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Abstract
A non-linear Grad–Shafranov toroidal equilibrium reconstruction code (MSTFit) has been developed for the Madison
Symmetric Torus. This is the first such code applied to the unique magnetohydrodynamic (MHD) equilibrium of
the reversed field pinch. A new set of toroidal Green’s tables have been computed to impose the boundary condition
of the close-fitting conducting shell. The non-linear fitting routine is sufficiently versatile for incorporating data
from a variety of internal and external diagnostics, including a novel constraint based on orbits from a heavy ion
beam probe diagnostic. Utilizing the full complement of internal and external magnetic and pressure diagnostics,
MSTFit resolves accurately subtle changes in internal magnetic structure with implications on MHD stability. We
show example equilibria that confirm conservation of magnetic helicity during relaxation and two-dimensional
equilibrium effects.

PACS numbers: 52.55.Hc

1. Introduction

An accurate determination of the magnetohydrodynamic
(MHD) equilibrium (including parallel current density and
magnetic field profiles) is of fundamental importance to
physics research in the reversed field pinch (RFP). Gradients
in the normalized parallel current density (λ = J‖/|B|) profile
drive resistive tearing modes, and the associated magnetic
fluctuations are responsible for much of the macroscopic
dynamics of the RFP [1]. Modification of the λ profile
has reduced significantly the magnetic fluctuation levels and
increased confinement [2–4], possibly indicating the RFP as
an attractive fusion reactor concept. The MHD equilibrium in
the RFP has been studied at several levels of sophistication.
Taylor’s conjecture (global magnetic helicity is conserved as
the plasma relaxes to its minimum magnetic energy state
[5]) predicts a flat [λ(r) = const] profile. This does not
agree in detail with the experiment as λ goes to zero at the
boundary, but it does predict the monotonic decrease and
reversal of the toroidal magnetic field profile. Cylindrical
models (constrained by edge magnetic data) that allow the
parallel current density to go to zero at the plasma boundary
have been used extensively in studies of the RFP equilibrium
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[6–8]. However, advanced internal magnetic diagnostics in
the Madison Symmetric Torus (MST) RFP show a distinction
between the experiment and these one-dimensional models.
Two-dimensional studies of the RFP equilibrium have been
made (see, e.g. [9]), and this work represents the first detailed
studies of experimental equilibria based on experimental data.

Stability calculations are sensitive to subtle changes in
the λ profile, and it is thus desirable to determine the MHD
equilibrium as accurately as possible, making use of all
available data. This has motivated the development of a new
code (MSTFit) that is well suited for the unique magnetic
structure of the RFP, where poloidal and toroidal magnetic
fields are of approximately the same strength and are generated
primarily by currents in the plasma and induced currents in the
shell. The technique used in the tokamak community [10] has
been applied: an axisymmetric solution of Maxwell’s equations
is found while satisfying radial force balance (J × B = ∇P)

and finding the best-fit to all available data. While this is not a
new concept, this is the first application of such a code in the
RFP. This code differs from previously published equilibrium
reconstruction techniques in the treatment of the close-fitting
conducting shell and the use of a versatile (but computationally
burdensome) non-linear fitting routine. The approach is
extensible to many free parameters, and the accuracy of the
solution is ultimately limited by the data used to constrain
the fit.
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The MST [11] is a large RFP (1.50 m major radius, 0.52 m
minor radius) capable of generating a toroidal plasma current
up to 500 kA and a central electron temperature �1000 eV.
A close-fitting, circular cross-section aluminium shell (of 5 cm
thickness) surrounds the plasma and acts as the vacuum vessel
and single-turn toroidal field winding. The shell has a single
poloidal and single toroidal insulating gap through which
magnetic flux is inserted.

This paper describes the MSTFit code and provides a
handful of illustrative results. Section 2 is a description of
the numerical technique used to solve the Grad–Shafranov
equation consistently with explicit treatment of the conducting
shell. An overview of the diagnostics available and the fitting
method are in section 3, along with a specific mention of the
method used to constrain the equilibrium based on heavy ion
orbits. An example equilibrium that demonstrates the ability
of the code to reconstruct accurately internal magnetics and
a semi-analytic estimate of the uncertainty in the resulting
profiles are presented in section 4. An investigation of helicity
conservation during plasma relaxation is revisited [12] using
reconstructed profiles. Also presented are the flux surface
geometry, which is required for interpretation of temperature
and density measurements, and the trapped particle fraction
(an inherently two-dimensional phenomenon), which is now
readily accessible with a full equilibrium reconstruction.

