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Abstract

This paper investigates the relation between the correlation (D2) and the Kaplan–Yorke dimension (DKY ) of three-dimensional
chaotic flows. Besides the Kaplan–Yorke dimension, a new Lyapunov dimension (D�), derived using a polynomial interpolation
instead of a linear one, is compared withDKY andD2. Various systems from the literature are used in this analysis together with
some special cases that span a range of dimension 2 <DKY ≤ 3. A linear regression to the data produces a new fitted Lyapunov
dimension of the formDfit =α − βλ1/λ3, whereλ1 andλ3 are the largest and smallest Lyapunov exponents, respectively. This
form correlates better with the correlation dimensionD2 than do eitherDKY orD�. Additional forms of the fitted dimension are
investigated to improve the fit toD2, and the results are discussed and interpreted with respect to the Kaplan–Yorke conjecture.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

The dimension of a strange attractor is a measure
f its geometric scaling properties or its “complexity”
nd has been considered the most basic property of an
ttractor. Numerous methods have been proposed for
haracterizing the fractional dimension of the strange
ttractors produced by chaotic flows. These methods

all into two categories, those derived from the topol-
gy, and those derived from the dynamics. Perhaps the
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most common of the former metrics is the correla
dimension, popularized by Grassberger and Proc
[1], and the most common of the latter type is the L
punov dimension, proposed by Kaplan and Yorke[2].
The relation between these two dimensions has n
been systematically studied for a wide variety of s
tems for three-dimensional flows, in part because
topological measures are very difficult to calculate
curately. Ledrappier has verified that the Kaplan–Yo
dimensionDKY is generically equal to the informati
dimensionD1 [13]. The latter is also verified for two
dimensional diffeomorphisms[16]. In this letter, we
focus on the Kaplan–Yorke and the correlation dim
sion, and we try to verify via a statistical computatio
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study the relation between these two for a wide range
of three-dimensional chaotic systems.

What follows is such a detailed comparison, repre-
senting a computationally intensive study of 46 differ-
ent three-dimensional chaotic systems with fractional
dimensions that span the entire range from 2 to 3.
A modified form of the Kaplan–Yorke dimension is
tested, as well as a form derived using a polynomial fit
to the spectrum of Lyapunov exponents.

The aim of this work is to investigate the relation
between these two dimensions, since such a system-
atic study has never been done for three-dimensional
chaotic flows to the best of our knowledge. The sec-
ond goal of this paper is to construct a new Lyapunov
dimension that better correlates with the correlation di-
mensionD2 than the Kaplan–Yorke dimensionDKY or
a new Lyapunov dimensionD� (introduced in the next
section) does. This study will examine the connection
between the Lyapunov spectrum (the two nonzero Lya-
punov exponents) of a three-dimensional chaotic flow
and the fractional dimension that is derived from the
topology of the strange attractorD2.

2. Lyapunov and correlation dimensions

The Kaplan–Yorke dimension[2] can be defined
as the fractional dimension in which a cluster of ini-
tial conditions will neither expand nor contract as it
evolves in time. The rate of expansion is the sum of the
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λ to a (D− 1)-degree polynomial
and finding the attractor dimensionD� from its zero
crossing. For a three-dimensional chaotic flow with
only three exponents, one of which (λ2) is zero, the
best one can do is to use a quadratic fit of the form∑

λ = λ3D
2
�/2 − 3λ3D�/2 +λ1 +λ3 whose root for∑

λ = 0 is

D� = 1.5 + 0.5

√
1 − 8λ1

λ3
.

This formula gives a larger prediction than the usual

DKY = 2 − λ1

λ3
.

These two dimensions haveD� ≥DKY for
−1≤ λ1/λ3 ≤ 1 with a maximum difference of
D� −DKY = 1/8 atλ1/λ3 =−3/8. The next section will
examine this difference in more detail.

