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The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the
geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical com-
putation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the
magnetic Reynolds number Rm=�0�Va and the fluid Reynolds number Re=Va /� of the flow. For Re�420,
the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a
growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of
the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally
stable. For Re�420 and Rm�100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The
mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation
driven currents �such as those predicted by the mean-field theory�, which effectively enhance the magnetic
diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different
from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the
mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the
fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar
and turbulent flows. An Ohm’s law analysis of the axisymmetric currents allows the fluctuation-driven currents
to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with
the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal
and poloidal flux expulsion are observed.
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I. INTRODUCTION

Astrophysical and geophysical magnetic fields are gener-
ated by complex flows of plasmas or conducting fluids that
convert gravitational potential, thermal, and rotational ener-
gies into magnetic energy �1,2�. A comprehensive theory of
the magnetohydrodynamic dynamo is elusive because the
generating mechanism can vary dramatically from one sys-
tem to another. These variations arise from differences in
free energy sources, conductivity and viscosity of the con-
ducting media, and geometry. Isolating and understanding
the mechanisms by which self-generation occurs and the role
of turbulence in the transition to a dynamo remain important
problems.

Dynamo action arises from the electromotive force �EMF�
induced by the movement of an electrically conducting me-
dium through a magnetic field. This motional EMF generates
a magnetic field that, depending on the details of the motion,
can either amplify or attenuate the initial magnetic field. If
the induced field reinforces the initial magnetic field, then
the positive feedback leads to a growing magnetic field. The
source of energy for this dynamo is the kinetic energy of the
moving fluid. The fluid may be driven by many different
mechanisms, such as thermal convection in a rotating body,
for the case of the Earth, or by impellers in liquid sodium
dynamo experiments.

Turbulence can play an important role in the dynamo on-
set and the saturated state. In the saturated state, the back

reaction of the self-generated magnetic field modifies the ve-
locity field. It is well known that in hydrodynamics, turbu-
lence converts large-scale motions into smaller and smaller
eddies, a process known as a turbulent cascade. In magneto-
hydrodynamics �MHD�, fluid turbulence can fold a large-
scale magnetic field into smaller structures �3�. If the small-
scale magnetic fluctuations are helical, they can, on average,
generate a net EMF by interacting with the velocity field
fluctuations and drive large-scale currents. When the mag-
netic field of this fluctuation-driven current reinforces the
original magnetic field, self-excitation may be possible.
Thus, the generation of small-scale currents may explain ob-
served large-scale magnetic fields �4–6�.

Exact treatment of current generation in electrically con-
ducting fluids requires solving the MHD equations governing
the magnetic and velocity fields

�B

�t
=

1

�0�
�2B + � � v � B �1�

�� �v

�t
+ �v · ��v� = J � B + ���2v − �p + F , �2�

where � is the density, � is the conductivity, � is the viscos-
ity, and p is the pressure. F is a driving term annotating the
sundary sources of free energy in the flow. Equations �1� and
�2�, without limiting assumptions, are analytically intrac-
table. Early dynamo theory focused on only solving Eq. �1�
in the kinematic limit, where the linear magnetic field stabil-
ity of prescribed velocity fields was calculated to determine
whether magnetic field growth was possible �7–9�. Because*Electronic address: cbforest@wisc.edu
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of the advances in computing power during the last decade,
great progress has been made by performing numerical simu-
lations of dynamos, which simultaneously solve the nonlin-
ear MHD equations �Eqs. �1� and �2��. These studies break
into two separate classes: global simulations, which attempt
to model geophysical or astrophysical dynamos such as the
Earth and the Sun �10–15�, and simplified models, in which
the geometry is simple enough to uniquely identify particular
physical effects �16–18�.

The numerical simulations have been useful for studying
magnetic field generation, even though they cannot resolve
the fluid turbulence of the actual systems. In particular, the
role of the magnetic Prandtl number, Pm=Rm/Re, on thresh-
old conditions for magnetic field growth is of importance for
understanding magnetic field generation in the Earth, Sun,
and in experiments. The linear self-excitation of the mag-
netic field is governed by the magnetic Reynolds number,
Rm=�0�LV0, where � is the molecular electrical conductiv-
ity, L is a characteristic size of the conducting region, and V0
is the peak speed. Hydrodynamic turbulence is governed by
the fluid Reynolds number Re=V0� /�, where � is the char-
acteristic size of the flow. Simulations are capable of resolv-
ing the modest values of Rm needed to observe self-
excitation, but not at the very high values of Re typical of
low Pm dynamos. Recent studies in periodic boxes �19,20�
have focused on understanding the generation of small-scale
magnetic fields at low Pm. Simulations in cylindrical geom-
etries with mean flows �21� show that the dynamo can be
suppressed when turbulence is present. The periodic box
simulations are particularly good at modeling infinite, homo-
geneous turbulence, though these conditions are rarely, if
ever, realized in actual astrophysical or planetary contexts.
Little work has been done to understand the dependence of
large-scale magnetic field generation on Pm.

To address more realistic models of astrophysical turbu-
lence, research has turned to experiments. Experiments at
Riga �22–24� and Karlsruhe �25–27� use pumps to create
flows of liquid metal through helical pipes. These experi-
ments are designed to be laminar kinematic dynamos, i.e., the
average velocity field of the liquid metal is designed
�through impeller and pipe geometry� to produce a magnetic
field instability. The motivation for using liquid metal in the
Riga and Karlsruhe experiments is to allow helical flows, yet
the conduction and flow paths are not simply connected. Dy-
namos in simply connected geometries where the flow is
unconstrained have yet to be demonstrated in an experiment.

The self-excitation threshold of the Riga and Karlsruhe
experiments is governed by the magnetic Reynolds number.
For particular flow geometries, the kinematic theory predicts
a critical magnetic Reynolds number, Rmcrit, for self-
excitation such that a dynamo transition is observed when
Rm�Rmcrit. An important result from the Riga and
Karlsruhe experiments is that the measured Rmcrit at which
the dynamo action that occurs is essentially governed by the
mean velocity field. Turbulence that was constrained by the
characteristic size of the channel, �, apparently played little
role.

