixed

point.

Before further analysis, it is worth noting that there is a

nonlinear limit where the linear frequencies and growth rates

are negligible. This limit occurs when the amplitudes are suf-

ficiently large, and leads to a well-known integrable system.

This integrable dynamics is observed on a fast time scale,

however, with certain modifications on the slow linear time

scale. The details are shown in the Appendix for later

reference.

IV. SATURATION AND RELAXATION OF A TRIAD

In Sec. III, the stability of a fixed point is investigated in

the phase space (W, Dw). The evolution of a triad is now

studied with the initial condition /i¼ 0.001. The parameters

of the triads investigated are

TriadðIÞ : x1 ¼ �1:2þ 0:3i; x2 ¼ 0:0� 0:01i; x3 ¼ �1:3� 0:4i

TriadðIIÞ : x1 ¼ �1:2þ 0:3i; x2 ¼ 0:0� 0:1i; x3 ¼ �1:3� 0:25i

TriadðIIIÞ : x1 ¼ �1:2þ 0:3i; x2 ¼ 0:0� 0:1i; x3 ¼ �1:3� 0:2i:

The wave vectors are given by

k1 ¼ ð0:0; 0:4Þ; k2 ¼ ð0:2; 0:0Þ; k3 ¼ ð�0:2;�0:4Þ;

which yields (M1, M2, M3)¼ (�0.0128, 0.0032, 0.0097).

Triad (I) represents the interaction of an unstable drift wave,

a marginally stable zonal mode ky¼ 0 with zero linear fre-

quency, and a stable mode. For comparison, Triads (II) and

(III) have slightly different linear growth rates for the second

and third modes. The fixed points of Triads (I) and (III) are

stable. The fixed point of Triad (II) is unstable.

The amplitudes and the triad phase are shown in time in

Fig. 2. Initially each mode evolves linearly, with the triad

phase given by Dw¼ tDx. When mode 1 is sufficiently large

that c3U3 ’ M3U1U2, mode 3 evolves nonlinearly, while

modes 1 and 2 evolve linearly. Mode 3 has a phase velocity

�(x1þx2) and a linear growth rate c1þ c2. The triad phase

locks at the value Dw¼Dw1, where

Dw1 ¼ tan�1 Dx
ðc1 þ c2 � c3Þ

: (21)

This state lasts until U2�U3. Then the modes 2 and 3 are

growing at a rate �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1jM2M3j cos2 Dw
q

. This explosive

growth lasts until c1U1 ’ M1U2U3 cos Dw ’ M1U
2
2 cos Dw.

At that point, the nonlinear interaction becomes important

for mode 1. The large nonlinear terms cause a transition

from the linear phase to the nonlinear phase for mode 1, with

the transition occurring at c1U1 � aU2U3 � bU2
1. This tran-

sition does not include a secondary instability arising in elec-

tron temperature gradient mode (ETG) and ITG turbulence,

since the coefficient b is dependent on the linear characteris-

tics of modes 2 and 3. In secondary instabilities, the balance

c1U1 � b2ndU
2
1 is dependent only on the linear characteristics

of the mode 1, e.g., the eigenmode structure. This transition

is relevant to the criteria of Terry et al.15 However, transition

to the nonlinear state and relaxation (or saturation) can show

different dynamics, as described in Kim and Terry.17 In the

nonlinear state, each mode relaxes toward the fixed point of

the triad because Triad (I) is stable.

What happens if the fixed point of a triad is unstable?

The top panel in Fig. 3 shows the evolution of the unstable

triad (II). The linear dynamics shows little difference from

that of triads (I) and (II). In the nonlinear state, instead of

converging toward Dw0 as in Fig. 2, the triad phase diverges

and oscillates rapidly between Dw¼ 0 and �p. The ampli-

tudes keep increasing with an exponential growth rate 0.062

FIG. 1. (Color online) Stability diagram of Dx¼�2.5 and Im x1¼ 0.3.

