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Imaging of a Double Helical Structure in the
Reversed Field Pinch

F. Bonomo, B. E. Chapman, P. Franz, L. Marrelli, P. Martin, P. Piovesan, I. Predebon, G. Spizzo, and R. B. White

Abstract—X-ray tomography and Poincaré reconstructions with
the ORBIT code allow imaging of coherent structures emerging in
a magnetized fusion plasma when chaos in the magnetic field is
reduced.

Index Terms—Magnetohydrodynamic (MHD), Monte Carlo
methods, reversed field pinch, soft X-ray tomography.

THE reversed field pinch (RFP) is a current-carrying config-
uration for the magnetic confinement of a toroidal plasma

[1]. It is characterized by a magnetic field with toroidal and
poloidal components of comparable magnitude, mainly gen-
erated by currents within the plasma. This makes the plasma
prone to magnetohydrodynamic (MHD) instabilities, which can
be characterized by poloidal and toroidal mode numbers and

, respectively. These instabilities break the toroidal symmetry
of the magnetic field and are the driver of the self-generated
toroidal magnetic field. In standard RFP plasmas, there is a
wideband, temporally fluctuating spectrum of and

modes which nonlinearly interact and produce a stochastic
magnetic field.

A strong transient reduction of magnetic turbulence has been
obtained by applying a parallel electric field to the plasma
edge, the so-called pulse parallel current drive (PPCD) tech-
nique [2]–[4]. A population of very energetic electrons has
recently been measured in the plasma core during PPCD and
has been interpreted as a result of the substantial decrease of
magnetic stochasticity in that region [5]. This interpretation
is consistent with measurements [6] performed with a soft
X-ray (SXR) tomographic diagnostic installed on the Madison
Symmetric Torus (MST) RFP device [7]. This diagnostic is
composed of two arrays of solid-state silicon detectors, which
collect SXR radiation along 24 lines of sight. Tomographic
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algorithms [8], [9] applied to these line-integrated measure-
ments provide the two-dimensional (2-D) emissivity profile in
a poloidal cross section, as depicted in the inset in Fig. 1.
For the first time in a RFP, two distinct SXR structures are
observed [6]. In the MHD framework, the kinetic pressure is
constant on magnetic flux surfaces and SXR iso-emissivity
surfaces are representative of them; based on the analysis of
correlation between magnetic and SXR fluctuations, we con-
clude that these structures are magnetic islands. In standard
plasmas, SXR structures are not observed because of the large
mode amplitudes, corresponding to a condition with strong
overlap of magnetic islands and a highly stochastic field struc-
ture without helical flux surfaces.

This is confirmed by the analysis of the magnetic field
lines topology, as reconstructed by the ORBIT code [10], [6],
recently adapted to the RFP configuration. ORBIT is a Monte
Carlo code, in which test particle guiding center equations
are cast in hamiltonian form and can, therefore, be integrated
for long distances in order to reconstruct the magnetic flux
surfaces. Guiding center trajectories of particles of vanishingly
small energy coincide with magnetic field lines. By using
experimental boundary conditions (magnetic fluctuations and
equilibrium measurements), constrained by SXR tomographic
reconstructions, the helical coherent structures have been re-
constructed [11]. The results of the ORBIT simulations confirm
the presence of two SXR structures: their radial positions and
dimensions are in good agreement with ORBIT field map.
Thus, in addition to the 2-D reconstruction of the SXR to-
mography, magnetic flux surfaces computed by ORBIT give
a three-dimensional (3-D) representation of the magnetic flux
surfaces, as shown in Fig. 1. The image represents two partic-
ular magnetic surfaces of the two magnetic islands. In the case
considered here, the islands correspond to the two innermost
resonant modes and . The 2-D
reconstruction of the SXR emissivity in the poloidal section
of the tomography is highlighted. The two innermost resonant
magnetic islands, though existing in close proximity to one
another, are spatially well resolved.

To summarize, our SXR data reveals a significant change in
magnetic topology, which is represented in 3-D by magnetic
field line tracing, confirming the conclusion that, during PPCD,
a substantial reduction of magnetic chaos occurs in the plasma
core.
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Fig. 1. 2-D tomographic reconstruction of SXR emissivity (red: high emissivity, green: low emissivity), together with a 3-D representation of two helical magnetic
surfaces. 3-D color coding is only to aid visualization of the helical structures: green-yellow-red refer to (1, 6) and cyan-blue-violet to (1, 7).
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