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Nonlinear stability and instability in collisionless trapped electron
mode turbulence
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A two-field model for collisionless trapped electron mode turbulence has both finite
amplitude-induced stability and instability, depending on wave number. Effects usually identified
with nonlinear plasma instability~self-trapping, kinetics, 3D mode structure, magnetic shear! are
absent. Nonlinear stability and instability reside in E3B advection of density. It drives modes of a
purely damped branch of the dispersion relation to finite amplitude and changes the rate at which
free energy is released into the turbulence by shifting the density-potential cross phase. Analysis
shows that modes of the purely damped branch cannot be ignored in saturation, and that the linear
growth rate is a poor indicator of driving at finite amplitude, invalidating mixing length and
quasilinear approximations. Using statistical closure theory, the nonlinear eigenmode and growth
rate are determined from the saturation level of modes on all branches, stable and unstable, and the
nonlinear cross phase that governs finite-amplitude instability. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1491958#
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I. INTRODUCTION

Nonlinear instability is encountered in theoretical a
numerical analyses of plasma turbulence with suffici
regularity1–6 to warrant speculation that it is generic
plasma turbulence. A review of the literature suggests th
is no universal process, but multiple mechanisms, includ
self-trapping,1,2 kinetic effects,1–3 3D mode structure,4,5 and
magnetic shear.5,6 Fluid descriptions of nonlinear instabilit
have generally treated collisional regimes.4–6 While subcriti-
cal instability is often examined, supercritical instability
also important, and easier to understand and analyze. In
latter, the rate at which energy is injected into the turbule
is not the linear growth rate. Hence, common turbulen
characterizations that rely on the linear growth rate
invalidated.7–9

We demonstrate here the occurrence of both supercri
nonlinear instability and finite amplitude-induced stabiliz
tion of linearly unstable modes in the simplest type
plasma model for which nonlinear instability is possible
two-field fluid model for 2D electrostatic turbulence in
homogeneous magnetic field.10 Nonlinear instability is not
possible in single-field models with energy-conserving n
linearities; hence, the addition of a second dynamical eq
tion represents the minimal increment in complexity allo
ing nonlinear instability. The present model is simpler th
other systems in which nonlinear instability has be
observed1–6 because it lacks 3D mode structure, magne
shear, kinetic effects, self-trapping in phase space, and c
sional dynamics. The model provides a simple description
collisionless trapped electron turbulence, a fluctuation
lieved to contribute to anomalous transport in tokamaks. T
simplicity of the model allows for detailed analysis of th
nonlinear instability mechanism, which resides in the adv
tion of electron density. Advection of scalars like density
3311070-664X/2002/9(8)/3318/15/$19.00
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intrinsic to many types of turbulence, suggesting that t
mechanism is a player in more complicated types of tur
lence, provided other effects do not negate it. Our mode
similar to the Hasegawa–Wakatani equations.11 The nonlin-
earities are identical, and in both models the linear coupl
of density and potential is controlled by dissipation. Wh
dissipation is strong the density is slaved to the potent
otherwise its evolution deviates from that of the potenti
The dissipative coupling in the Hasegawa–Wakatani eq
tion is nonlocal. Here, the magnetic field is treated as hom
geneous, making the dissipative coupling local. This sim
fies the system and its analysis. More importantly, the sys
is constrained by the removal of a degree of freedom, eli
nating nonlinear instability mechanisms tied to mode str
ture and 3D effects.

Nonlinear instability is a reflection of the dynamic
complexity intrinsic to two-field electrostatic turbulence, a
demonstrates that generic one-field models cannot repli
the features of such turbulence. Because most measurem
of turbulence in the core of tokamaks have been limited t
single type of fluctuation, generic single-field descriptions
electrostatic turbulence have been convenient for mode
and interpreting fluctuation data.9 This work demonstrates
that for collisionless plasmas such models are inadequate
misleading if used as a basis for interpreting diagnostic d
As such, it points to the need for diagnostic developmen
enable measurement of two fields, e.g., density and poten
This study also illustrates new physical processes that e
gyrokinetic simulations when nonadiabatic electrons are
cluded.

The existence of supercritical instability and fini
amplitude-induced stabilization has significant implicatio
for the analytical treatment of saturation that use line
growth rates to approximate or calculate nonlinear quantit
8 © 2002 American Institute of Physics
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This type of treatment is common and forms the basis
mixing length estimates of turbulence levels, quasilinear
timates of transport fluxes,7 estimates of E3B shearing
thresholds using linear growth rates,8 and indirect measure
ment of linear growth rates from fluctuation spectra us
bispectral deconvolution.9 We briefly touch on this issue b
showing that for the present model there are significant
ferences between the quasilinear particle flux and the
nonlinear flux.

The nonlinear instability is depicted in Fig. 1, which
drawn from the numerical solutions more fully described
Sec. III. Two of the traces show spectra of the energy in
rate at two times in the evolution of the system. The ene
input rate is the rate at which energy is injected into
turbulence from the instability. The instability draws free e
ergy from mean density and temperature gradients thro
dissipation. One trace~labeled with circles! is the rate during
the linear growth phase, when fluctuation amplitudes
small and the nonlinearity is negligible. This rate agrees
tremely well with the linear growth rate~diamonds!, calcu-
lated from the unstable eigenmode of the linearized eq
tions, as shown in Fig. 1. A second trace~boxes! is the
energy input rate when the system has reached finite am
tude and the instability has saturated. The two traces~circles
and diamonds! are markedly different. The difference is n
the spectral energy transfer, which is conservative, but
flects a change in the dissipative process that extracts
energy from mean gradients and releases it into the tu
lence. There is both nonlinear instability, evident in wa
numbers for which the finite amplitude rate exceeds the
ear rate, and finite amplitude-induced stabilization, eviden
wave numbers for which the finite amplitude energy inp
rate is less than the linear growth rate.

We show that the difference between the energy in
rate at infinitesimal and finite amplitudes originates with e
citation of nonlinear eigenmode structure by the advec
nonlinearity of electron density. The nonlinear eigenmo

FIG. 1. Energy input rate as a function ofky (kx50) at two times in the
evolution of the system as compared to linear growth rates. The cir
correspond to the exponential growth phase~infinitesimal amplitude! and
the boxes to the saturated state~finite amplitude!. The crosses indicate th
model linear growth rate from Eq.~4!, and the diamonds indicate the fu
linear growth rate with hyperviscous damping.
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structure modifies the correlation between fluctuations of
electron density and the electrostatic potential, changing
rate at which free energy is released into the turbulence. A
fluctuation structure, including a nonlinear eigenmode, c
be projected on the complete basis set of linear eigenmo
Hence, the excitation of a nonlinear eigenmode that diff
from the eigenmode of the linear instability necessarily i
plies that branches of the linear dispersion relationfor which
all wave numbers are dampedare nonlinearly excited to fi-
nite amplitude. This is a standard concept in nonlinear s
tems analysis, yet such branches are routinely ignored
saturation analyses because it is assumed that linear dam
makes the amplitudes of all Fourier modes negligible.
these analyses, saturation is achieved by nonlinear transf
energy from unstable to stable Fourier modeson the same
branchof the linear dispersion relation. This scenario ess
tially invokes a Kolmogorov cascade like that of Navier
Stokes turbulence. There is no nonlinear instability beca
stable modes of other branches are not included in satura
balances. We show here that the electron nonlinearity exc
Fourier modes of the purely stable branch, provided the
namics is collisionless. The excitation shifts the real f
quency of the modes on this branch, and drives exponen
growth, despite strong linear damping. At finite amplitud
modes of the purely stable branch change the correla
between density and potential, altering the energy inject
rate. Moreover, because these modes are damped, their
tation to finite amplitude represents a significant energy d
sipation channel that markedly alters saturation balances

The physics of the nonlinear instability is analyzed usi
a general analytic theory that describes the nonlinear eig
mode and energy input rate. The basic equations are tr
formed to a diagonal representation of the linear coupli
and the finite-amplitude behavior of all branches of the lin
dispersion relation is solved using an eddy-damped quasi
mal Markovian ~EDQNM! closure. The amplitudes of un
stable Fourier modes are solved from the balance of
growth rate with nonlinear energy transfer, which now i
cludes both spectral transfer to stable modes on the s
branch and transfer to modes on the purely stable bra
The excitation level of modes on the purely stable branch
evaluated under a balance between nonlinear energy tra
to these modes and the damping rate of the branch. We s
that this energy transfer is mediated by the complex-val
correlation between modes of each branch. The correla
must therefore be solved from its own spectrum bala
equation obtained with the closure. The energies of mode
each branch and the cross correlation specify the comp
valued nonlinear eigenmode, and allow evaluation
density-potential cross correlation and the finite-amplitu
energy input rate. We obtain the onset condition for exc
tion of modes on the purely stable branch, the fin
amplitude-induced frequency and growth rate of the
modes, the saturation levels of their energies, and the c
correlation of these modes with those of the unstable bran
All are in good agreement with numerical solutions. T
complexities of the closure analysis make it impractical
evaluate the nonlinear growth rate analytically. However,
show that the phase of the cross correlation meets a ne

s
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sary condition for nonlinear instability, and that its magn
tude is sufficient to produce the nonlinear growth rate sp
trum of Fig. 1.