The kinematic theory does not provide a hydrodynami-
cally consistent treatment of the fluid turbulence, and in sim-
ply connected dynamo experiments, the turbulent fluid mo-

tion will be pronounced. According to measurements in
hydrodynamic experiments, the turbulent velocity fluctua-
tions scale linearly with the mean velocity such that ṽ
=C�V	. Mean field theory �44� predicts that turbulence can
modify the effective conductivity of the liquid metal. Ran-
dom advection creates a turbulent or anomalous resistivity
governed by the spatial and temporal scales of the random
flow. A reduction in conductivity due to turbulent fluctua-
tions has been observed at low magnetic Reynolds number in
liquid sodium �28�. The scaling of turbulent resistivity is
readily obtained by iterating on the magnetic field in the
nonlinearity of Eq. �1� and looking at the term that depends
on gradients of B. For large Rm in a fluid with homoge-
neous, isotropic turbulence, the turbulent resistivity is pro-
portional to ṽ�v and produces a turbulent modification to the
molecular conductivity

�T =
�

1 + CRm�v/L
, �3�

where �v is a characteristic eddy size �presumed to be some
fraction of L�. The turbulent resistivity, as described above,
operates even if there is no clear scale separation between the
mean flow and the turbulence, or if mean quantities are non-
zero. The turbulent conductivity should be used for estimat-
ing the dynamo threshold: Rm=�0�TV0L�Rmcrit results in a
dynamo. Thus, the onset condition in a turbulent flow is gov-
erned by

Rm �
Rmcrit

1 − C�vRmcrit/L
. �4�

Note that the potentially singular denominator imposes a re-
quirement on the effectiveness of a particular flow pattern for
self-excitation; dynamos will only occur if Rmcrit�L /C�v.

The small Pm of liquid metals implies large fluctuation
levels and a turbulent conductivity. The influence of turbu-
lent conductivity on self-excitation enters through the dimen-
sionless number CRmcrit�v /L. Through fluid constraints, the
flow-dependent parameters C, �v, and Rmcrit can be manipu-
lated. In the Karlsruhe experiment �29�, for example, �v is set
by the pipe dimensions, rather than the device size, hence,
�v /L can be taken to be a fraction of the ratio of the pipe
dimensions to the device size. An upper bound would be
�v /L=0.06. We take C�0.1 and Rmcrit�40; hence,
CRmcrit�v /L�0.24. We expect therefore that dynamo onset
would be governed mainly by laminar predictions, as found
experimentally.

Turbulence plays a much greater role in governing self-
excitation in geophysical and solar dynamos since there are
no boundaries to keep small-scale flow from influencing the
conducting region, and the values Pm in the Earth’s core and
in the convection zone of the Sun �Pm�10−5 to 10−6 and
10−7, respectively� �30,31�. This is also true for several ex-
periments now underway that investigate magnetic field gen-
eration in more turbulent configurations �32–34�. One such
experiment, the Madison Dynamo Experiment, consists of a
simple two-vortex flow of liquid sodium, which, according
to a laminar kinematic theory, should self-excite with a trans-
verse dipole magnetic field. The experiment presents a
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unique opportunity to test the numerical models; the spheri-
cal geometry makes it particularly well suited to being simu-
lated, and the magnetic fields can be fully resolved, though
the fluid turbulence cannot be fully resolved by simulation
because Re�107 in the experiment.

In this paper, three-dimensional numerical simulations are
used to model the dynamics of the experiment. The simula-
tions are used to predict the behavior of the experiment and
give guidance on what role turbulence might have on current
generation and self-excitation. Section II of the paper de-
scribes the numerical model used for solving the MHD equa-
tions. Section III describes results from Pm�1 simulations,
where the flow is laminar and provides an overview of the
large-scale flow, which is linearly unstable to magnetic
eigenmode growth. Section IV describes dynamos at lower
Pm where the flow becomes turbulent. Section V presents
simulations of a uniform magnetic field applied to the axis of
symmetry of the mean flow, in which turbulence generated
currents are investigated in subcritical flows.

II. NUMERICAL MODEL

The numerical model used in this paper solves the MHD
equations in a spherical geometry, resolving the velocity field
at the origin. The simulations use a forcing term to model the
impellers used in the experiment. The code uses a spherical
harmonic decomposition of the vector potential of the veloc-
ity and magnetic fields in the 	 and 
 directions, and finite
difference representation in the radial direction.

The dimensionless equations that govern fluid momen-
tum, magnetic induction, and solenoidal field constraints are

�v

�t
+ Rm0�v · ��v = − Rm0�P + Pm�2v + Rm0F

+ Rm0J � B , �5�

�B

�t
= Rm0� � v � B + �2B , �6�

� · v = 0 �7�

� · B = 0. �8�

In these equations, the time has been normalized to a char-
acteristic resistive diffusion time of ��=�0�a2, where a is
the radius of the sphere, and the velocity has been normal-
ized to a characteristic velocity V0 so that Rm0=V0a�0�. The
vector field F is a stirring term of order 1 that models the
impellers in the experiments. In practice, the velocity field
resulting from the stirring term has a peak normalized veloc-
ity different from 1. This velocity field is used to define the
magnetic Reynolds numbers for a specific simulation, i.e.,
Rm=max�V /V0�Rm0. The relative importance of the mag-
netic and viscous dissipation is expressed by Pm=��0�; the
simulations have only been carried out for Pm�0.1, which
is sufficient to observe turbulence in the flows but four or-
ders of magnitude larger than in the experiments.

