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A two-field model for collisionless trapped electron mode turbulence has both finite
amplitude-induced stability and instability, depending on wave number. Effects usually identified
with nonlinear plasma instabilityself-trapping, kinetics, 3D mode structure, magnetic shaer

absent. Nonlinear stability and instability reside i B advection of density. It drives modes of a
purely damped branch of the dispersion relation to finite amplitude and changes the rate at which
free energy is released into the turbulence by shifting the density-potential cross phase. Analysis
shows that modes of the purely damped branch cannot be ignored in saturation, and that the linear
growth rate is a poor indicator of driving at finite amplitude, invalidating mixing length and
quasilinear approximations. Using statistical closure theory, the nonlinear eigenmode and growth
rate are determined from the saturation level of modes on all branches, stable and unstable, and the
nonlinear cross phase that governs finite-amplitude instability.2002 American Institute of
Physics. [DOI: 10.1063/1.1491958

I. INTRODUCTION intrinsic to many types of turbulence, suggesting that this
Nonlinear instability is encountered in theoretical andmechamsm.c;sda plhayerf|fn mo(rje comphcated_typoes of tgrtl)g-
numerical analyses of plasma turbulence with sufficien€CE: Provided other effects do not negate it. Our model is

regularity—® to warrant speculation that it is generic to Similar to the Hasegawa—Wakatani equatidhhe nonlin-
plasma turbulence. A review of the literature suggests ther

garities are identical, and in both models the linear coupling
is no universal process, but multiple mechanisms, includingf density and potential is controlled by dissipation. When

self-trapping!? kinetic effectsi~® 3D mode structur&® and d|SS|pa't|on' is strong the dgnsny is slaved to the poten.tlal,
magnetic shed® Fluid descriptions of nonlinear instability Otherwise its evolution deviates from that of the potential.

have generally treated collisional reginfe§ While subcriti- e dissipative coupling in the Hasegawa—Wakatani equa-
cal instability is often examined, supercritical instability is tion is nonlocal. Here, the magnetic field is treated as homo-
also important, and easier to understand and analyze. In tf#&neous, making the dissipative coupling local. This simpli-

latter, the rate at which energy is injected into the turbulencdies the system and its analysis. More importantly, the system
is not the linear growth rate. Hence, common turbulencds constrained by the removal of a degree of freedom, elimi-
characterizations that rely on the linear growth rate ardlating nonlinear instability mechanisms tied to mode struc-
invalidated’ ture and 3D effects.

We demonstrate here the occurrence of both supercritical Nonlinear instability is a reflection of the dynamical
nonlinear instability and finite amplitude-induced stabiliza-complexity intrinsic to two-field electrostatic turbulence, and
tion of linearly unstable modes in the simplest type ofdemonstrates that generic one-field models cannot replicate
plasma model for which nonlinear instability is possible, athe features of such turbulence. Because most measurements
two-field fluid model for 2D electrostatic turbulence in a of turbulence in the core of tokamaks have been limited to a
homogeneous magnetic field.Nonlinear instability is not  single type of fluctuation, generic single-field descriptions of
possible in single-field models with energy-conserving non£€lectrostatic turbulence have been convenient for modeling
linearities; hence, the addition of a second dynamical equaand interpreting fluctuation dafaThis work demonstrates
tion represents the minimal increment in complexity allow-that for collisionless plasmas such models are inadequate and
ing nonlinear instability. The present model is simpler thanmisleading if used as a basis for interpreting diagnostic data.
other systems in which nonlinear instability has beenAs such, it points to the need for diagnostic development to
observed® because it lacks 3D mode structure, magneticenable measurement of two fields, e.g., density and potential.
shear, kinetic effects, self-trapping in phase space, and collithis study also illustrates new physical processes that enter
sional dynamics. The model provides a simple description ofyyrokinetic simulations when nonadiabatic electrons are in-
collisionless trapped electron turbulence, a fluctuation beeluded.
lieved to contribute to anomalous transport in tokamaks. The The existence of supercritical instability and finite
simplicity of the model allows for detailed analysis of the amplitude-induced stabilization has significant implications
nonlinear instability mechanism, which resides in the advecfor the analytical treatment of saturation that use linear
tion of electron density. Advection of scalars like density isgrowth rates to approximate or calculate nonlinear quantities.
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0.8 1 — structure modifies the correlation between fluctuations of the
06 b % i.i?été', E{IP %"‘\g%@i rate (re;gt;ct):\lv ﬁiecﬂs;zeazg etrhe electrostatic potential, changing the
! %X— Iinear growth, no damping ' rgy is 'released |r)to the Furbulence. Any
04 b - fluctuation structure, including a nonlinear eigenmode, can
% r ] be projected on the complete basis set of linear eigenmodes.
E 02 [ 4 Hence, the excitation of a nonlinear eigenmode that differs
s from the eigenmode of the linear instability necessarily im-
° 0 . plies that branches of the linear dispersion relafmmwhich
< r ] all wave numbers are dampete nonlinearly excited to fi-
02 nite amplitude. This is a standard concept in nonlinear sys-
0.4 F tems analysis, yet such branches are routinely ignored in
r saturation analyses because it is assumed that linear damping
By - J) PRI EFUNE BN N ST S W W makes the amplitudes of all Fourier modes negligible. In
6 2 4 6 8 10 12 14 16 these analyses, saturation is achieved by nonlinear transfer of
ky energy from unstable to stable Fourier moadesthe same

. . . . branchof the linear dispersion relation. This scenario essen-
FIG. 1. Energy input rate as a function kf (k,=0) at two times in the . . . .
evolution of the system as compared to linear growth rates. The circleya”y invokes a Kolmogorov cascade like that of Navier—
correspond to the exponential growth phasdinitesimal amplitudeand ~ Stokes turbulence. There is no nonlinear instability because
the boxes to the saturated stéfimite amplitud@. The crosses indicate the stable modes of other branches are not included in saturation
I’?"Ode' linear growth rate from Eqd), and the diamonds indicate the full - 35nces. We show here that the electron nonlinearity excites
inear growth rate with hyperviscous damping. . )
Fourier modes of the purely stable branch, provided the dy-
namics is collisionless. The excitation shifts the real fre-
This type of treatment is common and forms the basis foquency of the modes on this branch, and drives exponential
mixing length estimates of turbulence levels, quasilinear esgrowth, despite strong linear damping. At finite amplitude,
timates of transport fluxes,estimates of &K B shearing modes of the purely stable branch change the correlation
thresholds using linear growth ratesnd indirect measure- between density and potential, altering the energy injection
ment of linear growth rates from fluctuation spectra usingrate. Moreover, because these modes are damped, their exci-
bispectral deconvolutiohWe briefly touch on this issue by tation to finite amplitude represents a significant energy dis-
showing that for the present model there are significant difsipation channel that markedly alters saturation balances.
ferences between the quasilinear particle flux and the true The physics of the nonlinear instability is analyzed using
nonlinear flux. a general analytic theory that describes the nonlinear eigen-
The nonlinear instability is depicted in Fig. 1, which is mode and energy input rate. The basic equations are trans-
drawn from the numerical solutions more fully described informed to a diagonal representation of the linear coupling,
Sec. lll. Two of the traces show spectra of the energy inputind the finite-amplitude behavior of all branches of the linear
rate at two times in the evolution of the system. The energyispersion relation is solved using an eddy-damped quasinor-
input rate is the rate at which energy is injected into themal Markovian(EDQNM) closure. The amplitudes of un-
turbulence from the instability. The instability draws free en-stable Fourier modes are solved from the balance of the
ergy from mean density and temperature gradients througfrowth rate with nonlinear energy transfer, which now in-
dissipation. One tracgabeled with circlesis the rate during cludes both spectral transfer to stable modes on the same
the linear growth phase, when fluctuation amplitudes ardranch and transfer to modes on the purely stable branch.
small and the nonlinearity is negligible. This rate agrees exThe excitation level of modes on the purely stable branch is
tremely well with the linear growth ratediamond$, calcu-  evaluated under a balance between nonlinear energy transfer
lated from the unstable eigenmode of the linearized equato these modes and the damping rate of the branch. We show
tions, as shown in Fig. 1. A second tra@@oxes is the that this energy transfer is mediated by the complex-valued
energy input rate when the system has reached finite amplcorrelation between modes of each branch. The correlation
tude and the instability has saturated. The two trdcesles  must therefore be solved from its own spectrum balance
and diamondsare markedly different. The difference is not equation obtained with the closure. The energies of modes on
the spectral energy transfer, which is conservative, but reeach branch and the cross correlation specify the complex-
flects a change in the dissipative process that extracts fremlued nonlinear eigenmode, and allow evaluation of
energy from mean gradients and releases it into the turbudensity-potential cross correlation and the finite-amplitude
lence. There is both nonlinear instability, evident in waveenergy input rate. We obtain the onset condition for excita-
numbers for which the finite amplitude rate exceeds the lintion of modes on the purely stable branch, the finite
ear rate, and finite amplitude-induced stabilization, evident iramplitude-induced frequency and growth rate of these
wave numbers for which the finite amplitude energy inputmodes, the saturation levels of their energies, and the cross
rate is less than the linear growth rate. correlation of these modes with those of the unstable branch.
We show that the difference between the energy inpufAll are in good agreement with numerical solutions. The
rate at infinitesimal and finite amplitudes originates with ex-complexities of the closure analysis make it impractical to
citation of nonlinear eigenmode structure by the advectiveevaluate the nonlinear growth rate analytically. However, we
nonlinearity of electron density. The nonlinear eigenmodeshow that the phase of the cross correlation meets a neces-
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sary condition for nonlinear instability, and that its magni- said to be collisionless whenever>v, even ifvis finite. It
tude is sufficient to produce the nonlinear growth rate specis in this sense that the dynamics studied herein is labeled as
trum of Fig. 1. collisionless. The model is given by
We stress that this method is very different from the
more familiar nonlinear eigenmode analyses described in then dd
literature*>~*These are generally based on a closure of am; ~ Y #X 2 Vn+u(n—¢)=—vp(l+ane) ' @
plitude equations in which the nonlinearities are transformed
to diffusivities, and hence become dissipative. There is a
nonlinear eigenmode at finite amplitude because the basie-(1-V?—&'?) ¢p—c?u(n—¢) + VX z-VV2¢
equations are approximated with a form that differs from tha
of the linear analysis. The modified form essentially alters
the unstable branch, and does not involve stable branches of =—vp[1—eY41+an,)] N 2
the eigenmode spectrum. These methods, which have been y
effective in describing changes to spatial structure of mode
on the unstable branch at finite amplitddé#and have been

