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Abstract
Quasi-single-helicity (QSH) states, characterized by a magnetic spectrum
dominated by the innermost resonant tearing mode, are common to all the
reversed field pinch (RFP) experiments. The internal magnetic field structure
produced by the dominant mode is investigated for the QSH observed in
the Madison Symmetric Torus (MST) RFP in discharges with zero toroidal
magnetic field at the plasma boundary. The reconstruction is based on an MHD
model coupled to edge measurements of the magnetic field. The model discards
pressure, which has little effect on the equilibrium magnetic profile of present
RFP plasmas, but adopts a realistic toroidal geometry. The technique is the
adaptation to the MST configuration of a procedure already applied in RFX-
mod, but a more general radial profile for the current density is needed for an
adequate reconstruction of the MST case. The emerging features are similar
to those found in RFX-mod. The helical flux surfaces of the dominant mode
provide, with a good degree of reliability, a basis for mapping kinetic quantities
such as electron density and soft-x-ray emissivity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The reversed field pinch (RFP) magnetic configuration is sustained against resistive diffusion
due to the dynamo mechanism, a nonlinear process arising from the correlation of the
perturbations of the magnetic field with those of the velocity field (MHD dynamo) and the
current density (Hall dynamo) [1–3]. The perturbations are produced by MHD resistive-
kink/tearing modes [4, 5], mainly with poloidal mode number m = 1 and resonant inside the
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toroidal field reversal surface, across which this component changes sign [6]. The dynamo
appears in two fashions. The first occurs when the perturbation energy is split among many
m = 1 modes with different toroidal mode numbers n. This magnetic configuration is named
the multiple-helicity (MH) state. The second, predicted theoretically and dubbed single-
helicity (SH) [7], occurs when the energy is channeled to the innermost resonant tearing mode
(dominant mode), leaving the other modes (secondary modes) with negligible amplitude.
The closest experimental approximation to SH thus far is quasi-single-helicity (QSH), an
intermediate configuration with a single dominant mode but with secondary modes retaining
residual non-negligible amplitudes. In all the RFP experiments, QSH is more frequently
observed with larger plasma current and a weakly or non-reversed edge toroidal field [8]. The
RFX-mod power supply capability [9] and advanced edge radial field feedback control [10]
allow QSH characterization up to 2 MA of plasma current [11]. QSH are observed in the
Madison Symmetric Torus (MST) [12] at a lower current than in RFX-mod [13–15]. This
suggests that, perhaps, the smaller aspect ratio and the presence of a close-fitting shell facilitate
QSH formation in MST.

In this work we attempt a reconstruction of the helical magnetic surfaces associated
with the dominant mode, adapting to the MST configuration the force-free toroidal MHD
model [16] developed for RFX-mod. In the first step, the model computes the axisymmetric
equilibrium compatible with the edge magnetic measurements, upon optimizing a suitable
parameterization of the current density radial profile. In the second step, the perturbations
of this equilibrium are obtained solving a system of Newcomb-like equations formulated in
toroidal geometry, using again the edge magnetic data as constraints. In the third step, the
helical magnetic surfaces ensuing from the superposition of the axisymmetric equilibrium
and the perturbation associated with the dominant mode are determined in the QSH states.
The analysis focuses on non-reversed plasmas, where the equilibrium toroidal field is zero
at the edge [15], since this condition guarantees the best QSH in terms of persistence
and spectral purity. A slight generalization of the toroidal MHD model is necessary to
provide a high-quality reconstruction. In fact the standard α–θ0 parametrization for the
current density [17] is not able to reproduce both the axisymmetric edge magnetic data
and the resonance condition of the dominant mode in these discharges. A third parameter,
suggested by the behavior at the plasma edge of the current density in the paramagnetic
pinch equilibrium, is introduced. The ensuing reconstruction leaves some freedom in the
location of the resonant surface of the dominant mode, which is partially solved by the
inversion of the line-integrated electron density and the soft-x-ray (SXR) emissivity, considered
constant on the helical surfaces. The good quality of such inversions validates the magnetic
reconstruction.

This partial magnetic reconstruction is obtained ignoring the contribution of the secondary
modes, but it describes fairly well the plasma core when the X-point of the magnetic island
produced by the dominant mode annihilates the main magnetic axis, resulting in a single-
helical-axis (SHAx) configuration where the island O-point becomes the new helical axis. In
fact, SHAx is found to be more resilient to the magnetic chaos produced by the secondary
modes. This configuration has been extensively studied in RFX-mod [18–20]. Poincarè plots
based on RFX-mod magnetic data show how helical magnetic surfaces associated with the
dominant mode, otherwise recognizable only in a small region around the resonant surface,
appear in a significant portion of the plasma in SHAx states [19]. Consequently, the RFX-mod
kinetic quantities can be considered constant on the SHAx helical surfaces [18, 20]. SHAx in
RFX-mod occurs when the normalized amplitude of the dominant mode exceeds a threshold
of about 4% [19]. A similar characterization has not been performed yet in MST, but we can
say that the helical surfaces of the QSH examined in this work produce a SHAx configuration.
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This is confirmed by the good inversion of the kinetic quantities mentioned above, indicating
the existence of flux surfaces in a significant portion of plasma.