Because the fluid is incompressible, the density evolution
is unimportant and the pressure equation need not be

evolved; rather the simulation solves for the vorticity. �Other
numerical representations of a spherical MHD system solve
for the pressure as a constraint on the flow �35�, especially in
systems like stellar convection zones, where compressibility
is part of the dynamics �10�.� Taking the curl of Eq. �5�, the
expression for the time evolution of the vorticity is

��

�t
= Rm0 � � v � � + Rm0 � � J � B + Pm�2�

+ Rm0 � � F, and �9�

v = �� � �−1� . �10�

The spectral decomposition is that of Bullard and Gell-
man �BG�, in which the velocity field is described by a
spherical harmonic expansion of toroidal t and poloidal s
functions �7�,

v = � � t r� + � � � � sr� , �11�

and the magnetic field is described similarly

B = � � T r� + � � � � Sr� , �12�

where s, t, S, and T are complex, scalar functions of r, 	,
and 
. This representation automatically satisfies Eq. �7�.
To decompose Eqs. �11� and �12�, each scalar function
is projected onto a spherical harmonic basis set, normal-
ized by N�,m=
�2� +1���−m�! /
4���+m�!: Y�,m�	 ,
�
=N�,mP�

m�cos 	�eim
. Y�,m is summed from m=0, . . . ,� and
an extra factor of 
2 is added to N�,m for m�0 since the
function represents a real field. The result for the magnetic
field is

T�r,	,
,t� = N�,m�
�=1



�
m=0

m=�

T�,m�r,t�P�
m�cos 	�eim
 �13�

S�r,	,
,t� = N�,m�
�=1



�
m=0

m=�

S�,m�r,t�P�
m�cos 	�eim
 �14�

and similarly for the flow scalars t and s.
One advantage of the BG representation is that multiple

curls, which appear with every poloidal component of the
vector fields, reduce to Laplacians. The curl of a general
solenoidal vector field W can also be represented by two
scalar functions of position e and f . If W=��er�+���
� fr�, then clearly

� � W = � � �− �2fr�� + � � � � er� . �15�

To determine the discretized version of the vorticity equa-
tions, Eq. �9� is expressed in terms of the toroidal-poloidal
representation

� = �S + �T = � � � � tr� + � � �− �2s�r� . �16�

By substituting this form into Eq. �9�, the need to determine
boundary conditions on the vorticity is eliminated and only
boundary conditions on the velocity field scalars are re-
quired. The evolution equations for the flow advance become
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�t

�t
− Pm�2t = Rm0�G�S + �� � F�S �17�

��2s

�t
+ Pm�4s = Rm0�G�T + �� � F�T, �18�

where G signifies the sum of the advection and Lorentz
forces. The fourth-order derivative can be computed by con-
secutive Laplacian operators.

The Crank-Nicolson method is used to advance the linear
terms. This method implicitly averages the diffusive terms
and computes a temporal derivative accurate to second order.
The fluid advection term has a hyperbolic character due to
the propagation of inertial waves, making it advantageous to
use an explicit advancement for nonlinear terms. An explicit
second-order Adams-Bashforth predictor-corrector scheme is
used to advance the pseudospectral nonlinear terms.

The pseudospectral method computes a function in real
space and then decomposes it in spectral space. Pseudospec-
tral methods avoid the complications of the full-spectral
methods that rely on term-by-term integrations of spectral
components �such as in the Galerkin method� and, in general,
are much faster than full-spectral methods �36�. The pseu-
dospectral method has the disadvantage of introducing dis-
cretization error through aliasing. This error is addressed by
padding and truncating the spectrum �36�.

The radial derivatives in the diffusive terms are computed
through finite differencing on a nonuniform mesh. The finite
difference coefficients for the �2 and �4 operators result in a
nonsymmetric band diagonal matrix. The boundary condi-
tions are folded into the matrix defined by the implicit linear
operators with Gauss-Jordan reduction to ensure the matrix
remains band diagonal for ease of inversion. Using an opti-
mized LU decomposition, the radial evolution is solved in-
dependently for each spectral harmonic. The scalar fields are
then converted to real space and the nonlinear cross products
are updated during predictor and corrector steps.

The temporal evolution loops over a spectral harmonic
index, thus individual boundary conditions for the respective
harmonics are separately applied. The highest-order radial
derivative in Eq. �18� is fourth order, requiring four boundary
conditions on the poloidal flow scalar. Since the velocity
must permit a uniform flow through the origin, coordinate
regularity implies

s�r = 0�, t�r = 0�,
�s�r = 0�

�r
= 0 for � � 1,

s�r = 0�, t�r = 0�,
�2s�r = 0�

�r2 = 0 for � = 1. �19�

For better numerical stability, the more stringent requirement
s , t→r� is applied to turbulent simulations. The other bound-
ary conditions are given by assumptions of a solid, no-slip
boundary. For the poloidal flow,

s�,m�a� = 0, �20�

� �s�,m

�r
�

r=a

= 0, �21�

whereas for the toroidal flow,

t�,m�a� = 0. �22�

The discretization of the induction equation is straightfor-
ward in light of the method presented for the flow. Using the
magnetic field given by Eq. �12�, the induction term in Eq.
�6� is projected into toroidal and poloidal components,
grouping toroidal and poloidal contributions. The discretized
expressions for the magnetic advance are

�T

�t
− �2T = Rm0NT �23�

�S

�t
− �2S = Rm0NS �24�

where N is the spectral transform of the inductive term in the
BG representation. Coordinate regularity gives the condi-
tions for the magnetic scalar functions S�,m�r=0� ,T�,m�r
=0�=0.

The highest-order derivative of the magnetic advance is
O�r2�. Given the conditions on the magnetic field at the ori-
gin, a boundary condition on the magnetic field is needed at
the wall. The outer surface of the Madison Dynamo Experi-
ment is stainless steel, modeled in the simulation as a solid
insulating wall. The remaining boundary conditions are
solved by matching the poloidal magnetic field to a vacuum
field via a magnetostatic scalar potential, and noting the tor-
oidal field at the wall must be zero. This implies

�S�,m

�r
+

�� + 1�
a

S�,m =
2 � + 1

� + 1
C�,m, �25�

T�,m�a� = 0. �26�

In Eq. �25�, C�,m�0 if there are no currents in the surround-
ing medium, but can also be finite to represent a magnetic
field applied by external sources.

The time stepping, although unconditionally stable for the
diffusive problem, is advectively limited by an empirically
determined temporal resolution requirement of �t�5��x�2

for a given spatial resolution. The spectral transform is the
most computationally intensive portion of the code, requiring
roughly 80% of the CPU time. The upper bound on the spa-
tial resolution is N	�64, N
�128, Nr�400, which gives,
with dealiasing, �MAX=42, or nearly 1000 modes.