The horizontal and vertical axes represent c2 and c3. The thick blue line

(dashed) shows the stability condition Dc¼ cc¼ 3C3=2C2 in Eq. (20). The

thick red line (solid) shows Re r¼ 0. Triad (I) (þ), Triad (II) (D), and Triad

(III) (^) are shown for Sec. IV.

FIG. 2. (Color online) The evolution of the mode energies (left) and the triad

phase (right), from the numerical simulations of Eq. (1) for Triad (I). The black

(solid), red (dotted), and blue (dashed) traces represent modes 1, 2, and 3. The

red horizontal line indicates the triad phase of the fixed point, Dw0.
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compared to the maximum Re r¼ 0.081. The deviation of

the exponential growth rate from the characteristic growth r
of the linear fixed-point stability analysis may be due to the

nonlinearity.

As the amplitude of the unstable triad continues to grow

(Fig. 4(a)), the rate of change of the triad phase is governed

by the nonlinear interaction, proportional to sin Dw. The de-

pendence leads the triad phase to stay in the neighborhood of

Dw¼ 0 or Dw¼p, i.e., cos Dw¼61. On the slow linear

time scale, the fast switching of the triad phase between 0

and p seems to act like a random phase and has a stochastic

stabilizing effect on the fixed point. When the amplitudes of

the mode grow to the point that the nonlinear time scale

N(u)=(du=dt) is much shorter than any linear time scale xi,

the well-known Jacobian elliptic solutions represent the non-

linear time scale. However, since the fixed point is unstable,

the amplitudes keep growing larger continuously and the

nonlinear time scale becomes shorter.

In the stable triad, the triad phase converges to the triad

phase of the fixed point. Relaxing toward it, the fast oscilla-

tion in the triad phase Dw emerges as in Fig. 4(b). This rate

is not well matched by either the nonlinear frequency x̂i, or

the frequency part Imr of the linear stability. When the sys-

tem is further from the fixed point, the triad phase evolves

more rapidly. The minimum frequency of the oscillation is

the linear frequency of the fixed point, such as

rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2 tan2 Dw

p
. It implies that the nonlinear interaction

modifies the oscillation significantly during the relaxation.

The effect of the nonlinear interaction is hard to quantify.

However, it is clear that the shift is larger when the ampli-

tudes of the modes are further away from the fixed point.

From the simulations of Triads (I), (II), and (III), it is

clear that the linear analysis of the fixed point is a good indi-

cator whether the fixed point can be reached. An unstable

triad tends to grow until the linear properties are negligible,

except for its instability, whereas a stable triad has discerni-

ble dynamics described by the fixed point and its linear

stability.

Even though a fixed point is unstable, it is possible to

reason that the properties of the fixed point can be uncovered

when the instability of a triad is weak. However, in the long

time limit, or when coupled to more triads, it is more likely

that the fixed point characteristics are too weak to have a

consistent effect on the frequency spectrum. It may contrib-

ute to statistically coherent nonlinear energy transfer, i.e., an

energy cascade, but whether the fixed point is linearly stable

or unstable is a minor issue.

This and Sec. III have explored physical time scales

pertaining to triad interaction that are potentially relevant to

frequency spectra. We briefly recap the major conclusions

before moving on to examine frequency spectra.

(i) From the fixed point, the frequency of a mode can be

shifted from the linear frequency by a nonlinear

contribution,

x̂i ¼ xi � ci

Dx
Dc

:

(ii) From linear stability analysis of the fixed point, the

linear frequencies and growth rates of motion about

the triad fixed point is another set of time scales rele-

vant to frequency spectra. These time scales are the

slow and fast frequencies of the fourth order charac-

teristic equation,

rf ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jC2j2

Dx
Dc

s
and

rs ’
3C36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ð9C3 � 4DcC2Þ

p
2C2

:

(iii) An integrable solution exists for the limit of large

amplitude. Its intrinsic nonlinear time scale derives

from the periodicity of the elliptic function and

depends on mode amplitudes Wi. It is given by

xamp ¼
2p

Tamp

¼ 2pH
ffiffiffiffiffiffi
m1
p

2Kðm2=m1Þ
; (22)

where, as described in the Appendix, m1, m2, and m3

are linear combinations of W2
i = Mij j and K(k) is the

FIG. 3. (Color online) The evolution of the mode energies (left) and the triad

phase (right), from the numerical simulations of Eq. (1) for Triad (II) (top) and

Triad (III) (bottom). The legends in the plots are described in Fig. 2.