applied to nonlinear instability in other systefidail to de- trapping rate, is the electron collision ratep, is the ratio

SC“?I% the nonllgear |fntsr:ablllty of .the pre;engmodfell.l | of the density gradient scale length to the temperature gradi-
€ remainder ot the paper Is organized as 1olows. Ny goq1e lengthyp,=cT./eBL, is the diamagnetic drift ve-
Sec. Il the basic equations and their linear properties ar

focity, L, = (d Inny/dX) "L is the density gradient scale length
presented, including linear eigenmode structure. Heuristic ar- Y, Ln=( o/c) yg gm.

s d trating the role of electron density advecti a=3/2, and the remaining symbols have their usual mean-
gutmhen S l_emong ra; Iggl't € r(()jetho € ec_tr(:_n e?stlhyaclj vec "élhg. The densityn is an effective electron density given by
in the nonlinear instability and the excitation of the dampe h=c12n_+ ¢, wheren,= ¢ +&2, is the usual electron

eigenmade are also presented. Section lll presents a nurneH'ens,ity, consisting of the adiabatic contributigrirom pass-

cal (.jescri.ption of th?. nqnlinear instability and finite ing electrons and the nonadiabatic contributigfffi, from
amplitude-induced stabilization process, showing the tempo,[—rappeol electrons. In EqéL)—(2), spatial scales are normal-
ral evolution of modes on the unstable and stable branche '

. ‘zed to the ion gyroradius, evaluated at the electron tempera-
the nonlinear growth rate, and saturated spectra. Analyt'?ure'p — (kTom)“?c/eB, wherem, is the ion mass and is
s el 1 |

treatment O.f thg excitation of modes (.)n'the purely S'["jlbleBoltzmann’s constant. Temporal scales are normalized to
branch is given in Sec. IV, and the statistical closure theory ./C., whereC.=(xT./m)"2is the ion sound speed. The

in Sec. V. The closure equations are solved to obtain th otential is normalized taT./e, and densities to the mean

energies of modes on the stable and unstable br_anches c%nsity. This system of equations has been studied in both
saturation and the complex-valued cross correlation, thug,o . yiiiona1516 and collisionless limitd®17 In both limits

Specifying the nonlinear eigenmode. From it the energy InpuEhanges in the energy injection rate at finite amplitude have

rate at finite amplitude is examined, and we show that supeg;e ., reported®*® The model is derived in the Appendix. In
critical instability in a band of linearly unstable modes is

ted. Section VI t lusi d further di Egs. (1)—(2) the linear coupling of the two fields is con-
expected. section Vi presents conclusions and Iurther diSCUszo|ieq py their difference and is mediated by the dissipation.

Where ¢ is the electrostatic potentiad,is the densitys 2 is

the electron trapping fractiony= v,/ is the electron de-

sion. For large collisionality, the adiabatic response, with ¢, is
strongly enforced. In the collisionless limit the other terms,
including the nonlinearity, enter the balance. An important

Il. BASIC EQUATIONS AND LINEAR BEHAVIOR aspect of the nonlinearity is finite amplitude-induced insta-

. _ _ bility.
The basic equations for the two-field trapped electron  “thg gyolution of the nonlinear instability and its eigen-

model represent a simple fluid system whose linear and nong,,4e can be represented as an expansion in the complete
linear properties reproduce essential features of more COMy,qiq set of linear eigenmodes. The model has two equations:
plete descriptions. These features include instability in colli-pance there are two linear eigenmode branches. One is the

sional and collisionless limits with real frequencies panch of the linear instability. It has exponentially growing
controlled by the electron diamagnetic frequency. They alsqycqations for certain wave numbers, and damped fluctua-

include proper nonlinear dynamics, with long wavelengthijong at higher wave number. The other branch is stable for
spectral energy transfer dominated by theBadvection of o\ ery Fourier wave number in the spectrum. The eigenfre-

electron density, and short wavelength transfer dominated béfuencies are given by the two branches of the quadratic dis-
the ion polarization drift nonlinearity. In the collisionless persion relation

limit, where the mode frequency of the instabilityexceeds

the collision frgquency;, the grov_vth rate is proportional tq w2(1+k2—sl’2)+w[—kay(l—sl’Z&)+iv(1+k2)]

the small collision frequency. This is the only way to obtain

instability in the absence of trapped particle resonances. The —ik,vpv=0, 3
latter is the true source of instability in the collisionless limit;

hence, the fluid instability is a surrogate. While the fluid wherea=1+ a7,. Restricting ourselves to the collisionless
instability is more correctly labeled as weakly collisional, thelimit v<w, the frequency of the growing branch, through
electron trapping regime, as delineated in kinetic theory, iorder (v/kva)Z, is
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vpky(1— &%) ive¥ a(1+k?—1] > ¢ for the damped branch, favors excitation of the damped

0=w1= (1+K—&'?) + (11 K= P (1- ") brangh b_y the e_Iectron _nonlir_1earity_. As shown in S_ec. IV, the
polarization drift nonlinearity drives the growing and

e a(1+k?) —1] damped branch amplitudes with forces of disparate magni-

kny(l_sl/Z&)3 ' 4) tude. The damped branch force is smaller than the growing

_ e . _ branch force by a factdiR,|/|R,|=O(v/kyvp). In contrast,
For instability,e™“a<1. When a higtk hyperviscous damp-  the electron nonlinearity drives the damped branch with a
ing is added to Eq(1), the imaginary part of EG4), which  force that is of equal magnitude to the force it exerts on the
gives the growth rate of the linear instability, takes the formgrowing branch. Consequently, there is significant excitation
shown in Fig. 1 for the infinitesimal energy input rate. The of the damped branch in long-wavelength regimes where the
growth rate of Eq(4) asymptotes to a constant positive value gjectron nonlinearity dominates. In such regimes the spec-
for largek; hence, the high-damping in Fig. 1 comes en- ym reflects the partition of the purely damped branch, with
tirely from the hyperviscosity. A small viscous damping rate ;2 becoming much greater tha#? as wave number in-
at low k is also used in some simulations. Without 16wW- ~regses.
damping,w; goes to zero fok,=0. The eigenmode of the Nonlinear excitation of the purely damped branch nec-
linear ingtability i_s an amplitude eigenvecto_r, i.e.,_it_ specifieSggsarily implies that the linear growth rate will change at
the relative amplitudes af and ¢ under the instability. The  finjte amplitude. However, the change can be either positive
eigenvector is obtained from either EG) or (2) by linear-  or negative. To quantify the change in growth rate at finite
izing, Fourier transforming, substituting, for o, and solv-  amplitude, we introduce the energy input rate. For a system

ing for n in terms of¢. The result is with conservative nonlinearities, this is proportional to the
ik, vp(1—e¥28) —iwy(1+k2—1?) rate of change of total energy. It includes the energy fed into
ne=|1+ Y 75 o fluctuations at infinitesimal amplituddinear growth ratg
ETV

and at finite amplitudénonlinear growth rate and the en-

a(1—e¥?+K?) ifJa(l+k?d)—-1][1+k>—e'?) ergy removed from the system by dissipation. It does not
= 1— %, kovp(1— %) include conservative processes such as spectral transfer. The
Y energy is
‘U2
+0 ﬁ) H=Ry(K) . )
kv W=2 E()=2 [(1+K =D f*+2¥n ).