The correlation dimension[1] is calculated from the
correlation integralC(r), which is the probability that
two randomly chosen points on the attractor are sepa-
rated by a distance less thanr and is given by

D2 = lim
r→0

d log C(r)

d log r
.

Accurate calculation ofD2 is notoriously difficult be-
cause the value of the derivative often converges very
slowly for r→ 0 where the number of data points is too
small to permit an accurate determination ofC(r) and
b es
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yapunov exponents, and this sum will necessaril
egative for an attractor of any kind. By ordering
yapunov exponents from the largest (most posit
o the smallest (most negative), it is a simple matte
ount the maximum number of exponents whose
ulative sum is positive, and this number repres
lower bound on the attractor dimension, since

luster of initial conditions will still expand in this d
ension. However, in the next higher integer dim

ion, the Lyapunov exponents will sum to a nega
alue, and hence the cluster contracts in that dim
ion, which thus represents an upper bound on th
ractor dimension. The Kaplan–Yorke dimension
e considered as a linear interpolation between t

wo integer values to estimate the fractional dimen
or which neither expansion nor contraction will occ

Sprott [3] has suggested that a more accurate
erpolation would result from fitting the sum of t
ecause the lacunarity[4] of the fractal attractor caus
(r) to oscillate. For many cases, it can be shown[5]

hatC(r) is of the form

ogC(r) = A + D2 logr + B log(−logr),

hereB is typically in the range of 0–1 and measu
he rate of convergence.

The values ofD2 quoted here were derived by
east-squares fit to the above formula using a minim
f 2× 1012 correlations. The computed values ten
e slightly larger than those typically quoted in the
rature for cases whereD2 has been estimated beca
f the slow convergence. Errors due to lacunarity o
ttractor are reflected in the quoted precision of th
nd are the main source of uncertainty.

A significant identity for the correlation dimensi
2, the information dimensionD1 and the capacity d
ensionD0 [14,15,17]that comes directly from the



K.E. Chlouverakis, J.C. Sprott / Physica D xxx (2004) xxx–xxx 3

definitions, is

D2 ≤ D1 ≤ D0.

A later conjecture held that the Kaplan–Yorke dimen-
sion is generically equal to a probabilistic dimen-
sion that appears to be identical to the information
dimensionD1 [12]. This conjecture is partially ver-
ified by Ledrappier for any ergodic invariant mea-
sure of a smooth map[13]. In terms of the above,
the Kaplan–Yorke conjecture (verified also for two-
dimensional diffeomorphisms[16]) asserts that the
Kaplan–Yorke dimension and the information dimen-
sion should generally coincide for natural invariant
measures and also that the information dimension can
coincide with the correlation dimension regardless of
the spectrum of Lyapunov exponents. Hence, from the
above, it can be conjectured that the Kaplan–Yorke di-
mensionDKY should be larger than or equal to the
correlation dimensionD2 and that one could not con-
clude anything about the connection betweenD2 and
the spectrum of Lyapunov exponents for a chaotic sys-
tem. However, a statistical study as described herein
can provide insight into the differences in the vari-
ous dimensions for typical three-dimensional chaotic
flows. By selecting a variety of chaotic systems that
span attractor dimensions between 2 and 3, a statistical
study of the Lyapunov exponents and the correlation
dimensionD2 suggests new Lyapunov dimensions that
correlate better toD2 thanDKY does, and verifies the
conjectures described above.
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Fig. 1. Poincaŕe plot {y= 0} in the x–z plane for the A8 case
(DKY = 2.764) inTable 1.

model will be named system A and is given by

dx

dt
= K + 1

2
xz +

(
ω − 1

2
αz

)
y,

dy

dt
= −

(
ω − 1

2
αz

)
x + 1

2
yz,

dz

dt
= −2Γz − (1 + 2Bz)(x2 + y2 − 1).