2. Numerical technique

The Grad–Shafranov equation,

�∗ψ = −µ0RJφ,

Jφ = 2πFF ′

µ0R
+ 2πRp′,

(1)

is a second-order non-linear partial differential equation
describing axisymmetric toroidal equilibria. Here, the elliptic
operator �∗ = R2∇ · (∇/R2), ψ is the poloidal magnetic
flux, and the two free functions, F = RBφ = F(ψ) (related
to the poloidal current flowing between the magnetic axis
and a given flux surface) and p = p(ψ) (plasma pressure),
are functions of poloidal flux only. The Grad–Shafranov
equation derives from the assumption that the magnetic field
can be written as B(R, Z) = Bφ(R, Z)φ̂ + ∇ψ(R, Z) × ∇φ;
and B · ∇ψ = 0. This is valid for plasmas free of MHD
activity—nearly all the time in the tokamak configuration
and only during high performance periods in RFP plasmas.
In the presence of MHD activity (i.e. B = B0 + b̃), radial
magnetic field perturbations destroy the flux surfaces, B·∇ψ =
b̃ · ∇ψ �= 0. Under these circumstances and hereafter in
this paper, the reconstruction considers only the axisymmetric
portion of the magnetic field, and the label ψ is the zeroth-order
flux surface label. The poloidal magnetic flux is computed
with the appropriate Green’s function and specified toroidal
currents in the plasma and shell. MSTFit computes these
on an unstructured triangular mesh (shown in figure 1), that
divides the 0.85 m2 MST cross-section into 746 elements and
invokes up–down symmetry; quintic interpolation is used when
mapping to higher resolution grids for plotting. The close-
fitting shell is modelled as 144 poloidally distributed toroidal
current filaments.
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Figure 1. Grid and coordinate system (standard cylindrical) used in
equilibrium reconstruction. The triangular mesh grid is up–down
symmetric and divides the poloidal cross-section into 746 elements.

Finding a consistent equilibrium is an iterative problem. In
practice, the free functions, F(ψ) and p(ψ), are specified and
the resulting toroidal current density is computed according
to equation (1). The toroidal plasma current and toroidal
currents in the vessel are then used to compute the poloidal
magnetic flux, which in principle can change the geometry
for mapping F(ψ) and p(ψ) to real space. Computations
of toroidal current and poloidal flux are repeated until they
converge to a consistent equilibrium. A minimization routine
then adjusts the profiles of F and P , searching through a large
number of equilibria to find the one that best matches the
measurements. When the best-fit is found, the code is restarted
using the solution as the initial guess to ensure the solution is
an absolute (as opposed to a local) extremum.

This technique, illustrated in the flowchart in figure 2,
differs somewhat from linear codes in that it finds a consistent
equilibrium on each iteration rather than simultaneously
solving for the equilibrium and fitting measurements. The
advantage is increased versatility, while the cost is computation
time. This framework allows the code to forego a standard
basis function expansion to describe the free functions, e.g.

F ′(ψ) =
M−1∑
i=1

aifi(ψ), (2)

where the set of coefficients a are the free parameters
determined by fitting. MSTFit parametrizes the free functions
by using spline interpolation through several points. The free
parameters are the locations in ψ and functional values of
the knots, as sketched in figure 3. Cubic spline interpolation
generates very general profiles in this approach, and tension
can be added to the splines to further generalize the set of
available profiles.