Note that to lowest orden and ¢ are of comparable magni- (8

tude and in phase. ] ]
The eigenmode of the nonlinear instability has, at finite | N€ rate of change of total energy is obtained from Egs.

amplitude, a non-negligible projection onto the branch oft1)—(2) by taking the Fourier transform of each equation,

. . /
purely damped modes. Consequently, this branch cannot BBUItiPlYing Eq. (1) by ¢, and Eq.(2) by etn_y, sum-

ignored as is often done in analytic treatments. The freMiNg over wave number, and adding the two equations. The

quency of the purely damped branch is nonlinearities drop out of the resulting expression because
they transfer energy in wave number space without energy

. B —iv UZSlIZ[&(1+k2)_1] loss, i.e.,EkEkr(k’XZ-k) (k_k,)2¢—k¢k’¢k—k’=o and
‘”_‘”2_(1_81/2&)_ kny(1_81/2&)3 22 (KX z-kK)yn_ny ¢y =0. The rate of change of en-
3 ergy can be written
v
+O| 7=/, (6) dw
k
v §0 =2 2WEK), )
and the eigenvector satisfies
ikva(l—sl’Z&) o 1+ K2— g2 whereyﬂ' is the energy input rate, given by
Ng= T - T2~ 1T A
vel? (1—e¥a)et? 7,m:[l(vaasllz|m<l‘1§<;Sk>—v(<:1/2|(nk—d)k)|2] (10
i @(1+k2)—1](1+k2— ') o 2 . : [(1+K =) ¢l *+ e, ?]
yV/D\+" a y¥D “ though the nonlinearities formally drop out o Y
kyrp(1—ea)® Ky v Although the nonlinearities formally d f E@), v
=Ry(K) by 7) is fundamentally nonlinear. Only ify satisfies the eigenvec-
=R, .

tor relation of the unstable brandkq. (7)] does Eq.(10)
This branch is damped for every wave number, even with neeproduce the linear growth rate. i, deviates from that
hyperviscosity. The damping rate is comparable in magniselation, y]' deviates from the linear growth rate. Such a
tude to the unstable branch growth rate. The purely dampedeviation occurs when the purely damped branch is excited
branch differs from the unstable branch in three significannonlinearly. Instability, either linear or nonlinear, requires the
ways: (1) with |R,|=0(k,vp /v)|Ry|, its eigenvector has first term of the numerator of! to be positive; the second
=0(kyvp/v) > ¢; (2) to lowest order, its Fourier modes term, which represents the dissipation from trapped electron
have zero real frequency; af@) to lowest ordernis 90° out  scattering, is negative definite. The first term is driven by the
of phase with¢. The fact thajR,|>|R;|, and hence that  free energy of the density and temperature gradients.
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IIl. NUMERICAL SOLUTIONS 10* g T T

Equations(1) and (2) were solved numerically using a
dealiased pseudogpect_ral _Cod_e. A hyperV|§cous damping was 4400
employed to provide dissipation at the highest wave num-
bers. Its magnitude is displayed in Fig. 1 as the difference
between traces labeled with crosggsowth rate from Eq.
(4)] and diamondsggrowth rate with hyperviscous damping
At saturation the system is turbulent because, with a broad
range of unstable modes, any given mode interacts simulta- 10
neously within multiple wave number triads, as evidenced by —eo— Jampe
broad spectra in frequency and wave number. High resolu-
H H H H 1..l....l....l....l..-.l....
tion is not required, and runs typically had 333 ques. _ 0 00 200 300 700 00
The mode k,,k,)=(0,0) does not evolve because its uni- ime
formity in all directions makes spatial derivatives vanish.

Modes withk,=0, k,#0, which include the zonally aver- FIG. 2. The evolution of the energies of the growing linear eigenmode,

d fl é d roX d’ | Th d : damped linear eigenmode, and the total energy. The damped eigenmode
?‘ge_ ow .an ensity, ) 0 evo Ve'_ e me_an ensity appeaa'ecays initially but is then excited by the electron nonlinearity to a finite
ing in L, is taken as fixed, consistent with a steady statgevel.
maintained by the balance of particle source and transport
losses. The nonlinear instability is tied to fluctuation time _ _ _
scales and is not significantly affected by transport time-scalés not simply the sum of the two eigenmode energies. There
processes. is an additional contribution involvingB,85% ). These terms

For a given set of parameters, the eigenmode relations ¢fan be positive or negative. In Fig. 2 they are negative, and
Egs.(5) and(7) were calculated in the code. These were usediccount for the fact that the total energy is smaller th).
to project the density and potential at each instant in timeMore interesting is the behavior Wﬁz' The energy of the

onto the complete basis set formed by the linear eigenmodegyrely stable branch decays at the linear damping rate ini-

energy

—o— total ener

—8— rowin%tg? ncr}]ener%ly

ranch ene

The projection can be written tially. However, shortly aftet=10, the decay is suddenly
ne(t) R, R, arrested and the amplitude of the damped branch begins to
<¢k(t)>:ﬁ1(k,t) 1 )+,82(k,t)( 1) grow exponentially. This continues until saturation, when

bo'[hWﬁ1 andWﬁ2 reach a stationary, saturated level. In satu-
Bl(k,t)) (11) ration, Wy, is somewhat smaller thaW, . BecausgR,| is
Ba(kt))’ larger than|R,| by a factor of ordetk,vp/v, By is larger
than B, by at least such a factor. F@,, the phase of linear
evolution occurs only fot<10, ending long before satura-

_(Rl Rz) Bi(k,t)
N 1 1 ﬂz(k,t)

whereM is the matrix of the linear eigenvectors with ele-
mentsR; andR, as defined in Eqg5) and(7), and3; and : oY :
B, are the instantaneous amplitudes of the unstable antéon_ﬁ?d trf1e termination oftthe Ime;ar ?hrOth phasc?BQE h
purely stable eigenmode branches, respectively. The instan- K € |2r¢quencyt Srt’eg r;Jm 0 E € artnpe ; rant;
taneous amplitude of each eigenmode evolves as the IineJr@Z( @)|” IS cons ructed from a ourier transiorm o
ized normal mode in the linear phaseg(k.t) Bo(k,t) after saturation, and is displayed in Fig. 3. Spectra

= Bj(k,0)exp(-iwjt), and departs at finite amplitude. In the fohr B, N, ¢ are ta:ﬁo d|spl?yed.tDur|n?@t;% Imear_gtrovxt/th
code, Eq(11) is inverted at each instant in time to obtain the phase we expect the spectrum 1o pea , consisten

evolving eigenmode amplitudes as a function of the evolvin(‘:}c’j\'Ith Eg. (.6)' Wh'gh .|nd|cates tthatdthe fre‘g”f”cy cl).f the
density and potential. amped eigenmode is zero up to ordetk(vp)=. In nonlin-

ar regimes, frequency spectrum peaks are typically of order

Figure 2 shows time histories of the eigenmode energieg1 . . o
: e linear frequency. However, Fig. 3 indicates tBathas a
W, and W, , and the total energyV. These energies are . .
Py B2 W 9 finite frequency of ordek,vp . Thus, the process that excites

found from Eq.(8) by substituting Eq(11) to obtain B> to finite amplitude also gives it a significant nonzero fre-
quency.