A forcing term, zero everywhere except at the location of
the impellers in the experiment, drives the flow

F
�r,z� = �2 sin���b� + � �27�

FZ�r,z� = � sin���c� + � . �28�

The axial coordinate z and the cylindrical radius � are re-
stricted to the region 0.25a� z  �0.55a and ��0.3a. The
impeller pitch � changes the ratio of toroidal �F
� to poloidal
�FZ� force. The constants � and � control the axial force, and
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in this paper are zero in all but the applied-field runs, where
stronger axial forcing is useful. The signs of F
, FZ are posi-
tive for z�0 and negative for z�0, creating the counterro-
tation between the flow cells. F is constant, which allows the
input impeller power F ·v to vary. The region of the impellers
and an example of the resulting flow are shown in Fig. 1�b�.
These flows are topologically similar to the ad hoc flows in
several kinematic dynamo studies �9,37,38� but differ in that
they are hydrodynamically consistent solutions to the mo-
mentum equation.

III. LAMINAR DYNAMOS

The impeller model described above predicts dynamo ac-
tion for sufficiently strong forcing. For the particular case of
Pm�1, a laminar flow results, as shown in Fig. 2�a�. Starting
with a stationary fluid, the evolution is observed to go
through several phases. Initially, the kinetic energy of the
flow increases, as does the maximum speed �Rm� of the flow.
The resulting Rm is above the critical value at which

dynamo action is expected from kinematic theory and the
magnetic field energy increases exponentially with time.
The measured growth rate agrees with the growth rate �
predicted by a kinematic eigenvalue code using the gener-
ated velocity fields and solving Eq. �6� for solutions of the
form B�B0 exp�t. After this linear-growth phase, a back re-
action of the magnetic field on the flow is observed that leads
to a saturation of the magnetic field. In this saturated state,
the generated magnetic field is predominantly a dipole-
oriented transverse to the symmetry axis, as seen in Fig. 2�c�.
The m=1 equatorially dominant structure of the dynamo
�shown in Fig. 2�b�� is consistent with kinematic analysis.

The orientation of the generated dipole is not constrained
by geometry and is observed to vary between simulations.
When the saturation state is oscillating �or damped with os-
cillations as shown in the Pm=0.5 case in Fig. 5�, the dipole
drifts around the equator and also undergoes 180° reversals.

Self-excitation depends on the shape of the flow as well as
the magnitude of Rm. An ideal ratio of poloidal to toroidal
forcing exists �parameterized by � in Eq. �28�� for which the

FIG. 1. �Color online� �a� A schematic of the Madison Dynamo Experiment. The sphere is 1 m diam and filled with 105–110 °C liquid
sodium. High-speed flows are created by two counterrotating impellers. Two sets of coils, one coaxial and one transverse to the drive shafts,
are used to apply various magnetic fields for probing the experiment. �b� Contours of the toroidal velocity v
 and contours of the poloidal
flow stream function � where vpol=����
, of the axisymmetric double vortex flow generated by the impeller model. The region of
forcing is shown schematically along the symmetry axis.

FIG. 2. �Color online� �a� The kinetic and
magnetic energy densities shown versus time
with Rm=159 and Pm=1. The time is in units of
the resistive diffusion time ��=�0�a2. �b� The
contributions to the total magnetic energy density
from the m=1 transverse dipole and the axisym-
metric m=0 modes. �c� Magnetic field lines of a
saturated dynamo state for a laminar flow with
Rm=150.
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critical magnetic Reynolds number is minimized, as seen in
Fig. 3. Minimizing Rmcrit makes the flow easier to attain
experimentally. This optimal ratio can be understood from a
simple frozen flux model describing the stretch-twist-fold
cycle of the dynamo �see Ref. �39��. If the toroidal rotation is
either too fast or too slow relative to the poloidal flow, the
advected field is not folded back onto the initial field.

For laminar flows, the back reaction is the result of two
effects. First, an axisymmetric component of the Lorentz
force is generated by the dynamo, slowing the flow and re-
ducing Rm. Second, the flow geometry is changed such that
the value of Rmcrit is increased. In saturation, the growth rate
is decreased to zero, as the confluence of Rm and Rmcrit in
Fig. 4 shows.

IV. TURBULENT DYNAMOS

To investigate the effect of turbulence on the dynamo
transition, simulations are performed at lower Pm �higher
Re�. The flow changes from laminar to turbulent at Re

�420. Above this value, a hydrodynamic instability grows
exponentially on approximately an eddy-turnover time scale
�c with a predominantly m=1 spatial structure. Through non-
linear coupling, the instability quickly leads to strongly fluc-
tuating turbulent flows �a detailed discussion of the spectrum
of the turbulence is deferred to Sec. V�. Fluctuations about
the mean flow exist at all scales, including variations in the
large-scale flow responsible for the dynamo. The turbulence
is inhomogenous with boundary layers, localized forcing re-
gions, and strong shear layers.

The effect of these fluctuations on the dynamo onset con-
ditions and on the resulting saturation mechanism depends
sensitively on the viscosity �parameterized by Pm�. Figure 5
shows an example of the broad range of dynamics exhibited
by decreasing Pm, for an approximately fixed value of Rm.
The magnetic field dynamics fall into several regimes, de-
pending on Re: the laminar dynamo, a dynamo that starts
turbulent, but relaminarizes the saturated flow; a turbulent
dynamo; and finally, a turbulent flow with no dynamo. At
Pm=1, the viscosity is large enough to keep both the mag-
netic field and velocity field fully laminar. The spectrum is
dominated by the driven velocity field and by the magnetic
eigenmode, and the saturation mechanism is the Lorentz
braking and modification to the flow mentioned above.

For Pm=0.33, Fig. 5 shows a flow that is initially turbu-
lent, but saturates in a laminar state. The turbulent saturation
of the magnetic field results in a reduction in the fluctuations
of the flow since the Lorentz braking has reduced Re below
the hydrodynamic instability threshold �decreasing Re from
496 to 320�. A hydrodynamic case, which evolves the flow
with B=0, shows that flow turbulence persists without the
addition of a magnetic field into the system. The Re thresh-
old distinguishing the turbulent saturated state from a relami-
narized saturation is Re�630.