2.1. Green’s function approach

The poloidal flux at any given grid point depends on the toroidal
current at all other points, including toroidal currents flowing in
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Figure 2. MSTFit flowchart. A consistent Grad–Shafranov
equilibrium is found in each iteration before comparing with data.
The downhill simplex method is used to minimize χ2.
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Figure 3. Free parameters used to specify the F ′ profile. As F ′ is
effectively current density, boundary conditions ensure that the
function goes to zero at ψ = 1 (no current at boundary) and has a
zero derivative at ψ = 0 (continuous derivative through the axis).

the shell. The general toroidal Green’s function (G) computes
the poloidal flux at the point (R, Z) due to a unit toroidal
current at (R′, Z′):

ψpol(R, Z) =
∫ ∫

A′
G(R′, Z′; R, Z)Jφ(R′, Z′) dA′, (3)

where

−R

2πµ0
∇ ·

(∇G

R2

)
= δ(R − R′) δ(Z − Z′). (4)

In a vacuum (no conducting shell), the appropriate Green’s
function is [13]

G = µ0

πk

√
R′

R

((
1 − 1

2
k2

)
K(k) − E(k)

)
, (5)

where E(k) and K(k) are elliptic integrals of the first kind and
k2 = 4RR′/((R + R′)2 + Z2).

Integration of equation (3) is replaced by summation on
the discrete grid, which reduces to matrix multiplication as

ψpol = G · Iφ, (6)

where the matrix G computes the flux at every point due to all
currents (Iφ) on the grid. Similarly, the spatial derivatives
of G(R′, Z′; R, Z) relate the components of the poloidal
magnetic field (BR and BZ) to Iφ .

The close-fitting conducting shell imposes a boundary
condition of constant flux at its surface, and currents flowing
in the shell must be included when computing poloidal flux.
A Green’s function that satisfies the boundary condition
(while implicitly finding the necessary shell currents) has been
constructed. Equation (6) is modified to include contributions
from currents in the vessel, or

ψpol = Gp · Iφ + Gv · Ives, (7)

where Gp is the plasma table and Gv computes flux on the
plasma grid due to currents in the vessel.

The boundary flux is set to zero to enforce the boundary
condition, summarized by the matrix equation

0 = Gap × 1 + Gav × Ives0, (8)

where Gap and Gav are the matrices that compute flux at
the vessel surface due to currents in the plasma and vessel,

respectively. Here, (Ives0) is the matrix where each column
is the set of vessel currents that set the boundary flux to zero
for a particular unit current within the plasma. In practice, the
currents are computed as individual vectors. Gap is dotted with
the ith unit vector to determine the vector of vessel currents (the

ith column of Ives0) for the ith filament within the plasma. Each
column operation is a set of over-specified linear equations, and
singular value decomposition is used to determine the vessel
currents. The fixed-boundary Green’s table is

Gfixed = Gp + Gv × Ives0 (9)

and the flux within the plasma is computed by ψpol = Gfixed ·Iφ .
The correction to the Green’s functions due to the vessel

current is demonstrated in figure 4, where the flux is computed
for unit currents in two example locations. Figure 4(a) is the
flux computed for a unit current (along with the up–down
symmetric complementary current) off the midplane using
the free-boundary table. Figure 4(b) is the free-boundary
flux computed for a current located near the conducting wall
on the midplane. Clearly, multiple flux surfaces intersect
the shell. Figures 4(c) and (d) show the flux contours
for the same currents using the fixed-boundary Green’s
table, and the outer flux surfaces conform to the shell; the
boundary flux is constant to within floating point accuracy in
reconstructed equilibria. The vessel currents can be viewed
for a reconstructed equilibrium (example in figure 6), and it
is noted that the distribution is consistent with the single turn
resistance of the shell: minimum current at maximum major
radius.

3. Data fitting

The code searches through a large number of equilibria in an
attempt to find the best-fit to all available data. The method of
evaluation is computing a cost function, χ2:

χ2 ≡
∑

i

(Di − Mi)
2

σ 2
i

, (10)
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Figure 4. Flux due to a unit current calculated using free- and fixed-boundary Green’s tables. Plots (a) and (b) use the free-boundary tables
for computing the flux due to unit currents; multiple flux contours intersect the conducting shell. Plots (c) and (d) are the flux computed for
the same two current filaments using the fixed-boundary tables, and the flux contours conform to the vessel. Note up–down symmetry is
enforced in these calculations.

where each datum, Di , is specified with an experimental
uncertainty σi . From the equilibrium profiles, a predicted
signal, Mi , is made for each measurement. The exact
method for computing the predicted signal is different for each
diagnostic and varies considerably in complexity.