We stress that this method is very different from t
more familiar nonlinear eigenmode analyses described in
literature.12–14These are generally based on a closure of a
plitude equations in which the nonlinearities are transform
to diffusivities, and hence become dissipative. There i
nonlinear eigenmode at finite amplitude because the b
equations are approximated with a form that differs from t
of the linear analysis. The modified form essentially alt
the unstable branch, and does not involve stable branche
the eigenmode spectrum. These methods, which have
effective in describing changes to spatial structure of mo
on the unstable branch at finite amplitude,13,14and have been
applied to nonlinear instability in other systems,12 fail to de-
scribe the nonlinear instability of the present model.

The remainder of the paper is organized as follows.
Sec. II the basic equations and their linear properties
presented, including linear eigenmode structure. Heuristic
guments demonstrating the role of electron density advec
in the nonlinear instability and the excitation of the damp
eigenmode are also presented. Section III presents a num
cal description of the nonlinear instability and fini
amplitude-induced stabilization process, showing the tem
ral evolution of modes on the unstable and stable branc
the nonlinear growth rate, and saturated spectra. Ana
treatment of the excitation of modes on the purely sta
branch is given in Sec. IV, and the statistical closure the
in Sec. V. The closure equations are solved to obtain
energies of modes on the stable and unstable branche
saturation and the complex-valued cross correlation, t
specifying the nonlinear eigenmode. From it the energy in
rate at finite amplitude is examined, and we show that su
critical instability in a band of linearly unstable modes
expected. Section VI presents conclusions and further dis
sion.

II. BASIC EQUATIONS AND LINEAR BEHAVIOR

The basic equations for the two-field trapped elect
model represent a simple fluid system whose linear and n
linear properties reproduce essential features of more c
plete descriptions. These features include instability in co
sional and collisionless limits with real frequenci
controlled by the electron diamagnetic frequency. They a
include proper nonlinear dynamics, with long waveleng
spectral energy transfer dominated by the E3B advection of
electron density, and short wavelength transfer dominated
the ion polarization drift nonlinearity. In the collisionles
limit, where the mode frequency of the instabilityv exceeds
the collision frequencyy, the growth rate is proportional to
the small collision frequency. This is the only way to obta
instability in the absence of trapped particle resonances.
latter is the true source of instability in the collisionless lim
hence, the fluid instability is a surrogate. While the flu
instability is more correctly labeled as weakly collisional, t
electron trapping regime, as delineated in kinetic theory
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said to be collisionless wheneverv.y, even ify is finite. It
is in this sense that the dynamics studied herein is labele
collisionless. The model is given by

]n

]t
2¹f3z•¹n1y~n2f!52nD~11ahe!

]f

]y
, ~1!

]

]t
~12¹22«1/2!f2«1/2y~n2f!1¹f3z•¹¹2f

52nD@12«1/2~11ahe!#
]f

]y
, ~2!

wheref is the electrostatic potential,n is the density,«1/2 is
the electron trapping fraction,y5ye /«1/2 is the electron de-
trapping rate,ye is the electron collision rate,he is the ratio
of the density gradient scale length to the temperature gr
ent scale length,nD5cTe /eBLn is the diamagnetic drift ve-
locity, Ln5(d ln n0 /dx)21 is the density gradient scale lengt
a53/2, and the remaining symbols have their usual me
ing. The densityn is an effective electron density given b
n5«21/2ne1f, wherene5f1«1/2n̂e is the usual electron
density, consisting of the adiabatic contributionf from pass-
ing electrons and the nonadiabatic contribution«1/2n̂e from
trapped electrons. In Eqs.~1!–~2!, spatial scales are norma
ized to the ion gyroradius, evaluated at the electron temp
ture:rs5(kTemi)

1/2c/eB, wheremi is the ion mass andk is
Boltzmann’s constant. Temporal scales are normalized
rs /Cs , whereCs5(kTe /mi)

1/2 is the ion sound speed. Th
potential is normalized tokTe /e, and densities to the mea
density. This system of equations has been studied in b
the collisional15,16and collisionless limits.10,17 In both limits,
changes in the energy injection rate at finite amplitude h
been reported.10,16 The model is derived in the Appendix. I
Eqs. ~1!–~2! the linear coupling of the two fields is con
trolled by their difference and is mediated by the dissipati
For large collisionality, the adiabatic response, withn;f, is
strongly enforced. In the collisionless limit the other term
including the nonlinearity, enter the balance. An importa
aspect of the nonlinearity is finite amplitude-induced ins
bility.

The evolution of the nonlinear instability and its eige
mode can be represented as an expansion in the com
basis set of linear eigenmodes. The model has two equati
hence, there are two linear eigenmode branches. One is
branch of the linear instability. It has exponentially growin
fluctuations for certain wave numbers, and damped fluct
tions at higher wave number. The other branch is stable
every Fourier wave number in the spectrum. The eigen
quencies are given by the two branches of the quadratic
persion relation

v2~11k22«1/2!1v@2nDky~12«1/2â !1 i y~11k2!#

2 ikynDy50, ~3!

whereâ511ahe . Restricting ourselves to the collisionles
limit y!v, the frequency of the growing branch, throug
order (y/kynD)2, is
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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v5v15
nDky~12«1/2â !

~11k22«1/2!
1

i y«1/2@â~11k2!21#

~11k22«1/2!~12«1/2â !

1
y2«1/2@â~11k2!21#

kynD~12«1/2â !3 . ~4!

For instability,«1/2â,1. When a highk hyperviscous damp
ing is added to Eq.~1!, the imaginary part of Eq.~4!, which
gives the growth rate of the linear instability, takes the fo
shown in Fig. 1 for the infinitesimal energy input rate. T
growth rate of Eq.~4! asymptotes to a constant positive val
for large k; hence, the high-k damping in Fig. 1 comes en
tirely from the hyperviscosity. A small viscous damping ra
at low k is also used in some simulations. Without lowk
damping,v1 goes to zero forky50. The eigenmode of the
linear instability is an amplitude eigenvector, i.e., it specifi
the relative amplitudes ofn andf under the instability. The
eigenvector is obtained from either Eq.~1! or ~2! by linear-
izing, Fourier transforming, substitutingv1 for v, and solv-
ing for n in terms off. The result is

nk5F11
ikynD~12«1/2â !2 iv1~11k22«1/2!

«1/2y Gfk

5F â~12«1/21k2!

12«1/2â
2

i y@â~11k2!21#@11k22«1/2#

kynD~12«1/2â !3

1OS y2

ky
2nD

2 D Gfk[R1~k!fk . ~5!

Note that to lowest order,n andf are of comparable magni
tude and in phase.

The eigenmode of the nonlinear instability has, at fin
amplitude, a non-negligible projection onto the branch
purely damped modes. Consequently, this branch canno
ignored as is often done in analytic treatments. The
quency of the purely damped branch is

v5v25
2 i y

~12«1/2â !
2

y2«1/2@â~11k2!21#

kynD~12«1/2â !3

1OS y3

ky
2nD

2 D , ~6!

and the eigenvector satisfies

nk5F ikynD~12«1/2â !

y«1/2 112
11k22«1/2

~12«1/2â !«1/2

1
i y@â~11k2!21#~11k22«1/2!

kynD~12«1/2â !3 1OS y2

ky
2nD

2 D Gfk

[R2~k!fk . ~7!

This branch is damped for every wave number, even with
hyperviscosity. The damping rate is comparable in mag
tude to the unstable branch growth rate. The purely dam
branch differs from the unstable branch in three signific
ways: ~1! with uR2u5O(kynD /y)uR1u, its eigenvector hasn
5O(kynD /y)f@f; ~2! to lowest order, its Fourier mode
have zero real frequency; and~3! to lowest order,n is 90° out
of phase withf. The fact thatuR2u@uR1u, and hence thatn
Downloaded 22 Jul 2002 to 128.104.223.75. Redistribution subject to A
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@f for the damped branch, favors excitation of the damp
branch by the electron nonlinearity. As shown in Sec. IV, t
polarization drift nonlinearity drives the growing an
damped branch amplitudes with forces of disparate ma
tude. The damped branch force is smaller than the grow
branch force by a factoruR1u/uR2u5O(y/kynD). In contrast,
the electron nonlinearity drives the damped branch with
force that is of equal magnitude to the force it exerts on
growing branch. Consequently, there is significant excitat
of the damped branch in long-wavelength regimes where
electron nonlinearity dominates. In such regimes the sp
trum reflects the partition of the purely damped branch, w
n2 becoming much greater thanf2 as wave number in-
creases.