This work aims at further integration and sharing of analysis tools in the RFP community.
The paper is organized as follows. Section 2 describes the MHD model used for the magnetic
reconstruction. Section 3 discusses the means by which kinetic quantities are mapped onto
helical magnetic surfaces. Section 4 is devoted to conclusions and final comments.

2. The MHD toroidal model

The MHD equilibrium model is described in detail in [16]. Here we provide a summary of the
basic equations, and the adaptation necessary to the MST.

2.1. Basic equations

Each magnetic quantity is divided into a zeroth-order axisymmetric component and a
perturbation term: X(r, ϑ, φ) = X0(r, ϑ) + x(r, ϑ, φ). The coordinates ui ≡ (r, ϑ, φ) are
defined by the zeroth-order magnetic surfaces, assumed to be non-concentric circles: r is their
radius, ϑ is a poloidal-like angle referred to their centers, and φ is the geometrical toroidal
angle. The model solves the linearized, ideal-MHD, zero-pressure force-balance equations

J0 × B0 = 0 ⇒ µ0J0 = σB0 (1)

J0 × b + j × B0 = 0 (2)

coupling them with Ampere’s law

∇ × B = µ0J (3)

and the divergence-free representation of the magnetic field in terms of two potentials, �t

and �p:

B = ∇�t × ∇ϑ − ∇�p × ∇φ. (4)

In general the coordinates are not orthogonal, so we have to distinguish the contravariant
components from the covariant components. The former are the projections along the
gradients’ basis:

Br = B · ∇r = br = − 1√
g

(
∂�t

∂φ
+

∂�p

∂ϑ

)
; Bϑ = B · ∇ϑ = 1√

g

∂�p

∂r
;

Bφ = B · ∇φ = 1√
g

∂�t

∂r
(5)

where 1/
√

g(r, ϑ) = ∇r × ∇ϑ · ∇φ (Br
0 = 0 by definition). The latter are the projections

Bi = B · ei along the dual basis formed by the vectors ei = ∂x/∂ui , where x is the position
vector. The two kinds of component are related by Bi = ∑

j Bjgij , where gij = ei · ej is
the metric tensor. The analytical treatment of the above equations is simplified by working
in flux coordinates, defined by a proper choice of the poloidal-like angle, which makes �t0

and �p0 functions of r only. These two quantities become, respectively, the toroidal and the
poloidal fluxes enclosed by the magnetic surface of radius r , divided by 2π . It is possible to
show that even σ , defined by (1), becomes a function of r only, in the flux coordinate system.
The zeroth-order equilibrium and the metric terms are then computed using a perturbative
expansion in the inverse aspect ratio parameter a/R0. The equilibrium is solved completely
when the function σ(r) and the boundary condition for the Shafranov shift are given. The
latter is the displacement 	(r) of the magnetic surface centers from the vacuum chamber
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center. The Fourier harmonics ψ
m,n
t and ψm,n

p of the potential perturbations are defined by the
expansion x(r, ϑ, φ) = ∑

m,n xm,n(r) ei(mϑ−nφ). For a given n �= 0 they are the solutions of
a system of infinite Newcomb-like equations, where the different m numbers are coupled
by the m = 1, n = 0 harmonic of the metric terms (toroidal coupling). For practical
evaluations, a suitable truncation of this system must be adopted. The ensuing reduced system
is solved computing a basis of independent solutions, which must be combined to obtain the
physical solution, with coefficients determined by the boundary conditions. The number of
independent solutions is the sum of the number of poloidal harmonics considered (i.e. the
number of equations) and the number of resonant harmonics. Upon defining the safety factor
as q(r) = (d�t0/dr)/(d�p0/dr), the m, n harmonic is resonant at r = rm,n if the condition
q(rm,n) = m/n holds inside the plasma (rm,n < a). The assumption of zero pressure within
the model is justified by the relatively low β of the present RFP experiments (βθ ≈ 7% in
standard MST plasmas). Furthermore, the inclusion of this effect would increase considerably
the complexity of the equations for the perturbations.