3.1. Pressure diagnostics

The pressure profile in MST is measured using several
diagnostics for electron and ion contributions. A Thomson
scattering temperature diagnostic and a multi-chord far-
infrared (FIR) interferometer measure the electron dynamics.
Information on the ion pressure is ascertained from
several diagnostics, including a Rutherford scattering system
[14] (bulk ion temperature and density), and charge-
exchange recombination spectroscopy [15] and ion dynamics
spectroscopy [16] systems (impurity temperature), and NIR
bremsstrahlung measurement gives some information on
impurity concentrations. These data are used to determine the
best-fit pressure profile by independently fitting profiles to
the electron temperature and density and adding estimates of
the ion contributions. The pressure gradient term in the Grad–
Shafranov equation is generated by taking the spatial derivative
in flux geometry. This term is typically smaller than the FF ′

term but not negligible.

3.2. External magnetic diagnostics

Several edge diagnostics are a necessary part of the equilibrium
reconstruction. Measurements of the total plasma current,

total toroidal magnetic flux, boundary toroidal magnetic field,
and poloidal asymmetry factor are made with non-intrusive
diagnostics at the plasma boundary. Under some plasma
conditions, the edge (r/a > 0.8) of the plasma can be probed to
measure current density or magnetic field levels directly. These
data are incorporated into the equilibrium reconstruction when
available.

3.3. Internal magnetic diagnostics

Information solely from edge diagnostics cannot determine the
internal structure of the equilibrium profiles accurately [17],
and therefore the internal magnetic diagnostics are crucial
to the equilibrium reconstruction. A multi-chord Faraday
rotation polarimeter [18] measures line integrals of the vertical
component of the poloidal field and electron density and
constrains the toroidal current density. A direct measurement
of the magnitude of the near-axis magnetic field with a motional
Stark effect diagnostic [15] provides a very strong constraint to
the equilibrium. These diagnostics have been used in previous
equilibrium reconstruction work [10], although fitting |B| is
considerably less complicated in this non-linear routine as
profiles of each component of the magnetic field are determined
in each iteration.

A novel constraint to the equilibrium reconstruction also
allowed with this fitting routine is provided by a heavy ion beam
probe (HIBP) [19] in MST. A primary beam of ions (Na+, K+,
Cs+, or others) is sent into the plasma at a specified velocity
(speed and direction). The ions travel across the plasma
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according to the Lorentz force, which is dominated by the
v ×B term for the high energy (∼40–80 keV) ions. A fraction
of the ions in the beam undergo a second ionization, producing
a fan of secondary (doubly charged) ions that follow different
trajectories. Secondary ions from a localized volume within
the plasma exit through a port separated from the injection port
in R, Z, and φ and are measured. Constraint of the equilibrium
is provided by tracing the orbit of the primary ions (and the
reverse of the secondary orbit) from the entrance (exit) port into
the machine. In an experiment where the signal is observed,
the two trajectories must intersect and be nearly tangent at
some point in the plasma. Constraining the equilibrium
reconstruction is done by simply adding a term to the χ2,
following equation (10), given by

χ2
HIBP =

(
�D

0.005

)2

+

(
�v

0.05

)2

, (11)

where �D is the closest approach between the primary and
secondary orbits and �v is the difference in the velocity
unit vector (direction only) at the point of intersection. The
denominator values of 0.005 m and 0.05 (dimensionless) are
nominal uncertainties, corresponding to the typical beam width
within the plasma. Computation of the orbits’ closest approach
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Figure 5. Fit to data in a typical equilibrium reconstruction; (a) through (c) show the agreement among the MSE, Thomson scattering, and
FIR polarimeter: data are shown with error bars, and the fits are the solid lines. Panel (d) is the fit of the HIBP data: the cross sectional and
top views show that the orbits from the injection port and from the exit port meet in the plasma interior.

and tangency is trivial with the fully specified magnetic field
profile at each iteration.