Nonlinear excitation of the purely damped branch ne
essarily implies that the linear growth rate will change
finite amplitude. However, the change can be either posi
or negative. To quantify the change in growth rate at fin
amplitude, we introduce the energy input rate. For a sys
with conservative nonlinearities, this is proportional to t
rate of change of total energy. It includes the energy fed i
fluctuations at infinitesimal amplitude~linear growth rate!
and at finite amplitude~nonlinear growth rate!, and the en-
ergy removed from the system by dissipation. It does
include conservative processes such as spectral transfer
energy is

W5(
k

E~k!5(
k

@~11k22«1/2!ufku21«1/2unku2#.

~8!

The rate of change of total energy is obtained from E
~1!–~2! by taking the Fourier transform of each equatio
multiplying Eq. ~1! by f2k and Eq.~2! by «1/2n2k , sum-
ming over wave number, and adding the two equations.
nonlinearities drop out of the resulting expression beca
they transfer energy in wave number space without ene
loss, i.e., (k(k8(k83z•k) (k2k8)2f2kfk8fk2k850 and
(k(k8(k83z•k)n2knk8fk2k850. The rate of change of en
ergy can be written

dW

dt
5(

k
2gk

nlE~k!, ~9!

wheregk
nl is the energy input rate, given by

gk
nl5

@kynDâ«1/2 Im^nk* fk&2y«1/2u~nk2fk!u2#

@~11k22«1/2!ufku21«1/2unku2#
. ~10!

Although the nonlinearities formally drop out of Eq.~9!, gk
nl

is fundamentally nonlinear. Only ifnk satisfies the eigenvec
tor relation of the unstable branch@Eq. ~7!# does Eq.~10!
reproduce the linear growth rate. Ifnk deviates from that
relation, gk

nl deviates from the linear growth rate. Such
deviation occurs when the purely damped branch is exc
nonlinearly. Instability, either linear or nonlinear, requires t
first term of the numerator ofgk

nl to be positive; the second
term, which represents the dissipation from trapped elec
scattering, is negative definite. The first term is driven by
free energy of the density and temperature gradients.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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III. NUMERICAL SOLUTIONS

Equations~1! and ~2! were solved numerically using
dealiased pseudospectral code. A hyperviscous damping
employed to provide dissipation at the highest wave nu
bers. Its magnitude is displayed in Fig. 1 as the differe
between traces labeled with crosses@growth rate from Eq.
~4!# and diamonds~growth rate with hyperviscous damping!.
At saturation the system is turbulent because, with a br
range of unstable modes, any given mode interacts simu
neously within multiple wave number triads, as evidenced
broad spectra in frequency and wave number. High res
tion is not required, and runs typically had 33333 modes.
The mode (kx ,ky)5(0,0) does not evolve because its un
formity in all directions makes spatial derivatives vanis
Modes with ky50, kxÞ0, which include the zonally aver
aged flow and density, do evolve. The mean density app
ing in Ln is taken as fixed, consistent with a steady st
maintained by the balance of particle source and trans
losses. The nonlinear instability is tied to fluctuation tim
scales and is not significantly affected by transport time-sc
processes.

For a given set of parameters, the eigenmode relation
Eqs.~5! and~7! were calculated in the code. These were us
to project the density and potential at each instant in ti
onto the complete basis set formed by the linear eigenmo
The projection can be written

S nk~ t !
fk~ t ! D5b1~k,t !S R1

1 D1b2~k,t !S R2

1 D
5S R1 R2

1 1 D S b1~k,t !
b2~k,t ! D[M S b1~k,t !

b2~k,t ! D , ~11!

whereM is the matrix of the linear eigenvectors with el
mentsR1 andR2 as defined in Eqs.~5! and ~7!, andb1 and
b2 are the instantaneous amplitudes of the unstable
purely stable eigenmode branches, respectively. The ins
taneous amplitude of each eigenmode evolves as the lin
ized normal mode in the linear phase,b j (k,t)
5b j (k,0)exp(2ivjt), and departs at finite amplitude. In th
code, Eq.~11! is inverted at each instant in time to obtain t
evolving eigenmode amplitudes as a function of the evolv
density and potential.

Figure 2 shows time histories of the eigenmode energ
Wb1

and Wb2
, and the total energyW. These energies ar

found from Eq.~8! by substituting Eq.~11! to obtain

W5(
k

E~k!5Wb1
1Wb2

1(
k

@~11k22«1/2!

32 Rê b1b2* &1«1/22 Re~R1R2* ^b1b2* &!#,

~12!

where

Wb j
5(

k
@~11k22«1/2!1«1/2uRj u2#ub j u2 ~13!

is the energy of the unstable (j 51) and purely stable (j
52) eigenmode branches. Note that because the lin
eigenmode decomposition is nonorthogonal, the total ene
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is not simply the sum of the two eigenmode energies. Th
is an additional contribution involvinĝb1b2* &. These terms
can be positive or negative. In Fig. 2 they are negative,
account for the fact that the total energy is smaller thanWb1

.
More interesting is the behavior ofWb2

. The energy of the
purely stable branch decays at the linear damping rate
tially. However, shortly aftert510, the decay is suddenl
arrested and the amplitude of the damped branch begin
grow exponentially. This continues until saturation, wh
bothWb1

andWb2
reach a stationary, saturated level. In sa

ration, Wb2
is somewhat smaller thanWb1

. BecauseuR2u is
larger thanuR1u by a factor of orderkynD /y, b1 is larger
thanb2 by at least such a factor. Forb2 , the phase of linear
evolution occurs only fort,10, ending long before satura
tion and the termination of the linear growth phase ofb1 .

The frequency spectrum of the damped bran
ub2(k,v)u2 is constructed from a Fourier transform o
b2(k,t) after saturation, and is displayed in Fig. 3. Spec
for b1 , n, f are also displayed. During the linear grow
phase we expect the spectrum to peak atv50, consistent
with Eq. ~6!, which indicates that the frequency of th
damped eigenmode is zero up to order (y/kynD)3. In nonlin-
ear regimes, frequency spectrum peaks are typically of o
the linear frequency. However, Fig. 3 indicates thatb2 has a
finite frequency of orderkynD . Thus, the process that excite
b2 to finite amplitude also gives it a significant nonzero fr
quency.

Wave number spectra forn andf in the saturated state
are given in Figs. 4~a! and ~b!. Both spectra peak at low
wave number near (kx ,ky)5(0,1) and~1,0!. In this region of
wave number space,unku2 and ufku2 are comparable. How-
ever, for high wave number,ufku2 falls off much more rap-
idly than unku2. This can be attributed to the nonlinear adve
tion of density, which in the collisionless regime excites t
damped eigenmode withn@f. To test this hypothesis we
obtained numerical solutions of Eqs.~1! and ~2! for the col-
lisional regime. In the collisional regime,y@v, ¹f3z•¹,
and Eq.~1! predicts an adiabatic electron response withn
'f to lowest order inkynD /y,1. Indeed, the spectra ofn

FIG. 2. The evolution of the energies of the growing linear eigenmo
damped linear eigenmode, and the total energy. The damped eigen
decays initially but is then excited by the electron nonlinearity to a fin
level.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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and f for the collisional regime satisfyunku2'ufku2 for all
wave numbers, as evident in Figs. 5~a! and ~b!. Heavy ion
beam probe measurements of both density and potenti
the Texas Experimental Tokamak~TEXT! have recently been
reported.18 The density is comparable to the potential at lo
wave number, but falls off more gradually than the poten
at high wave number. Qualitatively, the behavior is qu
similar to that of Fig. 4. This comparison raises the possi
ity that nonlinear instability may have been present in
turbulence of TEXT. A method to infer the presence of no

FIG. 3. Frequency spectrum at saturation of a Fourier mode of the pu
stable eigenmode branch. The linear eigenfrequency is zero to lowest o
Nonlinearly, the mode has a frequency comparable to that of the uns
branch, i.e., comparable tonDky .

FIG. 4. Steady-state wave number spectra of~a! ufku2 and ~b! unku2.
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linear instability from the simultaneous measurement of d
sity and potential19 is currently under development for appl
cation to two-field data.