2.2. MST boundary conditions

The MST plasma is contained by a single conducting shell, with major radius R0 = 1.5 m and
minor radius b = 0.52 m, which also serves as the vacuum chamber and single-turn toroidal
field winding. The plasma radius a is limited to rL = 0.51 m by a toroidal graphite limiter
on the inner surface of the shell. Since the MST pulse length (about 60 ms) is much shorter
than the shell time constant (820 ms), the shell penetration of magnetic field lines can be
safely discarded in our computation. In this case the shell inner surface coincides with the
zeroth-order magnetic surface having r = b, which means that the Shafranov shift is zero
there: 	(b) = 0. Likewise, one can assume a vanishing radial magnetic field produced by the
tearing perturbation: br(b) = 0. According to (5) this condition translates into

mψm,n
p (b) − nψ

m,n
t (b) = 0 ∀m, n. (6)

Constraint (6) can be invalidated by the presence of error fields. This point will be discussed in
section 2.4. A toroidal array of pick-up coils, mounted on the inner surface of the shell at the
poloidal position ϑ = ϑmeas, provides the toroidal Bmeas

φ and poloidal Bmeas
ϑ magnetic fields at,

respectively, 64 and 32 equally spaced toroidal angles [21, 22]. A different notation is used for
the measured components, since they do not coincide with those of the flux-coordinate system.
For the toroidal component we have Bmeas

φ = RBφ , where R(r, ϑ) is the major radius. For
the poloidal component, taking into account that the coils lie on the r = b magnetic surface,
one obtains Bmeas

ϑ = Bϑ/
√

gϑϑ . The toroidal Fourier harmonics of these measurements
provide two additional boundary conditions for the perturbation. In particular, using (5) and
the property R2/

√
g = K(r), where K(r) is a metric quantity given by R0/r plus corrections

order (a/R0)
2 [16], one obtains

(Bmeas
φ )n = K(b)

R (b, ϑmeas)

∑
m

dψ
m,n
t (b)

dr
eimϑmeas . (7)

Concerning the poloidal field, we exploit the vacuum condition j r = 0, which provides the
relation

K(r)
∂2�t

∂ϑ∂r
− ∂Bϑ

∂φ
= 0. (8)

Making use of (8) and of the Bmeas
ϑ definition given above, one derives

(Bmeas
ϑ )n = − K(b)√

gϑϑ(b, ϑmeas)

∑
m

m

n

dψ
m,n
t (b)

dr
eimϑmeas . (9)

Note that the m = 0 harmonic does not contribute to the poloidal field expansion (9).

4



Plasma Phys. Control. Fusion 53 (2011) 105006 F Auriemma et al

2.3. Reconstruction of the zeroth-order equilibrium

The expression

σ(r) = 2θ0

a

[
1 −

( r

a

)α]
; α > 1 (10)

borrowed from the α–θ0 model [17], which is standard in RFP cylindrical analysis, is a simple
way to model a decreasing profile constrained by the symmetry requirement dσ(0)/dr = 0.
The property σ(a) = 0 idealizes the condition that the current density is small at the plasma
edge, though in general there are not physical reasons to impose the zeroing at r = a. In
(10) the plasma radius is defined by a = rL − 	(a). Upon optimizing α and θ0, the model
should be able to fit the experimental pinch � and reversal F parameters, which characterize
globally the RFP equilibrium. They are, respectively, the poloidally averaged edge poloidal and
toroidal fields normalized by the poloidal-cross-section-average toroidal field. Non-reversed
discharges have F = 0. Within the toroidal formalism these parameters can be expressed as

� =
(∮

gϑϑ(b, ϑ)√
g(b, ϑ)

dϑ

)
b

4π

� ′
p0(b)

�t0(b)
; F = K(b)

b2

2R0

� ′
t0(b)

�t0(b)
; ′ ≡ d/dr. (11)

This procedure is applied routinely in RFX-mod and provides satisfactory reconstructions of
the zeroth-order equilibrium [18]. In contrast, the model (10) fails for the non-reversed MST
discharges. It predicts q(0) < 0.2, whereas there are indications supporting the existence of the
m = 1, n = 5 resonant mode in these discharges, which would necessarily imply q(0) > 0.2.
First, the poloidal field Fourier analysis shows a substantial n = 5 harmonic, which can be
identified as m = 1 since, according to (9), the m = 0 harmonic does not contribute to
the vacuum poloidal field, and the |m| > 1 harmonics, if present, have smaller amplitudes.
Second, the m = 1, n = 5 transition from the fast rotation at low amplitude to zero rotation at
large amplitude is well reproduced by a model considering a resonant tearing mode interacting
with the eddy current induced in the shell [15]. The m = 1, n = 5 amplitude growth also
brings the plasma into the QSH condition in which the magnetic spectrum is dominated by
this harmonic. A QSH example is given in figure 1 for the F = 0 discharge 1090604127.