Typical values for the constants of system A are:
0 <K< 3, −3 <ω < 3, 0 <α < 15, 0 <B< 0.03 and
B<Γ < 0.1. This system is capable of producing
chaotic attractors with large values of dimension reach-
ing even 2.9 <DKY < 3. A Poincaŕe plot in thex–zplane
for y= 0 is given inFig. 1 for the A8 case given in
Table 1. It was also found in[9] that asα is increased,
the largest Lyapunov exponent of the system increases
linearly, resulting in a higher dimension.

A new simpler chaotic flow was found by modifying
system A withB=Γ =ω = 0 and by adding a damping
constantε in the dy/dt equation. Also, the “1/2” expres-
sions were removed from the dx/dt and dy/dt equations.
This system will be named system B and is given by

dx

dt
= K + z(x − αy),

dy

dt
= z(αx − εy),

dz

dt
= 1 − x2 − y2.

By varying the system’s parameters and especially the
p nal
. Chaotic flows

This section concerns the relation between the
elation dimensionD2 and the two Lyapunov dime
ionsDKY andD� that were introduced above. To ha
consistent and valid statistical result, a wide var

f chaotic systems must be used with dimensions s
ing the range of 2–3. Most of these systems from

iterature, like the Lorenz[6], the Rossler[7] attractors
nd many others, have dimensions only slightly gre

han 2.0. Hence, three more systems were used tha
er span the range of dimension from 2 to 3. The
ystem is a chaotic flow with eight nonlinearities t
s used to model semiconductor lasers optically dr
y a monochromatic light beam, and whose dynam
roperties are well known[8–10]. This rate-equatio
 arameterε, this system can produce high-dimensio
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Table 1
The 21 chaotic cases with the calculated Lyapunov exponents,DKY , D� andD2

System Parameters λ1 λ3 DKY D� D2

B6 K= 0.4,α = 1.5,ε = 0.86 0.11 −0.461 2.239 2.353 2.147± 0.115
A7 K= 1.10,ω = 0.56,α = 6.6,B= 0.015,Γ = 0.035 0.2254 −0.91 2.248 2.363 2.202± 0.095
A6 K= 0.80,ω = 0.56,α = 6.6,B= 0.015,Γ = 0.035 0.2144 −0.6867 2.312 2.435 2.41± 0.108
A2 K= 1.10,ω = 1.1,α = 9.0,B= 0.00667,Γ = 0.0079 0.325 −0.88 2.37 2.494 2.33± 0.13
C1 α = 9.0,γ = 0.18 0.111 −0.2933 2.378 2.503 2.49± 0.13
A1 K= 0.451,ω = 1.1,α = 2.6,B= 0.0295,Γ = 0.0973 0.1206 −0.308 2.391 2.516 2.2± 0.11
C3 α = 10.0,γ = 0.18 0.141 −0.32 2.44 2.564 2.532± 0.117
B5 K= 0.4,α = 3.0,ε = 0.0 0.1487 −0.333 2.447 2.57 2.433± 0.109
C2 α = 14.3,γ = 0.18 0.1972 −0.38 2.52 2.635 2.72± 0.13
B9 K= 0.4,α = 4.0,ε =−1.66 0.2155 −0.4133 2.521 2.637 2.367± 0.117
B1 K= 0.4,α = 3.0,ε =−0.10 0.187 −0.3526 2.535 2.645 2.353± 0.12
B3 K= 0.4,α = 4.0,ε = 0.052 0.258 −0.4363 2.591 2.697 2.352± 0.114
B8 K= 0.4,α = 4.0,ε =−1.55 0.239 −0.3936 2.607 2.71 2.548± 0.128
A3 K= 0.65,ω = 1.1,α = 9.0,B= 0.00667,Γ = 0.0079 0.3956 −0.592 2.668 2.76 2.52± 0.15
B4 K= 0.4,α = 4.0,ε = 0.38 0.2986 −0.4072 2.733 2.81 2.499± 0.15
A8 K= 0.30,ω = 0.0,α = 8.0,B= 0.015,Γ = 0.035 0.312 −0.408 2.764 2.834 2.557± 0.15
B2 K= 0.4,α = 4.0,ε =−0.66 0.3 −0.3828 2.784 2.85 2.703± 0.159
B7 K= 0.5,α = 7.0,ε = 0.23 0.476 −0.556 2.856 2.9 2.719± 0.156
A4 K= 0.20,ω = 1.1,α = 9.0,B= 0.00667,Γ = 0.0079 0.2625 −0.2943 2.892 2.926 2.787± 0.184
A5 K= 0.11,ω = 0.10,α = 9.0,B= 0.00667,Γ = 0.0079 0.152 −0.16 2.95 2.966 2.983± 0.18
A9 K= 0.10,ω = 0.0,α = 15.0,B= 0,Γ = 0 0.19 −0.192 2.99 2.993 3.013± 0.202