The behavior displayed in Fig. 2 and the spectra of F
3 indicate a nonlinear eigenmode, and hence a nonlin
modification of the growth rate, either positive or negativ
@Substitution of the unstable eigenmode density of Eq.~5!
into Eq. ~10! yields the linear growth rate; hence, any vari
tion of n from the unstable eigenmode makesgnl different
from the linear growth rate.# To determine the nonlinea
growth rate we evaluate Eq.~10!, taking unku2, ufku2, and
^nk* fk& from temporal averages of simulation data in t
saturated state. The result is Fig. 1, which was introduce
Sec. I. For this system there is supercritical instability
wave numbers aroundky54 andky58 ~for kx50!, while
other regions are nonlinearly stabilized. The unstable ban
broader atkx.0, as indicated in Fig. 6 which shows th
energy input rate as a function ofkx andky . The maximum
value of gnl exceeds the maximum linear growth rate by
factor of 4–5. Thus, the nonlinear instability has a significa
effect on growth rates, markedly increasing the driving
certain modes. However, the wave number region of unsta
modes is also significantly reduced. Modes both at lowky

and just aboveky58 are unstable at infinitesimal amplitud
extracting free energy from the gradients, but at finite am
tude become energy sinks. This finite amplitude-induced
bilization of linearly unstable lowk modes represents a no
table change in the growth rate spectrum shape. The mo
along theky50 axis constitute a zonally averaged flow, i.e
^ny&y[*dy ny5*dkx exp(ikxx)ikxfkx,ky

50. These modes are
in the dissipative regime for all values ofyÞ0 because
kynD50. At infinitesimal amplitude they are marginall

ly
er.
le

FIG. 5. Steady state wave number spectra for dissipative trapped ele
mode turbulence for~a! ufku2 and ~b! unku2.
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stable (Imv50), and are seen as a crease in Fig. 6~a!. At
finite amplitude these modes are damped. The damping
is a non-negligible fraction of the maximum growth rate. T
damping of zonal flows has an important effect on the tur
lence level in simulations of gyrokinetic models.20 Note that
here the finite excitation level for these undriven modes
indicated by the spectrum, indicates spectral transfer
these modes via nonlinear coupling. This is the standard
citation mechanism for zonal modes.21 The finite amplitude-
induced damping evident in Fig. 6 is a distinct process a
ing from damped eigenmode excitation, and is curren
being investigated.22

In Fig. 7 the quasilinear particle flux for different value
of â is plotted as a function of the true flux. The two a
clearly different, with the true flux smaller than the quasili
ear flux by a factor of order 5. The flux is essentially a wa
number moment ofgnl(k) E(k). The reduction of the true
flux relative to the quasilinear flux reflects the fact th
gnl(k) is smaller thang l(k) for low wave numbers where
E(k) peaks. Wave numbers wheregnl(k) is greater than
g l(k) receive weaker weighting in the wave number su
becauseE(k) is smaller. In simulations of nonadiabat
Hasegawa–Wakatani turbulence, a reduction of the par
flux from its quasilinear value was observed and attributed
spatial intermittency, i.e., coherent structures.23 The nonlin-
ear instability mechanism described herein is not caused
intermittency, because coherent structures are not accou
for in the analytic theory~which is quasi-Gaussian! and are
not present in the simulations. The latter is confirmed in F
8, which shows contours of constant density in real spa

FIG. 6. Energy input rate as a function ofkx and ky in ~a! linear growth
phase, and~b! saturated state.
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The packing fraction~roughly, the ratio of structure scale t
interstructure separation! is approximately unity, an indica
tion that the kurtosis is near 3 and the distribution is close
Gaussian. While intermittency may be possible in Eqs.~1!–
~2! under appropriate circumstances, we conclude that
not a necessary element of the particle flux reduction
scribed above. The question of intermittency in this system
interesting, but beyond the scope of this paper.

IV. NONLINEAR EXCITATION OF THE DAMPED
EIGENMODE

Because nonlinear instability requires nonlinear exc
tion of the purely stable eigenmode branch, it is advan

FIG. 7. Quasilinear flux versus actual flux for values ofâ varied over a
range of 2.

FIG. 8. Contours of constant density during saturation. The packing frac
of structures is near unity, indicating that the kurtosis is close to the Ga
ian value of 3.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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geous to transform the basic equations so they describe
nonlinear evolution of the two linear eigenmode branch
i.e., use Eq.~11! to project at each moment in time the de
sity and potential onto the two linear eigenmodes of Eqs.~5!
and ~7!. To develop equations for the nonlinearly evolvin
eigenmode amplitudesb j we rewrite Eqs.~1!–~2! in matrix
form

S ṅk

ḟk
D 5DS nk

fk
D1S bn

bf
D , ~14!

whereD is the linear coupling matrix andbn andbf are the
nonlinearities

D5S 2y 2 ikynDâ1y

«1/2y

11k22«1/2

2kynDâ2«1/2y

11k22«1/2
D , ~15!

bn52
1

2 (
k8

~k83z•k!~nk8fk2k82nk2k8fk8!, ~16!

bf52
1

2 (
k8

~k83z•k!

11k22«1/2@~k2k8!22k82#fk8fk2k8 .

~17!

We invert Eq.~11!, take the time derivative, and substitu
from Eq. ~14!, yielding

S ḃ1~k,t !

ḃ2~k,t !
D 5M21S ṅk

ḟk
D 5M21DS nk

fk
D1M21S bn

bf
D , ~18!

where

M215
1

R12R2
S 1 2R2

21 R1
D . ~19!

To complete the transformation,nk andfk must be written in
terms ofb1 andb2 using Eq.~11!

S ḃ1~k,t !
b2~k,t ! D 5M21DM S b1~k,t !

b2~k,t ! D
1M21S bn

bf
DUnk5R1b11R2b2

fk5b11b2

. ~20!

By construction, this representation diagonalizes the lin
coupling matrix, i.e.,M21DM is diagonal with the eigenfre
quencies2 iv1 and 2 iv2 as the diagonal elements. How
ever, in this representation each equation evolves und
combination of the two nonlinearities. FromM21, the non-
linearity of the b1 equation is (R12R2)21(bn2R2bf),
while the nonlinearity of theb2 equation is (R12R2)21

(2bn1R1bf). Noting thatR2;(kynD /y)R1 , this validates
the statement made in Sec. II that the electron nonlinea
yields forces in theb1 andb2 equations of equal magnitude
while the polarization drift nonlinearity preferentially force
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the growing eigenmode. As indicated in Eq.~20!, the nonlin-
earities are written in terms ofb1 andb2 using the substitu-
tions nk5R1b11R2b2 andfk5b11b2 in Eqs.~16!–~17!.

To simplify Eq.~20!, we examine the relative magnitud
of the nonlinearities. To comparebn and bf , first assume
thatnk;fk , as in the unstable eigenmode. The electron n
linearity bn has two fewer factors of wave number than t
polarization drift nonlinearity bf . Hence, in a long-
wavelength regime (k,1)bn dominatesbf . Consider now a
density fluctuation like the stable eigenmode. The elect
nonlinearity continues to dominate at long wavelengths
cause it still has fewer factors of wave number~one in this
case!, but n is now larger thanf by a factor of order
kynD /y@1. Consequently, the electron nonlinearity dom
nates at long wavelengths for collisionless trapped elec
turbulence. The degree of dominance is greater than it i
the collisional case, where the electron nonlinearity has
fewer wave number factor than the polarization drift nonl
earity, andnk;fk . The dominance of the electron nonlin
earity in the collisional regime has been studied in detai24

We will restrict ourselves to long wavelengths. Simplifyin
Eq. ~20! by retaining the electron nonlinearity only

ḃ j~k!52 iv jb j~k!1(
k8

~21! j~k83z•k!

@R1~k!2R2~k!#

3@R1~k8!b1~k8!1R2~k8!b2~k8!#@b1~k9!

1b2~k9!#, ~21!

whereR1(k) andR2(k) are defined in Eqs.~5! and ~7!, and
k9[k2k8. It is possible to make one additional approxim
tion. Becauseb1 is linearly driven andb2 is linearly
damped, the former is larger than the latter in saturation. T
is evident in the simulations described in the previous s
tion. From the saturation balance obtained in Sec. V, Imb2

;(y/nDky)ub1u, and Reb2;(y/nDky)
2ub1u. This allowsb2(k9)

in the last set of brackets to be dropped. The term w
b2(k8) in the first set of brackets cannot be dropped beca
R2 /R1;O(inDky /y), making R2(k8)b2(k8) as large as
R1(k8)b1(k8). It can be verified that the terms omitted b
droppingb2(k9) conserve energy among themselves. The
fore, Eq.~21!, with b2(k9) removed, is an energy-conservin
approximation. Consequently, we shall henceforth inve
gate the nonlinear evolution of

ḃ j~k!52 iv jb j~k!1(
k8

~21! j~k83z•k!

@R1~k!2R2~k!#

3@R1~k8!b1~k8!1R2~k8!b2~k8!#b1~k9!. ~22!

We first examine the nonlinear excitation ofb2(k).
From an initial state with infinitesimal amplitudes, the no
linearities are at first negligible, andb1 and b2 evolve ac-
cording to the linearized equations. The exponential grow
of b1 and the exponential decay ofb2 produce a situation
where in one or two linear growth times,b2!b1 , and the
nonlinearity is dominated byb1 . Assuming b2!b1 and
symmetrizing the remaining nonlinearity, Eq.~22! becomes
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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ḃ2~k!1 iv2b2~k!>(
k8

~k83z•k!