The inadequacy of the force-free α–θ0 model for the F = 0 discharges has been already
encountered in previous cylindrical analysis [15]. In this geometry, keeping expression (10)
and including pressure with βθ = 7% in the equilibrium equations, the m = 1, n = 5 mode
can be made resonant [15]. However, the addition of pressure does not seem a feasible strategy
in the framework of the toroidal model, since an unrealistic βθ > 20% would be necessary
for matching the experimental �, F = 0, and the condition q(0) > 0.2. In contrast, these
requirements can be satisfied maintaining the force-free assumption with a more suitable model
for σ (r). This is suggested by the paramagnetic pinch Ohm’s law

E0 + V0 × B0 = ηJ0 (12)

applied to the F = 0 equilibrium. Equation (12) is valid inside the plasma, namely for
r � a, and E0, V0, η are, respectively, the zeroth-order electric field, fluid velocity and plasma
resistivity. The electric field satisfies the stationary condition ∇ × E0 = 0 and can therefore
be written as

E0 = Vφ∇φ + ∇ϕ0(r, ϑ) (13)

where the constant Vφ is the toroidal loop voltage, and ϕ0 is the electrostatic potential.
Equations (12) and (13) do not apply to the RFP equilibrium due to the additional electric
field produced by the dynamo process. Although the dynamo is likely to be active also in the
F = 0 case, we will examine the two equations all the same, since they indicate a possible way
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Figure 1. Waveforms of a non-reversed discharge 1090604127. (a) Plasma current, (b) electron
density, (c) reversal and pinch parameters, (d) toroidal field harmonics (Bmeas

φ )n for the dominant
n = 5 perturbation (thick line) and some of the secondary modes (n = 6, 7, 8).

to improve the α–θ0 model for the F = 0 discharges. Using (1) and (13), the scalar product
of (12) with B0 gives

VφB
φ

0 +
∂ϕ0

∂ϑ
Bϑ

0 = η

µ0
σB2

0 . (14)

Exploiting (5) and the poloidal average 〈f 〉 = ∮
dϑ

√
gf /(2π) one obtains

σ(r) = µ0Vφ

� ′
t0

〈ηB2
0 〉 . (15)

Making use of the force-balance equation d(K� ′
t0)/dr = −σ� ′

p0, which derives from (1), (3),
(5) as shown in [16], we also find that

dσ

dr
= −µ0Vφ

µ0Vφ� ′
p0 + d

dr
(K〈ηB2

0 〉)
K〈ηB2

0 〉2
� ′

t0. (16)

The condition � ′
t0 = 0 holds in the entire vacuum region a � r � b in F = 0 discharges, due

to the definition in (11) and to the above-mentioned force-balance equation (σ = 0 in vacuum).
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q
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Figure 2. Comparison between the targeted q0 and the computed on-axis value q(0) of the safety
factor. The model (18) is adopted. The experimental data come from the shot 1090604127 at
t = 27 ms.

From � ′
t0(a) = 0 and (15), (16) we obtain the two constraints σ(a) = 0 and dσ(a)/dr = 0,

regardless of the resistivity profile. The α–θ0 model satisfies the first, but violates the second.
Therefore, seeking for a more appropriate model of the F = 0 equilibrium, we can also require
that dσ/dr = 0 both at r = 0 and r = a:

dσ

dr
∝

( r

a

)α [
1 −

( r

a

)γ ]
; α > 0, γ > 0. (17)

The condition γ > 0 ensures regularity at r = 0. The additional constraint σ(a) = 0 provides

σ(r) = 2θ0

a

[
1 +

α + 1

γ

( r

a

)α+γ +1
− α + γ + 1

γ

( r

a

)α+1
]

. (18)

The definition σ(0) = 2θ0/a has been maintained, and the α–θ0 expression is recovered in the
limit of large γ . The model (18) allows matching of the experimental � and F = 0, and the
condition q(0) > 0.2 by a proper optimization of the free parameters α, γ and θ0. An example
of such an equilibrium reconstruction is shown in figures 2–5 for the same F = 0 discharge
as in figure 1, at t = 27 ms. Since q(0) is not measured, different targeted on-axis values
q0 > 0.2 are tried. Therefore, the optimization tries to match the parameters �, F = 0 and q0.
As shown in figure 2, q0 may be different from the ensuing q(0) of the optimized equilibrium.
There is a range of possible equilibrium profiles, obtained up to q0 = 0.212, which reproduce
the experimental �, F and the condition q(0) > 0.2. Moreover, q(0) = q0 for these good
profiles. In contrast, for q0 > 0.212 the model is not able to match exactly the experimental
� and F . The solutions obtained with q0 = 0.202 (θ0 = 1.626, α = 2.535, γ = 35.228)

and q0 = 0.212 (θ0 = 1.551, α = 4.910, γ = 6.025) are compared in figure 5. Note that
as q(0) increases above 0.2 the equilibrium departs from the α–θ0 model, i.e. γ decreases.
Differences in σ (r) do not have a significant impact on the global magnetic field profile.