chaotic attractors reachingDKY ≈ 2.9. A plot ofDKY
versusε is given inFig. 2, and a Poincaré plot is shown
in Fig. 3 in the x–z plane fory= 0 for the B1 case in
Table 1. In Fig. 2, asε is varied,DKY covers the range
from 2 to 2.82 with a maximum value ofDKY given by
the dotted line. With a suitable combination ofε and
α, the whole range of 0 <|λ1/λ3| < 1 is easily covered.
The largest values ofDKY requireα > 7.

Fig. 2. Variation ofDKY with control parameterε for K= 0.4 andα = 4 for system B.

Another new chaotic flow (named system C)
was found and used in this work, and it is given
by

dx

dt
= xz + γ cos(y),

dy

dt
= δz − γy,

dz

dt
= 1 − x2.
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Fig. 3. Poincaŕe plot {y= 0} in the x–z plane for the B1 case
(DKY = 2.535) inTable 1.

Typical values for this system that produce chaotic so-
lutions are 0 <γ < 1 and 0 <δ < 100. Within this range,
system C can produce a dimension reachingDKY ≈ 2.8.
This value was found to be a maximum, in contrast
to systems A and B that can cover the whole range
0 < |λ1/λ3| < 1. For system B to produceDKY > 2.9, a
very high value ofδ is required; i.e.,δ = 500 andγ = 0.07
givesDKY = 2.9. A Poincaŕe plot is shown inFig. 4 in
thex–zplane fory= 0 for the C2 case inTable 1.

Systems B and C are abstract chaotic vector fields,
constructed for the purpose described in Section1, pro-
ducing an attractor with dimension almost anywhere
between 2 and 3 to be used in the statistical study of

Fig. 4. Poincaŕe plot {y= 0} in the x–z plane for the C2 case
(

the relation between the Lyapunov exponents and the
correlation dimensionD2. The latter is introduced in
the following section.

4. Comparison of the Lyapunov and
correlation dimensions

These three systems A, B and C were used here
to investigate the relation between the correlation di-
mensionD2 and the two Lyapunov dimensionsDKY
andD� in the range 0.2 <|λ1/λ3| < 1. In Table 1we
present 21 cases of these three systems ordered from
the lowest to the highestDKY . The lowest value used
wasDKY = 2.239, and the highest wasDKY = 2.99. To-
gether with these cases, 24 more low-dimensional cases
were used from Appendix A.5 and A.6 of[3], including
four Hamiltonian systems and one more system[11]
that hasDKY = 2.897 andD2 = 2.84± 0.28. Hence, 46
total chaotic systems were used in this analysis to cover
the whole range 0 <|λ1/λ3| ≤ 1.

The calculation ofDKY andD2 for these 21 cases
of Table 1for the systems A, B and C, reveal mixed
relations between these two dimensions. For example,
system B always hasDKY >D2 as expected, whereas
system C hasDKY <D2 presumably as a result of
numerical uncertainty in the calculation ofD2. For
system A these relations are mixed. The unavoidable
large uncertainty in the calculation ofD2 as explained
in Section2 is the reason why many systems with
l ysis,
s and
g

a-
p rre-
l e
r
c
a

D

T ce
b rger
t
s
c
t
p ed
DKY = 2.52) inTable 1.
arge attractor dimension were used in this anal
o that the final statistical result is more valid
eneral.