FIG. 4. (Color online) Time evolution of three phases wi [black (+), red (*),

blue (^)] and the triad phase Dw [green (4)] of the unstable Triad (II) (left)

and the stable Triad (III) (right) at t¼ 90�95.
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complete elliptic integral of the first kind.28 The fre-

quency xamp can be interpreted as a measure of how

far the modes are from the trivial fixed point 0. When

the amplitudes are small, m1 ! 0 with fixed m2=m1,

xamp �
ffiffiffiffiffiffi
m1
p

.

V. FREQUENCY SPECTRUM OF A STABLE TRIAD

Before examining the frequency spectra of stable triads,

it is useful to introduce one additional time scale that relates

to the nonlinear time scale of large amplitude solutions

xamp. Noting that xamp is a measure of how far the mode

amplitudes W deviate from the trivial fixed point 0, we adapt

the frequency to give a measure of deviation from the nontri-

vial fixed point W0. This frequency is

xD ¼
2pH

ffiffiffiffiffiffiffiffiffi
Dm1

p

2KðDm2=Dm1Þ
sin Dw0; (23)

where Dmi are identical in form to mi but with W2
i replaced

by (Wi – Wi0)2. The factor sin Dw0 is obtained from the

expansion of the equations around the fixed point U0. While

there is no rigorous justification for this construct, it is found

to have significant concordance with key empirical features

of the frequency spectrum. The frequency spectra associated

with the time histories of Figs. 3 and 4 are shown in Fig. 5

for various times, in relation to the frequencies discussed

above. A frequency spectrum is obtained by taking the com-

plex Fourier transform of the simulation data

wi(t0þ jDt)(j¼ 1, n) at each t0. The times Dt¼ 0.005 and

nDt¼ 20.48 are set to resolve the lowest and highest frequen-

cies among the relevant frequencies. In Fig. 5(e), when the

modes have relaxed to the fixed point, the frequency spec-

trum reasonably replicates the nonlinear frequency x̂i.

The frequency spectra can be explained satisfactorily

even during relaxation. First of all, the frequency spectra of

the modes are well bounded from the upper side by the mod-

ulation frequency xamp even when the transition is highly

nonlinear. How far the mode amplitudes are from zero repre-

sents the first restriction to the frequency spectrum. How-

ever, when only the frequencies from Triad (I) are modified

so that Dx�Dc, the modulation frequency xamp is a lower

bound for the nonlinear frequencies x1 and x3. Most nota-

bly, the spectrum is well bounded by the nonlinear frequency

shifted by the relative modulation frequency x̂i6xD. Far

FIG. 5. (Color online) The frequency spectra of the mode w1 (black, solid), the mode w2 (red, dotted) and the mode w3 (blue, dashed) are plotted at t¼ (a)

100, (b) 125, (c) 150, (d) 200, (e) 250. The vertical lines represent x̂1 (black, solid), x̂2 (red, dotted), x̂3 (blue, dashed), rf (green, long dash), and xamp (black,

dash dot). The arrows and the shaded region refer to the interval bounded by x̂i 6 xD.
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from the fixed point, xD > jx� x̂ij may be too broad and

loses meaning. When xD � jx̂j, x̂i 6 xD as an estimate of

the nonlinear frequency is no longer relevant. However, even

though the relevance is questionable when mode amplitudes

are too small or large, the specified range describes the spec-

tra over the whole relaxation process.