Wave number spectra far and ¢ in the saturated state
are given in Figs. @) and (b). Both spectra peak at low
X2 ReB185)+ Y2 RERRE (B8], wave number neaik( k,) = (0,1) and(1,0). In this region of

(1 Wwave number spacén,|? and|¢,|? are comparable. How-
ever, for high wave numbef,|? falls off much more rap-

W= E(k) =W, + W, + > [(1+k*~e'?)
k k

where idly than|n,|2. This can be attributed to the nonlinear advec-
tion of density, which in the collisionless regime excites the
W/;J.ZEK [(1+k2—e )+ eVAR)|2]| B;|? (13)  damped eigenmode with>¢. To test this hypothesis we

obtained numerical solutions of Eq4) and(2) for the col-
is the energy of the unstablg £1) and purely stablej( lisional regime In the collisional regimey>w, V¢pXz-V,
=2) eigenmode branches. Note that because the lineand Eq.(1) predicts an adiabatic electron response with
eigenmode decomposition is nonorthogonal, the total energy ¢ to lowest order irk vy /v<<1. Indeed, the spectra of
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Frequency spectrum, ExB run, 5,5 mode a) DTEM density spectrum:

autocorrelation
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—E— density spectrum
—B— potential spectrum

—©— growing branch spectrum
—>€&— damped branch spectrum
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w

10"
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frequency

FIG. 3. Frequency spectrum at saturation of a Fourier mode of the purely
stable eigenmode branch. The linear eigenfrequency is zero to lowest order.
Nonlinearly, the mode has a frequency comparable to that of the unstable
branch, i.e., comparable ta,k, .

and ¢ for the collisional regime satisfyn,|?~|¢,|? for all

wave numbers, as evident in Figgaband (b). Heavy ion FIG. 5. Steady state wave number spectra for dissipative trapped electron
. . 4 2 2

beam probe measurements of both density and potential fiode turbulence foa) ¢ and (b) [ny/*.

the Texas Experimental Tokam&@KEXT) have recently been

reported.® The density is comparable to the potential at 10w jinear instability from the simultaneous measurement of den-
wave number, but falls off more gradually than the potentialsity and potentidf is currently under development for appli-
at high wave number. Qualitatively, the behavior is quitecation to two-field data.

similar to that of Fig. 4. This comparison raises the possibil-  The pehavior displayed in Fig. 2 and the spectra of Fig.
ity that nonlinear instability may have been present in thes indicate a nonlinear eigenmode, and hence a nonlinear
turbulence of TEXT. A method to infer the presence of non-mogification of the growth rate, either positive or negative.
[Substitution of the unstable eigenmode density of €.
into Eq. (10) yields the linear growth rate; hence, any varia-
tion of n from the unstable eigenmode make?¥ different
from the linear growth rat¢.To determine the nonlinear
growth rate we evaluate E§10), taking |n,|?, | ¢/, and

a) Density spectrum:

100808 (ng &) from temporal averages of simulation data in the

{.wif,‘; PO - saturated state. The result is Fig. 1, which was introduced in
K X e g . . . . o

0008 SRR SV, f Sec. |. For this system there is supercritical instability at
00551 v e %

% o X .

100608 wave numbers arounk, =4 andk,=8 (for k,=0), while

other regions are nonlinearly stabilized. The unstable band is
broader atk,>0, as indicated in Fig. 6 which shows the
energy input rate as a function kf andk,. The maximum
value of "' exceeds the maximum linear growth rate by a

. factor of 4—5. Thus, the nonlinear instability has a significant
b) Potential spectrum: effect on growth rates, markedly increasing the driving of
certain modes. However, the wave number region of unstable
modes is also significantly reduced. Modes both at lqw
and just abové, =8 are unstable at infinitesimal amplitude,
extracting free energy from the gradients, but at finite ampli-
tude become energy sinks. This finite amplitude-induced sta-
bilization of linearly unstable lovk modes represents a no-
table change in the growth rate spectrum shape. The modes
along thek, =0 axis constitute a zonally averaged flow, i.e.,
(vy)y=Jdyv,=[dKk, expakxx)ikxqskxykyzo. These modes are

in the dissipative regime for all values af+0 because
FIG. 4. Steady-state wave number spectréabf ¢,|? and (b) |n|. kyrp=0. At infinitesimal amplitude they are marginally
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a) Linear growth rate: 100
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The packing fractior{roughly, the ratio of structure scale to
interstructure separatipris approximately unity, an indica-
tion that the kurtosis is near 3 and the distribution is close to
Gaussian. While intermittency may be possible in Eds-

(2) under appropriate circumstances, we conclude that it is
not a necessary element of the particle flux reduction de-
scribed above. The question of intermittency in this system is

FIG. 6. Energy input rate as a function kf andk, in (a) linear growth interesting but beyond the scope of this paper.
phase, andb) saturated state. !

IV. NONLINEAR EXCITATION OF THE DAMPED
o EIGENMODE
stable (Imw=0), and are seen as a crease in Fi@).6At

finite amplitude these modes are damped. The damping rate Because nonlinear inst_ability requires non_lin_ear excita-
is a non-negligible fraction of the maximum growth rate. ThelloN of the purely stable eigenmode branch, it is advanta-
damping of zonal flows has an important effect on the turbu-

lence level in simulations of gyrokinetic modéfsNote that X

here the finite excitation level for these undriven modes, as
indicated by the spectrum, indicates spectral transfer into
these modes via nonlinear coupling. This is the standard ex-
citation mechanism for zonal mod&sThe finite amplitude-
induced damping evident in Fig. 6 is a distinct process aris-
ing from damped eigenmode excitation, and is currently
being investigated?

In Fig. 7 the quasilinear particle flux for different values
of a is plotted as a function of the true flux. The two are
clearly different, with the true flux smaller than the quasilin-
ear flux by a factor of order 5. The flux is essentially a wave
number moment of"'(k) E(k). The reduction of the true
flux relative to the quasilinear flux reflects the fact that
y"(k) is smaller thany'(k) for low wave numbers where
E(k) peaks. Wave numbers wherg' (k) is greater than
¥'(k) receive weaker weighting in the wave number sum,
becauseE(k) is smaller. In simulations of nonadiabatic
Hasegawa—Wakatani turbulence, a reduction of the particle
flux from its quasilinear value was observed and attributed to
spatial intermittency, i.e., coherent structufédhe nonlin-
ear instability mechanism described herein is not caused by
intermittency, because coherent structures are not accounted y
for in the an_alytlc theory(v_vhlch IS quas&G_aussu)_wand ?‘re . _FIG. 8. Contours of constant density during saturation. The packing fraction
not present in the simulations. The latter is confirmed in Fig of structures is near unity, indicating that the kurtosis is close to the Gauss-
8, which shows contours of constant density in real spacean value of 3.
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geous to transform the basic equations so they describe tliee growing eigenmode. As indicated in E80), the nonlin-
nonlinear evolution of the two linear eigenmode branchesearities are written in terms @&, and 8, using the substitu-
i.e., use Eq(11) to project at each moment in time the den- tions ny,=R; 81+ R,85 and ¢ = B+ B, in Egs.(16)—(17).

sity and potential onto the two linear eigenmodes of Egs. To simplify Eq.(20), we examine the relative magnitude
and (7). To develop equations for the nonlinearly evolving of the nonlinearities. To compate, andb,,, first assume
eigenmode amplitudes; we rewrite Eqs(1)—(2) in matrix  thatn,~ ¢, as in the unstable eigenmode. The electron non-

form linearity b,, has two fewer factors of wave number than the
polarization drift nonlinearityb,. Hence, in a long-
Ny Ny b, wavelength regimeK<1)b, dominates,. Consider now a

(¢k) =D ¢k) +(b¢)’ (14 density fluctuation like the stable eigenmode. The electron

nonlinearity continues to dominate at long wavelengths be-
cause it still has fewer factors of wave numliene in this
casg, but n is now larger than¢ by a factor of order
kyvp/v>1. Consequently, the electron nonlinearity domi-
nates at long wavelengths for collisionless trapped electron

whereD is the linear coupling matrix and, andb, are the
nonlinearities

—v —ikyvpa+v : ) o

o - 1 turbulence. The degree of dominance is greater than it is in

D= 82 v - - ky”DZ‘J‘_Sﬂ2 v, (15  the collisional case, where the electron nonlinearity has one
1+ke—e 1+k—e fewer wave number factor than the polarization drift nonlin-

earity, andn,~ ¢,. The dominance of the electron nonlin-
earity in the collisional regime has been studied in défail.
We will restrict ourselves to long wavelengths. Simplifying
Eq. (20) by retaining the electron nonlinearity only