Nonetheless, the m = 1, n = 5 resonant surface location is sensitive to small equilibrium
variations, since one finds that r1,5 = 0.0458 m for q0 = 0.202 and r1,5 = 0.1136 m for
q0 = 0.212. The possibility of providing further constraints on the possible equilibria is
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Figure 3. Difference between the experimental � and computed �model pinch parameter for the
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Figure 4. Computed Fmodel reversal parameter for the same analysis considered in figure 2, to be
compared with the experimental value F = 0.

discussed in section 3. We note that it is not guaranteed for any three parameters modeling
σ (r) to reproduce the experimental �, F = 0, and the condition q(0) > 0.2. For example,
the expression

σ(r) = 2θ0

a

[
1 −

( r

a

)α]
·
[

1 + γ
( r

a

)2
]

,

where the second bracketed term allows for a concavity in the profile, does not work. In
contrast, the α–θ0 model (10) with two different exponents, namely α = α1 for r < a/2 and

8
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Figure 5. Two examples of equilibrium profiles compatible with the experimental condition for
the analysis reported in figure 2. The abscissa extends to the shell radius. (a) σ (r) profile, (b) radial
derivatives of the normalized zeroth-order fluxes �t0, �p0, divided by factors which give them the
shape of toroidal and poloidal magnetic fields, respectively.

α = α2 for a/2 � r � a can work up to the targeted value q0 = 0.208. Nonetheless, the profile
given by (18) has the advantage of being smooth and somewhat better justified. Therefore, it
will be adopted by the following analysis.

2.4. Reconstruction of the n = 5 perturbation

The largest-amplitude perturbations in MST are the m = 1 resonant harmonics corresponding
to the dynamo tearing modes. They typically have n � 5 in F = 0 discharges. When
considering the n = 5 perturbation, which becomes dominant in these discharges, we can
limit the system of Newcomb-like equations to the m = 0, 1, and 2 poloidal harmonics. The
same truncation applies to the summations in the boundary conditions (7) and (9). The m = 0
corresponds to a resonant tearing mode only for F < 0. For F = 0, both m = 0, n = 5
and m = 2, n = 5 are non-resonant harmonics, which, in the absence of external sources
such as error fields, are pure toroidally generated sidebands of the m = 1 (the m = 0 modes
also derive from the nonlinear m = 1 coupling, but this effect is not considered in the present
model). Therefore, the number of independent solutions is four. The ideal-shell constraint
(6) and the two measurements (7) and (9) provide a redundant condition. It is reasonable to
retain both (7) and (9), since they come from a measurement, whereas one can drop one of
the ideal-shell constraints for a specific poloidal number m = m̄. In general, this determines
a multi-harmonic error field with a main component (br)m̄,n(b) �= 0, and secondary toroidally
coupled harmonics (br)m̄±1,n(b) �= 0 produced by the factor 1/

√
g(r, ϑ) in the first equation

in (5). On the other hand, radial magnetic error fields occur both at the toroidal and poloidal
gaps (the horizontal and vertical insulated cuts in MST’s conducting shell) with a fairly broad
m and n spectrum [15, 22].

The reconstruction of the n = 5 perturbation for the same shot and time considered in
figures 2–5, where the related m = 1 mode becomes dominant, is now discussed. Taking
m̄ = 2, the computed br radial profile is unrealistic, having too large an amplitude at the shell
(see figure 6). The profile becomes more reasonable with m̄ = 1 (see figure 7), but the smallest
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Figure 6. Amplitudes of the harmonics (br )m,5(r) for the shot 1090604127 at t = 27 ms. The
underlying zeroth-order equilibrium refers to the case q0 = 0.208. The estimate discards the
condition (6) for the m = 2 harmonic. Note that even (br )1,5(b) �= 0 due to the toroidal coupling
with m = 2. The factor 2 in the amplitude takes into account the complex conjugate harmonic
contribution. The abscissa extends to the shell radius. Note the unrealistically large value of the
perturbation there.
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Figure 7. Same quantity considered in figure 6. The underlying zeroth-order equilibrium refers
to the case q0 = 0.208. The computation discards the condition (6) for the m = 1 harmonic. The
perturbation at the shell radius remains quite large.

error field amplitude is obtained for m̄ = 0 (see figure 8). The latter will be maintained in
the following. If one takes m̄ = 1, the maximum br amplitude inside the plasma would be
sensitive to the choice of the zeroth-order equilibrium, showing a very irregular dependence
on q0 in the interval 0.202 � q0 � 0.212. Instead, with m̄ = 0 the amplitude dependence on

10



Plasma Phys. Control. Fusion 53 (2011) 105006 F Auriemma et al

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5

m=0
m=1
m=2

2
x

|(
br )m

,5
|(

ga
us

s)

r(m)