The spectrum of the second mode u2 is sharply peaked

and barely changes in time during relaxation. Because

ni¼W2=jMij � 1=ci, n2 � n1; n3 holds for the wave action ni

near the fixed point, yielding m1 � m2. The amplitude /2 is

n2 � 1þ m2=m1sd2 …ð Þ
� 


�1 (see Eq. (A4)). n2 is almost

constant. Therefore, the amplitude modulation /2 is not no-

ticeable in the spectrum.

The triad phase Dw in Fig. 4 suggests that there should

be a signature of the fast eigen-frequency, Im rf, in the spec-

trum. However, it does not appear at any time of the simula-

tions. This is the case because the triad phase is not a phase

of any individual mode, and the triad phase oscillation indu-

ces the large amplitude changes captured by the frequency

estimate xD.

How robust is the coherent feature of a stable triad? To

answer the question, we need to investigate in more detail

how the perturbed triad relaxes to the stable fixed point. Fig-

ures 6 and 7 show the relaxation in detail. In Fig. 6, the ini-

tial triad phase is set to �Dw0, and the initial mode

amplitudes are those of the fixed point, Ui(0)¼U0i and

Dw(0)¼�Dw0. The initial values lead to

d

dt
Wiðt ¼ 0Þ ¼ 0 and

d

dt
Dwðt ¼ 0Þ 6¼ 0:

This initial evolution produces a large deviation from the

fixed point. However, the system eventually relaxes to the

fixed point. It is observed that the triad phase is quickly and

strongly destabilized; the amplitudes are highly oscillatory

until the perturbed triad phase settles to a value near the fixed

point, where the sign of sin Dw is equal to the sign of sin

Dw0. While the amplitudes Wi are highly oscillatory, and

therefore, the wave action ni � W2
i , the Manley-Rowe rela-

tions Eq. (A2) for mi is approximately satisfied over the time

scale of the fast oscillation. This is the motivation for intro-

ducing the frequency of Eq. (23), which bounds the high fre-

quency spectrum near the nonlinear frequency x̂.

Figure 7 shows spectra and evolution for the initial value

Ui(0)¼U0u and Dw(0)¼�p�Dw0, which gives

d

dt
Wiðt ¼ 0Þ 6¼ 0 and

d

dt
Dwðt ¼ 0Þ ¼ 0:

This figure shows that the initial amplitudes perturbed

around the fixed point exhibit nonlinear behavior when they

trigger significant change in triad phase. Figures 7(a) and

7(b) demonstrate that the spectra of the nonlinear perturba-

tion follow the prescribed frequency formula. Figure 7(c)

shows that the motion is distorted elliptically in the phase

space (Re /1, Im /1) by an amplitude modulation U and the

progression of its phase w1. This occurs when the amplitude

of the mode 1, W1, is suppressed from its fixed point value

(dashed line).

VI. PERTURBED TRIAD INTERACTION

We have shown, how a stable triad is well described

from the properties of its fixed point. In turbulence, any

given triad is multiply connected with many other triads. A

natural question is whether fixed point properties continue to

FIG. 6. (Color online) The evolution of (a) amplitudes /i (b) the triad phase

Dw (c) ni (d) mi are shown with the initial condition of W¼W0 and

Dw¼�Dw0. Black (solid), red (dotted), and blue (dashed) lines in (a,c,d)

represent the modes i¼ 1, 2, 3.

FIG. 7. (Color online) ((a) and (b)) The frequency spectra at t¼ 0,75 in Fig.

6(c) (Re /1, Im /1) at t¼ 0,75. The legends for the spectra are the same as

in Fig. 5 and the red dashed line in (c) and (d) represent the mode 1 at the

fixed point.
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provide useful information when a triad is connected to other

triads.

To provide an answer to this question, a random phase

perturbation is applied to only one mode i of the triad in the

form

d/i

dt
ðtÞ þ iki þ b

X
p

fp sinðxptþ hpÞ
" #

/i ¼ Mi/
�
j ðtÞ/�kðtÞ;

(24)

where fp ¼ f0e�½ðxp�xp0Þ=Dxp0	2 , hp is random variable in p,

b¼ 1 or i, xp0¼ 10.0, and Dxp0¼ 2. The value chosen for

xp approximately matches the nonlinear time scale in the

triad. The external perturbation leads to either a change in

the phase of the mode when b¼ i, or the growth rate, when

b¼ 1.

