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Abstract

This paper investigates the relation between the correldligrand the Kaplan—Yorke dimensiobBgy ) of three-dimensional
chaotic flows. Besides the Kaplan—Yorke dimension, a new Lyapunov dimeisignderived using a polynomial interpolation
instead of a linear one, is compared widky andD,. Various systems from the literature are used in this analysis together with
some special cases that span a range of dimensiddg < 3. A linear regression to the data produces a new fitted Lyapunov
dimension of the formDg; =a — BA1/A3, Wherei; and iz are the largest and smallest Lyapunov exponents, respectively. This
form correlates better with the correlation dimendiythan do eitheDgy or Dyx. Additional forms of the fitted dimension are
investigated to improve the fit #,, and the results are discussed and interpreted with respect to the Kaplan—Yorke conjecture.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction most common of the former metrics is the correlation
dimension, popularized by Grassberger and Procaccia
The dimension of a strange attractor is a measure [1], and the most common of the latter type is the Lya-
of its geometric scaling properties or its “complexity” punov dimension, proposed by Kaplan and Yojke
and has been considered the most basic property of anThe relation between these two dimensions has never
attractor. Numerous methods have been proposed forbeen systematically studied for a wide variety of sys-
characterizing the fractional dimension of the strange tems for three-dimensional flows, in part because the
attractors produced by chaotic flows. These methods topological measures are very difficult to calculate ac-
fall into two categories, those derived from the topol- curately. Ledrappier has verified that the Kaplan—Yorke
ogy, and those derived from the dynamics. Perhaps thedimensiorDgy is generically equal to the information
dimensionD4 [13]. The latter is also verified for two-
"+ Corresponding author. Tel.: +44 120 6872861 dimensional diffeomorphismglL6]. In this Iet_ter, we
fax: +44 120 6872900. focus on the Kaplan—Yorke and the correlation dimen-
E-mail addresskchlou@essex.ac.uk (K.E. Chlouverakis). sion, and we try to verify via a statistical computational
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study the relation between these two for a wide range first D exponents A to a © — 1)-degree polynomial

of three-dimensional chaotic systems. and finding the attractor dimensid@y from its zero
What follows is such a detailed comparison, repre- crossing. For a three-dimensional chaotic flow with

senting a computationally intensive study of 46 differ- only three exponents, one of which,j is zero, the

ent three-dimensional chaotic systems with fractional best one can do is to use a quadratic fit of the form

dimensions that span the entire range from 2 to 3. Y A = A3D22/2— 3x3Dx/2 +A1 + A3 whose root for

A modified form of the Kaplan—Yorke dimensionis > A =0is

tested, as well as a form derived using a polynomial fit

to the spectrum of Lyapunov exponents. Dy — 15405 [1—8)

The aim of this work is to investigate the relation = ) r3
between these two dimensions, since such a system-
atic study has never been done for three-dimensional This formula gives a larger prediction than the usual
chaotic flows to the best of our knowledge. The sec- M
ond goal of this paper is to construct a new Lyapunov Dky = 2— 2
dimension that better correlates with the correlation di- . )
mensiorD, than the Kaplan—Yorke dimensi@xy or These two dimensions haveDy >Dky for
anew Lyapunov dimensidBy, (introduced inthe next ~—1=<*1/A3<1 with a maximum difference of
section) does. This study will examine the connection Px — Dky =1/8 ath1/a3 = —3/8. The next section will
between the Lyapunov spectrum (the two nonzero Lya- €xamine this difference in more detail.
punov exponents) of a three-dimensional chaotic flow ~ The correlation dimensid] is calculated from the
and the fractional dimension that is derived from the correlation integralC(r), which is the probability that

topology of the strange attractbp. two randomly chosen points on the attractor are sepa-
rated by a distance less thaand is given by
. dlog C(r)
2. Lyapunov and correlation dimensions Dz = J[no “dloar logr