The aim of this work is to construct a new Ly
unov dimension that better correlates with the co

ation dimensionD2. Also by applying a multivariabl
egression, it will be determined whetherDKY or D�

orrelates better withD2 by measuring the weightsα
ndβ in the expression

2 = αDKY + βD�, α + β ≤ 1.

he summationα +β should be less than unity sin
oth of these Lyapunov dimensions tend to be la

hanD2 as shown inTable 1and inFig. 5 where the
catter plot ofD2 versusλ1/λ3 is given for all 46
ases reported inTable 1. Fig. 5 clearly shows how
he whole space is covered for 0 <|λ1/λ3| ≤ 1. In this
lot,DKY andD� are included with solid and dash
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Fig. 5. Scatter plot forD2 vs.λ1/λ3. The solid line isDKY , the dashed line isD�, the dotted line isDfit of Eq. (1), and the dash-dotted line is
Dfit-C of Eq.(4). Squares stand forD2.

lines, respectively, and the values ofD2 are denoted
with squares in the same plot.

By applying a least-squares linear regression, a new
Lyapunov dimension is calculated and shown inFig. 5
with the dotted line given by

Dfit = 2.061− 0.749
λ1

λ3
. (1)

In contrast toDKY (which is equal to 2− λ1/λ3), we
note a small increase in the first parameter (2→ 2.061)
and a decrease in the second parameter (1→ 0.749).
The first of these shifts produces a better correla-
tion of Dfit to D2 for the low-dimensional systems
with |λ1/λ3| < 0.2 according toFig. 5. The second
shift (1→ 0.749) produces a better correlation for the
higher-dimensional systems since most of them lie be-
low the solid line ofDKY . To show thatDfit is a better
approximation toD2 than eitherDKY orD�, two mul-
tivariable regressions produced

D2 = −0.00077DKY + 1.001Dfit, (2)

D2 = 0.019D� + 0.979Dfit . (3)

However, Eq. (1) gives Dfit = 2.061 whenλ1 = 0,
whereas the correlation dimension should beD2 ≤ 2.
This is purely a mathematical artifact since this shift
of 0.061 is made in order forDfit to correlate better

with the low-dimensional systems as discussed above.
Hence, a new regression was applied with a constant
term that now has a physical meaning (Dfit = 2 for
λ1 = 0) and the result was

Dfit-C = 2 − 0.836
λ1

λ3
. (4)

Following the notation from Eqs.(2) and (3), this new
Dfit-C was found to correlate better withD2 thanDKY
andD� do. However, Eq.(1) was derived from a mul-
tivariable regression for chaotic systems (λ1 > 0), and
thus it is valid only forλ1 > 0 and not forλ1 = 0. Hence,
it is concluded that it has a physical meaning only for
chaotic flows.

Next, we will examine the correlation ofD2 with
DKY andD�. A multivariable regression gives

D2 = 0.14DKY + 0.815D�. (5)

From this expression,D2 seems to correlate better with
D� than withDKY . When the four Hamiltonian systems
(clearly shown inFig. 5 with DKY = 3.0) are omitted
from the regression,D2 is still better correlated toDfit
than to the other two Lyapunov dimensions, but Eq.(4)
is replaced by

D2 = 1.17DKY − 0.18D�, (6)

and we note that 1.17− 0.18 < 1 as expected.
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This result was expected by looking atFig. 5where
most of the points lie nearer theDKY line, although
the source of the discrepancy is still under investiga-
tion. One explanation for the difference between Eqs.
(5) and (6)could be that a Hamiltonian system (with
|λ1/λ3| = 1) hasDKY =D� = 3, and this causes a numer-
ical error in the regression. There is no point in com-
paringDKY with D� for Hamiltonian systems since
they produce exactly the same dimension. Therefore,
Eq. (6) is the more plausible result. Furthermore, in
order to clarify this discrepancy whether the Hamilto-
nian systems are included or omitted, a regression with
a constant term was made

D2 = 0.55+ 0.68DKY + 0.07D�,

indicating thatD2 correlates better withDKY than with
D�. Much of the difficulty of getting good fits for this
specific regression arises from the large uncertainties in
estimatingD2 for the Hamiltonian cases, and it might
be resolved by examining more attractors with dimen-
sion close to 3. The result though of theDfit remained
unaltered whether the Hamiltonian systems were in-
cluded or not.