1

bn:_EZ (k" XzZ-K) (N Py — Nk D), (16)
k’

1o (K'xz:K) o
b¢:—§§ Trie—grel(k=k )2=K'?]pyr by -

o CDxzk)

X[Ry(k")B1(K") +Ra(k") Ba(k") I[ B1(K")
+B2(k")],

We invert Eq.(11), take the time derivative, and substitute
from Eq. (14), yielding

SRR
(,Bz(k,t))_M b =M""D B +M by’ (18

(21)

whereR; (k) andR,(k) are defined in Eq45) and(7), and
k"=k—k'. It is possible to make one additional approxima-
tion. Becausep; is linearly driven andp, is linearly
damped, the former is larger than the latter in saturation. This

where ) X . . . : : :
is evident in the simulations described in the previous sec-
1 1 -R, tion. From the saturation balance obtained in Sec. VBjm
Mol T o (19 ~(vok)|B, and ReB~(upk)?3,|. This allows B,(K")
1 2 1 in the last set of brackets to be dropped. The term with

B-(k") in the first set of brackets cannot be dropped because
R,/R;~O(ivpk,/v), making Ry(k')B,(k’) as large as
Ri(k")B1(k"). It can be verified that the terms omitted by
droppingB,(k”) conserve energy among themselves. There-

To complete the transformation, and ¢, must be written in
terms of 8, and 8, using Eq.(11)

(Bl(kvt) —M~1DM ( :Bl(k't)) fore, Eq.(21), with 8,(k”) removed, is an energy-conserving
Ba(k,t) Ba(k,t) approximation. Consequently, we shall henceforth investi-
b gate the nonlinear evolution of
+M—1( ”) 0 R . (20)
=R1B1tRB )
by/ | RiB1tRoB, (— 1)k x2-K)

¢k=ﬂ1+132 . .

(K=—iwiBi(kK+2, —=—F————
- o A0l 00+ 2 R G R )
By construction, this representation diagonalizes the linear
coupling matrix, i.e.M~1DM is diagonal with the eigenfre- X[R1(K")B1(K") +Ra(k") Bo(K")]B1(K"). (22)
guencies—iw; and —iw, as the diagonal elements. How-

ever, in this representation each equation evolves under a We first examine the nonlinear excitation @,(k).

combination of the two nonlinearities. Frol 1, the non-
linearity of the B, equation is R;—Ry) ™ !(b,—Rzb,),
while the nonlinearity of the3, equation is R;—R,) !

From an initial state with infinitesimal amplitudes, the non-
linearities are at first negligible, an@; and B3, evolve ac-
cording to the linearized equations. The exponential growth

(—bn+Riby). Noting thatR,~ (k,vp /v)R,, this validates of g; and the exponential decay @, produce a situation
the statement made in Sec. Il that the electron nonlinearityhere in one or two linear growth timeg,<3,, and the
yields forces in thg3; and B, equations of equal magnitude, nonlinearity is dominated by3;. Assuming 8,<B; and
while the polarization drift nonlinearity preferentially forces symmetrizing the remaining nonlinearity, EQ2) becomes
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. ) (k" xz-k)
BZ(k)+|w2B2(k)EE Z[Rl(k)_ Rz(k)][Rl(k,)_ Rl(k_k,)]ﬂl(k,)ﬁl(k”)

K’

= (k' x2-K) Bk Back K’ iveak-k’ Cel(1-e")(a-1) [k, Kk 03
:k’ ( z )Bl( )ﬁl( ) (1_21’81/2)2ky7/|3 2(1—&81/2)4V%k§ k_)!/ ky_k)f, ! ( )

where k<1 has been assumed. The first term of the lastolves mode coupling and phase scrambling. A description
expression is of ordes/k,vp, and smallk contributions of  of saturation thus requires a statistical treatment.

orderkk’ have been retained. These contributions have been

neglected in the second term, which is one order higher iy, CLOSURE CALCULATION

v/kyvp . From these expressions it is evident tgatand 8,
evolve linearly until3, exceeds an amplitude threshold gov-
erned by the magnitude of the nonlinearity relativesgs; .
The threshold is lower for th@, evolution becaus@, de-
creases with time in the linear regime, wher@asncreases.
The nonlinear threshold in the, equation is given by

Equation(26) is valid as long a@, grows exponentially,
experiencing negligible feedback frofy. This situation no
longer holds as the instability saturates. To describe satura-
tion we introduce closure theory. A variety of insights is
obtained from closure theory. It reveals a direct relationship
between nonlinear instability and the nonlinear excitation of
modes on the purely stable branch by showing that the re-
quirement for energy transfer to these modes favors nonlin-
ear instability. It also shows that the system has volatility
with respect to the sign oﬂl', i.e., both signs are possible
and likely, as observed in the simulations. Moreover,
whereas other studies of two-field drift wave models have
emphasized the role of the density-potential cross correlation
in inhibiting the turbulent energy casc&dé¢he closure cal-
culation shows that the cross-correlation value fixed by the
nonlinear dynamics in saturati@nhanceshe nonlinear en-
ergy transfer to the stable branch. Since the latter provides
coupling to dissipation within a single nonlinear interaction,
less cascading is required for saturation.

V—';[ﬁ&'>]2~|w2ﬂ9>l, (24)

where (" =exp(-iwjt)8(kt=0) represents the linear solu-
tion of Eq. (22), which is valid up to the time the nonlinear
threshold is reached. Becauﬁé) must reach a higher am-
plitude before the3; equation becomes nonlinear, the non-
linear evolution of, (upon passing its nonlinear threshpld
can be approximated using the linearized solutiefl).
Thus,

Ba(k,t)=Ba(k,t=0)ext —iwa(K)t]+ >, (k' Xz-k)
k!

ve 2k k! _ fefi(1-e"%)(a-1) The closure equations are complicated and possess many

(1-aekyvp 21— a3k terms. The solution given herein consists of the following. In

K K Sec. VA, leading order asymptotic scalings are found for the
x|y ,)]ﬂl(k’,tZO) quantities,| 81/2, | 8|2, ReBf B,), and (B} B,), as a func-

ky ky—ky tion of v/vpk,, the small parameter of the low collisionality
X By(k—k' t=0) limit. Because the growth rate lay, and the damping rate

1 : Im w, enter the lowest-order balances fg;|? and |3,|?,

{exgd —iw(kK')t—iwi(k—k")t]} respectively, these scalings recover the saturation level of
i[wy(K)— w1(K')—wy(k—K)] ( each quantity to leading order in the low collisionality limit,

] ] ) up to a numerical coefficient of order unity. The coefficients
From Eq.(25) both linear decayfirst term) and nonlinearly of |84]? and |B,]2 are positive; those of RE*S,), and
driven exponential growthi{second term operate simulta- Im(B B,) can be either positive or negative. The signs are
neously, but decay dominates prior to the transition, anjatarmined from the equations f,|2 and Ré: B,). With
growth thereafter. The growth rate is controlled by the larges}yis solution we examine the energy input rate in Sec. VB.
value of —i w4 (k') —iw;(k—k’) in the sum ovek’. In Fig.
2 exponential growth occurs for 2a<50. Similarly, Eq. A. Saturation balances
(25) indicates that before the transition the frequencggfs Statistical closure equations fofB:|2, |82, and

nearly zero, whereas after it i§ of _ordegky. Th.e_refore, the (B¥B,) are constructed from Eq22) by multiplying by
frequency spectrum peak shifts in the transition from neapppropriate amplitude factors. Calculating a closure for all

zero to~vpk,, as evident in Fig. 3. linear eigenmode branches differs from the usual procedure,
The exponential growth o8, saturates when which treats Fourier transformed equations ficaind ¢ [Eq.
v 0 (149)], .with 1) replgced byw,. The latter, by construction, .
V—D[ﬁl 1°~1m wq| 7] (26)  describes saturation as the Kolmogorov-style steady state in

which unstable modes saturate through transfer of energy to
Unlike the nonlinear excitation g8,, which is phase coher- stable modes within the same brartéh'*?°On the other
ent as long ag; is growing linearly(and therefore phase hand, solution of spectrum balance equations for all linear
cohereny, the nonlinear evolutiofsaturation of B4(k,t) in- eigenmodes completely specifies the nonlinear eigenmode.
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Taking moments of E¢22), the evolution equations for the quadratic correlatiggg?, | 3,2, and({B} 8,) are

—|ﬁ1|2 2 Ima,|B|2+2 Re 2

5|,32| =2Imw,|B,|°—2 Re 2 [

E(ﬁfﬂﬁ:'
1(|<k
where
o (Ri—Ry)
Calk k)=~ (k' X2k (g
KK = — (K X2 K) — 2
Ca(k,k")=— (k' Xz )m,

and the notations] = g;(k’), B/=pg;(k—k'), B

=R;(k"), Rj’z
for shorthand.