For b¼ i in a highly nonlinear case with large Dx=Dc,

the result is independent of the mode to which the perturba-

tion is applied, since the deviation quickly propagates to

each mode through the modification of the triad phase Dw.

The perturbation is applied to the most linearly stable mode

/3. Figure 8 presents the two cases, with f0¼ 0.1 (top) and

f0¼ 0.5 (bottom). The stability of the fixed point is robust to

the external perturbation for small f0¼ 0.1. The spectrum is

well peaked at its nonlinear frequency x̂. The amplitudes

and the triad phase are fluctuating around the amplitudes of

the fixed point. The frequency of the triad phase oscillation

FIG. 8. (Color online) [b¼ i] (a and d)

Ui (b and e) Dw and (c and f) the fre-

quency spectra at t¼ 325(c) and 200(f).

The top panel (a, b, c) and the bottom

panel (d, e, f) corresponds to the strength

of the perturbation f0¼ 0.1 and f0¼ 0.5.

Each plot has the same legends as

described in Figs. 2 and 5.

FIG. 9. (Color online) [b¼ 1] (a and d)

Ui (b and e) Dw and (c and f) the fre-

quency spectra at t¼ 325. The top panel

(a, b, c) and the bottom panel (d, e, f)

corresponds to the strength of the pertur-

bation f0¼ 0.1 and f0¼ 0.2. Each plot

has the same legends as described in

Figs. 2 and 5.
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is peaked around the driven frequency xp0. Varying the driv-

ing frequency xp0 from 5, 10, and 20 does not change the

response of the triad qualitatively.

Increasing the strength of external perturbation moves

the triad away from the fixed point. For f0¼ 0.5, the ampli-

tudes are far smaller than the fixed point amplitudes. The

triad phase flips sign intermittently. Due to the low ampli-

tudes, xD is large and has limited utility. However, the small

upper bound xamp restricts the frequency spectrum between

xamp

�� �� > xj j > x̂j j � xDj j for i¼ 1, 3.

For b¼ 1, the result is dependent on which mode is per-

turbed. Figure 9 presents results for f0¼ 0.1 and 0.2, where

the perturbation is applied to /3. Increasing f0 leads to large

fluctuations around the fixed point. Increasing f0 beyond the

linear growth rate of the perturbed mode jf0j> jc3j results in

growing mode amplitudes like those of an unstable triad. As

long as the strength of the external perturbation does not

exceed the linear growth rate, the frequency spectrum is well

described by fixed point fixed point properties.

A second approach to the question of triad coupling

effects is to connect the two stable triads as in Fig. 10. To

ensure that the nonlinearity is conservative, there are two

nonlinear terms in each triad at the connecting mode.

Starting with small amplitude initial conditions, one triad

tends to dominate the nonlinear energy state unless the com-

plex linear frequencies and nonlinear coefficients of two triads

are comparable. In fact, which triad dominates depends on the

order of the phase locking in the linear regime.

Starting at the fixed point as the initial condition, the dy-

namics between two triads are complex and it is difficult to

make a simple statement. For simplicity, almost identical tri-

ads are investigated. The one triad (1, 2, 3) is Triad (I) and

for the other triad (1, 20, 30), the nonlinear coefficients M0i for

the triads are the same as Mi of Triad (I), and the linear

growth rates c0i and wave frequencies x0i of the non-

connecting linear modes (20, 30) are slightly modified from

Triad (I) in such a way of keeping the nonlinear strength, tan

Dw, fixed while varying the stability of a fixed point, Re r,

or vice versa.

As evident in Fig. 11, one triad dominates the other in a

short time span t¼O(10). The frequency spectrum is well

described by the frequency spectrum of the dominant triad.