Figure 8. Same quantity considered in figure 6. The underlying zeroth-order equilibrium refers to
the case q0 = 0.208. The computation discards the condition (6) for the m = 0 harmonic. Now the
perturbation amplitude at the edge is reasonable and compatible with the presence of a small-error
field.
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Figure 9. Maximum (a), and edge (b) amplitudes of the harmonics (br )m,5(r) in the shot
1090604127 at t = 27 ms, obtained for the equilibria (0.202 � q0 � 0.212), which according
to figures 2–4 satisfy the global experimental requirements. The estimate discards the condition
(6) for the m = 0 harmonic. The factor 2 takes into account the complex conjugate harmonic
contribution

q0 is weak, as figure 9(a)) clearly shows. This fact gives us confidence in the robustness of the
reconstruction obtained with m̄ = 0. However, this assumption remains an approximation.
A less approximate reconstruction would require an extensive set of edge br measurements,
which would then be used in place of the ideal-shell condition (6). Concerning this point,
MST is equipped with measurements of the error field and its poloidal spectrum at the poloidal
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gap [15], but it is not possible to include these data in the reconstruction, lacking a resolution
in the toroidal mode number n. Moreover, even the toroidal gap and the portholes are sources
of errors, for which measurements are not routinely available. However, at least the order of
magnitude of the error field estimated by the reconstruction should be correct. Let us consider
in figure 9(b)) the error field amplitude dependence on the possible zeroth-order equilibrium.
Apart from the case q0 = 0.212, which is rejected owing to the very large br(b), the m = 1
component has an amplitude below 10 G, which is compatible with the measurement at the
poloidal gap in the so-called ‘small-error’ discharges in figure 6 of [15].

Finally, we have also tried the reconstruction using the standard α–θ0 model, which renders
the m = 1, n = 5 mode non-resonant. In this case the number of independent solutions is three,
and the measurements (7) and (9) must be complemented by one of (6). Taking (6) for m = 0
gives unrealistic profiles, whereas reasonable results are obtained imposing the condition (6)
for m = 1 or m = 2. However, the estimated error field increases with respect to the previous
reconstruction: the RMS of the harmonics (br)m=0,1,2, n=5(b) is about 14.5 G compared with
8.8 G obtained with the profiles of figure 8. The α–θ0 model based reconstruction will be
discussed again in section 3.2.

2.5. Helical surfaces of the dominant mode

Let us approximate the QSH magnetic structure as the superposition of the zeroth-order
axisymmetric equilibrium and the perturbation due only to the dominant m, n mode (m = 1,
n = 5 in our case):

�p(r, u) = �p0(r) + ψm,n
p (r)eiu + c.c. �t(r, u) = �t0(r) + ψ

m,n
t (r)eiu + c.c. (19)

Here u = mϑ − nφ is the helical angle. From (4) and (19) it is straightforward to show that
the combination χ(r, u) = m�p(r, u) − n�t(r, u) is a flux function: B · ∇χ = 0. Thus, in
this approximation, helical magnetic surfaces, identified by constant helical flux χ , do exist.
The SHEq code, developed for RFX-mod [20], has been interfaced with the MST adaptation
of the toroidal MHD model, and it is able to display the shape of the magnetic surfaces in the
machine coordinate system. In particular, it manages the transformation between the machine
and flux coordinates used by the toroidal model. The final passage to the machine coordinates
is necessary if we want to cross-check the magnetic reconstruction with other diagnostics.
As mentioned in the introduction, when adding the secondary modes, the helical magnetic
surfaces should survive in a significant region of the plasma in only the SHAx state. The latter
is recognized by the monotonic behavior of χ : each value of χ corresponds to just one surface.
With this condition it is useful to define the effective radius by

ρ =
√

χ − χ0

χa − χ0
(20)

where χ0 is the helical flux on the helical magnetic axis, and χa is the helical flux of the plasma
boundary. The variable ρ ranges between 0 (on the helical axis) and 1.

3. Comparison with the kinetic measurements

The mapping of certain kinetic quantities onto the MST reconstructed helical flux surfaces is
now discussed. This effort parallels the successful effort in SHAx analysis in RFX-mod [18].
Due to fast parallel transport of electrons and electron energy, both plasma electron density
and temperature can be handled as flux functions. Consequently, this is also true for the SXR
bremsstrahlung. Electron density and SXR emission are considered in the present analysis.
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Figure 10. Mapping of the SXR emissivity onto the helical flux surfaces of the SHAx observed at
t = 26 ms in the shot 1100915079. (a) Reconstruction of the flux surfaces at the diagnostic toroidal
section. (b) 2D map of the emissivity as a flux function; the best fit inversion parameters, according
to equation (22), are εglob = 44 W m−3, ε1 = 18, εint = 341 W m−3, ε2 = 0.4, ε3 = 6. (c) 2D
map of the emissivity as obtained from the measurements with the Bessel–Cormack technique. (d)
Emissivity profile as a function of the effective radius across the helical structure. (e) Comparison
between the experimental brightness (integrated emissivity), and those computed along the 40 lines
of sight of the two-camera SXR diagnostic using the map shown in (b); the abscissa is the chord
impact parameter with the usual sign convention.