The Kaplan—Yorke dimensiof2] can be defined  Accurate calculation ob is notoriously difficult be-
as the fractional dimension in which a cluster of ini- cause the value of the derivative often converges very
tial conditions will neither expand nor contract as it Slowly forr — 0 where the number of data points is too
evolves in time. The rate of expansion is the sum of the Small to permit an accurate determinationGf) and
Lyapunov exponents' and this sum will necessar“y be because the |aCUnariE4{] of the fractal attractor causes
negative for an attractor of any kind. By ordering the C(r) to oscillate. For many cases, it can be shqéjn
Lyapunov exponents from the largest (most positive) thatC(r) is of the form
to the smallest_(most negative), it is a simple matter to logC(r) = A + Dylogr + Blog(logr),
count the maximum number of exponents whose cu-
mulative sum is positive, and this number represents whereB is typically in the range of 0-1 and measures
a lower bound on the attractor dimension, since the the rate of convergence.
cluster of initial conditions will still expand in this di- The values ofD, quoted here were derived by a
mension. However, in the next higher integer dimen- least-squares fit to the above formula using a minimum
sion, the Lyapunov exponents will sum to a negative of 2 x 1012 correlations. The computed values tend to
value, and hence the cluster contracts in that dimen- be slightly larger than those typically quoted in the lit-
sion, which thus represents an upper bound on the at-erature for cases wheBy has been estimated because
tractor dimension. The Kaplan—Yorke dimension can of the slow convergence. Errors due to lacunarity of the
be considered as a linear interpolation between theseattractor are reflected in the quoted precision of the fit
two integer values to estimate the fractional dimension and are the main source of uncertainty.
for which neither expansion nor contraction will occur. A significant identity for the correlation dimension
Sprott[3] has suggested that a more accurate in- D5, the information dimensioD; and the capacity di-
terpolation would result from fitting the sum of the mensionDg [14,15,17]that comes directly from their
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definitions, is
D7 < D1 < Do.

A later conjecture held that the Kaplan—Yorke dimen-
sion is generically equal to a probabilistic dimen-
sion that appears to be identical to the information
dimensionD [12]. This conjecture is partially ver-
ified by Ledrappier for any ergodic invariant mea-
sure of a smooth mafiL3]. In terms of the above,
the Kaplan—Yorke conjecture (verified also for two-
dimensional diffeomorphism§l6]) asserts that the
Kaplan-Yorke dimension and the information dimen-
sion should generally coincide for natural invariant
measures and also that the information dimension can
coincide with the correlation dimension regardless of
the spectrum of Lyapunov exponents. Hence, from the
above, it can be conjectured that the Kaplan—Yorke di-
mensionDgy should be larger than or equal to the
correlation dimensio, and that one could not con-
clude anything about the connection betwé&enand

the spectrum of Lyapunov exponents for a chaotic sys-
tem. However, a statistical study as described herein
can provide insight into the differences in the vari-
ous dimensions for typical three-dimensional chaotic
flows. By selecting a variety of chaotic systems that

span attractor dimensions between 2 and 3, a statistical 5,

study of the Lyapunov exponents and the correlation
dimensiorD, suggests new Lyapunov dimensions that
correlate better t®, thanDgy does, and verifies the
conjectures described above.

3. Chaotic flows

This section concerns the relation between the cor-
relation dimensiorD, and the two Lyapunov dimen-
sionsDky andDy that were introduced above. To have
a consistent and valid statistical result, a wide variety
of chaotic systems must be used with dimensions span-
ning the range of 2-3. Most of these systems from the
literature, like the Lorenfg], the Rosslef7] attractors
and many others, have dimensions only slightly greater
than 2.0. Hence, three more systems were used that bet
ter span the range of dimension from 2 to 3. The first
system is a chaotic flow with eight nonlinearities that
is used to model semiconductor lasers optically driven
by a monochromatic light beam, and whose dynamical
properties are well knowf8—10]. This rate-equation

Physica D xxx (2004) XXX—XXX

4

-4
-4

X 4

Fig. 1. Poincae plot {y=0} in the x—=z plane for the A case
(Dky =2.764) inTable 1

model will be named system A and is given by

%=K+}xz+ <a)—1az> Vs
dr 2 2

dy 1
i (a)— 2az>x+2yz,
dz

= —2I7 — (14 2B2)(x? + y* — 1).