A comparison between the reconstructed equilibrium and
the internal diagnostic data used to constrain the fit is shown in
figure 5; this particular reconstruction is detailed in section 4.
Figure 5(a) shows the agreement between the measured |B|
over a finite region near the plasma core, and figure 5(b) is the
fit to Thomson scattering electron temperature measurements,
which determines the pressure profile in conjunction with
the electron density profile. The upper plot in figure 5(c)
contains the Faraday rotation data (six of 11 chords were
online during this experiment), and the lower plot is the line-
integrated density on all 11 chords with the reconstructed
profile. Figure 5(d) demonstrates the intersection of the
primary (dotted) and secondary (dashed) beam orbits which
constrains the reconstructed magnetic field profiles. The top
plot is an (R, Z) cross-section of the MST, and the lower is
a top view of the torus showing the toroidal deflection of the
beams. This reconstruction also matches edge measurements
(plasma current, total toroidal flux, and toroidal field at the
wall) to within 1%. The equilibrium is further constrained
by a poloidally resolved measurement of Bθ via an array of
Mirnov coils.
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The accuracy and the generality of the code have been
tested using ideal data. Several current density profiles,
ranging from extremely peaked to extremely flat, were
manually generated and used in conjunction with a typical
pressure profile to predict the signals from each of the main
diagnostics. The generated profiles were not created with the
basis functions described in figure 3 to ensure iteration of the
free parameters during reconstruction. The ideal data were
then used as inputs to the code, and this yielded positive results.
The free parameters and basis functions were versatile enough
to reconstruct all current density profiles tested, including
those that go beyond the range of experimentally observed
profiles. The fitting accuracy was also very good, with the
signals predicted by the reconstructed equilibria matching the
ideal data (better than 0.5% accuracy) and matching the mock
current density profile to better than 2% at all radii. It is
expected that this accuracy could be improved with more
diagnostic coverage of the plasma.

Further studies aimed at testing the code’s ability to
reconstruct internal structure were undertaken by creating
significantly different current density profiles with identical
edge values of plasma current, toroidal flux, and boundary
toroidal field. Signals expected from the internal diagnostics
were again computed, and the reconstruction reproduced the
current density profile to similar accuracy. The stability of
the code was tested using mock data that were purposely
inconsistent between two diagnostics. The result was as
expected: the reconstructed equilibrium minimized the cost
function (χ2), and uncertainty in the reconstructed equilibria
(see section 4.1) was considerably higher.

4. Reconstructed equilibria

Figures 6 and 7 are the results of an equilibrium reconstruction
of a standard, low temperature 380 kA MST discharge based
on multiple internal diagnostics (data and reconstruction are
shown in figure 5). Details on the experiment for which
these particular plasmas were produced can be found in
[20]. The surfaces of poloidal flux (figures 6(a) and (b))
are nearly circular, with a magnetic axis (figure 6(c)) shifted
approximately 0.05 m from the geometric centre. Again,
we note that the poloidal flux calculated here is from the
axisymmetric portion of the magnetic field; in the presence
of magnetic fluctuations, the nested toroidal flux surfaces can
be destroyed. The effective one-dimensional minor radius
coordinate (ρ) is defined by flux surface volume (figure 6(d)),
and the toroidal current induced in the vessel is shown
(figure 6(e)). A subset of the flux surface averaged quantities
that characterize the equilibrium are plotted versus ρ in
figure 7. Shown are the free functions, F (figure 7(a)) and
P (figure 7(b)), along with the profiles that generate toroidal
current in the Grad–Shafranov equation, FF ′ (figure 7(c)) and
P ′ (figure 7(d)); quantities computed after the free functions
are determined include: the parallel current density (solid)
and toroidal current density (dashed) in figure 7(e); the total
(solid), toroidal (dashed), and poloidal (dotted) magnetic field
in figure 7( f ); the safety factor (figure 7(g)), normalized
parallel current density, λ (figure 7(h)), and magnetic energy
stored from zero to radius ρ (figure 7(i)); and finally the
magnetic helicity K = ∫

φ dψ +
∫

ψ dφ from zero to radius ρ
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Figure 6. Flux surface geometry for a typical equilibrium
reconstruction. The poloidal flux (b) ranges from 0 at the boundary
to about −0.13 V s in the core; the surfaces of constant flux (a) are
nearly circular with central radii (c) and volumes (d) shown. Plot (e)
is the distribution of toroidal current induced in the vessel.

in figure 7( j). Several other profiles and zero-dimensional
quantities are also computed but not shown here in the interest
of brevity.