Which triad is dominant is difficult to predict when the two

triads have the distinct sets of the complex linear frequencies

and nonlinear coefficients. However, if they are nearly iden-

tical, it is observed that the triad with the more stable fixed

point and weaker nonlinear strength tan Dw¼�Dx=Dc
tends to be dominant. The frequency spectrum is identified

with the spectrum of the dominant triad. The interaction of

two triads hints that the nonlinear frequency and the ampli-

tudes of a stable triad may be present even in a complex net-

work of triads. More analysis on the interaction among triads

needed, but is beyond the scope of the present work.

VII. CONCLUSION

The three-wave coupling model of the complex linear

frequencies is investigated for the nonlinear interaction in a

triad with linearly unstable and stable modes. Time scales

associated with linear and nonlinear physics are identified

and compared with features of the frequency spectrum.

The model can reach its own saturation when there is a

nontrivial stable fixed point. At saturation, the nonlinear fre-

quency x̂ is determined by the linear frequency and the non-

linear frequency shift. The nonlinear frequencies x̂i satisfy

the frequency matching Dx̂i ¼ 0, which may be identified as

a signature of coherent nonlinear interaction between line-

arly unstable and stable modes. The mode amplitudes are

proportional to the nonlinearity jDx=Dcj of a triad. While a

linearly resonant triad is unlikely to be dynamically coherent

because its fixed point is unstable, the modes in the triad

may be statistically correlated in multiple connected triads

or turbulence. A linearly non-resonant triad can be dynami-

cally coherent in strong turbulence because of the stability

of its fixed point. At saturation and in the transient relaxation

to the steady state, the spectrum of a mode is well described

by the frequencies of the fixed point x̂ and the amplitude

modulation where the action is altered from its usual defini-

tion to yield a modified parametric frequency xD based on

the distance from the fixed point. Applying an external per-

turbation and connecting two triads, we have confirmed that

our formula for the frequency range works well in the

model. Here we show relevant time scales and dynamical

features and conditions in a triad of linearly unstable and sta-

ble modes in a simple model of three wave interaction. More

practical results require the comparison of a model of at least

six modes with the full simulation of relevant turbulence

model. This task is left to future work.

These results suggest that the linear frequencies and the

linear growth rates of damped modes do create features in the

frequency spectrum, i.e., a finite amplitude frequency x̂, albeit

with a nonlinear shift. Clustering of shifted frequencies sets an

FIG. 10. (Color online) Diagram of two triad connection.

FIG. 11. (Color online) In the case of tan Dw1¼ tan Dw2 and r1<r2, the

amplitudes of (a) the modes 1 (black, solid), 2 (red, dotted), 3 (blue, dashed)

of triad 1 and (b) the modes 10 (black, solid), 20 (red, dotted), 30 (blue,

dashed) of triad 2 are shown in time.
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overall spectral envelope that is smoothed and extended by the

nonlinearity. There are multiple nonlinear time scales in the

triad interaction. Only the empirical modified parametric fre-

quency xD, in addition to the nonlinear frequency of a fixed

point x̂, has a clear signature in the spectrum. The characteris-

tic frequencies of small amplitude perturbative motion about

the fixed point do not correlate with gross spectral features.

These results potentially inform the interpretation of

measured fixed-wavenumber frequency spectra. The key ca-

veat is the unknown effect on a single triad from its cou-

plings to all the other triads in the turbulence. Two limited

efforts to model the effect of other triads suggest robustness

in the single triad results. These were the introduction of ran-

dom perturbations to the linear growth rate and frequency,

and coupling to a second triad. In the latter, the mode with

the most stable fixed point tended to make the largest contri-

bution to the spectrum, via the nonlinearly shifted frequency

and broadening by xD. In turbulence, this tendency, if persis-

tent, will be folded together with relative amplitude distribu-

tions set by the turbulent energetics. Thus it is premature to

draw firm conclusions. One informative test, to be conducted

with simulations of a full turbulence model and strong turbu-

lence analytic theory will be to compare this frequency with

nonlinear correlation rates from simulation and closures like

eddy damped quasinormal Markovian.
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APPENDIX: AMPLITUDE MODULATION

When the fixed point of a triad is unstable, the nonlinear

term becomes dominant in the evolution of the mode ampli-

tudes. Also it is observed that the triad phase remains at

Dw¼ 0, p so that cos Dw¼61. Then in case of Dw¼ 0, Eq.