Typical values for the constants of system A are:
0<K<3, —3<w<3, 0<a<15, 0<B<0.03 and
B<I'<0.1. This system is capable of producing
chaotic attractors with large values of dimension reach-
ing even 2.9 Dky < 3. A Poincae plotin thex—zplane

for y=0 is given inFig. 1 for the Ag case given in
Table 1 It was also found 9] that asx is increased,

the largest Lyapunov exponent of the system increases
linearly, resulting in a higher dimension.

A new simpler chaotic flow was found by modifying
system A withB=TI"=w =0 and by adding a damping
constant in the dy/dt equation. Also, the “1/2" expres-
sions were removed from the/dt and d/dt equations.
This system will be named system B and is given by

dx

d
o =K Z(x — ), = = Zax —sy),

dr

< 2 2
— =1-—x—y-
dr * Y

By varying the system’s parameters and especially the
paramete, this system can produce high-dimensional
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Table 1

The 21 chaotic cases with the calculated Lyapunov exponégis, Ds andD>»

System Parameters A A3 Dky Dx D2

Bs K=0.4,0=1.5,6=0.86 0.11 —0.461 2.239 2.353 2.14%#0.115
A7 K=1.10,w=0.56,0=6.6,B=0.015,I"=0.035 0.2254 —-0.91 2.248 2.363 2.2020.095
Ag K=0.80,w=0.56,0¢=6.6,B=0.015,I"=0.035 0.2144 —0.6867 2.312 2.435 2.440.108
Az K=1.10,w=1.1,0=9.0,B=0.00667,/"=0.0079 0.325 —0.88 2.37 2.494 2.320.13
Ci1 «=9.0,y=0.18 0.111 —0.2933 2.378 2.503 2.480.13
Aq K=0.451,w=1.1,0=2.6,B=0.0295,I"=0.0973 0.1206 —0.308 2.391 2.516 220.11

Cs «=10.0,y=0.18 0.141 —0.32 2.44 2.564 2.5320.117
Bs K=0.4,0=3.0,6=0.0 0.1487 —0.333 2.447 2.57 2.4380.109
Cy «=14.3,y=0.18 0.1972 —0.38 2.52 2.635 2.720.13
Bog K=0.4,0=4.0,6=—1.66 0.2155 —0.4133 2.521 2.637 2.3670.117
Bi1 K=0.4,0=3.0,6=-0.10 0.187 —0.3526 2.535 2.645 2.3580.12
B3 K=0.4,0=4.0,6 =0.052 0.258 —0.4363 2.591 2.697 2.3520.114
Bs K=0.4,0=4.0,6=—1.55 0.239 —0.3936 2.607 2.71 2.5480.128
As K=0.65,w=1.1,0=9.0,B=0.00667,"=0.0079 0.3956 —0.592 2.668 2.76 2.520.15
=1 K=0.4,0=4.0,6=0.38 0.2986 —0.4072 2.733 2.81 2.4990.15
Asg K=0.30,w=0.0,0=8.0,B=0.015,I"=0.035 0.312 —0.408 2.764 2.834 2.55#0.15
B2 K=0.4,0=4.0,6=—-0.66 0.3 —0.3828 2.784 2.85 2.7380.159
B~ K=0.5,0=7.0,6=0.23 0.476 —0.556 2.856 2.9 2.7120.156
Ay K=0.20,0=1.1,0=9.0,B=0.00667,/"=0.0079 0.2625 —0.2943 2.892 2.926 2.780.184
As K=0.11,0=0.10,0=9.0,B=0.00667,I"=0.0079 0.152 —0.16 2.95 2.966 2.9880.18
Ag K=0.10,0=0.0,0=15.0,B=0,I"=0 0.19 —0.192 2.99 2.993 3.0180.202
chaotic attractors reachiriggxy ~2.9. A plot of Dxy Another new chaotic flow (named system C)

versus is given inFig. 2, and a Poincar plot is shown was found and used in this work, and it is given
in Fig. 3in the x—z plane fory=0 for the B case in by

Table 1 In Fig. 2 ase is varied,Dgy covers the range dy

from 2 to 2.82 with a maximum value &fcy given by — = xz + ycos(), — =687 —yy,

the dotted line. With a suitable combination ofind dr
a, the whole range of Og.1/A3] <1 is easily covered. % —1— 2
The largest values ddxy requirex>7. dr
3 T T T T T T T T
Koogl Y= &
c
S
g 261 -
©
L
o 245 .
C
©
Q.
S22l -
2 1 1 ] | | U 1
-35 3 2.5 -2 15 -1 -05 0 0.5