4.1. Equilibrium uncertainty analysis

A complete uncertainty analysis must be performed in order
to determine confidence levels in the equilibrium quantities.
In principle, a Monte Carlo analysis can be performed on
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Figure 7. Reconstructed magnetic profiles. The free functions, F (a) and pressure (b), are shown along with their contributions to toroidal
current density, FF ′ (c), and ∇P (d). The resulting current density (parallel solid line, toroidal dotted line in (e)) is plotted. The total
(——), toroidal (- - - -), and poloidal (· · · · · ·) magnetic field profiles are computed ( f ). The safety factor profile (q, (g)) and normalized
parallel current density, (λ = µ0aJ‖/|B| (h)) are plotted, along with the magnetic energy (i) and magnetic helicity ( j) enclosed by radius ρ.

the equilibrium calculation: data such as the plasma current,
edge magnetic field measurements, polarimetry signals, etc can
be varied within their uncertainty, and the equilibrium fitting
can be computed for many sets of the varied data. This is
computationally burdensome and is prohibitively slow.

MSTFit uses instead a semi-analytic approach to estimate
the uncertainty in the equilibrium free parameters. The
minimized quantity, χ2, is a function of N variables (the free
parameters of the fit denoted by ai), and can be Taylor expanded
about the minimum (keeping terms to second-order and noting
that the first derivatives must vanish at the minimum):

χ2 = χ2
0 +

1

2

N∑
i,j=1

∂2χ2
0

∂ai∂aj

δaiδaj , (12)

where the subscript 0 denotes evaluation of the function at its
minimum and δai is the deviation of the ith free parameter
from its value at the minimum.

The distance a given free parameter must vary from the
minimum to increase the χ2 a specified amount is proportional
to the standard deviation in that parameter’s value. It is shown

in [21,22] that varying a parameter ai by one standard deviation
leads to a reduced χ2 increase of 1. In the vicinity of the
minimum,

χ2 = δa2
i

σ 2
i

+ C (13)

defines the uncertainty in a free parameter (σi) and holds where
C is a function of all other aj .

Each free parameter is varied independently to compute
the second derivative near the minimum, and the uncertainty
in a given free parameter is

σ 2
j = 2

(
∂2χ2

∂a2
j

)−1

. (14)

Figure 8 is a plot of the χ2 space versus two of the free
parameters and shows the quadratic nature in each free
parameter.

Finally, the set of free parameters are varied within their
calculated uncertainties (several iterations) and the equilibrium
quantities are computed each time. The resulting envelope
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Figure 8. Surface plot of χ2. The x- and y-axes are two free parameters varied about their minimum. The quadratic nature of the surface
near the minimum is illustrated by excluding the front left quadrant from the plot.

on output profiles is the experimental uncertainty in that
quantity; results of this analysis are shown in figures 6 and 7
as shaded regions about the equilibrium profile. Note that
the relative uncertainty is highest in the core for edge-
constrained profiles such as poloidal flux (figure 6(a)), current
density (figure 7(e)), toroidal magnetic field (figure 7( f )), and
safety factor (figure 7(g)) and ranges from 6% to 8% for
this reconstruction. The uncertainty is largest at the edge
for integral quantities such as total magnetic stored energy
(figure 7(i)) and helicity (figure 7( j)); and we note that these
integral quantities have a lower maximum uncertainty (3–5%)
than the edge-constrained profiles.

4.2. RFP equilibrium studies

A full two-dimensional equilibrium reconstruction is an
important tool for RFP research. MSTFit runs several
post-processing routines after the equilibrium is determined.
Packages include a particle transport, an energy transport, and
a one-dimensional stability analysis, and the flux geometry
is crucial for interpretation of line-integrated emission
measurements. We present here two useful examples of studies
accessible with MSTFit.