If Rm is fixed near the experimental maxima while Re is
increased beyond 700, no dynamo is observed. Despite the
fact that the mean flow still satisfies the requirements of a
kinematic dynamo, the turbulent flow does not produce a
growing magnetic field. Evidently, it is the turbulent fluctua-

FIG. 3. The dependence of the linear growth rate of the least-
damped magnetic eigenmode on impeller pitch �. The transition
from damped to growing ��=0 point� defines the critical magnetic
Reynolds number; Rm�Rmcrit for a growing magnetic eigenmode.

FIG. 4. Rm and Rmcrit evolution during the saturation phase of
a laminar dynamo. Rmcrit is calculated from linear stability for each
instantaneous velocity field during the simulation. In saturation,
Rm=Rmcrit.

FIG. 5. �Color online� The magnetic and kinetic energy densities
for runs with fixed Rm �Rm=165±3% � but different Pm versus
time in ��. Note that Pm=0.33 shows a relaminarization of turbu-
lent flow, whereas Pm=0.22 is barely amplifying the initial noise
and is shown multiplied by 50 000.
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tions about the mean flow that prevent field growth. Using
the mean flow �averaged over several resistive times� for the
Pm=0.22 �with Rm=190, Re=863� as a prescribed flow in a
kinematic evolution of the induction equation gives Rmcrit
�93, as shown in Fig. 6. Even though the average flow has
Rm well above Rmcrit, there is no dynamo. However, when
the conductivity is doubled such that Rm=388, a turbulent
dynamo reemerges in the simulation. Hence, an empirical
critical magnetic Reynolds number, Rmcrit,T, can be defined
that depends on Re through the degree of turbulent fluctua-
tions in the flow.

These results are consistent with the dynamo transition
being affected by the turbulent resistivity of Eq. �3�. From
analysis of the simulation results, the correlation time �c, the
eddy scale size �v, and fluctuation levels C= ṽ /V0 have been
determined in order to estimate the parameters in �T under
the assumption that the homogeneous turbulence results
roughly apply to this bounded, inhomogeneous flow. Typical
volume-averaged values measured in the Rm=190, Re
=863 simulation are �v=0.022a, C=0.45, and �corr
=0.041��, which yields a volume-averaged conductivity re-
duction of �T /�=0.461. The diminished conductivity yields
Rmcrit,T=238. The results from all of the simulations are
summarized in Fig. 7. The data points are classified by the
saturated states, examples of which are given in Fig. 5. The
phase diagram shows that an increasing Rm, at fixed Re

reestablishes field growth where turbulent fluctuations had
previously suppressed the dynamo. The dashed line in Fig. 7
shows that the correlation length and constant C increase
with Re and eventually asymptote when the conductivity is
effectively reduced by 70%.

The simulated turbulence has no de facto scale separation.
This might appear to pose a problem, given that our interpre-
tation of the effect of turbulence is the introduction of a
turbulent resistivity, and the turbulent resistivity of mean
field theory �MFT� �44� is usually couched in scale separa-
tion arguments. However, it should be noted that the scale
separation requirement associated with the � and � effects of
MFT does not enter into the form of �, but does guarantee
that ���. This is because � is proportional to helicity
whereas � is proportional to energy while � multiplies a
lower derivative of the mean field than does �. In this sense
the lack of scale separation in the simulations is consistent
with the apparent weakness of a turbulent-� effect in a re-
gime with a turbulent resistivity.

While the simulations are limited to Re�2000 by com-
putational speed and storage, we believe the simulations cap-
ture the dominant effect since the fluctuations at the largest
scales are the strongest contributors to the turbulent resistiv-
ity by the following argument. In Kolmogorov turbulence
�40� the spectrum is E�k���2/3k−5/3, where � is the energy
dissipation rate. Thus, the turbulent resistivity goes as
��k0

k�q−2E�q�dq�−1/2��1/3k0
−4/3, where k0 is the wave number

of the large-scale eddies and k� is the dissipation scale wave
number. In K41 turbulence, k��Re3/4, as Re becomes large
in comparison to Rm, the effect of turbulent fluctuations on
conductivity will asymptote to a fixed value. It should be
noted that the simple dimensional analysis used for estimat-
ing the turbulent resistivity reflects isotropic homogenous
turbulence and is derived in the limit that there is no mean
flow; this dynamo relies almost entirely on the presence of a
mean flow.

An alternative viewpoint, consistent with the phenomeno-
logical interpretation of enhanced resistivity put forward
here, is that the large-scale variations in the velocity field are
continuously changing the spatial structure and growth rates
of the magnetic eigenmodes of the system. A more thorough
treatment of the dynamic variation of dominant eigenmodes
can be found for a slightly different problem in �41�. Two
effects can be important. First, the instantaneous growth rate
of the least-damped eigenmode fluctuates between growing
and damped. For a run with Rm=193, Re=893, and �=0.4,
shown in Fig. 8, a dynamo occurs only when the flow spends
sufficient time in phases that are kinematic dynamos. The
kinematic growth rate is most often positive, consistent with
the time-averaged flow having growing magnetic field solu-
tions, yet the modifications made to the flow during the sub-
critical periods are sufficient to stop the dynamo. Second, the
turbulence couples energy from the growing magnetic eigen-
mode into spatially similar damped eigenmodes. As the flows
evolve, the spatial structure of the eigenmodes change. The
magnetic field structure of a single eigenmode at some pre-
vious instant in time must be described in terms of several
modes after the flow changes. This transfer of energy from
the primary mode is equivalent to enhanced dissipation.

FIG. 6. �a� Rm as a function of time. Taking a series of flows
over the range shown, the mean flow is calculated giving Rm
=193 and Re=863. �b� The kinematic analysis of the average flow,
where only Eq. �6� is evolved, and Rm is varied, to determine
Rmcrit=91.5.