Parameter

Fig. 2. Variation ofDky with control parametes for K=0.4 andx =4 for system B.
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Fig. 3. Poincae plot {y=0} in the x-z plane for the B case
(Dky =2.535) inTable 1

Typical values for this system that produce chaotic so-
lutions are 0 gy < 1 and 0 <§ <100. Within this range,
system C can produce adimension reachipg ~ 2.8.
This value was found to be a maximum, in contrast
to systems A and B that can cover the whole range
0<|A1/r3| < 1. For system B to produdexy >2.9, a
very highvalue o isrequired;i.e.§ =500 and, =0.07
givesDky =2.9. A Poincag plot is shown irFig. 4 in
thex—z plane fory=0 for the G case inTable 1

Systems B and C are abstract chaotic vector fields,

constructed for the purpose described in Sectigmo-
ducing an attractor with dimension almost anywhere

the relation between the Lyapunov exponents and the
correlation dimensiom,. The latter is introduced in
the following section.

4. Comparison of the Lyapunov and
correlation dimensions

These three systems A, B and C were used here
to investigate the relation between the correlation di-
mensionD, and the two Lyapunov dimensiomy
andDy in the range 0.2 %.1/A3|<1. In Table 1we
present 21 cases of these three systems ordered from
the lowest to the highefky. The lowest value used
wasDgy =2.239, and the highest waky =2.99. To-
getherwith these cases, 24 more low-dimensional cases
were used from Appendix A.5 and A.6[@&, including
four Hamiltonian systems and one more sys{éh)
that hasDky =2.897 andD, =2.8440.28. Hence, 46
total chaotic systems were used in this analysis to cover
the whole range 0 g.1/A3| < 1.

The calculation oDky andD» for these 21 cases
of Table 1for the systems A, B and C, reveal mixed
relations between these two dimensions. For example,
system B always haBky >D2 as expected, whereas
system C ha®Dky <D, presumably as a result of
numerical uncertainty in the calculation &f. For
system A these relations are mixed. The unavoidable
large uncertainty in the calculation Bt as explained

between 2 and 3 to be used in the statistical study of In Section2 is the reason why many systems with

1.4

1.4
13 x 0.4

Fig. 4. Poincag plot {y=0} in the x-z plane for the G case
(Dky =2.52) inTable 1

large attractor dimension were used in this analysis,
so that the final statistical result is more valid and
general.

The aim of this work is to construct a new Lya-
punov dimension that better correlates with the corre-
lation dimensiorD». Also by applying a multivariable
regression, it will be determined whetheky or Dy,
correlates better witlh, by measuring the weights
andg in the expression

D2 =aDky + BDy, a+pB<1

The summatiorx + 8 should be less than unity since
both of these Lyapunov dimensions tend to be larger
thanD» as shown inTable 1and inFig. 5where the
scatter plot ofD, versusii/is is given for all 46
cases reported iable 1 Fig. 5 clearly shows how
the whole space is covered for (kg/A3] < 1. In this
plot, Dy andDy are included with solid and dashed
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Fig. 5. Scatter plot foD, vs. A1/A3. The solid line isDky, the dashed line iBy, the dotted line iDy; of Eq. (1), and the dash-dotted line is

Dsit.c of Eq. (4). Squares stand fds.

lines, respectively, and the values9$ are denoted
with squares in the same plot.

with the low-dimensional systems as discussed above.
Hence, a new regression was applied with a constant

By applying a least-squares linear regression, a new term that now has a physical meaninds(=2 for

Lyapunov dimension is calculated and showikig. 5
with the dotted line given by
Al
Dsy = 2.061— 0.749g. Q)
In contrast toDky (which is equal to 2- 11/A3), we
note a small increase in the first parameter{2.061)
and a decrease in the second parametes (L749).
The first of these shifts produces a better correla-
tion of Dy to Dy for the low-dimensional systems
with |11/A3] <0.2 according toFig. 5. The second
shift (1— 0.749) produces a better correlation for the
higher-dimensional systems since most of them lie be-
low the solid line ofDky . To show thaDy; is a better
approximation td, than eitheDky or Dy, two mul-
tivariable regressions produced

Dy = —0.00077Dky + 1.001Dyjt, (2)

®3)

However, Eq. (1) gives Dyt =2.061 whenii=0,
whereas the correlation dimension shoulde< 2.
This is purely a mathematical artifact since this shift
of 0.061 is made in order fdDs; to correlate better

D> = 0.019Dy + 0.979Ds;;.