(

(

<ﬁ1ﬂ'1'/3’1>+cz(k k' )<,82,3,1,,81>} (27)

</31/3'1'B1>+Cz(k k' )<ﬁ2,3{,32>} (28

———(B1B1BT) + Ca(k K’ )(/325{51)}

(30

(31)

=B;(k),

Rj(k—k’), andR;=R;(k) has been used

*(k k " 1% g3
w2)<:3132>+2 [ <,3 *B1* B2) — C3 (kK ){Bo* BT* B2)

(29

dard and given in other references; hence, we omit interme-
diate steps. We start by finding evolution equations for each
triplet in Eqs.(27)—(29), multiplying Eq.(22) (for appropri-

ate wave numbejsby appropriate products 08,8, and
B1B>. These equations contain fourth-order correlations,
which are approximated as products of second-order correla-
tions. Treating the products of second-order correlations as
slowly evolving source terms, the triplet evolution equations
are inverted and substituted into Eq27)—(29), yielding a

set of equations closed at second order. The third-order cor-

Equations(27)—(29) are not closed because they dependrelations are subject to eddy damping, which is specified
on the unknown triplet correlations of the right-hand side. Toself-consistently in the closure. The closed second-order
close we use the EDQNM procedure. The procedure is starequations are

J
E|’81|2:2 Im w,|B4]*+ ReE

+Cy(k—k' K

Ci(k,k")

2 (o) tio)—iof —Aw,— Ao —Aw’)
|ﬁ1|2|ﬁ1|2+C*(k k)| 81?1817+ Ca(K’,
+Ca(k",K)| B1|%( BT B2) + Ca(K" K

+C3 (kK" B BIB* )1+

)| B11%(B% B2)+Ca(K",—
Cy(k,k")

! n *
witio]—io] —Aw,—Aw]—Aw])

[Cy(K" k)| 8112 B1]?
—K")|B1l*(B1B5*)

k)| B3 B1B5* ) +C5 (kK| B1I% B1B5*)
[C1(K",K)|B1|%(B1* B)

—Cy(K',K)|B1]2| B1|*+C ( k k' )IB 12(B1* Byy+ Co(K" K BL* Bo)Y B% Ba)
+Co(K", —k")| B1]2| B2 = Ca(K' K| B1IX BT B2) — Co(K', —K"){B1B5* )| B1|?

+C3 (kK| LI B2|*+ C3 (K K")(B1B3* M BL* B}

14
—1 B2 =21mw,| B, ~Re X
k/

X[Cy(K',K)|B11%(B1B5 )+ Ci(k—K' k
+Cy(k'K)| 8112 B2l 2+ Co(K" k)| B1]?| B2|>+ Ca(K", —

Ci(k,k")

(iojtio]—io; —Aw;—

—C3(k.k")|B1X LB )1+

—Ca(K',K)(B183 )| B1|>— CT (kK" B1I*(B1* B3) + Ca(K" K)(B1* B3)| B2l >+ Ca(K", —

Aw]—Awy)

Cy(k,k")

)|B11%(B1B3 ) — CT (kK| B1I? B1[?+ Ca(K’

(lwytiow]—iws

—Aw)—Aw]—Aw})

[C1(K",K){(B1B3 ){B1" B2)

K'){(B1B83)|B5)?

(32

—K"){(B1B5 ) B1B5*)
kK" ){B1B3 )(B1B5* ) —C5 (k,k")| B11%(B1B5*)

—Ca(k' . K)|B2l?| B1I? = Ca(k', —K")(B1 83 ) B5* BT) — C5 (k,K")| 8117 8517 = C5 (K. K")(BIB* W B B

(33
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o RE CE(k,K')
5<:81B2>_|(w1_w2)<ﬁ1ﬁ2>+ = E(—iwl Iw/l/*_sz Awi*—Aw’l'*—sz)
X[2CT (K", K)| B1|%(B1 B2) +2C3 (K" K)| B1|*] B2|*+2C3 (K", — k') B1* B2){B1 B2) — Ca(k.k") | B1|* B1I?
* k K" 112/ ! p"* C*(k k,)
_2C2( d )|181| <181182 >]_ (_l(,(), |(1)2*+|(1)2 A(l)é{* A(A)é*_sz)

X[CT (K", K){(BT B2){B1B5*)—C} (K’ K){( B3 B2)| B1|*—CF (kK )N B18* ) B3I
+C3 (K, K)| B2l %(B185* )+ C5 (K" K)| B (BT B2) — C5 (K’ ,K)| B2l ? B1IZ—C5 (K, —K"){ BT B2)(B5B1*)

Ci(k,k")
(i +io]—io] —Aw;—Ao]—AoY)

1
= Ca(k,K")[ 81178117 = Calk.K")(B18* ) B1* B5)] — 5

X[2C4 (K", k)| B1]2] B1l?+2C (K", K) | B1I%( BT B2) +2C,(K",—K')| B1|%( B1B5* ) — CF (k.k")| B1I%| B1|?
Co(k,k")

(o] tiwy—io] —Ao]—Av)—Aw})

X[C(K",K)|B1)%(BL* Br)— C1(K',K)| B1]2| B2+ CF (kK ) B1* Bo)| B1I%+ Co(K" K BT B2){B1* B

—Cy(K' k)| B11%(BY B2y + CaK",—K')| B5I2| B2 — Ca(K', — K" ) B1B5* )| B+ C5 (k. k")| 85 B

+2C5 (kK" B11%(B185™ )1+

+Co(k,K")(B1" Bo)(B1BZ™)] | - (34)

The frequencied w; andAw, are the eddy damping rates, obtained as the eigenfrequencies of the finite-amplitude response
of B, and B, to an infinitesimal impulse. These rates are given by

1 1(k’k,) r ” 2 ' 2 ' " " ok "ot I nl*
doy=3 [Z(le+lwl R Bary  CHK LI otk |81+ Calk', K )(BBE*) + Calk', K )(B15")]

Ca(k,k")
(iwytio]—Aw)—Aw?])

X[Ca(K",K)(B1* B3)+ Ca(K',— k)| B3l 2+ Ca (K’ k)| B3|

+Cz(k’,—k”)</3’1’/3£*>]}, (35
1 Ci(k,k') ] Cy(k,k')
== i3 (K”,K)| B2+ Co(k k)| 8121 .
Aws kE [2 (o] —Awi— Aapl 2K B G B G R o= )

X[Ca(k",K)(B1* B2) +Ca(k",K)[ 8] 2]]- (36)

Solution of Eqs(32)—(36) specifies 8,(K)|?, |B2(K)|?,  v/w,<1. This is done by testing trial scalings to see if the
(B3 (k) B2(K)), Awq(k), andAw,(K), as functions of both dominant balances in Eq$32)—(36) meet the two funda-
wave number and the parametersw, , ¢ and& of the  mental physical constraints of the saturated state. The con-
linear instability drive and nonlinear couplings. Even for thestraints are(1) The dominant balance in tHg,|? equation
simpler saturation balances of one-field closures, the nonlinmust contain the linear driving term 2 la|3,/%. This is the
ear spectrum convolutions make evaluation of the spectruraource of free energy for exciting turbulence and must be
intractable in any range of wave numbers for which there igpresent in the dominant balan¢2) The dominant balance in
instability or dissipation. A simpler task is to determine thethe |3,|? equation must contain the linear damping term
saturation levels of34]%, |B,|%, and(B} B,) for low wave 2 Imw,|B,/%. The excitation of3, described in Sec. IV effec-
number unstable modes due to nonlinear coupling withtively establishes a cascade eigenmode spacat fixed
modes at higher wave number. The saturation levels are exvave number. With3,|? subject to strong linear damping, it
pressed as functions of the parameterss, , 2, and & is in a dissipation range, and the damping enters the balance.
that enter the linear growth rate and the nonlinear couplingdmplicit in this condition is the inequality ;%> 85|?,