The conservation of magnetic helicity during plasma
relaxation is re-examined following Ji et al [12], with improved
measurements of the magnetic field profiles. The RFP
equilibrium relaxes periodically to a minimum energy state
referred to as the sawtooth cycle [23]. From an initially
minimum energy state (flat λ profile), the profiles of current
density and λ gradually become peaked as more current is
driven in the hotter, less resistive core of the plasma. At a
critical point, current-driven modes become unstable and the
MHD dynamo redistributes the current and generates toroidal
flux rapidly. The current density and toroidal magnetic field

profiles are both flattened, and a decrease in magnetic energy is
measured. Ji found a 4.0–10.5% decrease in magnetic energy
during relaxation (depending on the model used), and the same
models showed only a 1.3–5.1% decrease in helicity, modestly
supporting Taylor’s relaxation theory that global helicity is
conserved. Figure 9 summarizes the same analysis using
MSTFit on a set of 380 kA plasmas. The magnetic energy
is shown to decrease (zero-suppressed plot in figure 9(a))
by approximately 8% at the crash (well outside the error
bars), while the magnetic helicity decreases only about 1%
(figure 9(b)), with a larger experimental uncertainty. Also
shown in figure 9 are the radial profiles of the magnetic
energy density (figure 9(c)) and helicity density (figure 9(d))
versus minor radius before (solid line) and after (dashed
line) the sawtooth crash. These plots illustrate the drop in
magnetic energy at the crash and the radial transport (but global
conservation) of helicity.

A second exercise carried out with MSTFit is a calculation
of the trapped particle fraction [24] as

ft = 1 − 3

4
〈B2〉

∫ λc

0

λ dλ√
1 − λB

, (15)

where λ = µ/E is the pitch angle, defined by the ratio of
magnetic moment to total kinetic energy. The critical value
occurs when the pitch angle lies on the boundary of the loss
cone, λc = 1/Bmax; particles circulate for 0 � λ � λc and
are trapped for λc � λ � 1/Bmin. The RFP does not have
a tokamak-like high field side as the maximum |B| is near
the magnetic axis; however, there is significant variation in
field strength along a flux surface. Figure 10(a) shows the |B|
variation along the surface that defines ρ = 0.21 m; the non-
zero variation demonstrates the two-dimensional nature of the
RFP equilibrium. Figure 10(b) is a plot of trapped fraction
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Figure 9. Helicity conservation during a relaxation event. Panels (a) and (b) are the total magnetic energy and helicity versus time relative
to the sawtooth crash. Panels (c) and (d) show the profiles of magnetic energy and helicity density before and after relaxation.

0 100 200 300
Poloidal angle (o)

0.0

0.1

0.2

0.3

0.4

|B
| (

T
)

(a)

0.0 0.1 0.2 0.3 0.4 0.5
ρ (m)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

f t

(b)

Figure 10. Two-dimensional equilibrium effects. Plot (a) is the
variation of |B| along the flux surface whose volume defines
ρ = 0.21 m; plot (b) is the trapped fraction versus minor radius from
a 380 kA standard MST plasma.

versus minor radius. The peak value of 50% agrees with
estimates based on assumed, physically reasonable current
density profiles in two-dimensional RFP equilibrium studies
and implies there is a significant neoclassical correction to the
resistivity profile [9].

5. Summary

MSTFit is a new toroidal equilibrium reconstruction code
developed for the RFP with the ability to incorporate data from
all diagnostics due to its versatile numerical technique. The
free-boundary toroidal current loop Green’s tables have been
modified to impose the constraint of a close-fitting conducting
shell, and a full non-linear search of parameter space finds the
best-fit to the data. The set of post-processing routines is useful

for inversion of line-integrated data and facilitates particle
and energy transport and MHD stability analyses. We have
presented two exercises using reconstructed equilibria: the first
strengthens previous work demonstrating the conservation of
magnetic helicity during plasma relaxation in the MST and the
second demonstrates the two-dimensional nature of the RFP
equilibrium, implying neoclassical effects cannot be neglected
in studies of plasma resistivity.
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