FIG. 7. �Color online� Re–Rm phase diagram. A number of
simulations whose hydrodynamic and final saturated states are
documented in Fig. 5. Rmcrit for the mean flow �V	 is essentially
independent of Re, whereas the effective dynamo threshold grows
with Re. The dashed line shows the qualitative behavior of the
dynamo threshold in turbulent flows �VT�.
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Analysis of the eigenmode structure shows that the least-
damped eigenmode during a nondynamo phase in Fig. 8 var-
ies between the marginally stable nonaxisymmetric dipole
and a stable axisymmetric magnetic mode. Thus, the flow
imparts energy to a spatially similar, but distinct magnetic
eigenmode.

Finally, it should be noted that distinguishing between
growing and damped magnetic fields is difficult in the turbu-
lent simulations. Typically, the turbulent runs have been lim-
ited to durations of �10��. The transition may also be con-
siderably more complex as seen in Fig. 5, where magnetic
energy of the Pm=0.22 simulation may show intermittent
growth near Rmcrit,T. The simulations are thus consistent with
intermittent excitation of the dynamo eigenmode by the
mean flow. The peak magnetic energy is limited by the mag-
nitude of the initialized noise the simulation is started with
instead of the backreaction with the flow. This effect is es-
pecially relevant when the magnetic field is sustained by an
external source as shown in Sec. V.

A dynamo still occurs in these flows for sufficiently large
Rm �keeping Re fixed, growing magnetic energy is detected
for sufficiently large Pm�. An example of a time evolution
and spatial structure of a saturated turbulent magnetic field is
shown in Fig. 9 for a simulation with Rm=337 and Re
=674. An m=1 transverse dipole field is still present, as in
the case of the laminar dynamo in Fig. 2; however, this tur-
bulent dynamo is now dominated by the presence of a large

m=0 field, aligned with the axis of symmetry of the impel-
lers as shown in Fig. 9�b�. This component, by itself, would
appear to violate Cowling’s theorem �42�, and thus it must
result from nonaxisymmetric components of the velocity
field and the magnetic field. Thus, it appears probable that
the nature of dynamo has changed fundamentally from a
simple eigenmode driven by the two vortex flow, to a dy-
namo in which the turbulent fluctuations may be responsible
for generating the large-scale magnetic field.

V. SIMULATIONS OF SUBCRITICAL TURBULENT
FLOW WITH WEAK, EXTERNALLY APPLIED

MAGNETIC FIELD

As a means of further highlighting the different physics
and conditions underlying turbulent and laminar dynamos,
subcritical flows are simulated with focus on the potential
role of fluctuation driven currents in the self-excitation pro-
cess. Subcritical flows have Rm�Rmcrit and are not ex-
pected to lead to self-excited magnetic fields. The MHD be-
havior is investigated by applying a magnetic field that is
generated by currents flowing in coils external to the sphere.
The configuration studied is similar to the set of experiments
described in Ref. �43� and is deliberately set up as an axi-
symmetric system in which fluctuation driven currents can
be easily detected.

The numerical technique employed is similar to the dy-
namo simulations described above in all but one respect,
namely, a different boundary condition is used with C�,m
�0 in Eq. �25�. These boundary conditions match the mag-
netic field to a scalar magnetic potential B=−��m, which is
valid in the region between the surface of the sphere and the
external magnets. � satisfies Laplace’s equation, and its so-
lution is well known,

�m�r,	,
� = �
�,m

�A�,mr� + D�,mr−��+1��Y�
m�	,
� , �29�

where the Y�
m�	 ,
� are the spherical harmonics. The D�,m

terms represent the magnetic field generated by currents in
the sphere, and the coefficients A�,m can be chosen to de-
scribe a magnetic field of arbitrary shape and orientation

FIG. 8. Growth rate of the dominant eigenmode calculated for a
time-series of flow profiles.

FIG. 9. �Color online� �a� The energy density
of a turbulent dynamo with Rm=337 and Re
=674. �b� The energy density of the axisymmetric
magnetic field �m=0� and the nonaxisymmetric
dynamo �m=1�. �c� Magnetic field lines of the
turbulent saturated dynamo.
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generated by currents external to the sphere. In this paper
and in the simulations described below, a uniform magnetic
field is applied along the symmetry axis of the forcing terms
and characterized by a single coefficient A1,0, all higher-order
terms being zero. The applied magnetic field, B1,0, is weak
enough so that it does not alter the large-scale flow. The
strength of the applied magnetic field is moderated by keep-
ing the Stuart number N��aB1,0

2 /�v0�0.1. In sodium, with
a Rm�100, N�0.1 would correspond to an applied field of
156 gauss. The applied field for these simulations is B1,0
�57 gauss with N�10−2. Examples of such simulations are
shown in Fig. 10, where the kinetic energy and magnetic
energy are shown for laminar and turbulent runs.

For the laminar flow, the induced currents and resulting
magnetic field are purely due to the magnetic field interact-
ing with the mean flow, as seen in Fig. 11�a�. Two main
effects are observed. First, induced toroidal currents com-
press lines of poloidal magnetic field near the axis of the
device. The lines are pulled outward at the poles and inward
at the equator. The net result is a reduction of the poloidal
field strength at the equator in the outer region, and a large
amplification at the axis �the peak poloidal field is 18 times
the applied field�. Second, poloidal currents generate a toroi-
dal magnetic field. These currents are generated by the well-
known � effect of dynamo theory, whereby differential tor-
oidal rotation of the fluid is able to stretch the field into the
toroidal direction �1�. The amplitude of the peak toroidal
field is greater than six times the applied field.

The transition to turbulence is still characterized by the
same Re�420 threshold described above, since the Stuart
number for the applied magnetic field is small. Below this

threshold, the nonaxisymmetric part of the flows is negli-
gible, whereas above this threshold nonaxisymmetric fluc-
tuations in both B and V can be as large as 40% of the mean
values. The geometry of the simulations �axisymmetric drive
terms aligned with the applied magnetic field� makes it pos-
sible to separate mean, axisymmetric quantities and fluctuat-
ing quantities,

FIG. 10. �Color online� Simulations with an
externally applied, axisymmetric magnetic field.
�a� Kinetic and magnetic energy densities for a
Re=116 �laminar�, Rm=70 �subcritical� simula-
tion. �b� The resulting flow. �c� Kinematic and
magnetic energy densities for an Re=1803 �tur-
bulent�, Rm=108 �subcritical� simulation. �d�
The axisymmetric, time-averaged velocity field
for the turbulent simulation. The time average is
over the time interval 0.3–2.4 ��, which is
roughly 30 decorrelation times.