The result above could also be deduced from
the Kaplan–Yorke conjecture that impliesD2 ≤DKY .
SinceD� ≥DKY , we conclude that

D2 ≤ DKY ≤ D�.

Thus our result is a verification of the Kaplan–Yorke
conjecture. However, a careful inspection ofFig. 5
s
T tain-
t s
u rical
c

ere
b
n y
c for
| n
c
D find
w
t s
i con-
c tion
d
w

The main conclusion of the above analysis and from
Fig. 5 is that the two new fitted Lyapunov dimensions
Dfit andDfit-C are better approximations toD2 than
DKY is. The general Kaplan–Yorke conjecture is also
verified, since our calculations for the fitted dimen-
sions indicate thatDKY ≥D2 and since these two fitted
dimensions are approximations toD2, it should be con-
cluded thatDKY ≥Dfit andDKY ≥Dfit-C. This is veri-
fied in Fig. 5, although some cases are reported where
D2 ≥DKY and alsoDfit ≥DKY . The latter is explained
by the unavoidable large uncertainties in the calculation
of D2 as described in Section2.

5. New forms of the fit dimension

Besides the regression form ofDfit =α − βλ1/λ3,
other forms were tested. A power series polynomial
regression is a good candidate for the kind of data pre-
sented inFig. 5. This new expressionDfit-q (quadratic)
is given by

Dfit-q = 2.055− 0.796
λ1

λ3
− 0.047

(
λ1

λ3

)2

. (7)

However, the result did not improve much the linear
Dfit since−0.006≤Dfit-q −Dfit ≤ 0.0057. The great-
est difference ofDfit-q−Dfit (although it is very small)
is for 0.4 <|λ1/λ3| ≤ 0.6 and|λ1/λ3| > 0.8. This is log-
ical from Fig. 5 because the quadratic fit improves
t are
s two
H
o th
D ic)
r arge
u

rre-
l y to
a s. It
i

D

T t-
t e
l
t e
hows that many cases haveD2 >DKY or evenD2 >D�.
his result arises from the unavoidable large uncer

ies inD2 given inTable 1since many of the system
sed did not show good convergence in the nume
alculations of the correlation dimensionD2.

In this analysis, while more and more cases w
eing added to the calculations, the change ofDfit was
egligible, suggesting thatDfit is a robust result. B
omparingDfit with DKY , one can easily see that
λ1/λ3| < 1/4, we haveDfit >DKY . A daring suggestio
ould be made from the latter, that sinceD2 is closer to
fit than to the other dimensions, then if one could
ith an accurate calculation a case whereD2 >DKY ,

hen this would happen for|λ1/λ3| < 1/4. However, thi
s a suggestion deduced from our results and not a
lusion due to the large uncertainties in the correla
imensionD2. The same analysis can be made forD�,
hereDfit >D� for |λ1/λ3| < 1/20.
he linear fit, since in these two ranges there
ignificant discrepancies. For example, there are
amiltonian systems withDKY = 3 (or |λ1/λ3| = 1),
ne with D2 = 2.521± 0.146, and the other wi
2 = 2.837± 0.173. A higher-order (cubic or quart

egression is probably not justified because of the l
ncertainties inD2.