A1 =0) and the result was

Diit.c =2 — 0.836)2. 4)
A3

Following the notation from Eg42) and (3) this new
Dsit.c was found to correlate better wifb, thanDgy
andDy do. However, Eq(1) was derived from a mul-
tivariable regression for chaotic systems % 0), and
thusitis valid only fori; >0 and not foir; =0. Hence,
it is concluded that it has a physical meaning only for
chaotic flows.

Next, we will examine the correlation &> with
Dky andDyx. A multivariable regression gives

Dy = 0.14Dgy + 0.815Ds. (5)

From this expressiomm); seems to correlate better with
Dy than withDky . When the four Hamiltonian systems
(clearly shown inFig. 5with Dxy =3.0) are omitted
from the regressior); is still better correlated t®s;
than to the other two Lyapunov dimensions, but 9.

is replaced by
D = 1.17Dky — 0.18Dy, (6)

and we note that 1.170.18 <1 as expected.
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This result was expected by lookingFig. 5where The main conclusion of the above analysis and from
most of the points lie nearer tHaky line, although Fig. 5is that the two new fitted Lyapunov dimensions
the source of the discrepancy is still under investiga- Dyt and Dsi.c are better approximations @, than
tion. One explanation for the difference between Eqgs. Dky is. The general Kaplan—Yorke conjecture is also
(5) and (6)could be that a Hamiltonian system (with verified, since our calculations for the fitted dimen-
[A1/A3] = 1) hadDky =Dy =3, and this causes anumer- sions indicate thdDxy > D2 and since these two fitted
ical error in the regression. There is no point in com- dimensions are approximations®g, it should be con-
paring Dxy with Dy for Hamiltonian systems since cluded thaDky > Dsit andDky > Dyit.c. This is veri-
they produce exactly the same dimension. Therefore, fied in Fig. 5, although some cases are reported where
Eq. (6) is the more plausible result. Furthermore, in D2 > Dy and alsdDs; > Dy . The latter is explained
order to clarify this discrepancy whether the Hamilto- by the unavoidable large uncertainties in the calculation
nian systems are included or omitted, a regression with of D, as described in Sectidh
a constant term was made
Dz =055+ 0.68Dky + 007Dz, 5. New forms of the fit dimension
indicating thaD; correlates better witBky than with
Dx. Much of the difficulty of getting good fits for this Besides the regression form &fj; =a — BA1/A3,
specific regression arises from the large uncertainties in other forms were tested. A power series polynomial
estimatingD> for the Hamiltonian cases, and it might regression is a good candidate for the kind of data pre-
be resolved by examining more attractors with dimen- sented irFig. 5 This new expressioBi.q (quadratic)
sion close to 3. The result though of tbg: remained is given by
unaltered whether the Hamiltonian systems were in-
cluded or not.

The result above could also be deduced from
the Kaplan—Yorke conjecture that impli& < Dgy .
SinceDy, > Dky, we conclude that

2
Dfit.q = 2.055— 0.796)2l — 0.047<M) . @)
A3 A3
However, the result did not improve much the linear
Dsit since —0.006< Dyit.q — Dsit <0.0057. The great-
D2 < Dky =< Dx. est difference oDyit.q—Dsit (although it is very small)
is for 0.4 <|A1/x3] < 0.6 and/r1/A3| > 0.8. This is log-
ical from Fig. 5 because the quadratic fit improves
the linear fit, since in these two ranges there are
significant discrepancies. For example, there are two
Hamiltonian systems witlDgy =3 (or |A1/A3] =1),
| one with D2=2.5214-0.146, and the other with
D,=2.8374+0.173. A higher-order (cubic or quartic)
regression is probably not justified because of the large
uncertainties irDo.