The dependence of these quantities on the effective radius ρ is modeled leaving some free
parameters, which are optimized upon minimizing the discrepancy

χ2 =
∑

i

(fi − fi,model)
2

σ 2
i

(21)

between the measurements fi and their numerical model-based reconstruction fi,model. The
measurement errors σi are taken into account. If the geometry of the flux surfaces is correct,
good agreement is expected, whereas numerical and experimental data will not match when
the magnetic pattern has an incorrect shape.

3.1. SXR emissivity

The SXR tomographic diagnostic [23] as applied in this analysis has a total of 40 lines of sight
divided between two cameras viewing the plasma at the same toroidal position (φSXR = 300◦)
but from two different ports. Tomographic data from an F = 0, Ip = 500 kA discharge is
shown in figure 10. A discharge with this current and electron temperature ensures adequate
SXR emission for the diagnostic. The measurements fi are the emissivities integrated along
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the chords (SXR brightness), and the sum (21) is calculated over all the lines of sight of the
diagnostic. SXR emissivity ε is modeled with the following flux function:

ε(ρ) = εglob(1 − ρε1) + εint exp

[
−

(
ρ

ε2

)ε3
]

(22)

where εglob, εint, ε1, ε2, ε3 are free parameters. The first term represents the global emissivity,
while the exponential term is introduced to allow for an enhancement localized around the
most internal surfaces. The analysis is performed at 26 ms where the m = 1, n = 5 SHAx is
observed. Figure 10(a) displays the flux surfaces’ poloidal cross section at the toroidal location
of the SXR diagnostic. Note the bean-shaped central helical core, located in the upper outboard
region of the vacuum chamber, surrounded by a nearly axisymmetric boundary. Figure 10(b)
shows the poloidal 2D map of the SXR emissivity which emerges on these surfaces with the
model (22) after the optimization of the free parameters. In figure 10(c), the same quantity
computed with the usual Bessel–Cormack inversion of the measurements [24, 25] is presented.
The emissivity regions of plots (b) and (c) agree reasonably well in radial and poloidal extent,
and in both cases a high-emissivity helical core is surrounded by a nearly circular low-emissivity
boundary. Figure 10(d) displays the emissivity profile ε(ρ) derived from the model (22):
the result is qualitatively similar to what is obtained in RFX-mod (see figure 4(a) of [18]).
Figure 10(e) compares measured line-integrated emission data from each of the two SXR
cameras with that based on the helical-surface-modeled brightness. The available magnetic
constraints leave a certain degree of freedom for the internal reconstruction, mainly in the
radial location of the m = 1, n = 5 resonant surface, as explained in section 2. The SXR
analysis provides a means of selecting among the possible profiles. The worst discrepancy,
χ2 = 46.73, corresponds to the most internal resonance (r1,5 = 0.133 m), whereas the best
agreement, χ2 = 27.81, is obtained with the most external resonance (r1,5 = 0.171 m). The
latter refers to the inversion shown in figure 10. The Bessel–Cormack inversion considered
in panel (c) produces a further smaller discrepancy, χ2 = 9.36, but at the price of optimizing
35 independent variables against the five free parameters of the model (22). Since the evident
difference between the two methods is not the resulting χ2, but the number of free parameters,
we draw the conclusion that the flux surfaces underlying the model (22) are reconstructed
fairly well. It is true that the location of the most internal surfaces as shown in the map 10(a) is
slightly upper shifted with respect to the most emissivity region of panel 10(c), but this is due to
the respective errors of the two reconstructions: the MHD one is affected by the approximations
due to the lacking of an adequate set of edge probes as explained in section 2.4, and even the
Bessel–Cormack inversion does not perfectly match the measurements (χ2 is not zero).

3.2. Electron density

A similar approach has been used to analyze the interferometric data. MST is equipped with a
FIR interferometer/polarimeter diagnostic having 11 vertical chords arranged in two adjacent
toroidal sections: five at φ = 250◦ and six at φ = 255◦ [26]. In this case the measurements
fi are the line-integrated densities along the chords. As with the SXR data, the density profile
has been mapped over the helical flux surfaces, and the line-integrated densities have been
computed for each set of chords. We have accounted for the fact that the poloidal location of the
n = 5 helical structure differs by 25◦ between the two toroidal sections. The parameterization
chosen for the density is

ne(ρ) = (ncore − nedge)(1 − ρn1)n2 + nedge(1 − ρn3) (23)

where ncore, nedge, n1, n2, n3 are free parameters. The exponent n3 determines the slope in the
edge region, where significant modifications can be produced by this parameter. Examples
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Figure 11. Density profiles according to parameterization (23), for three values of n3. Continuous
line refers to n3 = 100; dotted line to n3 = 20 and dashed line to n3 = 5. The main differences
take place in the outer portion of the profile, but do not significantly modify the inversion results.

of such variations are given in figure 11. The inversion result shows a weak but systematic
dependence on n3, passing from χ2 = 13 when n3 = 100 (the best case) to χ2 = 14 when
n3 = 5. A detailed investigation of the edge density profile and its effects on particle transport
is beyond the scope of this paper. Hence, we fix n3 = 100, reducing the number of free
parameters to four.