2@R1~k!2R2~k!#
@R1~k8!2R1~k2k8!#b1~k8!b1~k9!

>(
k8

~k83z•k!b1~k8!b1~k2k8!H i y«1/2âk•k8

~12â«1/2!2kynD
2

y2«1/2~12«1/2!~ â21!

2~12â«1/2!4nD
2 ky

2 S ky

ky8
2

ky

ky2ky8
D J , ~23!
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where k!1 has been assumed. The first term of the l
expression is of ordery/kynD , and small-k contributions of
orderkk8 have been retained. These contributions have b
neglected in the second term, which is one order highe
y/kynD . From these expressions it is evident thatb1 andb2

evolve linearly untilb1 exceeds an amplitude threshold go
erned by the magnitude of the nonlinearity relative tov jb j .
The threshold is lower for theb2 evolution becauseb2 de-
creases with time in the linear regime, whereasb1 increases.
The nonlinear threshold in theb2 equation is given by

y

nD
@b1

~ l !#2'uv2b2
~ l !u, ~24!

whereb j
( l )[exp(2ivjt)bj(k,t50) represents the linear solu

tion of Eq. ~22!, which is valid up to the time the nonlinea
threshold is reached. Becauseb1

( l ) must reach a higher am
plitude before theb1 equation becomes nonlinear, the no
linear evolution ofb2 ~upon passing its nonlinear threshol!
can be approximated using the linearized solutionb1

( l ) .
Thus,

b2~k,t !5b2~k,t50!exp@2 iv2~k!t#1(
k8

~k83z•k!

3H i y«1/2âk•k8

~12â«1/2!2kynD
2

y2«1/2~12«1/2!~ â21!

2~12â«1/2!4nD
2 ky

2

3S ky

ky8
2

ky

ky2ky8
D J b1~k8,t50!

3b1~k2k8,t50!

3
$exp@2 iv1~k8!t2 iv1~k2k8!t#%

i @v2~k!2v1~k8!2v1~k2k8!#
. ~25!

From Eq.~25! both linear decay~first term! and nonlinearly
driven exponential growth~second term! operate simulta-
neously, but decay dominates prior to the transition, a
growth thereafter. The growth rate is controlled by the larg
value of2 iv1(k8)2 iv1(k2k8) in the sum overk8. In Fig.
2 exponential growth occurs for 20,t,50. Similarly, Eq.
~25! indicates that before the transition the frequency ofb2 is
nearly zero, whereas after it is of ordernDky . Therefore, the
frequency spectrum peak shifts in the transition from n
zero to;nDky , as evident in Fig. 3.

The exponential growth ofb1 saturates when

y

nD
@b1

~ l !#2'Im v1ub1,
~ l !u. ~26!

Unlike the nonlinear excitation ofb2 , which is phase coher
ent as long asb1 is growing linearly~and therefore phas
coherent!, the nonlinear evolution~saturation! of b1(k,t) in-
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volves mode coupling and phase scrambling. A descript
of saturation thus requires a statistical treatment.

V. CLOSURE CALCULATION

Equation~26! is valid as long asb1 grows exponentially,
experiencing negligible feedback fromb2 . This situation no
longer holds as the instability saturates. To describe sat
tion we introduce closure theory. A variety of insights
obtained from closure theory. It reveals a direct relations
between nonlinear instability and the nonlinear excitation
modes on the purely stable branch by showing that the
quirement for energy transfer to these modes favors non
ear instability. It also shows that the system has volati
with respect to the sign ofgk

nl , i.e., both signs are possibl
and likely, as observed in the simulations. Moreov
whereas other studies of two-field drift wave models ha
emphasized the role of the density-potential cross correla
in inhibiting the turbulent energy cascade25 the closure cal-
culation shows that the cross-correlation value fixed by
nonlinear dynamics in saturationenhancesthe nonlinear en-
ergy transfer to the stable branch. Since the latter provi
coupling to dissipation within a single nonlinear interactio
less cascading is required for saturation.

The closure equations are complicated and possess m
terms. The solution given herein consists of the following.
Sec. V A, leading order asymptotic scalings are found for
quantities,ub1u2, ub2u2, Rêb1*b2&, and Im̂b1*b2&, as a func-
tion of y/nDky , the small parameter of the low collisionalit
limit. Because the growth rate Imv1 and the damping rate
Im v2 enter the lowest-order balances forub1u2 and ub2u2,
respectively, these scalings recover the saturation leve
each quantity to leading order in the low collisionality limi
up to a numerical coefficient of order unity. The coefficien
of ub1u2 and ub2u2 are positive; those of Re^b1*b2&, and
Im^b1*b2& can be either positive or negative. The signs a
determined from the equations forub2u2 and Rêb1*b2&. With
this solution we examine the energy input rate in Sec. V

A. Saturation balances

Statistical closure equations forub1u2, ub2u2, and
^b1* b2& are constructed from Eq.~22! by multiplying by
appropriate amplitude factors. Calculating a closure for
linear eigenmode branches differs from the usual proced
which treats Fourier transformed equations forn andf @Eq.
~14!#, with v replaced byv1 . The latter, by construction
describes saturation as the Kolmogorov-style steady sta
which unstable modes saturate through transfer of energ
stable modes within the same branch.12–14,25 On the other
hand, solution of spectrum balance equations for all lin
eigenmodes completely specifies the nonlinear eigenmod
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Taking moments of Eq.~22!, the evolution equations for the quadratic correlationsub1u2, ub2u2, and^b1* b2& are

]

]t
ub1u252 Imv1ub1u212 Re(

k8
FC1~k,k8!

2
^b18b19b1* &1C2~k,k8!^b28b19b1* &G , ~27!

]

]t
ub2u252 Imv2ub2u222 Re(

k8
FC1~k,k8!

2
^b18b19b1* &1C2~k,k8!^b28b19b2* &G , ~28!

]

]t
^b1* b2&5 i ~v1* 2v2!^b1* b2&1(

k8
FC1* ~k,k8!

2
^b18* b19* b2&2C2* ~k,k8!^b28* b19* b2&

2
C1~k,k8!

2
^b18b19b1* &1C2~k,k8!^b28b19b1* &G , ~29!
n
T
ta

me-
ach

ns,
ela-
as

ns

cor-
ed
der
where

C1~k,k8!52~k83z•k!
~R182R19!

~R12R2!
, ~30!

C2~k,k8!52~k83z•k!
R2

~R12R28!
, ~31!

and the notationb j85b j (k8), b j95b j (k2k8), b j5b j (k),
Rj85Rj (k8), Rj95Rj (k2k8), andRj5Rj (k) has been used
for shorthand.

Equations~27!–~29! are not closed because they depe
on the unknown triplet correlations of the right-hand side.
close we use the EDQNM procedure. The procedure is s
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dard and given in other references; hence, we omit inter
diate steps. We start by finding evolution equations for e
triplet in Eqs.~27!–~29!, multiplying Eq.~22! ~for appropri-
ate wave numbers! by appropriate products ofb1b2 and
b1b2 . These equations contain fourth-order correlatio
which are approximated as products of second-order corr
tions. Treating the products of second-order correlations
slowly evolving source terms, the triplet evolution equatio
are inverted and substituted into Eqs.~27!–~29!, yielding a
set of equations closed at second order. The third-order
relations are subject to eddy damping, which is specifi
self-consistently in the closure. The closed second-or
equations are
]

]t
ub1u252 Imv1ub1u21Re(

k8
H 1

2

C1~k,k8!

~ iv181 iv192 iv1* 2Dv182Dv192Dv1* !
@C1~k8,k!ub19u

2ub1u2

1C1~k2k8,k!ub18u
2ub1u21C1* ~k,k8!ub18u

2ub19u
21C2~k8,2k9!ub1u2^b19b29* &

1C2~k8,k!ub19u
2^b1* b2&1C2~k9,k!ub18u

2^b1* b2&1C2~k9,2k8!ub1u2^b18b28* &1C2* ~k,k8!ub19u
2^b18b28* &

1C2* ~k,k9!ub18u
2^b19b29* &#1

C2~k,k8!

~ iv281 iv192 iv1* 2Dv282Dv192Dv1* !
@C1~k9,k!ub1u2^b18* b28&

2C1~k8,k!ub19u
2ub1u21C1* ~k,k8!ub19u

2^b18* b28&1C2~k9,k!^b18* b28&^b1* b2&

1C2~k9,2k8!ub1u2ub28u
22C2~k8,k!ub19u

2^b1* b2&2C2~k8,2k9!^b19b29* &ub1u2

1C2* ~k,k8!ub19u
2ub28u

21C2* ~k,k9!^b19b29* &^b18* b28&#J , ~32!

]

]t
ub2u252 Imv2ub2u22Re(

k8
H 1

2

C1~k,k8!