We seek leading order asymptotic scalings for the satuwhich as noted in Sec. Ill is satisfied by the numerical solu-
rated values of 81|, |B8,]?>, and (8% B,) as functions of tions. In addition to these constraints, we assume that inco-
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herent terms are small and exclude them from saturation bal- Phase between branches for 5,5 mode
ancesa priori. This assumption applies to spectral transfer 08 T
from a modek to short wavelength modds’, k—k’'>k. : /\
Provided the spectrum decays with wave number, the prod- -1 WM - M_J\ﬂ’\v AV" o o
uct |B]-’|2|ﬂi”|2 of an incoherent term is smaller than its co- [ M : \/ : W
herent counterpat;|?| 3/ | because the former is quadratic . |
in high wave number energy, w_hereg; thellatter is linear. g o branh phase
Moreover, incoherent terms are identified with the produc- ¢ [ —+— dlosure predicion
tion of turbulence in an inertial range. However, in driven 2r —’—k—_gzgé?r%?nppédicnon
ranges production is by linear instability, and the incoherent I
terms are small. 25

To establish the scaling of each term in E2)—(36), —* * * %* %*
we must know the scaling of the temporal response func- PN S BN R (T EPE RPN
tions. The temporal response functions appear in B 0 200 400 600 800 1000 1200
(36) as denominators comprised of combinationsi @f, time

iw,, Aw,, andAw,. Consider the first response function of FIG. 9. Time evolution of the complex phase T4HM(5 B2)/Re(B; B2)].

Eq. (33: (iwjtio]—iws—Awi—Aw]—Aws) L The

first three terms are linear eigenfrequencies and together go

as ~ivp[ky—(ky— k)’,)][l—sl’z&]z - kay[l—sl’Z&] to

lowest order inv/w, for k? ande? small. The real parts of

the eddy damping rates are of orddrecause of the balances

in conditions(1) and (2) above. As shown below, I,

~flo, , Imw,~w, . Thus, the entire response function * o\ A 2.2 2 .

scales as<iakyvp+bv) "%, wherea andb are constants of Re\BL B2) = Acvpry(vlvory)™ (vvpky=0),

order unity. It is easily verified that all of the response func- Im(B% B,)~ A VZDK§(U/VDKy) (vl vpk,—0), (39

tions of Eqs.(32)—(34) have this scaling except for one. The

exception is the response functionw( +iw]—iw} —Aw;  WhereA;, Ay, A, andA; are constants of order unity in the

—Awi]—Aw}) ! appearing in Eq¥32) and(34). Under the ~ asymptotic expansion, but depend on mean wave numbers in

nearly dispersionless character of at low k, the leading Ssome fashion akin to the wave number dependence of Eq.

order contributions of each of the first three terms cance(37).

provided vpk,k?*<v. This propagator therefore scales as  The coefficients, andA; can be either positive or nega-

(a'v+ ib’vzlkva), wherea’ andb’ are constants of order tive. As we shall see in Sec. V B, their sign affects the sign of

unity. The difference between this propagator and the otherg™. We can use the steady-state version of B§) (d/dt

is crucial in Setting transfer rates. —)0) to determine the Sign (ﬁi . This is pOSSibIe because
To obtain a set of plausible trial scalings, we start withall terms with a factof 87 B,) or (8185 ) go as In{3; ;) in

the condition| 8,|?<| 81/, and calculate the saturation level leading order. All but one of these terms have coefficients of

of | 81| with |3,|>— 0. Balancing the first two terms of the the same sign, and the sign is such as to reqiire0. With

|B1l?~Avi;  (vlvpky—0),

|B2|2~A2V%K§(U/VDKy)2 (vlvpky—0),

nonlinearity in Eq.(31) with the growth rate, we obtain eight terms,A; is robustly positive. ForA;>0, energy is
s 2 2., s o transferred intoB, from B,. If A; were negative energy
|Bal*~vpry (i Xz 1)~ k") 7%, (37 would be transferred out @,, and a steady state could only
wherex and «' are spectrum weighted wave numbers. Thisbe possible if Imw, were positive, i.e., if3, were linearly
leads us to adopt trial scalings of the form unstable. Therefore, |(ﬁfﬂ2>>0 controls energy transfer
) 0 from B, to B,. The eddy damping ratesw, andAw, are
| Bal "o (v] @), also positive if In{B; 8,)>0. The sign of R&; B,) must be
| Bo| %o (v, )%, determined from the imaginary part of E@4) [the real part
of Eq. (34) is a function only of I35 B,) to leading ordef
Re&(BT B2)* (vl w, ), Of the terms proportional to R@} 3,), all but one have co-
" w efficients of the same sign. However, the terms not propor-
IM( 51 B2) (vl ). ©8  tional to Rép: 3,), which act as a source for B 3,), are

We have specifically examined the cases,d;,a;) split almost evenly between positive and negative. The result
=(2,1,2), (2,2,2, (1,1/2,3/2, (1,3/2,1/2. Of these, all but is R€B;B,)>0, but with the nearly even split, R& B,

the second case violate one or both of the physical saturatiomay change signs under different parameter values or spec-
constraints described above. Remarkably, the second cageym conditions. Thus, R} 8,)>0 is considerably less ro-
(a,a;,@))=(2,2,1), includes every term of E33) in the  bust than IniB; B,)>0. Figure 9 shows the time evolution of
dominant balance, and includes all but three terms of Eqcomplex phase of 8% B,) [i.e., tarm {(Im(B} B.)/Re( B} B.))]

(32). The terms that yield Eq37) are included in the domi- for a wave number corresponding to a nonlinearly unstable
nant balance. Moreover, this case agrees qualitatively wittmode. The angle is less thamr/2, with Im{B}B,)

the simulation results. We therefore conclude that the leading-Re(5; 8,), and both quantities are positive, in agreement
order saturation levels are given by with theory.
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The saturation level scalings, E®9), can be substituted of Eq. (25), and evident in Fig. 3. The fact that it is recovered
into Egs.(35) and (36) to determine the complex values of in the closure theory is a check on the validity of the satura-
the eddy damping rates at saturation. The results are revedlen level scalings, and an indication of the predictive power
ing. Equation(35) is dominated by the last two terms, which of the closure theory.
go asCzclﬁf, C%{,BLBZ), yielding Aw1~Cv+idv2/kva, The above analysis demonstrates that in saturation there
wherec and d are constants of order unity. The real partis a nonlinear eigenmode that differs significantly from the
represents eddy damping at the rate of the linear instabilitygigenmode of the linear instability, for which,=A,=A,
as required for saturation. The imaginary part is a finite=0. The nonlinear eigenmode is reflected in the finite am-
amplitude-induced frequency shift of the unstable eigenplitude of the damped eigenmode. Energy transfer to the
mode. This frequency is small compared to the linear fredamped eigenmode, as controlled by £H3,)>0, provides
guencyw;. The last term of Eq(36) dominates the imagi- a saturation mechanism. The terms representing this transfer,
nary part of Aw,, while this term and several others and those representing traditional spectral transfer to high
contribute to the real part in lowest order. The eddy rate isvave number within thes; fluctuation, are of the same or-
Awy~c'v+id'kyvp, wherec’ andd’ are constants of or- der. Therefore, transfer to the purely stable branch plays a
der unity. Again, eddy damping is at the rate of the linearsignificant role in saturation.
instability, consistent with a steady state. The frequency
shift, on the other hand, is one order larger than either edd
damping rate or the linear growth ratevhich, after all,
drives the systemand two orders larger than either Bgor The energy input raténonlinear growth ratewas given
the frequency shift of the, branch. This shift, while unusu- in Eq. (10). We write it in terms of3; and B,, substituting
ally large, was predicted by the parametric growth analysi€g. (11) into Eq. (10)

\é. Nonlinear growth rate

29 E(K) = kyrpe'%a IM{RY | B1]2+ RS | B2|>+ RY (8% B2) + R5 (8155 )}
—ve R, = 12| B4+ |Ry— 1]2| B>+ 2 R (R; — 1) (R, — 1)*( 8185 ) 1} (40)

|
The terms proportional tos ¥/ are the negative definite col- is smaller than the magnitude of negative terms in &),
lisional dissipation; the remaining terms are the correlatiorthe system has nonlinear damping. Both nonlinear damping
of (ny ¢|§> written in terms of 8; and B,. The term  and instability arise for different wave numbers in the energy
Im R} |3 s DOS”'VE- |f,§2=.0, this term and the negative input rate spectrum of Fig. 1. Nonlinear energy transfer to
term —wve'qRy—1| |/fl| 2y|_eld the linear growth rate the damped branch assures thatiB,)>0. (Recall that
Im @1 The tezrm '2”R_2|32| is negative. It and the term oyt the latter, there is no nonlinear eigenmode, and
_tvgl |§2_1r|1 |'|82| yII:eId thelidampllngt rs,tﬁ of the purely hence no nonlinear instabili}yThus, nonlinear instability is
stab'e branctl, miz' *or norlmea: INStabIlity & Necessary a1so favored by Im$;—w,)>0, and the disposition of linear
condition is I{R} {87 Bo)+R5{B165)}>0. This condition . C A . .