FIG. 11. �Color online� �a� The magnetic field for a laminar flow
described in Fig. 10. The resulting total magnetic field �the sum of
the externally applied field and those generated by the currents in
the liquid metal� is shown as a multiple of the applied magnetic
field. �b� The time-averaged magnetic fields, scaled to the applied
field, for a turbulent flow �Rm=107 �subcritical�, Re=1803�. The
peak internal poloidal magnetic field is 9.3 times larger than the
applied field.
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B = �B	 + b˜ and v = �V	 + ṽ , �30�

where the brackets denote a time average over several resis-
tive times. In practice, �B	 and �V	 are axisymmetric for
sufficiently long time averages. Using these definitions, the
time-averaged magnetic fields can be computed for laminar
and turbulent flows, shown in Fig. 11.

Both laminar and turbulent flows demonstrate toroidal
field production and expulsion of poloidal flux. Laminar and
turbulent results differ in several important ways, however,
which are attributable to the currents being driven by MHD
fluctuations. First, the toroidal field is greatly reduced in the
turbulent run. The induced toroidal field is six times the ap-
plied field strength in the laminar flow and is only twice the
applied field in the turbulent case. Second, the peak poloidal
field is halved in the turbulent run, as shown in Fig. 11�a�.
Third, there is a net magnetic dipole moment associated with
the induced field, which is not present in the laminar case.
These differences are partially the result of a difference be-
tween the mean flows in the two cases, but are mostly due to
a strong influence of the turbulence on the current genera-
tion. This can be interpreted in the context of a modification
to the mean-field Ohm’s law, i.e., turbulence-generated cur-
rents are modifying the large-scale, mean magnetic field.

A turbulent EMF is possible because of the flow fluctua-
tions and the magnetic field generated by the passive advec-
tion of the applied magnetic field by the Kolmogorov-like
turbulence in the velocity field. Figure 12 shows the wave-
number spectrum as estimated from the frequency spectrum
of the fluctuations in both V and B at a fixed point in the
simulation using the Taylor hypothesis to map frequency
fluctuations to wave number ��k�V	. It is clear that both the
velocity field and magnetic field have an inertial range �k−5/3�
and a dissipation scale, although the dissipation scales are at
different values of k. The k−5/3 scaling of the velocity field
�the inertial range� is expected from the Kolmogorov theory
of hydrodynamic turbulence. The dissipation scale for the
fluid turbulence is expected to be at k��Re−3/4=235, which

is roughly the position of the viscous cutoff shown in Fig.
12. The limited inertial range at low k is primarily due to
constraints on long time averages of the data imposed by
computational speed.

The k−5/3 scaling of the magnetic field corresponds to the
weak-field approximation in which the induced magnetic
fluctuations are due to advection of the mean magnetic field
by the velocity fluctuating for k�k��Rm/a. The k−11/3

power-law results from a balance between the mean mag-
netic field advected by turbulence and the resistive dissipa-
tion of magnetic fluctuations. The dissipation scales are evi-
dent from the knee in the wave-number spectra of Fig. 12.
The spectrum is constructed from the power spectrum of the
value of Br near the equator. In comparison, the dissipation
scales measured in the experiment shown in Table I of �39�
are much larger. For instance, at Rm=100, ��=16 cm. This
discrepancy is most likely due to the use of the tip speed in
calculating Rm in the experiment.

The simultaneous fluctuating magnetic and velocity fields
can potentially drive current in a mean-field sense. The mo-
tional EMF can be written as

v � B = �V	 � �B	 + �V	 � b˜ + ṽ � �B	 + ṽ � b˜, �31�

where the mean-fields have been separated from the fluctu-
ating parts. The time averages must be taken over times long
compared to a turbulent decorrelation time and comparable
to the resistive diffusion time. Since the turbulent decorrela-
tion time �C�0.05��, integrating the induction term over
several resistive times yields

�v � B	 = �V	 � �B	 + �ṽ � b˜	 . �32�

An important question is whether the currents generated in
the simulation are primarily due to the motional EMF asso-
ciated with the mean-flow and the mean magnetic field,
�V	� �B	, or if there are also currents driven by the turbulent

EMF �ṽ�b˜	. This can be investigated by examining the
various terms in Ohm’s law

E = �J − �V	 � �B	 + �ṽ � b˜	 . �33�

It is clear that in steady state there can be no inductive elec-
tric field in the toroidal direction since the poloidal flux is
constant. Axisymmetry precludes an electrostatic potential
from driving current in the toroidal direction, and so the
toroidal current can only be generated by the mean-flow and
the turbulent EMF. Thus, any currents driven in the toroidal
direction contribute to the poloidal magnetic field. Figure
13�d� shows the currents driven by these fluctuations and
their corresponding magnetic field �b�. The fluctuation-
induced magnetic field is 3.5 times larger than the applied
field and comprises a third of the total field strength.

It has been recently shown that an axisymmetric flow and
axial magnetic field cannot induce a dipole moment in any
simply connected bounded system �43�. This is essentially
due to the fact that the flow outside the conducting region is
zero, while the streamlines of flow perpendicular to the mag-
netic flux are closed and bounded within the conducting re-
gion. Only a turbulent EMF can create the dipole moment.
With a weak applied field in a turbulent fluid, averaging over

FIG. 12. �Color online� The wave-number spectrum computed
from frequency spectrum of fluctuations from 6�� of flow �fitted
with the red k−5/3 curve� output at a position �r�0.75 a, 	�� /2,

=0� with a weak applied magnetic field of B0�51.3 G, fitted with
the blue k−5/3 at low k and k−11/3 at large k. For this simulation,
Rm=130, and Re=1450 and fluctuations are assumed to be due to
convection of spatial variations in the field. The dispersion relation
is �=k�V	.
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several eddy turnover times and averaging along �̂ elimi-
nates the nonaxisymmetric component of the current; there-
fore, the only nontrivial component of the dipole moment is

�Z = � d3xr sin 	J
. �34�

The toroidal current generated by �ṽ�b˜	 from Eq. �32� is
shown in Fig. 13�d�, and the associated dipole moment �an-
tiparallel to the external field� is clearly seen in Fig. 13�b�.
Alternatively, the EMF due to V and B gives rise to a hexa-
pole magnetic field �in Fig. 13�a��. The resulting poloidal
field reduces the surface magnetic field by 20%. The largest
values of the turbulent toroidal current occur where the �
effect is also large.