The result of the inversion over helical flux surfaces is compared with a 1D axisymmetric
inversion code applied routinely to MST density data. The 1D code adopts the parameterization
(23) but assumes that density is constant on non-concentric circular surfaces whose horizontal
displacement δ is optimized within the procedure. We note that the 1D inversion does not
involve any sort of magnetic reconstruction, so these circular surfaces are not necessarily
aligned with magnetic flux surfaces. The displacement δ is modeled by δ(r) = δ0[1− (r/a)λ],
where r is the surface radius. This code is appropriate when the density profile is determined
mainly by the axisymmetric Shafranov-shifted equilibrium, as is the case in MH states. The
fit parameter λ always falls very close to 3, so we fix λ = 3 in order to reduce computational
complexity. This leaves five free parameters ncore, nedge, n1, n2, δ0 in the 1D code.

Figure 12 displays a m = 1, n = 5 SHAx with the helical structure located inboard at
the interferometer toroidal angles. Plots (a)–(c) refer to the helical flux surface inversion,
whereas plots (d)–(e) present the 1D code result. Qualitatively, both methods provide inward
displacements of the plasma (see panels (a) and (d)). In particular the 1D code predicts
δ0 = −1 cm, whereas the axisymmetric Shafranov shift is always positive. This indicates
that the density profile is sensitive to the magnetic surface distortion induced by the dominant
mode. This behavior is well described by the inversion over the helical flux surfaces, since the
ensuing χ2 is one fourth of that obtained by the 1D code. This confirms once more the existence
of helical magnetic surfaces associated with the dominant mode inside the plasma as well as
the reliability of their MHD reconstruction. The density inversion allows one to distinguish
among the possible magnetic internal reconstructions. The optimum resonant surface location
is found at r1,5 = 0.103 m, corresponding to χ2 = 13.05, whereas at the two extremes of the
interval one finds r1,5 = 0.046 m with χ2 = 18.53 and r1,5 = 0.123 m with χ2 = 13.57.
Figure 12 refers to the best inversion.
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Figure 12. Density analysis for the SHAx observed at t = 31 ms in the shot 1090506105. (a)
Electron density 2D mapping over the reconstructed helical flux surfaces at φ = 250◦. (b) Ensuing
profile according to the model (23). (c) Comparison between numerical and experimental line
integral density; the abscissa is the chord impact parameter with the usual sign convention. (d),
(e), (f ) show the same quantities provided by the 1D inversion code. The χ2 comparison confirms
that the density inversion over the helical flux surfaces is more accurate.

At the end of section 2.4, we mentioned the possibility of performing a magnetic
reconstruction based on the α–θ0 model, which requires the m = 1, n = 5 mode to be
non-resonant, at the price of increasing the error field amplitude. The ensuing helical surfaces
do not fit the density data as well as the previous reconstruction, since χ2 = 25.22 is obtained.
This is another justification for using the model (18) to make the m = 1, n = 5 mode resonant.

4. Conclusions

A force-free method to reconstruct the magnetic field inside the MST plasma in a realistic
toroidal geometry has been presented. This is based on models applied routinely in RFX-mod
data analysis. The adaptation to the F = 0 MST discharges is not straightforward, since a
generalization of the standard α–θ0 model for the parallel current profile is necessary to match
the global equilibrium. Since the new model has three parameters to optimize, whereas the
two experimental constraints F and � are complemented only by the condition q(0) > 1/5,
which makes the m = 1, n = 5 mode resonant, the reconstruction allows an ensemble of
possible profiles. Likewise, the edge measurements are not sufficient for solving the system
of equations describing the perturbations, and they must be supplemented by a ‘relaxed ideal-
shell’ condition, compatible with the presence of a small-error field with a main m = 0
component. The dominant mode’s helical flux surfaces reconstructed in m = 1, n = 5 QSH
have been used to invert the electron density and SXR emissivity line-integrated measurements.
In the cases discussed here the magnetic pattern exhibits a SHAx feature. Among the magnetic
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profiles compatible with the external constraints, in the cases examined thus far both inversions
help to identify the best reconstruction. The highest-quality inversions so obtained indicate
the presence of magnetic helical surfaces in a significant portion of the plasma and provide
an important benchmark for the magnetic reconstruction. Work is also underway to probe
directly the helical magnetic topology using internal polarimetric techniques.

Euratom © 2011.
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