! eigenmode frequencies is seen to be a factor in nonlinear
can be rewritten as . . L . .

instability. The combination of growing and damped eigen-

mode branches makes lay(—w,) more positive than it

k,v
va a(1+ k2= Y {Im(w,— w,)IM{ B3 B,) would be if the second branch were weakly growing or mar-
ginally stable.
—[Re(w;— w,) + O(vlkyvp) IRE BT B2)}>0. (41 A necessary and sufficient condition for supercritical

The factors Imé;—w,) and Ref,—w,) are both positive. Nonlinear instability isyi —Im w1>0, or yg'= %] g,-0>0.
Thus, nonlinear instability is favored by having (g3,)  Rewriting this expression in terms of B, and
>0 and RéB!B,)<0, although it could still occur for Im(B]B,), using the expression f&k, andR, of Sec. II, and
Re(B; B,)>0, provided the first term is sufficiently large. If taking the saturation level scalings of E§9) as a guide for
the left-hand side of Eq41) is negative, or if its magnitude an expansion irv small, the instability condition becomes

A(1+k2)[3_'\ 1/2(2+A 1/2)]_2_'* 1/2(1_A 1/2)
R el R T R R S LT
(kyvp) . . (1-as')[a(1+k?) -+ k%]
_yTVD(Re<,3132>01(1_81/20)+|/32|2[ B s }>°- “2
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It is evident that Inis3} B,)>0 tends to produce nonlinear comesZ,y"'(k) E(k)=0, wherey" (k) is the energy input
instability. Because the same inequality is responsible for theate dictated by the amplitudes in the saturated state of the
transfer of energy fromB; to B,, the excitation of the linearly unstable eigenmode and the nonlinearly excited,
damped eigenmode, and therefore the nonlinear eigenmodeurely stable eigenmode. This condition is satisfied by both
is a nonlinearly destabilizing effect. On the other hand thethe finite-amplitude evolution oE(k) and the evolution of
damped eigenmode dissipates energy at finite amplitude, irihe energy input rate frony' (k) to y"'(k).
troducing the stabilizing term proportional tds3,|2. The nonlinear evolution of the energy input rate means
Re(B; B,)>0 is also stabilizing. Which terms are larger de- that spectral transfer within the unstable branch is typically
pends on the values &, A, , andA; , which in turn depend weaker than it would be if'(k) were the energy input rate at
on spectral details. The analysis of Sec. V A suggests thdinite amplitude. It also means that simple estimates of tur-
A,<A;, but the relative magnitudes & and A, have not bulence properties, like the mixing length rule for saturation
been determined. Because both stabilizing and destabilizingvel, and quasilinear expressions for transport fluxes, are
terms enter at lowest order, either stabilization or destabiliflawed because of their reliance gf(k). The reduction of
zation at finite amplitude is possible. Higher valuesaof particle flux is interesting in the context of the particle pinch
appear to favor nonlinear instability. The left-hand sidefor collisionless plasma®. For the part of the particle flux
(LHS) of Eqg. (42) is evaluated in Figs. 1 and 6. For those that is modeled as an outward diffusion we use the quasilin-
parts of wave number space Wheyé' exceeds the linear ear flux, as is often done. The difference between the quasi-
growth rate, the LHS of Eq42) is positive, otherwise it is linear flux and the true flux then takes the form of an inward
negative. pinch. While this part of the flux is smaller than the outward
diffusion in the present model, it is only slightly smaller.

The difference between the true flux and the quasilinear
VI DISCUSSION flux is not as dramatic as the difference betwedt{k) and

The stabilization of linearly unstable modes at finite am-v'(k) because contributions to the flux from wave number
plitude in some parts of the wave number spectrum and suegions wherey"(k)>y'(k) and y"'(k)<y'(k) partially
percritical nonlinear instability in others is found to be acancel. One type of turbulence characterization that is di-
robust feature of the coupled dynamics of ion vorticity andrectly sensitive to the difference betwegR (k) and y'(k),
electron density evolution under collisionless conditions.and is therefore likely to be strongly modified by the type of
This type of behavior thus applies to systems like thetwo-field dynamics described in this paper, is bispectral de-
Hasegawa—Wakatani equations and the trapped electron tugonvolution analysi$BDA).? As presently formulated, BDA
bulence model studied here. The changes in the growth raraws on the measurement of the bispectrum of a single fluc-
spectrum at finite amplitude arise from the advective nonlintuating field. A generic one-field turbulence model is used to
earity. This nonlinearity excites fluctuation structures, ordeconvolve the measured spectrum and infer the linear
eigenmodes, that belong to the purely stable eigenmodgrowth rate. This method has been applied to density fluc-
branch and are often ignored. The nonlinear excitation ofuation data measured by beam emission spectroscopy on the
these linearly stable structures changes the relationship diokamak Fusion Test React6FFTR) device. The inferred
density to potential dictated by the linear instability. This in growth rate is negative in an intermediate wave number re-
turn changes the correlation of density and potential that corgion and positive at lower and higher wave numbers. The
trols free-energy extraction and instability. Nonlinear advec-spectrum peak falls in the region of negative growth. Typi-
tion of scalar quantities like density, temperature, etc., is incally, spectral energies are repressed in regions of damping,
trinsic to virtually all multifield models. Hence, the nonlinear unlike the results inferred in TFTR. This may reflect a non-
instability mechanism studied here is fundamental. Othelinear instability process with energy input and dissipation at
mechanisms associated with nonlinear instability, includingdifferent wave numbers than that of the linear growth rate. A
those of self-trapping, magnetic shear, mode structure, angaiultifield BDA algorithm is currently being developed to
collisions, are not required. Nonlinear instability by this allow inference of linear and nonlinear growth rates from
mechanism in models of ion temperature gradient turbulencexperimental data in such situatiot?s.
is currently under study.
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an, ni=¢+e¥M,, Eqs.(A4) and(A5) form a closed system for
—r Ui V() +ui- Vit ngV-u; =0, (A1) n;, A, and¢. Quasineutrality can be used to eliminate
Introducing a modified electron densitp=¢ *n + ¢
whereny(x) is the mean density; is the ion flow fluctua-  yields Egs.(1) and (2). The choice of a trapped-electron
tion, and the mean ion flow is assumed zero. The ion flowegime for the nonadiabatic electron density implies the

satisfies a momentum balance usual condition on collisionality, i.e., the bounce frequency
au e must exceed the collisional detrapping frequemncyn aux-
E+ u;- Vui) = H(E+ ¢ tujxB)—(min;) " 1Vp;, iliary heated tokamaks all of the plasma typically falls in this
I

(A2) regime except the extreme edge and scrape-off layer. Within
) _ ) the trapped electron regime there is a collisional and colli-
wherep; is the ion pressure. For cold ions the pressure tergjonless regime according w=k,vp . In TEXT, the outer

is neglected, and the ion flow is solved perturbatively assumpart of the trapping regime was collisional, while the colli-
ing that the fluctuation frequenay is smaller than the fre- gjonal limit extended inward from the radius whefg
quency of ion gyratio)=eB/m;c. The lowest-order solu- =0 6 keV2® In TFTR significant auxiliary power pushed the
tion yields the BB drift u®=uz=ExB/B?=-V ¢  coliisional regime to the edge of the plasma, putting most of
xz/B, while the next order solution yields the polarization the plasma in the collisionless regime. Collisionless trapped

drift electron dynamics is thus highly relevant. However, it should
1 9 be emphasized that the representation of trapped electron
ui(')zﬂ—zx E+uf0)~v>uf°). (A3)  physics in Egs(1) and (2) is both simplified and approxi-
B

mate to a considerable degree.
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