(7) can be approximated by

dWi

dt
¼ MiWjWk:

Changing the variable from Wi to ni ¼ W2
i = Mij j gives

dni

dt
¼ 2sgnðMiÞH

ffiffiffiffiffiffiffiffiffiffiffiffi
ninjnk
p

; (A1)

For the triads (uss) and (uus), there are Manley-Rowe

relations,

n1 6 n2 ¼ m1

n1 þ n3 ¼ m2

n2 
 n3 ¼ m3;

(A2)

where m1, m2, and m3 are constants. The former case repre-

sents the disintegration of the unstable wave into two stable

waves and vice versa (m1¼m2þm3). The latter represents

the disintegration of the stable wave into the two stable

waves and vice versa (m2¼m1þm3).

The former case becomes

dn1

dt
¼ �2H n1n2n3ð Þ1=2¼ �2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1ðm1 � n1Þðm2 � n1Þ

p
;

dn2

dt
¼ 2H n1n2n3ð Þ1=2¼ 2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 � n2Þn2ðn2 � m3Þ

p
;

dn3

dt
¼ 2H n1n2n3ð Þ1=2¼ 2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 � n3Þðm3 þ n3Þn3

p
:

(A3)

Assume m1>m2>m3> 0,

� ffiffiffiffiffiffi
m1

p
Hðt�t0Þ¼F

ffiffiffiffiffiffiffiffiffiffi
n1ðtÞ
m2

s
jk1

 !
�F

ffiffiffiffiffiffiffiffiffiffiffiffi
n1ðt0Þ

m2

s
jk1

 !
;

ffiffiffiffiffiffi
m3

p
Hðt�t0Þ¼F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðtÞ�m3

m1�m3

s
j�k2

 !
�F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðt0Þ�m3

m1�m3

s
j�k2

 !
;

ffiffiffiffiffiffi
m3

p
Hðt�t0Þ¼F

ffiffiffiffiffiffiffiffiffiffi
n3ðtÞ
m2

s
j�k3

 !
�F

ffiffiffiffiffiffiffiffiffiffiffiffi
n3ðt0Þ

m2

s
j�k3

 !
;

where F(x; k) is the elliptic integral of the first kind,

k1 ¼
m2

m1

> 0 and k1 < 1;

k2 ¼
m1

m3

� 1 > 0;

k3 ¼
m2

m3

> 1;

Fðx; kÞ ¼
ðx

0

dy

ð1� y2Þð1� ky2Þ ;

n1¼ m2sn2 � ffiffiffiffiffiffi
m1

p
Hðt� t0Þ þ h1j

m1

m2

� �
;

n2¼ m3 1þ m2

m1

sd2 ffiffiffiffiffiffi
m1

p
Hðt� t0Þ þ h2j

m2

m1

� �� �
;

n3¼
m2m3

m1

sd2 ffiffiffiffiffiffi
m1

p
Hðt� t0Þ þ h3j

m2

m1

� �
;

(A4)

where hi is the initial argument at t¼ t0 and sn and sd are the

Jacobian elliptic function.28 It should be noted that the oscil-

latory behavior of n2 is negligible as m2=m1! 0.

The periods of n1, n2, n3 are the same as

Tmod ¼ T1 ¼ T2 ¼ T3 ¼
2Kðm2=m1Þ

H
ffiffiffiffiffiffi
m1
p : (A5)

The time scale of the dynamics is shorter as m1 becomes

larger. As the ratio k¼m2=m1 increases, the frequency spec-

trum changes from peaked to broad.
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