The EMF that generates the toroidal current associated
with the induced dipole moment may very well resemble the
currents driven by the well-known � effect. The � effect
generates a toroidal magnetic field, which, in turn, would
support a current of the form J
=�B
. It is impossible to
uniquely identify the current this way, however. A nonuni-
form � effect �change in local resistivity� could equally well
explain the results. To do this would require separating the
currents associated with the helical fluctuations from the
nonhelical fluctuations, and this has not yet been done. A
local analysis of the turbulent helicity content in Fig. 14�b�
shows that helical fluctuations exist that might be expected to
drive a current through the � effect.

To study Ohm’s law in the poloidal direction requires a
full treatment of the poloidal electric field since an electro-
static potential is not ruled out by symmetry arguments. In
MHD, the electrostatic potential is assumed to instanta-
neously adjust itself to ensure that � ·J=0. This can only be
assured if the divergence of the motional EMFs is balanced
by a spatially varying electric field

� · E = − �2� − �2�̃ = � · ��V	 � �B	 + �ṽ � b˜	� ,

�35�

where � and �̃ are electrostatic potentials due to the station-
ary EMF and turbulent EMF, respectively. Thus, a poloidal
current can be associated with the mean flows and the turbu-
lent EMF, respectively,

FIG. 13. �Color online� The magnetic field �a�
generated by the mean-flow EMF �V	� �B	. The
peak internal poloidal magnetic field is 11.2 times
larger than the applied field. The magnetic field

�b� generated by the turbulent EMF �ṽ�b˜	. �c�
The currents associated with �a�, and �d� the cur-
rents associated with �b�. The turbulent flow has
�Rm=107 �subcritical�, Re=1803� and an exter-
nally generated magnetic field applied along the
symmetry axis. The time average is taken over
2.1��. Magnetic fields are scaled to the strength
of the applied field.

FIG. 14. �Color online� The turbulent and helical fluctuations for
the simulation described in Fig. 12. �a� The average of the squared
turbulent fluctuations as a multiple of the peak squared mean flow.
�b� The time average of the kinetic helicity fluctuations �ṽ ·�� ṽ	 as
a multiple of the volume-averaged helicity of the mean flow.
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Jpol = ��− �� + �V	 � �B	pol� �36�

J̃pol = ��− ��̃ + �ṽ � b˜	� . �37�

When analyzing Ohm’s law in the poloidal direction, it is
necessary to first compute these potentials, which has been
done for the poloidal currents in Fig. 13.

The simulations indicate there is a strong poloidal current,
shown in Fig. 13�d�, associated with the fluctuations. The
current acts to greatly reduce the toroidal magnetic field gen-
erated by a comparable laminar flow, thereby reducing the
toroidal field in the core. This resembles the diamagnetic �
effect �44�, due to gradients in the turbulence intensity. The �
effect is the diagonal part of a mean-field tensor: J=�� ·B.
The off-diagonal terms can also be written so that J=��
�B. Figure 14�a� shows the squared velocity fluctuations
decrease away from the axis of symmetry with the polar
radius �. For isotropic turbulence, the inhomogeneity in the
fluctuations would give rise to a � effect of the form
−������BT with ���v2. The poloidal current due to tur-
bulent diamagnetism would counteract the toroidal magnetic
field caused by the � effect. Comparison between Fig. 14�a�
with Fig. 13�b� shows that regions of steep gradients in the
turbulent fluctuations correspond to regions of strong fluc-
tuation induced poloidal current.

VI. SUMMARY

The role of turbulence in generating current and moderat-
ing the growth of magnetic fields has been studied for the
Madison Dynamo Experiment using 3D numerical simula-
tions. A simple forcing term has been used to model impel-
lers in the experiment; at sufficient forcing, the flow becomes
turbulent. Two regimes were explored: one with an external
applied magnetic field and flow subcritical to the dynamo
instability and one with no external field and supercritical
flow. The role of the turbulence on current generation and
self-excitation is marked.

The onset conditions for the dynamo instability are gov-
erned not only by Rm but also by the magnetic Prandtl num-
ber Pm. At Pm�1, the transition and saturation agree with
laminar predictions and are considered laminar dynamos. At
lower Pm, Rmcrit increases, consistent with a reduction in
conductivity due to turbulent fluctuations. However, at
higher Rm, the character of the dynamo changes; its symme-
try suggests that turbulence driven currents are important in
the self-excitation process. The Pm values in the simulations
are still orders of magnitude larger than in liquid-metal ex-
periments �and for geo and solar dynamos� due to memory
and speed limitations of computers, and thus, experiment
support is critical for verifying these results.

To quantify currents driven by fluctuations in the experi-
ment, simulations of subcritical flows have been performed
and the currents driven by the turbulent fluctuations have
been observed directly. The main effect of the turbulence on
an externally applied magnetic field is the reduction of field
strength compared to those computed for laminar flows. The
laminar two-vortex flow compresses the applied poloidal
magnetic flux near the axis of symmetry and through toroidal
flow shear creates a strong toroidal magnetic field. Both ef-
fects are reduced in turbulent flows. The mean flow produced
at large Reynolds numbers differs from its laminar counter-
part, which accounts for some of the discrepancy between
the buildup of toroidal field and flux compression of the
poloidal field observed in the laminar and turbulent fluids.
However, it has also been shown that a fluctuation-driven
EMF drives current that modifies the large-scale magnetic
field, both generating a dipole moment and expelling toroidal
flux from the interior region.
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