~ iv181 iv192 iv2* 2Dv182Dv192Dv2* !

3@C1~k8,k!ub19u
2^b1b2* &1C1~k2k8,k!ub18u

2^b1b2* &2C1* ~k,k8!ub18u
2ub19u

21C2~k8,2k9!^b1b2* &^b19b29* &

1C2~k8,k!ub19u
2ub2u21C2~k9,k!ub18u

2ub2u21C2~k9,2k8!^b1b2* &^b18b28* &2C2* ~k,k8!ub19u
2^b18b28* &

2C2* ~k,k9!ub18u
2^b19b29* &#1

C2~k,k8!

~ iv281 iv192 iv2* 2Dv282Dv192Dv2* !
@C1~k9,k!^b1b2* &^b18* b28&

2C1~k8,k!^b1b2* &ub19u
22C1* ~k,k8!ub19u

2^b18* b28&1C2~k9,k!^b18* b28&ub2u21C2~k9,2k8!^b1b2* &ub28u
2

2C2~k8,k!ub2u2ub19u
22C2~k8,2k9!^b1b2* &^b29* b19&2C2* ~k,k8!ub19u

2ub28u
22C2* ~k,k9!^b19b29* &^b18* b28&#J ,

~33!
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]

]t
^b1* b2&5 i ~v1* 2v2!^b1* b2&1(

k8
H 1

2

C1* ~k,k8!

~2 iv18* 2 iv19* 1 iv22Dv18* 2Dv19* 2Dv2!

3@2C1* ~k9,k!ub18u
2^b1* b2&12C2* ~k9,k!ub18u

2ub2u212C2* ~k9,2k8!^b18* b28&^b1* b2&2C1~k,k8!ub18u
2ub19u

2

22C2* ~k,k9!ub18u
2^b19b29* &#2

C2* ~k,k8!

~2 iv19* 2 iv28* 1 iv22Dv19* 2Dv28* 2Dv2!

3@C1* ~k9,k!^b1* b2&^b18b28* &2C1* ~k8,k!^b1* b2&ub19u
22C1* ~k,k8!^b18b28* &ub19u

2

1C2* ~k9,k!ub2u2^b18b28* &1C2* ~k9,k!ub28u
2^b1* b2&2C2* ~k8,k!ub2u2ub19u

22C2* ~k8,2k9!^b1* b2&^b29b19* &

2C2~k,k8!ub18u
2ub19u

22C2~k,k9!^b18b28* &^b19* b29&#2
1

2

C1~k,k8!

~ iv181 iv192 iv1* 2Dv182Dv192Dv1* !

3@2C1~k9,k!ub18u
2ub1u212C2~k9,k!ub18u

2^b1* b2&12C2~k9,2k8!ub1u2^b18b28* &2C1* ~k,k8!ub18u
2ub19u

2

12C2* ~k,k9!ub18u
2^b19b29* &#1

C2~k,k8!

~ iv191 iv282 iv1* 2Dv192Dv282Dv2* !

3@C1~k9,k!ub1u2^b18* b28&2C1~k8,k!ub1u2ub19u
21C1* ~k,k8!^b18* b28&ub19u

21C2~k9,k!^b1* b2&^b18* b28&

2C2~k8,k!ub19u
2^b1* b2&1C2~k9,2k8!ub28u

2ub1u22C2~k8,2k9!^b19b29* &ub1u21C2* ~k,k8!ub28u
2ub19u

2

1C2~k,k9!^b18* b28&^b19b29* &#J . ~34!

The frequenciesDv1 andDv2 are the eddy damping rates, obtained as the eigenfrequencies of the finite-amplitude re
of b1 andb2 to an infinitesimal impulse. These rates are given by

Dv15(
k8

H 1

2

C1~k,k8!

~ iv181 iv192Dv182Dv19!
@C1~k9,k!ub18u

21C1~k8,k!ub19u
21C2~k8,2k9!^b19b29* &1C2~k9,2k8!^b18b28* &#

2
C2~k,k8!

~ iv281 iv192Dv282Dv19!
3@C1~k9,k!^b18* b28&1C2~k9,2k8!ub28u

21C1~k8,k!ub19u
2

1C2~k8,2k9!^b19b29* &#J , ~35!

Dv252(
k8

H 1

2

C1~k,k8!

~ iv181 iv192Dv182Dv19!
@C2~k9,k!ub18u

21C2~k8,k!ub19u
2#2

C2~k,k8!

~ iv281 iv192Dv282Dv19!

3@C2~k9,k!^b18* b28&1C2~k8,k!ub19u
2#J . ~36!
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Solution of Eqs.~32!–~36! specifiesub1(k)u2, ub2(k)u2,
^b1* (k)b2(k)&, Dv1(k), andDv2(k), as functions of both
wave number and the parametersy, v* , «1/2, and â of the
linear instability drive and nonlinear couplings. Even for t
simpler saturation balances of one-field closures, the non
ear spectrum convolutions make evaluation of the spect
intractable in any range of wave numbers for which there
instability or dissipation. A simpler task is to determine t
saturation levels ofub1u2, ub2u2, and^b1* b2& for low wave
number unstable modes due to nonlinear coupling w
modes at higher wave number. The saturation levels are
pressed as functions of the parametersy, v* , «1/2, and â
that enter the linear growth rate and the nonlinear couplin

We seek leading order asymptotic scalings for the sa
rated values ofub1u2, ub2u2, and ^b1* b2& as functions of
Downloaded 22 Jul 2002 to 128.104.223.75. Redistribution subject to A
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y/v* !1. This is done by testing trial scalings to see if t
dominant balances in Eqs.~32!–~36! meet the two funda-
mental physical constraints of the saturated state. The c
straints are:~1! The dominant balance in theub1u2 equation
must contain the linear driving term 2 Imv1ub1u2. This is the
source of free energy for exciting turbulence and must
present in the dominant balance.~2! The dominant balance in
the ub2u2 equation must contain the linear damping te
2 Imv2ub2u2. The excitation ofb2 described in Sec. IV effec-
tively establishes a cascadein eigenmode spaceat fixed
wave number. Withub2u2 subject to strong linear damping,
is in a dissipation range, and the damping enters the bala
Implicit in this condition is the inequalityub1u2@ub2u2,
which as noted in Sec. III is satisfied by the numerical so
tions. In addition to these constraints, we assume that in
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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herent terms are small and exclude them from saturation
ancesa priori. This assumption applies to spectral trans
from a modek to short wavelength modesk8, k2k8@k.
Provided the spectrum decays with wave number, the p
uct ub j8u

2ub i9u
2 of an incoherent term is smaller than its c

herent counterpartub j u2ub i8u
2 because the former is quadrat

in high wave number energy, whereas the latter is line
Moreover, incoherent terms are identified with the prod
tion of turbulence in an inertial range. However, in driv
ranges production is by linear instability, and the incoher
terms are small.

To establish the scaling of each term in Eqs.~32!–~36!,
we must know the scaling of the temporal response fu
tions. The temporal response functions appear in Eqs.~32!–
~36! as denominators comprised of combinations ofiv1 ,
iv2 , Dv1 , andDv2 . Consider the first response function
Eq. ~33!: ( iv181 iv192 iv2* 2Dv182Dv192Dv2* )21. The
first three terms are linear eigenfrequencies and togethe
as ; inD@ky82(ky2ky8)#@12«1/2â#52nDky@12«1/2â# to
lowest order iny/v

*
8 for k2 and«1/2 small. The real parts o

the eddy damping rates are of ordery because of the balance
in conditions ~1! and ~2! above. As shown below, ImDv1

;y2/v* , Im v2;v* . Thus, the entire response functio
scales as (2 iakynD1by)21, wherea andb are constants o
order unity. It is easily verified that all of the response fun
tions of Eqs.~32!–~34! have this scaling except for one. Th
exception is the response function (iv181 iv192 iv1* 2Dv18
2Dv192Dv1* )21 appearing in Eqs.~32! and~34!. Under the
nearly dispersionless character ofv1 at low k, the leading
order contributions of each of the first three terms can
provided nDkyk

2!y. This propagator therefore scales
(a8y1 ib8y2/kynD), wherea8 andb8 are constants of orde
unity. The difference between this propagator and the oth
is crucial in setting transfer rates.

To obtain a set of plausible trial scalings, we start w
the conditionub2u2!ub1u2, and calculate the saturation lev
of ub1u2 with ub2u2→0. Balancing the first two terms of th
nonlinearity in Eq.~31! with the growth rate, we obtain

ub1u2'nD
2 ky

2~k83z•k!22~k•k8!22, ~37!

wherek andk8 are spectrum weighted wave numbers. T
leads us to adopt trial scalings of the form

ub1u2}~y/v* !0,

ub2u2}~y/v* !a,

Rê b1* b2&}~y/v* !ar,

Im^b1* b2&}~y/v* !a i. ~38!