Another fit could be an exponential one to co
ate better with the low-dimensional cases and tr
lign with the moderate and high-dimensional one

s given by

fit- exp = −2.102
λ1

λ3
+ 2.15 exp

(
λ1

λ3

)
. (8)

his new dimensionDfit-exp was found to correlate be
er toD2 thanDKY andD� do, but not better than th
inearDfit . Furthermore, a disadvantage of theDfit-exp is
hat it has a minimum atλ1/λ3 =−0.00225, whereas th
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Fig. 6. Scatter plot forD2 vs.λ1/λ3. The solid line isDfit-exp2 of Eq.(9), the dashed line isDfit-q of Eq.(7), and the dotted line isDfit-exp of Eq.
(8). Squares stand forD2.

dimension should increase monotonically withλ1/λ3
and have no local extrema for 0 <|λ1/λ3| ≤ 1. This
is true for DKY , D�, Dfit and Dfit-q for the range
0 < |λ1/λ3| ≤ 1, whereas it is not true for a higher-order
(cubic or quartic) regression, because its second deriva-
tive would change sign in this range.

Another fit, which gave results almost identical to
Dfit , is given by

Dfit- exp 2 = 2.076 exp

(
−0.307

λ1

λ3

)
. (9)

Due to the small parameter (0.307) in the exponent,
Dfit-exp2 is similar to the linearDfit . The latter is still
preferable mostly due to the large uncertainties inD2.

All of the above fitted dimensions from Eqs.(7)–(9)
are given in the scatter plot inFig. 6. These new fits
haveD> 2 forλ1 = 0. This can easily be corrected with
the same multivariable analysis as discussed in Section
4, and it was found that the effects on the correlation
were similar.

6. Conclusions

In this paper we demonstrated for the first time to
the best of our knowledge a comparison of the cor-
relation and the Kaplan–Yorke dimensions for three-

dimensional chaotic flows, both of which are used
widely in experimental and theoretical work. For the
results to be consistent, three systems were used that
can span dimensions between 2 and 3, with two of
these introduced here for the first time. A total of 46
chaotic systems were used, including four Hamiltonian
systems covering the whole range 0 <|λ1/λ3| ≤ 1. For
these 46 cases, the correlation dimension and the Lya-
punov exponent spectrum were calculated using the
best methods available. By fitting these results with
different forms of regression, we constructed new Lya-
punov dimensions that were found to correlate better to
D2 thanDKY does. The linear regression in the general
formD=α − βλ1/λ3 was found to be the best due to the
large uncertainties inD2. The Kaplan–Yorke conjecture
(described in Section2) was verified, and hence the best
approximation toD2 according to our calculations was
found to be Eq.(4): Dfit-C = 2− 0.836λ1/λ3 since the
two-parameter fit in Eq.(1): Dfit = 2.061− 0.748λ1/λ3
violates the Kaplan–Yorke conjecture for|λ1/λ3| < 1/4
although these two dimensionsDfit-C andDfit coincide
for |λ1/λ3| > 1/4. The latter was explained in this let-
ter as a result of the unavoidable uncertainties in the
calculation of the correlation dimensionD2.

Besides the Kaplan–Yorke dimensionDKY , a new
Lyapunov dimensionD� that uses a quadratic interpo-
lation instead of the linear one used for the derivation
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of theDKY was tested. This new Lyapunov dimension
was found to correlate less well toD2 thanDKY orDfit
andDfit-C do, by applying a multivariable regression
in the formD2 =αDKY +βD�, where the parametersα
andβ are the weights of correlation. From this result,
D� was found not to correlate better withD2. Further-
more, it was found thatD� is always greater thanDKY
in the whole range 0 <|λ1/λ3| < 1 and that it has a max-
imum difference fromDKY equal toD� −DKY = 1/8
atλ1/λ3 =−3/8, making it the largest of all the dimen-
sions used to characterize three-dimensional chaotic
flows.

An obvious extension of this work would be to com-
pareDKY with the entire spectrum of generalized di-
mensions. However, the computation required to deter-
mineD2 for this large collection of systems amounted
to many CPU-years on state-of-the-art personal com-
puters, and so such an ambitious project will have to
await further advances in computational capabilities.
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