Another fit could be an exponential one to corre-
late better with the low-dimensional cases and try to
align with the moderate and high-dimensional ones. It
is given by

Thus our result is a verification of the Kaplan—Yorke
conjecture. However, a careful inspection Eify. 5
shows that many cases hd¥g> Dgy oreverD, >Dy.
This result arises from the unavoidable large uncertain-
ties inD2 given inTable 1since many of the systems
used did not show good convergence in the numerica
calculations of the correlation dimensibn.

In this analysis, while more and more cases were
being added to the calculations, the changBgfwas
negligible, suggesting thdds;; is a robust result. By
comparingDsi; with Dy, one can easily see that for
|A1/A3] < 1/4, we haveéDsi; > Dgy . A daring suggestion
could be made from the latter, that siriggis closer to
Dsit than to the other dimensions, then if one could find A1 A1
with an accurate calculation a case where> Dy, Dt exp = —2-1027 +2.15 eXD<K> . (8)
then this would happen fok1/A3| < 1/4. However, this 3 3
is a suggestion deduced from our results and not a con-This new dimensioDsi.exp Was found to correlate bet-
clusion due to the large uncertainties in the correlation ter toD, thanDgy andDy do, but not better than the
dimensiorD,. The same analysis can be madeDdgy, linearDyt. Furthermore, a disadvantage of D@ exp is
whereDsi; > Dy for [A1/A3| <1/20. thatithas a minimum at; /A3 = —0.00225, whereas the
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Fig. 6. Scatter plot foD> vs.A1/A3. The solid line isDyit-exp2 Of EQ. (9), the dashed line iBit.q of Eq. (7), and the dotted line iBfit.exp of Eq.

(8). Squares stand fd,.

dimension should increase monotonically witf/x3
and have no local extrema for Qxi/A3| <1. This
is true for Dky, Ds, Dsit and Dyi.q for the range
0<|A1/A3] <1, whereas itis not true for a higher-order

dimensional chaotic flows, both of which are used
widely in experimental and theoretical work. For the
results to be consistent, three systems were used that
can span dimensions between 2 and 3, with two of

(cubic or quartic) regression, because its second deriva-these introduced here for the first time. A total of 46

tive would change sign in this range.
Another fit, which gave results almost identical to
Dsit, is given by

A
Dit-exp2 = 2.076 exp(—o.307/\1> . 9)
3

chaotic systems were used, including four Hamiltonian
systems covering the whole range D.¥/A3| < 1. For
these 46 cases, the correlation dimension and the Lya-
punov exponent spectrum were calculated using the
best methods available. By fitting these results with
different forms of regression, we constructed new Lya-

Due to the small parameter (0.307) in the exponent, punov dimensions that were found to correlate better to

Drit-exp2 is similar to the lineaDs¢. The latter is still
preferable mostly due to the large uncertaintieBjn
All of the above fitted dimensions from Eq3)—(9)
are given in the scatter plot iRig. 6. These new fits
haveD > 2 for A1 =0. This can easily be corrected with

D, thanDky does. The linear regression in the general
formD =« — BA1/A3 was found to be the best due to the
large uncertainties iD,. The Kaplan—Yorke conjecture
(described in Sectiop) was verified, and hence the best
approximation td>, according to our calculations was

the same multivariable analysis as discussed in Sectionfound to be Eq(4): Dfi.c =2 — 0.83611/13 since the
4, and it was found that the effects on the correlation two-parameter fit in Eq1): Dfit = 2.061— 0.748.1/A3

were similar.

6. Conclusions

In this paper we demonstrated for the first time to

violates the Kaplan—Yorke conjecture fan/i3| < 1/4
although these two dimensioBgi.c andDs; coincide
for |[A1/13]>1/4. The latter was explained in this let-
ter as a result of the unavoidable uncertainties in the
calculation of the correlation dimensi@p.

Besides the Kaplan—Yorke dimensi@gyy, a new

the best of our knowledge a comparison of the cor- Lyapunov dimensioy that uses a quadratic interpo-
relation and the Kaplan—Yorke dimensions for three- lation instead of the linear one used for the derivation
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