We have specifically examined the cases (a,a r ,a i)
5(2,1,2), ~2,2,1!, ~1,1/2,3/2!, ~1,3/2,1/2!. Of these, all but
the second case violate one or both of the physical satura
constraints described above. Remarkably, the second c
(a,a r ,a i)5(2,2,1), includes every term of Eq.~33! in the
dominant balance, and includes all but three terms of
~32!. The terms that yield Eq.~37! are included in the domi-
nant balance. Moreover, this case agrees qualitatively w
the simulation results. We therefore conclude that the lead
order saturation levels are given by
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ub1u2;A1nD
2 ky

2 ~y/nDky→0!,

ub2u2;A2nD
2 ky

2~y/nDky!2 ~y/nDky→0!,

Rê b1* b2&;ArnD
2 ky

2~y/nDky!2 ~y/nDky→0!,

Im^b1* b2&;AinD
2 ky

2~y/nDky! ~y/nDky→0!, ~39!

whereA1 , A2 , Ar , andAi are constants of order unity in th
asymptotic expansion, but depend on mean wave numbe
some fashion akin to the wave number dependence of
~37!.

The coefficientsAr andAi can be either positive or nega
tive. As we shall see in Sec. V B, their sign affects the sign
gnl. We can use the steady-state version of Eq.~33! (]/]t
→0) to determine the sign ofAi . This is possible becaus
all terms with a factor̂b1* b2& or ^b1b2* & go as Im̂b1*b2& in
leading order. All but one of these terms have coefficients
the same sign, and the sign is such as to requireAi.0. With
eight terms,Ai is robustly positive. ForAi.0, energy is
transferred intob2 from b1 . If Ai were negative energy
would be transferred out ofb2 , and a steady state could on
be possible if Imv2 were positive, i.e., ifb2 were linearly
unstable. Therefore, Im̂b1*b2&.0 controls energy transfe
from b1 to b2 . The eddy damping ratesDv1 andDv2 are
also positive if Im̂b1*b2&.0. The sign of Rêb1*b2& must be
determined from the imaginary part of Eq.~34! @the real part
of Eq. ~34! is a function only of Im̂b1*b2& to leading order#.
Of the terms proportional to Re^b1*b2&, all but one have co-
efficients of the same sign. However, the terms not prop
tional to Rêb1*b2&, which act as a source for Re^b1*b2&, are
split almost evenly between positive and negative. The re
is Rêb1*b2&.0, but with the nearly even split, Re^b1*b2&
may change signs under different parameter values or s
trum conditions. Thus, Re^b1*b2&.0 is considerably less ro
bust than Im̂b1*b2&.0. Figure 9 shows the time evolution o
complex phase of̂b1* b2& @i.e., tan21(Im^b1*b2&/Rê b1*b2&)#
for a wave number corresponding to a nonlinearly unsta
mode. The angle is less thanp/2, with Im^b1*b2&
.Rê b1*b2&, and both quantities are positive, in agreeme
with theory.

FIG. 9. Time evolution of the complex phase tan21@Im^b1*b2&/Rê b1*b2&#.
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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The saturation level scalings, Eq.~39!, can be substituted
into Eqs.~35! and ~36! to determine the complex values o
the eddy damping rates at saturation. The results are rev
ing. Equation~35! is dominated by the last two terms, whic
go asC2C1b1

2, C2
2^b1b2&, yielding Dv1;cy1 idy2/kynD ,

where c and d are constants of order unity. The real pa
represents eddy damping at the rate of the linear instab
as required for saturation. The imaginary part is a fin
amplitude-induced frequency shift of the unstable eig
mode. This frequency is small compared to the linear f
quencyv1 . The last term of Eq.~36! dominates the imagi-
nary part of Dv2 , while this term and several other
contribute to the real part in lowest order. The eddy rate
Dv2;c8y1 id8kynD , wherec8 andd8 are constants of or
der unity. Again, eddy damping is at the rate of the line
instability, consistent with a steady state. The freque
shift, on the other hand, is one order larger than either e
damping rate or the linear growth rate~which, after all,
drives the system!, and two orders larger than either Rev2 or
the frequency shift of thev1 branch. This shift, while unusu
ally large, was predicted by the parametric growth analy
l-
io

e

y
ry

If
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of Eq. ~25!, and evident in Fig. 3. The fact that it is recovere
in the closure theory is a check on the validity of the satu
tion level scalings, and an indication of the predictive pow
of the closure theory.

The above analysis demonstrates that in saturation t
is a nonlinear eigenmode that differs significantly from t
eigenmode of the linear instability, for whichA25Ar5Ai

50. The nonlinear eigenmode is reflected in the finite a
plitude of the damped eigenmode. Energy transfer to
damped eigenmode, as controlled by Im^b1*b2&.0, provides
a saturation mechanism. The terms representing this tran
and those representing traditional spectral transfer to h
wave number within theb1 fluctuation, are of the same or
der. Therefore, transfer to the purely stable branch play
significant role in saturation.

B. Nonlinear growth rate

The energy input rate~nonlinear growth rate! was given
in Eq. ~10!. We write it in terms ofb1 andb2 , substituting
Eq. ~11! into Eq. ~10!
2gk
nlE~k!5kynD«1/2â Im$R1* ub1u21R2* ub2u21R1* ^b1* b2&1R2* ^b1b2* &%

2y«1/2$uR121u2ub1u21uR221u2ub2u212 Re@~R121!~R221!* ^b1b2* &#%. ~40!
ing
rgy
to

nd

r
ear
n-

ar-

al
The terms proportional toy«1/2 are the negative definite co
lisional dissipation; the remaining terms are the correlat
of ^nk* fk& written in terms of b1 and b2 . The term
Im R1* ub1u2 is positive. If b250, this term and the negativ
term 2y«1/2uR121u2ub1u2 yield the linear growth rate
Im v1. The term ImR2* ub2u2 is negative. It and the term
2y«1/2uR221u2ub2u2 yield the damping rate of the purel
stable branch, Imv2. For nonlinear instability a necessa
condition is Im$R1* ^b1*b2&1R2* ^b1b2* &%.0. This condition
can be rewritten as

kynD

y
â~11k22«1/2!$Im~v12v2!Im^b1* b2&

2@Re~v12v2!1O~y/kynD!#Rê b1* b2&%.0. ~41!

The factors Im(v12v2) and Re(v12v2) are both positive.
Thus, nonlinear instability is favored by having Im^b1*b2&
.0 and Rêb1*b2&,0, although it could still occur for
Rê b1*b2&.0, provided the first term is sufficiently large.
the left-hand side of Eq.~41! is negative, or if its magnitude
n
is smaller than the magnitude of negative terms in Eq.~40!,
the system has nonlinear damping. Both nonlinear damp
and instability arise for different wave numbers in the ene
input rate spectrum of Fig. 1. Nonlinear energy transfer
the damped branch assures that Im^b1*b2&.0. ~Recall that
without the latter, there is no nonlinear eigenmode, a
hence no nonlinear instability.! Thus, nonlinear instability is
also favored by Im(v12v2).0, and the disposition of linea
eigenmode frequencies is seen to be a factor in nonlin
instability. The combination of growing and damped eige
mode branches makes Im(v12v2) more positive than it
would be if the second branch were weakly growing or m
ginally stable.

A necessary and sufficient condition for supercritic
nonlinear instability isgk

nl2Im v1.0, or gk
nl2gk

nlub250.0.

Rewriting this expression in terms of Re^b1*b2& and
Im^b1*b2&, using the expression forR1 andR2 of Sec. II, and
taking the saturation level scalings of Eq.~39! as a guide for
an expansion iny small, the instability condition becomes
Im^b1* b2&F â~11k2!@32â«1/2~21â«1/2!#222â«1/2~12â«1/2!

~12«1/2â ! G
2

~kynD!

y H Rê b1* b2&â~12«1/2â !1ub2u2F ~12â«1/2!@â~11k2!2«1/21k2#

«1/2~11k22«1/2! G J .0. ~42!
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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It is evident that Im̂b1*b2&.0 tends to produce nonlinea
instability. Because the same inequality is responsible for
transfer of energy fromb1 to b2 , the excitation of the
damped eigenmode, and therefore the nonlinear eigenm
is a nonlinearly destabilizing effect. On the other hand
damped eigenmode dissipates energy at finite amplitude
troducing the stabilizing term proportional toub2u2.
Rê b1*b2&.0 is also stabilizing. Which terms are larger d
pends on the values ofA2 , Ar , andAi , which in turn depend
on spectral details. The analysis of Sec. V A suggests
Ar,Ai , but the relative magnitudes ofAi and A2 have not
been determined. Because both stabilizing and destabili
terms enter at lowest order, either stabilization or destab
zation at finite amplitude is possible. Higher values ofâ
appear to favor nonlinear instability. The left-hand si
~LHS! of Eq. ~42! is evaluated in Figs. 1 and 6. For tho
parts of wave number space wheregk

nl exceeds the linea
growth rate, the LHS of Eq.~42! is positive, otherwise it is
negative.

VI. DISCUSSION

The stabilization of linearly unstable modes at finite a
plitude in some parts of the wave number spectrum and
percritical nonlinear instability in others is found to be
robust feature of the coupled dynamics of ion vorticity a
electron density evolution under collisionless conditio
This type of behavior thus applies to systems like
Hasegawa–Wakatani equations and the trapped electron
bulence model studied here. The changes in the growth
spectrum at finite amplitude arise from the advective non
earity. This nonlinearity excites fluctuation structures,
eigenmodes, that belong to the purely stable eigenm
branch and are often ignored. The nonlinear excitation
these linearly stable structures changes the relationshi
density to potential dictated by the linear instability. This
turn changes the correlation of density and potential that c
trols free-energy extraction and instability. Nonlinear adv
tion of scalar quantities like density, temperature, etc., is
trinsic to virtually all multifield models. Hence, the nonline
instability mechanism studied here is fundamental. Ot
mechanisms associated with nonlinear instability, includ
those of self-trapping, magnetic shear, mode structure,
collisions, are not required. Nonlinear instability by th
mechanism in models of ion temperature gradient turbule
is currently under study.

In this work we have studied supercritical nonlinear
stability and finite amplitude-induced stabilization of linear
unstable modes. Subcritical nonlinear instability has not b
examined. The behavior studied has important consequen
It leads to a saturation mechanism that differs from satu
tion regulated by a Kolmogorov-type cascade in wave nu
ber space. Under a Kolmogorov cascade, the turbulent st
state satisfies(kg

l(k) E(k)50, which requires that the spec
trum E(k) evolve in shape until positive and negative rang
of the amplitude-independent linear growth rateg l(k) are
weighted equally in the spectrum-weighted sum. Under
two-field dynamics of Eqs.~1!–~2!, g l(k) is irrelevant at
finite amplitude. Instead, the condition for steady state
Downloaded 22 Jul 2002 to 128.104.223.75. Redistribution subject to A
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nl(k) E(k)50, wheregnl(k) is the energy input

rate dictated by the amplitudes in the saturated state of
linearly unstable eigenmode and the nonlinearly excit
purely stable eigenmode. This condition is satisfied by b
the finite-amplitude evolution ofE(k) and the evolution of
the energy input rate fromg l(k) to gnl(k).

The nonlinear evolution of the energy input rate mea
that spectral transfer within the unstable branch is typica
weaker than it would be ifg l(k) were the energy input rate a
finite amplitude. It also means that simple estimates of
bulence properties, like the mixing length rule for saturati
level, and quasilinear expressions for transport fluxes,
flawed because of their reliance ong l(k). The reduction of
particle flux is interesting in the context of the particle pin
for collisionless plasmas.26 For the part of the particle flux
that is modeled as an outward diffusion we use the quas
ear flux, as is often done. The difference between the qu
linear flux and the true flux then takes the form of an inwa
pinch. While this part of the flux is smaller than the outwa
diffusion in the present model, it is only slightly smaller.

The difference between the true flux and the quasilin
flux is not as dramatic as the difference betweengnl(k) and
g l(k) because contributions to the flux from wave numb
regions wheregnl(k).g l(k) and gnl(k),g l(k) partially
cancel. One type of turbulence characterization that is
rectly sensitive to the difference betweengnl(k) andg l(k),
and is therefore likely to be strongly modified by the type
two-field dynamics described in this paper, is bispectral
convolution analysis~BDA!.9 As presently formulated, BDA
draws on the measurement of the bispectrum of a single fl
tuating field. A generic one-field turbulence model is used
deconvolve the measured spectrum and infer the lin
growth rate. This method has been applied to density fl
tuation data measured by beam emission spectroscopy o
Tokamak Fusion Test Reactor~TFTR! device. The inferred
growth rate is negative in an intermediate wave number
gion and positive at lower and higher wave numbers. T
spectrum peak falls in the region of negative growth. Ty
cally, spectral energies are repressed in regions of damp
unlike the results inferred in TFTR. This may reflect a no
linear instability process with energy input and dissipation
different wave numbers than that of the linear growth rate
multifield BDA algorithm is currently being developed t
allow inference of linear and nonlinear growth rates fro
experimental data in such situations.19
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APPENDIX: DERIVATION OF MODEL EQUATIONS

We trace briefly a simple derivation of Eqs.~1! and ~2!.
We are interested in fluctuations whose scale is larger t
the Debye length; hence quasineutrality holds, i.e.,ni5ne ,
whereni andne are the fluctuating ion and electron densitie
Ion density satisfies a continuity equation
IP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



ow

r
m

n

b

m
rif

rs

f

n

o
s
a

ud
ll

d

n
d

h

ra
n

r

n
the
cy

is
thin
lli-

li-

e
t of
ed

uld
tron

ys.

R.

aul,

k,

E.

ua,

s.

ids

ys.

3332 Phys. Plasmas, Vol. 9, No. 8, August 2002 Baver et al.
]ni

]t
1ui•¹no~x!1ui•¹ni1no¹•ui50, ~A1!

whereno(x) is the mean density,ui is the ion flow fluctua-
tion, and the mean ion flow is assumed zero. The ion fl
satisfies a momentum balance

S ]ui

]t
1ui•¹ui D5

e

mi
~E1c21ui3B!2~mini !

21¹pi ,

~A2!

wherepi is the ion pressure. For cold ions the pressure te
is neglected, and the ion flow is solved perturbatively assu
ing that the fluctuation frequencyv is smaller than the fre-
quency of ion gyrationV5eB/mic. The lowest-order solu-
tion yields the E3B drift ui

(0)5uE5E3B/B252¹ f
3z/B, while the next order solution yields the polarizatio
drift

ui
~ l !5

1

VB
z3S ]

]t
1ui

~0!
•¹ Dui

~0! . ~A3!

Substitutingui
(0)1ui

(1) into Eq. ~A1! yields

]ni

]t
2¹f3z•¹ni2¹2

]f

]t
1¹f3z•¹¹2f52nD

]f

]y
,

~A4!

whereni andne are understood to be normalized byno . The
last term comes from the advection of the mean density
uE , where nD5cTe /eBLn , and Ln5(d ln no /dx)21 is the
density gradient scale length. The third and fourth ter
come from the compression of the ion polarization d
no¹•ui5no¹•ui

(1) . The E3B drift is incompressible if the
magnetic field is homogeneous. Particle trapping, of cou
implies an inhomogeneous magnetic field, for which¹•uE

gives rise to curvature terms.27 Curvature terms are small i
a¹.V/v, which requiresLna21,ky

2rs
2, wherea is the mi-

nor radius. This approximation can break down at lo
wavelengths and in the core of tokamaks, whereLna21 is
not very small. In keeping with our general philosophy
examining nonlinear instability in the simplest of system
we neglect curvature effects, just as we have neglected m
netic shear. Both effects are worth considering in future st
ies. Contributions fromui

(1) in the advective terms are sma
compared to the terms retained in Eq.~A4!. The relative
magnitude of terms retained to those neglected is detaile
Ref. 28.

The electron density is given by the sum of a Boltzma
response and a nonadiabatic correction representing the
sity of trapped electrons,ne5f1«1/2n̂e . The nonadiabatic
electron densityn̂e is governed by electron continuity, wit
flow as the E3B drift

]n̂e

]t
2¹f3z•¹n̂e1yn̂e52

]f

]t
2nD~11ahe!

]f

]y
.

~A5!

The last term arises from the advection of equilibrium g
dients by the E3B flow and includes a temperature gradie
termahe , wherea53/2. With the quasineutrality condition
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ni5f1«1/2n̂e , Eqs.~A4! and~A5! form a closed system fo
ni , n̂e , andf. Quasineutrality can be used to eliminateni .
Introducing a modified electron densityn5«21/2ne1f
yields Eqs.~1! and ~2!. The choice of a trapped-electro
regime for the nonadiabatic electron density implies
usual condition on collisionality, i.e., the bounce frequen
must exceed the collisional detrapping frequencyy. In aux-
iliary heated tokamaks all of the plasma typically falls in th
regime except the extreme edge and scrape-off layer. Wi
the trapped electron regime there is a collisional and co
sionless regime according toy:kynD . In TEXT, the outer
part of the trapping regime was collisional, while the col
sional limit extended inward from the radius whereTe

50.6 keV.26 In TFTR significant auxiliary power pushed th
collisional regime to the edge of the plasma, putting mos
the plasma in the collisionless regime. Collisionless trapp
electron dynamics is thus highly relevant. However, it sho
be emphasized that the representation of trapped elec
physics in Eqs.~1! and ~2! is both simplified and approxi-
mate to a considerable degree.
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